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Abstract—Location-based services gained much popularity
through providing users with helpful information with resp ect
to their current location. As a recent trend, virtual locati on-
based services consider webpages or sites associated as ’virtual
locations’ that online users can visit. The presence of links
between virtual locations and the corresponding physical loca-
tions (e.g., geo-location information of a restaurant linked to
its website), allows for novel types of services and applications
which constitute virtual location-based services (VLBS).Their
success largely depends on the existence of websites referring to
physical locations. In this paper, we investigate the usefulness
of linking virtual and physical locations. For this, we analyze
the presence and distribution of virtual locations, i.e., websites
referring to places, for two Irish cities. Using simulated tracks
based on a user movement model, we investigate how mobile
users move through the Web as virtual space. Our results show
that virtual locations are omnipresent in urban areas, and that
the situation that a user is close to even several such locations
at any time is rather the normal case instead of the exception.

Keywords-virtual location-based services, case study, user
movements, evaluation

I. I NTRODUCTION

With the advances in mobile technologies, people can
access the Web almost everywhere. Modern mobile devices
are able to determine the physical context of a user such
as the current location. These developments have spurred
the success and popularity mobile applications which pro-
vide mobile users with information based on their physical
context. The location of users is one of the most important
physical context as evident by the huge success of location-
based services such as Foursquare, Google Places etc.

In previous works [19], [21], we motivated and studied
the advantages of linking locations with the corresponding
websites towards the notion of virtual location-based ser-
vices (VLBS). VLBS consider a webpage, sets of pages
or complete websites representing a location as avirtual
location. For example, given a location like the computer sci-
ence building of a university, the website for that computer
science department denotes a virtual location. VLBS utilize
this idea to provide additional information about (virtual)
locations or enable users to communicate and collaborate
between others being physically on-site. In [21], we merge
both types of location-based services by connecting physical
with virtual locations in an overarching model of “space”.

In this paper, we investigate the feasibility, usefulness
and potential benefits of VLBS in detail. The success of
VLBS depends on the widespread existence of links between
physical and virtual locations. More specifically, we formu-
late the following research questions: (a) How common are
locations with a physical as well as a virtual representation
and how are they distributed across cities? (b) How do
mobile users in the real world move through the virtual space
in terms of being close to virtual locations? (c) What are new
insights into the realization of VLBS to improve the online
experience of both web and mobile users?

For answers, we provide an in-depth case study analyzing
the existence and distribution of virtual locations. We focus
on locations which “naturally” feature a physical counterpart
such as websites dedicated to physical locations, e.g., the
websites of shops, hotels, bars, etc. VLBS enable novel
functionalities to users such as context-aware interactions
or computer-supported cooperative work on the Web. For
example, a Web user at home and browsing a restaurant’s
website might contact mobile users present in the restaurant
to inquire about the current occupancy (geo-social search).
A mobile user walking by a shop can be notified about
the shop’s website with its current offers (mobile web
advertising). Also new ideas for mobile gaming involving
both Web and mobile users are conceivable.

For our case study, we collected virtual locations within
the cities of Dublin and Galway, Ireland. We use the real-
world user visits on Foursquare (https://foursquare.com/) to
simulate user movements in both cities to investigate mobile
users’ visits at virtual location while moving through virtual
space. We distinguish between two types of movements:
recurring movementsrefer to users’ movements that are part
of their daily routine such as going to work;non-recurring
movementsrefer to less common movements, e.g., going to
a pub after watching a movie in a theatre. Our results show
that in urban environments virtual locations are virtuallyom-
nipresent. Furthermore, our simulation of user movements
show that most of the physical user movements within a
city result in users traversing through many virtual locations.
This is particularly true for non-recurring movements, since
here mobile users are more likely to pass areas with a
high density of virtual locations. These results promote the
success of real-world VLBS applications.



Paper outline: Section II reviews related work. Section III
provides a basic model of the virtual space and presents
our VLBS prototype. Section IV describes the collection
and generation of the dataset we used within our evaluation.
Section V presents the results of our comprehensive case
study. Finally, Section VI concludes and birefly outlines on-
going work and challanges.

