

Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published

version when available.

Downloaded 2020-10-17T05:56:47Z

Some rights reserved. For more information, please see the item record link above.

Title Observations on the shortest independent loop set algorithm

Author(s) Huang, Jinjing; Howley, Enda; Duggan, Jim

Publication
Date 2012-07-31

Publication
Information

Huang, JJ,Howley, E,Duggan, J (2012) 'Observations on the
shortest independent loop set algorithm'. System Dynamics
Review, 28 :276-280.

Publisher System Dynamics Society / Wiley

Link to
publisher's

version
http://dx.doi.org/10.1002/sdr.1477

Item record http://hdl.handle.net/10379/3933

DOI http://dx.doi.org/DOI 10.1002/sdr.1477

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

A search algorithm to identify the independent
feedback loop set

Abstract

System dynamics focuses on how feedback structures drive system behaviour. An established feed-

back loop analysis method is eigenvalue elasticity analysis (EEA), which analyzes a complete set

of independent feedback loops in a given system. A widely accepted loop selection method is the

shortest independent loop set (SILS) algorithm. It is utilized in EEA to compute the loop elasticity

which identifies the dominant loops. However, this paper finds that in some scenarios, the SILS can

only identify part of the complete independent loop set (ILS). In this case, SILS is no longer suit-

able for EEA, because it produces incorrect loop elasticities. An agent-based goal diffusion model

is then produced to demonstrate this specific scenario. Subsequently, we specify a more robust

algorithm using the depth-first search to identify the complete set of independent loops. Finally, a

summary is presented and it suggests a potential area for extending EEA applications.

1 Introduction

System dynamicists explore and analyze feedback structures in order to provide explanations for

system behaviour. The process of identifying the feedback loops that exert the most significant

influence on the variable of interest is referred to as dominant loop analysis. Once the dominant

feedback loops are identified, this information can be utilized to design more effective policies.

Dominant loop analysis can be performed using a number of related approaches. Ford (1999)

proposed the behavioural method through deactivating each feedback loop, and comparing the

behaviour with that in the original model. Another approach is the pathway participation metric

(PPM) method, proposed by Mojtahedzadeh (1997), which identifies the most influential pathways

sequentially to form a dominant feedback structure. The third method is the eigenvalue elasticity

analysis (EEA), introduced by (Forrester, 1982), which is derived from linear control theory. The

eigenvalues (denoted as λ) determine the behaviour of a system (Forrester, 1982; Saleh, 2002). As

a result, a dimensionless ratio, elasticity, ε is defined to measure the percentage change in the eigen-

value in response to the percentage change in the loop gain (gs), defined as ε = (dλ/λ)/(dgs/gs)

(Forrester, 1983). The larger the magnitude of an eigenvalue elasticity associated with the gain of

a certain system structure element, the more significant that loop structure element is to the cor-

responding eigenvalue. Among these three methods, two of which, the behavioural method and

EEA, utilize loops as basic analysis block while the PPM, identifies a dominant pathway1 until

these pathways form a feedback loop. This paper focuses on the independent feedback loop set

(ILS) selection method which is proposed and introduced into EEA by Kampmann (1996), and

the paper is structured as follows. First, an introduction to ILS is presented. The ILS is consid-

ered as a breakthrough in EEA as it enables the direct computation of the loop elasticity and uses

a reduced number of loops to explain the model behaviour. Next, the shortest independent loop

set (SILS) proposed by Oliva (2004) is described. It is a simpler and more granular description

of ILS. Following this, an experiment is presented, based on an individual-based goal diffusion

model, that demonstrates a clear difference between the results of the SILS and those from the

ILS. An algorithm is then proposed which can overcome the discrepancy between the SILS and

the ILS, and this is validated through a number of experiments. Finally, our conclusion highlights

potential issues associated with the determination of the maximal independent loop set.

2 The independent loop set

Despite the fact that loop elasticity is an effective way to identify dominant feedback loops, it was

not widely used until Kampmann (1996) proposed a method known as the independent loop set.

This is due to a previously unsolved problem: how to select feedback loops so that loop elasticities

can be calculated from link elasticities (which are known). Eq. 1 formulates the relationship

between these two elasticities (note: the edges and loops are in a strongly connected digraph2). The

1A number of edges which link two state variables.
2In a strongly connected digraph, any pair of vertices could reach each other.

2

manner in which the feedback loop set is selected determines the matrix C, and also determines

whether loop elasticity on the right-hand side of the equation can be solved.

