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Synopsis 

 The recently completed New Engineering Building (NEB) at the National University of 

Ireland, Galway (NUIG) is a new state of the art academic facility on the university’s north campus. 

The building unites all five engineering disciplines within the university and at 14,250m2 is now the 

largest engineering school in Ireland. It represents a milestone in the construction of engineering 

educational facilities by incorporating the use of numerous types of sensors to create an interactive 

learning environment for engineering students. Not only will it be a centre of education, but the 

building itself will act as a ‘living laboratory’ and teaching tool. This paper outlines the 

instrumentation of the structural elements within the building and the part they will play in the 

teaching and understanding of structural engineering within the university.  

Introduction 

The unremitting advances being made in technology, knowledge and understanding within 

the engineering industry mean that the practice is continuously evolving. It goes without saying that 
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to keep up with these developments there is an incessant need for teaching methods to evolve to 

ensure that future generations of engineers are educated to the highest level. Recent research and 

reports1-4 have shown that there is a critical need to provide students with a deeper understanding of 

the general concepts and principles of engineering and to provide them with the means to meet the 

challenges of the 21st century. One such report by the Royal Academy of Engineers4 highlighted the 

need for ‘university courses to provide more experience in applying theoretical understanding to real 

problems’. With these points in mind the New Engineering Building (NEB) at the National 

University of Ireland, Galway (NUIG) (Figure 1) was constructed to directly link the building into 

teaching methods, actively engaging with students to raise their awareness of the different aspects of 

building design and performance. The vision was for a building whereby future students will be able 

to analyse and understand its defining characteristics at first hand and on a personal level. 

Central to this project is the instrumentation of the NEB at NUIG and its development as an 

interactive teaching tool for students. The NEB united all engineering activities on campus into an 

exclusive, state of the art academic facility by September 2011. The building not only provides a 

learning environment, but will itself act as a teaching and learning tool. It will be a ‘living 

laboratory’ for engineering, where live data sets from numerous types of sensors will be provided for 

use in illustrating structural engineering and building performance concepts in undergraduate 

teaching, and in the development of full-scale research in structural engineering and energy. Both 

energy and structural characteristics of the structure are to be monitored throughout the building’s 

entire life cycle. As such, it will be beneficial for a number of engineering disciplines.  

Data measuring the strains, temperatures and movements due to loading of the building will 

be gathered along with energy demands and performance of the building. Monitoring of the power 

consumption of different electrical loads such as lighting, computing and HVAC equipment will be 

performed, so that their relative energy costs can be demonstrated. The information gained from this 

instrumentation is being used to create interactive tools for students, form the basis for future 

research projects and facilitate the advancement of engineering teaching methods. The 

instrumentation will be used for a number of studies such as structural health monitoring and energy 

performance monitoring. Sensors will complement each other and all will be integrated into the 

overall Building Management System (BMS). The BMS is the control system used to monitor and 

control the buildings mechanical and electrical equipment primarily through the use of ventilation, 

lighting and power systems. The BMS will monitor properties such as carbon dioxide levels, 

temperature and humidity ensuring energy costs are kept at a minimum, but all the while maintaining 

a suitable environment for the occupier. The NEB itself contains a variety of green-building 
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initiatives, such as the use of environmentally friendly heat generation using carbon-neutral biomass, 

rain-water recycling, ground source heat pump, low embodied energy construction materials and 

high-tech renewable energy systems. These have been designed to reduce the buildings impact on the 

environment and make it as sustainable as possible 5. A number of structural elements have also been 

instrumented with over 260 gauges and sensors. These instrumented elements coupled with the 

green-building initiatives will provide working examples for engineering students to study. Several 

of the building’s constructional elements have consciously been left exposed, as visual learning tools 

(Figure 2) 6. The vision is for a building whereby future students will be able to analyse and 

understand a building’s defining characteristics at first hand and on a personal level. 

 This paper concentrates on an aspect of the development of the NEB as a ‘living laboratory’ 

for structural engineering, dealing in particular with the embedded sensors – both those requiring to 

be installed prior to erection of structural elements and those fixed during construction on the NEB 

site. These are fundamental to the development of the building as an interactive teaching tool, 

reporting on the evolving dialogue of the structure with its environment 7. 

