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An Exploration of Gradually Increasing Directed
Neighbourhoods for Particle Swarm Optimisation

Abstract
Particle swarm optimisation (PSO) is an intelligent random search algorithm,

and the key to success is to effectively balance between the exploration of the
solution space in the early stages and the exploitation of the solution space in
the late stages. This paper presents a new dynamic topology called ”gradually
increasing directed neighbourhoods (GIDN)” that provides an effective way to
balance between exploration and exploitation in the entire iteration process. In
our model, each particle begins with a small number of connections and there are
many small isolated swarms that improve the exploration ability. At each iteration,
we gradually add a number of new connections between particles which improves
the ability of exploitation gradually. Furthermore, these connections among parti-
cles are created randomly and have directions. We formalise this topology using
random graph representations. Experiments are conducted on 31 benchmark test
functions to validate our proposed topology. The results show that the PSO with
GIDN performs much better than a number of the state of the art algorithms on
almost all of the 31 functions.

Keywords:
Particle Swarm Optimisation, Dynamic Topologies, Neighbourhood Topologies,
Exploration and Exploitation

1. Introduction

Particle Swarm Optimisation (PSO) was proposed by Eberhart and Kennedy
in 1995 [1, 2]. It is inspired by the socially self-organised populations such as bird
flocking and fish schooling. The PSO algorithms (PSOs) have gained increasing
popularity in recent years. The PSOs have been widely used in many science and
engineering domains [3, 4]. This is mainly due to its fast convergence rate and
few parameters to tune.

The vital property of the PSO is the interactions or connections between parti-
cles. These connections are generally known as the ”neighbourhood topology” of
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the algorithm. The neighbourhood topologies of the swarm determine the speed
of information flow in the entire population, and furthermore, the speed of infor-
mation flow could be used to control exploration and exploitation of the search
space [5]. The most commonly used topologies are gBest (or the fully connected
topology) and lBest (or the ring topology) [6]. In the gBest topology, all the par-
ticles are connected, and consequently at each iteration, the best position attracts
all the particles towards that location. The information flow in the gBest is ex-
tremely fast. The PSO with the gBest topology has strong ability on exploitation
(the use of known solutions), but could be easily trapped into local optima and
cause the premature convergence problem. As for the lBest, each particle is only
directly connected with two adjacent neighbours, and therefore the information
flow spreads around the population quite slowly, which improves the PSO’s abil-
ity on exploration (the search for new solutions). However, it eventually affects
the convergence speed of the PSO and usually requires a large number of objective
function evaluations.

Therefore, we could say that the gBest and lBest topologies represent the
two extremes of the information flow speed. But we could also state that the
lBest topology meets the requirements of exploration in the early stages, while
the gBest topology satisfies the requirements of tuning the search areas in the late
stages. If we can dynamically adapt the topologies, it will provide an effective
way to balance between exploration and exploitation in the entire convergence
period. This paper presents a dynamic neighborhood topology through gradually
increasing the number of connections for each particle in the population. We have
formalised this topology using random graph representations. In order to validate
our proposed method, we have tested the PSO on 31 benchmark test functions.
The results show that the changes in the PSO result on better performance than a
number of the state of the art algorithms on almost all of the functions.

The rest of this paper is organised as follows. In Section 2, we will give a
detailed review on the related work of this paper. The proposed PSO-GIDN is
presented in Section 3. In Section 4 we will provide our experimental results and
analysis. Finally in Section 5 we will briefly summarise the contributions of this
paper.

2. Background Research

In this section, we first introduce the PSO, and then review the research on the
neighbourhood topologies.
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2.1. Particle Swarm Optimization
In the PSO, there is a population of solutions referred to as particles. Parti-

cles fly around the d-dimensional solution space, and are evaluated according to
a fitness criteria after each iteration. The i-th particle’s position is represented by
a vector −→x i,t = (xi1, xi2, . . . , xid) (where t is the iteration counter). The flying
velocity for a particle i is represented by a vector −→v i,t = (vi1, vi2, . . . , vid). In ev-
ery iteration, each particle’s flying velocity is updated according to the following
two positions. The first one is the position at which its best fitness has achieved
so far. This position is a ”personal best position” (cognitive component) and is
denoted by a vector

−→
pbi,t. The second position is the best position obtained so far

by the particles in its neighbourhood. This position is a ”neighbourhood best po-
sition” (social component) and is represented by

−→
nbi,t. Traditionally, the velocity

update equation is−→v i,t = w ∗−→v i,t−1+
−→
U [0, c1]⊗ (

−→
pbi,t−1−−→x i,t−1)+

−→
U [0, c2]⊗

(
−→
nbi,t−1 −−→x i,t−1), where

−→
U [m,n] is a vector of random real numbers distributed

over [m,n], and w is the inertia weight that has been shown to provide improved
performance [7]. There are a number of modified versions of the velocity update
equation. Clerc and Kennedy [8] introduced the constriction factor χ making the
following equation.