Ee1

Ee2

.

EeN

= C

Ec1

Ec2

.

EcL

(1)

Ee and Ec denote link elasticities and loop elasticities respectively, L refers to the number of

possible loops, N represents the number of edges, and C is an N × L binary matrix. C represents

the directed cycle matrix (DCM) (Kampmann, 1996), each entry of which indicates if the edge

(in a row) belongs to a certain loop (in a column). If the number of possible feedback loops of a

given system is denoted as L, L is typically much larger than N. However, the solution to the loop

elasticity is determined by the rank3 of C: rank(C)≤ N < L. In this type of scenario, there will be

no unique solution to the loop elasticity, as the number of unknowns are greater than the number

of equations.

The independent loop set (ILS) was proposed by Kampmann (1996) to address this problem

where the ILS is “a maximum set of loops whose incidence vectors are linearly independent ... In

a strongly connected digraph, the number of maximal independent loops are N-n+1”, where N is

the number of edges, and n is the number of vertices. It is worth noting that the ILS is not unique

although its size is fixed. There are multiple possible ILSs for one given system.

Because of the ILS, the number of feedback loops under consideration is lower than the maxi-

mum possible number, and is therefore reduced to a manageable number. We can see that rank(C)=

L̂ which denotes the number of independent loops. Once an ILS has been identified, a unique so-

lution to the loop elasticity is guaranteed. This then enables the EEA method to be used.

3The column rank of a matrix is the maximum number of its linearly independent column vectors. The row rank of
a matrix is the maximum number of its linearly independent row vectors. The fundamental theorem of linear algebra
states that the column rank is always equal to the row rank.

3

3 Shortest independent loop set

Based on Kampmann’s construction rule, Oliva (2004) proposed a new algorithm to identify the

independent loop set, which is referred to as the shortest independent loop set (SILS) algorithm.

The essence of SILS is based on the idea of geodetic cycles. A geodetic cycle is constructed by

using the fewest edges connecting any two system vertices under consideration, and all geodetic

cycles are a subset of all the possible feedback loops in the graph. The geodetic cycles are com-

puted from the adjacency matrix4. The SILS is constrained to only consider new loops from the

geodetic cycles. Furthermore, the selected candidate loop always has the fewest new edges (com-

pared with other candidate geodetic cycles). This is consistent with Kampmann’s construction

rule which states to “accept a loop in the ILS if it contains at least one edge not included in the

previously accepted loops”. The SILS is a special implementation of ILS.

The steps to implement the SILS algorithm can be briefly described as follows:

1. Set up the geodetic cycle matrix for a given system.

2. Id the shortest feedback loop among the geodetic cycles, and transfer it to the SILS. This is

the first loop introduced into the SILS.

3. Among the remaining geodetic cycles, select the shortest feedback loop that makes the small-

est addition of new edges to the identified SILS. Add it to the loop set.

4. Repeat step 3 until all the geodetic cycles are visited.

The SILS algorithm has become the most widely adopted approach in feedback loop analysis, for

example, the behavioural method by Phaff (2008), and the eigenvalue elasticity analysis (Güneralp,

2006; Kampmann and Oliva, 2006; Saleh et al., 2010). However, a key question to be addressed is

whether the SILS algorithm can capture ILS for any system dynamics models, because it constrains

the candidate feedback loops to be based on the geodetic cycles.

4Each row (and column) represents a vertex, and the entries are restricted to zero and one, where Ai j=1 IFF there
is a link from vertex i to vertex j. The ones in row represent the successors while the ones in column represent the
predecessors.

4

Our earlier discussion shows that the loop elasticities, [Ec1, · · · , EcL̂]T in Eq. 1, can be solved

provided rank(C) = L̂. More importantly, it suggests that any smaller sized independent loop

set rather than the ILS is sufficient to solve loop elasticity in Eq. 1. The explanation for the

necessity of utilizing the ILS in the loop elasticity computation lies in the utilization of Mason’s

rule (Reinschke, 1988), and its detail can be found in Kampmann (1996).

4 Does SILS capture the complete set of independent loops?

The SILS algorithm is generally accepted as the loop selection method in eigen-based analysis,

however, we have formulated a model which shows that the SILS algorithm does not capture the

maximum number of independent loops. This is an individual-based system dynamics model (Fe-

ola et al., 2011; Osgood, 2009; Duggan, 2008) based on the two-stock floating goals structure

(Sterman, 2000). We have adapted the original model to allow individual agents to pursuit dif-

ferent goals by modifying their own target goal in equation Fi. Each agent has one state variable

GoalAgenti, representing its current goal level. GoalAgenti is adjusted through interactions with

its neighbours via TargetGoali, and the adjustment time is ATi. A three-agent model with a fully

connected network termed the goal diffusion model is shown in Figure 1, and the equations in (2)

are for each individual agent.

