

Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published

version when available.

Downloaded 2020-10-17T06:11:48Z

Some rights reserved. For more information, please see the item record link above.

Title Player-Traced Empirical Cost-Surfaces for A* Pathfinding

Author(s) Redfern, Sam

Publication
Date 2011

Publication
Information

Redfern, Sam (2011) Player-Traced Empirical Cost-Surfaces
for A* Pathfinding GAME'ON International Conference on
Intelligent Games and Simulation

Publisher Eurosis

Link to
publisher's

version

http://www.psychicsoftware.com/redfern_gameon2011_pathfin
ding_paper_v02.pdf

Item record http://hdl.handle.net/10379/4082

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

PLAYER-TRACED EMPIRICAL COST-SURFACES FOR A* PATHFINDING

Sam Redfern
National University of Ireland, Galway

Galway
Ireland

E-mail: sam.redfern@nuigalway.ie

KEYWORDS

A* Pathfinding, Player Modelling, Player Tracing

ABSTRACT

This paper discusses the use of empirical cost-surfaces
derived from substantial amounts of player-traced
movements in an online vehicular combat game, for the
purposes of improving A* pathfinding by AI vehicles. The
fundamental concept is that we derive navigational meshes
from human-player movements, with each node weighted by
frequency of use. Our goals include the improvement of path
travel times, aesthetic improvements, and the reduction of
damage sustained while travelling across the map.

The results presented include quantifiable timings and
observational characteristics. Quantifiable improvements
include both algorithmic efficiency and travel time
efficiency, while observations include the improved ability to
avoid risky terrain features as well as other subtle human-like
behaviours.

A best-performing non-linear cost function for the A*
algorithm, based on player data, is suggested. Continued and
future work on the AI in the game is discussed.

INTRODUCTION

This paper discusses the development of empirically-derived
(player-mimicking) cost surfaces for AI pathfinding in the
online vehicular combat game "Darkwind: War on Wheels".
This game has been developed by the author since 2005 and,
since it provides a substantial player-base and thousands of
live games per week, is an ideal test-bed for AI research
(Redfern 2007, 2010).

Although pathfinding in general, and the A* (“A Star”)
algorithm in particular, are well established techniques in
computer games, improvements continue to be proposed in
terms of aesthetics (Coleman 2009) – producing believable
'human-like' routes – and in experimental refinements for
complex environments (Hale et al. 2010). The pathfinding
requirements of typical open-terrain First Person Shooter
(FPS) and Real Time Strategy (RTS) games, are
fundamentally simpler than those of a vehicular combat game
with realistic physics, tyre and chassis degradation, and
collision damage models. In Darkwind, a car's momentum is
critically important to its tactical movement and performance
during combat; cars receive damage from poor driving and
poor surfaces; various surface characteristics exist (e.g. sand,

dirt, tarmac); and, effective routes across the terrain require
cover from enemy fire. Furthermore, it is often appropriate to
maintain a safe distance around dangerous obstacles such as
cliff edges rather than choose an absolute shortest route.

Our core hypotheses are that (i) there are a number of subtle
factors related to both effectiveness and aesthetic value,
which define optimal routes around the terrains, and that (ii)
it may not be feasible to deal with these factors
algorithmically. We aim to achieve efficient, believable
('human-like') routes which navigate terrain features and
surface types sensibly, are safe from collision damage and,
where possible, enemy fire. Since Darkwind is a well
established online multiplayer game, it provides substantial
amounts of empirical evidence about player-chosen routes.
This paper describes the use of this evidence to improve AI
pathfinding.

A* PATHFINDING

The A* algorithm was first proposed in 1968 (Hart et al.
1968) and has been the most widely used pathfinding
technique by games programmers, due to its effectiveness
and efficiency. Numerous introductory explanations are
available in the literature; a particularly good online
description, for example is (Lester 2005).

