
 
Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published

version when available.

Downloaded 2020-10-17T06:11:48Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Player-Traced Empirical Cost-Surfaces for A* Pathfinding

Author(s) Redfern, Sam

Publication
Date 2011

Publication
Information

Redfern, Sam (2011) Player-Traced Empirical Cost-Surfaces
for A* Pathfinding  GAME'ON International Conference on
Intelligent Games and Simulation

Publisher Eurosis

Link to
publisher's

version

http://www.psychicsoftware.com/redfern_gameon2011_pathfin
ding_paper_v02.pdf

Item record http://hdl.handle.net/10379/4082

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


PLAYER-TRACED EMPIRICAL COST-SURFACES FOR A* PATHFINDING

Sam Redfern
National University of Ireland, Galway

Galway
Ireland

E-mail: sam.redfern@nuigalway.ie

KEYWORDS

A* Pathfinding, Player Modelling, Player Tracing 

ABSTRACT

This  paper  discusses  the  use  of  empirical  cost-surfaces 
derived  from  substantial  amounts  of  player-traced 
movements  in  an  online  vehicular  combat  game,  for  the 
purposes of improving A* pathfinding by AI vehicles. The 
fundamental concept is that we derive navigational meshes 
from human-player movements, with each node weighted by 
frequency of use. Our goals include the improvement of path 
travel  times,  aesthetic  improvements,  and  the  reduction of 
damage sustained while travelling across the map.

The  results  presented  include  quantifiable  timings  and 
observational  characteristics.  Quantifiable  improvements 
include  both  algorithmic  efficiency  and  travel  time 
efficiency, while observations include the improved ability to 
avoid risky terrain features as well as other subtle human-like 
behaviours.

A  best-performing  non-linear  cost  function  for  the  A* 
algorithm, based on player data, is suggested. Continued and 
future work on the AI in the game is discussed.

INTRODUCTION

This paper discusses the development of empirically-derived 
(player-mimicking)  cost  surfaces  for  AI pathfinding in  the 
online vehicular combat game "Darkwind: War on Wheels". 
This game has been developed by the author since 2005 and, 
since it provides a substantial player-base and  thousands of 
live  games per  week,  is  an  ideal  test-bed  for  AI research 
(Redfern 2007, 2010).

Although  pathfinding  in  general,  and  the  A*  (“A  Star”) 
algorithm in  particular,  are  well  established  techniques  in 
computer games, improvements continue to be proposed in 
terms of aesthetics (Coleman 2009) – producing believable 
'human-like'  routes  –  and  in  experimental  refinements  for 
complex environments (Hale  et  al.  2010).  The pathfinding 
requirements  of  typical  open-terrain  First  Person  Shooter 
(FPS)  and  Real  Time  Strategy  (RTS)  games,  are 
fundamentally simpler than those of a vehicular combat game 
with  realistic  physics,  tyre  and  chassis  degradation,  and 
collision damage models. In Darkwind, a car's momentum is 
critically important to its tactical movement and performance 
during combat; cars receive damage from poor driving and 
poor surfaces; various surface characteristics exist (e.g. sand, 

dirt, tarmac); and, effective routes across the terrain require 
cover from enemy fire. Furthermore, it is often appropriate to 
maintain a safe distance around dangerous obstacles such as 
cliff edges rather than choose an absolute shortest route. 

Our core hypotheses are that (i) there are a number of subtle 
factors  related  to  both  effectiveness  and  aesthetic  value, 
which define optimal routes around the terrains, and that (ii) 
it  may  not  be  feasible  to  deal  with  these  factors 
algorithmically.  We  aim  to  achieve  efficient,  believable 
('human-like')  routes  which  navigate  terrain  features  and 
surface types sensibly, are safe from collision damage and, 
where  possible,  enemy  fire.  Since  Darkwind  is  a  well 
established online multiplayer game, it  provides substantial 
amounts of empirical  evidence about player-chosen routes. 
This paper describes the use of this evidence to improve AI 
pathfinding.   

A* PATHFINDING

The A* algorithm was first  proposed  in 1968 (Hart  et  al. 
1968)  and  has  been  the  most  widely  used  pathfinding 
technique  by games  programmers,  due  to  its  effectiveness 
and  efficiency.  Numerous  introductory  explanations  are 
available  in  the  literature;  a  particularly  good  online 
description, for example is (Lester 2005).

