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ABST RACT

As of today, the Web has evolved to become the largest collection of information
made available by mankind. Researchers and developers are continuously work-
ing on transforming this loosely connected data collection into a giant knowledge
base. As part of this trend, the Semantic Web community has started a movement
to transform the Web of unstructured text into the so called “Web of Data” – a
framework to create, share and reuse data by humans and machines alike across
application, enterprise, and community boundaries. From this movement, Linked
Data has emerged as a set of best practices to publish, connect and discover struc-
tured data on the Web using standard formats. As of today, there are over thirty
billion public facts which can be accessed, reused and combined by individuals as
well as organisations and companies.

As the Web of Data continues to expand and diversify, it becomes more and
more dynamic with data being constantly generated, removed and updated, e.g.,
from sensor/stream sources. New querying techniques are required to eXciently
keep up with this trend. While traditional approaches facilitate fast query times
by replicating Web data in optimised oYine index structures , they cannot deal
eXciently with dynamic data and cannot guarantee up-to-date results. A new gen-
eration of distributed Linked Data query engines address this problem and deliver
up-to-date results by retrieving query relevant data immediately before or during
query execution. However fetching data at runtime from potentially hundreds or
thousands of relevant Web sources is slow compared to optimised index lookups.
This thesis studies and improves distributed query approaches for Linked Data

and develops a hybrid query framework that oUers fresh and fast query results by
combining centralised and distributed query techniques with a novel query plan-
ning approach based on knowledge about the dynamicity of data.
We start by identifying the diUerent levels of dynamicity within Linked Data

and highlight the challenges for centralised query approaches to deliver up-to-date
results if operating over such dynamic data. We then present a study of link traver-
sal based query execution approaches for Linked Data and show how the query
performance can be improved by providing reasoning extensions. We have also de-
veloped an approximate index structure that summarises the graph-structured con-
tent of Web sources, and provide an algorithm that exploits this source summary
index. Finally, we propose and evaluate a novel hybrid query engine framework
that combines the execution strength of materialised query approaches with the
live results from distributed query approaches. The query planning phase uses a
cost-model that combines standard selectivity and novel dynamicity estimates to
enable fast and fresh results.

iii



DECLARAT ION

I declare that this thesis is composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualiVcation except as
speciVed.

Galway, Ireland, September 2012

Jürgen Umbrich



ACKNOWLEDGMENTS

One of the joys at the end of writing a dissertation is to reWect the journey past and
use the opportunity to acknowledge all the people who have helped and supported
me along this long but fulVlling venture.
First and foremost, I would like to express my sincere gratitude to my supervisors

Axel and Stefan for their support, enthusiastic encouragement and useful critiques
of this research work. I would also like to thank my examiners Manfred Hauswirth
and Claudio Gutiérrez for their critical review of this dissertation and their valuable
feedback and discussion during the viva.
During the last couple of years, I had the great pleasure to meet, collaborate

and be accompanied by many great minds and people. A very special thank to my
mentors Marcel and Michael for all their time, inspiring discussions and the many
fruitful collaborations. I ownmy deepest gratitude to my colleague Aidan. I was for-
tunate enough to work with him in several projects, he was always a great source
of inspiration during that time. I would also like to take this opportunity to thank
all my colleagues in DERI and all my co-author for – with very sincere gratitudes to
Andreas, Katja, Kai and Tobias. In addition, it was great moral motivation to share
the write up phase with my colleagues Nuno and Laura.
A very special thank to Josi for all her help and support in a number of ways

during the last years. And last but not least, I would like to thank my family for all
their support, understanding and patience.

v



CONT ENTS

1 introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 background & state of the art on linked data
querying 7
2.1 The World Wide Web (WWW) . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Semantic Web and Linked Data . . . . . . . . . . . . . . . . . . 10

2.2.1 RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 RDFS & OWL . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Querying Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Centralised Approaches . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Decentralised Approaches . . . . . . . . . . . . . . . . . . . 22
2.3.3 Lookup-based Approaches . . . . . . . . . . . . . . . . . . . 25

3 dynamics of linked data 29
3.1 What is the Web of Data? . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 The BTC 2011 Dataset . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 CKAN/LOD Cloud Metadata . . . . . . . . . . . . . . . . . . 32
3.1.3 Comparison Between BTC and CKAN/LOD . . . . . . . . . 33

3.2 Studying the Dynamicity of Linked Data . . . . . . . . . . . . . . . 34
3.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Index Freshness Study . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4 on link traversal querying for a diverse web of

data 53
4.1 On the (in)completeness of LTBQE . . . . . . . . . . . . . . . . . . 53
4.2 LiDaQ: Extending LTBQE with Reasoning . . . . . . . . . . . . . . 56

4.2.1 LTBQE Extensions . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 LiDaQ Implementation . . . . . . . . . . . . . . . . . . . . . 60

4.3 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 Empirical Corpus . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Static Schema Data . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.3 Recall for Baseline . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.4 Recall for Extensions . . . . . . . . . . . . . . . . . . . . . . 65
4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Query Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.1 Existing Linked Data SPARQL Benchmarks . . . . . . . . . 69
4.4.2 QWalk: Random Walk Query Generation . . . . . . . . . . . 73

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vi



contents

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 comparison of source selection methods 98
5.1 Source Selection Approaches . . . . . . . . . . . . . . . . . . . . . . 98

5.1.1 Generic Query Processing Model & Assumption . . . . . . . 99
5.1.2 Source-Selection Approaches . . . . . . . . . . . . . . . . . 100

5.2 Data Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.1 Multidimensional Histograms . . . . . . . . . . . . . . . . . 103
5.2.2 QTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.3 Construction and Maintenance . . . . . . . . . . . . . . . . 108

5.3 Importance of Hashing . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.1 Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.2 Comparison of hash functions . . . . . . . . . . . . . . . . . 112

5.4 Source Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.1 Triple Pattern Source Selection . . . . . . . . . . . . . . . . 113
5.4.2 Join Source Selection . . . . . . . . . . . . . . . . . . . . . . 114
5.4.3 Result Cardinality Estimation and Source Ranking . . . . . 120

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6 hybrid sparql query processing : fresh vs . fast

results 133
6.1 Architecture of a Hybrid Query Engine . . . . . . . . . . . . . . . . 134
6.2 Coherence Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3 Query Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3.1 Split Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3.2 Reordering Strategies . . . . . . . . . . . . . . . . . . . . . . 140
6.3.3 Split Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.3.4 Expected Query Performance . . . . . . . . . . . . . . . . . 142

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7 conclusion 152

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.2 Lessons learnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.3.1 Dynamic Linked Data Observatory . . . . . . . . . . . . . . 154
7.3.2 On Hybrid Querying . . . . . . . . . . . . . . . . . . . . . . 154
7.3.3 Towards a Query Language for the Web . . . . . . . . . . . 155

bibliography 157
a prefixes 171
b access and lifespan of sources 172
c fedbench queries 173
d qwalk results 182

vii



1I N T RODUCT ION

For the last decades, the Internet has been a widely used medium to share infor-
mation and knowledge in our everyday life. At present, the role of internet users
transformed from solely consumers or producers into “prosumer” as already en-
visioned by ToYer [1980]; human and software agents, not only consume infor-
mation but also create, publish, share and distribute information in real-time. As
a consequence the Web has evolved to become the largest existing collection of
information made available by mankind.
Researchers and developers are continuously working on transforming this con-

nected data collection into a giant knowledge base bearing the potential for (as of
yet) unthought-of applications. A crucial part of this picture are eXcient (access)
mechanisms to discover, search and query relevant information. Search and query
tasks become even more important and challenging if we search over dynamically
changing data, whereas up-to-date/fresh information is a necessary requirement.

1.1 motivation

Search and query components for Web data are of high importance and their rele-
vance is undeniable; this can be justiVed, for instance, by the huge success of search
engines such as Google, Yahoo and Microsoft. In the early stage of the Web (around
1992), the index of available Web pages was manually maintained as a list of Web
servers, such as the W3Catalog, developed by Nierstrasz [1996]. Later, due to the
increase number of Web servers, this server list was managed semi-automatically
with simple scripts. The demand for accurate and eXcient search components in-
creased with the steady growth of the Web. In 1997, the now ubiquitous Google
engine went online and revolutionised search on the Web with a new result rank-
ing algorithm called PageRank [Brin and Page, 1998; Page et al., 1999]. Interestingly,
this algorithm exploits the fact that Web documents are connected/related by hy-
perlinks and takes advantage of the underlying graph structure of the data.
Information on the Web was mainly produced by humans for the consumption

of humans and not for machines [Henzinger et al., 2002; Lee et al., 2001]. Human
readable information is mostly presented as free text embedded in documents. Pro-
viding eXcient and accurate search and query capabilities over such a collection of
free text poses major challenges. Web search still demands time consuming human
interaction (e.g. to reVne search requests [Press, 1999; Wildemuth, 2004], disam-
biguate results, or to perform multilingual search [Buitelaar and Cimiano, 2008]).
Surprisingly, more and more Web content nowadays stems from structured infor-
mation in databases but still is externalised on the Web in a semi-structured and
mostly human readable way [Senellart et al., 2008].
At the end of the 20th century, the Semantic Web research community began

focusing on overcoming these problem by transforming the Web of unstructured
text into the so called “Web of Data” – a framework to create, share and reuse
data by humans and machine alike across application, enterprise, and community
boundaries [Berners-Lee, 1998]. Semantic Web technology is built on top of the
Resource Description Framework (RDF), a standard data format which allows to
describe resources (anything with identity) and their relations in a structured and
machine understandable way. Therefor automated data-processing algorithms can

1



1.1 motivation

be developed and applied. We can witness the beneVt of structured data in many
tasks, especially in the context of search and querying. Major search engines are
actively exploiting and promoting the use of structured data to improve search
functionalities and the quality of search results [Baeza-Yates et al., 2008; Bizer et al.,
2009; Chang et al., 2008]. For example, a modern Web search engine is now able
to understand that a particular text snippet refers to the temperature information
for a city, in a forecast page, or can identify the latest price of a car for sale in
an advertising page. As well as returning a list of documents for a user search,
results now also contain direct answers to a query such as the weather forecast for
a city, the rating of a movie and the play times in the local theatres, or the contact
information and location for restaurants or shops.
Recently, the Linked Data community has emerged around a set of best practices

to publish, connect and discover structured data on the Web. One core principle of
Linked Data is to use HTTP URIs to refer to real world things and a standardised
data format (RDF) to describe those things so that machines can retrieve data about
named things from theWeb. Another core principle is to describe relations between
things by links; thus, published Linked Data forms a “Giant Global Graph” of data.
The result is a concrete instantiation of a Web of Data as envision by Berners-
Lee [1998], which can be also seen as a global decentralised database [Hausenblas
and Karnstedt, 2010]. Proponents of Linked Data encourage people, communities,
organisations [O’Riain et al., 2012] and governments [Maali et al., 2012] to publish
data by a set of standard guidelines. As of today, the Web contains estimated 30
billion facts about real world things, and their relations, published as RDF on the
Web [Bizer et al., 2011].

Another recent trend on the Web, and one which poses a novel challenge for
search engines, is that more people and especially devices and sensors have access
to and become part of the Web. The Web itself can be seen as a self-organising
ecosystem; many units participate in a parallel and distributed manner by creating,
publishing but also interlinking information, and subsequently creating a highly
dynamic environment in which content and information can be created, removed
and changed at anytime. In such a system, more data gets created and becomes
more dynamic with an increasing number of participants. In particular, participants
such as mobile devices or sensors create and publish data which is only valid for a
particular time period (e.g., current location, temperature or seismic activities).
We can expect even more dynamic content and data growth if we consider the

current trend in the mobile application market and the eUort of integrating sensor
data into the Web of Data. A report from Gartner in 2005 predicted the genera-
tion of terabytes of data per day with the expected integration of sensor data from
articles of daily use (e.g., from cars, kitchen utilities or from personal or health
devices) [Raskino et al., 2005]. Notably, the integration of sensor data for envi-
ronmental monitoring will increase the demand for eXcient real-time search and
query solutions over structured data.
An increasingly important challenge is to reWect the outcome of these “change

events” in search results, particularly delivered to the end users or applications
for which the time validity of information is a crucial and compulsory require-
ment. Though various Web search engines have shown the power and potential of
centralisation, even the preeminent Google machinery struggles to give up-to-date
answers over vast amounts of dynamic sources. Linked Data presents new opportu-
nities in this regard: a new set of query engines exploit that URI names appearing
in user queries also correspond to addresses from which up-to-date data can be
found.

2



1.2 problem statement

1.2 problem statement

As the Web of Data continues to expand and diversify, and as it becomes more
dynamic, new querying techniques are required to keep up with its developments.
While existing approaches oUer either fast query times by using optimised index
structures or up-to-date result by processing a query directly over the Web, there
exists no satisfying solution to eXciently query dynamic Linked Data and guaran-
tee up-to-date results at the same time.
Standard approaches for querying Linked Data rely on data warehousing or

materialisation-based approaches similar to traditionalWeb search engines [Bishop
et al., 2011b; Erling and Mikhailov, 2009; Oren et al., 2008]. These approaches lo-
cally store Web data in optimised index structures by retrieving and parsing the
content of Web sources. The beneVts of these pre-processing and replication steps
are excellent query response times and scalability. However, as we will see in this
thesis, these approaches cannot eXciently deal with dynamic data and usually can-
not guarantee that the returned answers reWect the current state of the information
on the Web; maintaining comprehensive and up-to-date local indexes is a nearly
impossible task due to the size of the Web and the change rate of information [Cho
and Garcia-Molina, 2003b; Ntoulas et al., 2004].
A new generation of Linked Data query engines addresses the problem of out-

dated query results by exploiting the fact that Linked Data itself can be conceptu-
alised as a “heterogeneous distributed database” spanning the Web [Hausenblas and
Karnstedt, 2010]. These decentralised query approaches directly process queries
over this global database by traversing the global data graph and return nearly
real-time query answers by retrieving data directly from remote Web sources im-
mediately before or during query processing. However fetching data at runtime
from potentially hundreds or thousands of relevant Web sources is an expensive
and time consuming operation compared to optimised index lookups and also re-
quires careful attention to not overload Web servers with HTTP requests. More-
over, and depending on the actual approach, the query engine can only execute
certain types of queries and has possibly limited knowledge about the sources on
the Web which might aUect the result recall.
There exist diUerent variations to select the query relevant sources for these

decentralised query techniques. Hartig et al. [2009] proposed a link traversal based
query execution approach to discover the relevant sources in an explorative way by
following data links during query execution. This approach requires no knowledge
about sources but cannot execute arbitrary queries and potentially misses answers
if relevant content is available in sources which cannot be discovered because of
missing links.
Other approaches store the (possibly summarised) content of millions of Web

sources in speciVc index structures prior to query execution and exploit this knowl-
edge to determine query relevant sources either directly before or during the query
execution [Ladwig and Tran, 2010; Li and HeWin, 2010]. While these indexes might
increase the number of query relevant sources, they require similar preprocessing
steps and resource requirements as materialisation based approaches.
There are also query approaches that combine materialisation-based and traver-

sal based Linked Data querying [Hartig, 2011a; Ladwig and Tran, 2011]. These so-
lutions primarily use a local index as a cache to serve answers and only retrieves
remote data from sources not known to the cache. In general, this mixed approach
facilitates better query times than the approaches which only rely on data retrieved
from the Web at query time. However, the drawback is again the problem of main-
taining a local index which potentially leads to inconsistent results compared to
the Web.

3



1.3 research hypotheses

Without question, there exists an inherent trade-oU between query approaches
that give fresh results versus approaches that give fast results. Even the existing
mixed approaches still rely heavily on materialised indexes and do not explicitly
explored this core trade-oU of fresh vs. fast results.

1.3 research hypotheses

The core goal of this thesis is to demonstrate that it is possible to eXciently process
SPARQL queries over Linked Data and deliver up-to-date results even considering
that Linked Data is often highly dynamic.
The assumption that Linked Data is (in signiVcant parts) dynamic is very likely

to hold, considering that studies about the traditional Web reported about strong
underlying dynamics [Brewington and Cybenko, 2000b; Cho and Garcia-Molina,
2003a; Lim et al., 2001]. However, there exists only limited empirical evidence to
verify these strong assumptions for Linked Data. Furthermore, there is no reported
evidence that data warehousing approaches for Linked Data return potentially in-
consistent results with regards to the actual data available on the Web at query
time.
Moreover, and towards eXcient Linked data querying, the potential of state-of-

the-art link traversal based query solutions is not fully exploited and can be further
extended by applying reasoning over the query relevant data, similar to traditional
Linked Data data warehousing approaches [Delbru et al., 2011; Hogan, 2011]. In
addition, we can optimise Linked Data querying using specialised index structures
which summarise the content of Web sources in a very compact way.

None of the state-of-the-art approaches exploit the fact that parts of the data
on the Web are never or rarely changing, whereas other parts are undergoing fre-
quent changes. Thus, a hybrid query engine can be developed to fully exploit the
strengths of materialised and live Linked Data query solutions – i.e., facilitating
fresh and fast results – by understanding the dynamicity of the diUerent facets of
Linked Data and of the query relevant information being requested.

In more detail, we investigate and verify the following hypotheses:

[h1] The content of some Linked Data sources are static and others are dynamic
and hence, Linked Data search engines and centralised stores based on tradi-
tional database query techniques (data warehousing) are necessarily partially
outdated and potentially return stale results.

[h2] Pure traversal-based Linked Data query approaches are incomplete, expen-
sively slow and limited to certain query types.

[h3] We can signiVcantly improve the recall of traversal based Linked data query
approaches by exploiting the semantics of RDFS and OWL, just as for data
warehousing approaches [Delbru et al., 2011; Hogan, 2011].

[h4] Source selection techniques based on lightweight data summaries can im-
prove the query times and result recall and, at the same time, relax the re-
strictions on supported query types in the pure traversal scenario.

[h5] We can eXciently query Linked Data and deliver up-to-date results
with a hybrid query framework that combines centralised and dis-
tributed query approaches, using query planning techniques guided
by knowledge about the dynamicity of Linked Data.
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1.4 contribution

The results of this thesis are contributions to the study and improvement of query
approaches for Linked Data, with the main contribution being the design and eval-
uation of an original hybrid query architecture for Linked Data which tackles the
problem of eXciently delivering up-to-date results.
We investigate the following aspects:

(contribution to H1)
• We present the design and Vndings of two experiments which present evi-

dence that fragments of Linked Data are dynamic and traditional materi-
alised repositories cannot entirely keep their indexed data coherent with
their Web counter-parts. These studies are the Vrst of their kind for Linked
Data.

(contribution to H2)
• We study in-depth link traversal based query approaches for Linked Data to

show how these approaches pose practical restrictions on the type of exe-
cutable queries and oUer slow query times and a potentially low result recall.

(contribution to H3)
• We study optimisations practically addressing the two identiVed limitations

of link traversal query execution which improve the overall query execu-
tion time by reducing the number of necessary source-accesses without af-
fecting the number of results. In addition, several extensions are introduced
which potentially improve the result recall by integrating lightweight seman-
tics available in the source information. The beneVt of these optimisations
are empirically grounded and their applicability is veriVed with real-world
queries.

(contribution to H4)
• We investigate several lightweight source selection approaches to further im-

prove the query times, increase the result recall and loosen the query type
restriction of pure link traversal based query approaches. As a result, we de-
velop an approximate index structure that summarises the graph-structured
content of sources, and an algorithm for answering conjunctive queries over
Linked Data on the Web that exploits the source summary. Experimental
results show that the lightweight index structure enables up-to-date query
results over Linked Data, while keeping the overhead for querying low.

(contribution to H5)
• We present framework that incorporates knowledge about data dynamics into

query planning to eXciently combine the execution strength of materialised
query approaches with live results from distributed query approaches into a
novel lightweight, hybrid query architecture. The query engine uses knowl-
edge about the dynamics of Linked Data as statistical input for a novel query
planning component that classiVes parts of a query as either static or dy-
namic, where the static sub-query is executed over a centralised score, and
the dynamic sub-query is executed using existing distributed query tech-
niques. The query planning phase uses a cost-model that combines standard
selectivity and novel dynamicity estimates to enable fast and fresh results.
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1.5 impact

1.5 impact

Various parts of this thesis have been published as journal, conference and work-
shop articles.
We have published several contributions centred around the topic of dataset dy-

namics and how to assess the dynamicity of structuredWeb content [Umbrich et al.,
2010a,b,c].
The study of the practicability of link traversal based query approaches and the

proposed extensions to overcome the limitations of slow query times and poten-
tially low result recall where published in [Umbrich et al., 2012a]. An extended
version is submitted to the Semantic Web Journal and openly available to review.1

The study and comparison of query approaches with lightweight data summaries
was originally published in [Harth et al., 2010] and extended in [Umbrich et al.,
2011].
The fundamental ideas of a hybrid query engines were Vrst put forward in [Um-

brich et al., 2012d] and further developed in [Umbrich et al., 2012b]. The results of
the Vrst prototype were recently published in [Umbrich et al., 2012c].
During the time of this work, various contribution in other research areas were

published.2 We worked in the last 6 years on the architecture and data life cycle
of a Semantic Web search engine, resulting in several publications such as [Harth
et al., 2007a; Hogan et al., 2011, 2010, 2012b].

1.6 thesis outline

The remainder of this thesis is structured as follows:

Chapter 2 introduces notations and core concepts, such as the RDF and SPARQL
and provides a detailed overview about the state-of-the art in Linked
Data query approaches and systems;

Chapter 3 introduces our evaluation dataset(s) and provides initial results verifying
the dynamic nature of Linked Data.

Chapter 4 presents our optimisations, extensions and experiments for link traversal
query approaches that require no prior knowledge of data sources;

Chapter 5 details our investigation of lightweight data summary methods to ex-
ecute more complex queries over the Web of Data compared to link
traversal based query execution ;

Chapter 6 describes our novel hybrid query technique using knowledge about dy-
namics and index freshness/coverage in the query planning;

Chapter 7 contains a detailed reWection upon the work in this thesis and its concrete
objectives, well as and directions for future work.

1 http://semantic-web-journal.net/content/link-traversal-querying-diverse-web-data
2 See http://scholar.google.com/citations?user=Vy7mya4AAAAJ&hl=en for a full list of publica-
tions.
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2BACKGROUND & STAT E OF THE ART ON
L INKED DATA QUERY ING

“You do not start by Adam & Eve”

— Axel Polleres, 2012

In this chapter, we provide background and introduce the underlying concepts
of the Semantic Web and Linked Data. Furthermore, we present the state of the art
on querying Linked Data.

2.1 the world wide web (www)

The World Wide Web (WWW), or the Web for short, is a system which uses the
Internet and allows anyone to publish, share and consume information at a global
scale. The Web originally was proposed by Berners-Lee and Cailliau [1990]. Four
years later, in 1994, the growth in uptake of the Web happened with the implemen-
tation of a Web browser, called Mosaic. The intuitive and user friendly graphical
interface of the Mosaic browser are contributed to the Internet becoming main-
stream. The guidelines for the success and the design of the World Wide Web were
published by Jacobs andWalsh [2004] as the “Architecture of the World Wide Web” in
2004. The core elements of the Web are (i) identiVers in form of Uniform Resource
IdentiVer (URI)s, (ii) interaction architectural principles such as standard protocols
like the Hypertext Transfer Protocol (HTTP) and communication patterns (e.g., ac-
cessing mechanisms or availability & reliability) and (iii) unrestricted data formats.

uri A URI is a speciVc string to uniquely identify a resource at a global scale.
The general syntax for a URI is:

scheme://domain:port/path?query_string#fragment_id

The scheme deVnes the access mechanism for a URI and the port deVnes the host
port number for the protocol. The domain contains the fully qualiVed domain name
(FQDN) of the Web server or its IP address, sometimes referred to as the authority.
The path speciVes the local location of the resource on the server. The remaining
parts, query_string and fragment_id are optional and used as additional infor-
mation for a server,e.g., as a local identiVer within the requested document.

Example 2.1. As an example, the following URI identiVes and locates a re-
source which describes the person Tim Berners-Lee:

http://www.w3.org/People/Berners-Lee/

This particular resource can be accessed with the HTTP protocol and is pub-
lished by the authority w3.org, which represents the World Wide Web Con-
sortium (W3), the main international standards organisation for the World
Wide Web.

Furthermore, we use in this thesis the concept of a pay-level domain to indicate
the authority, also referred to as data provider or publisher, of a URI.
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DeVnition 1 (Pay-level domain (PLD)).
A pay-level domain (PLD) refers to a sub part of a fully qualiVed domain name
(FQDN), the domain part of a URI [Lee et al., 2009]. It is a direct sub-domain of a
top-level domain (TLD) or a second-level country domain (ccSLD).

Example 2.2. As an example, the PLD of the URI http://www.deri.ie/
would be deri.ie, similarly the URI http://www.bbc.co.uk/ has the PLD
bbc.co.uk.

Throughout the thesis, we prefer the notion of a pay-level domain since fully qual-
iVed domain names over-exaggerate the diversity of the data: for example, sites
such as livejournal.com, a social media platform, assign diUerent subdomains
to individual users (e.g., danbri.livejournal.com), leading to millions of FQDNs
on one site, all under the control of one publisher. Henceforth, when we mention
domain, we thus refer to a PLD (unless otherwise stated).

http : HTTP is the core communication protocol for software clients to access
information on the Web and to exchange and transfer data, with HTTP/1.1 be-
ing the currently used version [Fielding et al., 1999]. The communication between
client and server is established by the client who sends a HTTP request and re-
ceives a response message from the server in return.
A HTTP request consists of two parts, a header and a body. The header mes-

sage contains information to specify operating parameters of the connection, such
as the preferred encoding, Vle format or to identify the client. The request body
is used to send data to the server, e.g., submitting the information of a Web form,
uploading a Vle or updating the content of a URI. There exist three core communi-
cation methods (GET, POST and HEAD) since version 1 with Vve additional methods
added to version 1.1 to deal more eXciently with proxies, virtual hosts or persistent
connections [Fielding et al., 1999]. The approaches investigated in this thesis make
only use of the GET method, which, by deVnition, requests a representation for a
URI from the speciVed server. For example, every HTML Web browser issues such
a GET request to receive and display the content for the given URI.

Example 2.3. The following is an example request-line for a browser access-
ing our previous example URI by means of the GET:

GET http://www.w3.org/People/Berners-Lee/ HTTP/1.1

The retrieval mechanism that uses HTTP to obtain a copy or representation for a
URI is commonly referred to as “dereferencing a URI”.
Once a client issued a request, the server returns a response message which

contains a status-line, a response header and an optional message body. The Vrst
line contains a status code indicating if the server could understand and process
the request. Furthermore, we can distinguish between Vve categories of such status
codes based on the Vrst leading digit. Codes starting with:

1xx are purely informal,

2xx indicate that the request was successfully received and processed,

3xx inform clients that the location of the requested URI has (temporarily or per-
manently) changed and the response also contains the new location of the
redirected resource. Especially these redirect mechanism is widely used for
publishing Linked Data and to guide a client to the RDF representation of a
URI.
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4xx signal client side request errors, such as a request for a non existing or non-
authorised source, or a malformed request in general,

5xx warn the client that a server-side error occurred, e.g., the speciVc request
method is not supported by the server or other internal errors like timeouts.

The response header contains again meta information about the response type,
such as the Vle format, content length or server speciVcations. The message body
can be the requested data or other information which relates to the request, e.g.,
additional information if some server errors occurred.
Moreover, the usage of header Velds allows to issue conditional client requests

for which a server only returns data if the conditions are met. Examples for such
conditions might be that a client is only interested to receive the content of a URI if
changed since the last request (e.g., proxy caches) or that a client is only interested
in speciVc Vle formats such as a HTML, XML or RDF. SpeciVcally, requesting a
certain representation format for a URI is a common practise for the decentralised
query approaches this thesis is centred around.

mime-type and content negotiation The representation format for the
content of a URI is described by the Multipurpose Internet Mail Extensions (MIME):
originally designed as a standard to describe the content of emails, e.g., to send
binary attachments or speciVc text encodings. These MIME types, also called a
content type, are widely used to identify Vle formats on the Web and consists of
two parts separated by a “/”. The Vrst part speciVes the communication medium
(e.g., image, audio, text, application) and the second part the speciVc format (e.g.,
pdf, jpeg or xml). For example, the MIME type for HTML is text/html. A list of
known content types for the Web is managed by the Internet Assigned Numbers
Authority (IANA) 1.

A Web server can potentially oUer several diUerent representations formats for
the content of a URI, which in itself, only identiVes and locates a given resource.
Thus, the HTTP protocol allows to specify the required or desired representation
formats of a URI with the request header. Naturally, a server tries to serve the
content type as requested by the client. It is also possible to name several content-
types with their relative degree of preference. This process is referred to as content-
negotiation – a process to negotiate the best possible presentation of a URI for a
client. This allows to design specialised clients, such asWeb browsers which render
HTML. Other examples are Linked Data browsers or query engines which require
that the returned content is served as RDF.

Example 2.4. An example for such a selection process is:

GET "Accept: application/rdf+xml; text/html;" http://www.w3.

org/People/Berners-Lee/ HTTP/1.1

This GET method requests that the w3.org server returns the content for the
speciVc URI as RDF (application/rdf+xml) and if not available as an HTML
document (text/html).

The architecture of the Web and the tremendous eUort of the W3C to establish
standards, such as HTTP and URI, transformed the Web into an open and glob-
ally accessible distributed hypermedia system which allows users to publish, link
and interact with documents containing information in diUerent formats, such as
text, images, videos and audio. As a result, the Web can be classiVed as a self-

1 http://www.iana.org/
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organising, technical autopoietic system2 with evidential properties such as (i) the
lack of a central controlling agency, (ii) the integration of use and evolution, (iii)
inner dynamics, and partially autonomous processes [Andersen, 1998]. We can ob-
serve that many diverse and heterogenous units participate on the Web in a par-
allel, uncontrolled and distributed manner by creating, publishing, consuming and
organising information. The combination between human and legal agents and also
the physical hardware even allows to classify of the Web as a self-organising socio-
technological system [Fuchs, 2005]. Undeniably, the Web is highly dynamic in its
very nature but also shows emerging and stable patterns.

Lee et al. [2009] reported that over 90% of Web documents contained HTML con-
tent in 2007. That implies that the sheer amount of available and published informa-
tion are unstructured text created by and for humans. Furthermore, the increasing
size of the Web – currently estimated to be at least 8 billion documents [de Kunder,
2012] – demands the use of machines to eXciently collect, organise and manage
information.
However, the amount of unstructured information in the form of text intro-

duces (i) irregularities (e.g., diUerent data formats) and (ii) ambiguities (e.g., is
Mercury the element, the plant or the god?) during information extraction pro-
cesses [Nadeau and Sekine, 2007], which are necessary to develop eXcient search
& query components. Moreover, the existence of diUerent human languages, do-
main speciVc or social driven vocabularies (e.g., slang) and the diverse backgrounds
of people increase the complexity and dimension of automatically processing and
understanding the words and information in text [Buitelaar and Cimiano, 2008].
In addition, it is far from trivial to extract structured facts from unstructured text,
such as the address or descriptions of a person [Arasu and Garcia-Molina, 2003].
Thus, the large amount of unstructured text prohibits current search engines from
answering arbitrarily structured queries.

Example 2.5. For example, current free text search engines fail to answer a
query like “What are the current temperatures in the capitals of Europe?". To
answer such a query, a search engine has to know (i) that a free-text term
uniquely identiVes a city and does not refer to other synonymic concepts (e.g.,
such as the term “Boston” can refer to a city but also to a band), (ii) that cities
can be capitals of countries, (iii) that countries are associated with continents
such as Europa, and (iv) that a certain string representation is a temperature
value. Eventually, the systems must connect and relate all of this information,
to generate a Vnal result set.

One major problem for search & query components is that the traditional Web
does not express enough of its information in a machine readable format.

2.2 the semantic web and linked data

The shortcomings of the traditional Web with it vast amount of unstructured infor-
mation lead to the idea of Berners-Lee for a machine readable Web, in his roadmap
towards the so called “Semantic Web” [Berners-Lee, 1998]. The Semantic Web is an
extension of the existing Web, which transforms a mostly human-readable “Web
of Documents” to a “Web of Data” which can be processed by software agents. Its
fundamental technology is theW3C’s Resource Description Framework (RDF) [Las-
sila and Swick, 1999]; a data model to represent and interchange information on the
Web and ease the integration and connection of data elements across domains.

2 An autopoietic system is an environment which is organised by its processes rather than its elements.
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2.2.1 RDF

RDF was original designed to describe meta data about Web resources, but is now
more generally used to model information about any form of resource through RDF
statements. It is a form of highly-normalised relational model with binary relations
between global unique identiVers [Decker et al., 2000].
An RDF statement is a tuple consisting of three elements, so called RDF resources.

An RDF resource can be either a Web resource (URI) or a real-world object which
again can be identiVed by a URI or a string value, called a literal3, e.g., “Dublin”.
In the case that a node is not identiVed with a URI or a literal, it is represented as an
anonymous or unnamed resources called a blank node with the notation _:name.
An RDF statement is also called a and is expressed as a tuple of the form:

(subject, predicate, object)

We now formally deVne RDF (cf. [Hayes and McBride, 2004]) using standard
notation and formal deVnitions as follows:

DeVnition 2 (RDF Term, Triple and Graph).
The set of RDF terms consists of the set of URIs U, the set of blank-nodes B and the
set of literals L (which includes plain and datatype literals). U, B and L are pairwise
disjoint. An RDF triple t := (s,p,o) is an element of the set G := UB×U×UBL
(where, e.g., UB is a shortcut for set-union). Here s is called subject, p predicate, and o
object. A Vnite set of RDF triples G ⊂ G is called an RDF graph. We use the functions
subj(G), pred(G), obj(G), terms(G), to denote the set of all terms projected from the
subject, predicate, object and any position of a triple t ∈ G respectively.

representation formats Most RDF syntaxes allow to use Compact URI
(CURIE) names [Birbeck and McCarron, 2008] of the form prefix:reference to
denote URIs. For example, a parser expands the CURIE foaf:name in combina-
tion with the syntactic deVnition of the namespace preVx to the full URI http:
//xmlns.com/foaf/0.1/name. PreVxes for the abbreviated CURIE names used
throughout the thesis are available in Appendix A.
RDF data is commonly serialised either as RDF/XML [Swartz, 2004] or as Terse

RDF Triple Language (Turtle) [Beckett and Berners-Lee, 2008]. The MIME types
are application/rdf+xml [Swartz, 2004] and text/turtle. In general, the Turtle
syntax is seen as more human friendly than RDF/XML. As such, we may use Turtle
syntax throughout this thesis.
In the Turtle syntax, RDF statements are written as whitespace separated triples

and graphs are written as ‘.’-separated lists of such triples. Brackets (<>) denote
URIs and quotes ("") denote literals. Blank node identiVers start with ‘_ :’.

Example 2.6. For example, the following data shows two statements about
the city Dublin (dbpedia:Dublin) in the Turtle syntax.

dbpedia:Dublin rdf:type dbpedia-owl:Settlement;

dbpprop:name "Dublin" .

The Vrst triple states that the resource dbpedia:Dublin is a “settlement” and
the second provides a human readable label for the resource.

3 Literals may not be used as subjects or predicates in RDF statements, Blank nodes may not be used as
predicates.
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An RDF triple can also be graphically represented as an edge between two nodes
in a directed labelled multi graph, where the predicate is the edge between the
subject and object nodes of the triple. In the graph representation, we draw an RDF
triple as two labelled nodes (subject and object) connected with a directed labelled
edge (predicate). Note, one problem with the directed labelled graph representation
of RDF is that a predicate of a triple (an edge label) can also occur as the subject
or object of another triple, which would require to either duplicate resources or
allow connections to edges. As such, Hayes and Gutiérrez [2004] proposed to model
RDF graphs as bipartite graphs, which are well-known mathematical objects and
have a formal representation. This would allow to apply techniques and results of
graph theory, and also to use generic graph algorithms and visualisation libraries.
However, we use the graph model only to visualise the RDF data examples in this
thesis and believe that the directed labelled graphs serves as a good and intuitive
representation.

Example 2.7. In the following, we visualise the above two statements as a
directed graph, where we denoted URIs with ellipses and literals with squares.

dbpedia-owl:Settlement

"Dublin"

dbpedia:Dublin
rdf:type

dbpprop:name

rdf on the web Early RDF data published on the Web was mainly meta data
about Web resources, as initially designed (e.g. RSS 1.0 [RSS, 1999]). Most of the
RDF was published as data dumps in isolated documents (mostly) missing impor-
tant links to other RDF documents. This already added some structured data to the
Web but was far from transforming the Web of Documents into a Web of (inter-
linked) Data. The missing links between the RDF sources prevented the navigation
to or discovery of new information as users (with browsers) or agents (with Web
crawlers) are able to do in the traditional Web by following links. At that time, Se-
mantic Web applications, such as search engines, had to know the locations (URIs)
of the RDF dumps to harvest and merge the contents and locally build the desired
global graph. The missing links prevented software agents to start form at least
one known URI and automatically follow links to discover more structured infor-
mation.
However, some domains already provided these links between the RDF docu-

ments. One example of a successful domain is the Friend Of A Friend (FOAF)
project, which publishes interlinked data on the Web. The fundamental idea of
FOAF is to build a distributed decentralised social network, published as RDF on the
Web. Users can enter this FOAF Web by any identiVer of a person and access any
relevant information, such as the name, gender or general interest of that person.
In addition, users can navigate the social network of a person by following links
which identify that two people know each other. In that way, applications are able
to understand, browse and download the social network of people by following
typed links.