The fundamental operation of A* is to traverse a map by
exploring promising positions (nodes) beginning at a starting
location, with the goal of finding the best route to a target
location. Each node has four attributes other than its position
on the map:

• g is the cost of getting from the starting node to this
node

• h is the estimated (heuristic) cost of getting from
this node to the target node. It is a best guess, since
the algorithm doesn't (yet) know the actual cost

• f is the sum of g and h, and is the algorithm's best
current estimate as to the total cost of travelling
from the starting location to the target location via
this node

• parent is the identity of the node which connected to
this node along a potential solution path

The algorithm maintains two lists of nodes, the open list and
the closed list. The former consists of nodes to which the
algorithm has already found a route (i.e, one of its connected
neighbours has been evaluated or expanded) but which have
not themselves, yet, been expanded. The latter (closed) list
consists of nodes that have been expanded and which
therefore should not be revisited.

Progress is made by identifying the most promising node in
the open list (i.e., the one with the lowest f value) and
expanding it by adding each of its connected neighbours to
the open list, unless they are already closed. As nodes are
expanded, they are moved to the closed list. As nodes are
added to the open list, their f, g, h and parent values are
recorded. The g value of a node is, of course, equal to the g
value of its parent plus the cost of moving from the parent to
the node itself. If a node is already on the open list when it is
evaluated, its f, g, h and parent values are only updated if the
new f value is lower than the previously recorded one – this
means a better path to the node has been found than the
previous one.

The algorithm concludes when the target node is found, or
when the open list is empty – the latter case means that a path
does not exist from source to target, which is possible when
you consider that some positions on the map may be non-
traversable (e.g., mountains, lakes, walls, buildings).

There are various ways of calculating the cost of moving
from a node to a connected node – the simplest and most
common is to use Euclidean distance. It is also very common
to take into account factors such as terrain cover or elevation
changes. By applying a higher cost to difficult or steep
terrain, the algorithm will be encouraged to find cheaper
routes around these features rather than simply finding the
shortest path. The current paper is primarily concerned with
the identification of an appropriate mechanism for
calculating costs, based on recorded player behaviour.

The choice of heuristic function h(n), which estimates the h
value for a node (the cost of getting from the node to the
target location), has a strong influence on the optimality and
accuracy of the identified solution. If h(n) is always lower
than (or equal to) the cost of moving from a node to the
target, then A* is guaranteed to find a shortest path. The
lower h(n) is, the more nodes A* expands, making it slower.
If h(n) is sometimes greater than the cost of moving from n to
the goal, then A* is not guaranteed to find a shortest path, but
it can evaluate faster (Patel, 2011). In practice, therefore, it
may be possible to dynamically modify the heuristic function
in order to trade-off speed and accuracy as required during a
game, if this is appropriate to the game.

PREVIOUS WORK

In recent years, the research literature has increasingly
stressed the fact that game AI is not simply about winning the
game or discovering the most optimal solution, but more
critically is about making the game fun for the human player.
From a pathfinding perspective, this means avoiding
mechanical-looking routes in favour of believable, human-
like ones – straight lines look better and more plausible, for
example, than routes which zigzag and track around
obstacles (Coleman 2009). Rabin (2000) uses splines and
hierarchical approaches to introduce aesthetics into routes,
while Higgins (2002a) and others use a second pass through
a route in order to apply "aesthetic corrections". Coleman
(2007) proposes a metric based on second-order derivatives
and obstacle tracking in order to quantify the "beauty
intensity" of paths, and later refines this approach to include

fractal dimensions and rescaled range analysis (Coleman
2009).

John et al. (2008) propose a novel approach based on
probabilistic pathfinding to produce varied high-quality
routes and thereby improve game replayability – their
examples presented provide a convincing argument for this
approach in a team-based AI combat in a maze-like
environment.