II. RELATED WORK

Location-based services.Location-based services gained
enormous popularity since mobile devices enabled users
to get contextualized information based on their location.
The locations of users are sensitive information which users
are typically not willing to share. Existing approaches to
preserve users’ privacy aim to not disclose one’s exact
location but rather an estimate [6], [16]. The main challenge
here is identifying a meaningful trade-off between the level
of privacy and the quality of the provided service. Various
user studies have been conducted to investigate users’ pref-
erences with respect to sharing their location with others,
e.g., [2], [17]. Besides privacy, other user studies such as[3],
[5] investigate the effects of multiple factors (e.g., costs,
security, quality) on the successful adoption of such services.

Location-based social networks.Location-based social
networks enable users to establish social connections with
others and express their visits to places along with their
social profiles. Functionalities such as checking-in at places,
rating or commenting on them and commenting are very
user-centric as they also bring social contexts into con-
sideration. Popular social networks are Facebook Places,
Foursquare, and Google Places. Existing works analyzed the
user visits to places and the effect of social ties between
users on the user movement patterns [4], [14], [24]. The
results in [1] indicate that social ties of users can be used
to discover approximate locations of users. [15], [22] show
that user mobility patterns can be used to predict the social
ties between users. The results show strong links between
the social network of a user and his/her movements.

Towards virtual location-based services.The concept
of virtual locations originates from the efforts towards
collaboratively browsing and searching the Web. SEARCH-
TOGETHER [8] and COSCRIPTER [7] enable collaborative
browsing between users working with their own computers.
PLAY BYPLAY [23] demonstrates the use of collaborative
browsing with a system which lets the mobile device
users and Web users collaborate and communicate. COBS
(COllaborativeBrowsing andSearching) [19], [20] proposes
a browser extension providing a proof-of-concept implemen-
tation that allows users visiting the same site to communicate
with each other. In [21], we present a novel approach to
enable the communication between users visiting virtual
locations and users present at physical locations by linking
virtual locations, i.e., websites, to physical locations.

In summary, traditional location-based services and re-
lated services on the Web have been investigated indepen-
dently. In [21], we have proposed a framework to link the
physical locations to their virtual locations in order to enable
better communication and collaboration between users. We
have also presented some preliminary results regarding its
potential benefits. In this paper, analyzing openly available
datasets, we show the usefulness for merging physical and
virtual locations in order to develop novel VLBS.

III. V IRTUAL LOCATION-BASED SERVICES

We introduce the notion of VLBS as follows: We first
provide a model for the virtual space, and then present
VLIMSy, our current VLBS prototype.

A. A Model of the Virtual Space

Our approach is to adopt the notion of a user’s location
from the real world to the Web. In the following, we
define the required concepts of a virtual coordinate and
virtual location. We limit the presentation of the model of
the virtual space to the concepts required for this paper;
we present the full model in [21]. Simply speaking, space
describes the possibilities where a person “can be”. Given
these notions, we define the virtual space as the set of web
pages a user can visit. In geographic terms, the most fine-
grained way to specify a mobile user’s current position is by
means geo coordinates, e.g., longitude and latitude. Mapping
the concept to the virtual space, the current position of a
user is the web page the user is visiting. Thus, within our
framework, each page is uniquely identified by a URL.
Definition 1(Virtual coordinate). A virtual coordinatevc is
the URL of a webpage.

Typically, not the distinct page but the category or topic
or similar concepts of a page are of interest to describe a
web user’s location. We therefore extend the definition of a
virtual location beyond a single virtual coordinate.
Definition 2 (Virtual location). A virtual location vl is a
distinct, non-empty, finite set of virtual coordinatesV =
{vc1,vc2, ...,vcn}, with V1∩V2 = /0.

The set of virtual coordinates that constitutes a virtual
location is application-specific. Throughout this paper, we
use the domain of a URL as identifier of a virtual location,
i.e., we group all subpages of a website into one location.
This is a reasonable assumption for websites associated to
physical locations such as hotels, shops, businesses, etc.,
which are in the scope of our evaluation.