Figure 1: The recently completed New Engineering Building (NEB) at the National University of 

Ireland, Galway (NUIG).  

The New Engineering Building 

The gross floor area of the NEB is 14,250m2, making it the largest engineering school in 

Ireland. It provides facilities for over 1,300 undergraduate and postgraduate students, including 

classrooms, laboratories, workshops, computer suites, lecture halls and research facilities. For 

example, in the civil engineering discipline, state of the art laboratories are provided for in 

specialised areas such as of materials, soil mechanics, fluids and hydraulics, timber, structures 

(heavy and light), concrete and environmental engineering. The building structure is composed 

predominantly of concrete, in-situ and precast, with some elements in structural steel. Superstructure 
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loads are transferred to rock through end-bearing piles, while the ground floor slab rests on 

engineered fill. Some structural aspects of the project which are of particular interest are: 

1. the extensive use of ggbs in place of CEM I cement to reduce the embodied energy of the concrete 

in the building; 

2. 40-tonne prestressed concrete transfer beams, precast by Banagher Concrete (Figure 3), positioned 

over the main lecture theatres; 

3. prestressed double-tee units, precast by Banagher Concrete (Figure 4); 

4. deep structural steel plate girders, fabricated by Duggan Steel; 

5. a highly visible structural steel floor suspension system in one corner of the building (Figure 5). 

6. the Cobiax flooring system, which is a two-way spanning, void-formed, flat slab system utilising 

slabs manufactured by Oran Precast and providing a high quality exposed soffit finish (Figure 6); 

The general intention was to monitor as many aspects as possible of the response of the 

selected elements to their environment6. This would include response to discrete loading events, 

time-dependent variation in strain due to creep, shrinkage and temperature change, possible restraint 

effects in the large transfer beam and in the void formed slab system, and the load-sharing 

characteristics of the void formed slab system. 

 

Figure 2 – Visual teaching tools (a) Recesses in a concrete wall showing exposed arrangement of 

reinforcement and glass panel to show build up of ground floor slab and finishes, (b) Pile cap 

foundations, (c) Void form flat slab system. 

Instrumentation 
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 There was a severe time constraint in relation to the purchasing of gauges and datalogging 

equipment and also a significant time requirement for installation. Due to these factors and to 

budgetary constraints, instrumentation with embedded sensors was confined to three large-span 

elements and a structural steel system. These were: 

(i) a solid pre-tensioned concrete transfer beam located on the second floor above one of the main 

lecture theatres (Figure 3); 

(ii) a pre-tensioned double-tee unit located on the second floor above one of the main lecture theatres 

(Figure 4); 

(iii) a two-way spanning void-formed flat slab flooring system located on the third floor East wing of 

the building (Figure 6); 

(iv) a highly visible structural steel floor suspension system (Figure 5). 

Elements (i) and (ii) were instrumented with vibrating-wire (VW) gauges at Banagher 

Concrete’s premises, while element (iii) was instrumented with both VW and electrical resistance 

(ER) strain gauges, partly at Oran Precast’s premises and partly on the NEB site. Element (iv) was 

instrumented with ER strain gauges only. Embedment type VW gauges, manufactured by Gage 

Technique, were used for monitoring strain and temperature within the concrete elements of the NEB 

Due to their robustness and reliability. They are of a type developed originally by the Transport and 

Road Research Laboratory (TRRL) in the UK 8 (Figure 6). VW gauges have been extensively used 

in bridge, dam and tunnelling projects 9-15. Their long term stability makes them suitable for 

measuring time dependent phenomena such as creep and shrinkage. The embedment strain gauge is 

usually tied to the reinforcing cage, while in mass concrete applications the gauges can be installed 

either before or immediately after placement of the concrete. During instrumentation of the NEB the 

VW gauges were tied to 10mm U-bars to help keep them in place and protect them during the 

pouring of the concrete. The U-bars were then tied to main reinforcement mat (see, for example, 

Figure 6). 