The fundamental  operation  of  A* is to  traverse  a  map by 
exploring promising positions (nodes) beginning at a starting 
location, with the goal of finding the best route to a target 
location. Each node has four attributes other than its position 
on the map:

• g is the cost of getting from the starting node to this 
node

• h  is  the estimated (heuristic)  cost  of  getting from 
this node to the target node. It is a best guess, since 
the algorithm doesn't (yet) know the actual cost

• f  is the sum of  g  and  h, and is the algorithm's best 
current  estimate  as  to  the  total  cost  of  travelling 
from the starting location to the target location via 
this node

• parent is the identity of the node which connected to 
this node along a potential solution path

The algorithm maintains two lists of nodes, the open list and 
the  closed list.  The former consists of nodes to which the 
algorithm has already found a route (i.e, one of its connected 
neighbours has been evaluated or expanded) but which have 
not themselves, yet, been expanded. The latter (closed) list 
consists  of  nodes  that  have  been  expanded  and  which 
therefore should not be revisited. 



Progress is made by identifying the most promising node in 
the  open list  (i.e.,  the  one  with  the  lowest  f  value)  and 
expanding it by adding each of its connected neighbours to 
the open list, unless they are already closed. As nodes are 
expanded,  they are moved to the closed list.  As nodes are 
added to the open list,  their  f,  g,  h  and  parent values  are 
recorded. The g value of a node is, of course, equal to the g 
value of its parent plus the cost of moving from the parent to 
the node itself. If a node is already on the open list when it is 
evaluated, its f, g, h and parent values are only updated if the 
new f value is lower than the previously recorded one – this 
means a  better  path  to  the  node  has  been  found than the 
previous one. 

The algorithm concludes when the target node is found, or 
when the open list is empty – the latter case means that a path 
does not exist from source to target, which is possible when 
you consider that some positions on the map may be non-
traversable (e.g., mountains, lakes, walls, buildings). 

There  are  various  ways of  calculating the  cost  of  moving 
from a node to a connected node – the simplest  and most 
common is to use Euclidean distance. It is also very common 
to take into account factors such as terrain cover or elevation 
changes.  By  applying  a  higher  cost  to  difficult  or  steep 
terrain,  the  algorithm will  be  encouraged  to  find  cheaper 
routes around these features rather  than simply finding the 
shortest path. The current paper is primarily concerned with 
the  identification  of  an  appropriate  mechanism  for 
calculating costs, based on recorded player behaviour.

The choice of heuristic function h(n), which estimates the h 
value for a node (the cost of getting from the node to the 
target location), has a strong influence on the optimality and 
accuracy of the identified solution. If  h(n) is always lower 
than (or  equal  to)  the cost  of  moving from a  node to  the 
target,  then A* is  guaranteed  to  find  a  shortest  path.  The 
lower h(n) is, the more nodes A* expands, making it slower. 
If h(n) is sometimes greater than the cost of moving from n to 
the goal, then A* is not guaranteed to find a shortest path, but 
it can evaluate faster (Patel, 2011). In practice, therefore, it 
may be possible to dynamically modify the heuristic function 
in order to trade-off speed and accuracy as required during a 
game, if this is appropriate to the game.

PREVIOUS WORK

In  recent  years,  the  research  literature  has  increasingly 
stressed the fact that game AI is not simply about winning the 
game or  discovering  the  most  optimal  solution,  but  more 
critically is about making the game fun for the human player. 
From  a  pathfinding  perspective,  this  means  avoiding 
mechanical-looking routes  in favour of  believable,  human-
like ones – straight lines look better and more plausible, for 
example,  than  routes  which  zigzag  and  track  around 
obstacles  (Coleman 2009).  Rabin  (2000)  uses  splines  and 
hierarchical  approaches to  introduce aesthetics  into routes, 
while Higgins (2002a) and others use a second pass through 
a  route in order  to  apply "aesthetic  corrections".  Coleman 
(2007) proposes a metric based on second-order derivatives 
and  obstacle  tracking  in  order  to  quantify  the  "beauty 
intensity" of paths, and later refines this approach to include 

fractal  dimensions  and  rescaled  range  analysis  (Coleman 
2009).

John  et  al.  (2008)  propose  a  novel  approach  based  on 
probabilistic  pathfinding  to  produce  varied  high-quality 
routes  and  thereby  improve  game  replayability  –  their 
examples presented provide a convincing argument for this 
approach  in  a  team-based  AI  combat  in  a  maze-like 
environment.