B. A Simple VLBS Application

Our proof-of-concept implementation of a VLBS, called
VLIMSy, allows the exchange of presence information and
messages of web and mobile users based on their physical
and/or virtual location. For example, a web user browsing a
shop’s website can connect with other web user visiting the
same site or mobile users close to the shop.



Figure 1. Screenshots of the mobile application and browseradd-on.

Backend Architecture. A data repository maintains the
mapping between the physical and virtual locations. We
focus on “single point” locations like hotels, pubs, shops,
etc. We store areas like parks or golf courses also using
single geo coordinates. We provide the presence and instant
messaging service based on the open-standard eXtensible
Messaging and Presence Protocol (XMPP, http://xmpp.org).
For VLIMSy, the most relevant concept is the “group chat“;
we assign each location to a group chat. The intuition is that
users at the same location are in the same group chat and are
therefore aware of each other. In general, the physical and
virtual locations of a user differ. For example, a customer
in a shop is not necessarily browsing the shop’s website.
We therefore distinguish between ageo group chatrepre-
senting the physical representation and aweb group chat
representing virtual representation of a location. Besides
presence information, we also make use of the possibility to
exchange messages. We support group chats and the user-
to-user communication between web and mobile users.

Frontend Applications. Given the different devices and
applications for web users (e.g., at home) and mobile users,
we provide two interfaces to interact with VLIMSy: a web
browser add-on and a mobile application; see Figure 1.

Web browser add-on.We aim for a seamless integration
of our presence mechanisms into the normal browsing
experience of users. We therefore implemented a browser
add-on featuring a sidebar to provide our instant messaging
service. The add-on maintains an XMPP connection with
references to two group chats, (a) to the web group chat
of the currently visited website, and (b) to the geo group
chat of the corresponding physical location (if available).
The latter enables web users to be aware of mobile users
that are close to the physical location of the visited website.
Using the sidebar, user can engage in private and group chats
with other users.

Mobile phone application.We implemented an Android
application with two main features: A map based on the
GOOGLE MAPS API displays all available virtual locations,
web and mobile users in the vicinity as different markers.
Clicking on a marker displays some basic information about
the corresponding location, web or mobile user. This in-
formation window also allows a mobile user (a) to enter
the group chat of a virtual location or (b) send a private
message to other web or mobile users. The second feature
is a basic chat client for private and group chats. We assume
that a mobile device is capable of determining its location.
If a mobile users is close to virtual location, the application
automatically enters the corresponding geo group chat, and
thus making the mobile user visible to web users.

VLIMSy is our current experimental setup to illustrate the
potential of VLBS and to get deeper insights into the chal-
lenges of their implementation as real-world applications. In
principle, our setup can easily be extended to meet the needs
of users such as setting their preferences in terms of privacy,
access control, visibility radius, etc. Further meaningful ex-
tensions comprise mechanisms towards trust and reputation
management to incentivize users to participate as well as to
discourage malicious behavior.

IV. DATA COLLECTION AND GENERATION

This section describes the collection and generation pro-
cess of the data we used for our evaluation.

A. Physical and Virtual Locations Data

Our dataset consits of the physical and virtual locations
for two cities in Ireland, Dublin and Galway. We used the
Google Places API1 to find all places within the city limits
of Dublin and Galway. For only evaluation, we considered
only places that feature a website, i.e., a virtual location. As a
result, we collected approximately 1,400 entries for Galway
and 16,400 entries for Dublin with each entry featuring both
a physical and virtual location. We made all data used in our
evaluation available on an accompanying website.2

B. Simulated User Movements

We simulated user movements across Dublin and Galway.
User movement has been analyzed using the user check-in
activities on location based social networks [9], [10]. These
works have shown that movements of any user occur within
a specific geographical area with occasional movements
outside the area. It has been demonstrated that many of
the user movements have repeatability such as travelling
to work place and users rarely travel between any random
locations [11], [12]. The model advocating this is known
as Activity-Based Travel Demand Modelingand has been
extensively used to model users’ travel decisions.