Electrical resistance strain gauges (Tokyo Sokki Kenkyujo model FLA-6-120-11-3LT) were 

used to determine the strains in reinforcing bars embedded in the void-formed slabs (Element (iii)), 

as well as strains in structural steel elements (Element (iv)). These gauges are installed on reinforcing 

bars in the old Civil Engineering laboratory at NUIG at room temperature conditions. The 

reinforcing bar surface was prepared by removing the ribs on the bars over a length of 25mm using a 

milling machine. The gauge was bonded to the bar using P2 TML strain gauge adhesive. A clamp 
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was applied to the gauge and the adhesive was left to dry overnight, after which a VM waterproof 

tape was applied to protect from moisture and chemicals within the concrete. Previous research16, 17 

demonstrated the benefits of monitoring strains through the use of electrical resistance gauges. The 

reported operational life of the strain gauges and adhesive is a minimum of 30 years. All the gauges 

were tested in the laboratory before installing the bars on site. The gauges had 3m of 3-wire 0.11mm 

lead wire pre-connected; up to 15m lengths of 3-wire 0.5mm lead wires were used to connect these 

to the data acquisition system. The lead wires were installed inside plastic ducting within the 

concrete. 

The gauges are being monitored using dataloggers and additional equipment supplied by 

Campbell Scientific. A total of over 260 sensors and gauges were embedded within structural 

elements, in addition to temperature and carbon dioxide sensors in most rooms in the building and a 

weather station on the roof of the building. Novel technologies such as fibre-optic sensors and 

Tensiomag® - for use with prestressing tendons - were explored, but were not feasible in this 

instance for reasons of time and budget. It is envisaged that additional instrumentation (e.g. 

accelerometers, inclinometers) will be installed later in the programme to measure aspects of 

performance in use. 

 

Structural Elements Instrumented 

Prestressed Box and Double-Tee Beams 

Both the prestressed solid box beam and double tee units are located on the second floor of 

the south wing in the NEB, where they span over the two main lecture halls - a distance of nearly 

16.5m. Both elements were instrumented with VW gauges, which were used to monitor both strain 

and temperature. The elements were cast in the fabrication yard of Banagher Concrete in January 

2010 and both elements were installed on site in March 2010. Aspects to be analysed by 

instrumenting both the double tee and box beam include their instantaneous response to dead and 

live loading; effects of creep, shrinkage and temperature; to monitor the strains in concrete arising 

from restraint; and to determine the effectiveness of their thermal mass in minimising the energy 

usage of the building. 

The transfer beam contains 52 VW gauges distributed over 7 sections, five of which are 

grouped around a concentrated load near midspan, while the other two are near the supports (Figure 
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3). Most sections contain six gauges - two at top, middle and bottom - but two of the sections contain 

eleven gauges with the intention of extracting fuller detail regarding strain and temperature variation 

within the beam. This 970mm by 1200mm deep beam is located over one of the main lecture theatres 

and, given its large mass, its role in the heating and cooling of the space will be of interest. 

The double-tee contains 39 VW gauges in all - 13 at each of 3 sections (Figure 4). The 

narrowness of the rib and the arrangement of prestressing strand meant that only one gauge could be 

placed at any given height within the rib, but there is mirroring of provision between ribs. Nine 

gauges are arranged across the flange, with the aim of picking up possible variations in compressive 

strain across the flange, associated with shear lag 18, 19. 

Figure 3: Sections showing instrumentation of prestressed box beam (top) and photographs showing 

installation of beam on site (bottom).   
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Figure 4: Sections showing instrumentation of prestressed double tee unit (top) and photographs 

showing installation of gauges in precasting yard (bottom).   

Structural Steel Truss 

The structural steel truss instrumented is located on the third floor of the south wing, an 

important feature within the NEB (Figure 5). It impresses with a large glass front, but also in the 

complex nature in which its corner is supported. Both the second and third floors have a 7.5 m long 

cantilever span, which is supported using a complex structural system. Both slabs are supported by 

two 193.7mm diameter x 12.5mm circular hollow section, one at each corner of the slab bay. 

Encased within each circular hollow section is a M75 macalloy bar; the load from the slabs being 

transferred by means of a threaded nut bearing against steel washers onto a solid steel distribution 

plate. During construction the macalloy bars were prestressed to a predetermined load to support the 

system. Essentially the circular hollow section, acting as compression members, transfer the load 

from the third and second floors downward before transferring the load vertically via tension hangers 

in the form of the macalloy bar, where it is supported by a steel truss in one corner and a plate girder 

in the opposite corner, as seen in Figure 5.  

