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Abstract—The influence of the geometry on the dynamic behavior of 

InAlAs/InGaAs Velocity Modulation Transistors (VMTs) is analized by means of a 

Monte Carlo simulator in order to optimize the performance of this new type of 

transistor. In VMTs, based on the topology of a Double-Gate High Electron 

Mobility Transistor (DG-HEMT), the source and drain electrodes are connected 

by two channels with different mobilities, and electrons are transferred between 

both of them by changing the gate voltages in differential mode. Consequently, the 

drain current is modulated while keeping the total carrier density constant, thus in 

principle avoiding capacitance charging/dis-charging delays. However, the low 

values taken by the transconductance, as well as the high capacitance between the 

two gates in differential-mode operation, lead to a deficient dynamic performance. 

This behavior can be geometrically optimized by increasing the mobility difference 

between the two channels, by increasing the channel width and, mainly, by 

reducing the gate length, with a higher immunity to short channel effects than the 

traditional architectures. 

Index Terms—Monte Carlo simulations, HEMTs, Velocity Modulation Transistor  

Monte Carlo analysis of the dynamic behavior 
of InAlAs/InGaAs velocity modulation 
transistors: a geometrical optimization 

B. G. Vasallo*, T. González, D. Pardo, and J. Mateos 

Universidad de Salamanca, Plaza de la Merced, s/n, 37008, Salamanca. 
*e-mail: bgvasallo@usal.es 



 

I. INTRODUCTION 

III-V High Electron Mobility Transistors have shown an excellent performance for 

high-frequency operation [1]. To further improve their behavior, alternative solutions 

based on an evolution of the standard HEMT design have been proposed, as the Double-

Gate (DG) HEMT, a HEMT with two gates placed on each side of the conducting 

InGaAs channel [2-6]. The progress of the DG-HEMT technology has allowed the 

design and fabrication of III-V Velocity Modulation Transistors (VMTs) [7,8]. In 

VMTs [7-15], the conducting channel is divided in two regions, a high-mobility (high-

) undoped channel and a low- channel obtained by compensated doping (NA=ND), 

with two (top and bottom) gates controlling the electron density. Carriers are transferred 

between the two channels by changing the gate voltages (VG1 and VG2) in differential 

mode (DM), in which a potential ±VGDIFF/2 is added to a bias voltage VGOFF which 

adjusts the total channel electron concentration (VGDIFF=VG1VG2). Thus, the drain 

current ID is modulated while keeping constant the total carrier density, and it is in 

principle possible to overcome the transit-time limit for high-frequency applications. 

However, the dynamic behavior of the VMT is not as exceptional as expected [9] due to 

the low values of the transconductance gm, and mainly due to the high capacitance 

between both gates Cg1g2 [8]. In contrast, this device does not follow the traditional 

scaling rules for standard FETs and provides a high immunity to short-channel effects 

[8]. 

In this work, an optimization of the geometry of recessed short-channel 

InAlAs/InGaAs VMTs is performed by means of an ensemble 2D Monte Carlo (MC) 

simulator self-consistently coupled with a 2D Poisson solver [16]. This model, which 

has provided a full microscopic interpretation of its dynamic performance [8], allows a 

geometrical optimization of VMTs in order to achieve optimal operation frequencies. 



II. PHYSICAL MODEL 

The validity of the semiclassical MC model used for the simulation of VMTs has 

been proved for standard [16] and DG [5,6] HEMTs by reproducing their experimental 

static and dynamic behavior. This technique has been also successfully applied to the 

study of the static and dynamic behavior of a fabricated VMT [7,8]. 

The topology of the simulated VMT, similar to that of the fabricated transistors, is 

sketched in Fig. 1(a). The active layer structure and the technological process for the 

fabrication were detailed in Ref. 7. Two opposite gate electrodes control the total 

electron density in the channels as well as the carrier shift between them in DM 

operation. The only difference with respect to a DG-HEMT [2-6] is that the channel is 

divided into two regions: a high- undoped channel and a low- channel with 

compensated doping. The compensated-doping allows increasing the ionized impurity 

scattering and thus decreasing the electron mobility. Initially, we analyze a VMT in 

which the gate length is Lg=100 nm, the channel width dC=40 nm, and NA+ND=1019 cm-

3. Then, similar structures with different geometrical parameters are studied. 

Since the small signal equivalent circuit of VMTs in DM operation is not well 

established,,in order to carry out the analysis of the dynamic behavior of VMTs an input 

capacitance CIN is defined as Im[Y11]/2πf, being Y11=IIN/VIN when VDS remains 

constant, and f the operation frequency. CIN can be generally considered as the addition 

of the gate-to-source Cgs, gate-to-drain Cgd and gate1-to-gate2 Cg1g2 capacitances. When 

working in DM, Cgs and Cgd are practically zero, since the amount of electrons under the 

gate remains practically constant and there is no need for channel charging/discharging, 

so that CIN is nearly Cg1g2. The cut-off frequency fC can therefore be calculated as 

gm/2πCIN.  

