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Abstract In this paper we explore the effect that random social interactions
have on the emergence and evolution of social norms in a simulated popula-
tion of agents. In our model agents observe the behaviour of others and update
their norms based on these observations. An agent’s norm is influenced by both
their own fixed social network plus a second random network that is composed
of a subset of the remaining population. Random interactions are based on a
weighted selection algorithm that uses an individual’s path distance on the
network to determine their chance of meeting a stranger. This means that
friends-of-friends are more likely to randomly interact with one another than
agents with a higher degree of separation. We then contrast the cases where
agents make highest utility based completely rational decisions about which
norm to adopt versus using a Markov Decision process that associates a weight
the best choice. Finally we examine the effect that these random interactions
have on the evolution of a more complex social norm as it propagates through-
out the population. We discover that increasing the frequency and weighting
of random interactions results in higher levels of norm convergence and in a
quicker time when agents have the choice between two competing alternatives.
This can be attributed to more information passing through the population
thereby allowing for quicker convergence. When the norm is allowed to evolve
we observe both global consensus formation and group splintering depending
on the cognitive agent model used.

1 Introduction

Social norms, or normative behaviours, are one mechanism that allows large
groups of self interested humans to cooperation together and coordinate ac-
tions (Lopez y Lopez et al., 2006) thereby providing a solution to the problem
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of social order (Horne, 2007). They can be defined as a set of conventions or be-
havioural expectations that people in a population abide by. Essentially norms
inform an agent, or individual, on how to behave. Ignoring social norms can
lead to negative repercussions for individuals including being excluded from
a group. Social norms present a balance between individual freedom on the
one hand and the goals of the society on the other (Walker and Woolridge,
1995). Indeed the agency versus structure debate has been identified as an im-
portant questions in social science (Shilling, 1999). It aims to understand the
intrinsic motivations of how humans make decisions. Is it through the struc-
tural institutions we encounter or our own intrinsic internal decision making
mechanisms? Reconciling both ideas in the theory of structuration proposed
by Giddens (1984). It states that human actions are performed within social
structures including norms but these social norms themselves are transient and
are prone to evolution. There are two types of social norm conventions: top-
down and bottom up. Top-down norms represent laws that are enforced on the
population (Goldfarb and Henrekson, 2003). Bottom up conventions, such as
shaking hands when introducing oneself, represents emergent behaviour from
within the group. In this scenario agents, acting in their own self interest,
choose which action to take based upon their interactions with others in the
population. This type of “conformist transmission” is a tendency to adopt the
most popular behaviour in the group and aids in the convergence of social
norms (Henrick and Boyd, 2001). It can be seen as a form of herding (Barrat,
2008) and is the type of social norm that we investigate in this paper. Norms
share many characteristics in common with epidemic diseases which spread
both horizontally and obliquely (Klein, 1999). Agents use locally available in-
formation to determine their selection of social norms. Social evolution in turn
can be described as changes in the nongenetic information stored in societies
(Ehrlich and Levin, 2005). In other words, over time the characteristics of a
norm that describe its behaviour can change.

The model we present in this paper investigates the effects of random social
contacts on norm convergence and evolution. In the real world individuals are
unlikely to change their immediate social network of acquaintances very much
but will have a number of once-off interactions with random members of the
population. An individual will, generally speaking, have the same wife, boss,
friend etc. from one day to the next. But it is the random meetings with the
general public that we interested in. For instance we interact with complete
strangers on buses, in shops, at parties etc. These interactions are outside ones
social network. The interactions don’t necessarily need to be verbal or signif-
icant. Norms have the capacity to influence peoples behaviour just through
observation. We recognise, however, that because our daily activities are tied
to our social network, we are more likely to randomly meet some people over
others. To account for this we bias random interactions based on the social
distance that separates agents in the network. We contrast two separate mech-
anisms of how agents make decisions. Firstly agents act in a perfectly rational
manner based on the utility they perceive for each norm. Secondly we use a
Markov Decision Process where an agent’s choice is weighted toward making a
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particular choice given their observations on the network. We then expand the
model from a simple binary decision between two separate norms to incorpo-
rate a continuum that describes the norm as a series of n bits. This examines
how the characteristics of the norm evolves over time given that agents are
randomly interacting with one another. Our goal is to discover at what point
random interactions will influence the emergence of a global convention and
how these random interactions effect the evolution of the norm. Specifically,
we we aim to:

1. Design an algorithm that selects a random individual based on their social
distance in the network.

2. Test the effects of random interactions on both perfectly rational agents
and agents that use a Markov Decision Process that select between two
competing norms.