−→v i,t = χ(−→v i,t−1 +
−→
U [0, φ1]⊗ (

−→
pbi,t−1 −−→x i,t−1)

+
−→
U [0, φ2]⊗ (

−→
nbi,t−1 −−→x i,t−1)) (1)

where χ = 2

|2−φ−
√

φ2−4φ|
, φ = φ1+φ2 and φ > 4.0. After updating velocity, each

particle updates its position based on its velocity using the following equation.

−→x i,t =
−→x i,t−1 +

−→v i,t (2)

The PSO using the lBest topology and the Equations (1) and (2) has become the
standard PSO [9].

From the discussion above, we can see that the PSO mainly includes two com-
ponents: the cognitive and social components. The social component plays a key
role in the success of the PSO. We usually use the neighborhood topologies to
depict the social interactions among particles. There is a body of research on the
neighbourhood topologies which we discuss in the followings.
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2.2. Neighbourhood Topologies in the PSOs
The neighbourhood topology or sociometric structure indicates the connec-

tions between particles. It determines the spread of the information1. The informa-
tion flows faster between connected pairs of individuals while slows down by the
presence of the intermediaries. The greater connectivity speeds up convergence,
but it does not tend to improve the population’s ability to discover global optima.
The neighbourhood topology has a strong influence on the particles’ search be-
haviour, and subsequently on the PSOs’ success.

In order to find a topology that works for a wide range of problems, various
topologies have been proposed and examined. In the following, we first discuss
the representation of the topologies, and then review the existing topologies in-
cluding static and dynamic topologies.

2.2.1. Representation
Neighbourhood topologies in the PSOs are usually defined informally, using

only ordinary language or diagrams. It is unambiguous for many simple topolo-
gies, but not for more complex and dynamic topologies due to its inherent impre-
cision.

In order to more accurately represent neighbourhood topologies in the PSOs,
Mendes used undirected graphs to represent social topologies [10]. Undirected
graphs can only be used to model symmetric relations or bidirectional interac-
tions. In order to model more general relationships, such as single direction com-
munications between particles, we need a model of directed graphs. A directed
graph or digraph G is a triple consisting of a vertex set V (G), an edge set E(G),
and a function ℜ(G) assigning each edge an ordered pair of vertices. The first
vertex of the ordered pair is the tail of the edge, and the second is the head. Each
ordered pair or each edge in a digraph is the (tail, head) pair that represents a
link from tail to head. We can see that the population structure in the PSOs can
be easily represented by a digraph G. The vertex set V (G) is all the particles
(p1, p2, . . . , pn). Note that the neighbourhood topologies may change at each iter-
ation in a dynamic topology. In this case, we can use Gt to denote the topology at
iteration t.

The neighbourhood of a particle relates to the concepts of in-neighbourhood
set and out-neighbourhood set. The group of the particles that exerts influence
over the particle pi at iteration t is the in-neighbourhood set H+

t (pi) = {x ∈

1The information mainly refers to the best positions in the swarm.
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V (G) : x→ pi}. In other words, the particles from the in-neighbourhood set send
their personal best positions to the particle pi. The out-neighbourhood set is the
group of particles to whom the particle pi contributes its personal best information.
It is formally defined as H−

t (pi) = {x ∈ V (G) : pi → x}. These two sets are
complementary. Therefore we only need to specify one set when we define a
topology. In this paper, we prefer to define the in-neighbourhood set to construct
a topology.

The main advantages of using the digraph representation is that we can explic-
itly model the information flow direction. Most recent work on the neighbourhood
topologies has been adopted this representation [11, 12, 13].

2.2.2. Static Topologies
In the static (or fixed) topologies, the connections do not change over time.

The earliest and most common used topologies are the gBest and lBest topolo-
gies [14, 7, 9]. In the gBest topology, all particles are fully connected with each
other, and the information flows fastest. Subsequently, the PSOs used the gBest
converge quickly but are likely to be trapped in local optima. In the lBest topol-
ogy, each particle shares its information with two adjacent neighbours. Therefore,
the flow of information is much slower. The PSOs adopted lBest have stronger
ability to explore different regions, but take longer time to converge. Inspired by
the idea of ”small worlds”, Kennedy studied the effects of randomly changed con-
nections of a number of social networks including gBest and lBest [15]. The
test results show that the neighbourhood topologies can significantly affect the
PSO’s performance, and the effects are also dependent on the test functions. Re-
cently, Kennedy and Mendes have systematically examined 70 different topolo-
gies [6, 10]. These topologies not only include the traditional regular topology
such as von Neumann, pyramid and lBest topologies, but also a large of ran-
dom graphs2 with varying degrees of separation or levels of clustering. They
find that the von Neumann topology performs pretty well among these topolo-
gies, but their research has not precisely identified the topology factors that lead
to best performance on a range of problems. All the topologies mentioned above
are only considered mutual communications between connected pairs of parti-
cles. More recently, Muñoz-Zavala et al. have proposed a new neighbourhood
structure, called ”singly-linked ring”. There is no mutual interactions between
adjacent particles [13]. In this topology a particle k only communicates with par-

2These random graphs do not change during a trial, and therefore they are also static topologies.
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ticles k − 2 and k + 1 as neighbors (not k − 1 and k + 1 as in the original ring
structure). The information in this topology flows even slower than that in the ring
topology. Their simulation results show its superiority over the ring and von Neu-
mann topologies in a small range of problems. These studies above are based on
the standard PSOs that each particle is influenced by the best performer among its
neighbours. Mendes et al. have proposed a new variant of the PSO, called fully
informed particle swarm (FIPS) [16]. The FIPS changes the way of processing
the information. Each particle is influenced by all its neighbours and, thus, the
particles are ”fully informed”. The FIPS still faces the same problem of finding a
neighbourhood topology that works well on a wide rang of problems. There are
already a number of research on this problem [17, 18].