2.2.2 Linked Data

In 2006, Berners-Lee [2006] addressed the problem that most of the published RDF
data on the Web was either available as large data dumps or in isolated documents.
He introduced the “Linked Data” design principles to create a Web of interlinked
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data. A set of four simple guidelines promote the tight integration of the RDF graph
model with the architecture of the World Wide Web to create a scaleable network
of interlinked data which can be consumed and browsed by machines and humans
alike. The core of these principles is to use dereferenceable HTTP URIs as real-
world identiVers and the necessary requirement to link to other URIs, preferable
with the RDF model. In detail, the four principles, as deVned by Berners-Lee [2006],
are:

ldp1 : Use URIs to unambiguously identify/refer to (real-world) things.

ldp2 : Use HTTP URIs so that legal and software agents can deference those
identiVers.

ldp3 : Upon requests, provide useful information using the standards, preferable
RDF and SPARQL (which we introduce later).

ldp4 : Include links using externally dereferenceable URIs.

In short, these principles shall ensure that RDF data published on the Web contain
HTTP-dereferenceable URIs which return more information about the respective
URIs upon lookup (possibly also from third-party data providers).
The following introduces our real-world Linked Data example, which we also

use to exemplify deVnitions, algorithms and the general idea of our approaches
throughout the thesis.

Example 2.8. We illustrate in Figure 2.1 an RDF (sub-)graph extracted from
Vve real-world interlinked documents on the Web of Data.a

ohDoc:

oh:olaf

Olaf Hartig

http://...

cb:chris

cb:chris

http://...
Chris Bizer

dblpA:Christian_Bizer

dblpP:HartigBF09dblpA:Olaf_Hartig dblpA:Olaf_Hartig

owl:sameAs
foaf:name

foaf:img Olaf Hartig

foaf:name

owl:sameAs

foaf:name

foaf:depiction

dblpP:HartigBF09

foaf:knows foaf:maker

dblpP:HartigBF09"2009"^^xsd:gYear

foaf:Agent

rdf:type

dcterms:issued

dblpADoc:Olaf_Hartig

dblpADoc:Christian_Bizer

cbDoc:

rdfs:seeAlso

cbDoc:

dbpedia:Berlin

foaf:based_near

dblpA:Olaf_Hartig

dblpA:Christian_Bizer

foaf:maker

dblpA:Christian_Bizer
foaf:maker

dblpPDoc:HartigBF09

dereferencesdereferences

dereferences

foaf:maker

Christian Bizer

foaf:name

dereferences

Figure 2.1: Snapshot of a subgraph of Vve documents from the Web of Data. Individ-
ual documents are associated with individual background panes. The URI
of each document is attached to its pane with a shaded tab. The same re-
sources appearing in diUerent documents are joined using “bridges”. Links
from URIs to the documents they dereference to are denoted with dashed
links. RDF triples are denoted following the aforementioned conventions
within their respective document.

The graph models information about two real-world persons and a paper that
they coauthored together. These real-world elements are identiVed with HTTP
URIs as per LDP1 and LDP2. One of the authors is identiVed by the two URIs
oh:olaf and dblpA:Olaf_Hartigand the other by the two identiVers cb:

chris and dblpA:Christian_Bizer. The URI dblpP:HartigBF09 refers to
the publication both authors share.
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These Vve resources are mentioned and described in at least one of the Vve
documents:

ohdoc: , cbdoc: refer to the personal FOAF proVle documents that each
author created for themselves;

dblpadoc:olaf . . . , dblpadoc:chris . . . refer to information exported
from the “DBLP Computer Science Bibliography”b for each author, in-
cluding a publication list;

dblppdoc:hartigbf09 provides information about the co-authored pa-
per exported from DBLP.

Each of these documents are available as RDF/XML on the Web and can be
retrieved by performing a HTTP Get operation on their URIs. Furthermore,
we indicated with the dashed lines which URIs dereference to which sources,
according to the principle LDP3. For example, a agent that performs a HTTP
Get on oh:olaf will be redirected to the source URI ohDoc:. Furthermore,
some of the sources link to other sources by reusing existing dereferenceable
URIs (LDP4). We indicate the reuse of URIs with white connectors between
the nodes. For example, the URI dblpA:Olaf_Hartig in the top right source
is reused in the top left source to indicate that the URI oh:olaf identiVes the
same person as the reused URI.

a As last accessed on 2012-06-23.
b http://www.informatik.uni-trier.de/~ley/db/

We now provide some notations which helps to formalise the four principles and
relate them to RDF and HTTP. As per [Hartig et al., 2009], we do not consider
temporal issues with, e.g., HTTP-level functions.

DeVnition 3 (Data Source and Linked Dataset).
We deVne the http-download function get : U → 2G as the mapping from URIs
to RDF graphs provided by means of HTTP lookups which directly return status code
200OK and data in a suitable RDF format. We deVne the set of (RDF) data sources
S ⊂ U as the set of URIs S := {s ∈ U : get(s) 6= ∅}. We deVne a Linked Dataset
as Γ ⊂ get; i.e., a Vnite set of pairs (s , get(s)) such that s ∈ S. The “global” RDF
graph presented by a Linked Dataset is denoted as

merge(Γ ) :=
⊎

(u ,G)∈Γ
G

where the operator ‘]’ denotes the RDF merge of RDF graphs: a set union where blank
nodes are rewritten to ensure that no two input graphs contain the same blank node
label [Hayes and McBride, 2004].

Example 2.9. Taking Figure 2.1, the function call get(ohDoc:) = { (oh:
olaf:, foaf:name, "Olaf Hartig"), . . .} gives an RDF graph containing the
Vve triples in that document. However, get(oh:olaf) = ∅ since it does not
return a 200 Okay (redirects are supported in the next step). Thus, ohDoc:∈ S
whereas oh:olaf /∈ S. If we denote Figure 2.1 as the Linked Dataset Γ , we can
say that Γ = {(ohDoc:, get(ohDoc:) , . . .}, contains Vve (URI, RDF-graph)
pairs. Then, merge(Γ ) is the set of all 17 RDF triples shown in Figure 2.1.

DeVnition 4 (Dereferencing RDF).
A URI may issue a HTTP redirect to another URI with a 30x response code, with the
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target URI listed in the Location: Veld of the HTTP header. We model this redirection
function as redir : U → U, which Vrst strips the fragment identiVer of a URI (if
present) and would then map a URI to its redirect target or to itself in the case of failure
(e.g., where no redirect exists). We denote the Vx-point of redir as redirs, denoting
traversal of a number of redirects (a limit may be imposed to avoid cycles). We denote
dereferencing by the composition deref := get ◦ redirs, which maps a URI to an RDF
graph retrieved with status code 200OK after following redirects, or which maps a URI
to the empty set in the case of failure. We denote the set of dereferenceable URIs as
D := {d ∈ U : deref(d) 6= ∅}; note that S ⊂ D and we place no expectations on
what deref(d) returns, other than returning some valid RDF. As a shortcut, we denote
by derefs : 2U → U× 2G; U 7→ {(redirs(u), deref(u)) | u ∈ U ∩D)} the mapping
from a set of URIs to the Linked Dataset it represents by dereferencing all URIs (only
including those in D which return some RDF).

Example 2.10. Taking Figure 2.1, dereferenceable relationships between re-
sources and documents are highlighted with the dashed lines. Excluding
cbDoc: (which must be looked up directly), the other four documents can
be retrieved by dereferencing the URI of their main resource; for example,
dereferencing oh:olaf over HTTP returns the document ohDoc: describ-
ing said resource: oh:olaf redirects to ohDoc:, denoted redir(oh:olaf) =
ohDoc:. No further redirects are possible, and thus redirs(oh:olaf) = ohDoc:.
Dereferencing oh:olaf gives the RDF graph in the document ohDoc:, where
deref(oh:olaf) = get

(
redirs(oh:olaf)

)
= get(ohDoc:). Instead taking

the URI cb:chris, redir(cb:chris) = cb:chris and get(cb:chris) = ∅;
this URI is not dereferenceable. Thus we can say that oh:olaf∈ D and
ohDoc:∈ D whereas cb:chris/∈ D.

As a result of the work of the Linked Data community, we can witness how or-
ganisations, companies, governments, librarians and various research communities
participate to the growth and wealth of to the Web of interlinked Data [Bizer et al.,
2009]. Just to name some examples, news portal and multimedia domains, such as
the New York Times or BBC, publish their meta-data about articles and programs
according to the principles of Linked Data. The DBpedia project provides a Linked
Data version of the Wikipedia encyclopaedia and is one of the most broadly linked
datasets available [Auer et al., 2007]. Content management systems like Drupal 74

and knowledge management system like SemWiki5 are also part of the Linked Data
ecosystem.

2.2.3 RDFS & OWL

RDF allows to deVne resources as members of classes, which themselves are de-
scribed as RDF resources with the RDF predicate rdf:type:

Example 2.11. For example, the following statement states the fact that a
resource is a person:

cb:chris rdf:type foaf:Person

The RDF graph model can be used to create vocabularies which represent informa-
tion of any real-world domain in the form of statements about resources.

4 http://drupal.org/node/725382
5 http://km.aifb.kit.edu/ws/semwiki2006/
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The typing and inheritance of classes and RDF predicates in and across vocabu-
laries, also called properties, can be described with the RDF Vocabulary Description
Language: RDF Schema (RDFS) [Brickley and Guha, 2004], which was designed to
represent vocabularies on the Web. RDFS allows primarily to deVne classes and
properties and to describe the relationships between them.

Example 2.12. As an example, we show a subset of RDFS deVnitions in
a “schema document” extracted from the real-world FOAF ontology in Fig-
ure 2.2.

foafSpec:

foaf:img

foaf:depiction

foaf:Person

foaf:Agent foaf:Image

foaf:name

geo:SpatialThingrdfs:label

foaf:based_near rdfs:domain

rdfs:range rdfs:subPropertyOf rdfs:subPropertyOf rdfs:subClassOf rdfs:subClassOf rdfs:range

rdfs:range

Figure 2.2: Snapshot of an example schema document from the Web of Data, taken
from the Friend Of A Friend (FOAF) Ontology. External terms are repre-
sented in ellipses with dashed lines.

Although we leave it implicit, all terms in the foaf: namespace (including the
predicates and values for rdf:type represented in Figure 2.1) dereference to
foafSpec:. The relations between classes and properties shown in this doc-
ument are well deVned (using model-theoretic semantics) by the RDFS stan-
dard [Hayes and McBride, 2004].

There exists four core terms in RDFS to specify the relations between classes
and properties, namely rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain
and rdfs:range. The Vrst term allows to deVne the relationship between classes,
it enables to specify that the instances of one class are also instances of another
class. Similarly, rdfs:subPropertyOf describes the hierarchy of properties. The
last two terms (rdfs:domain and rdfs:range) are used to state that the subject
of a given property is a member of a class, or that the object value of a property is
a member of a given class, respectively.

Example 2.13. For example, the FOAF vocabulary (cf. Figure 2.2) states that
members of foaf:Person are also members of foaf:Agent and that the prop-
erty foaf:name is a sub-property of rdfs:label. The FOAF vocabulary also
uses the other two prominent RDFS property and encodes that resources that
appear in the subject position of foaf:img are foaf:Person’s and the re-
sources in the object position of such statements are instances of the class
foaf:Image.

In addition, to describe more complex relations and domains, the Web Ontology
Language (OWL) extends RDFS [Antoniou et al., 2003; Dean and Schreiber, 2004]
and allows to model more expressive ontologies for certain domains. Machines can
use these vocabularies/ontologies to infer additional information based on explicit
data, which allows for better integration and interoperability of data among de-
scriptive communities.
We support a small subset of OWL 2 RL/RDF rules, given in Table 2.1, which con-

stitute a partial axiomatisation of the OWL RDF-Based Semantics. The RDFS rules
used in this thesis are the subset of the ρDF rules proposed by Muñoz et al. [2009]
that deal with instance data entailments (as opposed to schema-level entailments
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of triples in the RDFS vocabulary). 6 Moreover, these rules are the most used rules
for the available Linked Data on the Web, as a recent published survey by Glimm
et al. [2012] shows. The authors studied the use of RDFS and OWL features in a
large crawl of the Web of Data (viz., the Billion Triple Challenge Dataset (BTC’11),
which we detail in the next chapter). They apply PageRank [Page et al., 1999] over
the documents contained within the dataset and summating the rank of all docu-
ments using each feature. They found that RDF(S) features were the most promi-
nently used. Respectively from features ranked 1–6: rdfs:Property, rdfs:range,
rdfs:domain, rdfs:subClassOf, rdfs:Class, rdfs:subPropertyOf.
Considering the most used OWL features on theWeb of Data, Glimm et al. [2012]

found that the owl:sameAs property occurred most frequently, though other fea-
tures of OWL like owl:FunctionalProperty had a higher rank: the most broadly
linked (and thus highly ranked) documents in the Web of Data are vocabularies,
not the “data-level documents” in which owl:sameAs relations frequently appear.
As such, we chosen to support the semantics of equality (particularly replacement)
for owl:sameAs in this thesis. Note that these rules support the RDFS/OWL fea-
tures originally recommended for use by Bizer et al. [2007] when publishing Linked
Data. The rules we consider are given in Table 2.1. More recent guidelines [Heath
and Bizer, 2011] recommend use of additional OWL features, however, we leave
support for more expressive OWL reasoning to future work.

owl:sameas The owl:sameAs relation states that two URIs identify the same
real-world element. In general, this involves the reuse of external URI (see LDP4)
which helps to create important links between sources (as we can see in our exam-
ple Figure 2.1).

Example 2.14. Taking Figure 2.1 and the following statements of one the
sources (ohDoc:):

oh:olaf owl:sameAs dblpA:Olaf_Hartig

The data states that the two URIs oh:olaf and dblpA:Olaf_Hartig refer to
the same real-world person. Furthermore, the owl:sameAs statement creates
the important link between the two documents ohDoc: and dblpADoc:Olaf_

Hartig by reusing the person URI dblpA:Olaf_Hartig.

Interestingly, various authors have looked speciVcally at the usage and quality of
use of these owl:sameAs statements on the Web of Data [Ding et al., 2010; Halpin
et al., 2010; Hogan et al., 2012b]. Halpin et al. [2010] look at the semantics and
quality of owl:sameAs links in Linked Data; manually inspecting Vve hundred
owl:sameAs sampled from theWeb of Data; they found that judges often disagreed
on what resources should be considered the same and what resources shouldn’t.
They estimated an accuracy for owl:sameAs links – where sameness could be con-
Vdently asserted for the sampled relations – at around 51% (±21%). We performed
a similar analysis on one thousand owl:sameAs relations, where we asked a diUer-
ent question – is there anything between these two resources to conVrm that they
are not the same? – and where we estimated a estimated precision of 97.2% [Hogan
et al., 2012b]. This analysis was applied over pairs sampled from the closure of same-
as relations. During our analysis, we found many pairs of resources for which very
little knowledge was locally or externally available (for one or both). If there was
no information to suggest that they were not the same, we would give this pair the

6 We drop implicit typing [Muñoz et al., 2009] rules as we allow generalised RDF in intermediate infer-
ences.
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ID Body Head

RD
FS

prp-spo1 ?p1 rdfs:subPropertyOf ?p2 . ?s ?p1 ?o. ?s ?p2 ?o.

prp-dom ?p rdfs:domain ?c . ?s ?p ?o . ?p a ?c.

prp-rng ?p rdfs:range ?c . ?s ?p ?o . ?o a ?c .

cax-sco ?c1 rdfs:subClassOf ?c2 . ?s a ?c1 . ?s a ?c2 .

Sa
m
e-
A
s

eq-sym ?x owl:sameAs ?y . ?y owl:sameAs ?x .

eq-trans ?x owl:sameAs ?y . ?y owl:sameAs ?z . ?x owl:sameAs ?z .

eq-rep-s ?s owl:sameAs ?s . ?s ?p ?o . ?s ′ ?p ?o .

eq-rep-p ?p owl:sameAs ?p . ?s ?p ?o . ?s ?p ?o .

eq-rep-o ?o owl:sameAs ?o . ?s ?p ?o . ?s ?p ?o .

Table 2.1: RDFS (ρDF subset) and owl:sameAs (OWL 2 RL/RDF subset) rules

“beneVt of the doubt”, taking the perspective that merging (aka. consolidating) the
resources would not cause any notable data issues. There are other studies which
question the quality of such statement [Halpin et al., 2010; Hogan et al., 2012b].
However, for this work at hand we rely on the published studies and assume the
correctness of owl:sameAs information found on the Web.
We also provide some deVnitions regarding the rule-based inferencing based on

the our ruleset (cf.tbl:rules) we will use in the following of this thesis.

DeVnition 5 (Entailment Rules & Least Model).
An entailment rule is a pair r = (Body,Head) (cf. Table 2.1) such that Body,
Head ⊂ Q; and vars(Head) ⊆ vars(Body). The immediate consequences of r for a
Linked Dataset Γ are denoted and given as:

Tr(Γ) := {µ(Head) | µ ∈ [[Body]]Γ } \merge(Γ) .

In other words, Tr(Γ) denotes the direct unique inferences from a single application
of a rule r against the merge of RDF data contained in Γ . Let R denote a Vnite set of
entailment rules. The immediate consequences of R over Γ are given analogously as:

TR(Γ) :=
⋃
r∈R Tr(Γ) .

This is the union of a single application of all rules in R over the data applied to the
(raw) data in Γ . Furthermore, let υ ∈ U denote a fresh URI which names the graph
GR of data inferred by R, and let GR0 = ∅. Now, for i ∈N, deVne:

ΓRi := Γ ∪
{(
υ,GRi

)}
GRi+1 := TR(Γ

R
i )∪G

R
i

The least model of Γ with respect to R is ΓRn for the least n such that ΓRn = ΓRn+1;
at this stage the closure is reached and nothing new can be inferred.7 Henceforth, we
denote this least model with Γ • R.

Example 2.15. Let R denote the set of rules in Table 2.1. Also, consider Γ as
the Linked Dataset comprising of

(
ohDoc:, get(ohDoc:)

)
from Figure 2.1 and

a second named graph called foafSpec: with the following subset of triples
from Figure 2.2:

7 Since our rules are a syntactic subset of Datalog, there is a unique and Vnite least model (assuming Vnite
inputs).
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foaf:img rdfs:domain foaf:Person ;

rdfs:range foaf:Image ;

rdfs:subPropertyOf foaf:depiction .

foaf:Person rdfs:subClassOf foaf:Agent .

These (real-world) triples can be retrieved by dereferencing a FOAF term; e.g.,
deref(foaf:img). Now, given Γ and R, then GR0 = ∅, GR1 = GR0 ∪ TR(Γ

R
0 )

where, by applying each rule in R over Γ once, TR(ΓR0 ) contains the following
triples (abbreviating URIs slightly):

oh:olaf foaf:depiction <http. . .> . #prp-spo1
oh:olaf a foaf:Person . #prp-dom
<http. . .> a foaf:Image . #prp-rng
dblpA:Olaf owl:sameAs oh:olaf . #eq-sym
dblpA:Olaf foaf:knows cb:chris . #eq-rep-s
...

Subsequently, ΓR1 = Γ ∪ {(υ,GR1 )}, where υ is any built-in URI used to identify
the graph of inferences and where GR1 contains the unique inferences thus far
(listed above). Thereafter, GR2 = GR1 ∪TR(Γ

R
1 ), where TR(Γ

R
1 ) contains:

oh:olaf a foaf:Agent . #cax-sco
dblpA:Olaf foaf:depiction <http. . .> . #eq-rep-s
dblpA:Olaf a foaf:Person . #eq-rep-s
dblpA:Olaf owl:sameAs dblpA:Olaf . #eq-rep-s
oh:olaf owl:sameAs oh:olaf . #eq-rep-s
...

As before, ΓR2 = Γ ∪ {(υ,GR2 )}, whereG
R
2 contains all inferences collected thus

far, and GR3 = GR2 ∪TR(Γ
R
2 ), where TR(Γ

R
2 ) contains:

dblpA:Olaf a foaf:Agent . #cax-sco

This is then the closure since TR(ΓR3 ) = ∅; nothing new can be inferred, and
so ΓR3 = ΓR4 . And thus we can say that Γ • R = ΓR3 = Γ ∪ (υ,GR3 ).

Finally, we highlight that the openness of the Web poses some challenges for the
reasoning process over Web data. Aside from pure eXciency and scalability con-
cerns, the freedom associated with publishing on the Web – where anyone can say
anything (almost) anywhere – causes signiVcant obstacles with respect to the trust-
worthiness of data when performing automated inferencing. On a schema level, for
example, various obscure documents on the Web of Data make nonsensical deV-
nitions that would (naïvely) aUect reasoning across all other documents [Bonatti
et al., 2011]. Various authors have proposed mechanisms to incorporate notions
of provenance for schema data into the inferencing process. One such procedure,
called authoritative reasoning, only considers the schema deVnitions for a class or
property term that are given in its respectively dereferenceable document [Bonatti
et al., 2011; Cheng and Qu, 2008; Hogan et al., 2009]. We will use in Chapter 4 au-
thoritative reasoning in our approach to avoid the unwanted eUects of third-party
schema contributions during RDFS reasoning. Delbru et al. [2011] propose an al-
ternative solution called context-dependent reasoning (or quarantined reasoning),
where a closed scope is deVned for each document being reasoned over, incorpo-
rating the document itself and (recursively) other documents it imports or links.
Thus, obscure third party documents cannot inject unwanted schema into the in-
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ferencing process since they fall outside the quarantined scope.We use in Chapter 4
a similar import mechanism to dynamically collect the schema data from the Web.

2.2.4 SPARQL

We now introduce some of the core concepts and notation for the RDF query lan-
guage SPARQL [Pérez et al., 2009; Prud’hommeaux and Seaborne, 2008]. SPARQL is
a protocol and query language for RDF and enables to retrieve and manipulate data.
A query can consist of triple patterns, conjunctions, disjunctions, and optional pat-
terns [Prud’hommeaux and Seaborne, 2008] It contains two parts, a query type and
the WHERE clause deVning the query patterns. There exist four query types, namely,
SELECT to extract raw data, CONSTRUCT to return an RDF graph from the obtained
query results, ASK to indicate with a boolean value if the query can be answered or
not, and DESCRIBE which delivers an RDF graph that describes the results.
We now provide some preliminaries.

DeVnition 6 (Variables, Triple Patterns & BGPs).
Let V be the set of variables ranging over UBL. A triple pattern tp := (s,p,o) is an
element of the set Q := VUL×VU×VUL. For simplicity, we do not consider blank-
nodes in triple patterns (they could be roughly emulated by an injective mapping from
B to V). A Vnite (herein, non-empty) set of triple patterns Q ⊂ Q is called a Basic
Graph Pattern, or herein, simply a query. We use vars(Q) ⊂ V to denote the set
of variables in Q. Finally, we may overload graph notation for queries, where, e.g.,
terms(Q) returns all elements of VUL in Q.

DeVnition 7 (SPARQL solutions).
A partial function µ : dom(µ) ∪UL → UBL is a solution mapping with a domain
dom(µ) ⊂ V. A solution mapping binds variables in dom(µ) to UBL and is the
identify function for UL. Overloading notation, let µ : Q→ G and µ : 2Q → 2G also
resp. denote a solution mapping from triple patterns to RDF triples, and basic graph
patterns to RDF graphs such that µ(tp) := (µ(s),µ(p),µ(o)) and µ(Q) := {µ(tp) |

tp ∈ Q}. We now deVne the set of SPARQL solutions for a query Q over a (Linked)
Dataset Γ as

[[Q]]Γ := {µ | µ(Q)⊆merge(Γ)∧ dom(µ) = vars(Q)} .

For brevity, and unlike SPARQL, solutions are herein given as sets (not multi-sets),
implying a default DISTINCT semantics for queries, and we assume that answers are
given over the default graph consisting of the merge of RDF graphs in the dataset.

The approaches in this thesis focus on evaluating simple, conjunctive, basic
graph patterns (BGPs) in the WHERE clause. Although supported by our implementa-
tions, we do not formally consider more expressive parts of the SPARQL language,
which – with the exception of OPTIONAL patterns in the original SPARQL speciV-
cation and the patterns MINUS/(NOT) EXISTS deVned in SPARQL 1.1 which assume
a closed dataset – can be layered on top [Pérez et al., 2009].

Example 2.16. Again taking Γ from Figure 2.1, if we let Q be Query 2.1 as
follows:
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Querying Linked Data

centralised Decentralised

federation P2P lookup

link traversal index-based mixed

Figure 2.3: ClassiVcation of Linked Data query approaches.

SELECT ?maker ?issued

WHERE {

dblpP:HartigBF09 foaf:maker ?maker ;

dcterms:issued ?issued .

}

Query 2.1: Authors and creation date of a paper

Then [[Q]]Γ would be:

?maker ?issued

dblpA:Christian_Bizer "2009"^̂ xsd:gYear

dblpA:Olaf_Hartig "2009"^̂ xsd:gYear

2.3 querying linked data

The Web of Data can be seen as an powerful extension of the traditional Web. The
consistent use of RDF for publishing information and its standardised query lan-
guage SPARQL [Prud’hommeaux and Seaborne, 2008] bear the potential to turn the
Web into the long envisioned decentralised and global knowledge base to which ev-
ery software and legal agent can get access to consume data, query for information,
but also to share, manipulate or create data [Berners-Lee, 1998; Hausenblas and
Karnstedt, 2010]. For the achievement of this desirable goal, it is even more impor-
tant to research and design eXcient query processing engines which can operate
over this decentralised and distributed collection of information.
SPARQL is originally designed to query over one single dataset rather than over

several small datasets, as it is the case for Linked Data. As such, SPARQL query
engines need to integrate data from various sources to evaluate a given query. A
very comprehensive and detailed overview about existing solutions and concepts
to query Linked Data was recently published by Hose et al. [2011]. The authors
classiVed existing query approaches as original proposed by Domenig and Dittrich
[1999] to distinguish the techniques according to how data from several sources is
integrated for query processing.We similarly, categorise relevant query approaches
for this thesis as depict in Figure 2.3.
The most prevalent query and search systems for RDF data apply a centralised

approach, which collects data from known sources in advance and pre-processes
and indexes the combined data in a centralised store; queries are evaluated using
the local store. In addition, these materialised systems assume full sovereignty over
the data.
Another class of query approaches, enjoying more attention recently, are decen-

tralised query processing approaches which parse, normalise and split the query
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into sub-queries, determine for each part of the query the relevant sources and
eventually evaluate the sub-queries directly against those sources. These systems
can be categorised into approaches which perform (i) query federation over end-
points with the SPARQL protocol, (ii) process queries in totally decentralised peer-
to-peer (P2P) networks, or (iii) HTTP GET lookups to retrieve the necessary source
content. Next, we present the related work for each of the categories in Figure 2.3
from left to right, starting with centralised query approaches.

2.3.1 Centralised Approaches

Traditional SPARQL query approaches for Linked Data – the ones directly codiVed
by SPARQL semantics – locally replicate the content of the remote Linked Data
sources, e.g., in a triple store and execute the SPARQL queries over the local copy.
The primary challenges of a centralised approach are (i) to have as much coverage
of the Web of Data as possible, (ii) to keep results up to date, (iii) to be able to pro-
cess potentially expressive (i.e., expensive) SPARQL queries in an eXcient manner
and with high concurrency. Such approaches typically feature a crawler or other
data acquisition component which, e.g., follows links between documents to dis-
cover new information, and/or downloads documents which have been requested
for indexing by remote parties. In previous years, we have supported such a service
powered by YARS2 [Harth et al., 2007b], which allows for querying millions of RDF
Web documents (and their entailments), but have since discontinued this project
due to prohibitive running costs for our research hardware. Current centralised
stores harvesting Linked Data include OpenLink’s LOD cache8, powered by the Vir-
tuoso quad store [Erling and Mikhailov, 2009], the FactForge [Bishop et al., 2011b]
SPARQL store9 which includes materialised data supported by BigOWLIM [Bishop
et al., 2011a], and more recently the Sindice [Oren et al., 2008] SPARQL store10,
again powered by Virtuoso.
A recent system using B+-trees to index RDF data is RDF-3X [Neumann and

Weikum, 2008, 2010]. To answer queries with variables in any position of an RDF
triple, RDF-3X holds indexes for querying all possible combinations of subject, pred-
icate and object – an idea introduced in [Harth and Decker, 2005]. RDF-3X uses so-
phisticated join optimisation techniques based on statistics derived from the data.
In contrast to this work, both approaches (and similarly Hexastore [Weiss et al.,
2008]) use a diUerent data structure for the index and focus on centralised RDF
stores rather than distributed Linked Data sources. That said, a strategy which
completely indexes RDF triples and their sources and performs lookups to validate
results derived from the (possibly outdated) indexes is possible. However, it in-
volves overhead in creating, storing, and maintaining the complete indexes which
we avoid with more lightweight index structures.

The above objectives are (partially) met using distribution techniques, data repli-
cation, optimised indexes, compression techniques, data synchronisation, and so
on [Bishop et al., 2011a; Erling and Mikhailov, 2009; Harth et al., 2007b; Oren et al.,
2008]. Nevertheless, given that such services often index millions of documents,
they often require large amounts of resources to run. In particular, maintaining a
local, up-to-date index with good coverage of the Web of Data is a Sisyphean task.
Centralised approaches provide excellent query response times due to extensive

preprocessing carried out during the load and indexing steps, but suUer from the
following core drawbacks. First, the aggregated data is never current as the pro-
cess of collecting and indexing vast amounts of data is time-consuming. Second,

8 http://lod.openlinksw.com/sparql
9 http://factforge.net/sparql
10 http://sparql.sindice.com/
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from the viewpoint of a single query, the materialisation involves unnecessary data
gathering, processing, and storage since large portions of the data might not be
used for answering the particular query. Lastly, due to replicated data storage, data
providers have to give up sole sovereignty on their data (e.g., they cannot restrict
or log access anymore since queries are answered against a copy of the data).

2.3.2 Decentralised Approaches

The second general category of query approaches for Linked Data assumes that
query relevant data is distributed in a decentralised infrastructure, e.g., as the Web
of Data, or in Peer-to-peer systems. We identiVed three sub categories for such
decentralised query approaches and discuss in this section two out of the three
variations, namely SPARQL query federation and RDF query processing in P2P sys-
tems. Our work falls into the remaining category, the lookup based query execution
approach, which we will discuss afterwards in a separate section.

2.3.2.1 SPARQL Federation

In general, decentralised Linked Data query processing can be considered as a spe-
cial case of federated query processing [Hose et al., 2011; Ladwig and Tran, 2010].
However, traditionally, federation-based query processing approaches typically as-
sume a relatively small number of autonomous sources (holding the sovereignty of
their data) and that processing power is attainable at the sources themselves, which
could be leveraged in parallel for query processing. Such distributed or federated
approaches [Heimbigner and McLeod, 1985] oUer several advantages: the system is
more dynamic with up-to-date data and new sources can be added and the systems
require less storage and processing resources at the site that issues the query. The
potential drawback, however, is that these systems cannot give strict guarantees
on query performance since the integration process relies on a large number of
potentially unreliable query providers.
The same applies in general for federated Linked Data query processing which

considers a scenario in which queries are executed over a distributed set of SPARQL
stores: sources with query processing capabilities. We see query federation as re-
lated, but not really in the scope of our work since we focus on the query execution
over millions of loosely connected, decentralised and small data sources without
any capabilities to answer or process queries. Thus, we brieWy capture recent de-
velopment in SPARQL federation.

A primary challenge for federated SPARQL engines is to decide which parts of a
query are best routed to which store. Some systems, such as SPARQL DQP [Aranda
et al., 2011], require that sub-queries are annotated with the SPARQL 1.1 SERVICE
keyword, which allows users to invoke remote stores and, more generally, to state
which parts should be routed where. Other federated SPARQL engines locally in-
dex “service descriptions” or “catalogues”, which describe the contents of remote
stores and are used to split and route sub-queries without explicit SERVICE anno-
tations [Quilitz and Leser, 2008]. One of the earliest works going in this direction
(and which predated SPARQL by over three years) was by Stuckenschmidt et al.
[2004], who proposed summarising the content of distributed RDF repositories us-
ing schema paths (non-empty property chains). The SemWIQ architecture [Langeg-
ger et al., 2008] uses counts of the extension of each class and property in a store
to create a catalogue used for routing queries; later work extended the set of avail-
able statistics using a tool called RDFStats [Langegger and Wöß, 2009], which also
provides histograms covering e.g., subjects or data types, as well as estimated car-
dinalities of selected (sub-)queries. SPLENDID [Görlitz and Staab, 2011] is another
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federation infrastructure, which uses the Vocabulary of Interlinked Datasets (voiD)
to describe the content of endpoints [Alexander and Hausenblas, 2009]. An alter-
native to pre-computed service descriptions is proposed by FedX [Schwarte et al.,
2011], which instead probes SPARQL endpoints with ASK sub-queries to see if they
have relevant information during query-time (this information can be cached and
re-used).
In recognition of the growing popularity of federated SPARQL, the W3C Work-

ing Group has added new federation features [Harris and Seaborne, 2012]. As al-
ready mentioned, the SERVICE keyword can be used to invoke remote SPARQL
endpoints, and the new VALUES (previously known as BINDINGS) feature can be
used to “ship” sets of intermediate bindings to an endpoint [Harris and Seaborne,
2012]. In addition, the “SPARQL 1.1 Service Description” proposes a vocabulary
for describing the functionalities and datasets of SPARQL endpoints in a standard
way [Williams, 2012].

2.3.2.2 P2P Query Approach

There also exists some approaches to query RDF data in a totally distributed and
decentralised setup, similar to the Web but unlike federation or lookup based query
approaches. Such query processing is a main target in the world of P2P. However,
these approaches cannot be deployed for the current Linked Data infrastructure
and would require SPARQL processing functionality at the participating nodes, sim-
ilar to the SPARQL federation scenario. As such, the works in the area of SPARQL
query processing over P2P infrastructures are not in the scope of this thesis, how-
ever we brieWy highlight interesting approaches.
In [Heine, 2006; Heine et al., 2005], the whole RDF model graph is mapped to

nodes of a distributed hash table (DHT). DHT lookups are used to locate triples.
This implements a rather simplistic query processing strategies based on query
graphs that can be mapped to the model graph. Query processing basically con-
forms to matching query graph and model graph. RDF-Schema data are also in-
dexed in a distributed manner and used by applying RDF-Schema entailment rules.
On the downside, query processing has two subsequent phases and sophisticated
query constructs that leverage the expressiveness of queries are not supported.
There exist several other proposals for large-scale distributed RDF stores [Stuck-
enschmidt et al., 2005, 2004], RDF querying in Peer-to-peer environments [Nejdl
et al., 2002], including approaches supporting partial RDF Schema inference [Ad-
jiman et al., 2006]. RDFPeers [Cai and Frank, 2004] is another distributed infras-
tructure for managing large-scale sets of RDF data. Similar to, for instance, [Karn-
stedt et al., 2007], each part of a triple is indexed, but whole triples are stored
each time. Numerical data are hashed using a locality-preserving hash function.
Load-balancing is discussed as well. Queries formulated in formal query languages,
such as RDQL [Miller et al., 2002], can be mapped to the supported native queries.
RDFPeers supports only exact-match queries, disjunctive queries for sets of values,
range queries on numerical data, and conjunctive queries for a common triple sub-
ject. Query resolution is done locally and iteratively. [Karnstedt, 2009; Karnstedt
et al., 2007] extends this to sophisticated database-like query processing capabili-
ties, total decentralisation, and considers also data heterogeneity. GridVine [Aberer
et al., 2004; Cudré-Mauroux et al., 2007] is a peer data management infrastructure
addressing both scalability and semantic heterogeneity. Scalability is addressed by
peers organised in a structured overlay network forming the physical layer, in
which data, schemata, and schema mappings are stored. Semantic interoperabil-
ity is achieved through a purely decentralised and self-organising process of pair-
wise schema mappings and query reformulation. This forms a semantic mediation
layer on top and independent of the physical layer. GridVine supports triple pat-
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tern queries with conjunction and disjunction, implemented by distributed joins
across the network. It does not apply the idea of cost-based database-like query
processing over multiple indexes. We see the distribution of query processing load
as a promising way to achieve real scalability, data freshness and data authority.
Unstructured P2P systems leverage statistical data for source selection using so-

called routing indexes. Crespo et al. [Crespo and Garcia-Molina, 2002] introduced
the notion of routing indexes in P2P systems as structures that, given a query, re-
turn a list of interesting neighbours (sources) based on a data structure conforming
to lists of counts for keyword occurrences in documents. Based on this work, other
variants of routing indexes have been proposed, e.g., based on one-dimensional
histograms [Petrakis et al., 2004], Bloom Filters [Petrakis and Pitoura, 2004], bit
vectors [Marzolla et al., 2006], or the QTree [Hose et al., 2005]. A common feature
across these systems is to use a hash function to map string data to a numerical
data space. In contrast to our work, the focus of query optimisation in P2P systems
is to share load among multiple sites and on local optimisation based on routing
indexes.
However, a main problem in the current world of Linked Data sources is that

they are usually quite restricted in query processing capabilities. All the decen-
tralised P2P approaches require SPARQL processing functionality at the participat-
ing nodes which is not given at the current Web of Data.The mentioned decen-
tralised approaches, however, bear high potential for designing scalable distributed
index structures where single sources can connect to kind of super-nodes. These
super-nodes form the actual index and are responsible for query routing and pro-
cessing. An interesting work in this context with promising achievements focusing
on Semantic Web technology is presented by Schlosser et al. [2002], which imposes
a scalable and self-managing structured overlay on the participating nodes.