1https://developers.google.com/places/
2http://vmusm02.deri.ie/vlimsy
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Figure 2. User movements between various categories of places

To simulate users’ start and end locations, we used the
total number of user check-ins a place has on Foursquare.
Places in Foursquare belong to categories such as ’restau-
rant’, ’office’, etc. We classified the place categories as
Home, Work, Food, EntertainmentandOthers(cf. [18]). A
path comprises of a user moving between places of different
categories. We distinguish two types of user movements:
recurring movementsbetweenHome and Work represent
the weekday routine of users; all other movements we
denote asnon-recurring movements. Figure 2 illustrates
this, with Home and Work and the dashed edge reflecting
recurring movements; non-recurring movements consider all
five categories but exclude paths betweenHomeandWork.

Algorithm 1 Simulation of recurring movements
1: select a home locationlstart as lstart ∼Uni form(1/|H |)
2: select a work placelend as follows
3: πW ∼ Dirichlet(αW)
4: selectlend as lend∼ Discrete(πW)
5: return (lstart, lend) and (lend, lstart)

Algorithm 1 describes the way samples of start and
end locations are generated to simulate the recurring user
movements.H andW denote the set of all locations belong-
ing to Home and Work respectively. A uniform sampling
over H with the probability of 1/|H| ensures that every
home location has equal probability of being start location
lstart (Line 1). We select the locationlend belonging to
Work based on the total number of check-ins. We use
the Dirichlet prior for a discrete distribution motivated by
Bayesian Bootstrapping [13] to smooth the distributions
as we have small datasets in terms of number of places
per category and number of check-ins, compared to the
number real-world locations and user visits. We first sample
a distribution functionπW from a Dirichlet distribution with
the parametersαW = (α1, . . . ,αw), wherew = |W| and αi

is the total number of user check-ins at theith work place
(Line 3). This ensures that the discrete distribution sampled
from Dirichlet(αW) favors the selection of a work place
as end location with a higher number of check-ins. Finally,
we samplelend from a discrete distribution with the sample
spaceW and distribution functionπW (Line 4).

Algorithm 2 Simulation of non-recurring movements
1: select a place categorycstart ascstart ∼Uni form(1/|Call |)
2: if cstart is homethen
3: selectlstart as lstart ∼Uni form(1/|H |)
4: else
5: πstart ∼ Dirichlet(αcstart)
6: selectlstart as lstart ∼ Discrete(πstart)
7: end if
8: select a place categorycend ascend∼ Discrete(wcstart)
9: if cend is homethen
10: selectlend as lend ∼Uni form(1/|H |)
11: else
12: πend∼ Dirichlet(αcend

)
13: selectlend as lend ∼ Discrete(πend)
14: end if
15: return (lstart, lend)

Algorithm 2 describes the way samples oflstart and lend

are chosen to simulate the non-recurring user movements.
With Call being the set of all five categories of places,
a uniform sampling is carried out overCall to obtain the
categorycstart of any start location (Line 1), so that all
categories are chosen equally. Ifcstart is Home, we select
any home location with equal probability (Line 3) to make
sure that all home locations are well-represented in the
simulations. Otherwise, we again use the Dirichlet prior for
the discrete distribution to selectlstart to reflect the number
of check-ins (Lines 5-6). The selection oflend comprises
two steps: Firstly, we select a categorycend based on the
choice of cstart, favoring categories with many locations.
And secondly, we selectlend as location of categorycend,
favoring locations with many check-ins. To selectcend, we
use a stochastic transition matrix defined as:











Home Work Food Entertainment Others

Home ε 0 w13 w14 w15
Work 0 ε w23 w24 w25

Food w31 w32 ε w34 w35
Entertainment w41 w42 w43 ε w45
Others w51 w52 w53 w54 ε











For non-recurring movements, the transition probabilities
betweenHomeandWork are 0. We calculate the transition
probabilities between categories aswi j =