In summary, researchers still do not find a static topology that performs ef-
fectively for a wide range of problems. Recently, randomized topologies and
dynamic topologies have been gained more attention.

2.2.3. Dynamic Topologies
In the dynamic topologies, the connections between particles may change over

iterations. A number of techniques have been used to manipulate the neighbour-
hood topologies such as clustering, randomly adding, removing, or migrating
edges, and reconstructing neighbourhood periodically.

Suganthan [5] has designed a neighbourhood operator in order to balance the
exploration and exploitation. For each particle, a certain percentage of particles
close to it were considered as its neighbors. In the early stage, each particle only
has a small number of neighbours, while near end of the algorithm, each individ-
ual’s neighbourhood consists of the entire population. Specifically, a particle pi’s
neighbourhood is determined by the distance rate between pi and any other parti-
cle in the population, and a threshold fraction. The threshold fraction is defined:
fra = (3.0t + 0.6max t)/maxt, where t is the current iteration, maxt is the
maximum iteration number. If fra > 0.9, then the pi’s neighbours are the entire
population, otherwise, it is taken to consist of all particles whose distance d from
pi satisfies d/max d < fra, where max d is the maximum distance between pi
and any other particle in the population.

Kennedy [19] has used a clustering technique (k − means) to reconstruct
the populations into several groups at each iteration. The particles in one group
or cluster are very close in search space. The effects of using cluster centers
as an alternative to using an individual’s previous best pb or its neighborhood
previous best nb are studied. The preliminary study demonstrates that particle
swarm search is relatively effective when individuals are influenced by the centers
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of their own clusters, and is not generally good when they are influenced by the
neighbors’ cluster centers. However, the clustering using k −means adds some
extra computational cost. Liang and Suganthan [20] have introduced a dynamic
multi-swarm PSO (PSO-DMS). In the PSO-DMS, the population is divided into a
number of swarms randomly, and the particles in each swarm are organised using
the lBest topology. These swarms are regrouped frequently in order to exchange
information between swarms.

Mohais et al [11, 21] have proposed to use random neighbourhoods in the
PSOs, together with dynamism operators. Their random neighbourhoods can be
represented using directed graphs as the relationships between particles are single
directional. Both the size and member of the in-neighbourhood set H+

t (pi) are
generated uniformly. Two methods of dynamism called random edge migration
and total re-structuring are given in [11, 21].

A number of other dynamic topologies have also been examined such as the
scale-free characteristics topologies and self-adjusting neighbourhoods [22, 23].

In summary, the neighbourhood topologies have become an active research
direction. These existing studies on the various topologies have gained insight
into the effects of the topologies on the performance of the PSOs. However, these
studies have the following common disadvantages.

• Only a small number of test functions (usually 6 functions) are used to
validate the proposed topologies, and consequently the effectiveness of the
topologies is not fully examined.

• Much extra computation cost is added for some complex dynamic topolo-
gies, which makes the PSOs run much slower.

In this paper, we present a new dynamic topology in order to balance between
exploration and exploitation of search space. To address the disadvantages men-
tioned above, we validate this topology on a wide range of test functions. Further-
more, our topology requires very little extra computation cost compared with the
original PSOs.

3. PSO with Gradually Increasing Directed Neighbourhoods

We aim to provide a neighbourhood topology that can effectively balance be-
tween the exploration and exploitation of the solution space. In the early stage of
the iteration, the PSOs should focus on exploring the whole parameter space in
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order to find a promising search space, and in the late stage all the particles should
work together to exploit the best area found so far.

We design a new neighbourhood topology, called ”Gradually Increasing Di-
rected Neighbourhoods (GIDN)”, to satisfy the desired balance between explo-
ration and exploitation in the entire stage. Specifically, at the beginning each
particle only communicates with a small number of particles. This forms many
small swarms in the population and thus, improves the exploration ability in the
early stage of the evolution. The neighbourhood of each particle increases over
time, and each particle is connected with more individuals. In the late stage, all
particles will be connected with each other, and share all the information together
which improves the exploitation ability.

In our model, we gradually add connections between particles and these con-
nections between particles are randomly chosen and also have directions. So we
choose a random directed graph G(N, b, γ, t) to formally define our GIDN. We
define the in-neighbourhood set H+

t (pi) for any particle (pi) in the G(N, b, γ, t)
first. The size of H+

t (pi) at iteration t is determined by the following equation.

|H+
t (pi)| = ⌊(

t

maxt

)γ ∗N + b⌋ (3)

where ⌊x⌋ is the largest integer not greater than x (the floor function), maxt is the
maximum iteration number, N denotes the size of the population, b and γ are two
parameters. The parameter b is the number of neighbours that each particle begins
with. We suggest that b is set to a small number such as 2 or 3 in order to create lots
of small swarms in the population. The parameter γ controls the neighbourhood
size increasing speed and subsequently the information flow speed. Thus, γ can
be used to control exploration and exploitation. f(γ) = ( t

maxt
)γ is a decreasing

function because of 0 < t
maxt

≤ 1. Our results show that γ = 2 provides a better
balance between exploration and exploitation.