GoalAgenti = INT EGRAL(ChangeInGoali,GoalAgent0
i)

ChangeInGoali = (TargetGoali −GoalAgenti)/ATi

TargetGoali = Fi(GoalAgent1,GoalAgent2,GoalAgent3) (2)

In order to clarify the feedback loop set, we present a graph representation of the model in

Figure 2 (adjustment times are not included as they are not part of the strongly connected digraph).

5

Figure 1: The stock and flow diagram of the goal diffusion model

Figure 2: The simplified graph of the goal diffusion model. Squares: GoalAgents, circles: Target-
Goals, and parallelograms: ChangeInGoals.

6

Method Loop name Variables involved Sequence

ILS SILS

Agent1
floating goal spiral 1, 2 1©
state adjustment 1, 3, 2 2©

Agent2
floating goal spiral 4, 5 4©
state adjustment 4, 6, 5 5©

Agent3
floating goal spiral 7, 8 7©
state adjustment 7, 9, 8 8©

interaction of A1 & A2 1, 6, 5, 4, 3, 2 3©
interaction of A1 & A3 1, 9, 8, 7, 3, 2 6©
interaction of A2 & A3 4, 9, 8, 7, 6, 5 10©

interaction of A1, A2 & A3 1, 9, 8, 7, 6, 5, 4, 3, 2 9©

Table 1: ILS and SILS in the goal diffusion model.

Based on Kampmann’s theorem 2.1, the maximal independent loop number of the goal diffusion

model is: 18-9+1=10. However, the SILS algorithm can only identify 9 loops. The independent

feedback loop sets identified by these two different approaches are shown in Table 1. Particularly,

the fourth column with numbers encircled shows the sequence of the independent loops that are

identified by ILS. It is evident that there is one loop missing in SILS which is highlighted by

the dashed line in Figure 2. The missing loop is a longest loop that spans three agents. Close

scrutiny shows that the missing loop is not a geodetic cycle. In this model, any two vertices

in different agents can be linked by a shortest path encompassing the corresponding two agents

without involving a third agent. This shows that constraining the candidate loop pool to be the

geodetic cycles is a potential drawback that will affect the number of independent loops which can

be identified. This is the reason why the SILS will not achieve the full coverage of ILS in some

cases.

Further investigation provides a deeper explanation to this drawback of the SILS algorithm:

the loops introduced to ILS by Kampmann’s construction rule are not always the geodetic cycles.

Recall the first statement in point 2 of this rule (p.8, Kampmann (1996)) dealing with adding a

new loop, it is expressed as “choose a shortest path outside that comes back to the current ILS”.

A geodetic cycle is a combination of two shortest paths. Nevertheless, this construction rule needs

only the path (part of the new loop) outside the ILS to be the shortest. It does not require the path

7

inside the ILS to be the shortest. Therefore, a non-geodetic cycle may be introduced into the ILS.

It is worth noting that any two vertices in ILS are connected, but not necessarily by the shortest

path. This scenario can be observed from the case example, with first 8 loops introduced in Table

1, for loop 9, the edge 7→6 is added. This new edge is part of the geodetic cycle involving vertices

7 and 6 (the geodetic cycle is 7→6→5→4→9→8→7). However, the path inside ILS from 6 to

7 is 6→5→4→3→2→1→9→8→7, and not the shortest. Consequently, a non-geodetic cycle is

introduced into ILS. Finally, the last remaining edge 4→9 is introduced to form loop 10.

5 An independent loop set selection method

In this section, we will specify an ILS algorithm by making use of Kampmann’s construction

rule. However,there are several implementation issues that have not been specified in this rule.

For example, there is no clear starting point of the ILS algorithm, and it contains an ambiguous

procedure to introduce a new path returning to current ILS. In our algorithm, we select a shortest

feedback loop as the first loop, which can be obtained by the geodetic loop matrix. The geodetic

matrix is computed as follows (intermediate results are shown based on Figure 2. Within each

matrix, ith row corresponds to vertex i):

1. The adjacency matrixA, a binary representation of the digraph, is constructed based on the

model’s equations.