The macalloy bar supported by the steel truss was instrumented with a total of six electrical 

resistance gauges; three located across the top section of the bar and another three located across the 

bottom section of the bar. As with all threaded-nut systems, load can be applied at different intervals 

and this was the case at the NEB. The prestress force was applied alternately between the macalloy 
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bar supported by the truss and the macalloy bar supported by the plate girder at intervals of 100kN. 

Strains were monitored throughout the loading process until the final prestress force was reached; 

900kN for the macalloy bar supported by the steel truss and 850kN for the macalloy bar supported 

by the plate girder. Subsequent data from the gauges will be used to track the response of this unique 

structural system to monitor the load paths from floors during the construction stage and during the 

life of the building.  

 

Figure 5: Image showing location of structural steel truss in south wing of the NEB. 

 

Void Form Flat Slab System 

The NEB is the first building of its kind in Ireland to employ the void form flat slab system 

(VFFS). These are an innovative and novel form of flat slab system. They consist of spherical void-

formers, positioned in the middle of the concrete cross section to reduce the overall self weight of the 

slab, but maintain full flexural strength allowing a two-way or bi-axial load transfer (Figure 6). 

Gauges were installed to monitor temperature and strain in the slab element primarily to explore 

shear transfer and two-way load action in this unique slab system. Observation of the system over 

time will allow the performance of the system to be quantified, including changes to the material 

properties of the structural slab system. Further areas for research include the effect of the passive 

ventilation system on slab temperature and linking this to the thermal properties of the slab and 

analysing the different aspects affecting the thermal mass of the concrete slab. Furthermore, it will be 

possible to analyse the development and dissipation of heat of hydration of cement and the effect 

ground granulated blastfurnace slag (GGBS) has on reducing this phenomenon.     
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Figure 6: Void-formed flat slab with installed vibrating wire gauges. 

The area highlighted for instrumentation was a 7.5 x 12.65m bay located on the third floor of 

the building. Details of the instrumentation can be seen in Figures 6 and 7. The slab itself had an 

overall thickness of 450mm incorporating 315mm diameter void formers. The slab was constructed 

using two separate elements; the bottom 65mm of the slab comprising of a pre-cast concrete element 

and the top 385mm consisting of in-situ concrete. The precast panels were transported to site in 

separate panels, typically 12m in length and 2.4m in width. To ensure that two-way action is 

achieved between the different slab panels a series of reinforcement or ‘stitching’ bars were 

provided. These ‘stitching’ bars were centred on the joint between the pre-cast elements. The 

assumption is that these will provide sufficient bond between the slab panels to ensure transfer of 

load across the slab joints rendering the joints irrelevant to the completed structural performance.    

Five specific locations across the slab bay were highlighted for instrumentation. Gauges were 

bonded to the reinforcement bars in adjacent panels of the pre-cast elements at the five designated 

locations in the slab bay. Each bar, 2.4m in length, was instrumented with four electrical resistance 

strain gauges (Figure 7). Bars within the pre-cast units consisted of H10’s (i.e. 10mm diameter bar, 

ribbed high yield steel). Electrical resistance gauges were also bonded to the reinforcement 

‘stitching’ bars, which were placed over the joints between the pre-cast units. Each ‘stitching’ bar, 

2.1m in length, was instrumented with six electrical resistance gauges along its length (see Figure 7). 

The ‘stitching’ bars were H16’s (i.e. 16mm diameter bar, ribbed high yield steel) spaced at 350mm 

centres and bundled in pairs. The gauges installed on the ‘stitching bars’ and those in the precast 

element were positioned so that they would be acting in the same vertical plane.  
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Figure 7: Plan view (top) showing location of instrumented reinforcement bars in void form flat slab 

bay and a North-South section view (bottom) showing layout of gauges at each section. 
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In addition to the electrical resistance gauges a number of vibrating wire strain gauges were 

placed in the in-situ slab both in the North-South and East-West directions at each of the five 

instrumented sections. Three vibrating wire gauges (positioned at the top, middle and bottom of the 

in-situ slab) were placed in the North-South direction to monitor strains in the same plane as the 

gauges installed on the reinforcement bars. Two vibrating wire gauges (positioned only at the top and 

bottom of the in-situ slab) were placed in the East-West direction to monitor the strains along the 

main axis of bending within the slab. The layout, including dimensions, of the vibrating wire gauges 

installed in the in-situ slab can be seen in Figure 8. To add to the five locations used for the electrical 

resistance gauges, vibrating wire gauges were installed at a further ten locations in the slab bay. Five 

were positioned along another joint in the pre-cast units and a further five positioned along the East-