From Equation (3), we observe that each vertex (or particle) starts with b edges
and at iteration t adds |H+

t (pi)| − |H+
t−1(pi)| new neighbours or edges. How to

choose new neighbours for pi? In this paper, we investigate three different strate-
gies. The first one is to choose particles randomly as their new neighbours. An-
other one is to choose the particles that are nearest in the search space. The last
one is to choose nearest particles in the function space. Our results show that
these strategies have no significant effects on the PSO’s performance. Therefore,
we recommend to choose randomly from the population as it adds the least com-
putational cost.
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Algorithm 1: The PSO with Gradually Increasing Directed Neighbourhoods
(PSO-GIDN)

Step 1 : Initialisation: randomly generate each particle’s position and
velocity; Set each particle’s neighbour number (|H+

t=0(pi)| = 0);
Step 2 : Renew each particle’s neighbourhood. Firstly, obtain each

particle’s neighbour number (|H+
t (pi)|) using Equation (3), then update the

topology as follows:
for i← 1 to N do

if |H+
t (pi)| > |H+

t−1(pi)| then
Randomly choose |H+

t (pi)| − |H+
t−1(pi)| distinct particles that still

do not have connections with the particle pi as pi’s new
neighbours;

Step 3 : Evaluate: update each particle’s fitness according to the fitness
function;
Step 4 : Update: l) If the current position is better than

−→
pbi,t, then

update
−→
pbi,t . 2) If this is a better position than

−→
nbi,t in its neighbourhood,

then update
−→
nbi,t;

Step 5 : Update each particle’s position and velocity according to
Equation (1) and (2);
Step 6 : Check stop criterion: If not, return to Step 2 , otherwise output the
best solution found so far.

Algorithm 1 shows our proposed algorithm (PSO-GIDN). The step 2 in the
PSO-GIDN indicates the process of the GIDN.

4. Experimental Results

In this section, we first examine the parameter settings for the PSO-GIDN, and
then evaluate its performance through comparing with a number of the existing
PSOs.

Table 1 shows all the test functions used in our experiments. The first 6 func-
tions (f1 ∼ f6) are some standard test problems which have been widely used to
validate new algorithms [20, 17]. The rest of 25 functions (f7 ∼ f31) are proposed
by Suganthan et al [24]. These 25 functions are constructed from some basic test
functions through adding noise, shifting, rotating or hybrid composition, etc. Due
to these adjustments, these functions become more challenging to optimise.
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Table 1: Test Functions (Uni.=Unimodal, Multi.=Multimodal, Sh.=Shifted, SR=Shifted and
Rotated, HC=Hybrid Composition, RHC=Rotated and HC, GB=Global on Bounds, NC=Non-
Continuous, and NM=Number Matrix)

No. Type Description Bounds Optimum
f1 Uni. Sphere [-5.12, 5.12] 0.0
f2 Uni. Rosenbrock [-2.048, 2.048] 0.0
f3 Multi. Ackley [-30, 30] 0.0
f4 Multi. Griewank [-600, 600] 0.0
f5 Multi. Rastrigin [-5.12, 5.12] 0.0
f6 Multi. Schaffer [-100, 100] 0.0
f7 Uni. Sh. Sphere [-100, 100] -450
f8 Uni. Sh. Schwefel 1.2 [-100, 100] -450
f9 Uni. SR Elliptic [-100, 100] -450
f10 Uni. f8 with noise [-100, 100] -450
f11 Uni. Schewefel 2.6 GB [-100, 100] -310
f12 Multi. Sh. Rosenbrock [-100, 100] 390
f13 Multi. SR Griewank [0, 600] -180
f14 Multi. SR Ackley GB [-32, 32] -140
f15 Multi. Sh. Rastrigin [-5, 5] -330
f16 Multi. SR Rastrigin [-5, 5] -330
f17 Multi. SR Weierstrass [-0.5, 0.5] 90
f18 Multi. Schwefel 2.13 [-π, π] -460
f19 Multi. Sh. Expanded F8F2 [-3, 1] -130
f20 Multi. SR Scaffer F6 [-100, 100] -300
f21 Hybrid HC Function [-5, 5] 120
f22 Hybrid RHC Function 1 [-5, 5] 120
f23 Hybrid f22 with noise [-5, 5] 120
f24 Hybrid RHC Function 2 [-5, 5] 10
f25 Hybrid f24 with basin [-5, 5] 10
f26 Hybrid f24 with GB [-5, 5] 10
f27 Hybrid RHC function 3 [-5, 5] 360
f28 Hybrid f27 with NM [-5, 5] 360
f29 Hybrid NC Rotated f27 [-5, 5] 360
f30 Hybrid RHC function 4 [-5, 5] 260
f31 Hybrid f30 without bounds 260
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We use the following parameter settings for all the experiments unless oth-
erwise specified. The population size (N) is set to 60. The parameter χ is set to
0.72984, both φ1 and φ2 are set to 2.05, and b is set to 3. For the functions f1 ∼ f6,
the iteration number is 1000, while for f7 ∼ f31 it is set to 5000. The dimensions
for all the functions are set to 30. Each set of the results are from 25 independent
runs. We conduct all the experiments on an Intel (R) CPU T8300, 2.40 GHz, 4
GB RAM and Windows 7 OS computer using Java language.