III. RESULTS 

Fig. 2 presents the intrinsic MC output characteristics of a VMT with Lg=100 nm, 



NA+ND=1019 cm-3, and LC=40 nm: (a) ID–VDS for VGDIFF=0 V (common-mode CM 

operation), and (b) ID–VGDIFF for VDS = 0.5 V (DM), for different values of VGOFF. While 

in CM [Fig. 2(a)] the VMT works as a classic FET device (specifically as a DG-HEMT 

[2-6]), in differential-mode operation the values taken by ID depend on VGDIFF due to the 

velocity-modulation effect: when increasing VGDIFF the electron density is transferred 

from the low- to the high- channel, thus increasing the drain current. MC profiles of 

electron concentration and mean velocity in both high- and low- channels for 

different biasings demonstrate the velocity-modulation operation of the proposed 

transistor [7,8]. Concerning the dynamic performance of the 100 nm-gate device, MC 

results show that the cutoff frequencies take values much lower than predicted [9] (the 

maximum value of fC estimated with the MC model is of the order of 200 GHz for a 

geometry similar to that of the experimental device [8]) because of the low gm 

associated to the VM behavior and, remarkably, to the high geometrical capacitance 

existing between the two gate electrodes when operating in DM, which is the main 

contribution to CIN [7,8]. To improve the frequency operation, the VMT geometry must 

be optimized for an enhanced gm and reduced CIN. 

gm can be improved  by increasing the difference in electron velocity between both 

channels, which can be achieved by rising the compensated doping NA+ND. Fig. 3 

presents the MC values of (a) gm, CIN, and (b) fC, as a function of NA +ND for VGDIFF=0 

V, VDS=0.5 V and VGOFF providing the maximum value of fC. As expected, gm is 

improved when increasing NA+ND, while CIN remains almost constant. However, for a 

value of NA+ND=5×1019 cm-3,  in the low- channel is so small (~840 cm2/Vs) that a 

further rise in the value of the compensated doping does not lead to an improvement in 

fC. On the contrary, it degrades the charge transfer between channels (lower value in 

gm). 

In order to diminish CIN, the distance between the gate electrodes must be increased, 



for example, by enlarging the channel width dC. Fig. 4 presents the MC intrinsic results 

for different values of dC, showing that a wider channel provides also an improvement 

in the value of gm, i.e., a better control on the transfer of electrons between channels. 

Nevertheless, the improvement of gm and fC saturates for a value of about dC=80 nm.  

Finally, in Fig. 5 we show that the most appropriate way to reduce CIN is shortening 

the gate length Lg. A shorter Lg does not lead to a reduction of gm (neither to an increase 

as for traditional FETs), while the value of CIN decreases and thus fC is remarkably 

enhanced. As a consequence, because of the different scaling rules of the VMT and the 

immunity to short-channel effects of the DG architecture [5], the limit for attaining high 

frequencies of operation comes from the technological difficulties met to achieve a 

perfect alignment of both gates of so small length. 

IV. CONCLUSIONS 

In this work we have analyzed, by means of a 2D ensemble MC simulator, an 

InAlAs/InGaAs short-channel VMT based on the DG-HEMT topology. By changing 

the gate voltages in differential mode, electrons are shifted between two channels with 

significantly different mobilities. The low values taken by gm, as well as the high 

capacitance between the gates Cg1g2 in DM operation, leads to a deficient dynamic 

behavior. However, the cutoff frequency of VMTs can be increased by rising the 

compensated doping NA+ND and by enlarging the distance between the gate electrodes. 

However, given the immunity to short-channel effects of the DG architecture, the most 

appropriate way to reduce CIN without lowering gm (thus enhancing fC) is shortening the 

gate length Lg.  
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FIGURE CAPTIONS 

Fig. 1.  Schematic topology of the VMT under analysis. 

Fig. 2. MC (a) ID–VDS for VGDIFF=0 V and (b) ID–VGDIFF for VDS=0.5 V. VGOFF is –0.1 V 

for the top curves, and the potential step is VGOFF=0.1 V. Lg=100 nm, dC=40 nm and 

NA+ ND=1019 cm-3. 

Fig. 3.  Intrinsic MC values of (a) gm and CIN, and (b) fC as a function of NA+ND, for 

VGDIFF=0 V, VDS=0.5 V and VGOFF providing the maximum of fC. Lg=100 nm and 

dC=40 nm. 

Fig. 4.  Intrinsic MC values of (a) gm and CIN, and (b) fC as a function of dC, for 

VGDIFF=0 V, VDS=0.5 V, and VGOFF providing the maximum of fC. Lg=100 nm and NA+ 

ND=1019 cm-3. 

Fig. 5.  Intrinsic MC values of (a) gm and CIN, and (b) fC as a function of Lg, for VGDIFF=0 

V, VDS=0.5 V, and VGOFF providing the maximum of fC. dC=40 nm and NA+ ND=1019 cm-

3. 
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Fig. 1.  Schematic topology of the VMT under analysis. 
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Fig. 2. MC (a) ID–VDS for VGDIFF=0 V and (b) ID–VGDIFF for
VDS=0.5 V. VGOFF is –0.1 V for the top curves, and the potential step
is VGOFF=0.1 V. Lg=100 nm, dC=40 nm and NA+ ND=1019 cm-3. 
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Fig. 3.  Intrinsic MC values of (a) gm and CIN, and (b) fC as a function
of NA+ND, for VGDIFF=0 V, VDS=0.5 V and VGOFF providing the
maximum of fC. Lg=100 nm and dC=40 nm. 
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Fig. 4.  Intrinsic MC values of (a) gm and CIN, and (b) fC as a function
of dC, for VGDIFF=0 V, VDS=0.5 V, and VGOFF providing the
maximum of fC. Lg=100 nm and NA+ ND=1019 cm-3. 
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Fig. 5.  Intrinsic MC values of (a) gm and CIN, and (b) fC as a function
of Lg, for VGDIFF=0 V, VDS=0.5 V, and VGOFF providing the
maximum of fC. dC=40 nm and NA+ ND=1019 cm-3. 