Few previous papers have discussed the use of recorded
player behaviours in order to train AI systems – one
exception is a case-based reasoning system developed to
learn high-level strategies by mining recordings of expert
human players playing a real time strategy game (Ji-Lung and
Chuen-Tsai 2008). No previous work that we are aware of
has taken this approach for navigation purposes. However,
the increasing industry emphasis on logging player
interactions and movements for other purposes, such as
player category modelling and game personalization
(Thawonmas et al 2009; Oda et al. 2009) is expected to be
reflected in an increased research interest in this area. Online
games are particularly suited to this approach, since the
server can easily record data centrally, and since regular
updates to the game are a normal part of the lifecycle after
initial release: we can gather data over a period of time and
use this to incrementally improve the AI in the live game.

One technique of interest is the 'heatmap' which can be used
to visualise regular patterns of player behaviour over a
spatial domain (Youngblood et al. 2011). Related work also
includes the use of graph-based discovery algorithms to
perform supervised learning (Cook et al., 2007), and the
dynamic modification of navigation meshes based on the
experiences of AI agents in complex game worlds (Hale et
al., 2010).

EMPIRICAL COST SURFACES FROM PLAYER
TRACES

Since 2008 we have been recording player movements on the
game maps of Darkwind, and constructing A* nodes from
these. However, a voting system was not established until
June 2010: prior to this our data simply recorded where
player vehicles had ever safely travelled. We now have 12
months of voting data collected: each time a node is revisited
safely, a vote is accumulated for it. There are an average of
about 3000 combats played per week, and an average of
about 4 player-controlled vehicles per combat, spread across
about 40 game maps. Vehicles typically travel 1-2km during
a combat.

In order to ensure that we record only suitable votes, a 5-
second cache of recently visited nodes is stored for player
vehicles; if any damage is received due to collisions with
terrain or other static obstacles, the cache is emptied without
committing its data.

Figure 1 provides a visualisation of the A* vote nodes stored
in the region of a desert mountain in the game. Each blue
square represents a node, with both size and brightness
proportional to the relative number of votes accumulated at
that node. In this case, the cost of travelling to a node which

has accumulated x votes, from a previous node at distance d
metres, is taken to be d /√x .

Figure 1: A Visualisation of the A* Player-Traced (Vote)
Nodes Stored in the Region of a Desert Mountain in the

Game

ADDITIONAL MODIFICATIONS TO THE A*
ALGORITHM

Our implementation of the A* algorithm includes a number
of modifications to improve efficiency and suitability for our
requirements.

In order to provide rapid identification of the node closest to
a world co-ordinate, nodes are pre-sorted into a world
location-indexed hash table. This is implemented as a two-
dimensional array of pointers to nodes, with one dimension
indexed as a binned world x coordinate, and the other
dimension indexed as a binned world y coordinate.

Long distance searches are calculated using a pessimistic
(high) heuristic – speeding up the search substantially, while
accepting sub-optimal routes. Since the AI drivers typically
re-evaluate their paths every few seconds, a guaranteed
shortest route is not needed on long routes.

We also maintain a sorted shortlist of 'promising' open nodes
(i.e., those with the lowest f values), which allows rapid
identification of the next node to expand without the need to
maintain all open nodes in a sorted list. When the shortlist is
emptied, the entire open list is searched in order to refill it,
and if a newly opened node has a lower f value than the worst
of the 'promising' nodes, it is added to the 'promising' list.
This latter performance improvement is discussed in
(Higgins 2002b).

We also treat separately by direction the edge (connection)
between two nodes – since in rough terrain a path may be
popular in one direction but unpopular (or impossible) in the
other. In figure 1, for example, the nodes on the steep sides
of the mountain are effectively only connected in the
downwards direction.

EVALUATION OF PLAYER-TRACED VERSUS
ELEVATION-BASED COSTING

The most obvious, and often well-performing function for
algorithmically defining a cost-surface is the slope (local

change of elevation) of the terrain. For purposes of
comparison with our votes-based function, we therefore
computed costs at each node based on the average absolute
difference between that node's z position (i.e., on the world's
'up' axis), and the z position of its connected neighbours.
Figure 2 provides a visualisation of this scheme: the size of
the squares is inversely proportional to the node's cost.