2.3.3 Lookup-based Approaches

With the increasing popularity and availability of Linked Data, a new type of decen-
tralised query approach have emerged which exploit the underlying Linked Data
principles. These principles can be used to identify and retrieve query relevant
sources based on a correspondence between result URIs and source URIs. The tar-
geted data sources do not provide query processing capabilities and interfaces and
as such, queries can be only executed over retrieved/dereferenced content by per-
forming lookups on the source URIs.
Such, lookup-based query approaches directly access remote data sources at run-

time to dynamically select, retrieve and build an integrated dataset over which
SPARQL queries can be evaluated. People sometimes consider the lookup-based
query evaluation as a query federation scenario. However, strictly speaking, the
sources are mostly not aware that they are part of the query architecture and thus,
the actual query execution is performed in a mediator approach rather than as
federation [Hose et al., 2011].11

Ladwig and Tran [2010] identiVed and named three conceptual approaches for
that lookup-based querying which diUer in how query relevant sources are selected.
The following classiVcation can be distinguished:

i) The link traversal based query execution does not require information about
the content of sources before the query evaluation. Query relevant sources
are discovered and retrieved in an explorative process by traversing links in
already collected data in a bottom up fashion.

11 This is also true for some of the SPARQL federation approaches.
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ii) An index-based, top-down query evaluation assumes that source descriptions
are available and are used to select query relevant sources before the query
evaluation. The query engines retrieved the content of the selected sources
and evaluate the query over the integrated data graph.

iii) The third approach is based on a mixed strategy of top-down and bottom-up
source selection assumes that not all available sources are known before the
query execution and new sources can be discovered during the evaluation of
the query.

2.3.3.1 Link traversal based Query Execution

The Vrst lookup-based query approach we introduce, processes a given query di-
rectly over the Web without any source knowledge prior to query execution and
discovers query-relevant sources on-the-Wy during the evaluation of queries This
approach was originally propose by Hartig et al. [2009] and is referred to as the
“Link Traversal Based Query Execution” (LTBQE) [Hartig, 2011b]. Analysis and ex-
tensions of LTBQE forms a core part of this thesis.
The LTBQE technique uses dereferenceable URIs in the query – and recursively,

in the intermediate results – to automatically determine a focussed set of sources
which, by Linked Data principles, are likely to be query relevant, retrieving them
for answers.
Given a SPARQL query, the core operation of LTBQE is to identify and retrieve

a focused set of query-relevant RDF documents from the Web of Data from which
answers can be extracted. The approach begins by dereferencing URIs found in the
query itself. The documents that are returned are parsed, and triples matching pat-
terns of the query are processed; the URIs in these triples are also dereferenced to
look for further information, and so forth. The process is recursive up to a Vx-point
wherein no new query-relevant sources are found. New answers for the query can
be computed on-the-Wy as new sources arrive. When operating over compliant
Linked Data, this approach often bypasses the need for source graphs to be explic-
itly named or pre-indexed, allowing for ad hoc, live discovery. Since no local index
is required, this approach can be used in decentralised scenarios, where clients
can execute queries remotely over the Web without accessing a centralised service.
The unique challenges for such an approach are (i) to Vnd as many query-relevant
sources as possible to improve recall of answers; (ii) to conversely minimise the
amount of sources accessed to avoid traXc and slow query-response times; (iii) to
optimise query execution in the absence of typical selectivity estimates, etc. [Har-
tig, 2011b; Hartig et al., 2009].
The theoretical foundation for the explorative LTBQE approach was published

by Bouquet et al. [2010] and further developed by Hartig and Freytag [2011]; a com-
prehensive analysis about the semantics and computability is provided by Hartig
[2012]. We now formally deVne the key notion of query-relevant documents in the
context of LTBQE, and give an indication as to how these documents are derived.
This is similar in principle to the generic notion of reachability introduced previ-
ously [Hartig, 2012; Hartig and Freytag, 2011], but relies here on concrete HTTP
speciVc operations:

DeVnition 8 (Query Relevant Sources & Answers). First let uris(µ) := {u ∈ U |

∃v s.t. (v,u) ∈ µ} denote the set of URIs in a solution mapping µ. Given a query Q
and an intermediate dataset Γ , we deVne the function qrel, which extracts from Γ a set
of URIs that can (potentially) be dereferenced to Vnd further sources deemed relevant
for Q:

qrel(Q, Γ) :=
⋃
tp∈Q

⋃
µ∈[[{tp}]]Γ

uris(µ)
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To begin the recursive process of Vnding query-relevant sources, LTBQE takes URIs
in the query – denoted with UQ := terms(Q) ∩U – as “seeds”, and builds an ini-
tial dataset by dereferencing these URIs: ΓQ0 := derefs(UQ). Thereafter, for i ∈ N,
deVne:12

Γ
Q
i+1 := derefs

(
qrel(Q, ΓQi )

)
∪ ΓQi

The set of LTBQE query relevant sources for Q is given as the least n such that
Γ
Q
n = ΓQn+1, denoted simply ΓQ. The set of LTBQE query answers for Q is given as
[[Q]]ΓQ , or simply denoted bbQcc.

Example 2.17. We illustrate this core concept of LTBQE query-relevant
sources with a simple example based on Figure 2.1. Let Q be the following
query looking for the names of the authors of a named paper:

SELECT ?authorName

WHERE {

dblpP:HartigBF09 foaf:maker ?author .

?author foaf:name ?authorName .

}

Query 2.2: Names of paper authors.

First, the process extracts all raw query URIs, resulting in:
UQ = {dblpP:HartigBF09, foaf:name, foaf:maker }.
In the next stage, the engine dereferences these URIs. Given that redirs(dblpP:
HartigBF09) = dblpPDoc:HartigBF09& redirs(foaf:maker) = redirs( foaf:
made ) = foafSpec:, dereferencing UQ results in two unique named graphs,
viz.:

(
dblpPDoc:HartigBF09, get(dblpPDoc:HartigBF09)

)
and(

foafSpec:,get(foafSpec:)
)
. These two named-graphs comprise ΓQ0 . (In

fact, only the former graph will ultimately contribute answers.)
Second, LTBQE looks to extract additional query relevant URIs by see-

ing if any query patterns are matched in the current dataset. By reference
to the graph dblpPDoc:HartigBF09 in Figure 2.1, we see that for the pat-
tern “dblpP:HartigBF09 foaf:maker ?author .”, the variable ?author is
matched by two unique URIs, namely dblpA:Christian_Bizer and dblpA:

Olaf_Hartig, which are added to qrel(Q, ΓQ0 ). Nothing else is matched.

Hence, these two URIs are dereferenced and the results added to ΓQ0 to form

Γ
Q
1 .
LTBQE repeats the above process until no new sources are found. At the

current stage, ΓQ1 now also contains the two sources dblpADoc:Christian_

Bizer and dblpADoc:Olaf_Hartig needed to return:

?authorName

"Christian Bizer"

"Olaf Hartig"

Furthermore, no other query-relevant URIs are found and so a Vx-point is
reached and the process terminates: bbQcc contains the above results.

The LTBQE approach has an inherent trade-oU between the number of sources
accessed and the recall of the response (the percentage of globally available an-
swers returned), which varies from accessing no sources and returning no results,

12 In practice, URIs need only be dereferenced once; i.e., only URIs in qrel(Q, ΓQi ) \ (qrel(Q, ΓQi−1)∪
UQ) need be dereferenced at each stage.
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to (theoretically) processing the entire Web of Data. Furthermore, LTBQE relies on
Linked Data principles as cues to identify a minimal amount of sources that max-
imise results: however, Linked Data principles are not always fully adhered to on
the Web.

2.3.3.2 Index/Catalog-based Query Processing

The index-based, top-down evaluation determines all query relevant sources prior-
to the actual query execution, falling back upon local knowledge about the content
of sources. The index holds (meta)information and statistics about remote Web
sources and is referred to as a “source-selection index”. These specialised indexes
may be implemented as a simple inverted-index structure [Li and HeWin, 2010;
Oren et al., 2008], a query-routing index [Tran et al., 2010] or a schema-level in-
dex [Stuckenschmidt et al., 2004]. We will compare these index structures as to how
well suited they are for the source selection task in Chapter 5. Furthermore, we ex-
ploit hash-based index structures that summarises the data of or statistics about
source in a very compact form which then can be exploited to optimise queries or
for selecting query relevant sources. These hash-based index structures are inspired
by works on data summaries in the database community.

data summaries Database systems have exploited the idea of capturing statis-
tics about data for many years by using histograms [Ioannidis, 2003], primarily
for selectivity and cardinality estimates over local data. The Vrst histograms were
only deVned on one attribute value. In reality, one usually observes correlation
between attributes and the assumption of independence often leads to bad approxi-
mations of result cardinalities [Poosala and Ioannidis, 1997]. The Vrst histogram
developed to counteract this problem was the two-dimensional equi-depth his-
togram proposed in [Muralikrishna and DeWitt, 1988]. First approaches for incre-
mental maintenance of one-dimensional equi-depth and compressed histograms
were proposed in [Gibbons et al., 2002]. Controversially, most multidimensional
histograms [Gunopulos et al., 2000; Muralikrishna and DeWitt, 1988; Poosala and
Ioannidis, 1997] are static and need to be reconstructed each time the data they
summarise is updated. Some of such histograms [Bruno et al., 2001; Srivastava
et al., 2006] even allow overlapping buckets, which are adapted during runtime.
However, these approaches use one base bucket covering the whole data space to
represent all the data that is not represented by separate buckets. We investigate
use of multi-dimensional histograms for index-based lookup query processing over
Linked Data in Chapter 5.
There exist several other summary techniques for large-scale multidimensional

data that could be applied in this setup. There is a wide range of other hash-based
structures, such as extendible hashing and linear hashing [Huang, 1985; Rathi et al.,
1990]. Other interesting summary techniques that were mainly designed for the
data-stream scenario, such as wavelets and sketches [Babcock et al., 2002]. In data
streams, these techniques that mainly used for approximate query answering, par-
ticularly for aggregation queries. Sketches represent a summary of a data stream
using a very small amount of memory. They are typically used to answer distance
queries, but also to estimate the number of unique values, e.g., for the estimation
of the size of a self-join [Babcock et al., 2002]. Gilbert et al. [2001] shows how
to use sketches to compute wavelet coeXcients eXciently. However, there exist
other methods to compute wavelets as summaries for data streams in a single pass.
[Chakrabarti et al., 2001] shows how wavelets can be used for selectivity estima-
tion and that they are usually more accurate than histograms. The authors show
how to achieve approximate query processing by computing joins, aggregations
and selections entirely on the wavelet coeXcients. A main advantage of wavelets
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and sketches is that they are designed to support particularly eXcient construction
and maintenance phases. In contrast, a main advantage of the multidimensional
structures discussed in this thesis is that they inherently capture data dependen-
cies and were initially designed for multidimensional indexing, rather than approx-
imate query answering on streams.

2.3.3.3 Mixed

The third strategy involves a combination of top-down and bottom-up techniques.
This strategy uses (in a top-down fashion) knowledge about sources to map query
terms or query sub-goals to sources which can contribute answers, then discover-
ing additional query relevant sources using a bottom-up approach. The approach
of Ladwig and Tran [Ladwig and Tran, 2010] exploits diUerent types of knowl-
edge of sources available beforehand, and also, incorporates information gained
during query processing. The results show that the mixed approach eXciently re-
ports results earlier than the explorative bottom-up approach and also reduces the
query time. The same authors optimised this approach with an eXcient join oper-
ator based on symmetric hash joins [Ladwig and Tran, 2011] which resulted in a
reported speed up of the query time by up to 70%. In relation to our work, later
presented in Chapter 6, these mixed approaches focussed solely on optimising the
query performance compare the our proposed hybrid framework which investigate
and explore the mixed strategy from a diUerent angle. To the best of our knowledge,
our contribution in Chapter 6 is the Vrst which studies how the mixed strategy can
improve not only the query time but also the freshness and recall of results.
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3ON THE DYNAM ICS OF L INKED DATA

“You should have started this experiment two years ago!”

— Aidan Hogan, 2012

In this chapter, we introduce the evaluation dataset(s) of this thesis and present
two experiments which study the dynamicity of Linked Data and how the ever-
changingWeb prevents materialisation-based query engines from guaranteeing up-
to-date results.
In order to design our experiments, we Vrst ask the important question: “What

is theWeb of Data?” in Section 3.1. We compare two prominent “views” thereof;
(1) the Billion Triple Challenge dataset view, and (2) the CKAN/LOD cloud view.
The Vndings of this study provide us with an evaluation dataset used throughout
the thesis to benchmark the proposed approaches in Chapter 4 – Chapter 6.
Next, we present our contribution to the young research area of Linked Data

dynamics. In Section 3.2, we verify the assumption that Linked Data is dynamic and
that we can Vnd diUerent levels of dynamicity for diUerent sources. In Section 3.3,
we measure how consistent the cached data of two prominent public SPARQL store
are compared to the data on the Web and conVrm the problem of materialised
indexes serving stale results. The results of our second experiment are further used
in Chapter 6 as input for the query planner of our hybrid query framework.

3.1 what is the web of data?

TheWeb of Data consists of various data providers which publish varying amounts
of information as RDF on the Web, preferably agreeing to the Linked Data princi-
ples. However, we observe that some data providers are compliant with Linked
Data principles to varying degrees [Hogan et al., 2012a]. Thus, there’s no one yard-
stick by which a dataset can be unambiguously labelled as “Linked Data”.
For the purposes of the seminal Linked Open Data (LOD) project, Bizer et al.

[2011] use a variety of minimal requirements a dataset should meet in order to be
included in the LOD Cloud diagram 1, which serves as a high level overview of con-
nections between Linked Data corpora. However, the LOD Cloud is biased towards
large monolithic datasets published on one domain, and does not cover low-volume
cross-domain publishing as common for Web vocabularies such as FOAF, SIOC, etc.
For example, social micro-blogging platforms like identi.ca or status.net, con-
tent management systems such as Drupal, blog engines like Wordpress, etc., can
export compliant, decentralised Linked Data – using vocabularies such as FOAF
and SIOC – from the various domains where they are deployed, but their exports
are not in the LOD Cloud.
A broader notion to consider is the Web of Data, which would cover these lat-

ter exporters and vocabularies, but which is somewhat ambiguous and with ill-
deVned borders. For the main purposes of this chapter in assessing the dynamicity
of Linked Data, we deVne the Web of Data as being comprised of interlinked RDF
data published on the Web.2 No clear road-map is available for the Web of Data per

1 http://richard.cyganiak.de/2007/10/lod/
2 This deVnition is perhaps more restrictive than some interpretations where, e.g., Sindice incorporates
Microformats into their Web of Data index [Delbru, 2009].

30

http://richard.cyganiak.de/2007/10/lod/


3.1 what is the web of data?

this deVnition; the LOD cloud only covers prominent subsets thereof. Perhaps the
clearest picture about Linked Data on the Web comes from crawlers that harvest
RDF from the Web by traversing links. A prominent example are the Billion Triple
Challenge datasets [Bizer and Maynard, 2011], which are made available every year
and comprises of data collected during a deep crawl of RDF/XML documents on the
Web of Data. However, the precise composition of such datasets is unclear, and re-
quires further study.
To get a better insight, we contrast two such perspectives of the Web of Data. In

detail, we compare the:

billion triple challenge 2011 dataset (btc)

The Billion Triple Challenge 2011 dataset is collected from a Web crawl of
over seven million RDF/XML documents in 2011 [Harth and Maynard, 2012];

comprehensive knowledge archive network (ckan)

The Comprehensive Knowledge Archive Network is a repository – speciV-
cally the lodcloud group therein – containing high-level metrics reported
by Linked Data publishers, used in the creation of the LOD Cloud [Pollock
et al., 2004].

We want to see how these two diUerent views of the Web of Data compare and
how they can be used as the basis for an evaluation corpus.

3.1.1 The BTC 2011 Dataset

The BTC dataset is crawled from the Web of Data, previously using our Multi-
Crawler framework [Harth et al., 2006] and recently the LDSpider [Isele et al., 2010]
framework, for the annual Billion Triple Challenge [Bizer and Maynard, 2011] at
the International Semantic Web Conference (ISWC). The dataset empirically cap-
tures a deep, broad sample of the Web of Data in situ.
However, the details of how the Billion Triple Challenge dataset is collected are

somewhat opaque. The seed list is sampled from the previous year’s dataset [Harth
and Maynard, 2012], where one of the initial seed-lists in past years was gathered
from various semantic search engines. The crawl is for RDF/XML content, and
follows URIs extracted from all triple positions. Scheduling (i.e., prioritising URIs
to crawl) is random, where URIs are shuYed at the end of each round. As such, any
RDF/XML document reachable through other RDF/XML documents from the seed
list is within scope; otherwise, what content is (or is not) in the BTC – and how
“representative” the dataset is of the Web of Data – is diXcult to ascertain purely
from the collection mechanisms.
As such, it is more pertinent to look at what the dataset actually contains. The

most recent BTC dataset available during the time of writing was crawled in May
and June 2011. The Vnal dataset contains 2.145 billion quadruples, extracted from
7.411 million RDF/XML documents. The dataset contains RDF documents sourced
from 791 pay-level domains (cf. DeVnition 1). The BTC 2011 dataset contained doc-
uments from 240,845 fully qualiVed domain names (cf. DeVnition 1), 233,553 of
which were from the livejournal.com PLD.

On the left-hand side of Table 3.1 we enumerate the top-25 PLDs in terms of
quadruples contributed to the BTC 2011 dataset. Notably, a large chunk of the
dataset (∼64 %) is provided by the hi5.com domain: a social gaming site that ex-
ports a FOAF Vle for each user. As observed for similar corpora (cf. [Hogan et al.,
2011, Table A.1]) hi5.com has many documents, each with an average of over two
thousand statements – an order of magnitude higher than most other domains –
leading it to dominate the overall volume of BTC statements.
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Figure 3.1: Distribution of the number of statements in documents for the BTC2011 dataset
(3.1a) and (3.1b) for hi5.com; as well as (3.1c) the periodicity of distribution of
statements per document for hi5.com that causes the split tail in (3.1a) & (3.1b).

The dominance of the data provider hi5.com – and to a lesser extent similar
sites like livejournal.com – shape the overall characteristics of the BTC 2011
dataset. To illustrate one prominent such example, Figure 3.1a gives the distribution
of statements per document in the BTC dataset on log/log scale, where one can
observe a rough power-law(-esque) characteristic. However, there is an evident
three-way split in the tail emerging at about 120 statements, and ending in an
outlier spike at around 4,000 statements. By isolating the distribution of statements-
per-document for hi5.com in Figure 3.1b, we see that it contributes to the large
discrepancies in that interval. The stripes are caused by periodic patterns in the
data, due to its uniform creation: on the hi5.com domain, RDF documents with a
statement count of 10+ 4f are heavily favoured, where ten triples form the base of
a user’s description and four triples are assigned to each of f friends. Other lines
are formed due to two optional Velds (foaf:surname/foaf:birthday) in the user
proVle, giving a 9+ 4f and 8+ 4f periodicity line. An enforced ceiling of f 6 1, 000
friends explains the spike at (and around) 4,010.
The core message is that although the BTC oUers a broad view of the Web

of Data, covering 791 domains, in absolute statement-count terms, the dataset is
skewed by a few high-volume exporters of FOAF, and in particular hi5.com. When
deriving global statistics and views from the BTC, the results say more about the
code used to generate hi5.com proVles than the eUorts of thousands of publishers.3

This is also a naturally-occurring phenomenon in other corpora (e.g., [Ding and

3 Furthermore, hi5.com is not even a prominent domain on the Web of Data in terms of being linked,
and was ranked 179/778 domains in a PageRank analysis of a similar corpus; http://aidanhogan.com/
ldstudy/table21.html
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№
Top-25 BTC Top-25 CKAN/LOD

PLD BTC LOD PLD LOD BTC

1 hi5.com 1,371,854,358 — rpi.edu 9,803,140,000 900,464

2 livejournal.com 169,863,721 — linkedgeodata.org 3,000,000,000 —

3 tfri.gov.tw 153,300,321 23,015,257 legislation.gov.uk 1,900,000,000 31,990,934

4 scinets.org 56,075,080 — wright.edu 1,730,284,735 5

5 ontologycentral.com 55,124,003 122,000,000 concordia.ca 1,500,000,000 —

6 rdfize.com 36,154,381 — data.gov.uk 1,336,594,576 13,302,277

7 legislation.gov.uk 31,990,934 1,900,000,000 dbpedia.org 1,204,000,000 25,776,027

8 identi.ca 30,429,795 — rdfabout.com 1,017,648,918 —

9 bibsonomy.org 28,670,581 — dbtune.org 888,089,845 1,634,891

10 dbpedia.org 25,776,027 1,204,000,000 uniprot.org 786,342,579 4,004,440

11 freebase.com 25,488,720 337,203,427 unime.it 586,000,000 —

12 opera.com 23,994,423 — uriburner.com 486,089,121 —

13 bio2rdf.org 20,168,230 72,585,132 openlibrary.org 400,000,000 25,396

14 archiplanet.org 13,394,199 — sudoc.fr 350,000,000 —

15 data.gov.uk 13,302,277 1,336,594,576 freebase.com 337,203,427 25,488,720

16 loc.gov 7,176,812 24,151,586 fu-berlin.de 247,527,498 5,658,444

17 vu.nl 6,106,366 14,948,788 dataincubator.org 205,880,247 3,695,950

18 bbc.co.uk 5,984,102 80,023,861 viaf.org 200,000,000 —

19 rambler.ru 5,773,293 — europeana.eu 185,000,000 —

20 fu-berlin.de 5,658,444 247,527,498 moreways.net 160,000,000 —

21 uniprot.org 4,004,440 786,342,579 rkbexplorer.com 134,543,526 220

22 dataincubator.org 3,695,950 205,880,247 ontologycentral.com 122,000,000 55,124,003

23 zitgist.com 3,446,077 60,000,000 opencorporates.com 100,000,000 —

24 daml.org 3,135,225 — uberblic.org 100,000,000 —

25 mybloglog.com 2,952,925 — geonames.org 93,896,732 458,490

Table 3.1: Statement counts for top-25 PLDs in the BTC with corresponding reported triple
count in CKAN (left), and top-25 PLDs in CKAN with BTC quad count (right)

Finin, 2006; Hogan et al., 2011]) crawled from the Web of Data – not just isolated to
the BTC dataset(s) – and is not easily Vxed. One option to derive meaningful statis-
tics about the Web of Data from such datasets is to apply (aggregated) statistics
over individual domains, and never over the corpus as a whole.

3.1.2 CKAN/LOD Cloud Metadata

In contrast to the crawled view of the Web of Data, the CKAN repository indexes
publisher-reported statistics about their dataset. These CKAN metadata are then
used to decide eligibility for entry into the LOD cloud [Bizer et al., 2011]: a highly
prominent depiction of Linked Open Datasets and their interlinkage. A CKAN-
reported dataset is listed in the LOD cloud iU it fulVls the following requirements:
the dataset has to (1) be published according to core Linked Data principles, (2)
contain at least one thousand statements and (3) provide at least 50 links to other
LOD cloud datasets4.
Given the shortcomings of the crawled perspective on the Web of Data, we ex-

plore these self-reported metadata to acquire an alternative view. On September 29,
2011, we downloaded the meta-information for the datasets listed in the lodcloud
group on CKAN5. The data contain example URIs for the dataset and statistics such
as the number of statements. We discovered dataset description for 297 datasets,
spanning 206 FQDNs and 133 PLDs. On the right hand side of Table 3.1, we enu-
merate the top-25 largest reported datasets in the lodcloud group on CKAN. Note
that where multiple datasets are deVned on the same domain, the triple count is pre-
sented as the summation of said datasets. In this Table, we see a variety of domains
claiming to host between 9.8 billion and 94 million triples.

4 http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/

CKANmetainformation
5 http://thedatahub.org/group/lodcloud
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linkedgeodata.org X X

concordia.ca X

rdfabout.com X

unime.it X

uriburner.com X

sudoc.fr X

viaf.org X

europeana.eu X

moreways.net X

uberblic.org X

Table 3.2: Reasons for largest ten PLDs in CKAN/LOD not appearing in BTC 2011.

Regarding the data formats present in the LOD cloud, most of the datasets claim
to serve RDF/XML data (85 %), 4 % claim to serve RDFa (of which 50 % did not also
oUer RDF/XML) which shows the popularity of RDF/XML. However, the syntax
metadata are somewhat unreliable, where improper mime-types are often reported.

3.1.3 Comparison Between BTC and CKAN/LOD

Finally, we contrast the two diUerent perspectives of the Web of Data. Between
both, there are 854 PLDs mentioned, with BTC covering 791 domains (∼92.6 %),
CKAN/LOD covering 133 domains (∼15.6 %), and the intersection of both covering
70 domains (∼8.2 % overall; ∼8.8 % of BTC; ∼52.6 % of CKAN/LOD). CKAN/LOD re-
ports a total of 28.4 billion triples, whereas the BTC (an incomplete crawl) accounts
for 2.1 billion quadruples (∼7.4 %). However, only 384.3 million quadruples in the
BTC dataset (∼17.9 %) come from PLDs mentioned in the extracted CKAN/LOD
metadata.
In Table 3.1, we present the BTC and CKAN/LOD statement counts side-by-side.

We can observe that a large number of high-volume BTC domains are not men-
tioned on CKAN/LOD, where the datasets in question may not publish enough RDF
data to be eligible by CKAN/LOD, or may not follow Linked Data principles or have
enough external links, or may not have self-reported. Perhaps more surprisingly
however, we note major discrepancies in terms of the catchment of BTC statements
versus CKAN/LOD metadata. Given that BTC can only sample larger domains, a
lower statement count is to be expected in many cases: however, some of the largest
CKAN/LOD domains do not appear at all. Reasons can be found through analysis
of the BTC 2011’s publicly available access log. In Table 3.2, we present reasons for
the top-10 highest-volume CKAN/LOD data providers not appearing in the BTC
2011 dataset (i.e., providers appearing with “—” on the right-hand side of Table 3.1).
Robots indicates that crawling was prohibited by robots.txt exclusions; Http-
401 and Http-502 indicate the result of lookups for URIs on that domain; Mime
indicates that the content on the domain did not return application/rdf+xml

used as a heuristic in the BTC crawl to Vlter non-RDF/XML content; Unreach-
able indicates that no lookups were attempted on URIs from that domain; Other
refers solely to europeana.eu, which redirected all requests to their home page.
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BTC

Pr
os
:

X covers more domains (791)

X empirically validated

X includes vocabularies

X includes decentralised datasets

C
on

s: X inWuence of high-volume domains

X misses 47.4 % of LOD/CKAN domains

LOD/CKAN

Pr
os
:

X domains pass “quality control”

X community validated

C
on

s:

X covers fewer domains (133)

X self-reported statistics

X misses vocabularies

X misses decentralised datasets

Table 3.3: Advantages and disadvantages for both perspectives of the Web of Data.

In summary, we see two quite divergent perspectives on the Web of Data, given
by the BTC 2011 dataset and the CKAN/LODmetadata. As enumerated in Table 3.3,
both perspectives have inherent strengths and weaknesses. We will use the BTC
data sets for the evaluation of our query approaches in Chapter 4 and Chapter 6
because of its broad coverage and diversity and since it includes also vocabularies.
However, to measure the dynamicity of Linked Data, we decided to combine both
data sets to get the best possible coverage, but on a smaller scale.

3.2 studying the dynamicity of linked data

In this section, we present out experiment to investigate the dynamicity on theWeb
of Data. Our experiment is inspired by decades of research in the area of dynamicity
of the traditional Web, which (mostly) centres around dynamicity on the level of
source changes, e.g., Brewington and Cybenko [2000a,b], Lim et al. [2001], Cho and
Garcia-Molina [2003a,b], Fetterly et al. [2004] and Ntoulas et al. [2004], amongst
others. We refer interested readers to the excellent survey by Oita and Senellart
[2011], which provides a comprehensive overview of existing methodologies to
detect Web page changes, and also surveys general studies about Web dynamics.
Regarding the study of the dynamics on Linked Data some research regarding

dynamics has been conducted with respect to analysing the evolution of ontolo-
gies in the life science community [Hartung et al., 2008]. In [Popitsch and Hasl-
hofer, 2011] the authors reported on their work concerning DSNotify, a system for
detecting and Vxing broken links in Linked Data datasets but not considering the
patterns or change processes. However – and to the best of our knowledge – we are
not aware of any published studies more generally regarding the change frequency
of resources on the Linked Open Data Web, and thus deem the experiments herein
to be novel.
As such, we design an experiment and aim to provide answers to the following

questions about the evolving Web of Data:
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Change process

q1: How fast does a source change?

The study of the change frequency of sources does not only help to get a
general understanding about the dynamics but also is very relevant for a
broad range of application domains as described already [Cho and Garcia-
Molina, 2000a]. Thus, we investigate how long it takes for a source to change.

q2: Can the change process be described with a mathematical model?

Various published studies reported that the change behaviour of Web pages
corresponds closely with – and can be predicted using – a Poisson distribu-
tion [Brewington and Cybenko, 2000a,b; Cho and Garcia-Molina, 2003a,b].
We try to apply the same model to the results from the previous question.

Change characteristics

q3: Can we observe diUerent types of changes?

Given the diversity of publisher domains on the Web, we expect to observe
diUerent types of changes, such as updates of sensor readings, only append-
ing information like adding new publications or also a combination of up-
dates, additions and deletions.

q4: Can we observe diUerent characteristics for diUerent data providers?Again, var-
ious authors also showed that change frequencies on the traditional Web
vary widely across top-level domains [Brewington and Cybenko, 2000a,b;
Cho and Garcia-Molina, 2003b; Fetterly et al., 2004]. We also expect that cer-
tain Linked Data data providers publish rather static data (e.g., archives or
data from statistical institutes) and others rather publish data that change
with varying degrees (be it occasional updates in personal Vles, infrequent
bulk updates like in DBPedia, or frequently changing sensor data or social
network activities).

Answering these questions requires a large and diverse data set which is con-
stantly monitored over a long timespan to conclude meaningful Vndings. Despite
the fact that we conducted a similar experiment in a previous study [Umbrich et al.,
2010a], we are not aware of any signiVcant, heterogeneous and publicly available
dataset of Linked Data sources which includes a complete and consistent history of
changes over a long timespan. The data corpus for the mentioned study was com-
parable smaller and, even more important, not diverse enough to obtain a more
representative picture. Thus, we (re)designed our own experiment, where we out-
line our methodologies next.

3.2.1 Methodology

Various aspects must be considered in order to achieve a comprehensive overview
of how Linked Data changes and evolves on the Web. Important factors aUect-
ing the Vndings of such an experiment are the chosen dataset, the monitoring fre-
quency and what is actually considered as a data change.
The methodologies used in our evaluation are inspired by legacy related work

for Web documents and is based on the experience of our previous study [Umbrich
et al., 2010a]. Clearly the design of such an experiment, and gathering the require-
ments for the resulting collection, is non-trivial: many factors and actors have to
be taking into consideration in the context of the open Web and the Linked Data
community. Conceptually, we want our experiment to be:
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general-purpose: suitable to study for a wide range of interested parties;

broad: capturing a wide selection of Linked Data domains;

substantial: the number of documents monitored should allow for
deriving conVdent statistical measures;

granular & frequent: oUering detailed data on sources;

contiguous: allowing comparison of sources over time; and

adaptive: able to discover the arrival of new sources, and can mon-
itor more dynamic sources more frequently.

3.2.1.1 Sampling a Monitoring Dataset

Due to the size of the Web and the need for frequent snapshots, sampling is nec-
essary to create an appropriate collection of URIs that can be processed and mon-
itored under the given time, hardware and bandwidth constraints. The goal of our
sampling method is thus two-fold: to select a set of URIs that (i) capture a wide
cross-section of domains and (ii) can be monitored in a reasonable time given our
resources and in a polite fashion. The change frequency of data on the Web can
vary signiVcantly across datasets, from rather static sources, such as archives, to
high-frequently changing sources, for example in the micro-blogging domain or
from sensors. Also, the change volume can range from small-scale updates, in our
case, updates involving a low number of triples, to bulk updates, which potentially
aUect many resources. As such, we wish to combine the BTC/crawled and CK-
AN/metadata perspectives when deVning our seed-list to get a good coverage of
data providers and their sources.
We decided to sample our dataset based on a combination of three methods to

select URIs from crawled documents: (i) either randomly, (ii) because of speciVc
characteristics (e.g., dynamic or highly ranked), or (iii) to ensure an even spread
across diUerent hosts. We start with an initial seed list of 440 URIs taken from:
(1) the 220 registered example URIs for the datasets in the LOD cloud at the time
of access and complement them with (2) the top-220 document URIs in the BTC
dataset of 2011.
The most popular URIs are selected based on a PageRank analysis of the docu-

ments in the BTC 2011 dataset, where we select the top-k ranked documents from
this analysis (please see [Glimm et al., 2012] for details); note that many of the
top ranked documents refer to commonly instantiated vocabularies on the Web
of Data, which are amongst the most linked/central Linked Data documents. The
resulting core URIs contain 137 PLDs, 120 from the CKAN/LOD examples and 37
from the most popular BTC URIs. This selection guarantees us to cover all relevant
domains (similar to [Fetterly et al., 2004]) and to also consider the most popular and
interlinked URIs on the Web of Data (similar to [Cho and Garcia-Molina, 2003b]).
Obviously, 440 seed URIs are insuXcient to resolve a meaningful corpus for ob-

servation over time. Thus, we decide to use a crawl and expand outwards from
these core URIs to Vnd other documents to monitor in their vicinity. Importantly,
we wish to stay in the close locale of the 440 core URIs; if we go further, we will
encounter the same problems as observed for the BTC 2011 dataset, where the
data are skewed by a few high-volume exporters. To avoid being diluted by, e.g.,
hi5.com data and the likes, we thus stay within a 2-hop crawl radius from the core
URIs.
Starting from our list of 440 core URIs, we expand a 2-hop crawl from which we

build the Vnal seed list of URIs to monitor. However, due to unpredictability/non-
determinism of remote connections, we want to ensure a maximal coverage of the
documents in this neighbourhood. We repeated ten complete 2-hop crawls from
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Figure 3.2: Distribution of the number of
documents per PLD in the seed
list.

№ PLD URIs

1 gesis.org 7,850

2 chem2bio2rdf.org 5,180

3 dbpedia.org 3,643

4 freebase.com 3,026

5 fer.hr 2,902

6 loc.gov 2,784

7 concordia.ca 2,784

8 dbtune.org 2,767

9 fu-berlin.de 2,689

10 semantictweet.com 2,681

Table 3.4: Top 10 PLDs based on
the number of URIs in the
seed list.

our core URI list and to ensure comprehensive coverage of URIs in the 2-hop neigh-
bourhood, we take the union of URIs that dereferenced to RDF content, resulting
in a total set of 95,737 URIs spanning 652 domains, giving an average of 146.8 deref-
erenceable URIs per domain.
The result is then our best-eUort compromise to achieve representative snap-

shots of Linked Data that (i) take into account both views on Linked Data by includ-
ing CKAN and BTC URIs in the core seed list, (ii) extend beyond the core seed list in
a deVned manner (2 hops), and (iii) do not exceed our crawling resources. Figure 3.2
shows in log/log scale the distribution of the number of PLDs (y-axis) against the
number of URIs in the union list (x-axis); we see that 379 PLDs (∼58.1 %) have one
URI in the list, 78 PLDs (∼12.0 %) have two URIs, and so forth. In addition, Fig-
ure 3.4 lists the number of URIs for the top-10 PLDs in the set (represented by the
ten rightmost dots in Figure 3.2). Technical details about the crawl setup can be
found in Käfer et al. [2012].