West column strip of the slab, as shown in Figure 8. In total, 100 electrical resistance gauges were 

installed on twenty reinforcement bars. Ten bars were installed in the bottom pre-cast elements and a 

further ten on the ‘stitching’ bars in the in-situ slab element. In addition, a total of 64 vibrating wire 

gauges were installed across the slab bay.  

 

 

Figure 8: Plan view  showing location of vibrating wire gauges in void form flat slab bay. 
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Results of Instrumentation 

The instrumentation installed in the NEB is generating real time data that both undergraduate 

and postgraduate students can access, providing real engineering problems for them to analyse. 

Results and data are continuously being interpreted with both temperature and strain effects being 

monitored within all of the instrumented elements. A detailed record of loading events (for example, 

depropping, placement and pouring of surrounding structural elements, installation of services and 

in-situ load tests) in the instrumented areas has been taken right from the initial construction of the 

building and it is possible to see the response of the structural elements to these events.  

Results from the instrumentation of the structural steel truss clearly show the development of 

strain during load transfer. Strains in the region of 800με were recorded, which corresponds to an 

axial load of approximately 700kN. This corresponds to approximately 0.8 times the design 

calculations and loadings. Subsequent readings following load transfer show little change in the 

development of strain. This is in contrast to the concrete elements, where the phenomenon of creep 

and shrinkage mean the strain is continuously evolving, especially at this early stage of their design 

life. Results from the prestressed beams show significant development in compressive strain due to 

transfer of prestress. It has also been possible to follow the change in strain within the concrete 

elements following the changing of loading conditions.  

 The layout of vibrating wire strain gauges at each instrumented section in the concrete 

elements have made it possible to establish the stress/strain profiles and, thus, the neutral axis of the 

concrete members for both the prestressed beams and VFFS. Comparison with design calculations 

allows a comparison between theory and practice. The location of the neutral axis is a critical 

element in the design of VFFS systems. The compression zone must not extend into the area 

containing the spherical void formers, as this may compromise the design. Quite often the sheer 

quantity of reinforcement ensures the neutral axis stays above the level of the void formers. 

However, in cases with excessive loads it is necessary to determine and verify the position of the 

neutral axis. Preliminary results from the NEB show that in some instances, particularly those at 

mid-span, the compression zone in the instrumented VFFS lie within the area of the void formers, 

but not at a level to cause concern. It is thought the provision of additional longitudinal steel 

reinforcement to aid in deflection requirements may be the reason for this incursion. The stress/strain 

profiles of the concrete elements can be established using the time dependent modulus of elasticity in 

accordance with BS EN 1992-1-120. These profiles  can then be used to illustrate how, for a concrete 

member in flexure, the strain profile acts on a pivot point located at the most compressed fibre. This 
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has been possible due to the detailed recording of loading events. It will also be possible to 

demonstrate to students the effect of limiting the depth of neutral axis to ensure that the concrete 

does not fail in compression, but that the tension steel yields before this occurs. Some of the 

visualisation tools to be used as teaching methods can be seen in Figure 9. They show the normal 

compressive strain experienced across the top of the VFFS unit at a given point in time. 

Measurements from the gauges, along with interpolation using an nth degree parabola are used to plot 

the graphs.    

              

Figure 9: Contour plot (left) and surface plot (right), some of the visualisation tools generated from 

the instrumentation of the VFFS, showing here the compressive strain distribution in the slab. 

Figure 10 shows the temperature profile and corresponding strain profile at one of the 

locations in the VFFS. The time period coincides with the initial pouring of the concrete up to a 

period of eleven days after the event. It is clear to see the difference in the peak temperatures across 

the slab profile; higher temperatures are experienced in the top of the slab, as it is closer to the slab 

surface exposed to direct sunlight, while lower temperatures are present at the bottom of the slab. 