4.1. Parameter Setting Analysis for PSO-GIDN
The first 6 functions (f1 ∼ f6) are used to analyse the parameter settings in

the PSO-GIDN. The main concern for the PSO-GIDN is the parameter γ setting
which determines the speed of information flow among particles. While another
interesting issue is that how to choose their neighbours when the particles dy-
namically increase their neighbours. These two parameters are examined in the
following.

4.1.1. γ

As discussed earlier, γ determines the evolution of population topologies in
the PSO-GIDN. In order to find a proper value for γ, we examine the convergence
of the PSO-GIDN under a group of settings. Specifically, γ is set to 0.5, 1, 2
and 3. The particles randomly choose their new neighbours. From Equation (3),
we can get: N > ck(γ = 0.5) > ck(γ = 1) > ck(γ = 2) > ck(γ = 3) >
2. Therefore, at early stage of the evolution, the convergence rate should be:
GPSO > PSO-GIDN (γ = 0.5) > PSO-GIDN (γ = 1) > PSO-GIDN (γ = 2)
> PSO-GIDN (γ = 3) > SPSO (the GPSO and SPSO represents the PSO with
gBest and lBest topologies respectively). Our experimental results confirm this.
However, we are more interested in the performance in the late stage. Therefore,
in Figure 1, we only show the convergence curves in the late stage. From these
curves, we observe that no single γ value can always perform better on all the 6
functions. For example, PSO-GIDN (γ = 0.5) performs better on two unimodal
functions (Sphere and Rosenbrock), while PSO-GIDN (γ = 1) performs better
on Rastrigin. However, PSO-GIDN (γ = 2) generally performs better on most
of the multimodal functions and also performs well in the unimodal functions.
Accordingly, we recommend that γ is set to 2.

4.1.2. How to choose a neighbour?
In the PSO-GIDN, each particle dynamically increases the size of their neigh-

bourhood. It might be interesting to investigate the impacts of the choosing neigh-
bour strategies on the performance of the PSO-GIDN. We examine three different
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Figure 1: Convergence

strategies. The first one is to choose particles randomly as their new neighbours.
Another one is to choose the particles that are nearest in the search space. The last
one is to choose nearest particles in the function space.

Table 2 shows the results obtained from different choosing strategies. Here,
γ is fixed to 2. The nearest neighbours in the search space strategy has better
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Table 2: PSO-GIDN Performance with Different Choosing Neighbour Strategies

No.
Random neighbours

Nearest neighbours Nearest neighbours
in Search Space in Function Space

Mean (STD) Time (S) Mean (STD) Time (S) Mean (STD) Time (S)
f1 2.85E-16 (2.61E-16) 0.739 2.38E-16 (3.57E-16) 3.073 1.42E-15 (2.81E-15) 0.981
f2 2.32E1 (2.57E0) 0.937 2.24E1 (3.62E0) 3.296 2.51E1 (1.1E1) 1.217
f3 1.06E-7 (9.68E-8) 0.905 9.39E-8 (5.6E-8) 3.184 1.67E-7 (1.22E-7) 1.088
f4 6.99E-3 (1.02E-2) 0.937 1.04E-2 (1.06E-2) 3.174 7.49E-3 (7.08E-3) 1.046
f5 4.52E1 (1.16E1) 0.958 4.76E1 (1.14E1) 3.163 6.76E1 (1.63E1) 1.051
f6 7.35E-2 (1.85E-2) 0.757 8.08E-2 (2.03E-2) 2.959 7.59E-2 (2.48E-2) 0.860

Table 3: PSO Algorithms Used in the Comparisons

Algorithm Topologies Ref.
SPSO lBest [9]
GPSO gBest [7]
VPSO von Neumann [6]

PSO-NO Neighbourhood Operator [5]
PSO-RDN Randomized Directed Neighbourhood [11]
PSO-DMS Dynamic Multi-swarm [20]

performance on first three functions, however, it consumes much more time that
the other two strategies. While the randomly choosing neighbour strategy works
better on the last three functions that are more difficult to optimise, and it also
performs well on the first three functions. Furthermore, this strategy consumes
less time than the other two strategies. Based on these results, we suggest choosing
each particle’s new neighbours randomly.