3. Test the effect of random interactions on an evolving norm that can change
over time.

The formal model we describe, and the decision making algorithms we use,
have been abstracted from real human behaviour into a multi-agent based
simulation. Social life has many more complications but it can be useful to
consider simpler settings (Horne, 2007). Agent Based Modelling (ABM)1 often
has the function of identifying new questions as highlighted by Epstein (2008).
One advantage of our reduction in sophistication or veridicality is that it allows
for an increased population of agents. As Carley (2009) points out, models are
often developed for the purpose of telling a story or making a point and are
not always meant for developing policy or guiding decisions. In this spirit our
work is not accompanied by a real world statistical comparison. Nevertheless,
our approach offers novel insight into the process of norm convergence and
evolution. The rest of the paper is structured as follows; Section 2 presents
an introduction to previous work in the area of norm convergence, evolution
and social networks. Section 3 gives a description of the formal model used
to define the agent based simulator and an explanation of how the simulator
was designed and implemented. Section 4 presents the experimental results.
Finally, in Section 5 we outline our conclusions and possible future work.

2 Related Research

We now explore the existing literature as it relates to our research. First we
introduce the domain of theoretical normative systems. We then expand this
to describe ABMs of simple norm convergence. This is followed by a look at
cultural evolution and opinion dynamics in ABMs that have had an influence
on our own model design. We follow this with an analysis of various social
networks and their metrics. Networks have been shown to play an important
role on dynamic social processes. We conclude the section with a brief overview

1 In this paper ABM stands for both Agent Based Modelling and Agent Based Model
depending on the context of its use.
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of dynamic networks and some insights into what we mean by randomness in
ABMs.

2.1 Normative behaviour and Social Dynamics

Recent studies by Liefbroer et al. (2009) have demonstrated the importance of
social norms in societies where the individualisation process is fairly advanced.
They also observe the formation and emergence of new norms that replace
older ones. Bikhchandani et al. (1992; 1998) describe a decision making model
where individuals update their own belief system based on the observation
of others. They note the formation of what they describe as an “information
cascade” whereby a particular piece of information is adopted by everyone
regardless of its intrinsic merit.

Agent-based Modelling has been used in recent years as a method of study-
ing these social norms (Mukherjee et al., 2008; Lopez y Lopez et al., 2006;
Conte et al., 1999; Villatoro et al., 2009). Conte et al. (1999) and Walker et
al. (1995) describe a framework on integrating concepts of Multi Agent Sys-
tems with normative behaviour and how both disciplines interact.Using ABM
Lopez-Pintado et al. (2008) describe social influence in the context of norms
that make a binary decision2. They describe an influence response function
that assigns a weighted number to the alternatives. Others such as Bikhchan-
dani et al. (1998; 1992), Centola et al. (2005) and Watts et al. (2007) have
also taken this approach of defining the adoption or diffusion of norms within
a population as a choice between two competing alternatives. In these models
an agent observes the choices of others and is influenced by their decisions.

But what if we want to describe the norm as something more complex than
a choice between two completing alternatives? Norms themselves can change
due to alterations made by the participants. Individuals can modify different
aspects of the norm to suit their own needs (Ostrom, 2000). There are a num-
ber of models in the domain of opinion dynamics and the evolution of cultural
features that are closely related to norm convergence and evolution that have
a bearing on our research. Axelrod’s (1997) model on the dissemination of cul-
ture on a lattice network investigates how cultural traits can be influenced by
interacting agents. The state of an agent is defined by its cultural traits which
take the form of F components and q different values. A cultural component
is a unique cultural characteristic such as music preference which can have
any of q different values. We can see then that the total spectra of possible
unique cultural states of an agent equals qF . Agents will interact with one
another if there is enough cultural overlap. Others such as Gonzalez-Avella et
al.(2005), Kuperman (2006) and Centola et al. (2007) have extended this idea
to incorporate other features. In these papers, as in the Axelrod (1997) model,
agents interact with a probability based on their cultural overlap. The higher
the overlap, the greater chance of influence.

2 When we say binary decision we mean the choice between two competing alternatives.
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Next we describe a model of consensus formation which also influence our
model design of norm evolution. Deffuant et al.(2001), Kozma et al. (2008) and
McKeown et al. (2006) describe a consensus formation model where agents can
take on an opinion in the range of between 0 and 1. The opinion of interacting
agents is then influenced by their neighbours on an Erdős and Rényi random
graph. As in the models described above, (Axelrod, 1997; Gonzalez-Avella
et al., 2005; Kuperman, 2006), if the opinion between two agents is too far
away then there is no influence. However the notion of a bounded confidence
is described by a tolerance parameter, d, that can be tuned to lead to different
states of polarisation. Once there is sufficient cultural overlap then the agents
will always interact. In these cases a position halfway between both of their
states is adopted.

In our models described in Sections 3.4 and 3.5 we use this concept of
similarity influence but relate it to social norms rather than the dissemination
of culture. In other words, if an agent observes a norm that is too distant
from their own then they will not be influenced by it. Conversely, if an agent
observes a social norm that is close enough to the one they currently employ
they will alter their own n-bit norm to become more closely related. A lot of
social science research supports the idea of homophily when describing human
cultural traits (McPherson et al., 2001; Ruef et al., 2003). Individuals will
change their views, norms etc. to become more like those they interact with.
We have opened this literature review by discussing generally issues relating to
normative behaviour. We then went on to describe some models using agent
based approaches where agents are presented with a binary decision of two
competing norms. We then follow this with an analysis of evolving cultural
traits and dynamic opinion models. These are concepts we shall use later on
when describing our own framework. In the next section we will look at social
networks and how they effect the dissemination of norms and information.