Figure 2: A Visualisation of the A* Elevation-Based Nodes
Calculated Near the Same Desert Mountain

In many cases, the routes obtained when using elevation-
based costing appeared very similar to those taken by the
player-tracing approach. Although there were some
exceptions, the general rule upon running time-trials was that
the player-traced route was faster, on average by about 3%.

More importantly, however, the player-traced routes were
frequently safer: elevation-based costing tended to produce
routes closer to dangerous features such as cliff edges and
trees. In figure 3, the route taken by the elevation-based
approach was too close to the cliff, and the AI vehicle
tumbled over the edge; in figure 4, the route taken through
the garden caused a collision with both fencing and a tree,
leading to a poor travel time. In figure 5, the route taken
towards the town gates, while comparably fast, caused
damage to the vehicle as it collided with the terrain while
negotiating the small hills.

The game map illustrated in figure 4 consists of a ruined
town with a good, wide road through its centre. The
accumulation of votes indicates a very strong player
preference for driving along the centre of the road. Players
tend to drive fast on this road, and want to avoid collisions
with fences or trees if their car spins or loses control due to
weapons fire. This is a good example of subtle player
behaviour that would be very hard to produce with
algorithmic AI.

In terms of aesthetics, sometimes the elevation-based routes
looked unnatural, especially on flat ground where features
such as pits were 'edge-hugged' rather than driven around in a
natural-looking way. It is probably also useful to note that,
due to the underlying physical simulation, vehicles in the
game are incapable of following zigzag paths due to their
momentum – therefore the unsmoothed appearance of the
routes illustrated in the images in this paper do not cause a
problem aesthetically in the live game: we had no need to
perform 'aesthetic improvement' calculations on them.

Figure 3: Elevation (Red) and Player-Traced (Green) Routes Near a Cliff

Figure 4: Elevation (Red) and Player-Traced (Green) Routes Around a Ruined House and Fenced Garden

Figure 5: An Elevation (Red) Route Compared with Two Player-Traced (Green and White) Routes Which Use Different Non-
Linear g (Cost) Functions

We frequently found the player-tracing costing approach to
be more computationally efficient than the elevation
approach, since it may direct the search far more tightly,
expanding less nodes. This is clearly because the elevation
approach often produces numerous almost-identically-
scoring nodes close together. From a number of randomly-
chosen tests across several maps, the performance benefit
versus elevation-based costing ranged from zero (on hilly
maps) to several hundred percent (on flat maps).

DEFINING THE A* PARAMETERS

We experimented with a variety of g cost functions, which is
used to define the cost of travelling to a node based on the
number of votes it has received. On safe, wide roads, it was
found that a function which discriminated weakly between
low amounts and high amounts of votes was more effective:
for example in figure 5, the function g=d / x0 . 25 produced
a quicker (to travel) route than our generally best-performing
function g=d / x0 .5 by about 4% - weak discrimination
has a tendency to choose a shorter path towards the inside
edge of corners. However, there is clearly a trade-off
between speed and safety, and on routes such as the
mountain in figure 1, the function g=d / x0 . 25 performed
poorly due to routing the car over rough terrain too close to
the base of the mountain, and losing momentum: in this case,

g=d / x0 .5 was quicker to travel by about 11%.

We found, again with some exceptions, that functions which
discriminated very strongly between low amounts and high
amounts of votes, such as g=d / x or g=d / x2 , tended
to produce erratic behaviours as the AI focused too strongly
on finding 'popular' nodes, to the detriment of the overall
route. This is clearly a complex situation, where factors such
as the absolute number of votes cast on the map and the
frequency with which games have been played on the current
section of the map will have an effect. The general rule over
50 randomly-chosen test routes on various maps was that

g=d / x0 .5 performed the best, on average, in terms of
travel time, safety, and aesthetic value.