Nj
Mi

− ε
Zi

with i 6= j.
Nj is the number of distinct places belonging tojth category
of the matrix. Mi = ∑k Nk where k is any column index
whose entry is not assigned withε or 0 in the ith row.
Zi is the number of categories to which a transition from
the ith category can be made. Hence,Z1 = Z2 = 3 and
Z3 = Z4 = Z5 = 4. ε denotes the self-transition probability
of start and end location belonging to the same category.
Setting theε to a small value ensures that movements such
as going from oneFood place another are rare. Setting the
wi j values based on the number of places belonging to
various categories ensures that the most visited categories
are favored in the simulation. Givencstart, we choose the
end location categorycend from a discrete distribution with
the distribution function defined by the row vectorwcstart.
Once we have selectedcend, we samplelend in a fashion
similar to the selection of the start location (Lines 9-14).



rv radius of vicinityof virtual locations: minimum distance (in
meter) between users and locations to be considered as visits
of the users at locations.

tmin
v minimum visiting time: minimum time (in seconds) a user

has to spend in the vicinity radius of a virtual location to be
considered as visit of users at locations.

lmax maximum path length: maximum length in kilometer of
simulated paths.

Table I
L IST OF EVALUATION PARAMETERS

Home Work Food Entertainment Others

Dublin 4413 1280 1425 634 2269
Galway 417 228 275 156 442

Table II
NUMBER OF PLACES BELONGING TO DIFFERENT CATEGORIES

Home Work Food Entertainment Others

Dublin 0.184 0.158 0.232 0.322 0.104
Galway 0.106 0.181 0.241 0.323 0.149

Table III
STATIONARY DISTRIBUTIONS OF CHECK-INS PER CATEGORY

Finally, for each selected start and end location, we used
the Google Directions API3 to obtain the paths between
the two locations. Since we focus on walking users , we used
walking as travel mode to get the directions via pedestrian
paths and side-walks (where available). Note that with this
method we consider direct paths between locations.

V. EVALUATION

In this section, we present the results of our case study,
i.e., whether merging the physical and virtual space involves
a sufficient overlap to be of practical relevance. Table I
describes the parameters we considered within the analysis.

A. Simulated User Movements

We crawled places and check-in activities for Dublin and
Galway on Foursquare (see Table II) to obtain the parameters
of the various probability distributions in our simulation
model. Table III shows the stationary distributions for the
five different categories, obtained by computing the long-
term behavior of the Markov chain defined by the transition
matrix defined in Section IV-B. We setε = 0.1 as the self-
transition probability parameter for the transition matrix. We
found that the stationary distributions of user check-ins are
very similar for Dublin and Galway and also are similar to
the result reported in the previous studies [15], [18].

To obtain a reasonable number of user movements, we
first generated 5,000 paths for recurring and non-recurring
user movements. Figure 3 shows the distribution of path

3https://developers.google.com/maps/documentation/directions/
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Dublin Galway

population (in 2011) 525,400 75,500
#places 39,237 3,692
#virtual locations 16,485 (42.0%) 1455 (39.4%)

Table IV
BASIC STATISTICS OF COLLECTED DATA

lengths, i.e., the number of paths with lengths≤ lmax.
As expected, given its much larger size, paths in Dublin
are on average much longer than in Galway. Furthermore,
popular locations for non-recurring movements are much
more concentrated within the city of Galway. Also, paths for
recurring movements are on average longer than for non-
recurring movements, sinceHome places are typically in
areas with less work virtual locations. Considering walking
users, overlong paths are not meaningful. Hence, for experi-
ments with a fixed maximum path length we setlmax= 3km.
Otherwise, we varylmax between 1 and 5 kilometers.

B. Coverage & Distribution of Locations

Table IV shows the population size, number of places
and virtual locations (i.e., places that feature a website)we
collected for Dublin and Galway. While both cities differ
regarding their population size, the number of places is
roughly proportional to the size. Moreover, the number of
places that feature a website is for both cities about 40%.