Furthermore, the effect of the heat of hydration are evident after the concrete was poured, as high 

temperatures are present within the slab over the first three days before the temperature recedes to a 

more consistent level. The daily fluctuation of strains within the slab due to the diurnal change in 

ambient temperature are also seen in Figure 10.     
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Figure 10: Temperature (top) and strain (bottom) profile of VFFS. 

The temperature sensors within the vibrating wire gauges have also been used to establish the 

behaviour of the VFFS in relation to thermal mass. Thermal mass is based on the principle that heat 

will typically transfer between the concrete surface and the interior of the building at a rate that 

matches the daily heating and cooling cycle of a building. From the preliminary results it has been 

clear to see this diurnal temperature cycle within the concrete (see Figure 10). When analysing the 

temperature profile across the slab in relation to the ambient temperature there is a clear difference 

between peak and low temperatures. During the early phase of construction of the NEB when the 

slab was open to the elements there was a considerable fluctuation in ambient temperature between 

night and day. On average this ranged between 10 to 15°C. This diurnal variation in temperature was 

also evident within the concrete. The fluctuation was much less, however, with temperatures varying 

an average of 3°C in the top and middle of the slab and 4°C in the bottom of the slab. This small 

fluctuation, in comparison to the ambient temperature, is a clear reflection of the ability of the 

concrete slab to absorb and omit heat and its ability to regulate its own temperature. However, once 

the building was enclosed and weatherproof the diurnal ambient variation was only in the region of 

5°C. As such the temperature of the concrete remained almost constant, varying no more than 1°C. 



16 
 

Another aspect which is clear from results is the temperature lag between peak ambient temperatures 

and those experienced within the concrete. Concrete’s high specific heat capacity allows it to 

maximise the heat it stores, while its low thermal conductivity allows it to absorb and release heat 

over a longer period of time. This is what creates the lag effect. It was found that peak temperatures 

in the slab (top) occur typically five hours after peak ambient temperatures while temperatures within 

the middle of the concrete do not peak for a further hour and a half. There was similar 

correspondence with regard to low temperatures. It will be interesting to analyse the variation in 

temperature and thermal properties of the slab once the building is fully functioning and how 

temperature and thermal properties differ between the winter and summer months.   

The fluctuation in temperature also leads to the creation of stresses and strains across the slab 

section. Results show that an downwards curling effect occurs at night as the top contracts relative to 

the bottom and in contrast a upward curling effect occurs during the day with the top expanding 

relative to the bottom. This was particularly evident during the early stages of construction when the 

slab was exposed to direct sunlight. This difference in temperature also leads to a differential 

shrinkage profile across the slab section and the combination of these two differential profiles can 

lead to the formation of significant stresses. Results show that the maximum tensile stresses 

experienced across the slab during the early phases of construction as a result of temperature and 

shrinkage differential profiles was in the region of 1.5 to 2.5 MPa. This is close to the theoretical 

tensile strength of the concrete slab, which was calculated in accordance with recommendations 

made in BS EN 1992-1-120. It was found that, particularly during the initial few days of curing, the 

tensile strain capacity of the concrete was almost exceeded. These first few days are a critical time in 

the curing of concrete elements, as this is when the concrete may be most susceptible to plastic 

cracking. Further laboratory testing is needed to firmly establish the tensile strain capacity of the 

concrete mix. Although the tensile strain capacity may not have been reached, research has shown 

that if 50% of the tensile strength of concrete is exceeded microcracks begin to form and if this level 

increases to 70% the microcracks start to propagate21. This was the case in the NEB and it will be 

interesting to monitor the effect microcracking has on the long-term behaviour of the slab, 

particularly deflection.    
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Creating an Interactive Environment 

To harness the data from the instrumentation of the building a series of methods and 

procedures are being developed that will help create an interactive environment for the student. A 3D 

computational model of the building will be created, showing the overall building layout and 

location of the various sensors and gauges throughout the building. Students will be able to access 

real time data from the building by connecting into data ports located throughout the building. This 

will allow students to develop their data acquisition and analysis skills. Furthermore, it is envisaged 

to use the medium of the internet to develop and enhance the BMS within the structure. By 

integrating control networks and developing internet protocols users will be able to remotely access 

the BMS via the internet. This could facilitate the dissemination of data from sensors to a wider 

audience and not just for students and academic staff on campus.  