In order ensure an optimal path, we generally use a highly
optimistic heuristic: we calculate h = d * b, where d is the
Euclidean distance from the node to the target location and b
is the cost attributed to the best-scoring node on the map. As
mentioned previously, we do however vary this dynamically:
a more pessimistic heuristic is used for long paths, in order to
speed up the search process by expanding fewer nodes far
away from the target location. To achieve this, we simply
raise d to the power of 1.5 if it is larger than 50m.

CONCLUSIONS AND FUTURE WORK

We have described a novel use of player-traced navigation
information as part of a voting system to inform cost-surfaces
in AI A*-based navigation in a vehicular combat game with
accurate physics. Experimental tests have validated the
superiority of this approach over a cost-surface
implementation based on local elevation changes.

We have also observed subtle behaviours in the player-traced
approach, for example the avoidance of cliff edges and the
preference for wide, flat routes rather than narrow gaps
between terrain features. While we acknowledge that
algorithmic terrain analysis could (with effort) provide some
of these behaviours, our contention is that every subtlety of
effective terrain navigation in this specific game has already
been taken into account implicitly in the player traces.

This paper describes what is essentially a work in progress;
although results are very promising and indeed Darkwind
players report that they have witnessed a substantial
improvement in AI navigational behaviour since the new cost
function was implemented, we still have more work to do.

We intend to work on algorithmic terrain analysis, in order to
produce comparable behaviours to those witnessed by the
player-tracing AI. This will allow for more challenging (and
therefore meaningful) comparisons between player-traced
navigation behaviour and purely algorithmic AI. It will also,
we hope, provide some useful algorithms of interest to AI
navigation systems which cannot benefit from the wealth of
player data that Darkwind has available – for example,
offline single-player games and games with player-produced
maps.

This paper has focused purely on the low-level navigational
pathfinding task of the game AI – little has been said about
the higher-level decision making which decides what the
actual target locations for travel should be. The current
situation in Darkwind is that a mixture of algorithmic AI
techniques are used by a finite-state machine to, ultimately,
produce these target locations. These techniques include
simple terrain analysis (e.g. looking for 'sniper' points), group
behaviours (such as re-grouping when separated, or
scattering when receiving heavy ballistic damage), and
outflanking behaviours which identify and respond to a 'gun
line' by approaching enemies from the side. The latter tactic
is in direct response to a favourite player technique in
Darkwind by which a number of heavy vehicles form a static
line and ambush the AI vehicles at choke points in the
terrain. These techniques work reasonably in many cases, but
there is generally a lack of high-level strategy or group co-
ordination. The ability to navigate well across the terrain is
not much use if you don't know where you want to go in the
first place!

Generally, higher-level decision making needs to be
improved in Darkwind, with influence maps (Tozour 2001) a
likely candidate to supplement or replace the current rules-
based AI. We have recently started gathering data for 'danger'
influence maps, by logging the source and target positions of
all successful gunfire attempts, along with the type of weapon
and gunnery skill of the game character firing the weapon.
Not only will this provide the data needed for 'danger'
influence maps, but will also allow us to investigate our
belief that gunfire avoidance is one of the subtle behaviours
embedded in the player-traced data described in this paper.
Additionally, we intend to experiment with an interesting
approach to combining line-of-sight 'threats' into influence
maps and thereby directly informing the cost function in A*
path finding, as described in (van der Sterren 2002).

REFERENCES

Coleman, R. 2007. "Operationally Aesthetic Pathfinding". In
Proceedings of the International Conference on Artificial
Intelligence, 159-163.

Coleman, R. 2009. "Long Memory of Pathfinding Aesthetics".
International Journal of Computer Games Technology 2009, 9
pages.