8

A=

0 1 1 0 0 1 0 0 1

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 1 1 0 0 1

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 1 0 0 1 0 1 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

D=

0 1 1 3 2 1 3 2 1

1 0 3 4 3 2 4 3 2

2 1 0 5 4 3 5 4 3

3 2 1 0 1 1 3 2 1

4 3 2 1 0 2 4 3 2

5 4 3 2 1 0 5 4 3

3 2 1 3 2 1 0 1 1

4 3 2 4 3 2 1 0 2

5 4 3 5 4 3 2 1 0

D +D′=

0 2 3 6 6 6 6 6 6

0 4 6 6 6 6 6 6

0 6 6 6 6 6 6

0 2 3 6 6 6

0 3 6 6 6

0 6 6 6

0 2 3

0 3

0

2. The distance matrix (D)is computed where each entry shows the length of the shortest path (a

sequence of non-repeating edges and vertices) between two vertices (Warfield, 1989). The

distance matrix is obtained based on a well known result from graph theory which states:

“an adjacency matrix with its main diagonal filled with ones – to the ith power, yields the

matrix of a digraph with the relationship reachable with i steps”. The above statement can

be formulated as (Oliva, 2004):

B = A + I

D = A +

|A|−1∑

i=2

i(Bi − Bi−1)

where |A| is the row/column dimension ofA, and the power of B is a Boolean product.

3. The geodetic matrix is computed by adding the transpose of the lower block triangular com-

ponent of the distance matrix to its upper triangular componentD′+D. The plus operator is

in ordinary matrix algebra.

If there is more than one loop with the equal shortest length, we will choose the one which is

placed first in the geodetic loop matrix. The loop is divided into two paths, e.g. u → v and v → u

9

(Duv = shortest length), thus, a loop track can be carried out by tracking the elements in individual

path. Figure 1 shows the pseudo-code for the path track by taking advantage of the distance matrix.

Algorithm 1 Vector pathTrack (MatrixD, int u, int v)
Vector vec, pre, suc {initialize the vectors}
vec← u {add the first vertex of the path}
len←D(u,v) {get the length of the shortest path}
for i = 0 to len-1 do

pre← findNPre (D, v, length-i) {find all predecessors of v with length-i steps away}
suc← findNSuc (D, u, 1) {find all immediate successors of u}
for each vertex j ∈ suc do

if j ∈ pre then
vec← j {add the vertex to the vector vec}
break

end if
end for

end for
return vec

Once the first feedback loop is selected, a number of key issues are clarified before proceeding,

namely to:

• Distinguish the vertices which have been added into the ILS (or call them visited vertices)

from those which have not been visited.

• Maintain two adjacency matrixes: one contains the edges in current ILS (or named as visited

edges), and the other is composed of the edges outside of ILS.

• Compute the distance matrixD with visited edges only, and update it every time after a new

loop is introduced into the ILS. This is one distinction from the SILS where the distance

matrix is calculated with all the edges.

We now proceed to the core of Kampmann’s construction rule: start from a visited vertex and

track a shortest path back to the existing loop set. Our algorithm takes a slightly different strategy

on how to introduce new loops to the ILS. We start from a vertex, then proceed until we identify

that one vertex is visited (Figure 3). As a result, this path may not be the shortest. However, it

still meets the constraint that “every new loop has at least one new edge” (Kampmann, 1996). This
10

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Illustration of the searching process for a new independent feedback loop. Dotted blue
line: current valid search path; black dash line: visited but discarded edges.

Algorithm 2 Stack addLoop (int cur, Vector vertices, MatrixA)
Stack S = new Stack() {initialize a stack}
Vector path = new Vector() {initialize a vector}
repeat

if cur ∈ vertices then
S.push(cur) {if the cur vertex is a visited vertex, push it in stack}
return S

else if cur != -1 then
S.push(cur) {if the succeeding edge exists, push the cur vertex in stack}
path← cur {add it to the search path}
cur← findSuc(A, cur, path)

else
S.pop() {if no succeeding edge exists, pop out the vertex}
q← S.peek() {obtain the new top vertex}
cur← findSuc(A, cur, path)

end if
until !S.isEmpty()
return S

11

procedure is implemented by “depth-first search” (Cormen et al., 2001) and a stack data structure

is used to record all the vertices in the search path. If the vertex is not labeled as visited (i.e. not

in current ILS), but it is in the current search path (marked in dashed/dotted lines in Figure 3(c)-

(h)), we have to discard this edge and try another unvisited succeeding edge. In some cases, all its

succeeding edges may go back to the vertices in the search path, we have to remove the top node

in the stack and search for a new path from the new top node. Figure 3 demonstrates a scenario:

initially we follow the edge to p to explore a way back to the ILS, however, we have to retreat three

steps to the starting point and opt for another succeeding edge ending with q, which finally leads

back to ILS. Algorithm 2 shows an implementation of this procedure that takes the starting vertex,

visited vertices, and the adjacency matrix (with unvisited edges only) as inputs.