4.2. Comparisons with Other PSO algorithms
To validate the proposed PSO-GIDN, we compare the PSO-GIDN with a num-

ber of existing PSO algorithms on the 31 functions. We select the existing PSO
algorithms as comparisons based on neighbourhood topologies. These PSO algo-
rithms are shown in Table 3. The neighbourhood topologies chosen represent the
state of the art topologies. The PSO with the ring topology is known as the stan-
dard PSO (SPSO) [9]. The PSO with the gBest topology and von Neumann (or
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Table 4: Comparisons between PSO-GIDN and other PSO Algorithms

No.
PSO-GIDN SPSO GPSO VPSO PSO-NO PSO-RDN PSO-DMS
Mean (STD) Mean (STD) Mean (STD) Mean (STD) Mean (STD) Mean (STD) Mean (STD)

f1 2.85E-16 (2.61E-16) 6.41E-9 (3.73E-9) 1.88E-21 (3.85E-21) 2.41E-12 (1.89E-12) 2.96E-21 (5.8E-21) 1.01E-10 (8.46E-11) 1.35E-8 (7.12E-9)
f2 2.32E1 (2.57E0) 2.39E1 (2.67E0) 3.35E1 (2.38E1) 2.46E1 (1.61E0) 2.26E1 (1.9E0) 2.73E1 (1.06E1) 2.53E1 (1.2E0)
f3 1.06E-7 (9.68E-8) 7.03E-4 (3E-4) 1.11E0 (8.47E-1) 8.64E-6 (4.74E-6) 8.26E-1 (7.91E-1) 5.02E-5 (1.91E-5) 7.08E-4 (2.44E-4)
f4 6.99E-3 (1.02E-2) 1.69E-3 (3.73E-3) 1.01E-2 (1.05E-2) 4.56E-3 (8.13E-3) 3.24E-2 (7.17E-2) 7.19E-3 (8.06E-3) 7.52E-4 (2.11E-3)
f5 4.52E1 (1.16E1) 4.97E1 (8.76E0) 5.34E1 (1.35E1) 4.54E1 (7.93E0) 4.94E1 (9.32E0) 4.99E1 (1.66E1) 9.37E1 (1.1E1)
f6 7.35E-2 (1.85E-2) 1.45E-1 (3.16E-2) 1.18E-1 (4.23E-2) 7.82E-2 (1.33E-2) 1.12E-1 (3.27E-2) 6.34E-2 (1.97E-2) 8.9E-2 (2.18E-2)
f7 -358.98 (91.49) 542.3 (507.22) -103.29 (394.69) -52.41 (278.48) 36.19 (561.05) -58.65 (365.46) 2397.59 (540.74)
f8 -375.68 (255.46) 30.33 (725.02) 1386.51 (2838.2) -100.6 (562.31) 1759.26 (3201.93) 984.66 (1531.7) 4784.2 (1837.98)
f9 6267643 (8517300) 7710409 (6294142) 48064757 (45618893) 6546530 (7183801) 14596032 (15094962) 11951976 (9738194) 37355691 (14378455)
f10 1745.86 (1424.34) 10967.21 (3155.72) 5909.19 (6819.21) 3283.85 (1518.82) 4203.11 (4526.62) 4106.26 (1663.76) 12454.32 (2225.33)
f11 8486.32 (1056.27) 10620.86 (1555.64) 12152.89 (2378.88) 8285.75 (984.11) 10733.54 (2195.99) 8595.76 (1379.38) 11839.66 (1299.09)
f12 1764509 (2554673) 26285911 (18942482) 7030737 (6664173) 3856860 (3088324) 4920850 (4995025) 5105230 (4205608) 88985497 (39786538)
f13 4847.81 (48.98) 4944.71 (50.8) 4969.01 (96.73) 4858.35 (32.47) 4933.28 (78.29) 4888.9 (38.34) 5101.59 (40.22)
f14 -119.12 (0.06) -119.11 (0.04) -119.07 (0.05) -119.11 (0.06) -119.1 (0.06) -119.19 (0.03) -119.06 (0.05)
f15 -265.21 (14.53) -250.15 (6.94) -255.0 (20.48) -264.38 (12.98) -263.38 (19.06) -278.94 (11.76) -247.23 (14.02)
f16 -222.16 (23.28) -201.26 (32.81) -191.69 (39.34) -244.66 (18.05) -215.78 (35.43) -186.09 (38.94) -161.09 (33.75)
f17 117.44 (2.7) 117.49 (3.17) 117.22 (4.63) 117.45 (3.16) 119.35 (2.29) 118.47 (4.52) 113.43 (3.05)
f18 9338.53 (6689.24) 9231.07 (7488.09) 22194.72 (18354.1) 15727.59 (11808.76) 20742.44 (22648.59) 24464.86 (18775.45) 23403.82 (9472.82)
f19 -126.14 (0.98) -125.26 (0.92) -125.73 (1.25) -126.31 (0.94) -126.03 (0.85) -125.42 (1.38) -122.01 (1.56)
f20 -287.56 (0.4) -287.65 (0.22) -287.61 (0.48) -287.91 (0.38) -287.79 (0.63) -287.57 (0.32) -287.39 (0.34)
f21 450.8 (140.63) 421.34 (95.91) 614.64 (146.66) 540.22 (129.92) 568.5 (144.24) 500.92 (144.62) 499.04 (93.54)
f22 251.6 (27.08) 269.05 (25.23) 393.05 (144.12) 240.93 (22.66) 281.8 (53.86) 291.04 (40.42) 324.37 (24.63)
f23 273.2 (38.58) 354.56 (22.64) 479.05 (201.08) 271.16 (29.58) 339.57 (95.16) 342.53 (34.31) 390.71 (24.15)
f24 998.33 (15.52) 1042.03 (11.97) 1049.27 (24.4) 1011.26 (10.85) 1039.65 (25.78) 1015.41 (8.79) 1043.49 (13.42)
f25 1004.86 (15.76) 1036.68 (12.96) 1044.82 (20.96) 1014.09 (11.01) 1025.61 (20.36) 1010.55 (9.43) 1047.03 (14.16)
f26 1007.03 (11.13) 1029.48 (14.2) 1069.18 (31.25) 1015.65 (12.48) 1025.53 (21.87) 1009.99 (10.55) 1041.28 (15.07)
f27 1042.45 (227.39) 1336.66 (155.14) 1420.82 (230.38) 1087.22 (166.98) 1229.7 (274.19) 1196.23 (212.13) 1438.75 (106.17)
f28 1394.24 (30.07) 1422.47 (27.7) 1468.69 (45.48) 1387.45 (17) 1441.79 (38.98) 1394.22 (27.61) 1442.71 (23.7)
f29 1024.04 (110.06) 1346.62 (139.12) 1403.86 (202.68) 1139.15 (210.43) 1394.97 (224.12) 1206.37 (208.47) 1469.97 (64.86)
f30 463.61 (4.87) 780.89 (180.16) 773.84 (407.61) 505.16 (28.43) 527.06 (202.34) 502.13 (57.36) 1058.28 (133.27)
f31 2080.97 (223.59) 2064.28 (178.45) 2216.93 (173.24) 2236.79 (120.2) 2091.93 (171.21) 2157.19 (183.79) 2229.2 (126.48)