2.2 Social Networks

A considerable amount of the literature has studied the effects of norm emer-
gence in populations that are fully connected or interact in a random fashion
(Shoham and Tennenholtz, 1995; Walker and Woolridge, 1995). The network
that agents interact on, however, has been shown to play a significant role on
the dynamics of diffusion (Kittock, 1995; Villatoro et al., 2009; Savarimuthu
et al., 2007; Rahmandad and Sterman, 2008). Most of this work has dealt with
static networks that are generated at initialisation time and do not change for
the duration of the simulation. There have, however, been attempts to frame
research within the bounds of dynamic networks (Savarimuthu et al., 2007).
Networks can be envisioned as a series of nodes3, N , that each have k links
to other nodes. Depending on the network type, k ≥ 0. In the next section we
give an overview of different network types that agents can interact on. We

3 Keeping with the nomenclature used in the literature we use the terms Node and Vertex
interchangeable
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are now going to look at two different types of networks that are important
to our research. The first of these is one of the most widely studied graphs in
network theory (Erdos and Reyni, 1961), the random network.

2.2.1 Random Network

The Random Graph of Erdős and Rényi first gained prominence in the 1950s.
However, random graphs differ from real world structures in that they lack
clustering or transitivity (Newman, 2002). A Random Network consists of N
nodes randomly connected to one another. The probability of a connection
between two nodes is fixed where: pc = k/(N − 1) and k = average number of
links per person. Figure 1(a) shows an example of a simple random network
where k = 1.5 and N = 8 and pc = 0.21. Notice that it is possible for some
nodes on the network to be completely disconnected from the rest. Next we
look at Small World Networks that more closely represent networks found in
the real world.

(a) Random Network (b) Small World Network

Fig. 1

2.2.2 Small World Social Networks

The idea of Small World (SW) Networks first gained widespread popularity
with Stanley Milgram’s (1967) small-world study of large and sparse networks.
Watts et al. (1998) later describe these networks as being formed by rewiring
the edges of regular lattices with probability pw. SW Networks are highly
clustered, yet have length scaling properties equivalent to the expectations of
randomly assembled graphs (Watts, 1999a). Notice in Fig. 1(b) that the link
with the dashed line has been re-wired to another part of the network. This
creates an instant shortcut to distant nodes. SW graphs span the gap between
ordered lattices and random graphs. Note that when pw = 1, then all links
are randomly assigned and the network becomes a random network. Lee et
al. (2006) investigated the effect that changing the value of pw has on the
emergence of a winner take all outcome in product adoption. They discovered
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that as pw is increased the chance of a winner take all outcome becomes
more likely. This is because as the value of pw gets closer to one the network
starts to become more like a random network. This prevents localized cliques of
products from existing. An analysis of a number of real world human networks
(Watts, 1999b; Verspagen and Duysters, 2004; Davis et al., 2003; Baum et al.,
2003) have shown that they form SW networks.

We have just looked at some general properties of both SW and Random
Networks. Next we will discuss some of the metrics that are used to analyse
networks that help reveal the underlying properties of their nature.

2.2.3 Clustering Coefficient

The clustering coefficient of a vertex in a network is a measure of the proportion
of neighbours of that vertex that are neighbours of one another (Watts, 1999a).
The more sparse and random a network is the lower the clustering. For node i
the value of the clustering coefficient, ci, is calculated as described in equation
1 where εi is the total number of edges between the neighbours of node i and
ki is the total number of neighbours of node i.

ci =
2εi

ki(ki − 1)
(1)

Next we describe the path length which is another important network property
used in analysing social networks.

2.2.4 Path Length

The Maximum Path Length (MPL) is the maximum number of steps required
to get to the furthest node, or nodes, on the network. Dijkstra’s algorithm
(Zhan and Noon, 1998) uses a breadth first search to traverse the network and
discover the shortest path to each agent. The average shortest path length is
the average number of steps along the shortest paths for all possible pairs of
network nodes. It is a measure of the how quickly information etc. can diffuse
through the network. Studies have shown that random networks and SW net-
works have a low average path length (Fronczak et al., 2002; Watts, 1999a). So
far we have discussed norms in agent based models along with network theory
and some of the important metrics used to analyse them. The SW and Ran-
dom networks of those studies have involved static configurations that don’t
change. We will now mention research that utilises dynamic networks where
links/ nodes are changing.

2.2.5 Dynamic Networks

Fenner et al. (2007) describe a stochastic model for a social network. Indi-
viduals may join the network, existing actors may become inactive and, at
a later stage, reactivate themselves. The model captures the dynamic nature
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of the network as it evolves over time. Actors attain new relations according
to a preferential attachment rule that weights different agents according to
their degree4. Savarimuthu et al. (2007) generated a network of agents whose
topology changes dynamically. Agents initially randomly collide on a 2D grid
and then proceed to form social networks. Kozma et al. (2008) investigate the
effects of consensus formation using a dynamical network topology that allows
agents to rewire links. We define what we mean by randomness when we speak
of agents in a simulated computer environment.