3.2.1.2 Monitoring conVguration

Since the Web is undoubtedly evolving in real-time [Brewington and Cybenko,
2000a; Ntoulas et al., 2004], ideally, we would like to monitor the source changes
when they happen to get the most accurate information. However, due to the size of
the Web and by adhering to server politeness guidelines (posing too many requests
to the same domain in the same time frame), it is impossible to monitor all Web
sources and react to changes when they happen [Cho and Garcia-Molina, 2000b].
Thus, we model the evolving Web as a evolving graph process over a set of dis-

crete timesteps T (T = {t1, ..., tn}, ti ∈ N). At each timestamp t, we consider that
the Web of Data consists of a set of sources and their content. We believe, that
this discrete model serves as a good approximation for real-time change processes,
depending of course on the granularity of timestamps intervals.
Given our evolving Web model, we now discuss the monitoring techniques and

intervals we apply.
In general, there exist two fundamental monitoring techniques. The Vrst tech-

nique is to periodically download the content of a Vxed list of URIs, as widely
used in the literature [Brewington and Cybenko, 2000a,b; Cho and Garcia-Molina,
2003a,b]; this technique allows us to study the evolution of sources over time in a
contiguous fashion. The second technique is to periodically perform a crawl from
a deVned set of URIs [Ntoulas et al., 2004]; this technique is more suitable if one
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wants to study the evolution of the neighbourhood network of the seed URIs in
an adaptive fashion, but also can introduce a factor of randomness based on the
crawling methods.
Again, we decided to apply a hybrid approach: primarily, we do not want to limit

our observations to URIs online at the start of the experiment, although they will
still be our focus. We thus take the set of 95,737 sampling URIs extracted in the
previous section as a kernel of contiguous URIs accessed consistently in each snap-
shot. From the kernel, we propose to crawl as many URIs again using the crawler
conVguration outlined in the previous section, forming the adaptive segment of the
snapshot. Roughly half of our snapshot would comprise of the contiguous kernel,
reliably providing data about said URIs; and the other half of our snapshot would
comprise of the adaptive crawl, reWecting changes in the neighbourhood of the ker-
nel. We do not limit PLDs in the adaptive crawl so as to not exclude data providers
that come online during the course of the experiment. This setup allows for study-
ing (i) dynamics within the datasets (ii) dynamics between datasets (esp. links) (iii)
and the growth of Linked Data and the arrival of new sources (although to a lesser
extent).

weekly monitoring interval Next, we must decide on the monitoring in-
tervals for our platform: how frequently we wish to perform our crawl. In the lit-
erature, it is common to take the data snapshots in either a daily [Fetterly et al.,
2004; Ntoulas et al., 2004] or weekly [Brewington and Cybenko, 2000a,b; Cho and
Garcia-Molina, 2003a,b] fashion. Again, in a practical sense, the intervals are highly
dependent on the available resources, and the size of the seed list. Given our re-
sources and the monitoring requirements, we decided to perform a full snapshot
every week. We believe this interval to be well within the update latency of current
materialised Linked Data query engines.

3.2.1.3 Change detection function

A straightforward approach to study the changes on the Web of Data is to compare
the sources between two timestamps for which the content is available. However,
since Linked Data is used to describe entities and the relation between these, one
might be also interested to study how the information about entities change over
time as we highlighted in an earlier experiment [Umbrich et al., 2010a]. For this
particular experiment, we will ignore entity-centric changes and apply the straight-
forward source centric change detection.
The change detection of a source between two snapshots t, t‘ is a trivial task as

long as the statements of the resource do not contain blank nodes [Tummarello
et al., 2007]. For our evaluation, we used a simple change detection algorithm –
based on a merge-sort scan over the weekly snapshots – as follows:

1. skolemise blank nodes within a document, that is, we replace the blank nodes
with unique constants based on a deterministic combination of source URL
and the blank node itself. In such way, we guarantee that there exists no two
blank nodes with the same identiVer within the same snapshot;

2. sort all relevant statements for the change detection of an document or entity
by their syntactic natural order (subject-predicate-object-[context]);

3. perform pairwise comparison of the statements by scanning two snapshots
in linear time;

4. trigger a detection of change as soon as the order of the statements diUers
between two snapshots (e.g. new statements were added or removed).
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Figure 3.3: Access and lifespan distribution of sources

This algorithms also allows us to categorise the types of changes based on the
statements that were added or removed between two snapshots.

3.2.2 Evaluation

In this section, we provide the answers to our four questions regarding the change
frequency of resources on the Web of Data.

data corpus We started our experiment at the beginning of May 2012 and
collected so far 15 weekly snapshots at the point of writing. The union of the
datasets contains 240,324 distinct sources stemming from 1,351 PLDs.

availability and lifespan of sources We give an overview about how
many sources are accessed in each monitoring snapshot. In particular, we are inter-
ested in characterising the distribution of the number of accesses (i.e., appearances)
and the lifespan (i.e., the time interval between the Vrst and last appearance) of the
sources in terms of weeks. This computation of the lifespan of a source is slightly
diUerent from Cho and Garcia-Molina [2000a], who estimated the lifespan of a doc-
ument by doubling the time the document was seen in the monitoring window if
the document occurred at the beginning of the experiment but not at the end.

Figure 3.3 contains the separate plots of the accesses and lifespan distribution
for sources. We can see from the Vgure that in around 50% of the sources have a
lifespan and number of continues accesses of more than 14 weeks. However, the
Vgures do not show how access and lifespan are related.
The Vgure is not showing the fraction of sources with a certain lifespan and ac-

cess number. Thus, Table 3.5 shows these details and lists the fraction of sources
with their speciVc lifespan and number of accesses; we omitted the table cells if
the fraction of documents was less than 5%. More precisely, ∼116k (48.51%) out of
the 240k sources have a lifespan of 15 weeks with a total of 70k (29.48%) sources
also appearing in each of the 15 weekly snapshots. Still, we found a total of 33.5k
(14.47%) documents which we accessed only once during the total time of the ex-

40



3.2 studying the dynamicity of linked data

Lifespan [weeks]

№ 1 . . . 14 15 total

A
cc
es
se
s
[w

ee
ks
] 1 14.47% . . . — — 14.47%

...
...

13 — . . . 1.68% 4.06% 6.3%

14 — . . . 1.78% 9.59% 11.37%

15 — . . . — 29.48% 29.48%

total 14.47% . . . 9.13% 48.51% 100 %

Table 3.5: Fraction of documents with speciVc accesses and lifespan (see Appendix Table B.1
for full results).

№ PLD URIs

1 identi.ca 3,545

2 freebase.com 3,509

3 dbpedia.org 3,315

4 europa.eu 3,217

5 fer.hr 2,958

6 gesis.org 2,935

7 mcu.es 2,925

8 loc.gov 2,854

9 bbc.co.uk 2,792

10 tfri.gov.tw 2,670

Table 3.6: Top 10 PLDs based on the number of URIs in our evaluation sample.

periment. The results for the omitted values are listed in the Appendix in Table B.1
for sources.
For the remainder of our study, we only consider the subset of the corpus which

features sources that appear in more than 13 snapshots and show a lifespan of 13
appearances. This results in analysing 111,966 sources from 1,351 PLDs, a total of
46.59% of the total sources in our collection. Table 3.6 lists the top 10 PLDs and
the number of URIs in the resulting corpus. If we compare this list with the top-
10 PLDs in the original seed list(cf. Figure 3.4), we see that we have 5 overlapping
PLDs which are all from the top-6 of the original seed URIs. To highlight diUerences
in dynamicity between data providers, we later detail and compare results for the
top-4 PLDs in Table 3.6, each with more than 3k sources.

q1: how fast do resources change?
To answer this question, we compute and analyse the average change frequen-

cies of the sources. Let us assume a source s changed 5 times during our monitoring
interval of 15 weeks. In this case, we can estimate the average change frequency λ
of s to be 15 weeks/5 changes = 3 weeks.
Following this example, we summarise results for the average change frequency

of sources across all domains (see Figure 3.4a) and for each of the top-4 data
providers (see Figure 3.4b). We observed that 60% of the monitored sources are
static considering the change frequency across all data providers. This observa-
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Figure 3.4: Fraction of sources with given average change frequency.

tion is similar to the results we obtained in a preliminary previous study [Umbrich
et al., 2010a]. We refer to the remaining 40% of the sources (46k) as dynamic sources.
From Figure 3.4a we can observe that roughly half of these non-static sources have
a content change rate of 1 week. A total of 8% of all sources changed only once in
our experiment.
Looking at Figure 3.4b, we see the diUerent change frequency distributions for

the top-4 data providers. The identi.ca data provider – a social micro-blogging
platform – shows similar characteristics to the overall trend in Figure 3.4a. Simi-
lar behaviour is shown by the freebase.com provider for which about 60% of the
sources are either very static or with only one change and for which around 22% of
the sources are highly dynamic with a change rate (potentially) more frequent than
1 week. The europa.eu data provider shows that we detected only one change for
nearly 80% of the sources. A manual inspection showed that bulk changes hap-
pened in the 11th week of our experiment. For the dbpedia.org dataset, we ob-
serve that over 50% of the pages change every 6 or 7 weeks.

q2: can the changes be modelled as a mathematical process?
Next, we analyse whether we can apply the Poisson model to the changes of

sources detected in our analysis. Various authors discovered that the change be-
haviour of Web pages corresponds closely with – and can be predicted using – a
Poisson distribution [Brewington and Cybenko, 2000a,b; Cho and Garcia-Molina,
2003a,b]. Such knowledge can be exploited in various task, e.g., we can predict the
next most likely document change and developing adaptive data update strategy
for search engines. We use an established model for changes of Web documents
and see if our observed changes can be also modelled accordingly.
Therefore, we compute the average change rate λ for each document. We group

sources with the same change rate and compute and plot their distribution of suc-
cessive change intervals; e.g., a document which changed in week 2 and 6 has a
successive change interval of 4.
To answer our question, we performed a log-linear regression and used the max-

imum likelihood method to estimate the parameter λ for a Poisson distribution. We
measured how well the estimated poisson distribution Vts our observed data with
a Chi square test (χ2) [Vose and Vose, 2000]. Table 3.7 lists the observed and esti-
mated value λ and the total number of change events. the results of the distribution
Vtting and the goodness of Vt tests for the diUerent classes of change frequencies.
Even some of the estimated parameters are close to the observed average change
frequency, non of the distribution could be Vtted to a Poisson model with statisti-
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Figure 3.5: Sources with an average change frequency of 2 (3.5a) and 3 weeks (3.5b).

avg. change frequency (λ)

observed Vtted #events

1 1.04 72,630

2 1.9 1,510

3 2.83 528

4 3.77 1,443

5 3.62 2,817

6 5.31 2,726

7 5.51 3,210

12 9.8 810

13 8.89 1,442

14 9.24 3,989

Table 3.7: Result estimates of the distribution Vtting and Chi square (χ2) test.

cal signiVcancy: all p-values of the χ2 test were less than 0.05 which indicates that
some factor other than chance is the cause for the deviation.6

We selectively present the graphs for sources which appeared in 13 snapshots
and show an average change frequency of 1 weeks ( Figure 3.5a) and for 3 weeks
( Figure 3.5b). The predicated poisson process is plotted in the graphs as the line to-
gether with the estimated value for λ, the average change frequency. If the changes
can be modelled as a Poisson process, the resulting graph should be distributed
exponentially.

So far, we observed diUerent levels of dynamicity for Linked Data sources in our
data collection. Moreover, the diUerent change frequency distributions for the top-4
data providers suggest that the change processes are also data provider dependent.

3.2.2.1 Change characteristics

We are now interested in categorising the type of occurring changes and, as before,
to see if the change behaviour varies across diUerent data-providers.

q3: can we observe different types of changes?

6 For example, a p-value of 0.01 means that there exists a 1% chance that the deviation between observed
and estimated data is due to chance alone.
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Fraction

Change Type all identi.ca freebase.com dbpedia.org europa.eu

Update 24.20% 2.21% 11.71% 8.57% —

Update/Mixed 23.56% 0.33% 21.74% 20.85% 0.01%

Add 20.59% 11.55% 50.28% 3.13% 99.99%

Mixed 19.03% 10.07% 1.64% 38.02% —

Del/Add 2.65% 4.84% 6.16% 1.88% —

Add/Mixed 1.69% 16.52% 0.43% 5.56% —

Del/Mixed 1.65% 18.07% 0.13% 15.32% —

Del 1.16% 10.40% 0.23% — —

Rest 5.47% 26.01% 7.68% 6.67% —

Table 3.8: Results of source change categories and combination.

We now discuss the observed types of changes for the sources over time. There-
fore, we deVned the following four main change categories:

• Add – we classify a change as added if only new statements are attached to a
source;

• Del – a change is categorised deleted if only existing statements are removed;

• Update – we say a source is updated if the number of added and removed
statements were the same and for each removed statement there exists an
added statement which overlaps by two elements (e.g., the subject and object
values are the same);

• Mixed – we use the category mixed when statements are added and deleted
but the changes do not classify as an update.

We categorise the type of changes observed in the 15 weeks of the experiment
for each of the 46k dynamic sources (cf. Figure 3.4a). For example, if only new con-
tent was added to a source between two snapshots and between two other snap-
shots one or more statements were just updated, we label the source with Add/Up-
date. Similarly, we label a source with Del/Add if the detected change events were
deletions and additions. Table 3.8 lists the fraction of sources which encountered
such a change (or combination thereof) for each of the categories in descending
order. We do not present the combination of change categories with less than 1% of
the sources. In addition, we provided analogous Vgures for each of the top-4 data
providers.
The study shows that the most frequent observed changes are purely updates

or updates combined with some additional removals or new statements. In detail,
we measured that for 25% of the dynamic sources, content changes were purely
updates. Furthermore, we observed a combination of update events with mixed
events for another 24% of the sources. Interestingly, 20% of the sources showed a
monotonic behaviour such that in each change event, new statements are added
and old statements remain as before (ie., not updated or deleted).
A closer look at the results for the top-4 data providers suggests that the vari-

ation of changes across publishers. The changes of the identi.ca sources show
combinations of most of the categories which is explainable by the fact that users
of this micro-blogging service do not only post new messages, but also update
their proVle information and follow or unfollow new and existing users. The most
changes observed for the freebase provider are only additions of information
to existing content or updates. The changes for the dbpedia.org provider are a
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Figure 3.6: Fraction of PLDs with given average change frequency.

combination of adding and removing statements at the same time. Interestingly,
the changes observed for the government data from europa.eu were almost all
only additions of new statements. This veriVes also our manual inspection of the
changes of this data provider for the previous question. We can see that two of
these four data providers show a high fraction of sources with a monotonic change
behaviour, where only new information is added to existing data.
Overall, it seems like there is no clear categorisation of the changes for the

sources. Most sources show a combination of diUerent change categories. Most of
the sources which have only additions (ADD) are dominated by europa.eu which
seemed to have a single update for 80% of the sources in week 11 of our experiment.

q4: can we observe different characteristics for different data
providers?
By looking individually at the top-4 data providers, the previous questions al-

ready provide strong evidence that the change behaviour of the data sources de-
pends on the data provider and the nature of the data, e.g., social micro-blogging,
government data or encyclopaedias. Despite this, we still look into how the aver-
age change frequency of sources varies across diUerent data providers. To do so,
we group the sources based on their PLDs and computed the average change ratio.
Figure 3.6 shows the distribution of PLDs with their speciVc average change fre-
quency. We see that the around 43% of the data providers publish static data. The
majority of the remaining data providers hosts sources which change on average
every week. A total of 27% of the data providers publish data that changes on aver-
age at least once a week. The remaining 30% of the providers published data with
an average change frequency varying between 2 and 15 weeks. This shows that we
can observe diUerent characteristics for diUerent data providers.

3.3 index freshness study

In the previous section, we veriVed that Linked Data is dynamic and shows diUer-
ent levels of dynamicity across diUerent data providers. The fact that the Web of
Data is dynamic and very large poses serious challenges for maintaining a com-
prehensive and up-to-date index. Typically, the coverage of an index is limited by
the amount of data that can be located, retrieved and indexed by local servers. Sim-
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ilarly, the size and dynamicity of sources and the availability of local resources
directly aUects the ability of centralised query engines to keep the indexed data co-
herent with their counterparts on the Web which requires constantly monitoring
the sources and reWecting changes in the index.
Thus coverage and freshness are crucial factors and have an impact on the results

of the query processing. Particularly, if the users often require either up-to-date re-
sults and/or high recall for queries. In fact, several authors motivate their Linked
Data query approaches based on the assumption that centralised indexes are incom-
plete and outdated [Hartig et al., 2009; Karnstedt et al., 2012; Ladwig and Tran, 2010;
Li and HeWin, 2010; Stuckenschmidt et al., 2004; Tian et al., 2011]. However, to the
best of our knowledge, there exists no study which quantiVes these assumptions.
Therefore, we designed an experiment which allows us to assess the freshness and
coverage of a given store, which we refer to as the coherence of a store. We then,
investigate two prominent public indexes for the Web of Data. Our obtained results
verify that indexes for Linked Data in the Web are often incomplete and outdated.

In the following, we detail our methodology and critically discuss the obtained
results.

3.3.1 Methodology

Our aim is to measure how coherent public SPARQL stores are with regards to cur-
rent information on the Web. Thus, our methodology is based on SPARQL queries
which we execute directly over the Web using the link traversal based query execu-
tion approach (cf. Section 2.3.3.1) and over two selected stores. We can draw con-
clusions about the index coverage and freshness by comparing the two obtained
result sets.

probing the coherence of sparql stores In order to test the coherence
of a given store, we propose to probe both the store and theWeb with a broad range
of simple SPARQL queries. We could perform the probing based on a source-centric
perspective by comparing the data for a Web source against the data cached in the
corresponding graph using GRAPH queries. However, (and as is the case for the two
caches we test later) many stores do not have consistent naming of graphs: some-
times the graph may indeed refer to a particular Web source, but oftentimes the
graph will be a high-level URI (e.g., http://dbpedia.org), informally indicating
a dump from which the data were loaded but which cannot be directly retrieved.
Moreover, some stores do not support GRAPH queries.

SELECT ?sIn, ?pIn, ?oOut, ?pOut

WHERE {

?sIn ?pIn <entityURI> .

<entityURI> ?pOut ?oOut .

}

Query 3.1: Entity-query template

Therefore, we decided to perform our experiment based on a entity perspective
and use the template query as shown in Query 3.1. This query returns all values
of RDF triples in which the given entity URI appears in either the subject or object
position.

Figure 3.7 illustrates how the results obtained by querying directly the Web (L)
and results returned by the materialised cache (S) may diverge. We view results
as consisting of sets of sets of variable bindings (i.e., S, L,∆∗ ⊂ 2V×UL reusing
common notation for the set of all query variables, URIs and literals resp.); we ex-
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L S

∆∩∆L ∆S

Figure 3.7: Result set (Venn) diagram

clude answers that involve blank nodes to avoid issues of scoping and inconsistent
labelling between the results from the Web and the SPARQL store.
We reuse notation outlined in Figure 3.7. ∆∩ := L∩ S refers to the set of results

in both L and S, i.e., results for which the store is up-to-date. ∆L := L \ S refers
to the set of results returned by the Web that are not returned by the store. Some
of these results may be caused by remote data changing which the store did not
update; others may be from sources that the store did not cache. ∆S := S \ L
indicates results returned only by the store. Some of these results may be stale;
others might be accurate but involve a source that the live engine did not access.

coherence measure We compute the coherence of a SPARQL store for a
given query based on the number of results from the Web (L) and the number of
overlapping and thus coherent results returned by the store (∆∩). More formally,
let q be a instantiation of our template entity query, Lq the results from the Web
with the LTBQE approach and Sq the results from a given store. We compute the
overlapping results ∆∩q = Sq ∩ Lq to calculate the coherence value for the query q
and the given store as the ratio of overlapping results vs. all results obtained from
the Web, as follows:

coh(q) =
|∆∩q |

|Lq|

Next, we present the two stores under study.

selected public sparql stores The two selected public SPARQL stores for
this study are the “LOD Cache” hosted by OpenLink, and “the Semantic Web Index"
hosted by Sindice.

• The LOD Cache is perhaps the most comprehensive SPARQL store for the
Web of Data with the highest coverage of the available datasets. The store
covers most of the registered CKAN data sets, but also published RDF data
from other providers and hosts, at the time of writing, adding up to over 50
billion RDF statements.

• The Semantic Web Index from the Sindice team collects its data by crawling
the Web and accepting user submissions. Instead of focusing only on RDF
documents, the index supports other formats such as RDFa, the open graph
protocol or the schema.org catalog.

evaluation questions Given our methodology, we aim to answer the fol-
lowing questions with our evaluation:

q1: How coherent are the two stores?

One core assumption of this thesis is that materialised indexes which aim to
cover large parts of the Web of Data cannot keep their index data consistent

47



3.3 index freshness study

with their Web sources. As such, we aim to validate this assumption with our
study.

q2: Are coherence measures store independent?

We highlighted that the two Linked Data SPARQL stores in this study are
indexing diUerent parts of Linked Data and very likely do so at diUerent
times. However, we also expect that there is a certain overlap of the indexed
data. As such, we investigate if the two stores show diUerent data coherence
for the same data.

q3: Are coherence measures data provider independent?

Thus far, we focused on the characteristics of the store considering single
queries. For this question, we are interested to see if the coherence measures
vary for diUerent data providers.

q4: How diverse are coherence measures for each data provider?

Eventually, we are curious as to how diverse the coherence measures are for
entities having the same publisher.

3.3.2 Evaluation

For our experiment, we decided to probe the two selected public SPARQL stores
with a broad range of queries. We also considered using the SPARQL 1.1 SAMPLE

keyword to collect entity URIs for our experiment. However, the Virtuoso SPARQL
store does not support SPARQL 1.1 (though it does support similar custom syn-
tax) and both stores are powered by this engine. Further, the SPARQL 1.1 SAMPLE
operator makes no guarantees about the randomness of results.
We thus instead sampled a diverse set of entities from the 2011 Billion Triple

Challenge dataset to instantiate our template query with.

sampling queries We randomly sampled dereferenceable URIs from the 2011
Billion Triple Challenge dataset7, which covers around 8 million RDF Web docu-
ments and was introduced earlier in this chapter. To guarantee a broad and diverse
sample of data providers and and a equal distribution of entities across these data
providers, we performed the following sampling steps:

1. we grouped the dereferenceable URIs per PLD,

2. we picked randomly a PLD and

3. we then picked randomly dereferenceable URI from the selected PLD.

We sampled a total of 12k entity URIs spanning 581 PLDs with a mean of 21 and
a max of 86 entities per PLD.

execution The experiment is conducted as follows: Firstly, we created an in-
stance of our entity query (cf. Query 3.1) for each of the 12k URI. Next, we use
the Java library ARQ to execute the queries against both stores and store the re-
sults. We decided to execute the entity queries over the Web with our own LTBQE
implementation, which we present and discuss later in Chapter 4. Again, we store
the SPARQL results. Eventually, we compare the obtained results from the SPARQL
store and LTBQE and compute the coherence measure for each query as described.

7 http://challenge.semanticweb.org/
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Web Sindice OpenLink

successful queries 12,277 12,004 8,707

non empty results 8,861 (72%) 4,241 (35%) 8,631 (99%)

Sindice ∩Web OpenLink ∩Web

non empty results 3,090 6,289

Table 3.9: Number of successful and non-empty queries for the two stores

Sindice OpenLink

№ PLD #queries PLD #queries

1 bestbuy.com 74 stanford.edu 60

2 tdwg.org 61 openlinksw.com 59

3 kanzaki.com 59 anl.gov 57

4 semanlink.net 58 openresearch.org 55

5 revyu.com 57 bestbuy.com 52

Table 3.10: Top-5 data providers based on the number of queries.

3.3.2.1 Findings

The following Vndings are obtained from an experiment which we ran in early
March 2012. We successfully executed (without error) a total 12,277 entity queries
over the Web, 12,004 (97%) against the Sindice index and 8,707 (71%) against the
OpenLink store. The diUerences between the number of Web queries and index
queries is due to the fact that some of the queries timed out or caused HTTP excep-
tion when executed over one of the two stores.

Table 3.9 shows that surprisingly, only 72% of the queries returned results if they
are executed directly over the Web. This is surprising since all of the sampled URIs
are dereferenceable according to the information provided in the BTC 2011 dataset.
The OpenLink index return results for 99% of the successful queries, whereas the
Sindice index covered only 33% of the queries. This result reWects the two slightly
diUerent focuses of the two stores. As we mentioned before, the OpenLink store
aims to provide a comprehensive coverage of the Linked Open Data Web and in-
dexes potentially all published data dumps, whereas the Sindice index focusses of
a broad coverage of structured data on the Web as such, including various other
formats such as Microformats.
Furthermore, we see from the results in the table, that we have 3k queries for

which the results from the Web and the Sindice store were both non-empty, where
6k queries returned non-empty results if executed with LTBQE and against the
OpenLink store. We believe that we get the most interesting results by comparing
the non-empty result sets and thus, we focus in the remainder of this evaluation on
these two sets of queries.
The 3k queries for the Sindice store span across 283 PLDs with a mean of 10

queries per PLD, and the 6k OpenLink queries cover 369 PLDs with a mean of 17
queries per PLD. Table 3.10 lists the top-5 data providers based on the number of
non-empty queries in both query sets.

q1: how coherent are the two stores
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(b) Queries covering both stores.

Figure 3.8: Coherence distribution.

For the two stores under analysis, Figure 3.8a illustrates the percentage of queries
that fall into diUerent intervals of coherence values. We decided to split the values
into 10 intervals and separate the two extreme cases of full coherence (coh(q)=1)
and respectively no coherence (coh(q)=0). We use square brackets to indicate that a
value is included in an interval and parentheses of the value is not included in the
interval. Thus the Vgure shows 12 intervals; the y-axis is in linear scale, and the
linear x-axis intervals represent the coherence measures as percentages (the right
of the graph indicates increasingly coherent queries). We can see that the OpenLink
store returned fully coherent results for 56% of the queries, whereas the Sindice
store returned fully coherent results for around 35% of the queries. We believe
that OpenLink was extensively updated in Feb. 2012. In contrast, information for
1% of the tested queries in the OpenLink index are entirely missing or out-of-date
(coh(q) = 0), versus 15% for Sindice; these high percentages are due to partial
coverage of Web sources and outdated data-dumps in the index.

q2: are coherence measures store independent?
Next, we look if the coherence values for a given entity is independent from the

store. We consider for this experiment only queries which returned non empty re-
sults for both stores and the LTQBE approach. In total we found 2,126 of such
queries. Figure 3.8b shows again the coherence interval distribution for these
queries. The distribution for the same queries diUers between the both stores in-
dicating that the coherence measures are store dependent. We also observe that
the plot is very similar to the one shown in Figure 3.8a indicating that the selected
queries are not a speciVc subset but rather reWect also the overall characteristic of
a store.

q3: are coherence measures data provider independent?
So far, we focused on the characteristics of the store considering single entities.

For the next experiment, we are interested if the coherence measures vary for dif-
ferent data providers. Therefor, we grouped the entities based on their PLD and
computed the average coherence for the group of entities. We plotted the average
coherence distribution for the PLDs in Figure 3.9. Again, we can see a similarity
to the coherence distribution on an entity level as in Figure 3.8a and Figure 3.8b.
However, in contrast, we can see that the majority of the PLDs have a coherence
between 90% and 100% for the OpenLink store. We show in Table 3.11 the aver-
age coherence value for our top-5 PLDs for both stores (cf. Table 3.10). All of the
listed PLDs have an average coherence of more than 60% with a maximum of 97%
for kanzaki.com and Sindice and 96% for openlinksw.com and OpenLink. In fact,
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Figure 3.9: Average coherence distribution
grouped by PLDs.
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Figure 3.10: PLD Coherence variation.

№ Sindice OpenLink

1 bestbuy.com 77.19% stanford.edu 67.85%

2 tdwg.org 60.16% openlinksw.com 90.61%

3 kanzaki.com 97.27% anl.gov 96.62%

4 semanlink.net 80.04% openresearch.org 75.68%

5 revyu.com 87.40% bestbuy.com 77.56%

Table 3.11: Top-5 data providers and their average coherence value.

the OpenLink store is hosted by the openlinksw.com provider which explains the
high coherence.

q4: how diverse are coherence measures for each data provider?
Eventually, we are interested how diverse the coherence measures are for entities
having the same PLD. Therefor, we again grouped the entities by their PLD and
counted in how many diUerent coherence intervals we can group the entities. This
gives us a value between 1 and 11 for each PLD. Let us assume that we tested two
entities for a PLD and measured a coherence value of 0.5 for the Vrst entity and
0.8 for the second query; this results in two groups. We excluded PLDs with only
1 query. Figure 3.10 shows the distribution of PLDs and the number of diUerent
coherence intervals for their entities. We can see that the entities of around 25%
of the PLDs can be divided into two diUerent intervals. Interestingly, we observe
that the OpenLink store has more PLDs with up to four diUerent intervals than the
Sindice store. In contrast, the Sindice store indexed more PLDs than OpenLink for
which the entities can be classiVed in more than 6 coherence intervals.

Eventually, we show the distribution of coherence intervals of the entities for
the top-5 PLDs for both stores in Figure 3.11. The graphs explain in more detail the
average values from Table 3.11. Let us inspect the PLD bestbuy.com more closely,
since it is the only overlapping PLD in the top-5 of the two stores with a similar
average coherence value of around 77%. We Vnd that roughly 30% of the queries for
both stores have a coherence value in the interval [60− 70). Moreover, the Open-
Link store has another 28% of the queries in the [90− 100) interval, whereas the
Sindice store maintained a coherent view for 28% of the remaining entity queries.
This is perhaps an indication that Sindice has more recently updated parts of their
bestbuy.com data through their crawling strategies, highlighting that the source
collection methods aUect coherence of diUerent sources in diUerent ways for diUer-
ent data.
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Figure 3.11: Distribution of coherence values for the top 5 PLDs per store.

3.4 conclusion

In this chapter, we introduced the evaluation datasets for this thesis and provided
validating evidences for the core assumptions that the Web of Data is continuously
changing and that these dynamic processes pose insurmountable challenges for
materialised SPARQL stores that aim to maintain coherent data coverage and up-
to-date query results.

evaluation datasets We discussed in detail two quite divergent perspec-
tives on the Web of Data and contrasted the weakness and strength of both views.
The BTC dataset view consists of data which is crawled from the Web of Data
for the annual Billion Triple Challenge at the International Semantic Web Confer-
ence (ISWC). The second view is the CKAN/LOD cloud repository which indexes
publisher-reported statistics about datasets and guarantees that the listed datasets
fulVl a set of certain criteria such as external links or a minimum number of state-
ments.
We decided to combine both data sets to get the best possible coverage for our

study of the evolutional process on the Web of Data. However, we will use the BTC
datasets for the experiments presented in Chapter 4– Chapter 6 since the dataset
covers more domains (791) than the CKAN/LOD, is empirically validated in sev-
eral papers, and includes vocabularies and decentralised datasets. In addition, the
dataset was crawled by traversing links, which is a very related approach to the link
traversal based query processing that is central to this thesis. We will exploit the
fact that the dataset contains dereferenceable URIs, millions of loosely connected
sources and vocabularies hosted on the Web and we will use it to generate realistic
and executable queries to evaluate our approaches directly over the Web, across a
broad range of providers.

linked data is dynamic We described an experiment to study and quantify
the dynamics on the Web of Data. To ensure a broad coverage of the data for this
study, we use a core set of 95 k sources which are (i) randomly selected from the
BTC dataset and (ii) from registered datasets in the CKAN/LOD catalog. We con-
tinue to monitor the sources in this kernel once a week, which allows us to study
the evolution of the sources in a contiguous fashion and in addition, perform a
crawl starting from the kernel sources which allows for studying the evolution of
the neighbourhood sources.
At the time of writing, we had access to 15 weekly snapshots and the study

validated our assumptions and further showed that:
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• 40% of the sources which appeared in nearly all snapshots are dynamic and,
interestingly, the content of 17% of the sources changed between two moni-
toring events;

• similar to a previous study in 2010 [Umbrich et al., 2010a], roughly 60% of
the sources did not change during the period of our experiment;

• we cannot verify that the observed change processes of sources can be mod-
elled and explained with the mathematical model of a Poisson process, which
is the well studied and accepted model for changes in Web sources.

characteristics of changes We also classiVed the content change of a
source based on removal or addition of statements or a combination of both. The
resulting characterisation of sources based on the occurring change types showed
that:

• 24% of the observed changes can be classiVed as updates for which only one
node of a triple changed (e.g., one reading from a sensor or a change of a
social network proVle picture). This is particularly interesting from a query
perspective since the knowledge of such change characteristics can be ex-
ploited as we will show in Chapter 6;

• 20% of the dynamic sources increase the number of triples with each change
and thus show a monotonic change behaviour.

Moreover, we grouped the sources by the PLD of the data providers and observed
that the average change frequency of sources varies between data providers. In ad-
dition, we inspected the sources of the top-4 biggest data provider in our dataset to
highlight diUerences in their change behaviour and also in the change characteris-
tics of the sources across data providers.
As a side remark, we did not fully exploit the possibility to study the neighbour-

hood growth rate of the Web of Data with our monitoring experiment. However,
we recognised from our analysis that for at least 20% of the sources, only new state-
ments were added during a change events which gives an indication that more
links are created. Although this is a very interesting and relevant area of study but
it is not in the scope of this work, where we focus on initially verifying the general
dynamicity of Linked Data.

centralised indexes are partially coherent with the web Our
second experiment was designed to validate the assumption that materialisation
approaches potentially return outdated or incomplete results due to index main-
tenance problems with respect to updates and coverage. Our study is the Vrst to
compare query results obtained from the Web with results from a SPARQL index
and establishes a measure of index coherence for an store based on simple template
queries. We randomly sampled 12k entity queries from the BTC dataset and com-
pared for each query the results returned by executing the query against the Web
and against the two prominent public SPARQL stores of the Sindice and OpenLink
team. We measured that over 60% of the query results obtained from the Sindice
index did not entirely cover the results returned from the Web with the LTBQE
approach. For the remaining 40% of the queries, the returned results from the index
were coherent with the results from the Web. The OpenLink index showed similar
characteristics with 60% coherent results and 40% partially coherent results.
An interesting observation is the similarity of the approximate 60% coherent

results of the OpenLink index with the 60% static sources in our data dynamics
experiment. This fact (and the observed 60% static sources in a former experiment)
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can be seen as an initial indication that the Web of Data has around 60% static
content. However, one would need to scale up our experiments in terms of number
of queries, sources and duration to provide stronger evidences.

In summary, due to the dynamicity of Linked Data, we observed that traditional
materialisation-based query approaches potentially return missing or even false
results for SPARQL queries. Thus, we address this problem by systematically in-
vestigating alternative query approaches for Linked Data in the remainder of this
thesis. In the next chapter, we begin by studying how the link traversal based query
execution approach performs in practice and propose extensions to overcome some
weaknesses.
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4ON L INK T RAVERSAL QUERY ING FOR A
D I V ERSE WEB OF DATA

The results from the previous chapter conVrm the necessity for alternative query
approaches to centralised indexes if the up-to-dateness of results is a desired re-
quirement. Exploiting the Linked Data principles allows for answering queries
“live” over the Web by dereferencing URIs and traversing remote data sources at
runtime. These link traversal based query execution (LTBQE) approaches for Linked
Data oUer up-to-date results and decentralised (i.e., client-side) execution, but must
operate over incomplete dereferenceable knowledge only available in remote doc-
uments, thus aUecting response times and “recall” for query answers.
In this chapter, we systematically study the recall and eUectiveness of LTBQE in

practice for Linked Data. To help bridge data heterogeneity in diverse sources, we
propose lightweight reasoning extensions to Vnd additional answers. Starting from
the state-of-the-art which considers only dereferenceable information and follows
rdfs:seeAlso links [Hartig et al., 2009], we propose extensions to consider Vrst
owl:sameAs links and reasoning, and second lightweight RDFS reasoning.
The chapter is organised as follows:

• In Section 4.3, we discuss and exemplify some of the limitations of the LTBQE
approach regarding the expected result recall, which not only depends on the
input query but also on query planning, dereferenceability of URIs and the
interlinkage of the remote data.

• Next, in Section 4.2, we introduce LiDaQ (Linked Data Query engine): our
implementation of LTBQE using the iterator-based model of SQUIN [Hartig
et al., 2009], but also features novel reasoning extensions and optimisations.

• We empirically estimate the data recall of link traversal query techniques
and howmuch more raw dereferenceable data our proposed extensions make
available in practice by analysing the BTC’11 crawl in Section 4.3.

• In Section 4.4, we review current SPARQL benchmarks if they can be run
against real-world Linked Data sources, survey the published evaluation of
related approaches and consequently address the shortcomings with a novel
benchmark methodology, called QWalk.

• We test LTBQE and its extensions for three query benchmarks in a realis-
tic, uncontrolled setting and critically discuss our obtained measures in Sec-
tion 4.5.

• Section 4.6 concludes with Vnal remarks.

4.1 on the (in)completeness of ltbqe

An open question for link traversal based query execution approaches is the de-
cidability of collecting query-relevant sources: does the LTBQE approach always
terminate? This is dependent on whether one considers the Web of Data to be inV-
nite or Vnite. For an inVniteWeb of Data, this process is indeed undecidable [Hartig,
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2012]. To illustrate this case, Hartig [2012] uses the example of a Linked Data server
describing all natural numbers1, where each n ∈ N is given a dereferenceable
URI, each n has a link to n+ 1 with the predicate ex:next, and a query with the
pattern “?n ex:next ?np1 .” is given. In this case, the traversal of query-relevant
sources will span the set of all natural numbers. However, if the (potential) Web
of Data is Vnite, then LTBQE is decidable; in theory, it will terminate after pro-
cessing all sources. The question of whether the Web (of Data) is inVnite or not
comes down to whether the set of URIs is inVnite or not: though they may be in-
Vnite in theory [Berners-Lee et al., 2005] (individual URIs have no upper bound
for length), they are Vnite in practice (machines can only process URIs up to some
Vxed length).2

Of course, this is a somewhat academic distinction. In practice, the Web of Data
is suXciently large that LTBQE may end up traversing an unfeasibly large number
of documents before terminating. A simple worst case would be a query with a
“open pattern” consisting of three variables as in the following example.