Few  previous  papers  have  discussed  the  use  of  recorded 
player  behaviours  in  order  to  train  AI  systems  –  one 
exception  is  a  case-based  reasoning  system  developed  to 
learn  high-level  strategies  by  mining  recordings  of  expert 
human players playing a real time strategy game (Ji-Lung and 
Chuen-Tsai  2008). No previous work that we are aware of 
has taken this approach for navigation purposes.  However, 
the  increasing  industry  emphasis  on  logging  player 
interactions  and  movements  for  other  purposes,  such  as 
player  category  modelling  and  game  personalization 
(Thawonmas et al 2009; Oda et al. 2009) is expected to be 
reflected in an increased research interest in this area. Online 
games  are  particularly  suited  to  this  approach,  since  the 
server  can  easily  record  data  centrally,  and  since  regular 
updates to the game are a normal part of the lifecycle after 
initial release: we can gather data over a period of time and 
use this to incrementally improve the AI in the live game.

One technique of interest is the 'heatmap' which can be used 
to  visualise  regular  patterns  of  player  behaviour  over  a 
spatial domain (Youngblood et al. 2011). Related work also 
includes  the  use  of  graph-based  discovery  algorithms  to 
perform  supervised  learning  (Cook  et  al.,  2007),  and  the 
dynamic  modification  of  navigation  meshes  based  on  the 
experiences of AI agents in complex game worlds (Hale et 
al., 2010). 

EMPIRICAL  COST  SURFACES  FROM  PLAYER 
TRACES

Since 2008 we have been recording player movements on the 
game maps of  Darkwind, and constructing A* nodes from 
these.  However,  a  voting system was not  established until 
June  2010:  prior  to  this  our  data  simply  recorded  where 
player vehicles had ever safely travelled. We now have 12 
months of voting data collected: each time a node is revisited 
safely, a vote is accumulated for it. There are an average of 
about  3000  combats  played  per  week,  and  an  average  of 
about 4 player-controlled vehicles per combat, spread across 
about 40 game maps. Vehicles typically travel 1-2km during 
a combat.

In order  to ensure that we record only suitable votes, a 5-
second cache of recently visited nodes is stored for player 
vehicles;  if  any damage is  received due to  collisions with 
terrain or other static obstacles, the cache is emptied without 
committing its data.

Figure 1 provides a visualisation of the A* vote nodes stored 
in the region of a desert mountain in the game. Each blue 
square  represents  a  node,  with  both  size  and  brightness 
proportional to the relative number of votes accumulated at 
that node. In this case, the cost of travelling to a node which 



has accumulated x votes, from a previous node at distance d 
metres, is taken to be d /√x .

Figure 1:  A Visualisation of the A* Player-Traced (Vote) 
Nodes Stored in the Region of a Desert Mountain in the 

Game

ADDITIONAL  MODIFICATIONS  TO  THE  A* 
ALGORITHM

Our implementation of the A* algorithm includes a number 
of modifications to improve efficiency and suitability for our 
requirements.

In order to provide rapid identification of the node closest to 
a  world  co-ordinate,  nodes  are  pre-sorted  into  a  world 
location-indexed hash table.  This is implemented as a two-
dimensional array of pointers to nodes, with one dimension 
indexed  as  a  binned  world x  coordinate,  and  the  other 
dimension indexed as a binned world y coordinate.

Long  distance  searches  are  calculated  using  a  pessimistic 
(high) heuristic – speeding up the search substantially, while 
accepting sub-optimal routes. Since the AI drivers typically 
re-evaluate  their  paths  every  few  seconds,  a  guaranteed 
shortest route is not needed on long routes.

We also maintain a sorted shortlist of 'promising' open nodes 
(i.e.,  those  with  the  lowest  f values),  which  allows  rapid 
identification of the next node to expand without the need to 
maintain all open nodes in a sorted list. When the shortlist is 
emptied, the entire open list is searched in order to refill it, 
and if a newly opened node has a lower f value than the worst 
of the 'promising' nodes, it  is added to the 'promising' list. 
This  latter  performance  improvement  is  discussed  in 
(Higgins 2002b).

We also treat separately by direction the edge (connection) 
between two nodes – since in rough terrain a path may be 
popular in one direction but unpopular (or impossible) in the 
other. In figure 1, for example, the nodes on the steep sides 
of  the  mountain  are  effectively  only  connected  in  the 
downwards direction.