2.3 Randomness in Agent Based Modeling

Agent based modelling has a number of advantages over classical game theory
approaches. Firstly, ABMs are capable of implementing Monte Carlo5 type
stochastic iterations of a complex system. Izquierdo et al. (2009) highlight the
fact that any computer model is in fact, due to its very nature, deterministic.
However, we can use pseudo-random number generators to simulate random
variables within the model and generate an artificial Monte Carlo generator.
The pseudo-random number generator is an algorithm that takes in a random
input seed value and generates a result that approximates a random number.
This property allows us to simulate randomness that is present in real world
systems. In this fashion, an agent based simulation that provides the same
input variables but implements a level of randomness can produce, sometimes,
significantly different outcomes. A key challenge of analysing an ABM is to
identify an appropriate set of state variables. Markov decision processes is a
technique where decision making is partly stochastic and partly under the
control of a decision maker (Papadimitriou and Tsitsiklis, 1987; White and
White, 1989). A number of multi agent simulations have adopted this approach
to modelling an agents decision process (Boutilier, 1999; Becker et al., 2003).
This technique introduces randomness and uncertainty into an agents decision.
It diverges from the utilitarian approach of perfect agent rationality used in
some of the models described above (Centola et al., 2005; Bikhchandani et al.,
1998) etc. We know from real life that human being often behave in a manner
that is anything but rational (Denes-Raj and Epstein, 1987; Ellickson, 1989).

In this related research section we discussed differing models of norm dis-
semination and the associated discipline of cultural evolution. We also dis-
covered that norm emergence is heavily influenced by the individuals that an
agent meets in the network. Real world interactions are dynamic, this is a fea-
ture we aim to capture in this paper. We have also gained an understanding of
some of the key metrics that are used for analysing network models. We aim
to use this understanding to formulate a model which we describe in the next
section.

4 The degree of an agent is the number of acquaintances it has in its social network.
5 A Monte Carlo algorithm relies on repeated random sampling to compute their results.
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Table 1 Experiments Conducted

Rational Agents Markov Agents
Binary Norm Case 1 Case 2
n-bit Norm Case 3 Case 4

3 Model Design

In the following section we first describe our weighted random interaction al-
gorithm and then formally define the decision making rules agents use when
updating their normative beliefs. Table 1 shows the set of experiments that
were conducted. They are dividend into simulations where agents act com-
pletely rationally and where their decision is determined probabilistically using
a Markov Decision Process. Furthermore we examine the cases where agents
simply have to choose between one of two norms and where an n-bit norm
propagates through the population.

3.1 Weighted Random Interactions

Agents interact with random members of the population using what we de-
scribe as a Weighted Random Interaction (WRI) algorithm based on their
distance from others on the network. We use a modified version of Zipf’s law,
Equation 2, to calculate a nodes weight. The probability of agent i, with Max-
imum Path Distance (MPD) of M , randomly interacting with agent h having
a path distance of d from i is equal to:

pih(d) =

1
(d− 1)λ

∑M−1
m=1

(
1

mλ

) d ≥ 2 (2)

Where λ is the exponent that characterises the distribution. For simplicity in
the experiment carried out in this paper we set λ = 1. Note the condition that
d ≥ 2 as a node is assumed to interact with members of its social network
(d = 1). It can be seen from Fig. 2 that the distribution is normalised and the
frequencies sum to 1 as expressed in Equation 3.

M−1∑

d=2

pih(d) = 1 (3)

The graph shown in Fig. 2 shows the distance probability distribution of three
different nodes with Maximum Path Distance (MPD) ranging from 5 to 10.
We can see from the diagram that agents with a lower path distance are more
likely to interact than ones with a higher path distance.
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3.2 Case 1 - Rational Agents, Binary Norm

An Agent receives a utility from observing the norms that have been adopted
by the other individuals it encounters. Agent i interacts with ki members of
their social network and ri randomly selected agents. Initially nodes are set to
having adopted either social convention m or n. In all the models described
here from Section 3.2 to Section 3.5 nodes interact with a period drawn ran-
domly from an exponential distribution with mean duration εi = 3. This mod-
els the fact that all agents don’t update their norm selection simultaneously.
An agent, i, will chose to adopt norm m if the utility it observes from adopting
this norm is greater than the utility it perceives from adopting convention n
as defined in Equation 4.

um
i,t > un

i,t (4)

The utility that agents perceive from each norm is defined in Equation 5. This
is divided into the utility communicated from its direct neighbours, Dj

i(t−1),

plus the perceived utility from the random interactions it makes, Rj
i(t−1).

um
i,t = αDm

i(t−1) + βRm
i(t−1) (5)

where α is the weighting placed on an agent interacting with the members
of its own social network and β is the weighting of interactions taking place
with random members of the agents network. The higher the β value the more
importance agents place on random interactions. The direct network effects
are defined in Equation 6 where n is the total number of nodes on the network
and θm

h(t−1) = 1 if agent h has adopted social convention m.