Example 4.1. The following Query 4.1 asks for a general description of peo-
ple known by oh:olaf:

SELECT ?s ?p ?o

WHERE {

oh:olaf foaf:knows ?s .

?s ?p ?o .

}

Query 4.1: General description of friends

The Vrst query-relevant sources will be identiVed as the documents derefer-
enced from oh:olaf and foaf:knows. Thereafter, all triples in these docu-
ments will match the open pattern, and thus all URIs in these documents will
be considered as potential query-relevant links. This will continue recursively,
crawling the entire Web of Data.

Of course, this problem does not occur only for open patterns with three vari-
ables but can also happen for more restrictive query patterns, as our next example
shows.

Example 4.2. One could also consider the following Query 4.2 which asks
for the friends-of-friends of oh:olaf:

SELECT ?o

WHERE {

oh:olaf foaf:knows ?s .

?s foaf:knows ?o .

}

Query 4.2: Friends of Friends

This would end up crawling the connected Web of FOAF documents, as are
linked together by dereferenceable foaf:knows links.

Partly addressing this problem, Hartig et al. [2009] deVned an iterator-based
execution model for LTBQE, which rather approximates the answers provided

1 Such a server has been made available by Vrandečić et al. [2010], but unfortunately stops just shy of a
billion. See, e.g., http://km.aifb.kit.edu/projects/numbers/web/n42.

2 It is not clear if URIs are (theoretically) Vnite strings. If so, they are countable [Hartig, 2012].
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by DeVnition 8. This execution model deVnes an ordering of triple patterns in the
query, similar to standard nested-loop join evaluation. The most selective patterns
(those expected to return the fewest bindings) are executed Vrst and initial bind-
ings are propagated to bindings further up the tree. Crucially, later triple patterns
are partially bound when looking for query-relevant sources. Thus, taking the pre-
vious example, the pattern “?s foaf:knows ?o .” will never be used to Vnd query-
relevant sources, but rather partially-bound patterns like “cb:chris foaf:knows

?o .” will be used. As such, instead of retrieving all possible query-relevant sources,
the iterator-based execution model uses interim results to apply a more focused
traversal of the Web of Data. This also makes the iterator-based implementation
order-dependent: results may vary depending on which patterns are executed Vrst
and thus answers may be missed. However, it does solve the problem of traversing
too many sources when low-selectivity patterns are present in the query.
Whether deVned in an order-dependent or order-independent fashion, LTBQE

will often not return complete answers with respect to the Web of Data [Hartig,
2012]. We now enumerate some of the potential reasons LTBQE can miss answers.

no dereferenceable query uris : The LTBQE approach cannot return re-
sults in cases where the query does not contain dereferenceable URIs.

Example 4.3. For example, consider posing the following Query 4.3 against
our example data graph in Figure 2.1, asking for all information for the URI
cb:chris:

SELECT *
WHERE {

cb:chris ?p ?o .

}

Query 4.3: List all information for a subject URI

As previously explained, the URI cb:chris is unfortunately not dereference-
able (deref(cb:chris) = ∅) and thus, the query processor cannot compute
and select relevant sources from interim results.

unconnected query-relevant documents : Similar to the previous case
of reachability, the number of results might be aUected if query relevant documents
cannot be reached. This is the case if answers are “connected” by literals, blank-
nodes or non-dereferenceable URIs. In such situations, the query engine cannot
discover and dereference further query relevant data.

Example 4.4. The following Query 4.4 illustrates such a case where two
query patterns are joined by literal values:

SELECT ?olaf ?name

WHERE {

oh:olaf foaf:name ?name .

?olaf foaf:name ?name .

}

Query 4.4: List people with same name
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Answers (other than oh:olaf) cannot be reached from the starting URI
oh:olaf because the relevant documents are connected by the literal "Olaf
Hartig".

dereferencing partial information : In the general case, the eUective-
ness of LTBQE is heavily dependent on the amount of data returned by the deref(u)
function. In an ideal case, dereferencing a URI u would return all triples mention-
ing u on the Web of Data. However, this is not always the case.

Example 4.5. For example, let us consider the following Query 4.5:

SELECT ?s

WHERE {

?s owl:sameAs dblpA:Olaf_Hartig .

}

Query 4.5: List all owl:sameAs Information

This simple query cannot be answered since the triple “oh:olaf owl:

sameAs dblpA:Olaf_Hartig .” is not accessible by dereferencing dblpA:

Olaf_Hartig.

The assumption that all RDF available on the Web of Data about a URI u can be
collected by dereferencing u is clearly idealised; hence, later in Section 4.3 we will
empirically analyse how much the assumption holds in practice, giving insights
into the potential recall of LTBQE on an infrastructural level.

4.2 lidaq : extending ltbqe with reasoning

We now present the details of LiDaQ: our proposal of a Linked Data Query engine
to extend the baseline LTBQE approach with components that leverage lightweight
RDFS and owl:sameAs reasoning in order to improve recall. We Vrst describe the
extensions we propose (Section 4.2.1), and then describe our implementation of the
system (Section 4.2.2).

4.2.1 LTBQE Extensions

Partly addressing some of the shortcomings of the LTBQE approach in terms of
completeness (or, perhaps more Vttingly, recall), Hartig et al. [2009] proposed an
extension of the set of query relevant sources to consider rdfs:seeAlso links,
which sometimes overcomes the issue of URIs not being dereferenceable (as per
cb:chris in our example). In the LiDaQ system, we include this extension, and on
top, we propose further novel extensions that apply reasoning over query-relevant
sources to squeeze additional answers, which in turn may lead to recursively Vnd-
ing additional data sources.
First, we propose following owl:sameAs links, which, in a Linked Data envi-

ronment, are used to state that more information about the given resource can be
found elsewhere under the target URI. Thus, to fully leverage owl:sameAs informa-
tion, we Vrst propose to follow relevant owl:sameAs links when gathering query-
relevant sources. Subsequently, we apply owl:sameAs reasoning, which supports
the semantics of replacement for equality, meaning that information about equiva-
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lent resources is mapped to all available identiVers and made available for query
answering.
Second, we propose some lightweight RDFS reasoning, which exploits schema-

level information from pertinent vocabularies and ontologies that describe the se-
mantics of class and property terms used in the query-relevant data and uses it to
infer new knowledge. In a Vrst step, we have to make schema data available to the
query engine, where we propose three mechanisms:

1. a static collection of schema data are made available as input to the engine;

2. the properties and classes mentioned in the query-relevant sources are deref-
erenced to dynamically build a direct collection of schema data; and

3. the direct collection of schema data is expanded by recursively following links
on a schema level.

Using the schema data collected by one of these methods, in the second step, we
apply rule-based RDFS reasoning to materialise inferences andmake them available
for query-answering.
We now describe, formally deVne and provide motivating examples for each of

the three extensions:

1. following rdfs:seeAlso links,

2. following owl:sameAs links and

3. applying equivalence inferencing, and collecting schema information for ap-
plying RDFS reasoning.

4.2.1.1 Following rdfs:seeAlso Links:

First, let us motivate and give the intuition for the legacy rdfs:seeAlso extension
with a simple example.

Example 4.6. Consider executing the following simple query (cf. Query 4.6) –
which asks for images of the friends of oh:olaf – against the data in Figure 2.1
using baseline LTBQE methods:

SELECT ?f ?img

WHERE {

oh:olaf foaf:knows ?f .

?f foaf:depiction ?img .

}

Query 4.6: Query requiring rdfs:seeAlso information

The query processor evaluates this query by dereferencing the content of the
query URI oh:olaf, following and dereferencing all URI bindings for the vari-
able ?f and matching the second query pattern “?f foaf:depiction ?n .”
over the retrieved content to Vnd the pictures. However, the query processor
needs to follow the rdfs:seeAlso link from cb:chris to cbDoc: since the
URI cb:chris is not dereferenceable (recall that a dashed arrow in Figure 2.1
denotes dereferenceability). In summary, in this example, to Vnd the document
cbDoc: and ultimately answer the query, LTBQE needs to be extended to fol-
low rdfs:seeAlso links.

As such, Hartig et al. [2009] proposed an extension of LTBQE to follow rdfs:

seeAlso when looking for query-relevant sources. We brieWy formalise this exten-
sion:
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DeVnition 9 (LTBQE Extension 1: rdfs:seeAlso). Reusing notation from DeVni-
tion 8, given a dataset Γ and a set of URIs U, Vrst deVne:

seeAlso(Γ ,U) := {v ∈ U | ∃u ∈ U s.t. (u, rdfs:seeAlso, v) ∈ merge(Γ)}

Now, for a given query, expand the set of query relevant sources as follows:

qrel ′(Q, Γ) := qrel(Q, Γ)∪ seeAlso
(
Γ , qrel(Q, Γ)

)
The rest of the deVnition follows from DeVnition 8 by replacing qrel(.) with the ex-
tended function qrel ′(.).

4.2.1.2 Following and Reasoning over owl:sameAs Links:

We next formalise and describe our novel extension for following owl:sameAs

links and applying equality reasoning. We again begin with a motivating example
to cover the intuition.

Example 4.7. Consider Query 4.7, asking for friends of oh:olaf that are also
co-authors.

SELECT ?f

WHERE {

oh:olaf foaf:knows ?f .

?pub dc:creator ?f .

?pub dc:creator oh:olaf .

}

Query 4.7: Query requiring owl:sameAs information

Executing this query over the data in Figure 2.1 using the baseline LTBQE ap-
proach will not return any answers, since explicit equality information about
URIs is not supported. The owl:sameAs relationship between oh:olaf and
dblpA:Olaf_Hartig states that both URIs are equivalent and referring to the
same real world entity, and hence that the information for one applies to the
other. In summary, to answer this query, LTBQE must be extended to follow
owl:sameAs links and apply reasoning to materialise inferences with respect
to the semantics of replacement.

We now formalise the details of this novel extension.

DeVnition 10 (LTBQE Extension 2: owl:sameAs). We propose an extension of LT-
BQE to consider owl:sameAs links and inferences. First, given a set of URIs U and a
dataset Γ , as before, deVne:

sameAs(Γ ,U) := {v ∈ U | ∃u ∈ U s.t.

(u, owl:sameAs, v)∨ (v, owl:sameAs,u) ∈ merge(Γ)}

And deVne by extension:

qrel ′′(Q, Γ) := qrel(Q, Γ)∪ sameAs(Γ , qrel(Q, Γ))

By replacing qrel(.) with qrel ′′(.), this latter function is used to Vnd addition query-
relevant sources by analogue to DeVnition 8.
Now we must deVne the role of inference. Let R denote the set of rules of the form

eq-* in Table 2.1. Extending the notation from DeVnition 8, deVne:

′ΓQi := ΓQi • R
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In other words, ′ΓQi denotes the closure of the raw Γ
Q
i dataset with respect to

owl:sameAs data. The full owl:sameAs extension is then described by replacing
qrel(.) with qrel ′′(.) (to follow owl:sameAs links) and ΓQi with ′ΓQi (for all i; to
apply inferencing at each stage) in DeVnition 8.

4.2.1.3 Incorporating RDFS Schemata and Reasoning

Finally, we formalise and describe our novel extension for retrieving and reason-
ing with respect to RDFS descriptions of classes and properties used in the query-
relevant data. We again start with a motivating example.

Example 4.8. Take the following Query 4.8, which asks for the images(s)
depicting oh:olaf:

SELECT ?d

WHERE {

oh:olaf foaf:depiction ?d .

}

Query 4.8: foaf:depiction Query requiring RDFS schemata and
reasoning

From Figure 2.2, we know that foaf:depiction is a sub-property of foaf:
img, and we would thus hope to get the answer "Olaf Hartig". However, re-
turning this answer requires two thing: (i) retrieving the RDFS deVnitions of
the FOAF vocabulary; and (ii) performing reasoning using the Vrst four rules
in Table 2.1. In this case, Vnding the relevant schema information (the Vrst
step) is quite straightforward and can be done directly at runtime since the rel-
evant terms (foaf:img and foaf:depiction) are within the same namespace
and are described by the same dereferenceable document. However, consider
instead Query 4.9:

SELECT ?d

WHERE {

oh:olaf rdfs:label ?d .

}

Query 4.9: rdfs:label Query requiring RDFS schemata and reason-
ing

In this case, we know from the FOAF schema that foaf:name is a sub-property
of rdfs:label, and so "Olaf Hartig" should be an answer. However, no
FOAF vocabulary term is mentioned in the query, and so the FOAF schema
will not be in the query-relevant scope. To overcome this, we can provide
a static set of schema information to the query engine as input, or we can
dereference property and class terms mentioned in the query-relevant data to
dynamically retrieve the relevant deVnitions at runtime.

DeVnition 11 (LTBQE Extension 3: RDFS). We propose an extension of LTBQE to
consider RDFS schema data and inferences. Let Ψdenote an auxiliary Linked Dataset
that contains some schema data. Let R denote rules {prp-spo1, prp-dom, prp-rng,
cax-sco} in Table 2.1 (other Vnite RDFS rules can be added as necessary). Extending
the notation from DeVnition 8, deVne:

′′ΓQi := ΓQi ∪Ψi • R
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In other words, ′′ΓQi denotes the closure of the raw ΓQi dataset and the schema data
in Ψi at each stage (the subscript on Ψi indicates that schema data can be collected
recursively, on the Wy). The RDFS extension is then described by replacing ΓQi with
′′ΓQi (for all i; to apply inferencing at each stage) in DeVnition 8.
We are then left to describe howΨi may be acquired, where we provide three options

(Ψ1–3i ).

1. A static corpus of schema data Ψ can be provided as input, such that Ψ1i := Ψ.

2. The class and property terms used to describe ′′ΓQi can be dereferenced. Let-
ting preds(Γ) denote the set of all URIs mentioned in the predicate position of
some triple in the merge of Γ , and letting o-type(Γ) denote the set of all URIs
mentioned in the object position of a triple in the merge of Γ whose predicate is
rdf:type, we can deVne Ψ2i as:

Ψ2i := derefs
(
preds(ΓQi )∪ o-type(ΓQi )

)
or, in other words, the schema data obtained by directly dereferencing all predi-
cates and values for rdf:type mentioned in the query-relevant data thus far.

3. Finally, it is possible to extend the schema data by following schema-level links.
For a Linked Dataset Γ , let sl(Γ) be a “schema links” function which extracts the
set of all URIs u such that u is the subject or object of some triple t ∈ merge(Γ)
with predicate rdfs:subPropertyOf, rdfs:subClassOf, rdfs:domain or
rdfs:range; or u is the object of some triple t ∈ merge(Γ) with owl:imports
as predicate. Now, taking Ψ2i as above, let Ψ

3
i,0 := Ψ2i , and thereafter, for j ∈N

deVne:
Ψ3i,j+1 := derefs

(
sl(Ψ3i,j)

)
∪Ψ3i,j

such that links are recursively followed up to a Vxpoint: the least j such that
Ψ3i,j = Ψ3i,j+1. This Vxpoint then represents Ψ3i . In other words, the third
method of collecting schema extends upon the second method by recursively
following core RDFS links and owl:imports links from the direct schema data.

The second and third methods involve dynamically collecting schemata at run-
time. The third method of schema-collection is potentially problematic in that it
recursively follows links, and may end up collecting a large amount of schema
documents (a behaviour we encounter in evaluation later). However, where, for ex-
ample, class or property hierarchies are split across multiple schema documents,
this recursive process is required to “recreate” the full hierarchy.
All of our three extensions – following rdfs:seeAlso links, following owl:

sameAs links and applying owl:sameAs reasoning, retrieving RDFS data (using one
of three approaches) & applying RDFS reasoning – can be combined in a straight-
forward manner. In fact, some answers may only be possible through the combina-
tion of all extensions. We will later explore the eUects of combining all extensions
in Section 4.5.

4.2.2 LiDaQ Implementation

In order to build the LiDaQ prototype, we have re-implemented Hartig et al.’s
iterator-based algorithm for LTBQE [Hartig et al., 2009] together with some opti-
misations such as a local per-query cache with an in-memory quad store [Hartig
and Huber, 2011] and a more eXcient join operator [Ladwig and Tran, 2011]. We
then add our various extensions. The code-base is written in Java. Our architecture
– depicted in Figure 4.1 – features Vve main components:
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query processor : uses the Java library ARQ to parse and process SPARQL
queries and format the output results.3

source selector : decides which query and solution URIs should be derefer-
enced and which links should be followed.

source lookup : an adapted version of the LDSpider crawling framework per-
forms the live Linked Data lookups required for LTBQE. LDSpider respects
the robots.txt policy, blacklists typical non-RDF URI patterns (e.g., .jpeg)
and enforces a half-second delay between two consequential lookups for
URIs hosted at the same domain to avoid hammering remote servers.4

local repository : a custom implementation of an in-memory quad store is
used to cache the content of all query relevant data, including inferences,
as well as indexing triple patterns from the query to match against the data.
Triple patterns are matched in a continuous fashion as new content is pushed
to the cache, feeding the iterators. When reasoning is not enabled, the triple
pattern index Vlters non-matching triples and discards them. This repository
is also used to store static schema data, where needed.

reasoner : the Java-based SAOR reasoner is used to support the aforementioned
rule-based reasoning extensions [Bonatti et al., 2011] (cf. Section 2.2.3), and
can execute inferences over the new content as it arrives in conjunction with
the cache.

Reasoner
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Figure 4.1: LIDAQ architecture diagram.

We further investigate a “reduced source-selection” variant of LiDaQ that uses
straightforward, generic optimisations to minimise the number of sources consid-
ered while maximising results. Primarily, we avoid dereferencing URIs that do not
appear in join positions: these are variables which are not used elsewhere in the
query, but whose existence needs to be asserted. We illustrate this with a simple
example:

Example 4.9. Consider the following query issued against the example graph
of Figure 2.1, asking for friends of oh:olaf that have some value deVned for
foaf:based_near:

3 http://jena.sourceforge.net/ARQ/
4 http://code.google.com/p/ldspider/
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SELECT ?f ?fn ?b

WHERE {

oh:olaf foaf:knows ?f .

?f foaf:name ?fn .

?f foaf:based_near ?b .

}

Query 4.10: Location and name of friends

Assuming the rdfs:seeAlso extension is enabled, this query will Vrst visit
ohDoc:, then bind cb:chris for ?f, and then visit cbDoc: for more infor-
mation about cb:chris. Here, “Chris Bizer” will be bound for ?fn, and
dbpedia:Berlin bound for ?b. However, dereferencing the latter URI would
be pointless: we do not need any information about dbpedia:Berlin to an-
swer the query. Here the variable ?b does not appear in other triple patterns
and further information about URIs bound to it are not directly required by
the query. Our optimisation proposes to avoid wasting lookups up not deref-
erencing URIs bound to non-join variables.

Of course, by reducing the amount of sources and raw data that are accessed
– and given that anyone in principle say anything, anywhere – we may also re-
duce the number of answers that are returned. Taking the previous example, for
all we know, the document dereferenced through dbpedia:Berlin may contain
(unrelated) information about friends of oh:olaf, which help to contribute other
answers. However, we deem this to be unlikely in the general case, and note that
it goes against the core LTBQE idea of using Linked Data principles to Vnd query-
relevant sources.
Aside from this optimisation to avoid dereferencing URIs bound to non-join vari-

ables, we posit that for real-world Linked Data, URIs in certain positions of a triple
pattern may not be worth dereferencing to look for matching information. For ex-
ample, given the pattern “?s foaf:knows ?o .”, we would not expect to Vnd (m)any
triples matching this pattern in the document dereferenced by foaf:knows. In the
next section, we investigate precisely this matter for diUerent triple positions, and
thereafter propose a further variation on LiDaQ’s source selection to prune remote
lookups that are unlikely to contribute answers.

4.3 empirical study

We now begin to look at how LTBQE and its extensions can be expected to perform
in practice. In Section 2.3.3.1, we mentioned that the recall of the LTBQE approach
is – in the general case – dependent on the dereferenceability of data. Along these
lines, we can draw general conclusions about the eUectiveness of LTBQE for an-
swering queries over theWeb of Data by looking at the nature of dereferenceability
on the Web of Data. In particular, we are interested to know the ratio of informa-
tion about available in dereferenceable sources versus the information available on
the rest of the Web of Data. Or in other words, given a URI u, we want to know
how much triples which mention u can we retrieve by dereferencing u and com-
pare this number with the total number of triples mentioning u on theWeb of Data.
This gives us a indication as to what percentage of raw data is available to LTBQE
versus, e.g., a materialised approach with a complete index over a large crawl of
the Web of Data. We can also similarly test how much additional raw information
is made available by our extensions.
In summary, we take a large crawl of the Web of Data as a sample. We survey

the ratio of all triples mentioning a URI in our corpus against those returned in
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the dereferenceable document of that URI; we do so for diUerent triple positions.
We also look at the comparative amount of raw data about individual resources
considering (1) explicit, dereferenceable information; (2) including rdfs:seeAlso

links [Hartig et al., 2009]; (3) including owl:sameAs links and inferences; (4) in-
cluding RDFS inferences with respect to a static schema. Unfortunately, we cannot
study how much more raw data is made available by RDFS reasoning if the neces-
sary schema data is dynamically imported. Our dataset for this analysis does not
contain all the necessary information about the dereferenceability for all appearing
schema data.

4.3.1 Empirical Corpus

For our corpus, we take the dataset crawled for the Billion Triple Challenge 2011
(BTC’11) in mid-May 2011 and which we discussed in detail in Section 3.1. We
quickly recapture here the important features of the BTC’11 dataset for our analy-
sis.
The corpus consists of 7.4 million RDF/XML documents spanning 791 pay-level

domains (data providers). URIs extracted from all RDF triples positions, but without
common non-RDF/XML extensions like .pdf, .jpg, .html, etc., were considered
for crawling. The resulting corpus contains 2.15 billion quadruples (1.97 billion
unique triples) mentioning 538 million RDF terms, of which 52 million (∼10%) are
literals, 382 million (∼71%) are blank nodes, and 103 million (∼19%) are URIs. We
denote the corpus here as Γ∼. The bulk of RDF data is serialised as N-Quads [Cy-
ganiak et al., 2008], which provides information regarding which triple came from
which document in a manner directly analogous to our notion of a Linked Dataset.

Alongside the bulk of RDF data, all relevant HTTP information, such as response
codes, redirects, etc., are made available. However, being an incomplete crawl, not
all URIs mentioned in the data were looked up. As such, we only have knowledge
of redir and deref functions for 18.65 million URIs; all of these URIs are HTTP and
do not have non-RDF Vle-extensions. We denote these URIs by U∼. Of the 18.65
million, 8.37 million (∼45%) dereferenced to RDF; we denote these by D∼.
Again, this corpus is only a sample of the Web of Data: we can only analyse the

HTTP lookups and the RDF data provided for the corpus. Indeed, a weakness of
our analysis is that the BTC’11 dataset only considers dereferenceable RDF/XML
documents and not other syntaxes like RDFa or Turtle. Thus, with respect to the
Web of Data, our high-level recall measures for LTBQE specify an upper bound:
more information may be available on the Web of Data than we know about in our
sample.

4.3.2 Static Schema Data

For the purposes of this analysis, we extracted a static set of schema data for the
RDFS reasoning. As argued in [Bonatti et al., 2011], schema data on the Web is
often noisy, where third-party publishers “redeVne” popular terms outside of their
namespace; for example, one document deVnes nine properties as the domain of
rdf:type, which would have a drastic eUect on our reasoning.5 Thus, we perform
authoritative reasoning, which conservatively discards certain third-party schema
axioms (cf. [Bonatti et al., 2011]). In eUect, our schema data only includes triples of
the following form:

5 viz. http://www.eiao.net/rdf/1.0
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Category Triples PLDs

rdfs:subPropertyOf 10,902 67

rdfs:subClassOf 334,084 82

rdfs:domain 26,207 79

rdfs:range 26,204 77

total 397,397 98

Table 4.1: Breakdown of authoritative schema triples extracted from the corpus

prp-spo1 : (s, rdfs:subPropertyOf,o) ∈ deref(s)

prp-dom : (s, rdfs:domain,o) ∈ deref(s)

prp-rng : (s, rdfs:range,o) ∈ deref(s)

cax-sco : (s, rdfs:subClassOf,o) ∈ deref(s)

We call these authoritative schema triples. Table 4.1 gives a breakdown of the counts
of triples of this form extracted from the dataset, and how many domains (PLDs)
they were sourced from: a total of 397 thousand triples were extracted from data
provided by 98 PLDs. We denote this dataset as Ψ∼.

4.3.3 Recall for Baseline

We Vrst measure the average dereferenceability of information in our sample. Let
data(u,G) return the triples mentioning a URI u in a graph G, and, for a deref-
erenceable URI d, let ddata(d) denote data(d, deref(d)): triples dereferenceable
through d mentioning d in some triple position. We deVne the sample dereferenc-
ing recall with respect to a sample graph G as:

sdr(d,G) :=
ddata(d)
data(d,G)

Letting G∼ := merge(Γ∼) denote the merge of our corpus, we measure sdr(d,G∼),
which gives the ratio of dereferenceable triples for d mentioning d vs. unique
triples mentioning d across the corpus. For comparability, we do not dereference
d live, but use the HTTP-level information of the crawl to emulate deref(.) at the
time of the crawl. We denote by ddata∼ the average of ddata(d) for all d ∈ D∼,
and by sdr∼ the average of sdr(d,G∼) for all d ∈ D∼.
We also measure analogues of ddata∼ and sdr∼ where d must appear in speciVc

triple positions: for example, if LTBQE dereferences a URI in the predicate position
of a triple pattern, we are interested to know how often relevant triples – i.e., triples
with that URI in the predicate position – occur in the dereferenced document, how
many, and what ratio when compared with the whole corpus.

Table 4.2 presents the results, where for diUerent triples positions we present:

|U∼| : number of URIs in that position,

|D∼| : number of which are dereferenceable,

|D∼|

|U∼|
: ratio of dereferenceable URIs

sdr∼ : as above, with std. deviation (σ)

ddata∼ : as above, with std. deviation (σ)
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The row Type-Object only considers the object position of triples with the pred-
icate rdf:type, and the row Object only considers object positions where the
predicate is not rdf:type.

Position |U∼| |D∼|
|D∼|

|U∼|

sdr∼ ddata∼

avg. σ avg. σ

Any 1.87×107 8.37×106 0.449 0.51 ±0.5 17.26 ±97.15

Subject 9.55×106 8.09×106 0.847 0.95 ±0.19 14.11 ±35.46

Predicate 4.77×104 745 0.016 7×10−5 ±0.008 0.14 ±56.68

Object 9.73×106 4.50×106 0.216 0.44 ±0.46 2.95 ±60.64

Type-Object 2.13×105 2.11×104 0.099 0.002 ±0.05 0.07 ±29.13

Table 4.2: Dereferenceability results for diUerent triple positions

The analysis provides some interesting practical insights into the LTBQE ap-
proach. Given a HTTP URI (without a common non-RDF/XML extension), we have
a ∼45% success ratio to receive RDF/XML content regardless of the triple position;
for subjects, the percentage increases to ∼85%, etc. If such a URI dereferences to
RDF, we receive on average (at most) ∼51% of all triples in which it appears across
the whole corpus. Given a triple pattern with a URI in the subject position, the
dereferenceable ratio increases to ∼95%, such that LTBQE would work well for
(possibly partly bound) query patterns with a URI in the subject position. For ob-
jects of non-type triples, the ratio drops to 44%. Further still, LTBQE would perform
very poorly for triple patterns where it must rely on a URI in the predicate position
or a class URI in an object position: the documents dereferenced from class and
property terms rarely contain their respective extension, but instead often contain
schema-level deVnitions. In summary, LTBQE performs well when URIs appear in
the subject position of triple patterns, moderately when URIs appear in the object
on a non-type triple, but poorly when URIs appear in the predicate or object of a
type triple.
One may also note the high standard-deviation values in Table 4.2: these in-

dicate that dereferenceability is often “all or nothing”, particularly for object and
predicate URIs. In Figure 4.2, for all 745 dereferenceable predicate URIs, we plot the
distribution of the number of triples in the dereferenced document that contain the
dereferenced term in the predicate position (log/log scale). Figure 4.3 shows the
analogous distribution for dereferenceable object URIs in type triples. Although
most such terms return little or no relevant information (e.g., dereferencing the
predicate in a triple pattern rarely yields triples where the dereferenced term ap-
pears as predicate), we see that a few predicates and values for rdf:type return a
great many relevant triples in their dereferenced documents.6 This might explains
the high standard deviations: for example, although most predicates return no rel-
evant information in their dereferenced document – and thus the probability of
retrieving relevant information by dereferencing the predicate URI in a triple pat-
tern is low – a few predicates dereference to large sets of relevant information.

4.3.4 Recall for Extensions

We now look at how the three LTBQE extensions can help to Vnd additional data
for generating query answers. Table 4.3 presents the average increase in raw infor-
mation made available to LTBQE by considering rdfs:seeAlso and owl:sameAs

links, as well as knowledge materialised through owl:sameAs and RDFS reasoning.

6 Many such examples for both classes and predicates come from the SUMO ontology: see, e.g., http:
//www.ontologyportal.org/SUMO.owl#subsumingRelation
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Figure 4.2: Relevant dereferenceable triple distribution for predicate URIs (log/log)
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Figure 4.3: Relevant dereferenceable triple distribution for all type- object URIs (log/log)

D+
∼ indicates the subset of URIs in D∼ which have some relation to the ex-

tension, respectively: the URI has rdfs:seeAlso link(s), has owl:sameAs link(s),
or has non-empty RDFS inferences. Also, ddata+∼ indicates the analogous ddata∼
measure after the extension has been applied: this may involve data outside of
the dereferenced document, such as documents reached through rdfs:seeAlso or
owl:sameAs links, or static schema data.

4.3.4.1 BeneVt of Following rdfs:seeAlso Links

We measured the percentage of dereferenceable URIs in D∼ which have at least
one rdfs:seeAlso link in their dereferenced document to be ∼2% for our sample
(about 201 thousand URIs). Where such links exist, following them increases the
amount of unique triples (involving the original URI) by a factor of 1.006× versus
the unique triples in the dereferenced document alone. We conclude that, in the
general case, considering rdfs:seeAlso information for the query processing will
only marginally aUect the recall increase of LTBQE.
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Extension |D+
∼ |

|D+
∼ |

|D∼|

ddata+∼
ddata∼

avg. σ

rdfs:seeAlso links 2.01× 105 0.02 1.006 ±0.04
owl:sameAs links & inference 1.35× 106 0.16 2.5 ±36.23
RDFS inference 6.79× 106 0.84 1.8 ±0.76

Table 4.3: Additional raw data made avaiable through LTBQE extensions

4.3.4.2 BeneVt of Following owl:sameAs Links & Including Inferences

We measured the percentage of dereferenceable URIs in D∼ which have at least
one owl:sameAs link in their dereferenced document to be ∼16% for our sample.
Where such links exist, following them and applying the eq-* entailment rules over
the resulting information increases the amount of unique triples (involving the
original URI) by a factor of 2.5× vs. the unique (explicit) triples in the dereferenced
document alone. The very high standard deviation of ±36.23 shown in Table 4.3 is
explained by the plot in Figure 4.4 (log/log), which shows the distribution of the
ratio of increase by considering owl:sameAs for individual URIs: we again see that
although the plurality of URIs enjoy a small increase in raw data, a few URIs enjoy
a very large increase. In more detail, Figure 4.5 gives a breakdown for URIs from
individual domains, showing the number of URIs with an information increase
above the indicated threshold due to owl:sameAs. The graph shows that, e.g., some
URIs from nytimes.com and freebase.com had an information increase of over
4000× (mostly due to DBpedia links); often the local descriptions were “stubs” with
few triples.
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Figure 4.4: Distribution of relative information increases by materialising owl:sameAs infor-
mation (log/log)

We conclude that, in the general case, owl:sameAs links are not so commonly
found for dereferenceable URIs, but where available, following them and applying
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Figure 4.5: Binning of relative information increases by materialising owl:sameAs informa-
tion per domain (log/log)

the entailment rules generates signiVcantly more (occasionally orders of magnitude
more) data for generating answers.

4.3.4.3 BeneVt of Including RDFS Reasoning

With respect to our authoritative static schema data Ψ∼, we measured the percent-
age of dereferenceable URIs inD∼ whose dereferenced documents give non-empty
entailments as ∼81%. Where such entailments are non-empty, they increase the
amount of unique triples (involving the original URI) by a factor of 1.8× vs. the
unique (explicit) triples in the dereferenced document. We conclude that such rea-
soning often increases the amount of raw data available for LTBQE query answer-
ing, and by a signiVcant amount.

4.3.5 Discussion

Without looking at speciVc queries, in this section we Vnd that, in the general case,
LTBQE works best when a subject URI is provided in a query-pattern, works ad-
equately when only (non-class) object URIs are provided, but works poorly when
it must rely on property URIs bound to the predicate position or class URIs bound
to the object position. Furthermore, we see that rdfs:seeAlso links, as proposed
before [Hartig et al., 2009], are not so common (found in 2% of cases) and do not
signiVcantly extend the raw data made available to LTBQE for query-answering.
Conversely, owl:sameAs links are a bit more common (found in 16% of cases) and
can increase the available raw data signiVcantly (2.5×). Furthermore, RDFS rea-
soning often (81% of the time) increases the amount of available raw data by a
signiVcant amount (1.8×).
As discussed previously, we use these results to modify our variant of LiDaQ

which tries to minimise wasted remote lookups: aside from skipping URIs bound to
non-join variables, this variant skips dereferencing predicate URIs bound in triple
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patterns, or URIs bound to the objects of triples patterns where the predicate is
bound to rdf:type, since we are unlikely to Vnd data matching those patterns in
the respectively dereferenced document (cf. Table 4.2). Of course, we still derefer-
ence these URIs for the purpose of dynamically collecting a set of schemata when
performing RDFS reasoning.
These results show that we can expect a signiVcant increase of query relevant

data using our proposed novel reasoning extensions for LTBQE. We evaluate next
to which extend these extension can also increase the query result and how feasible
they are in practice.

4.4 query benchmarks

We wish to evaluate LiDaQ in a realistic, uncontrolled environment, answering
SPARQL queries directly over a diverse set of Web of Data sources. To guide this
evaluation, we Vrst survey existing Linked Data SPARQL benchmarks and look at
how other relevant systems evaluate their approaches (Section 4.4.1). We conclude
that no benchmark oUers a large and diverse range of suitable SPARQL queries for
LTBQE, and we thus propose QWalk: a novel benchmark methodology tailored for
testing LTBQE-style query-answering approaches over the broader Web of Data
(Section 4.4.2). Final evaluation setup and results are presented later in Section 4.5.

4.4.1 Existing Linked Data SPARQL Benchmarks

We now look at existing SPARQL benchmark frameworks and how they have been
used to evaluate various “live” Linked Data query processing approaches in the
literature. The main purpose of this survey is to study the query types and the
benchmark environments used in order to inform our own evaluation of LTBQE
and its extensions. We Vnd that various published SPARQL benchmark frameworks
focus on Linked Data query processing and some of the provided queries could be
re-used, but that existing papers evaluate their approaches with respect to either
hand crafted queries or domain-speciVc queries, whereby all are restricted to one
or few domains of data.

4.4.1.1 Benchmark Frameworks

We now discuss existing Linked Data SPARQL benchmarking frameworks. Since
we aim to run our evaluation over Linked Data sources in situ – and to demonstrate
the real world behaviour of the methods discussed herein – we focus on query
frameworks designed to run over real-world Linked Data, where we do not treat
SPARQL benchmarks designed to run over synthetic datasets such as LUBM [Guo
et al., 2005], BSBM [Bizer and Schultz, 2009], or SP2Bench [Schmidt et al., 2008a,b].
The problem with the synthetic benchmark is, that the generated queries cannot
be run directly over the Web of Data and one would need to setup and simulat-
ing a controlled “Web” environment. In fact, to the best of our knowledge, only
two relevant frameworks have been proposed and are suitable for benchmarking
LTQBE:

fedbench – The FedBench [Schmidt et al., 2011] framework is designed specif-
ically for testing Linked Data querying scenarios. Queries are formulated against
three data collections [Schmidt et al., 2011]:

1. a Life Science Data Collection, which includes datasets like KEGG, ChEBI,
DrugBank and DBPedia;
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2. a synthetic dataset from the SP2Bench framework [Schmidt et al., 2008a,b];
and

3. a general Linked Open Data Collection, which includes datasets like DBpedia,
GeoNames, Jamendo, LinkedMDB, The New York Times and Semantic Web
Dog Food.