Once we have identified the path outside of ILS, the remaining task is to complete this feedback

loop. As we know the head and tail nodes in stack hold two visited vertices, so we can make use

of the code in Figure 1 to trace the path in the current ILS. Every time a new feedback loop is

introduced into ILS, the adjacency matrix, the distance matrix, and the visited vertex and edge set

are updated. The shortest path between two vertices thereby may change every time after one new

loop is introduced. This is a significant difference with the SILS algorithm where the geodetic

loop matrix is static. Moreover, this gives rise to generating more feedback loops than the geodetic

loops, and therefore ensures the algorithm identifies the ILS.

Finally, a formal pseudo-code for the main function of identifying the ILS is provided in Al-

gorithm 3. It takes four parameters as the input. A and D are the system adjacency matrix and

distance matrix. Vertices is a vector containing all the vertices while Edges is a matrix with all

edges in the system.

A subsequent experiment is conducted to examine the undetected loop in the goal diffusion

model when increasing the agent population. Table 2 shows that the gap of the loop size between

the ILS and the SILS grows when the agent population rises in the context of a fully connected

network.

12

Algorithm 3 Main(A,D, Vertices, Edges)
Vector vis v, non vis v← Vertices {Initialize vectors to store visited and non-visited vertices}
Vector vis e, non vis e← Edges {Initialize vectors to store visited and non-visited edges}
Vector g cycles {Initialize vectors to geodetic cycles}
Vector ils {Initialize a vector to store the independent loop set}
g cycles← calcGeodeticM(D) {Obtain geodetic cycles by utilizing pathTrack func}
ils←g cycles {Introduce a shortest loop to ils}
vis v←updateV(ils,Vertices) {Update the visited vertex vector}
non vis v←Vertices– vis v {Obtain the non-visited vertex vector}
vis e←updateE(ils,Edges) {Update the visited edge vector}
non vis e←Edges– vis e {Obtain the non-visited edge vector}
A←updateAdj(non vis e) {Update adjacency matrix with edges outside the ILS}
D←updateDis(vis e) {Update distance matrix with edges in the ILS}
while non vis e != null do

int cur←findCur(non vis v, A) {Pick one vertex in non vis v and it has an edge with a
vertex in vis v}
int v←findNPre(A,cur,1) {Record the vertex in vis v}
S←addLoop(cur,vis v,A) {Identify a path going back to current ILS}
u← S {Get the vertex that is in both ILS and S}
S.add(pathTrack(D, u, v)) {Identify a path inside current ILS to form a new loop}
ils.add(S) {Add the new loop}
vis v←updateV(S,Vertices)
non vis v←Vertices– vis v
vis e←updateE(S,Edges)
non vis e←Edges– vis e
A←updateAdj(non vis e)
D←updateDis(vis e)
S.clear() {Clear the vector S}

end while

Agent population 2 3 4 5 6 7 8 9 10 i(≥ 2)
No. of edges (N) 10 18 28 40 54 70 88 108 130 (i + 3)i
No. of variables (n) 6 9 12 15 18 21 24 27 30 3i
N-n+1 5 10 17 26 37 50 65 82 101 i2 + 1
No. of loops (ILS) 5 10 17 26 37 50 65 82 101 i2 + 1
No. of loops (SILS) 5 9 14 20 27 35 44 54 65 (i + 3)i/2
No. of missing loops 0 1 3 6 10 15 21 28 36

∑i
j=2(j − 2)

Table 2: Agent population vs. size of independent loop set

13

This table shows the SILS algorithm fails to yield an ILS for such type of models. Although

the specific conditions that makes the SILS fails is not clearly known yet, we think it is due to the

density of the interconnections.