Dm
i(t−1) =

n∑

h=1

µihθm
h(t−1) µih

{
1 if i is an acquaintance of h

0 otherwise
(6)
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Similarly we define the random network effects in Equation 7 where n is the
total number of nodes on the network and ωm

h(t−1) = 1 if agent h has adopted
social convention m.

Rm
i(t−1) =

n∑

h=1

φihωm
h(t−1) φih

{
1 if i has a random interaction with h

0 otherwise
(7)

3.3 Case 2 - Markov Decision Process Agents, Binary Norm

In this case agents calculate their perceived utility as in Equation 5. But in-
stead of choosing the norm with the highest utility they assign a weighting to
each norm and select one using a Markov Decision Process. The more obser-
vations an agent has of a norm the greater the chance it will be adopted as
expressed in Equation 8.

P (imt ) =
um

i,t

um
i,t + un

i,t

(8)

Where P (imt ) is the probability of agent i choosing norm m at time t and um
i,t

and un
i,t is the utility that agent i perceives from norms m and n respectively.

Case 1 assumed that all agents used perfect rationality when calculating the
most efficient norm to adopt whereas this decision making process models the
uncertainty and irrationality that an individual agent may have when deciding
on which norm to pick.

3.4 Case 3 - Rational Agents, n-bit Norm

Next we define the norm as being a set of n binary bits that describe its
characteristics. The total number of unique states that the norm can therefore
have is 2n. We assume that if the characteristics of a norm of node i are too
different from those of node h then there will be no alteration to node i’s
norm. We calculate the level of similarity between the norms of i and h from
Equation 9 as:

δih =

∑n
p=1 κih

p

n
κih

p





1 if i and h share the same characteristic
at bit position p

0 otherwise
(9)

If δih ≥ d then choose a random bit position, p, such that ip 6= hp and set
ip = hp where d is the bounded confidence tolerance parameter and ip and hp

is the value of the bit at position p of norm for agents i and h respectively. We
can set d in the range of [0 : 1]. The higher the value of d the more similarity
there needs to be between norms before they will have an effect on one another.
For example, if agent i has a norm that is characterised by the 4-bit sequence
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0000 and agent h has a norm defined by the sequence 0101 then the similarity
between the two norms is δij = 0.5 as shown in Fig. 3. If d = 0.25 then agent
h’s norm will influence agent i’s and a single bit will be changed to bring agent
i′s norm closer to agent h’s. At each decision time step agents interact with
one member from either their social network or the random acquaintances
they meet. As in Case 1 and Case 2 above, agents interact with a period
drawn randomly from an exponential distribution with mean duration εi = 3.
An agents’ choice of who to interact with is a function of both the strength
and number of both social and random contacts. Therefore, the probability
that an agent will interact with a member of its own social network, P (is), is
defined in Equation 10.

P (is) =
αki

(αki) + (βri)
(10)

where ki is the size of agents i’s social network and ri is the number of random
contacts that agent i has. Similarly, the probability that agents i will interact
with a random agent not in its social network is defined as P (ir) = 1−P (ir).
We can see that the greater number of random contacts that an agent has
the greater chance they have of interacting and being influenced by these
random contacts. Note that the randomness in the model stems from which
bit position to change rather than whether to change in the first place. In this
regard an agent takes a utilitarian or completely rational approach each time
when deciding whether to change their norm or not.

Fig. 3 norm influence on agent i by agent h

3.5 Case 4 - Markov Decision Process Agents, n-bit Norm

In Case 4 agents now decide whether to alter their n-bit binary norm prob-
abilistically based on the similarity of the norms as described by (Axelrod,
1997; Kuperman, 2006; Centola et al., 2007). At each decision time step an
agent will choose a member of either its social network or random contacts to
interact with as defined in Equation 9. From Equation 9 we can see that δih



13

specifies the level of similarity between the two norms. Agent i will update its
own norm with probability P (i) = δih. The more similarity that agents have
the more likely it is that their norms will influence one another. We can see
from this approach that an agent may be influenced to alter its norm even if
it observes a norm that is very different from its own.

4 Results

In this Section we will outline the results we obtained from the models de-
scribed in Section 3. In Section 4.1 we examine the effects of norm convergence
when simply changing the rewiring probability of a SW Network. For the rest
of the experiments we generate a fixed SW Network with a population of 1000
agents with average degree of ki = 10 and pw = 0.05. We then add random
interactions to the simulation using the four different scenarios described in
Table 1. All the results shown are the average of 100 different simulations un-
less otherwise stated. A new SW network was generated for each simulation.