EVALUATION  OF  PLAYER-TRACED  VERSUS 
ELEVATION-BASED COSTING

The  most obvious,  and  often well-performing function  for 
algorithmically  defining  a  cost-surface  is  the  slope  (local 

change  of  elevation)  of  the  terrain.  For  purposes  of 
comparison  with  our  votes-based  function,  we  therefore 
computed costs at each node based on the average absolute 
difference between that node's z position (i.e., on the world's 
'up'  axis),  and  the  z position  of  its  connected  neighbours. 
Figure 2 provides a visualisation of this scheme: the size of 
the squares is inversely proportional to the node's cost. 
 

Figure 2: A Visualisation of the A* Elevation-Based Nodes 
Calculated Near the Same Desert Mountain

In  many cases,  the  routes  obtained  when using  elevation-
based  costing appeared  very similar  to  those taken by the 
player-tracing  approach.  Although  there  were  some 
exceptions, the general rule upon running time-trials was that 
the player-traced route was faster, on average by about 3%.

More  importantly,  however,  the  player-traced  routes  were 
frequently safer: elevation-based costing tended to produce 
routes closer to dangerous features such as cliff edges and 
trees.  In  figure  3,  the  route  taken  by  the  elevation-based 
approach  was  too  close  to  the  cliff,  and  the  AI  vehicle 
tumbled over the edge; in figure 4, the route taken through 
the garden caused a collision with both fencing and a tree, 
leading to  a poor  travel  time.  In figure 5,  the route taken 
towards  the  town  gates,  while  comparably  fast,  caused 
damage to the vehicle as it  collided with the terrain while 
negotiating the small hills. 

The game map illustrated  in  figure  4 consists  of  a  ruined 
town  with  a  good,  wide  road  through  its  centre.  The 
accumulation  of  votes  indicates  a  very  strong  player 
preference for driving along the centre of the road. Players 
tend to drive fast on this road, and want to avoid collisions 
with fences or trees if their car spins or loses control due to 
weapons  fire.  This  is  a  good  example  of  subtle  player 
behaviour  that  would  be  very  hard  to  produce  with 
algorithmic AI.

In terms of aesthetics, sometimes the elevation-based routes 
looked unnatural,  especially on flat  ground where features 
such as pits were 'edge-hugged' rather than driven around in a 
natural-looking way. It is probably also useful to note that, 
due  to  the  underlying physical  simulation,  vehicles  in  the 
game are incapable of following zigzag paths due to  their 
momentum –  therefore  the  unsmoothed  appearance  of  the 
routes illustrated in the images in this paper do not cause a 
problem aesthetically in the live game: we had no need to 
perform 'aesthetic improvement' calculations on them.



Figure 3: Elevation (Red) and Player-Traced (Green) Routes Near a Cliff

Figure 4: Elevation (Red) and Player-Traced (Green) Routes Around a Ruined House and Fenced Garden

Figure 5: An Elevation (Red) Route Compared with Two Player-Traced (Green and White) Routes Which Use Different Non-
Linear g (Cost) Functions 



We frequently found the player-tracing costing approach to 
be  more  computationally  efficient  than  the  elevation 
approach,  since  it  may direct  the  search  far  more  tightly, 
expanding less nodes. This is clearly because the elevation 
approach  often  produces  numerous  almost-identically-
scoring nodes close together.  From a number of randomly-
chosen  tests  across  several  maps,  the  performance  benefit 
versus  elevation-based  costing  ranged  from zero  (on  hilly 
maps) to several hundred percent (on flat maps). 

DEFINING THE A* PARAMETERS

We experimented with a variety of g cost functions, which is 
used to define the cost of travelling to a node based on the 
number of votes it has received. On safe, wide roads, it was 
found that  a  function which discriminated weakly between 
low amounts and high amounts of votes was more effective: 
for example in figure 5, the function g=d / x0 . 25  produced 
a quicker (to travel) route than our generally best-performing 
function  g=d / x0 .5  by about  4% -  weak discrimination 
has a tendency to choose a shorter path towards the inside 
edge  of  corners.  However,  there  is  clearly  a  trade-off 
between  speed  and  safety,  and  on  routes  such  as  the 
mountain in figure 1, the function  g=d / x0 . 25  performed 
poorly due to routing the car over rough terrain too close to 
the base of the mountain, and losing momentum: in this case, 

g=d / x0 .5  was quicker to travel by about 11%.