Three independent query sets are then deVned. The Vrst query set focuses on fea-
tures of particular interest for federated query engines, such as the number of in-
volved sources, (interim) query results size (e.g join complexities), and so forth. The
second query set consists of the original SP2Bench queries. The third query set
provides 11 Linked Data speciVc queries7, which consist of SPARQL Basic Graph
Patterns in the form of 6 path queries, 3 star queries and 2 mixed/hybrid queries.
This third set is thus of particular interest to us.

dbspb – The DBpedia SPARQL Benchmark [Morsey et al., 2011] contains a set
of SPARQL queries distilled from real-world DBpedia logs, consisting of 31.5 mil-
lion queries issued by various users and agents over a four-month time-frame in
2010. The raw set of queries is reduced to a total of 35 thousand queries after less
frequently occuring query shapes were removed. These 35 thousand queries are
clustered to generate 25 templates which characterise the larger set. These tem-
plates can be “instantiated” to create new queries fromDBpedia data. The templates
consist of Basic Graph Pattern queries with 1–5 triple patterns, but also contains
templates that generate queries with various combinations of SPARQL query fea-
tures (e.g., OPTIONAL–FILTER–DISTINCT, UNION–FILTER, and so forth).

4.4.1.2 Evaluation of Linked Data Query Approaches

We now look at the speciVcs of how various authors have evaluated their pro-
posed approaches for querying Linked Data. We focus on the evaluation of non-
materialised engines: i.e., we focus on query proposals that (typically) involve ac-
cessing remote data at runtime. In particular, we summarise which query sets were
used, what data were used, and how the benchmark was setup.

[ltbqe1] In the work which initially proposed the explorative LTBQE model,
Hartig et al. [2009] used four manually crafted queries to demonstrate the
feasibility of the approach in the real-world. The results present query time,
number of results and number of sources involved. In addition, the authors
used 12 BSBM queries (for synthetic data) and a controlled setup with a proxy
server to evaluate the query time for diUerent fetch-scheduling strategies.

[ltbqe2] This work studies how diUerent in-memory data structures might in-
Wuence the performance of the original LTBQE approach [Hartig and Huber,
2011]. The proposed data structures are evaluated with diUerent datasets and
the query performance was again benchmarked with BSBM.

[ltbqe3] Another proposed LTBQE extension is to cache query relevant data
to improve the result completeness of the LTBQE approach [Hartig, 2011a].
The published evaluation uses a real-world use-case, called the FOAF Letter
application8, which involved Vve query templates – with a mix of diUerent
shapes and SPARQL features – instantiated for 23 people, giving a total of
115 queries9.

7 http://code.google.com/p/fbench/wiki/Queries#Linked_Data_(LD)
8 The application provides a service for users with FOAF proVles to keep track of their social network by
periodically checking updates and suggesting new connections using the LTBQE approach. See http:
//linkeddata.informatik.hu-berlin.de/foafletter/

9 http://squin.sourceforge.net/experiments/CachingLDOW2011/
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[ltbqe4] In follow up work, Hartig [2011b] discusses and evaluates diUerent
strategies for the query execution order. The impact of the query evalua-
tion order is evaluated by executing 3 manually crafted real-world queries
six times live over the Web of Data. The three queries are a mix of star and
path-shaped Basic Graph Patterns with 6–8 elements.

[lt10] Ladwig and Tran [2010] investigate three diUerent strategies to execute
SPARQL queries over the Web of Data and systematically analyse and com-
pare them. The benchmark contains 8 queries and was executed in a con-
trolled environment with a local proxy server.

[sihjoin] Ladwig and Tran [2011] present experiments on actual real-world
datasets and on synthetic data to evaluate the beneVt of their proposed sym-
metric hash-join operator against the non-blocking iterator proposed by Har-
tig et al. [2009]. Their evaluation is executed in a controlled environment
(hosted using CumulusRDF [Ladwig and Harth, 2011]) and uses 10manually
created queries (similar to the FedBench Linked Data query set).

[fedx] Schwarte et al. [2011] evaluate their proposed query engine for feder-
ating SPARQL endpoints using the (entire) FedBench SPARQL benchmark
framework.

[lh10] Li and HeWin [2010] investigated using reformulation trees to organise
local summarised knowledge about sources; they also investigate how OWL
reasoning can be used for the explorative query execution. The evaluation
uses a synthetic data set and manually selected subsets of the Billion Triple
Challenge 2010 dataset. Queries are created manually. The experiment was
executed in a controlled environment and HTTP lookups were simulated.

[splendid] Görlitz and Staab [2011] benchmark their SPARQL federation ap-
proach (based on VoID descriptions) using the life science and cross domain
query sets from FedBench. The benchmark was conducted over a local repli-
cation of the datasets and endpoints.

[sparql-dqp] Aranda et al. [2011] evaluate their federated SPARQL techniques
using modiVed version of the Life Science queries in the FedBench frame-
work, where additional SPARQL features are added. The queries are then
run over four endpoints, two of which are replicated locally.

To provide a good overview – and for ease of comparison – we summarise this
survey of the evaluation of Linked Data query systems in Table 4.4.

4.4.1.3 Discussion

We see that there is a lot of diversity in how diUerent Linked Data query proposals
have been evaluated. First and foremost, we highlight that few benchmarks have
been proposed for real-world Linked Data; perhaps the most agreed upon is Fed-
Bench. Furthermore, most benchmarks and evaluations involve either a handful
of manually crafted queries designed to run over a small number of sources (Fed-
Bench), or involve a larger number of (semi-)automatically generated queries but
are tied to a speciVc domain (e.g., DBPSB) or schema of data (e.g., FOAF Letter). Fur-
thermore, we note that few engines run their queries live over remote resources,
but rather prefer to replicate raw content or endpoints within a controlled envi-
ronment. In summary, we Vnd that no live Linked Data query engine has been
evaluated in an uncontrolled, real-world setting for a large set of diverse queries:
the closest such evaluation is probably FOAF Letter [Hartig, 2011a], which was run
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live, but which involved a handful of resources and was centred speciVcally around
FOAF proVles.

4.4.2 QWalk: Random Walk Query Generation

Given the shortcomings of existing benchmarks, we propose a new benchmark
framework – called QWalk – that is tailored to link traversal based approaches and
builds a large set of queries that are answerable over a diverse set of real-world
sources that use diUerent schemata. The core idea is to take a large crawl of the
Web of Data (in this case, the BTC’11 dataset) and to conduct random walks of
diUerent shapes and lengths through the corpus to generate Basic Graph Patterns.
The walk is guided to ensure that it crosses documents through dereferenceable
links, such that it should return results through an LTBQE-style approach.

4.4.2.1 Query Shapes

To inform the types of queries we generate, we take observations from the work
of Arias et al. [2011], who analyse the SPARQL queries logs of the DBPedia and
Semantic Web Dog Food (SWDF) servers. They found that most queries contain a
single triple pattern (66.41% in DBPedia, 97.25% in SWDF). The maximum num-
ber of patterns found was 15, but such complex queries occurred only rarely. The
most common forms of joins involved subject–subject (59–61%), subject–object
(32–36%) and object–object (4–5%); few joins involving predicate variables were
found in general. As such, most queries with multiple patterns are star-shaped,
with a few path shaped queries. Star-shaped joins typically had a low “fan-out”,
where 27% of the DBpedia queries had a fan-out of three, and 3.7% had a fan-out
of two; the bulk of the remaining queries were single-pattern with a trivial fan-out
of one, but went up to a maximum of nine. The lengths of paths in the query were
mostly one (98%) or two (1.8%); very few longer paths were found.

(star-2-1)(entity-o)

entity queries star queries

path queries

(entity-s)

(s-path-2)

(o-path-3)

Figure 4.6: Visualisation of some example benchmark queries; dotted lines represent query
variables

Along similar lines, for our benchmark we generate queries of elemental graph
shapes as depicted in Figure 4.6, viz., entity, star and path queries. We now describe
these query types in more detail.

entity queries (entity-<s|o|so>)

ask for all available triples for an entity. We generate three types of entity
queries, asking for triples where a URI appears as the subject (entity-s); as
the object (entity-o); as the subject and object (entity-so). These types of
queries are very common in Linked Data Browsers, interfaces, or for dynami-
cally serving dereferenceable Linked Data content. An example for entity-so
would be displayed in Query 4.11
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SELECT DISTINCT ?p1 ?o ?s ?p2

WHERE {

<d> ?p1 ?o .

?s ?p2 <d> .

}

Query 4.11: Example for an entity-so query

star queries (star-<s3|o3|s1-o1|s2-o1|s1-o2>)

always have three acyclic triple patterns which share exactly one URI (called
the centre node) and where predicate terms are constant. We do not consider
stars involving predicate variables since (as discussed) they are rarely used
in practice [Arias et al., 2011]. We generate four diUerent variations of such
queries, diUering in the number of triple patterns in which the centre node
appears at the subject (s) or object (o). Thus, each query has 4 constants and
3 variables. An example for star-s2-o1 is be Query 4.12.

SELECT DISTINCT ?o1 ?o2 ?s1

WHERE {

<d> foaf:knows ?o1 .

<d> foaf:name ?o2 .

?s1 dc:creator <d> .

}

Query 4.12: Example for a star-s2-o1 query

path queries (<s|o>-path-<2|3>)

have 2 or 3 triple patterns which form a path such that precisely two triple
pattern share the same variable. Exactly one triple pattern has a URI at either
the subject or object position and all predicate terms are constant. As before,
we do not consider paths connected through predicate variables since they
are rare [Arias et al., 2011]. We generate four diUerent sub-types: path shaped
queries of length 2 and 3 in which either the subject or object term of one of
the triple patterns is a constant. An example for s-path-2 is the following:

SELECT DISTINCT ?o1 ?o2

WHERE {

dblpP:HartigBF09 foaf:maker ?o1 .

?o1 foaf:name ?o2 .

}

Query 4.13: Example for a s-path-2 query

query generation
We generate queries from the aforementioned BTC’11 dataset. In total, we gen-

erate 100 SELECT DISTINCT queries for each of the above 11 query shapes using
random walks in our corpus. To help ensure that queries return non-empty results
(in case there are no HTTP connection errors or time outs) we consider derefer-
enceable information and generate queries as follows:

1. We randomly pick a pay-level-domain available in the set of conVrmed deref-
erenceable URIs D∼.

2. We then randomly select a URI from D∼ for that pay-level-domain.

3. We generate appropriate triple patterns from the dereferenceable document
of the selected URI based on the query shape being generated.
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• If path-shaped queries are being generated, the URI for the next triple
pattern is selected from the dereferenceable URIs connected to the pre-
vious URI, as per a random walk.

4. One variable is randomly chosen as distinguished (returned in the SELECT

clause) and other variables are made distinguished with a probability of 0.5.

By randomly selecting a pay-level-domain Vrst (as opposed to randomly select-
ing a URI directly), we achieve a greater spread of URIs across diUerent datasets.
The result of the QWalk process is a large set of diverse queries with diUerent
elemental shapes that – according to the sampled data – should be answerable
through LTBQE methods over real-world data in a realistic scenario (accessing re-
mote sources).

4.5 evaluation

4.5.1 Setup

When running queries directly over remote sources, various challenges come to the
fore, including slow HTTP lookups, unpredictable remote server behaviour, high
fan-out of links to traverse, the need for polite access (in terms of delays between
lookups and respecting robots.txt policies), and so forth. As we have seen, most
works have evaluated LTBQE-style approaches in controlled environments – using
proxies and simulated remote access – or only for a small number of queries or
sources in uncontrolled environments. Conversely, we now wish to stress-test LT-
BQE – and our proposed reasoning extensions – for a large range of diverse queries
in uncontrolled environments, and to characterise how these methods handle the
aforementioned challenges.
Based on the discussion of the previous section, we select three complementary

benchmarks to run with LiDaQ:

1. FedBench Linked Data Queries, which oUers a few manually crafted queries
designed to run over a number of diUerent domains;

2. DBpedia SPARQL Benchmark (DBPSB), which oUers the potential to gener-
ate many queries designed to run over one domain, and are based on real-
world query logs;

3. QWalk, which oUers a large selection of queries that can be run directly over
a diverse set of sources.

We execute all queries directly over the Web of Data in an uncontrolled environ-
ment without any replication, proxies or simulation of HTTP lookups. Thus, the
measured values reWect the expected query behaviour in a real application scenario
and allows us to discuss the feasibility of LiDaQ – and of LTBQE query approaches
in general – within such a setting.
We Vrst discuss the measures that we take and the environment in which the

experiments are run (Section 4.5.1.1). We then introduce the conVgurations of Li-
DaQ that we evaluate (Section 4.5.1.2). Then we present the results of the Fed-
Bench run (Section 4.5.2.1), the DBPSB run (Section 4.5.2.2), and the QWalk run
(Section 4.5.2.3).

4.5.1.1 Environment and Measures Taken

All evaluation is run on one server with 4 GB of main memory. To ensure polite
behaviour, we enforce a per-domain (speciVcally per-PLD) minimum delay of 500
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ms between two sequential HTTP lookups on one domain. Furthermore, we use a
(generous) query timeout of 2 hours.

Given that we run queries live over a diverse set of remote sources, we often en-
counter some “non-deterministic” behaviour: in particular, a source may be readily
accessible during some query runs, but may be unresponsive or not return at all in
others. In other words, diUerent HTTP-level issues can occur at diUerent times for
the same source. During initial experiments, we thus encountered that result size
and execution time can diUer for the same query and setup between several bench-
mark runs. This “inconsistent” query behaviour is explained by the fact that we
encountered various HTTP-level issues between diUerent executions for the same
query and setup.
We thus deVne the straightforward notion of a benchmark stable query, which

we consider in our results to help with comparability across diUerent setups. We
assume that a query has a core set of relevant sources, that is, the URIs which are
accessed in all diUerent setup conVgurations (introduced in the following section).
A benchmark stable query is a query for which the response codes for each of the
core URIs is the same across all setups runs.
For each query in each evaluation framework, we record the following six mea-

sures:

result: the number of distinct results,

time: the total time taken to execute the query,

first: time elapsed until the Vrst result was returned,

lookups: total number of HTTP GET lookups,

data: total number of raw triples retrieved, and

inferred: total number of unique triples inferred.

In the following, we concentrate our discussion around the result and time mea-
sures since our focus is to study to which extend our reasoning extensions can
improve the result recall and at the same time how the query performance is inWu-
enced
These measures together characterise the behaviour of the LiDaQ engine while
processing queries under various setups. However, raw counts of query results
can sometimes exhibit outliers due to cross-products inherently caused by joins.
We illustrate this with an example QWalk query, which caused some surprising
behaviour when RDFS reasoning was used.

Example 4.10. For QWalk, we encountered the following Query 4.14:

SELECT DISTINCT ?s0 ?o0 ?s1

WHERE {

ebiz: owl:imports ?o0 .

?s0 rdfs:seeAlso ebiz: .

?s1 rdfs:isDefinedBy ebiz: .

}

Query 4.14: Example of evaluation query

Without reasoning, upon dereferencing the ebiz: URI, we found 1 binding
for ?o0, 2 bindings for ?s0 and 199 bindings for ?s1, yielding a total of 1×
2× 199 = 398 results.
However, with RDFS reasoning enabled, the schema document for RDFS

(the so-called “rdfs.rdfs” document) authoritatively deVnes the property
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rdfs:isDefinedBy to be a sub-property of rdfs:seeAlso. Thus, the 199
bindings for ?s1 are added to ?s0, yielding 201 bindings, and a total of
1× 201× 199 = 39, 999 results, giving a two orders of magnitude increase.

The query results for the above example involves a lot of repetitions of terms:
each term bound to ?s0 or ?s1 would appear about 200 times. Hence we add an
additional measure to help loosely characterise the “redundancy-free content” of
the results: we summate the number of unique result terms found for each distin-
guished variable in the results. In the above example, this would give 1+ 2+ 199 =
202 terms without reasoning, and 1+ 201+ 199 = 39, 999 terms with reasoning.

4.5.1.2 LiDaQ ConVgurations Evaluated

For LiDaQ, given the various extensions, various ways of collecting RDFS data, and
the option to turn oU/on our reduction of sources, we have thirty-two combinations
of possible setups, where we choose to evaluate the impact of each extension on its
own. In addition, we benchmark the result recall and query time if all extensions
are enabled. Therefore, we have the following ten conVgurations:

core (core) : We dereference all URIs appearing in the query and during the
query execution, independent from their triple position or role in joins. No
extensions are included. This setup serves primarily as reference to the basic
LTBQE proVle.

reduced core (core− ) : Our reduced conVguration uses our optimised source
selection to decide which URIs are query relevant and should be derefer-
enced. We do not dereference URIs bound to non-join variables, or (unless
dynamically retrieving schemata) URIs bound to predicates or values for
rdf:type. We expect in theory the smallest amount of results and also the
fastest query time. The following extensions are built upon this reduced pro-
Vle, not Core.

with rdfs:seealso links (seealso) : This setup extends the Core− setup
by following rdfs:seeAlso links. Based on our empirical analysis, we ex-
pect that only a small number of queries will be aUected given that ∼2% of
the URIs contain these information in the dereferenceable document and that
they make little additional raw data available. As such, we expect that this
extension occasionally increases the query time without aUecting the result
recall.

with owl:sameas links and reasoning (sameas) :

This conVguration extends Core− by considering owl:sameAs links and in-
ference. We expect for all queries an increase in returned results and the
number of lookups. Based on our empirical study, this should aUect a moder-
ate number of queries given that such information is available for ∼16% of
resources, where, in such cases, inference makes on average 2.5× more raw
data available.

with rdfs inference
(
RDFS[s|d|e]

)
: this conVguration extends the Core−

setup by performing inferences for the RDFS ruleset relying on retrieved
schema information. Based on static schema data, our empirical analysis sug-
gested that RDFS reasoning aUects ∼84% of resources for which it makes
about 1.8× more raw data available. However, we investigate three sub-
conVgurations based on the methods described in Section 4.2.1.3:

static (rdfss ) : uses the static schemawhich we extracted earlier from the
BTC’11 dataset;
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direct (rdfsd ) : collects direct schemata by dynamically dereferencing the
predicates and values for rdf:type;

extended (rdfse ) : collects extended schemata by dynamically following
recursive links from the direct schemata.

combined
(
Comb[s|d|e]

)
: this benchmark setup combines all extensions for

the previously mentioned conVgurations of schema collection. With this con-
Vguration, we expect the highest number of results, query time and pro-
cessed and inferred statements.

For ease of reference, Table 4.5 gives an overview of these test conVgurations,
and which features are enabled or disabled.
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Core− X

seeAlso X X

sameAs X X

RDFSs X X

RDFSd X X

RDFSe X X

Combs X X X X

Combd X X X X

Combe X X X X

Table 4.5: Overview of the ten LiDaQ benchmark conVgurations

4.5.2 Results

4.5.2.1 FedBench Results

Our Vrst experiment uses the FedBench Linked Data Queries (Section 4.4.1.1) to
measure the potential beneVt of our proposed extensions and optimisations. These
11 cross-domain queries (denoted LD1–LD11) are designed to return a non-empty
result set if executed over the Web with an LTBQE-style approach. The queries
(along with results and discussion) can be found in Appendix C. Our Vrst obser-
vation is that 4 out of the 11 manually crafted FedBench queries contain explicit
owl:sameAs query patterns. This fact ties back with our initial motivation that
including owl:sameAs information is important to answer queries across diverse
sources. In the case of FedBench, these owl:sameAs relations are included explic-
itly; for our extension this would not be necessary (though we leave them in for
comparability across LiDaQ conVgurations that include/exclude owl:sameAs infer-
ence).

query testing In initial tests, we only received results for 6 out of the 11 Fed-
Bench queries. A manual inspection of the queries and their relevant data revealed
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that the empty results were either caused by (i) access forbidden by robots.txt

or (ii) updates in the DBpedia datasets (which, in itself, lends strength to the argu-
ments for live querying approaches).
In the Vrst category, there was only 1 query:

disallowed by robots.txt (ld7) :

This particular query requires data from the geonames.org domain, espe-
cially from the subdomain sws.geoname.org. The query fails because the
access for resources on this subdomain is disallowed via the robots.txt

protocol.10

We do not wish to contravene the Robots Exclusion Protocol and so we do not run
this query in the main evaluation.

In the second category – those caused by being out-of-sync with DBpedia – there
were 4 queries, which we Vxed manually:

missing language tag (ld9) :

One query was missing a language tag. We changed the query literal "Luiz
Felipe Scolari" by adding the correct English language tag: "Luiz Felipe
Scolari"@en.

outdated predicates (ld8 – ld10) :

Three queries contain the predicate skos:subject, which was initially pro-
posed for SKOS and used by DBpedia. However, the SKOS Working Group
later chose to instead reuse dcterms:subject and DBpedia followed suit.
We thus changed the all query predicates from skos:subject to dcterms:

subject where applicable.

Thus, we keep 10 of the 11 original queries, where 4 are adapted slightly to work
against current versions of DBpedia, and where 1 is dropped due to robots.txt

issues. In addition, since we count results, we add to all queries the DISTINCT so-
lution modiVer to eliminate duplicates. Our updated queries are online11. However,
we still Vnd that some of the updated queries do not return results: LD6 and LD9
return no results for any conVguration (or any run), and LD10 only sometimes
returns results when owl:sameAs is considered; these are due to mismatches be-
tween the given queries and remote data that we could not easily Vx without dra-
matically changing the original query (see Appendix Appendix C for details).

overview of experiments In total, using LiDaQ, for each conVguration, we
executed each FedBench query live over the Web once a week for four weeks. In
Appendix Appendix C, for each individual query, we provide detailed results and
discussion (selecting the best of the four runs). We also include per-query compari-
son to the existing SQUIN library for LTBQE [Hartig et al., 2009], which we gener-
ally Vnd to be considerably faster, but which, to the best of our knowledge, does not
include politeness policies; we thus exclude it for later larger-scale experiments.12

Herein, we focus on the general impact of our extensions on the repeatability and
reliability of the results across the four runs, averaged across all queries.

detailed results Given the number of queries (10), conVgurations (11) and
measures (6), we rather present detailed discussion of the FedBench results for each
individual query in Appendix C.

10 See http://sws.geonames.org/robots.txt, which states that all agents are disallowed.
11 http://code.google.com/p/lidaq/source/browse/queries/fedbench.txt
12 We found queries for which it sends at least eight lookups per second to the same server.
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Summarising herein, we observe that LTBQE works well for some simpler Fed-
Bench queries, but struggles in an uncontrolled environment for complex queries
that require accessing a lot of sources. For example, even in the baseline Core− con-
Vguration, LD11 required performing 1,125 lookups, and the most complex conVg-
uration – Combe– attempted 17,996 lookups. Relatedly, we generally observe that
LTBQE extensions perform well for simple queries, but exacerbate performance is-
sues for complex queries. In fact, although RDFS and owl:sameAs extensions work
well on domains like data.semanticweb.org, conVgurations that involve follow-
ing same-as or schema links struggle for data-providers such as DBpedia, which
oUer many such links (both internal and external). On a more positive note, we
Vnd that Core− often oUers signiVcant time savings over Core with minimal ef-
fect on result sizes.
In addition, results sizes can become quite large (e.g., LD11 returns 196,448 re-

sults in one conVguration): the given SPARQL queries often contain numerous re-
sult variables in the SELECT clause (e.g., 5 for LD11) and results require a product
for variables with compatible mappings [Pérez et al., 2009]. For example, DBpedia
often contains a large number of labels for resources in diUerent languages, where
asking for the labels of result resources may multiply the raw result sizes by a factor
of ten or more; as discussed previously, such behaviour has a cumulative eUect.
In general, we would also expect that the results given by Core− should be fewer

or equal than for all other conVgurations, which are monotonic extensions; simi-
larly, we would expect equal or more results in Combx than RDFSx, sameAs and
seeAlso (where x is one of the schema conVgurations). This expectation held true
in practice for a number of the earlier queries (LD1–3), where for queries LD1 and
LD3, the various extensions, including reasoning, found many more results. This
monotonic increase also held true for certain other cases (e.g., with the exception of
Combe, LD4 shows this behaviour). However, it did not hold true in later queries:
even selecting the best run from a span of four weeks, the unrepeatability of results
played a major role in this evaluation. We thus now focus on characterising this
issue.

reliability results Running complex queries live over networks of remote
sources raises the question of reliability and repeatability. We now focus on how
the results varied across the four runs to get a better idea of the repeatability of
LTBQE/LiDaQ in a realistic setting. We summarise the average number of results
and the corresponding standard deviation for each conVguration and query across
all four runs in Table 4.6 and Table 4.7.
The query LD11 in particular shows some unreliable behaviour across the four

runs, where we estimated the absolute deviations to be between ∼28–140% of the
mean, depending on the LiDaQ conVguration: as aforementioned, this query re-
quired between 1,103–17,996 lookups. With this exception aside, across all other
queries, the Core, Core− and seeAlso conVgurations access the fewest sources
and produce reliable results across the four runs. The results for the other vari-
ations – which include reasoning extensions – are less reliable in general. LD5
and LD10 show high deviations in the number of results returned for sameAs, LD5
shows high deviations for dynamic schema conVgurations, and LD4 shows high
deviations for conVgurations involving RDFS reasoning (though not for combined
conVgurations). In terms of absolute deviation as a percentage of the mean, we
computed that the results for the other setups vary somewhere between ∼2–11%
for most of the queries.

conclusions In summary, when running the queries live over remote sources,
we see complex and unpredictable behaviour across diUerent conVgurations and
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across time: remote sources may give diUerent responses at diUerent times (e.g.,
may give 50x errors during high server load), and the failure of an important source
may break traversal at that point. We also see that reasoning extensions, particular
those involving dynamic schema collection, often make the query behaviour more
unreliable by trying to access more sources.
The FedBench queries predominantly request data from a few central sites: the

Vrst four queries (LD1–4) are based around the data.semanticweb.org data pro-
vider, and provide generally stable results. Other queries also rely on the hosts
www4.wiwiss.fu-berlin.de and dbpedia.org and generally demonstrate less
stable behaviour. Taking the former domain, for example, owl:sameAs extensions
can cause erratic behaviour, potentially due to errors in how the relation is used
for the DailyMed and LinkedCT datasets.13 For DBpedia, the schema descriptions
of class and property terms are hosted in individual documents and often interlink
with related sources like Yago [Suchanek et al., 2008] and CYC, causing to many
documents being requested when schemata are dynamically retrieved, leading to
unstable behaviour for such conVgurations with respect to these queries. Given
that the queries are restricted to a few data providers, politeness policies play a
crucial role: the amount of time-delay enforced between subsequent lookups to the
same host can be a major factor of performance.
In general, from the 11 original FedBench queries, which were designed to be

run using LTBQE-style approaches, 4 queries show promising results, 3 return no
results (2 involve access disallowed by robots.txt), and the remaining 4 queries
show unpredictable behaviour across diUerent runs and conVgurations. Some of
the more complex queries involve accessing thousands and tens of thousands of
sources at runtime. By requesting even more sources, our proposed reasoning ex-
tensions can aggravate reliability issues. This calls into question the practicality of
the LTBQE approach (and our reasoning extensions) in uncontrolled environments
for complex queries that span multiple sites and require many sources to answer.
We will later show that LTBQE works well for simple queries with our QWalk
generated queries.

4.5.2.2 DBPSB Results

The FedBench Linked Data queries are designed speciVcally for evaluation using
LTBQE-style engines such as LiDaQ. We now rather look at the DBpedia SPARQL
benchmark [Morsey et al., 2011] (DBPSB; Section 4.4.1.1): a generic Linked Data
SPARQL benchmark containing realistic queries based on popular patterns mined
from real-world DBpedia access logs. Thus, DBPSB should give us an indication as
to how well LTBQE can cope with (non-tailored) queries that are based on those
frequently run by users against the materialised DBpedia SPARQL engine. As we
will see, LTBQE and its extensions stuggle for this query suite.

query testing In total, the DBPSB query set consist of 25 diUerent query
templates (denoted DB1–25).14 Each template has an associated template query
that can be run against a DBpedia SPARQL endpoint to instantiate a set of concrete
queries used for evaluation: each template query has a subset of template variables
that are bound to create a new evaluation query (one query per binding) in this
manner, where the rest of the variables are left as is for the evaluation query.

13 We observed and reported such problems before: see https://groups.google.com/forum/

?fromgroups#!topic/pedantic-web/rXQPcFLMOi0 for detailed discussion.
14 Originally taken from http://dbpedia.aksw.org/benchmark.dbpedia.org/Queries2011.txt.

Formatted and annotated templates can be found at http://code.google.com/p/lidaq/source/
browse/queries/dbpsb.txt
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In a Vrst step, we manually inspected the DBPSB query templates and ruled out
those which LTBQE would clearly not be able to answer. We thus initially ruled
out 16 queries:

unsupported optional feature (8 queries) :

A total of 8 query templates use the OPTIONAL keyword, which can only
be correctly evaluated over a closed dataset since it is a non-monotonic fea-
ture [Hartig, 2012]. Problematically, if data are not available to match the
OPTIONAL clause, SPARQL speciVes that UNBOUND should be returned. Return-
ing UNBOUND is a deVnitive answer that the data are not available, and can be
tested elsewhere in a FILTER clause, allowing features such as negation-as-
failure. LTBQE cannot deVnitively say that data are not available (unless a
bounded dataset is considered [Hartig, 2012]).

no suitably deref . uri (8 queries) :

As discussed previously, dereferencing class and predicate URIs rarely re-
turns their extension, and this is the case for DBpedia; for example, look-
ing up the class dbo:SoccerPlayer does not return all instances of soccer-
player, and looking up the predicate dbo:thumbnail does not return all re-
lations between things and their thumbnails. A total of 8 query template
instances would only involve URIs in such positions. (We do not include a
further 4 OPTIONAL queries that also do not contain a suitably dereference-
able URI.)

This is perhaps an interesting observation in itself: only 9 of the 25 DBPSB query
templates (36%) mined from real-world query logs could potentially be answered
by LTBQE. If we were to relax the restriction on OPTIONAL and run it in a “best-
eUort” manner – or with a closed dataset semantics – LTBQE could run potentially
run 13 of the 25 DBPSB queries (52%).

overview of experiments For the evaluation, we wanted to generate 25
sample queries for each of the remaining 9 DBPSB templates. For this, we ran the
template queries provided for the benchmark against the public DBpedia SPARQL
endpoint15 and generated up to 1,000 results. From the template results, we ran-
domly selected 25 to generate the query instances. Of the 9 templates, we encoun-
tered problems instantiating another 3 due to problems with DBPSB and the DBpe-
dia endpoint itself:

could not generate 25 instances (4 queries) :

We did not get 25 instances for 4 of the templates using the public SPARQL
endpoint. Of these, 2 template queries repeatedly timed out and thus could
not be instantiated. The other 2 query templates returned insuXcient results
to generate enough concrete queries: both queries generated only two in-
stances due to the use of the predicate dbpprop:redirect, which returns
only two triples from the public endpoint.

One of the queries that could not be instantiated involved UNION patterns such
that it could be run and still generate results without the template query variable
being instantiated, so we include this in the evaluation (DB17). As such, we are left
with only 6 DBPSB templates that are usable for evaluating our methods.16 We had
problems with another template query: the query plan for DB24 was ordered in

15 http://dbpedia.org/sparql/
16 All template instances are available online: http://code.google.com/p/lidaq/source/browse/

queries/dbpsb.swj.25.tar.gz
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such a way that the only dereferenceable URI was in a class position. Hence we are
only left with 5 runnable templates out of the available 25 in DBPSB, which again
motivates the necessity for our own benchmark.
We benchmarked 6 of the 10 LiDaQ setups: based on experiences with unstable

DBpedia queries in FedBench and some initial runs for DBPSB, we dropped conVg-
urations involving the dynamic collection of schema data as they increased the de-
mand of sources from DBpedia and exacerbate unstable behaviour (cf. Table 4.6 and
Table 4.7). We thus focus on evaluating Core, Core−, seeAlso, sameAs, RDFSs and
Combs. Queries are run live and directly over dereferenceable DBpedia data in situ;
some queries may also traverse links from DBpedia and Vnd additional answers
remotely.

Table 4.8 shows high-level statistics about the results retrieved for the query
instances generated for each template. We show the number of queries which re-
turned some results, divided by those considered to be benchmark stable (see Sec-
tion 4.5.1.1) and those which were not; and we also show the number of queries for
each template which did not return results. The templates that generated queries
with empty results involved UNION patterns with shared template queries, which
caused problems that we discuss later, particularly for DB4 (cf. Query 4.16).

Template Total
Non-Empty

Empty
stable unstable

DB1 25 23 2 0

DB4 25 0 12 13

DB5 25 0 13 12

DB13 25 24 0 1

DB17 25 24 1 0

Table 4.8: Statistics about stability per DBPSB query template

detailed results The results of the DBPSB experiments are given in Ta-
ble 4.9 and Table 4.10 , with average measures given across all query instances. For
each query template class, we now discuss the results. Herein, variables marked
like “%%var%%” are template variables, which are instantiated to create concrete
instances of queries.

SELECT DISTINCT ?var1

WHERE {

%%var%% rdf:type ?var1 .

}

Query 4.15: [DB1]: Return the type(s) of a certain entity

Query 4.15 consists of only one triple pattern with a URI in the subject and pred-
icate position (DBpedia does not contain blank nodes in the template variable po-
sition). LiDaQ results for instances of this template are listed in Table 4.9 and Ta-
ble 4.10. We see that each query returns on average about 3 results per query with-
out reasoning. We see that our reduced source selection optimisation works well
(Core− and the extensions based on it), reducing the average number of HTTP
GET requests from 8 to 2 (a single source lookup including redirect) and thus re-
quiring only ∼20% of the time taken for Core (the additional lookups are for the
predicate rdf:type and for the bound class URIs). Furthermore, we see that rea-
soning also increases the number of results at the cost of additional query time:
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sameAs sees only a minor increase in results, but RDFSs and Combs more than dou-
ble the results by inferring additional types through sub-class, domain and range
semantics. The extensions supporting owl:sameAs require looking up (on average)
approximately one additional source.

SELECT ?var5 ?var6 ?var9 ?var8 ?var4

WHERE {

{ %%var%% ?var5 ?var6 .

?var6 foaf:name ?var8 .

}

UNION

{ ?var9 ?var5 %%var%% ;

foaf:name ?var4 .

}

}

Query 4.16: [DB4]: List the names of entities which are connected (in ei-
ther direction) to the query entity.

Some of the generated instances for Query 4.16 failed to return results since they
bind literals to the template variable due to the second mention of %%var%% in the
object position. In such cases, these literals cannot be dereferenced and LTBQE
cannot Vnd results.17 Table 4.9 and Table 4.10 show the average results for all
queries. Though sameAs generates some additional results, it also instigates some
unstable behaviour (cf. Table 4.8), where we see a large number of triples being
retrieved and inferred, and where we see that the number of lookups triples. We
can also see the beneVt of Core− in reducing the number of lookups vs. Core
while not aUecting results.

SELECT DISTINCT ?var3 ?var4 ?var5

WHERE {

{ ?var3 dbpp:series %%var1%% ;

foaf:name ?var4 ;

rdfs:comment ?var5 ;

rdf:type %%var0%% .

} UNION {

?var3 dbpp:series ?var8 .

?var8 dbpp:redirect %%var1%% .

?var3 foaf:name ?var4 ;

rdfs:comment ?var5 ;

rdf:type %%var0%% .

}

}

Query 4.17: [DB5]: List the name and comments of a given series with a
given type; or list the name and comments of a series with a
given type that redirects to a given URL.

From Table 4.8, we encountered some similar behaviour for the instance queries
of Query 4.17 as for the previous Query 4.16: some bindings for the template vari-
able %%var1%% were again literals, leading to query instances for which no results
could be found through LTBQE. From the detailed results in Table 4.9 and Ta-
ble 4.10, although sameAs and Combs found additional results, they did so at the
cost of causing unstable behaviour, increasing the number of HTTP lookups by a
factor of ∼ 10×. Again we see the beneVt of Core− in reducing the number of
lookups vs. Core while not aUecting results.

17 SPARQL does allow literals in the subject position, though not allowed by RDF.
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SELECT *
WHERE {

{ %%var%% rdfs:comment ?var0 .

FILTER (lang(?var0) = "en")

}

UNION

{ %%var%% foaf:depiction ?var1 }

UNION

{ %%var%% foaf:homepage ?var2 }

}

Query 4.18: [DB13]: List English comments, depictions and homepages
for an entity.

Much like Query 4.15, the star-shaped Query 4.18 is quite straightforward for the
LTBQE approach as the results in Table 4.9 and Table 4.10 illustrate. Again the
reduced source selection (Core) shows beneVts, returning all results, but reducing
the amount of HTTP lookups: only one source needs to be retrieved (requiring two
lookups including the redirect), and results take 2.67 seconds to process in this
setup.
In this case, RDFS reasoning alone has no eUect on the results, but increases the

time by a factor of 3.4×. Support for owl:sameAs statements increases the result
size by a factor of 6×, but at the cost of a 9.5× increase in time as an average of 5.5
additional sources are fetched. When owl:sameAs and RDFS support are combined
in Combs, a few additional answers are found over sameAs alone.

SELECT DISTINCT ?var2 ?var3

WHERE{

{ ?var2 dcterms:subject %%var%%. }

UNION

{ ?var2 dcterms:subject

dbpcat:Prefectures_in_France . }

UNION

{ ?var2 dcterms:subject

dbpcat:German_state_capitals . }

?var2 rdfs:label ?var3.

FILTER (lang(?var3)="fr")

}

Query 4.19: [DB17]: List the french labels for entities with the subject ei-
ther German state capitals, prefectures in France or the query
deVned subject.