Cook, D.J; L.B. Holder, and G.M. Youngblood, 2007. "Graph-
Based Analysis of Human Transfer Learning Using a Game
Testbed". IEEE Transactions on Knowledge and Data
Engineering, 19(11), 1465-1478.

Hale, D.H; G.M. Youngblood and N.S. Ketkar, 2010. "Using
Intelligent Agents to Build Navigation Meshes". In
Proceedings FLAIRS Conference 2010.

Hart, P.E.; N.J. Nilsson and B Raphael. 1968. "A Formal Basis for
the Heuristic Determination of Minimum Cost Paths". IEEE
Transactions on Systems Science and Cybernetics 4(2), 100–
107.

Higgins, D. 2002a. "Pathfinding Design Architecture". In AI Game
Programming Wisdom, S. Rabin (ed.), 133-145. Charles River
Media.

Higgins, D. 2002b. "How to Achieve Lightning-Fast A*". In AI
Game Programming Wisdom, S. Rabin (ed.), 114-121. Charles
River Media.

Ji-Lung, H. and S. Chuen-Tsai. 2008. “Building a player strategy
model by analyzing replays of real-time strategy games”. IEEE
World Congress on Computational Intelligence, 3106-3111.

John, T.C.H; E.C. Prakash and N.S. Chaudhari, 2008. "Strategic
Team AI Path Plans: Probabilistic Pathfinding". International
Journal of Computer Games Technology 2008, 6 pages.

Lester, P. 2005. “A* Pathfinding for Beginners”. Retrieved 17 th

June 2011,
http://www.policyalmanac.org/games/aStarTutorial.htm

Oda, J; R. Thawonmas and Chan, K-T. 2009. “Comparison of User
Trajectories Based on Coordinate Data and State Transitions”.
Proc. Fifth Int. Conf. On Intelligent Information Hiding and
Multimedia Signal Processing, 1134-1137.

Patel, A. 2011. "Heuristics". Retrieved 13th June 2011,
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics
.html

Rabin, S. 2000. "Aesthetic Optimizations". In AI Game
Programming Gems, M. DeLoura (ed.), 264-271. Charles River
Media.

Redfern, S. 2007. "Psychic Software and Darkwind: War on
Wheels." New Age Gamer Magazine 10(6), 32-35.

Redfern, S. 2010. "Evolving Racetrack Knowledge in a Racing
Game". In Proceedings AICS 2010, 220-229.

Thawonmas, R.; J. Oda and K-T. Chen. 2009. “Analysis of User
Trajectories Based on Data Distribution and State Transition: a
Case Study with a Massively Multiplayer Online Game Angel
Love Online”. Proc. GAME-ON2009, 56-60.

Tozour, P. 2001. “Influence Mapping” In Game Programming
Gems 2, M. DeLoura (ed.), 287-297. Charles River Media.

van der Sterren, W. 2002. “Tactical Path-Finding with A*”. In
Game Programming Gems 3, D. Treglia (ed.), 294-306. Charles
River Media.

Youngblood, G.M.; F.W.P. Heckel; D.H. Hale, and P.N. Dixit,
2011. "Embedding Information into Game Worlds to Improve
Interactive Intelligence". In Artificial Intelligence for Computer
Games, P.A. González-Calero and M.A. Gómez-Martín (eds.),
31-53. Springer, New York.

BIOGRAPHY

SAM REDFERN attended the National University of
Ireland, Galway, where he studied for a B.A. in English and
Archaeology (1992), followed by an M.Sc. (1994) and Ph.D.
(1998) in Information Technology. He has worked as a
lecturer in Galway since 1996, and has published in the areas
of digital image processing, various types of A.I., graphics,
collaborative virtual environments and serious games. He has
been an independent game developer in his spare time since
1984, with games published on the BBC Micro, Amiga, PC,
Mac, iPhone and Android.

http://www.policyalmanac.org/games/aStarTutorial.htm
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html