Summary
Better 26 28 23 28 26 29
Worse 5 3 8 3 5 2

Square) topology are denoted as GPSO and VPSO respectively. The PSO-NO is
the PSO with a neighbourhood operator that was proposed by Suganthan [5]. The
PSO-RDN is the PSO with randomised directed neighbourhoods and edge migra-
tions [11]. The dynamic multi-swarm PSO (PSO-DMS) uses many small swarms
and regroups these swarms frequently [20]. In these 6 topologies, lBest, gBest
and von Neumann topologies are static while the rest are dynamic topologies. In
order to compare the effects of neighbourhood topologies purely, all these PSO
algorithms employ Equations (1) and (2) to update each particle’s velocity and
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Table 5: T-test Results

No.
SPSO GPSO VPSO PSO-NO PSO-RDN PSO-DMS

T-value (P-value) T-value (P-value) Mean (STD) Mean (STD) Mean (STD) Mean (STD)
f1 -8.592 (0.000) 5.460 (0.000) -6.375 (0.000) 5.460 (0.000) -5.969 (0.000) -9.480 (0.000)
f2 -0.944 (0.350) -2.151 (0.037) -2.308 (0.025) 0.939 (0.353) -1.880 (0.066) -3.702 (0.001)
f3 -11.715 (0.000) -6.553 (0.000) -9.000 (0.000) -5.221 (0.000) -13.113 (0.000) -14.506 (0.000)
f4 2.440 (0.018) -1.062 (0.293) 0.931 (0.356) -1.754 (0.086) -0.077 (0.939) 2.994 (0.004)
f5 -1.548 (0.128) -2.303 (0.026) -0.071 (0.944) -1.411 (0.165) -1.160 (0.252) -15.169 (0.000)
f6 -9.763 (0.000) -4.819 (0.000) -1.031 (0.308) -5.124 (0.000) 1.869 (0.068) -2.711 (0.009)
f7 -8.743 (0.000) -3.155 (0.003) -5.229 (0.000) -3.476 (0.001) -3.986 (0.000) -25.132 (0.000)
f8 -2.641 (0.011) -3.092 (0.003) -2.227 (0.031) -3.323 (0.002) -4.380 (0.000) -13.903 (0.000)
f9 -0.681 (0.499) -4.503 (0.000) -0.125 (0.901) -2.403 (0.020) -2.197 (0.033) -9.301 (0.000)
f10 -13.317 (0.000) -2.988 (0.004) -3.693 (0.001) -2.589 (0.013) -5.389 (0.000) -20.265 (0.000)
f11 -5.676 (0.000) -7.043 (0.000) 0.695 (0.491) -4.611 (0.000) -0.315 (0.754) -10.014 (0.000)
f12 -6.415 (0.000) -3.689 (0.001) -2.610 (0.012) -2.813 (0.007) -3.395 (0.001) -10.939 (0.000)
f13 -6.866 (0.000) -5.589 (0.000) -0.897 (0.374) -4.628 (0.000) -3.303 (0.002) -20.021 (0.000)
f14 -0.693 (0.491) -3.201 (0.002) -0.589 (0.558) -1.179 (0.244) 5.217 (0.000) -3.841 (0.000)
f15 -4.676 (0.000) -2.033 (0.048) -0.213 (0.832) -0.382 (0.704) 3.673 (0.001) -4.452 (0.000)
f16 -2.598 (0.012) -3.333 (0.002) 3.819 (0.000) -0.752 (0.455) -3.975 (0.000) -7.448 (0.000)
f17 -0.060 (0.952) 0.205 (0.838) -0.012 (0.990) -2.697 (0.010) -0.978 (0.333) 4.922 (0.000)
f18 0.054 (0.958) -3.291 (0.002) -2.354 (0.023) -2.414 (0.020) -3.795 (0.000) -6.064 (0.000)
f19 -3.273 (0.002) -1.291 (0.203) 0.626 (0.534) -0.424 (0.673) -2.127 (0.039) -11.209 (0.000)
f20 0.986 (0.329) 0.400 (0.691) 3.172 (0.003) 1.541 (0.130) 0.098 (0.923) -1.619 (0.112)
f21 0.865 (0.391) -4.032 (0.000) -2.335 (0.024) -2.921 (0.005) -1.242 (0.220) -1.428 (0.160)
f22 -2.357 (0.023) -4.823 (0.000) 1.511 (0.137) -2.505 (0.016) -4.053 (0.000) -9.940 (0.000)
f23 -9.094 (0.000) -5.027 (0.000) 0.210 (0.835) -3.232 (0.002) -6.714 (0.000) -12.909 (0.000)
f24 -11.148 (0.000) -8.808 (0.000) -3.414 (0.001) -6.866 (0.000) -4.788 (0.000) -11.005 (0.000)
f25 -7.797 (0.000) -7.619 (0.000) -2.401 (0.020) -4.030 (0.000) -1.549 (0.128) -9.952 (0.000)
f26 -6.222 (0.000) -9.368 (0.000) -2.577 (0.013) -3.769 (0.000) -0.965 (0.339) -9.141 (0.000)
f27 -5.344 (0.000) -5.844 (0.000) -0.793 (0.431) -2.628 (0.011) -2.473 (0.017) -7.896 (0.000)