4.1 Varying Rewiring Probability

Fig. 4 shows the effect of norm convergence when the rewiring probability is
changed. We observe that the probability of all agents converging on a common
norm is increased when the value of pw is increased. This conforms to the find-
ing of Lee et al. (2006) in the domain of product adoption mentioned earlier.
While increasing the value of pw results in an increase in norm convergence,
it reduces the level of clustering in the network. Real world human networks
have high levels of clustering so this means that increasing pw is unrealistic.
In this section we have learnt:
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Table 2 Simulation Experiment Variables

N α pw ki εi Number of Norms
1000 1.0 0.05 10 3 2

• Norm convergence won’t occur on small world networks with low pw

• Exceeding a threshold level of pw results in convergence in all cases.
• Increasing pw reduces the level of clustering on the network

In the next experiments we maintain a core, highly clustered, small world
network but introduce ad hoc random interactions that the agents have with
others in the population.

4.2 Random Interactions

In the following experiments, Sections 4.2.1 - Sections 4.2.4, a SW network is
created with a rewiring probability of pw = 0.05 and α = 1 as shown in Table
2. As we have seen in Fig. 4, norm convergence will not happen when pw is at
this level.

Initially each agent on the network maps its social distance from every
other agent. We used Dijkstra’s algorithm (Johnson, 1973) to calculate the
MPL for each node as described in Section 3.1. Every time an agent interacts it
generates a new set of ad hoc random interactions based on the WRI algorithm
described and discards the old ones.

4.2.1 Case 1

In this model agents act in a perfectly rational fashion and choose between
either of two competing norms as outlined in Section 3.2. In Fig. 5 we vary
both the value agents place on random interactions, β, and the number of
random interactions that they have, ri. The number of random interactions
starts at 0 and is increased by a value of 2 until it reaches 10. The strength
of random interactions, β, is increased from 0 to 1. When β = 1 and ri = 10
then an agent has the same number of random interaction with members of
the population as their social network and places the same strength on these
random interactions. β therefore is a measure of how much importance agents
place on encounters with individuals who are not in their social network. A
low β could represent an agent passively observing a norm whereas a high
value could represent an active conversation etc.

Fig. 5 shows a snap shot of the level of norm convergence over a series
of different time steps. In Fig. 5(a) when t = 100 the level of norm conver-
gence is high when both β and the number of random interaction are high.
Norm convergence fails to occur when both the strength and quantity of ran-
dom interactions is too low. Indeed, when agents are having up to 8 random
interactions but those occurrences only carry a weight of 0.1 of random inter-
actions then norm emergence will not occur. Increasing the number of random
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(a)

(b)
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(d)

Fig. 5 Level of Norm Convergence over Time
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(d) β = 1.0, Random Degree = 10

Fig. 6 Sample Run over Time, Agents acting Rationally

interaction or increasing the strength of these interactions results in norm
emergence. From Fig. 5 we can see that if β > 0.5 and the number of random
interactions r > 6 then norm convergence is guaranteed. If agents have the
same number of random interactions as members of their social network, or
ki = ri = 10, then β only needs to be 0.2 to guarantee norm convergence.
Interestingly, allowing agents to interact beyond ∼ 300 time steps has little
impact on the level of norm convergence. This experiment shows that random
interactions with members of a nodes social network plays an important role
in norm convergence.

Fig. 5 showed the end result of an average of 100 simulations. Next, in Fig.
6, we look at a sample run with varying levels of β and ri. We can see from
Fig. 6(a) that when agents are just interacting with their own social network
then the agents quickly settle on two large groups of norms of approximately
half the population each. Increasing both the level and strength of random
interactions results in a larger portion of the population adopting the same
norm as in Fig. 6(b). The random interactions are not enough to overcome the
local norm bias’. Increasing the strength and number of random interactions
further will results in norm convergence in quicker times as Fig. 6(c) and Fig.
6(d) show.

In Fig. 7 we set the level of β = 0.4 and increment the number of random
interactions. We can see that there is no norm convergence when the number
of random interactions is low. Once members of the population have enough
random interactions then there is a steady increase in the number of simula-
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tions resulting in convergence. The graph appears like a terrace because the
random degree is increased in steps of 2.

Fig. 7 Level of Norm Convergence over Time Varying Random Degree

In Fig. 8 we set the level of random interactions to 4 and incremented
the level of β. We can see that there are several jumps in norm convergence
when we increase the level of β. Specifically, when β ≤ 0.2 then none of
the simulations converge to a common norm. When β ≥ 0.5 then all the
simulations converge to a common norm. We can also see that that when
0.2 ≤ β ≤ 0.3 then some norm emergence does occur but at a much slower
rate.

Fig. 8 Level of Norm Convergence over Time Varying Beta

In all the simulations carried out in this section we can see that unless
the number and strength of random interactions is enough the population
fails to converge to a single norm. This is because agents create local group
of reenforcing norms. It takes random encounters from outside this group to
break their local biases. In summary, the experiments on Case 1 as outlined
in this section we find that:
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(a) β = 0.0, Random Degree = 0
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(b) β = 0.2, Random Degree = 2
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(c) β = 0.4, Random Degree = 6
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(d) β = 1.0, Random Degree = 10

Fig. 9 Sample Run over Time, Agents acting Probabilistically

• Norm convergence won’t occur if there is not sufficient random interactions.
• An increased number of random interactions results in convergence at a

faster rate.
• When agents act with perfect rationality then equilibrium states can exist

with multiple norms present.