We found, again with some exceptions, that functions which 
discriminated very strongly between low amounts and high 
amounts of votes, such as  g=d / x  or  g=d / x2 , tended 
to produce erratic behaviours as the AI focused too strongly 
on finding 'popular'  nodes,  to  the  detriment of  the  overall 
route. This is clearly a complex situation, where factors such 
as  the absolute  number  of  votes  cast  on  the  map and the 
frequency with which games have been played on the current 
section of the map will have an effect. The general rule over 
50  randomly-chosen  test  routes  on  various  maps  was that 

g=d / x0 .5  performed the  best,  on  average,  in  terms of 
travel time, safety, and aesthetic value.

In order ensure an optimal path, we generally use a highly 
optimistic heuristic: we calculate  h = d * b, where  d  is the 
Euclidean distance from the node to the target location and b  
is the cost attributed to the best-scoring node on the map.  As 
mentioned previously, we do however vary this dynamically: 
a more pessimistic heuristic is used for long paths, in order to 
speed up the search process by expanding fewer nodes far 
away from the target location.  To achieve this,  we simply 
raise d to the power of 1.5 if it is larger than 50m.

CONCLUSIONS AND FUTURE WORK

We have described a novel use of player-traced navigation 
information as part of a voting system to inform cost-surfaces 
in AI A*-based navigation in a vehicular combat game with 
accurate  physics.  Experimental  tests  have  validated  the 
superiority  of  this  approach  over  a  cost-surface 
implementation based on local elevation changes.

We have also observed subtle behaviours in the player-traced 
approach, for example the avoidance of cliff edges and the 
preference  for  wide,  flat  routes  rather  than  narrow  gaps 
between  terrain  features.  While  we  acknowledge  that 
algorithmic terrain analysis could (with effort) provide some 
of these behaviours, our contention is that  every subtlety of 
effective terrain navigation in this specific game has already 
been taken into account implicitly in the player traces.

This paper describes what is essentially a work in progress; 
although  results  are  very promising  and  indeed  Darkwind 
players  report  that  they  have  witnessed  a  substantial 
improvement in AI navigational behaviour since the new cost 
function was implemented, we still have more work to do.

We intend to work on algorithmic terrain analysis, in order to 
produce  comparable  behaviours  to  those  witnessed  by the 
player-tracing AI. This will allow for more challenging (and 
therefore  meaningful)  comparisons  between  player-traced 
navigation behaviour and purely algorithmic AI. It will also, 
we hope,  provide some useful algorithms of interest  to AI 
navigation systems which cannot benefit from the wealth of 
player  data  that  Darkwind  has  available  –  for  example, 
offline single-player games and games with player-produced 
maps.

This paper has focused purely on the low-level navigational 
pathfinding task of the game AI – little has been said about 
the  higher-level  decision  making  which  decides  what  the 
actual  target  locations  for  travel  should  be.  The  current 
situation  in  Darkwind is  that  a  mixture  of  algorithmic  AI 
techniques are used by a finite-state machine to, ultimately, 
produce  these  target  locations.  These  techniques  include 
simple terrain analysis (e.g. looking for 'sniper' points), group 
behaviours  (such  as  re-grouping  when  separated,  or 
scattering  when  receiving  heavy  ballistic  damage),  and 
outflanking behaviours which identify and respond to a 'gun 
line' by approaching enemies from the side. The latter tactic 
is  in  direct  response  to  a  favourite  player  technique  in 
Darkwind by which a number of heavy vehicles form a static 
line  and  ambush  the  AI  vehicles  at  choke  points  in  the 
terrain. These techniques work reasonably in many cases, but 
there is generally a lack of high-level strategy or group co-
ordination. The ability to navigate well across the terrain is 
not much use if you don't know where you want to go in the 
first place!

Generally,  higher-level  decision  making  needs  to  be 
improved in Darkwind, with influence maps (Tozour 2001) a 
likely candidate to supplement or replace the current rules-
based AI. We have recently started gathering data for 'danger' 
influence maps, by logging the source and target positions of 
all successful gunfire attempts, along with the type of weapon 
and gunnery skill of the game character firing the weapon. 
Not  only  will  this  provide  the  data  needed  for  'danger' 
influence  maps,  but  will  also  allow us  to  investigate  our 
belief that gunfire avoidance is one of the subtle behaviours 
embedded in the player-traced data described in this paper. 
Additionally,  we  intend  to  experiment  with  an  interesting 
approach  to  combining line-of-sight  'threats'  into  influence 
maps and thereby directly informing the cost function in A* 
path finding, as described in (van der Sterren 2002). 
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