We updated Query 4.19 to use dcterms:subject instead of the predicate skos:
subject.18 However, the updated query template times out; hence we run the
query without the Vrst union clause containing the template variable. The results
in Table 4.9 and Table 4.10 show that this query is more expensive to execute than
star-shape queries with speciVc subject URIs. In particular, there are 99 prefectures
listed for France and 15 German capital states, as well as the members of the cat-
egory given by the template variable to dereference. Given the large number of
documents accessed, we found that extensions following owl:sameAs links took
too long to run for our experiments; hence these results are omitted.

conclusion First, we notice that many of the DBPSB queries are unsuitable
for LTBQE, and that we ended up only being able to run a small fraction of the
original queries. Second, we generally found that Core− oUers good performance

18 Although there are puzzlingly some skos:subject predicates in DBpedia, they are not used to relate
entities to categories: dcterms:subject is now used in this case.
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with respect to Core, with minimal eUect on results. Third, we found that RDFSs
only had a signiVcant eUect for the Vrst query, asking for the types of a given en-
tity. Fourth, we found that following owl:sameAs links on DBpedia invoked high
overhead and unstable behaviour for 3 of the 5 queries, but also found various ad-
ditional answers (though primarily aliases of result URIs). Ultimately, we conclude
that LTBQE and its extensions (particularly those involving reasoning) struggle to
cope with the complexity of DBPSB queries, which are designed to put materialised
engines through their paces. As such, we study next the practicability of LTBQE
for a broad range of simple queries and diverse data providers.

4.5.2.3 QWalk Results

Having looked at the FedBench evaluation containing eleven manually crafted
queries answerable by LTBQE over a small number of real-world sources, and the
DBPSB queries based on real-world query logs answerable (mostly) over DBpedia,
we now look at the QWalk benchmark (Section 4.4.2), which automatically builds
a large set of queries answerable over a wide range of real-world sources. For this,
using random walk techniques over the BTC’11 corpus, we created 100 queries for
each of the 11 elemental shapes of the QWalk benchmark, giving a total of 1,100
initial queries. As before, we then ran these live over remote sources in an uncon-
trolled setting using various conVgurations of LiDaQ.

query testing We Vrst wished to Vlter out queries that did not return any
answers or that did not show benchmark stable behaviour.
To begin, for the entity query classes, we look at how many queries return

empty results, how many return stable non-empty results suitable for compari-
son, and how many return unstable non-empty results (see Section 4.5.1.1). Our
notion of stability is measured across all ten conVgurations of LiDaQ, including
the dynamic schema import extensions. We also looked at the breakdown of sta-
ble/unstable/empty results turning oU the dynamic schema import (i.e., turning oU
RDFSd, RDFSe, Combd, Combe). The results are shown in Table 4.11. Though the
stability of entity-o and entity-so queries are not signiVcantly aUected, the num-
ber of stable queries for entity-s queries more than halves. Furthermore, as we will
see later, the dynamic import of schemata often requires over 10× the runtime of
Core, and over 5× the runtime of static schema equivalents. Due to problems with
instability and long runtimes, and given the number of queries in the benchmark,
we do not run the dynamic schema conVgurations for QWalk queries.

Template Total
Stable

wo/dyn. w/dyn.

entity-s 100 60 27

entity-o 100 57 53

entity-so 100 59 54

Table 4.11: Stable entity queries with and without dynamic schema extensions

Thus, considering only the six conVgurations Core−, Core, seeAlso, sameAs,
RDFSs and Combs, and for each query shape, Table 4.12 provides a breakdown of
the total number of queries that return some results and exhibit stable or unstable
behaviour, as well as the number of queries with no results. Typewritten numbers
correspond to categories for HTTP server response codes encountered for queries
with no results; the column “mix” indicates that there are at least two URIs with
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diUerent response codes and the column “data” indicates that the missing results
are not related to URI errors and we assume that the remote data changed. We
select only non-empty and stable queries for our comparison.

Class
Non-Empty Empty

s. uns. all 4XX 5XX 6XX mix data

entity-o 57 7 36 18 2 11 0 5

entity-s 60 5 35 18 1 11 0 5

entity-so 59 9 32 17 2 8 1 4

o-path-2 62 4 34 16 5 8 1 4

o-path-3 35 25 40 19 3 18 0 0

s-path-2 66 2 32 17 2 11 0 2

s-path-3 51 7 42 18 1 20 0 3

star-0-3 67 6 27 14 0 10 0 3

star-1-2 62 2 36 21 2 12 0 1

star-2-1 70 5 25 11 3 9 1 1

star-3-0 66 15 19 12 0 4 0 3

Table 4.12: Summary of stable, unstable and empty queries for QWalk benchmark

detailed results We now look at the average measures for results across
all (non-empty stable) queries per query class: we begin with entity queries, then
progress to star queries and eventually to path queries. Detailed results for each
of our measures can be found for reference in Table D.1–Table D.5 of Appendix D.
Herein, we plot the total time and result sizes in bar plots, where we measure the
ratio of the analogous Vgure for Core− (which always returns the fewest results
and should be the fastest). Again, absolute measures can be found in Table D.1–
Table D.5. In general, we found a lot of variance and outliers in our results; hence
we summarise results with bar plots which show the 50th, 75th, 90th and 100th

percentiles of the result-sizes and times across the query classes, where the per-
centiles characterise how the majority of queries behaved, and what outliers oc-
curred.

entity-*: Get generic information about a given resource
Entity queries have the most simple query shape and are used in a wide range of

applications to gather all available information about a certain entity, e.g., for the
user interfaces of entity search engines. They are also often (but not always) used
as a simple mechanism to support SPARQL DESCRIBE queries. Figure 4.7 presents
the increase in time over Core− for all other conVgurations across the three classes
of entity queries, broken down by percentiles, with the x-axis presented in log-
scale, where the 100 line indicates no change from Core−. Figure 4.8 analogously
presents the increase in query results returned versus Core−.
We can see from the 50th percentile in Figure 4.7 that the Core conVguration

– which dereferences predicates, values for rdf:type and URIs bound to non-join
variables – often requires signiVcantly more time to process queries than Core−

across all three entity query classes, with the most severe case (on the 100th per-
centile) taking almost eight times longer for entity-s. Conversely, Figure 4.8 shows
that Core almost never returns additional results beyond Core−.
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Figure 4.7: Percentiles for ratio of increase in runtimes vs. Core− for entity-query classes
(log)
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Figure 4.8: Percentiles for ratio of increase in results vs. Core− for entity-query classes (log)

Similarly from both Vgures, we see that seeAlso rarely aUects performance, but
very rarely Vnds additional answers (only for the 100th percentile are result in-
creases visible). From the Wat 75th percentiles in Figure 4.7, we can see that in the
majority of cases, other extensions did not aUect performance signiVcantly; how-
ever, the 90th and 100th percentiles show that reasoning can occasionally increase
runtimes by a factor of over ten. However, reasoning can also increase result sizes
by a large factor, where modest increases are visible already on the 50th percentile
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Figure 4.9: Percentiles for ratio of increase in runtimes vs. Core− for star-query classes (log)

for RDFSs and Combs in the entity-s and entity-so queries: all RDFS rules oUer
additional data for entity-s* queries, whereas only sub-property reasoning oUers
additional results for entity-o in the general case. Furthermore, the 75th–100th

percentiles show occasional but very large increases for results in the sameAs con-
Vguration also.

star-*: Retrieve values for specific predicates about a given resource
Star-shaped queries are used to display select attributes of a resource useful in

a certain context. The results for star-shaped queries follow the same format as
before, where Figure 4.9 shows the average increase in query-time for each conVg-
uration over Core−, and Figure 4.10 shows the increase in result size.
Some similar conclusions can again be drawn as for entity queries. Again, the

query time can often be reduced without a signiVcant eUect on query results by
opting for Core− over Core; in this case, since query predicates are set, the sav-
ings are primarily for not dereferencing URIs bound to non-join variables and val-
ues for rdf:type. The notable outlier for the query class star-1-2 in Core (on
the 100th percentile) is due to one query which took around 1 hour to termi-
nate because of the download and processing of a very large document from the
ecowlim.tfri.gov.tw provider (this source contributed no results and was not
accessed by conVgurations built on top of Core).
Again, we see that seeAlso had minimal eUect on results returned, but did in-

crease the time signiVcantly for some of the query classes. We also again see that
RDFS and owl:sameAs reasoning has an occasional but signiVcant eUect on results
size: however, we highlight that the baseline gave, on average, very few results
for star-3-0 and star-0-3 (cf. Table D.2 and Table D.4), where a small absolute
increase could account for a very large relative increase, as per the outliers on the
100th percentile. Also, the large RDFS-related results outlier for the class star-1-2
is attributable to the query mentioned in 4.10.

*-path-*: Retrieve terms that are two or three hops away from a central
resource through a path of given predicates

95



4.5 evaluation

R
es
ul
ti
nc
re
as
e
ra
ti
o
vs
.C
or
e−

100th

90th

75th

50th

100

101

102

103

C
or
e

se
eA

ls
o

sa
m
eA

s
R
D
FS
s

C
om

b s

C
or
e

se
eA

ls
o

sa
m
eA

s
R
D
FS
s

C
om

b s

C
or
e

se
eA

ls
o

sa
m
eA

s
R
D
FS
s

C
om

b s

C
or
e

se
eA

ls
o

sa
m
eA

s
R
D
FS
s

C
om

b s

star-3-0 star-2-1 star-1-2 star-0-3

Figure 4.10: Percentiles for ratio of increase in results vs. Core− for star-query classes (log)

Path-shaped queries allow for exploring recursive relations in the graph, or to
discover particular information about neighbouring nodes. When compared with
entity and star queries, we would expect path queries to generally be more ex-
pensive for LTBQE to process since they explicitly require traversing a number of
sources.
For the six LiDaQ extensions, we again show the average increase of query time

in Figure 4.11 and the average relative recall improvement in Figure 4.12. Again,
we see the savings in time for selecting Core− over Core, particularly for the o-
path-* classes of queries. In general, across all extensions, the performance hits
for the o-path-* queries are not met with gains in results; in fact, the o-path-3
queries saw no signiVcant gains for any extension, even for the 100th percentile.
With respect to the QWalk results, we see the Vrst meaningful gain for seeAlso in
the s-path-3 class, but only for a single outlier query. In this case, sameAs oUers
only minimal increases in some outlier cases. However, the RDFSs extension does
Vnd additional results for s-path-* queries, which are notable already on the 75th

percentile; this extension performs particularly well for s-path-3 where large gains
in results do not cost comparable increases in runtimes. The Combs conVguration
again oUers the most results, but – with the exception of Core– at the cost of the
highest runtimes.

discussion Across the hundreds or queries run for the 11 query classes, we
consistently Vnd that the Core− conVguration saves signiVcantly on query run-
times while not signiVcantly reducing result sizes versus Core. With the excep-
tion of one query, we Vnd that seeAlso Vnds barely any additional results, but
can sometimes cause a signiVcant increase in runtime. Reasoning extensions also
increase runtimes, but regularly contribute additional answers: sameAs oUers infre-
quent but very high increases in result sizes, where by comparison, RDFSs oUers
more frequent but more modest increases in results. These observations on result
increases for the three extensions correspond well with the results of our analy-
sis for the BTC’11 data in Section 4.3. Throughout, with the frequent exception of
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Figure 4.11: Percentiles for ratio of increase in runtimes vs. Core− for path-query classes
(log)
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Figure 4.12: Percentiles for ratio of increase in results vs. Core− for path-query classes (log)

Core, the combined approach was indeed the slowest, but always oUered the most
results.
To help summarise the potential beneVt of each conVguration, we present in Ta-

ble 4.13 the average throughput (results per second) achieved across all queries
per query class.19 We see that Core has uniformly the worst throughput of results

19 Given that there is a lot of variance in the raw Vgures, we acknowledge that average Vgures are a coarse
way to present the results, but they do help to summarise overall trends.

97



4.6 conclusion

Core Core− seeAlso sameAs RDFSs Combs

entity-s 1 1.68 1.67 2.15 1.29 1.53

entity-o 3.97 6.48 6.16 5.7 5.37 4.38

entity-so 2.02 2.82 2.66 3.71 3.73 4.82

star-3-0 0.11 0.16 0.15 0.15 0.24 0.2

star-2-1 0.58 1.12 1 1.04 2.14 1.75

star-1-2 0.17 1.6 1.35 1.6 70.97 58.85

star-0-3 0.18 0.35 0.33 0.94 0.24 0.68

s-path-2 0.44 0.72 0.68 0.7 0.83 0.78

s-path-3 1.76 2.45 2.56 2.46 2.43 2.1

o-path-2 1.38 8.39 7.76 10.55 6.36 6.89

o-path-3 0.95 5.7 5.84 6.08 5.04 4.68

Table 4.13: Results per second for all our query classes with conVgurations colour shaded
from best (lightest) to worst (darkest) throughput

across all query classes. We also see that Core− generally performs slightly above
average, but performs best for entity-o. With the sole exception of the s-path-3
class, seeAlso performs slightly worse than Core−. In terms of the reasoning ex-
tensions, of the 11 query classes, the highest throughput for 9 are split between the
sameAs (4), RDFSs (4) and Combs (1) conVgurations, where, for each conVguration,
the throughput of Combs frequently sits between sameAs and RDFSs. However,
aside from Core, these latter conVgurations also often perform the worst: they add
signiVcant overhead to the query execution, but may often Vnd signiVcantly more
additional results: they oUer high-risk but high-gain.

4.6 conclusion

In theory, proposed link traversal based query approaches for Linked Data have
the beneVt of up-to-date results and decentralised execution. However, in practice,
a thorough evaluation of such methods in realistic uncontrolled environments –
for a diverse Web of Data – had not yet been conducted. This chapter focused on
evaluating LTBQE approaches in this manner, and similarly investigated the pos-
sibility of combining lightweight reasoning methods with LTBQE to help squeeze
additional answers from query relevant sources, and to help integrate data from
diverse data-providers.
We have characterised what percentage of data is missed by only considering

dereferenceable information, we have looked at what percentage of raw data is
made available to LTBQE through various extensions. We have tested LTBQE and
various extensions in uncontrolled environments for three complimentary query
benchmarks. Our results show that LTBQE works well for simple queries with
a dereferenceable subject, but, in uncontrolled environments, struggles for more
complex queries that involve accessing many remote sources at runtime. Further-
more, we showed that runtimes in uncontrolled environments are often a factor
of politeness policies, since queries often touch upon documents from the same
domain.
In terms of the extensions, we have shown that the selection of sources can be

successfully reduced by ignoring predicate URIs, object URIs for type-triples, and
URIs bound to non-join positions. We have also shown that the rdfs:seeAlso

extension oUers little in terms of results, but occasionally introduces signiVcant
runtime costs. Furthermore, the owl:sameAs extensions can occasionally increase
the number of results found by a great deal, but also comes at signiVcant costs
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and introduces unstable behaviour when run live over domains such as DBpedia.
Similarly, our comprehensive evaluation showed that RDFS reasoning extensions
increase results more frequently than owl:sameAs extensions (e.g., in lower per-
centiles of the QWalk experiments), but exhibits more moderate increases than
the latter extensions (e.g., in the 100th percentiles of QWalk experiments). The
FedBench experiments showed that the dynamic import of RDFS data at runtime
works well for simple queries on certain domains (e.g., data.semanticweb.org),
but can introduce instability for domains such as DBpedia, where schemata are
spread across multiple documents and link to other domains with similar decen-
tralised schema.
Taking an alternative view, LTBQE is an interesting technique for SPARQL and

is complementary to other techniques for querying Linked Data, such as materi-
alised or federated approaches. LTBQE oUers the potential to get fresh answers
when dynamic information is involved, or to get sensitive data when user-speciVc
access-control is in place for some Linked Data source; this is not possible through
centralised approaches. Furthermore, it does not rely on SPARQL interfaces like fed-
erated approaches; also, there are currently no mechanisms to discover endpoints
in the same manner that LTBQE discovers sources.
As such, we see the greatest potential for LTBQE in combination with other

querying techniques for example to dynamically freshen-up results returned by a
centralised SPARQL endpoint that replicates remote content, as we will describe
in Chapter 6
In general, in absence of local knowledge about Web source, the types of queries

that LTBQE can answer are severely limited (reliant on dereferenceable URIs).
Hence, in the following chapter, we investigate a novel query ing method that uses
local data summaries to overcome this limitation of LTBQE.
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5COMPAR I SON OF SOURCE SE LECT ION
METHODS

In the previous chapter, we showed that link-traversal based query execution ap-
proaches performwell for simple queries, especially if query patterns contain deref-
erenceable subject URIs. However, the fundamental drawback of LTBQE is that
query time and result recall depends on the sources which are discovered in a
bottom-up fashion during the query execution. This source discovery process is
limited and speciVed primarily by the query itself, the execution order and the
links between query relevant data.
In this chapter, we propose a diUerent but complementary approach. We study

and compare index structures which are used to identify query relevant sources in
a top-down fashion before the actual query execution.
We propose and investigate the use of “data summaries” for determining which

sources contribute answers to a query based on an approximate multidimensional
hash based indexing structure (a QTree [Hose et al., 2005]). These data summaries
concisely describe the contents of a large number of sources from the Web of Data
and form the basis for (i) source selection prior to query execution by ruling out
sources that cannot contribute to the overall query or joins within (sub-)queries,
and (ii) query optimisation to provide the optimal join order and determine the
most important sources via ranking.
The remainder of this chapter is structured as follows:

• we introduce our generic query processing model and present several source
selection approaches in Section 5.1;

• we detail two possible approaches for data summarisation and source selec-
tion based on multidimensional histograms and QTrees, including the con-
structing and maintaining these data summaries in Section 5.2;

• we discuss diUerent alternatives for hashing, i.e., the translation from identi-
Vers to a numerical representation that both data summaries rely upon in Sec-
tion 5.3;

• we present our algorithms for source selection, join processing, and discuss
source ranking in Section 5.4.

• we present the experimental setup for our evaluation in and discuss in detail
the experimental results of comparing diUerent data summaries and hashing
alternatives in Section 5.5;

• we conclude and provide an outlook to future work in Section 5.6.

5.1 source selection approaches

In this section we present our generic query processing model and introduce sev-
eral source selection approaches, including schema-level and inverted indexes and
our data summaries.
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5.1.1 Generic Query Processing Model & Assumption

We focus in this chapter on processing conjunctive SPARQL queries directly over
Linked Data by discovering query relevant sources with index structures contain-
ing knowledge about the source content. In this process, the main problems are (i)
to Vnd the right sources which contain possible answers that can contribute to the
overall query and (ii) the eXcient parallel fetching of content from these sources.
As such, query processing in our approach works as follows:

1. prime a compact index structure with a seed data set (various mechanisms
for creating and maintaining the index are covered in Section 5.2);

2. use the data-summary index to determine which sources contribute partial
results for a conjunctive SPARQL queryQ and optionally rank these sources;

3. fetch the content of the sources into memory (optionally using only the top-k
sources according to auxiliary data for ranking stored in the data summary);

4. perform join processing locally, i.e., we do not assume that remote sources
provide functionality for computing joins.

assumptions We see the presented query processing strategy as a reasonable
compromise to a centralised index containing all source information under the fol-
lowing assumptions:

• The overall data distribution characteristics within diUerent sources do not
change dramatically over time, and can be captured in a data summary in
lieu of a full local data-index. Our Linked Data dynamicity experiment in Sec-
tion 3.2 showed that most of the monitored changes are updates.

• Source selection and ranking can reduce the amount of fetched sources to a
reasonable size so that content can be fetched and processed locally.

We believe these assumptions hold for a wide range of Linked Data sources and
typical queries and which we partially verify in Section 5.5.2
We illustrate this query processing approach based on the following examples,

for which we consider that a source selection index is primed with the sources from
our example graph in Figure 2.1 (as per step one in the above highlighted approach).
This source-selectionmethod takes as input a triple pattern and returns a list of data
sources that potentially contribute bindings.

Example 5.1. Our Vrst example illustrates the general process of our query
approach with our introduction Query 2.2 asking for the names of the author
for a certain publication. The query engine uses the source selection index
to determine sources which potentially can contribute results for the single
query pattern. Given our example graph, a straight forward source selection
algorithm would determine the query relevant sources by retrieving and com-
bining the list of sources for each query pattern. As such, the list of query rele-
vant sources contains for the triple pattern (“dblpP:HartigBF09 foaf:maker
?author .”) the three sources dblpPDoc:HartBF09, dblpADoc:Olaf_Hartig
and dblpPDoc:Christian_Bizer. The three sources ohDoc:, chDoc: and
dblpPDoc:Christian_Bizer contribute answers to the second triple pattern
(“?author foaf:name ?authorName .”). In the next step, the engine collects in
parallel the content of the selected sources and evaluates the query over the
merged data graph.

101



5.1 source selection approaches

The next example illustrates how the top-down source selection query approach
can potentially answer more queries compared to the LTBQE approach.

Example 5.2. We discussed in Chapter 4 that the LTBQE approach cannot
successfully execute our example Query 4.4 (which asks for people with the
same name) since the two query patterns are joined by non dereferenceable
RDF literal values. However, consider that a query engine has an source selec-
tion index that contains, from the Vrst step in our query processing approach,
the information about the Vve documents in our example graph (cf. Figure 2.1).
In the seconds step, the query engines uses the index to determine the list of
sources which contribute to the two query patterns of the query, resulting in
ohDoc: and dblpADoc:Olaf_Hartig. Given that list, the query processor re-
trieves the content of the sources and evaluates the query to get the list of
people that have the same names.

As we can foreseen from our simple examples, a potentially large number of
sources can contribute bindings to each of the triple patterns. Since accessing too
many sources over the Web is potentially very costly, the choice of the source-
selection method is fundamental, and strongly depends on the various possible
query approaches and their underlying index structures, which we discuss next.

5.1.2 Source-Selection Approaches

In the following we introduce approaches for source selection, starting with the
approach that introduces the least complexity, and then describe each approach
in more detail. We do not cover standard RDF indexing approaches (i.e., com-
plete indexes [Harth and Decker, 2005; Neumann and Weikum, 2008, 2010; Weiss
et al., 2008]) as our premise is to perform query processing over data sources di-
rectly: rather than maintaining complete indexes and deriving bindings from index
lookups, we aim at using data structures that just support the selection of data
sources from which data will be retrieved and then processed locally. That is, the
general idea is to use index structures to guide the query processor, while being rea-
sonable both wrt. completeness of the answers and network bandwidth consump-
tion. Possible approaches to evaluate queries over Web sources and particularly
addressing the problem of source selection are:

ltbqe :

as discussed in detail in the previous chapter, this approach exploits the cor-
respondence between resource URIs mentioned in the query and source URI.
That is, only URIs mentioned in the query or URIs from partial results fetched
during query execution are looked up directly without the need for maintain-
ing local indexes. Since the source URIs can be derived from the URIs men-
tioned in the query, the approach does not need any index structures, but –
given the structure of Linked Data and our results in Chapter 4– will likely
only return answers for selected triple patterns (see Table 5.1).

schema-level indexing (sli) :

relies on schema-based indexes known from query processing in distributed
databases [Goldman and Widom, 1997; Stuckenschmidt et al., 2004]. The
query processor keeps an index structure of the schema, i.e, which properties
(URIs used as predicates in triples) and/or classes (i.e., objects of rdf:type
triples) occur at certain sources and uses that index to guide query process-
ing. Triple patterns with variables in predicate position cannot be answered
(see Table 5.1).
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inverted uri indexing (ii)

indexes all URIs occurring in a given data source similar to inverted docu-
ment indexes in search engines. An II covers occurrences of URIs in sources.
The II allows the query processor to identify all sources which contain a
given URI and thus potentially contribute bindings for a triple pattern con-
taining that URI. Using an inverted URI index, a query processor can obtain
bindings from sources which contain the pertinent URI but for which the re-
source/data source correspondence as speciVed in the Linked Data principles
does not hold.

Example 5.3. Taking our example Figure 2.1, the source ohDoc: con-
tains additional descriptions about cb:Chris not mentioned in cbDoc:

like an addition image or contact information not provided in cbDoc:.
In our example, the additional statement is the rdfs:seeAlso infor-
mation which links the non-dereferenceable URI to its document. The
index stores such mentions of URIs outside their implicitly associated
source.

multidimensional histograms (mdh) :

combine instance- and schema- level elements to summarise the content of
data sources using histograms [Hose et al., 2009; Petrakis et al., 2004]. MDHs
represent an approximation of the whole data set to reduce the amount of
data stored. We will present one type of MDH in more detail in Section 5.2.

qtree (qt) :

The QTree [Hose et al., 2005] is another approach that uses a combined de-
scription of instance- and schema-level elements to summarise the content
of data sources. In contrast to the MDH where regions are of Vxed size, the
QTree is a tree-based data structure where regions of variable size more ac-
curately cover the content of sources.

If we consider all possible combinations of constant and variables in triple pat-
terns in the BGPs of SPARQL queries, we realise that diUerent source selection
mechanisms only cover a subset of those. At an abstract level, triple patterns can
have one of the following eight forms (where ? denotes variables and # denotes
constants):

(?s ?p ?o) (#s ?p ?o) (?s #p ?o) (?s ?p #o)

(#s #p ?o) (#s ?p #o) (?s #p #o) (#s #p #o)

Table 5.1 lists the triple patterns that can be answered using the respective
source-selection mechanism. For example, we showed in Chapter 4 that the LTBQE
approach cannot Vnd answers to triple pattern with only variables, but performs
reasonably good for patterns with subject URIs. Schema level indexes (SLI) can only
be used for patterns which contain predicates or rdf:type objects.
Which source-selection approach to use depends on the application scenario.

LTBQE works without additional index structures, but fails to incorporate URI us-
age outside the directly associated source (via syntactic means – the URIs contain-
ing a # – or via HTTP redirects). Further, LTBQE follows an inherently sequen-
tial approach of fetching relevant sources (as new sources are discovered during
query execution), whereas the other mentioned indexing approaches enable a par-
allel fetch of relevant sources throughout. II can leverage optimised inverted index
structures known from Information Retrieval, or can use already established aggre-
gators (such as search engines) to supply sources. While not supporting full joins,
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Approach Triple Patterns

LTBQE (#s ?p ?o), (#s #p ?o), (#s #p #o)

and possibly (?s ?p #o), (?s #p #o)

SLI (?s #p ?o), (?s rdf:type #o)

II, MDH, QT all
.

Table 5.1: SPARQL triple patterns supported by diUerent source selection approaches

II has been extended to support simple, star-shaped joins [Delbru et al., 2012, 2010].
SLI works reliably on queries with speciVed values at the predicate position, and
can conveniently be extended to indexing arbitrary paths of properties [Stucken-
schmidt et al., 2004]. However, both II and SLI, are “exact” indexes which have the
same worst-case complexity as a full index, i.e., potentially grow proportionally to
the number and size of data sources (or, more speciVcally with the number URIs
mentioned therein).1

In the present chapter, we will particularly focus on the deployment of approx-
imate data summaries which can be further compressed depending on available
space – at the cost of a potentially more coarse-grained source selection results
– namely MDH and QT, which only necessarily grow with the number of data
sources, but not necessarily with the number of diUerent URIs mentioned therein.
MDH is an approach inexpensive to build and maintain but may provide a too
coarse-grained index which negatively aUects the beneVt of using the index. QT is
more accurate, as the data structure is – as we will see – able to represent depen-
dencies between terms in single RDF triples and combinations of triples, which can
be leveraged during join processing, however, at increased cost for index construc-
tion and maintenance. Note that approaches such as II and SLI do not model those
dependencies, which can result in suboptimal performance.2

We provide detailed experimental evaluation for each of the mentioned index
structures in Section 5.5.2.

5.2 data summaries

In general, data summaries allow the query processor to decide on the relevance
of a source with respect to a given query. Querying only relevant instead of all
available sources can reduce the cost of query execution dramatically.
We use the data summaries to describe the content of Web sources in much

more detail than schema-level indexes which, in general, reduces the number of
queried sources but also allows for more triple patterns. Data summaries represent
the sources data in an aggregated and compact form. As summarising numerical
data is more eXcient than summarising strings, the Vrst step in building a sum-
mary index is to transform the RDF triples provided by the sources into numerical
space. We apply hash functions to the individual terms of RDF triples (s, p, o

) to maps a triple of string values to a triple of numerical values (numbers). The
resulting “numerical” triples are inserted in to the data summary together with the
source identiVer the statement originate from. It is necessary to attach the source

1 While this might be viewed as a theoretical limitation not relevant in practical data, we will also see
other advantages of alternative data summaries that we focus on in this paper.

2 While the mentioned extensions of SLI [Stuckenschmidt et al., 2004] or extensions of II [Delbru et al.,
2012, 2010] partially address this issue as well, they do not cover arbitrary acyclic queries, but only
Vxed paths in the case of [Stuckenschmidt et al., 2004] or star-shaped queries in the case of [Delbru
et al., 2012, 2010].
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information for each numerical triple since we use the summary to obtain a set
of sources potentially providing relevant data for a given query. To do so, we will
discuss in Section 5.3 how we map the query patterns to their numerical represen-
tation and in Section 5.4 how we probe the index for the relevant sources.
In the remainder of this section, we introduce the two variants of data sum-

maries we focus on, namely, multidimensional histograms [Ioannidis, 2003] and
QTrees [Hose et al., 2005, 2006; Zinn, 2004]. We discuss for index insertion and
lookup the time and space complexities of the operations and give details on how
to initialise and expand data summaries in general.

5.2.1 Multidimensional Histograms

Histograms are one of the basic building blocks for estimating selectivity and car-
dinality in database systems. Throughout the years, many diUerent variations have
been developed and designed for special applications [Ioannidis, 2003]. However,
the basic principles are common to all of them. First, the numerical space is parti-
tioned into regions, each deVning a so-called bucket. A bucket contains statistical
information about the data items contained in the respective region. If we need to
represent not only single values but instead pairs, triples or n-tuples in general,
we need to use multidimensional histograms with n dimensions. In n-dimensional
data space, the regions represented by the buckets correspond to n-dimensional
hypercubes. For simplicity, however, we refer to them simply as regions. For RDF
data, we need three dimensions – for subject, predicate, and object.
Data items, or triples respectively, are inserted one after another and aggregated

into regions. Aggregation and thus space reduction is achieved by keeping, for each
three-dimensional region, statistics instead of the full details of the data items. A
straightforward option is to maintain a number of data items per region and a list
of sources contributing to this count. However, we show that source selection and
ranking perform better if we maintain a set of pairs (count,source) – denoting that
count data items provided by the source source are represented by the region.
The main diUerence between the histogram variations is how the bucket bound-

aries are determined. There is a trade-oU between construction/maintenance costs
and approximation quality. Approximation quality is determined by the size of the
region and the distribution of represented data items – on big region for only a few
data items has a higher approximation error than several small regions for the same
data. The quality of a histogram also depends on the inserted data. We decided to
use equi-width histograms as an example representative for MDH, because they
are easy to explain, apply to a wide range of scenarios and can be built eXciently
even if the exact data distribution is not known in advance.
For this kind of histograms, given the minimum and maximum values of the

numerical dimensions to index and the maximum number of buckets per dimen-
sion, each dimensional range is divided into equi-distant partitions. Each partition
deVnes the boundaries of a region/bucket in the dimension. The upper part of Fig-
ure 5.1 shows a two-dimensional example of a multidimensional equi-width his-
togram with the number of buckets per dimension set to three.
Given an RDF triple, a lookup entails computing the corresponding numerical

triple by applying the same hash function to the RDF triple that has been used for
constructing the histogram and retrieving the bucket responsible for the obtained
numerical triple. The bucket contains information about which sources provide
how many data items in the bucket’s region. Hence, we only need to consider the
found relevant sources. However, there is no guarantee that the sources actually
provide the RDF triple that we were originally looking for (false positives). The
reason is that a bucket does not represent exact coordinates in data space but a
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Figure 5.1: Example of a data summary. The left column shows the coordinates correspond-
ing to hash values for the data items to insert. The middle column shows the
bucket regions, and the right column shows the buckets with the assigned sta-
tistical data and, in case of the QTree, the hierarchy between inner nodes and
buckets.

data summary space complexity

MDH O(bmax · csrc)
QTree O(bmax · csrc)

Table 5.2: Space Complexity of QTrees and Multidimensional Histograms.

region which also covers coordinates for RDF triples not provided by any indexed
source.

Space Complexity

Determining space consumption for the histogram is straightforward; denoting the
total number of buckets used by a multidimensional histogram as bmax, the num-
ber of sources by csrc, and considering the maximum number of (count,source)
pairs per bucket, we can state that it requires O(bmax · csrc) space (Table 5.2).

Runtime Complexity

For the multidimensional histogram introduced above, determining the bucket that
a numerical triple d has to be inserted into has complexityO(1) – having arranged
the buckets in an array, the coordinates of the searched bucket can easily be de-
termined based on the static boundaries of the regions. The insertion itself can be
done in O(log csrc) by Vnding the bucket’s (count,source) pair corresponding
to d’s source and adapting the count value – using a Java TreeMap to manage the
pairs. A lookup resembles the procedure of determining the bucket responsible for
the data item to insert and is therefore also done in O(log csrc) (Table 5.3).

5.2.2 QTree

The QTree – originally developed for top-k query processing in P2P systems [Hose
et al., 2005, 2006; Zinn, 2004] – is a combination of multidimensional histograms
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Data summary Time Complexity

In
se
rt

MDH O(log csrc)

QTree
O(bmax · f2max + csrc · log csrc) or
O(log bmax · f2max + csrc · log csrc)

Lo
ok
u
p MDH O(log csrc)

QTree
O(bmax + log csrc) or

O(log bmax + log csrc)

Table 5.3: Time Complexity of QTrees and Multidimensional Histograms.

and R-trees [Guttman, 1984] and therefore inherits beneVts from both data struc-
tures: indexing multidimensional data, capturing attribute correlations, eXciently
dealing with sparse data, allowing eXcient look-ups, and supporting incremental
construction and maintenance.
In contrast to the histograms introduced above and similar to R-trees, QTrees

are hierarchical structures. They consist of nodes representing regions in the data
space. The region of a node always covers all the regions of its child nodes. Data
items are only represented by leaf nodes – in analogy to the multidimensional
histogram introduced above we refer to leaf nodes as buckets and store the same
information in them. The lower part of Figure 5.1 shows an example QTree with all
regions of inner nodes and buckets as well as the hierarchy between them.
In contrast to standard histograms, QTrees do not necessarily cover all the data

space but only regions containing data. Thus, in case of sparse data the histograms
introduced above use same sized regions for areas representing many data items
as well as for areas containing only a few data items. QTrees, however, use regions
of variable sizes covering only areas containing data. The number of nodes in a
QTree is determined by two parameters: bmax denoting the maximum number of
buckets in the QTree and fmax describing the maximum fanout (i.e., the number of
child nodes) for each non-leaf node.
Although R-trees and QTrees share the same principle of indexing data by or-

ganising multidimensional regions hierarchically, they diUer in a substantial way:
whereas the QTree approximates the indexed data to reduce space consumption,
R-trees keep detailed information about inserted data items (tuples in our case).
A QTree’s leaf node provides statistical information about the tuples it represents,
i.e., the number and origin (source) of tuples located in the multidimensional re-
gion – and no information about the tuples’ coordinates. In contrast, an R-tree’s
leaf node keeps the exact coordinates of the tuples and therefore consumes more
space than a QTree. Thus, space consumption for QTrees (maximum number of
buckets determines the degree of approximation) increases only with the number
of data sources whereas space consumption for an R-trees variant holding the same
information increases both with the number of sources and the number of tuples.
When additional tuples are inserted into an R-tree, having access to the exact co-

ordinates of all represented tuples allows for eXcient re-balancing so that we can
guarantee that the R-tree is always balanced, i.e., all leaf nodes are on the same level.
As a consequence of approximation, we cannot guarantee balance for the QTree; as
we do not know the exact coordinates of tuples represented by a particular region,
we cannot simply split the region for re-balancing without losing accuracy/correct-
ness. For splitting we would have to “guess” (due to the approximation) which of
the resulting regions the original data should be assigned to. Therefore, instead of
re-balancing algorithms like the R-tree, the QTree applies heuristics to keep itself
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balanced. Although balancing works well in practice, we cannot give any guaran-
tees because it is theoretically possible to construct a QTree that conforms to a
linear list [Hose, 2009; Zinn, 2004].
QTrees are constructed by inserting one data item after another. However, due

to the hierarchical structure, construction is more complex and adheres to the fol-
lowing steps (more details [Hose, 2009; Zinn, 2004]):

(1) Try to insert d into an existing bucket.

For each data item d, we Vrst check whether d can be added to an existing
bucket whose region encloses d’s coordinates. If found, the bucket statistics
are updated by adapting the (count,source) pair corresponding to the source
that d originates from. If a pair corresponding to the source already exists,
we increase its count value by one. If such a pair does not exist, we add a
new pair (1,source).

(2) Find most responsible inner node and insert d as a new bucket.

If d could not be inserted into an existing bucket, we traverse the QTree
beginning at the root node. We look for a child node p whose region com-
pletely encloses d and proceed recursively with p. We stop when we cannot
Vnd such a child node. Instead, we create a bucket as a new child node with
a single (1,source) pair representing d.

(3) Enforce fmax constraint.