4.2.2 Case 2

Next agents decide on which of two competing norms to adopt based on a
Markov Decision Process as defined in Section 3.3. In this case the agents will
converge on a single norm in every simulation. This is because the stochastic
behaviour of the agents will result in local biases being broken within the
population. Fig. 9 shows a sample of one run for varying levels of β and ri.
The volatile nature of the norms is clear from this graphs. When agents appear
to be converging on a global consensus there can be a sudden shift in the
opposite direction. These shifts are due to the sometimes irrational decision
making that we have now introduced into agent behaviour. If we compare this
to Fig. 10 which shows the level of norm convergence if agents were following
a random walk. Fig. 9 displays a general trend toward norm convergence.

Fig. 9 clearly shows the potential of a norm’s popularity to change over
time if we assume that humans don’t behave as perfectly ration utilitarian
decision makers. Fig. 11 shows the average amount of time it takes agents to
reach a consensus on which norm to adopt. The rough surface of the graph
highlights how randomness in the system effects the outcome. We can clearly
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see, however, a general decline in the time required for norm convergence on
the network as β and ri are increased. The greatest reduction is when β and ri

are both small which suggests that there is diminishing returns on the network
when these variable are continually incremented.
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Fig. 10 Norm Levels under Random Walk

Fig. 11 Time to reach Norm Convergence

This section has highlighted a number of aspect of norm convergence,
specifically we find that:

• Agents that behave with non-perfect rationality results in norm conver-
gence in every simulation.

• Increasing the number of random interactions that agents have results in
a reduction in the time required for norm convergence.

• This reduction in time is more prominant when β and ri are small, with
diminishing returns thereafter.

In the next section we look at the effect of norm evolution when agents are
interacting with random members of the population.
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(d) β = 1.0, Random Degree = 10

Fig. 12 Sample Run over Time, Agents acting Rationally. d = 0.25

4.2.3 Case 3

In this case if agents observe a norm that is close enough to their own they
will alter their own n-bit norm to become closer to the one they observe as
described in Section 3.4. Once the norm reaches a similarity level that exceeds
a certain threshold level then an agent will be influenced by its observation.
In both Case 3 and in Case 4 below we set n = 4. There can therefore be
24 = 16 unique representations of the norm. In many of the papers discussed
in Section 2.1 on cultural evolution the value of n is altered. As we are primarily
concerned with the effect of random interactions here we leave this for future
work. As described in Section 3.4 the tolerance parameter, d, defines how
similar the norms must be in order to interact with one another. Fig. 12 shows
a sample of four runs with increasing levels of both β and ri when the tolerance
parameter is set to d = 0.25. Each line on the graphs represent the level a of
single n-bit norm. In this case agent i only needs to share a single bit in
common with agent k during an interaction in order to be influenced by it.
We find that when the level of d is this low then agents converge to a single
norm in every simulation. In this case the cognitive model we have constructed
for agents implies that they are easily influenced by others in the population
even if the norm they observe has more differences than similarities. Notice
the pattern that emerges from each of the four graphs displayed in Fig. 12.
In each case two very similar norms spread throughout the population and
then diverge. In Fig. 12(b) we can see that at around time t = 5500 that



21

two norms start to be generally adopted by population. These two norms are
represented by the bit strings 0001 and 1001. The two norms only have one
bit difference from one another. Once the population has decided that this is
the general form that the norm will take all other versions of the norm die
out. Then finally at around time t = 7000 the population diverges and settles
on a final norm. In Fig. 12(d) the two norms 0010 and 1010 dominate much of
the simulation. Once other representations of the norm have been eliminated
then the population settles on a final social norm.

Looking at the amount of time required for agents to converge on a norm
we see in Fig. 13 that there is an initial reduction in convergence time when the
values of β and ri are increased but this levels off once the values incremented
further. As agents are only interacting with one member of either their social
network or random contacts we can see that an increase in the number of
ri, while increasing the likelihood of interacting with a random contact, only
changes the spread of possible random contacts. And as random contacts are
weighted towards agents with lower social distance on the network an increase
in ri increases the chance of an agent interacting with an individual with very
high social distance.

Fig. 13 Time to reach Norm Convergence, d = 0.25

Next we increased the tolerance parameter to d = 0.75. In this case agents
need to share three out of four bits of their norm in order to be influenced
by their contacts. We can see from Fig. 14 that a form of polarisation occurs
whereby agents fall into segregated groups of norms that are not influenced
by others that they meet. As agents in this scenario require a large amount of
similarity before they will be influenced by others they are unwilling to change
their norm. Some of the groups can be quiet large and represent a large fraction
of the total population as in Fig. 12(a). Other times it can splinter into a series
of smaller norms all co-existing on the network. We discovered that as the value
of β and ri are increased agents settle on a final norm choice faster. Next we
look at the effect that changing the value of β and ri had on the final size of
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(d) β = 1.0, Random Degree = 10

Fig. 14 Sample Run over Time, Agents acting Rationally. d = 0.75

norms in the population. To that end we measured the size of the largest group
in the population once the agents had all settled on a specific norm. Fig. 15
shows the size of the largest component on the network. Notice how there is a
slight increase in the size of the largest component when we initially increase
β and ri. The rough surface of Fig. 15 demonstrates that even through these
results are the averages of 100 simulations there is still much variability in the
final outcome.