There are also future plans for the creation of interactive structural laboratories for students. 

Some laboratory experiments require substantial equipment in both size and power.  With the 

implementation of further load cells, gauges and sensors throughout the building it will be possible to 

develop various models to replicate experiments, which in normal lab conditions would be hard to 

achieve. One such example is a lightweight steel stairs (Fig. 11) within the building, which has been 

specifically designed by Arup to be susceptible to footfall-induced vibrations. It will act as a teaching 

tool, demonstrating the phenomenon of footfall vibrations to engineering students. The vibrations 

will be monitored through the use of accelerometers and the experiments validated through the use of 

relevant analytical and numerical models. The measured response of the accelerations obtained using 

accelerometers will then be made available for the students online. Another possibility for an 

interactive laboratory is through the instrumentation of the overhead crane in the structures 

laboratory. This will make it possible to demonstrate to students the theory and concept behind 

influence lines. The development of these virtual laboratories will also act to complement the 

evolution of local laboratory exercises. Through virtual laboratories the student will become more 

engaged; they will play an active role where they can actively manipulate a scenario and analyse the 

consequences. The final stage in creation of an interactive environment is through the creation of 

various teaching and learning tools. One such visualisation tool has already been created22 and 

demonstrates the theory and design behind prestressed concrete. These tools will incorporate data 

obtained from instrumentation and will be similar in principle to other well known teaching tools 

(i.e. CALCrete and West Point Bridge Designer). These engineering education software tools will 

help bring to life engineering concepts that are quite often lost in a normal classroom.   
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Figure 11: Lightweight steel stairs which will be used to illustrate the phenomenon of footfall 

induced vibrations.  

As well as the instrumentation of the building to monitor its performance, many elements of 

the building are also highly visible adding further to the learning environment for structural 

engineering students. A number of visual learning tools were identified for use within the building 

and a number of measures were taken to incorporate these during construction6. Reinforcement 

arrangements in a concrete slab, wall and foundation elements have been left exposed (see for 

example Figure 2). Instead of being encased within concrete the recesses will be covered by glass 

panels making reinforcement visible to the naked eye.  

 

Concluding Remarks 

 The objective of the project was to instrument several elements in the New Engineering 

Building at the National University of Ireland, Galway, so as to provide useful insight into the real 

time-varying behaviour of concrete and steel structures, for the benefit of undergraduate students and 

postgraduate researchers. It is considered that the proximity of the instrumented elements to lecturing 

spaces will confer a degree of immediacy on discussions of structural behaviour and energy 

performance, encouraging students to actively engage with the underlying engineering issues. 

Students will gain an excellent grounding in structural engineering through practical and theoretical 

teaching methods. The green building initiatives within the building will also help to make students 

more aware the impact their design will have in relation to sustainability. This is an area which is 

becoming more and more prevalent in today’s industry, as we move towards a more holistic design 

approach. 
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Instrumentation of the structural members described above is now complete, and datasets are 

being continuously collected automatically on dataloggers. Various load tests have been carried out 

since their installation, and will be reported on later. Whilst analysis of results is at a preliminary 

stage, results to date display an encouraging level of consistency. Much interesting work remains to 

be done by way of analysis and ancillary testing before the potential benefits of this project are 

realised. However, the data generated from the embedded sensors has already led to a number of 

projects undertaken by final year undergraduate engineering students, allowing these students to 

achieve a deeper understanding of structural elements. Furthermore, the second author is also 

analysing shear transfer in void-formed flat slab systems, using insitu measurements from the 

embedded sensors in the new Engineering building. Many more undergraduate and postgraduate 

research projects, as well as smaller undergraduate projects embedded in various modules, will 

utilise data from the embedded sensors in the building’s structure. Furthermore, video and 

photographic records of the process of construction, installation and testing will be of continuing 

benefit in the education of future engineers in the new Engineering building at NUI, Galway. The 

building represents a new approach to the teaching of engineering students; an approach which will 

be central to the continuous development of excellent engineering practice.  
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