6 Conclusions

This paper specifies an algorithm that identifies the complete set of independent loops that outper-

forms the SILS for a specific individual based goal diffusion problem. The ILS algorithm conforms

to Kampmann’s construct rule and uses depth-first search to add a new feedback loop into the ex-

isting ILS. Another contribution of this paper is to highlight the need for caution when utilizing

the SILS algorithm in EEA. The SILS algorithm is not guaranteed to identify the ILS. This is due

to the fact that the SILS constrains the candidate feedback loops within only geodetic loops, which

rules out other possible feedback loops. In addition, it is important to emphasize the point that only

by utilizing the complete set of independent feedback loops, is the loop elasticity calculation valid,

and hence leads to Eq. 1. This is the equation where the loop elasticity derived. However, although

the SILS algorithm fails in few scenarios, it still can capture the ILS in most system dynamic mod-

els. Moreover, while the capability of capturing the core dynamics for the loops generated by our

algorithm needs to be examined, that for the loops in SILS is proved in Oliva and Mojtahedzadeh

(2004).

Future research will focus on the possible applications of EEA to network-based individual

models (Mungovan et al., 2011; Rahmandad and Sterman, 2008). This includes extending the

existing techniques and exploring new approaches to formally analyze feedback loop structures

across disaggregated equation-based models.

References

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2001). Introduction to Algorithms (2nd

ed.). MIT Press and McGraw-Hill.
14

Duggan, J. (2008). Equation-based policy optimization for agent-oriented system dynamics mod-

els. System Dynamics Review 24(1), 97–118.

Feola, G., J. A. Gallati, and C. R. Binder (2011). Exploring behavioural change through an agent-

oriented system dynamics model: the use of personal protective equipment among pesticide

applicators in colombia. System Dynamics Review 28(1), 69–93.

Ford, D. N. (1999). A behavioral approach to feedback loop dominance analysis. System Dynamics

Review 15, 3–36.

Forrester, N. B. (1982). A Dynamic Synthesis of Basic Macroeconomic Theory: Implications for

Stabilization Policy Analysis. Ph. D. thesis, Department of Management, College of business

administration, University of Nebraska.

Forrester, N. B. (1983). Eigenvalue analysis of dominant feedback loops. Chestnut Hill,

MA, USA. The 1st International Conference of the System Dynamics Society. Available at

www.systemdynamics.org.

Güneralp, B. (2006). Towards coherent loop dominance analysis: progress in eigenvalue elasticity

analysis. System Dynamics Review 22(3), 263–289.

Kampmann, C. E. (1996). Feedback loop gains and system behavior. Cambridge, MA,

USA. The 14th International Conference of the System Dynamics Society. Available at

www.systemdynamics.org.

Kampmann, C. E. and R. Oliva (2006). Loop eigenvalue elasticity analysis: three case studies.

System Dynamics Review 22(2), 141–162.

Mojtahedzadeh, M. (1997). A Path Taken: Computer Assisted Heuristics For Understanding Dy-

namic Systems. Ph. D. thesis, University at Albany.

Mungovan, D., E. Howley, and J. Duggan (2011, May). The influence of random interactions

15

and decision heuristics on norm evolution in social networks. Journal of Computational and

Mathematical Organization Theory 17(2), 119–151.

Oliva, R. (2004). Model structure analysis through graph theory: Partition heuristics and feedback

structure decomposition. System Dynamics Review 20(4), 313–336.

Oliva, R. and M. Mojtahedzadeh (2004). Keep it simple: Dominance assessment of short feedback

loops. The 22nd International Conference of the System Dynamics Society.

Osgood, N. (2009). Lightening the performance burden of individual-based models through di-

mensional analysis and scale modeling. System Dynamics Review 25(2), –118.

Phaff, H. G. (2008). Generalized loop deactivation method. Athens, Greece. The 26th International

Conference of the System Dynamics Society. Available at www.systemdynamics.org.

Rahmandad, H. and J. Sterman (2008, May). Heterogeneity and network structure in the dy-

namics of diffusion: Comparing agent-based and differential equation models. Management

Science 54(5), 998–1014.

Reinschke, K. J. (1988). Multivariable Control: A Graph-theoretical Approach. Berlin: Springer-

Verlag.

Saleh, M. (2002). The Characterization of Model Behavior and Its Causal Foundation. Ph. D.

thesis, University of Bergen.

Saleh, M., R. Oliva, C. E.Kampmann, and P. I.Davidsen (2010). A comprehensive analytical

approach for policy analysis of system dynamics models. European Journal of Operational

Research 203, 673 – 683.

Sterman, J. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World.

The McGraw-Hill Press.

Warfield, J. (1989). Societal Systems: Planning, Policy and Complexity. Intersystems Publications:

Salinas, CA.
16