Fig. 15 Size of Largest Component when d = 0.75
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These results indicate that increasing the value of β and ri has a less pro-
nounced effect on the development and dissipation of the norm when the norms
themselves are considered transient constructs that are capable of changing
under constrained agent interactions. In this section we have found that:

• Agents will converge to a common norm provided the tolerance parameter
is low enough.

• If the tolerance parameter is too high then polarisation into different norm
subgroups will occur.

• Increased levels of random interactions fails to have a significant effect on
the size of these subgroups.

4.2.4 Case 4

The following section shows the effect of norm evolution when the propensity
of an agent to alter its norm is proportional to the similarity of the norms.
Unlike Case 3 above, agents in this model may not act in the same fashion
each time given the same information. This adds an element of cognitive agent
randomness into the decision making process 6 as in Case 2 above. We can see
from Fig. 16 that the general behaviour of agents in the population is similar
to Case 3 above when d = 0.25. That is, two similar versions of the norm rise
above the rest and then finally diverge. This indicates that the population is
deciding on the general form of the norm before finally converging on the exact
4-bit characteristic that is adopted by the whole population.

As every simulation results in convergence to a single norm we are inter-
ested in investigating how long it takes the population to converge when the
values of β and ri are increased. Fig. 17 shows the fraction of simulations that
have converged to a single norm at different time steps. Fig. 17(a) shows that
there is initially an increase in the level of norm convergence when β and ri

are increase. Beyond this the increase is less prominent and given enough time
all of the simulations converge in a single norm as in both Fig. 17(b) and Fig.
17(c).

In this section, when agents act in a non-rational manner, our experiments
indicate that:

• Random interactions are less of an influence on norm evolution compared
to binary norm dissipation.

• Agents will modify their norm to suit others rather than completely aban-
doning it as in the binary case.

• Increasing the number of random interaction doesn’t significantly effect the
speed at which a consensus is formed.

Section 4 has shown us the importance of clearly defining both the cognitive
framework of the agents and our definition of both what a norm is and how
it spreads. In the first scenario agents choose between two competing binary

6 If two norms are completely opposite from one another such as 0101 and 1010 then their
possibility of effecting one another is zero as δih = 0.
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Fig. 16 Sample Run over Time, Agents acting Probabilistically

alternatives. We observed a clear increase in norm convergence and in a quicker
time when the number of random interactions is increased. When the norm
can change over time based on an agents’ influence we don’t see the same
dramatic convergence effect from random interactions. Rather, the propensity
an agent has to be influenced by its interactions plays an important role.

5 Conclusions

The aim of this paper was to construct a more realistic network of agent in-
teractions that can generate insight into the emergence of norms in society.
We defined an algorithm that uses a nodes social distance on the network to
calculate its chance of interacting with a random member of the population.
We believe that this method of weighting random ad hoc interactions based on
an agents social distance on the network represents a novel way of modelling
real human interactions. We then investigated norm dissemination on popula-
tions of agents interaction on small world networks with random contacts. We
separated our experimentation into categories that defined both the cognitive
behaviour of the agents and the characteristics of the norm that was under
investigation. We demonstrated the importance of random interactions in pop-
ulations where agents had to choose between two competing norms. If agents
behaved in a perfectly utilitarian manner then random interactions were vital
in breaking local biases and allowing the population to converge to a single
norm. When an agents cognitive behaviour was defined as a Markov Decision
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(a)

(b)

(c)

Fig. 17 Level of Norm Convergence over Time. Agents acting Probabilistically

process then random interaction resulted in a reduction in the amount of time
required for norm convergence. When we defined the norm as an n-bit se-
quence that characterised its behaviour we discovered that increased random
interactions had a less pronounced effect on the population. This is because
increased random interactions resulted in the norm itself changing over time
thus negating some of the benefits from accessing agents outside ones own
social network. Increasing the amount of similarities between norms required
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for influence resulted in a splintering effect where different groups form all
adopting a separated norm.

This research has highlighted the importance of clearly defining both the
cognitive decision making process of agents and the norm representation under
investigation. Our simulations produced a very different set of outcomes under
alteration of these conditions.

There were several areas of this research that will be explored in the future.
As we were mainly focusing on the effect of random interactions we only tested
two values for the tolerance parameter d. We also hope to run additional
sensitivity analysis on other variable involved in the simulation. We hope to
expand this work by giving agents a memory of previous interactions. How
would this effect the dissemination of norms? We could also address the issue
of norm violation and punishment which we hope to pursue going forward.
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