We first calculated the coverage in percent; see Fig-
ure 4(a). Naturally, the coverage increases for largerrv, re-
sulting in up to 83% (72%) coverage for Dublin (Galway) for
rv = 250m. Regarding the distribution of virtual locations,
we divided the areas of the cities into squares with different
side lengthsl and counted the number of virtual locations
within each square. Figure 4(b) shows the ratio of non-empty
squares, which naturally increases for larger squares. Empty
squares typically cover city parks or purely residential areas.
Figure 4(c) shows the distribution all non-empty squares for
l = 100m. Not unexpectedly, the number of virtual locations
per square and their respective frequency show a power-law
relationship: While most squares contain only a small set
of locations, few squares contain a very large number of
locations (e.g., city centers, business parks).
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C. Overlap of Physical and Virtual Space

Average number of visited locations.With number of
visited locations being rather skewed, we use the median to
quantify the average number of visited locations. Figure 5(a)
shows the results for the non-recurring movements in Dublin
for variousrv and tmin

v and for lmax= 3km. The results for
the other path datasets differ only in the absolute values.
Most naturally, the smallerrv and the largertmin

v the less
locations a user is visiting. The vicinity radius has the greater
effect on the results due to the low speed (average walking
speed). Overall, the results indicate that visiting many virtual
locations while walking through a city is very common.

Next, we looked at the difference between the path
datasets (Figure 5(b)). As expected, the paths derived from
non-recurring movements in Dublin cross the most virtual
locations, since they typically pass through areas with many
locations. Recurring paths, on the other hand, often originate
outside such areas. For Galway, the differences between

recurring and non-recurring paths are also visible. However,
the results are much lower than for Dublin since the areas
with many virtual locations are smaller. We therefore argue
that VLBS are more likely to be successful in larger cities.

We also variedlmax to see its effect. As Figure 5(c) shows,
the effect of varyinglmax is limited. The average number
of visited locations even slightly drops again for increasing
lmax. Our explanation is that longer paths are more likely
to cover areas with a lower location density. In this sense,
the maximum path length resulting in the highest average
number of visited locations vaguely indicates the size of
high-density areas (in case of direct paths).

Average number of parallel visits.We performed several
experiments to measure the average number of parallel
visits. For each individual path the number of parallel visits
changes over time, and calculated the median to represent
the average number of parallel visits for each path. We
eventually calculated the median of medians to report the
average number of visits across our path datasets.



Figure 6(a) shows the results for our path datasets. Not
surprisingly, the number of parallel visits correlate withthe
overall number of visited locations. Even for moderaterv, a
mobile user being close to multiple virtual locations at the
same time is very common. We then compared the results
regarding the number of parallel visits for differentlmax.
Figure 6(b) shows for non-recurring movements in Dublin
that for small lmax the number of parallel visits increases.
This is, again, due to the high probability of short paths
crossing areas with many virtual locations.

Finally, Figure 6(c) compares the median of medians
results with the ones for median of maximums for the two
Dublin path datasets. For the median of maximums, we
calculated the maximum number of parallel visited locations
(instead of the median) for each path. Naturally, the median
of maximums is significantly higher than the median of
medians, resulting in up to several hundred parallel visits
for non-recurring paths in Dublin. From an application
perspective this means that Web and mobile user potentially
find themselves in the presence of many other users visiting
the same locations at the same time. While this is, in general,
a worthwhile situation, it also poses new challenges, e.g.,to
avoid unmanageable number of parallel chats in VLIMSy.

Accumulated visiting time. In our last series of exper-
iments, we evaluated the overlap between the physical and
virtual spaces in terms of the average accumulated visiting
time. This value represents the time a mobile user was close
to virtual locations independent of parallel visits.