f28 -3.452 (0.001) -6.828 (0.000) 0.983 (0.331) -4.829 (0.000) 0.002 (0.998) -6.330 (0.000)
f29 -9.092 (0.000) -8.234 (0.000) -2.424 (0.019) -7.428 (0.000) -3.867 (0.000) -17.453 (0.000)
f30 -8.802 (0.000) -3.805 (0.000) -7.203 (0.000) -1.567 (0.124) -3.346 (0.002) -22.296 (0.000)
f31 0.292 (0.772) -2.403 (0.020) -3.069 (0.004) -0.195 (0.847) -1.317 (0.194) -2.885 (0.006)

Summary
Statistically Better 21 26 15 20 17 27
Statistically Same 9 4 14 10 12 2
Statistically Worse 1 1 2 1 2 2

position. This setting is different with the original settings in the PSO-DMS and
GPSO. The parameters χ, c1 and c2 are set as stated earlier. For the PSO-RDN,
the neighbourhood size for each particle is generated randomly between 1 and 4,
and the migration rate of 1 per iteration is used. For the PSO-DMS, each swarm
has 3 particles, and the regroup period is set to 10. For the PSO-GIDN, the γ is
set to 2, and the randomly choosing neighbour strategy is applied.

Table 4 shows the mean value and standard deviation over 25 individual trials
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for these PSO algorithms. We find that the PSO-GIDN performs better than the
other PSO algorithms on almost of all the 31 functions. Specifically, the PSO-
GIDN performs better than the SPSO on 26 functions, better than the GPSO on
28 functions, better than the VPSO on 23 functions, better than the PSO-NO on
28 functions, better than the PSO-RDN on 26 functions, and better than the PSO-
DMS on 29 functions. Furthermore, in order to verify whether the performance
differences are statistically significant, a t-test was conducted. We use the con-
ventional criteria to determine whether differences are significant. That is if the
two tailed p value is less than 5%, the difference is statistically significant, or else,
it is not. The t-test results are shown in Table 5. From the summary in Table 5,
there are only a very few cases that the PSO-GIDN performs statistically signifi-
cant worse than the other PSO algorithms. In contrast, the PSO-GIDN performs
statistically significant better over the SPSO, GPSO, PSO-NO, PSO-RDN and
PSO-DMS on the majority of the functions. Overall the PSO-GIDN also performs
better than the VPSO as it performs statistically significant better on 15 functions
and statistically same on 14 functions. From these results, we can conclude that
the PSO-GIDN provides a better topology and generally performs better than the
existing PSO algorithms.

5. Conclusions

Like many other population-based algorithms, the performance of the PSO
depends on its ability to balance exploration and exploitation of the search space.
In this paper, we aim to improve this trade-off through the neighbourhood struc-
ture design. Our study suggests that a productive balance between exploration
and exploitation can be achieved by a gradually increasing directed neighbour-
hood topology. This dynamic topology can support the exploration of promising
regions in the search space, while gradually improve the ability of exploitation.

Although our results are promising, future research should continue to test the
current topology on more problems and explore other alternative topologies, and
we hope that the work we present here represents an important stepping stone to
uncovering more nuanced underpinnings between neighbourhood topologies and
performance.
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