We first calculated the accumulated times for differentrv

andtmin
v . Figure 7(a) shows the results for the non-recurring

movements in Dublin andlmax= 3km, using the median to
average over the path datasets. Again, the effect oftmin

v is less
pronounced than the one ofrv due to the slow travel speed.
Most striking, however, is the long accumulated visiting
times of several hours. The reason for that is the often
high number of virtual locations a mobiles user is close-
by at the same time. Figure 7(b) shows the results for all
path datasets andlmax= 3km. As expected, the results are
lower for paths in Galway than in Dublin. However, even for
recurring movements in Galway, the average accumulated
visiting time goes up to several hours. Thus, although mobile
users walk only for a short time – not more than 36 minutes
given a walking speed of 5km/h andlmax= 3km – they are
typically significantly longer present in the virtual space.

Finally, we investigated the effect of the maximum path
length lmax on the average accumulated visiting time; see
Figure 7(c). Again, longer maximum paths length do not
result in longer visiting times since long paths tend to
(partly) cross areas with less virtual locations. This is a result
of our experiment setup using direct paths with a constant
travel speed, and hence might differ for different settings.
In general, our setup yields the “worst” results in terms of
the accumulated visiting time, since we, for example, do not
consider any breaks, e.g., for shopping or eating.

D. Discussion of Results

Potential benefits of VLBS.To be useful, VLBS require
that the physical and virtual space overlap sufficiently. Our
results consistently confirm this for urban areas. Areas like
city centers feature such a high density of virtual locations
that users are close to a large number of locations at any
time. Thus, we deem the virtual presence of mobile users
of practical importance for the design and development of
new kinds of VLBS bridging the physical and virtual world.
Although our results are already very promising, we expect a
more significant overlap in real-world deployments. So far,
we considered only the case where mobile users walk on
straight paths. Imagine, however, a tourist strolling through
a city center: His/her path might cross itself multiple times,
the walking speed is slow and includes breaks for shopping
or eating. This further increases the overlap between the
virtual and physical world, particularly regarding the time
spent close-by virtual locations.

Impact on implementations of (virtual) location-based
services.In areas with a high density of virtual locations,
such as city centers, the probability that a mobile user is
present at a large number of virtual locations at the same
time is very high. Depending on the number of already
present users this can lead to an unmanageable number of
parallel encounters, and therefore might negatively affect the
user experience. Thus, suitable mechanisms limiting a user’s
presence to a reasonable number of parallel virtual locations
are required e.g., filtering or ranking techniques. Meaningful
techniques consider the different absolute distances or more
sophisticated parameters (e.g., how often a user is close
a particular location) to determine the ranking or filter
conditions. A further approach is to dynamically adapt
important system parameters such as the vicinity radiusrv

or the minimum visiting timetmin
v .

VI. CONCLUSIONS

Merging virtual locations (i.e., web pages or sites) with
points of interest in the real world, opens new opportunities
for the design and development of novel virtual location-
based services. Mobile users can get additional information
about websites associated with nearby locations provided
on their devices. Users at home browsing a website can
get in contact with people on-site, i.e., users that are close
to the location connected to the visited website. In this
paper, we showed that such approaches promise to have
real practical impact.Firstly, virtual locations are virtually
omnipresent covering very large portions of urban areas,
with the distribution of virtual locations showing power-law
relationships. And secondly, using simulated tracks describ-
ing different categories of user movements, we demonstrated
that the situation where users are nearby such locations is
rather the normal than the exceptional case. Moreover, as a
result of the distribution of virtual locations, users are often
close to many of them at the same time.
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Figure 7. Accumulated visiting time

Summing up, our results show that there is a significant
overlap between the physical and virtual space promoting the
practical relevance and potential benefits of VLBS. Further-
more, the results also serve as input for ideas and the design
and implementation of such services. Towards the design and
implementation real-world VLBS we see various immediate
challanges. Most importantly, like for traditional location-
based services, privacy is a relevant issue since the website
a user is browsing on may represent sensitive information.
Further challanges are, depending on the specific application,
incentivizing users to share the (virtual) locations and to
provide user-generated content. We argue that not only
existing techniques from traditional location-based services
– e.g. privacy preservation techniques obfuscating users’
exact location – but also mechanisms from other related
fields, such as online social networks as well as reputation
and recommender systems, are worth investigating.
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