The previous step might have violated the fmax constraint by creating a new
bucket and attaching it as a child to an inner node p. In order to reduce p’s
fanout, we determine the pair of p’s child nodes whose merging would result
in a node with the smallest region. Either we create a new child node n of
p and attach the pair of chosen siblings as child nodes to n, or if the bucket
inserted in the previous step is part of the pair of chosen siblings, we assign
the node as a new child of its sibling node. The latter case might result in the
need to recursively enforce the fmax constraint. In addition, we apply some
heuristics to prevent the QTree from degenerating into a linear list by trying
to destroy inner nodes whose children could be attached to the parent node
without violating the constraints.

(4) Enforce bmax constraint.

If step (3) resulted in a situation where the maximum number of buckets
bmax is exceeded, we need to reduce the number of buckets in the QTree.
Hence, we search for the pair of sibling buckets whose merging would result
in a bucket with the smallest region. The so-found pair of buckets is merged
into a new bucket whose region minimally encloses those of the original
buckets and whose set of (count,value) pairs originates from merging pairs
of the original buckets – pairs referring to the same source are merged by
summing up their count values. Since the parent of the merged siblings now
has less child nodes, we try to remove the parent by attempting to assign its
child nodes to its parent.

In order to avoid comparing all sibling buckets of all levels to each other each
time we need to enforce the constraints, we maintain a priority queue containing
at most one entry for each inner node stating its pair of child buckets to be merged
next. The entry corresponding to an inner node only needs to be updated when its
child buckets are added or merged.
A lookup for an RDF triple in the QTree is very similar to the lookup in multi-

dimensional histograms. The only diUerence is Vnding a bucket that contains the
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numerical triple corresponding to the given RDF triple. In contrast to the histogram
approach introduced above, buckets in a QTree might overlap so that we Vnd mul-
tiple buckets for one given RDF triple. As we do not know into which one the triple
has been inserted when constructing the index, we need to Vnd all such buckets.
We Vnd these buckets by traversing the QTree starting at the root node and recur-
sively following all paths rooted by children whose regions contain the coordinates
deVned by the numerical triple we are looking for – as regions are allowed to over-
lap, we might need to traverse multiple paths. Traversing a path ends at a bucket
or when there are no further child nodes containing the coordinates. Just as for
histograms false positives are possible, i.e., the index indicates the relevance of a
source although in fact it does not provide the data item we were looking for.

Space Complexity

The QTree’s space complexity comprises the space consumption of its main com-
ponents: leaf nodes, inner nodes, and the priority queue. Note that the size of a
QTree depends solely on its parameters (fmax and bmax) as well as the number
of sources csrc, but is independent of the number of represented data items.
By enforcing the bmax constraint, we can ensure that a QTree contains at most

bmax leaf nodes. Only leaf nodes hold statistical information about the sources in
the form of (count,source) pairs. The size of each pair is Vxed and the number of
pairs depends on the number of sources csrc. Thus, leaf nodes require O(bmax ·
csrc) space.
Construction ensures that an inner node has at most fmax and at least two child

nodes. A QTree is a tree structure where each inner node has exactly two children
and thus a QTree has at most bmax − 1 inner nodes. Allowing inner nodes to
have more children, i.e., fmax which is always greater than or equal to 2, never
increases but only reduces the number of inner nodes. Thus, a QTree has at most
bmax − 1 inner nodes. As the priority queue has at most one entry for each in-
ner node, it cannot have more than bmax entries. Consequently, a QTree requires
O(bmax) space for inner nodes and the priority queue. Hence, in total a QTree
requires O(bmax · csrc) for its main components altogether (Table 5.2).
The space complexity of both, multidimensional histograms and QTrees, high-

lights an earlier-mentioned advantage of these hash-based data summaries in com-
parison to other indexing approaches discussed in Section 5.1.2: the other indexes
sketched there grow in the worst case with the number of indexed triples. In con-
trast, due to the supported adaptive approximation, histograms and QTree grow
only with the number of data sources, independent from the number of indexed
triples. Moreover, the total size of the data summary is adjustable by setting an
appropriate bmax value.

Runtime Complexity

To determine runtime complexity for constructing the QTree, we need to determine
the costs for each main step of the insertion algorithm – we omit proofs and refer
interested readers to [Zinn, 2004] for more details. When inserting a data item d,
these costs are:

(1) Try to insert d into an existing bucket
O(bmax + log sources)

(2) Find most responsible inner node and insert d as a
new bucket

O(bmax)

(3) Enforce fmax constraint
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O(bmax · f2max)
(4) Enforce bmax constraint

O(f2max + log bmax + csrc · log csrc)

In the Vrst step, we try to insert d into an existing bucket. In the worst case, we
might have to traverse all buckets, thus O(bmax) time. Updating all the (count,
source) pairs requires O(log sources) time using a Java TreeMap. Thus, time
complexity is O(bmax + log sources) in total.
In the second step, we traverse the tree until we Vnd a node at which we can

insert d as a new bucket. In the worst case, we have to visit all nodes and check if
d is contained in the nodes’ regions:O(bmax). The insertion of d as a new bucket
takes constant time O(1).
The third step is more expensive as we need to enforce the fmax constraint pos-

sibly recursively through the tree. In the worst case, we need to make adaptations
to each level in the tree, i.e., enforcement is required at most bmax times. For each
call we need to Vnd that pair of child nodes whose merging would result in the
smallest region. Thus, we need to compare each pair of child nodes, i.e., O(f2max).
Rearranging child nodes and creating a new inner node takesO(f2max) time. Thus,
in total the third step requires O(bmax · f2max) time.
In the fourth step, we need to enforce the bmax constraint and reduce the num-

ber of buckets. Finding the best pair of buckets is done inO(1) because all we have
to do is to remove the Vrst entry from the priority queue. Merging two buckets
requires O(csrc · log csrc) using the Java TreeMap to organise (count,source)
pairs. The priority queue needs to be updated with respect to the parent node of
the merged buckets – Vnding the best pair of buckets takes O(f2max) and updat-
ing the priority queue takes O(log bmax) operations using a heap-based priority
queue. In any case, whether the parent node can be dropped – O(f2max) – or not,
only one entry of the priority queue needs to be updated. Thus, in total step four
takes O(f2max + log bmax + csrc · log csrc) time.
Performing a lookup operation in the QTree requires at most O(bmax +

log csrc) because in the worst case we need to visit all nodes, and lookups in the
(count,value) pairs cost at most O(log csrc).

The above runtime complexities are based on the worst case corresponding to an
unbalanced QTree with a tree height of bmax. The construction algorithm cannot
guarantee that we obtain a balanced tree structure, because it is theoretically possi-
ble to construct a QTree that conforms to a list-like structure. For example, if tuples
are inserted sorted in a way that the next tuple’s coordinates are always higher than
those of the previous tuple, then we would add all the data to only one branch of
the QTree. However, such an order is unlikely for real data sets and the heuristics
we apply keep the QTree almost balanced in practice. Assuming that we have an
almost balanced tree, insertion takes only O(log bmax · f2max + csrc · log csrc)
time and a lookup O(log bmax + log csrc) (Table 5.3).

5.2.3 Construction and Maintenance

So far we have only considered one aspect of constructing data summaries, i.e.,
how to insert data. We have not yet considered when and what data we need to
index. In this respect, we identify two main tasks: i) creating an initial version of
a data summary (initial phase) and ii) expanding the summary with additional or
new information (expansion phase).
The construction and maintenance of these data summaries are out of scope for

this thesis. However, we give a brief overview of possibilities and sketch the general
directions which could be investigated further.
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Initial Phase

Once we have constructed an initial version of a data summary, we can use it to
determine a set of relevant sources for a given SPARQL query and retrieve relevant
documents from the Web. The selection of seed sources to construct the initial
version has a strong inWuence on the ability to discover new and interesting sources
in the expansion phase.
Let us assume the case that our data summary covers a subgraph containing only

few incoming or outgoing links to the rest of the global Linked Data Web. The lack
of links to new sources decreases the probability of further extending the index.
Selecting seed sources which provide many links to other documents increases the
chance of discovering new sources. The selection of those well interlinked sources
can be done via sampling on a random walk over the Linked Data graph or choos-
ing the top ranked sources of existing datasets.
In general, we identify two diUerent approaches for constructing an initial ver-

sion:

(i) Pre-fetching: The most obvious approach is to fetch an initial set of sources
to index from the Web using a Web crawler. An advantage of this approach
is that existing Web crawling systems can be used to gather the seed URIs.
Random walk strategies, in particular, generally lead to representative sam-
ples of networks and thus result in a set of sources that could serve as a good
starting point to further discover interesting sources [Henzinger et al., 1999].
The quality of query answers depends on the selection of the selected sources
and depth/exhaustiveness of the crawl.

(ii) SPARQL Queries: Another approach is to use SPARQL queries and collect
the sources to index from the answer to the queries. Given a SPARQL query,
we can use the LTBQE approach to iteratively fetches the content of the
URIs selected from bound variables of the query. However, this would require
to have at least one dereferenceable URI (preferable a subject URI) in the
SPARQL query as a starting point.

The decision which strategy to select strongly depends on the application scenario
and has to be chosen accordingly.

Expansion Phase

After having created an initial version of a data summary, there might still be
sources whose data have not yet been indexed. Given a SPARQL query, it is very
likely that the initial summary contains information about dereferenceable URIs
that are not indexed. In this case, the summary should be updated with these newly
discovered URIs to increase the completeness of answer sets for future queries. In
this context, we distinguish between pushing and pulling sources:

(i) Push of sources refers to methods involving users or software agents to
trigger expansion, which can be done for example via a service similar to the
ping services of search engines.

(ii) Pull of sources does not need any external triggers and can be implemented
using lazy fetching during query execution. Lazy fetching refers to the pro-
cess of dereferencing all new URIs needed to answer a query. The approach
is similar to constructing the initial data summary using SPARQL queries.

The latter approach sounds appealing since it elegantly solves the cold-start prob-
lem by performing a plain LTBQE approach on the Vrst query and successively
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range scale
linear transformation

min max

min maxindex range

hash range

Figure 5.2: Example of range scaling.

expanding the data summary with more relevant sources. Note that the expansion
could be combined with pre-fetching for each new query, thus accelerating the
expansion of the summary.

5.3 importance of hashing

In the following we explain how our system uses hash functions to map RDF state-
ments to numerical values, which are inserted and stored in the buckets of the data
summaries. Similar or correlated data items should be clustered and represented in
the same bucket. Data summaries adhering to these criteria are ideal for query opti-
misation and source selection and therefore have a positive inWuence on precision.
In the case of multidimensional histograms, the hash function should equally

distribute the input data among the buckets. The equal distribution is not a require-
ment for the QTree, since the buckets are adjusted to the input values.
There is a wide variety of hash functions which map strings to integer or Woat

values. A trivial class of the hash functions interpret the encoding of a string as
an integer or long value. Another widely used group of hash functions represents
the string values with its computed checksum, Vngerprint or digests, e.g., one can
use the CRC checksum or encryption algorithms like SHA-1. More advanced hash
functions try to minimise possible bijective mappings from diUerent strings to the
same hash value. Other functions are order preserving, that means that the order
of the hash values reWect the order of the input data; e.g., the alphabetical order of
the strings.
A common method allowing for eXcient aggregation is to normalise the hash

values by scaling them from the numerical range of the hash function into a smaller
range. One possible way of scaling is to use a linear transformation as depicted
in Figure 5.2. The Vgure also illustrates how a range scale improves clustering and
leads to an uniform distribution of the data.
To deVne the numerical range of a data summary, we have to consider two spe-

cial cases:

(1) Target range is too big (sparse data): If the target region is too big, most
of the target range is likely not to be occupied at all. This strongly aUects the
quality of the multidimensional equi-width histogram whereas the QTree
was designed to handle sparse data – see Section 5.2 for more details.

(2) Target range is too small: If the target range is too small, we have to deal
with hash value collisions, i.e., diUerent strings are mapped onto the same
numerical value although their original hash values were diUerent. This will
lead to false positive decisions for source selection.
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Figure 5.3: PreVx Hashing.

Thus, selecting the target range is a crucial task and directly inWuences the query
processing.

5.3.1 Hash Functions

The general approach is to apply the hash function to the string value of each node
in the RDF triple. Alternatively, one can consider applying diUerent hash functions
to the diUerent types of RDF terms, namely resources, blank nodes and literals
and/or considering the position of the RDF term (subject, predicate or object).
In this thesis, we focus on the following three hashing approaches:

string hashing (str) :

This group of hash functions computes hash values based on checksums
and Vngerprints. The advantage is that these algorithms aim at providing
a unique hash value for each string value and thus try to use the all the
available numerical space.

prefix hashing (pre) :

PreVx hash functions use a preVx tree to map a string value to the value
of the longest matching preVx in the tree and thus provide a good clus-
tering for similar strings. The basic structure of a preVx tree is depicted
in Figure 5.3. In the example we can see that all string values starting with
http://xmlns.com/ are mapped to values between 2 and 5. For example,
the URI http://xmlns.com/foaf/spec/name is hashed to 3. A string only
consisting of the preVx http://xmlns.com/ is hashed to 5. The advantage
of preVx hashing is that it provides a better clustering of similar RDF values
compared to the string hashing. However, preVx hashing reduces the num-
ber of possible values, especially if the preVx tree does not contain many
preVxes. In addition, we have to maintain a preVx tree which can consume a
lot of space because of the number of preVxes. However, early experiments
showed that a QTree with preVx hashing performs better than a string hash-
ing in terms of the quality of the source selection.

mixed hashing (mix) :

The mixed hashing function combines the both presented approaches of pre-
Vx and string hashing. Subject and object values are hashed using preVx hash-
ing and predicate values are hashed with string hashing using checksums.
The reason for applying diUerent hash functions for the diUerent position of
the RDF terms is that earlier experiments revealed that the number of dis-
tinct predicates on the Web is rather small (in the number of ten thousand)
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(a) Mixed hashing (b) String hashing

Figure 5.4: 2D plots of the hash values of diUerent hashing functions for RDF terms at the
predicate (x-axis) and object (y-axis) position.

compared to the possible number of subject and object values. A preVx hash
function would map several predicates to the same hash value and we would
loose important information. If we apply a string hashing function for the
RDF terms at the predicate position we conserve more information because
each predicate will be mapped to a unique hash value. This is especially im-
portant for the join processing as we will discuss in detail in Section 5.4.

5.3.2 Comparison of hash functions

The distribution of the input data for mixed and string hashing is shown in Fig-
ure 5.4 as two-dimensional plots. We omit the preVx hashing from the Vgure be-
cause the distribution patterns are very similar to the mixed hashing, with the only
diUerence that the predicate dimension contains more data points for the mixed
hashing. The plots show the distribution of the hashed RDF statements for the
RDF terms at the predicate (x-axis) and object (y-axis) position. We selected these
two dimensions because they show best the diUerence between the two hashing
approaches and are representative for the other dimensions. The input dataset is
a breadth-Vrst Web crawl of RDF/XML documents starting from a well connected
source (more information about the dataset in Section 5.5.1). We can see that the
string hashing equally distributes the input data over the allocated numerical space.
The mixed hashing shows a higher clustering of the input data and leaves large ar-
eas of the numerical space empty. Based on these patterns, we can conclude that in
theory string hashing should be more suitable for histograms and a preVx or mixed
hashing favours the QTree. Our evaluation provide several proofs that the theory
holds in practice.

5.4 source selection

An advantage of the data summaries we advocate here is that they support es-
timation of relevant sources by processing parts of a query plan before actually
fetching any sources. In this section, we provide details on how source estimation
works for single triple patterns and joins of triple patterns. Table 5.4 summarises
the notation we use throughout the section. Note that for ease of exposition we
refer to buckets that contain a single count value and a list of sources contributing
to this value – we indicate the required modiVcations for buckets containing a set
of (count,source) pairs where appropriate (cf. Section 5.2).
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Symbol Explanation

B,R,L sets of buckets (regions)

B,R,L buckets (regions)

⊕ bucket join operation (used in region joins)

J join space (special set of buckets)

R[i] i-th dimension of bucket R

R[i].hi,R[i].low max and min value of R in i-th dimension

cR cardinality of bucket R

SR set of sources contributing to bucket R

sr number of results that source s contributes to

|R| number of buckets in set R
←→
R
j

extension in join dimension j of bucket R

R
j

average extension in join dimension j of

all buckets in R

_ “overlapping” relation

uj overlapping intervals in dimension(s) j of

two buckets

Table 5.4: Used symbols.

5.4.1 Triple Pattern Source Selection

Single triple patterns deVne the leaf operators of query plans, where relevant data
is extracted from the Linked Data sources. For determining the sources that can
contribute to a join, we Vrst determine the sources that can contribute to these ba-
sic triple patterns. With the help of the data summaries, source selection is achieved
by determining the buckets (i.e., the data regions) that correspond to a triple pat-
tern. Therefore, a triple pattern is converted into a set of coordinates in numerical
space by applying the used hash functions to the elements of the pattern. Triple
patterns containing only constants map to a single point in the three-dimensional
space, while variables result in spanning the whole range of hash values for the
respective dimension, thus constructing a cubic region corresponding to the triple
pattern. Intuitively, several Vlter expressions can be included in the construction of
such a query region. This includes all Vlter statements that can be mapped directly
to according hash values (e.g., range expressions, but not contains expressions). Al-
gorithm 1 summaries the complete procedure to determine relevant sources for a
given triple pattern.
Based on the constructed query region R, we can determine all buckets con-

tained in the data summary that overlap with R. In multidimensional histograms,
all buckets are inspected in sequence. In contrast, the hierarchical structure of a
QTree supports to start at the root node and then to traverse all child nodes if their
minimal bounding boxes (MBBs) overlap R. All buckets on leaf level visited by this
tree traversal constitute the set of relevant buckets.
After having identiVed all relevant buckets, we determine the percentage of

overlap with R. Let size(R) denote the size of a region R, cB the number of data
items (cardinality) represented by bucket B and O the overlapping region of B and
R. Then, the cardinality of O is calculated as cB ·

size(O)
size(B) . Based on the overlap,

the bucket’s source URIs, and the cardinality (i.e., the number of represented RDF
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Input: BGP b, QTree QT , min/max dimensional extensions dimSpec
Output: list of relevant buckets (containing sources)

1 for i = 0 to 2 do
2 if b[i] 6= variable then
3 R[i].low = hash(b[i]);
4 R[i].hi = hash(b[i]);

else
6 R[i].low = dimSpec[i].low;
7 R[i].hi = dimSpec[i].hi;

end
end

10 B = ∅;
11 for B ∈ QT : B overlaps R do
12 O = B.overlap(R);
13 cO = cB ·

size(O)
size(B) };

14 B = B∪ {(O, cO, SB)};
end

16 return B

Algorithm 1: Source selection for triple patterns.

triples) we can determine the set of relevant sources and the expected number of
RDF triples per source – assuming that triples are uniformly distributed within
each bucket. Thus, the output of the source selection algorithm is a set of buckets,
each annotated with information about the overlap with the queried region, source
URIs, and the associated cardinality.

5.4.2 Join Source Selection

The presented source selection for triple patterns (and Vlter statements) already
reduces the number of sources that have to be fetched for processing a query. How-
ever, we can reduce that number even further if we include the join operators into
the pre-processing of a query. The buckets determined for single triple patterns act
as input for the join source selection. As it is likely that there are no join partners
for data provided by some of the sources relevant for a triple pattern, this will re-
duce the number of relevant sources. Thus, we consider the overlaps between the
sets of obtained relevant buckets for the triple patterns with respect to the deVned
join dimensions and determine the expected result cardinality of the join. In the
general case, a join between two triple patterns is deVned by equality in one of the
dimensions. Thus, we have to determine the overlap between buckets in the join
dimensions, while leaving other dimensions unconstrained.
The performance of processing joins on the data summaries depends on several

factors, where the most relevant are:

1. the order of joins

2. the actual processing of the join operation

As in relational databases, the Vrst point should be handled using a cost estimation
for diUerent join orders and the second one by choosing between diUerent join
implementations. Before we discuss these basic optimisations, we will illustrate
the general principle of such region joins.
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5.4.2.1 Region Joins

The crucial question is how we can discard any of the sources relevant for single
triple patterns, i.e., identify sources as irrelevant for the join. Unfortunately, if a
bucket is overlapped, we cannot omit any of the contributing sources, because we
have no information on which sources contribute to which part of the bucket. To
not miss any relevant sources, we can only assume all sources from the original
bucket to be relevant. Sources can only be discarded if the entire bucket they be-
long to is discarded, such as the smaller bucket R2 for the second triple pattern
in Figure 5.5. Thus, data summaries and hashing functions that result in small sets
of small buckets promise to be particularly beneVcial for the join source selection
and the overall performance of our query processing approach.
The result of a join evaluation over two triple patterns is a set of three-dimen-

sional buckets. Joining a third triple pattern requires a diUerentiation between the
original dimensions, because the third triple pattern can be joined with any of them.
For instance, after a subject-subject join we have to handle two diUerent object di-
mensions; a join between two three-dimensional overlapping buckets results in one
six-dimensional bucket with an MBB that is equivalent to the overlap. In general, a
join between n triple patterns results in a (3 ·n)-dimensional join space.

Example 5.4. We exemplify the join source selection algorithm based
on Query 5.1:

SELECT ?f

WHERE {

dblpP:HartigBF09 foaf:maker ?a .

?x owl:sameAs ?a .

?f foaf:knows ?x .

}

Query 5.1: Friends of the authors of a paper.

The query consist of three triple patterns. The Vrst two triple patterns are
joined over the object position and the last two are a subject-object join. As
a remark, executing this query with the LTBQE approach would fail, since
the source dblpPDoc:HartigBF09 contains no owl:sameAs information to
provide solutions for the second query pattern.

Figure 5.5 illustrates the Vrst step of join source selection on the basis of the
introduced example Query 5.1. We assume that the Vrst join is processed over the
Vrst and second triple pattern, i.e., an object-object join over ?a.
The sets of input regions for each triple pattern are determined as described

in Section 5.4.1 on the basis of the queried predicate. For simplicity, we assume this
results in only one bucket for the Vrst and two buckets for the second triple pat-
tern. Each resulting bucket corresponds to a slice of the three-dimensional space.
With regard to the join dimension, there are two overlapping buckets. Both over-
lapping buckets L1 and R1 are constrained by their overlap in the join dimension.
Other dimensions are not constrained. Thus, the shaded parts of both buckets rep-
resent the result buckets of the join. For a join between diUerent dimensions, e.g.,
a subject-object join, the approach is the same. The subject dimension of the Vrst
triple pattern restricts the object dimension of the second, and vice versa.
Figure 5.6 illustrates how the second join from example Query 5.1 is processed.

The join involves ?x1, i.e., an object-subject join between the second and third
triple pattern. For illustration purposes, we omit the predicate dimensions and
show equal dimensions on the same axis (slices of the six-dimensional space re-
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Figure 5.5: Region join between Vrst and second triple pattern.
su

b
je

ct
 2

 =
 o

b
je

ct
 3

su
bj

ec
t 1

object 1 = object 2 subject 3

3rd TP

TP 1+2

Figure 5.6: Region join with third triple pattern.

duced to the three shown dimensions). The left-most bucket L1 ./ R1 corresponds
to the bucket resulting from the Vrst join. One bucket S1 shown from the result
of the third triple pattern overlaps with it, i.e., there is an overlap between the
subject 2 dimension of L1 ./ R1 (originally, the subject from R1) and the object
dimension of S1. The resulting overlap deVnes the nine-dimensional result bucket,
containing information about all resources that might contribute to this bucket.

5.4.2.2 Region Join Implementations

The general principle of determining sources relevant for joined triple patterns
can be implemented in several diUerent ways. Basically, the diUerent alternatives
known from relational databases can be mapped to the processing of region joins.
We discuss the alternatives available in our query engine in the following.

nested-loop join A straightforward implementation of a region join is a
nested-loop join.
Algorithm 2 provides a detailed illustration of this implementation. The overlap

between the both input sets is determined by two nested loops (lines 2 and 3).
Overlapping buckets are joined in the inner loop (line 3) using existing methods
for determining the overlap between buckets.
The (3 · (i+ 1))-dimensional regions resulting from the i-th join are stored in

a join space J. This join space acts as one input for the next join. Thus, the join
operator actually processes one such join space and the three-dimensional regions
for a triple pattern – for the Vrst join, J corresponds to the three-dimensional buck-
ets resulting from the left-most triple pattern in the join tree. Note that, after the
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Input: join space Jin (left-hand side), set of buckets R (right-hand side),
left/right join dimension l/r

Output: new join space (containing relevant buckets and sources)

1 Jout = ∅;
2 forall buckets L ∈ Jin do
3 forall buckets R ∈ R do
4 if ∃OL = L[l].overlap(R[r]) then
5 OR = R[r].overlap(L[l]);

6 cOR⊕OL =
cL·

size(OL)
size(L) · cR·

size(OR)
size(R)

max (L[l].hi−L[l].low,R[r].hi−R[r].low) ;
7 Jout = Jout ∪ {OL ⊕OR, cOR⊕OL , SL ∪ SR};

end
end

end
11 return Jout

Algorithm 2: Nested-loop join.

Vrst join, two of the six dimensions are equal. Handling them separately is just for
ease of understanding and implementation. The⊕ operator in line 7 symbolises the
operation of combining two buckets while increasing the number of dimensions ac-
cordingly: the three dimensions from OR are added to the 3 · i dimensions of OL,
together forming the 3 · (i+ 1) dimensions of the result bucket. The new cardinal-
ity cOR⊕OL (line 6) of the resulting bucket is determined using the percentage of
overlap for both buckets (cf. Section 5.4.1), assuming uniform distribution in both
buckets. We provide details in Section 5.4.3. The set of relevant sources SOR⊕OL is
a union over the sets from both buckets.

Input: left inputL, right input R
Output: join space containing overlapping buckets

forall L ∈ L do
forall R ∈ R do

J.add(determineOverlap(L,R));
end

end
return J

Algorithm 3: Principle of nested-loop join.

A simpliVed description of the nested-loop join principle is depict in Algorithm 3.
Note that we omit the restriction to the actual join dimensions. We use this abbrevi-
ated form to show the diUerences to other implementations. The resulting number
of operations isΘ(|L| · |R|), i.e., we have to call method determineOverlap exactly
|L| · |R| times.

index join Intuitively, the eXciency of the join processing can be increased
using special join indexes. One option is to use an inverted bucket-index that stores
mappings from the values of a dimension to relevant buckets. We illustrate such an
index on the left in Figure 5.7. The references from values to buckets can be used
during join processing to eXciently determine all regions that contain a certain
value. Note that this is the same principle as in a hash join. However, rather than
applying a hash function to the join values, we only have to collect the references
from dimension values (which are in fact, hash values) to buckets. For clariVcation
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Figure 5.7: Illustration of an inverted bucket index.

and to diUerentiate from the general problem of hashing for the data summaries
we call this join index join. A full index of that kind can result in a very high in-
memory requirement. In the worst case – when all buckets span over the whole
dimension range – for each dimension value we have to store the references to all
buckets. To lower the memory requirements, we introduce an approximation by
storing references for a range of values rather than single values. This is depicted
in Figure 5.7 on the right, assuming that we use a scale factor of 10 (i.e., ranges of
size 10: [1, 10], [11, 20]).
Ranges that are not covered by any bucket are omitted in the index. In an index

without approximation we have to store
∑
R∈R

←→
R
j
= R

j · |R| entries, where R

refers to the set of regions that have to be indexed,
←→
R
j
:= R[j].hi− R[j].low+ 1

to the range of region R in join dimension j, and R
j
:= 1

|R|
·
∑
R∈R

←→
R
j
to the

average range of all buckets from R in join dimension j. The size of the approxi-
mated variant cannot be determined exactly for the general case, as it depends on
the actual distribution of regions in the whole range ofR. However, we can provide

an upper limit as O(R
j·|R|
scale ), where scale refers to the used scale factor.

Input: left inputL, right input R
Output: join space containing overlapping buckets

idx = buildInvertedBucketIndex(R);
forall L ∈ L do

O = idx.getOverlappingBuckets(L);
forallO ∈ O do

J.add(determineOverlap(O,L));
end

end
return J

Algorithm 4: Principle of index join.

Algorithm 4 illustrates the principle of the index join. As known from hash joins,
we choose the smaller of both input sets to build the inverted bucket-index. In
the algorithm, without loss of generality, we assume that this is R. The method
determineOverlap has to be called for all pairs of overlapping regions, as we
need the fraction of overlap to estimate the number of results for join ordering
(Section 5.4.2.3) and source ranking (Section 5.4.3). The exact overlap has to be
determined only once per overlapping pair of regions, no matter how much they
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actually overlap. This is assured by method getOverlappingBuckets, which re-
turns all overlapping buckets at once using the before created index.
A lower limit of the number of operations using the index join is provided by

Ω(|R|+ |L|), while the worst-case upper limit is

O(|R|+ |L| · |R|). (5.1)

The exact number depends on the actual distribution of buckets in R and L and
can be approximated by

Θ ( |R|+ |L|− |{L ∈ L : L[j] _ Luj R}|

+
∑

L∈L:L[j]_LujR
|{R ∈ R : R_ L}|), (5.2)

where _ refers to the overlap relation and L uj R to the range(s) where buckets
from L and R overlap in join dimension j. First, we need to scan all |R| buckets
to build the index, then we have to scan all |L| buckets from L. Only for those
buckets from L that are in the overlap with R (i.e., all L ∈ L : L[j] _ L uj R),
we have to actually call determineOverlap for each overlapping R ∈ R. Thus, the

index join becomes more eXcient with smaller sizes of
←−−→
Luj R

j
and smaller average

bucket sizes L
j
and R

j
. To make this more evident, we can provide an asymptotic

upper limit assuming uniform distribution of the buckets in L and R and an un-
approximated inverted bucket-index. Then, the density of a set of buckets L can be
determined as

dL :=
|L| ·Lj

←→
L
j

.

The density describes the fraction of points in the whole range
←→
L
j
of L that are

covered by buckets from L. Using the density of a set of buckets, we can approxi-
mate the upper limit for the sum from Equation 5.2 as

O(
dL ·
←−−→
Luj R

j

min (L
j,
←−−→
Luj R

j
)︸ ︷︷ ︸

|{L∈L:L∈LujR}|

·
dR ·min (L

j,
←−−→
Luj R

j
)

min (R
j, min (L

j,
←−−→
Luj R

j
))︸ ︷︷ ︸

|{R∈R:R overlaps with L}|

)

= O(

|L|·Lj
←→
L
j ·
←−−→
Luj R

j

min (L
j,
←−−→
Luj R

j
)
·

|R|·Rj
←→
R
j ·min (L

j,
←−−→
Luj R

j
)

min (R
j, min (L

j,
←−−→
Luj R

j
))
)

= O( |L| ·
max (Lj,

←−−→
Luj R

j
)

←→
L
j︸ ︷︷ ︸

61

· |R| ·
max (Rj, min (L

j,
←−−→
Luj R

j
))

←→
R
j︸ ︷︷ ︸

61

).

This shows that |L| · |R| is a very rough upper limit in Equation 5.1. In fact, the

amount of operations reduces signiVcantly with decreasing
←−−→
Luj R

j
,Lj and R

j
.

5.4.2.3 Join Ordering

Besides the actual join implementation, the second crucial aspect for achieving
a good performance in join processing is the join order. In principle, other well-
known optimisation techniques can be mapped directly to the problem of ordering
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region joins. We just have to use an appropriate cost model. The crucial cost factor

Input: set J of pairs {L,R} of triple pattern results to join
Output: list containing ordered joins

O =⊥;min =∞;
while J 6= ∅ do

forall {L,R} ∈ J do
if |L| · |R| <min then

min = |L| · |R|;
next = {L,R};

end
end
O.add(next);
min =∞;
J = J \ {next};

end
returnO

Algorithm 5: Greedy algorithm for join ordering.

for region joins is the number of resulting buckets. Thus, for the time being, we
implemented a greedy algorithm using a cost function that estimates the number
of resulting join buckets, as shown in Algorithm 5. The input for the algorithm is a
set of pairs of relevant buckets for triple patterns that can be joined, as determined
by the triple pattern source selection. Based on the number of buckets that might
result from a join between two triple patterns in the worst case, the algorithm
chooses the cheapest join in a greedy manner. One could extend this simple cost
model by statistics describing the distribution of buckets in order to estimate the
actual number of comparisons for each join.
The optimisations discussed above are only of basic nature. The focus of this

work lies on the general applicability of hash-based data summaries for querying
Linked Data. As part of that, we also analyse the general beneVt we gain from
optimising region joins (Section 5.5.2), which is expected to form only a small part
of the entire query processing overhead.

5.4.3 Result Cardinality Estimation and Source Ranking

As source selection is approximate, the set of relevant sources will usually be over-
estimated, i.e., contain false positives. Please note that false negatives are impossi-
ble: any region where results exist are guaranteed to be covered by the buckets of
the summaries. Moreover, some queries may actually be answered by a large set
of sources, such that a focus on the most relevant ones becomes important. Both
issues suggest to introduce a ranking for sources identiVed as being relevant for
answering the query.
One approach to rank sources according to their relevance is to use the cardinali-

ties provided by the data summary. The intuition is that sources that provide many
results should be ranked higher than sources providing only a few results. Thus,
the idea is to estimate the number of results sr that each source s ∈ S contributes
to. The ranks are assigned to sources according to the values of sr in descending
order.
If each QTree bucket B provides an estimated cardinality cB and a list of associ-

ated sources SB, we could simply assume uniform distribution and assign cB/|SB|
to each source of a bucket, while summing up over all buckets. In early tests we
recognised that this ranks sources very inaccurately. A simple modiVcation of the
summaries, which results in constant space overhead, is to record the cardinality
csB for each source contributing to a bucket separately. More speciVcally, csB es-
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timates the number of results in B that source s contributes to, summed over all
joined triples. Thus, cB = (

∑
s∈SB c

s
B)/jlB, where jlB represents the join level of

B (i.e., the number of triple patterns that have been joined to form one data item in
B). This helps to overcome the assumption of a uniform distribution in the bucket.
The number of results a source contributes to is determined as:

sr =
∑
B c
s
B

Line 6 in Algorithm 2 can be adapted by applying the formula separately for each
source, while substituting cB by csB, cL by csL and cR by csR.
To provide an example, we assume that bucket L1 from the Vrst triple pattern

in Figure 5.5 summarises 60 triples from a source s1 and 40 triples from a source
s2. Further, bucket R1 from the second triple pattern shall refer to 20 triples from
source s2 and 50 triples from source s3. The ratio between overlap and bucket is
2
7 for L1, respectively

1
4 for R1, and the larger bucket R1 has an extension of 40 in

the object dimension. Thus, after the Vrst join we rank the sources as follows:

1. s3 : contributes to s1 ./ s3 and to s2 ./ s3 :
60· 27 ·50·

1
4

40 +
40· 27 ·50·

1
4

40 = 8.93
of the join results

2. s2 : contributes to s1 ./ s2 and s2 ./ s3, and doubled to s2 ./ s2 :
60· 27 ·20·

1
4

40 +
40· 27 ·50·

1
4

40 + 2 · 40·
2
7 ·20·

1
4

40 = 8.57 of the join results

3. s1 : contributes to s1 ./ s2 and to s1 ./ s3 :
60· 27 ·20·

1
4

40 +
60· 27 ·50·

1
4

40 = 7.5 of
the join results

Note that we estimate the contribution of each source to the join result. Thus,
for each pair of joined sources we count twice – one time for the left-hand side,
one time for the right-hand side. The estimated cardinality for the join result is
actually half of the sum over all sources, i.e., 12.5 in the example. The determined
cardinalities for each source are stored in the resulting bucket L1 ./ R1. They are
used in the same way for result cardinality estimation and source ranking after
the second join, which is still a rough approximation but can already signiVcantly
improve query processing performance. In order to guarantee that we do not miss
any relevant source, we cannot discard any of the sources, no matter how small
the estimated contribution is. Remember that the uniform distribution is just an
assumption to enable a cardinality estimation at all. The source ranking based on
this helps to assess the importance of all relevant sources. The eUect is grounded in
probability laws, by which the probability that a source contributes to a fraction of
a bucket (the region resulting from the join overlap) increases with its total number
of data items in the bucket.
Due to the assumptions we make during ranking, sources providing a large num-

ber of triples will usually be ranked higher than smaller sources although both
large and small sources can potentially contribute to the query result. However, as
we show in Section 5.5.2, source ranking based on cardinality works satisfyingly
accurate for real-world sources.
There are several possible approaches to improve the ranking accuracy, e.g., by

inspecting the importance for each join dimension separately and determining a
combined rank in the end. A crucial question that has to be answered before is:
What should be the target of the ranking? In our approach, we rank sources higher
that likely contribute to many results of the join. Alternative approaches can be
based on the popularity of the sources using, for instance, PageRank [Brin and
Page, 1998; Page et al., 1999], HITS [Kleinberg, 1999], and optionally external in-
formation from Web search engines. Another alternative is to directly rank the
importance of the generated join results rather than the importance of the sources
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that contribute to them. Ranking in our approach is very important and represents
an orthogonal research problem in itself.In Section 5.5.2 we show that the current
approach already indicates the actual importance ranking of sources in a satisfy-
ingly accurate manner.

5.5 evaluation

5.5.1 Setup

Our experiments aim at providing insight into memory consumption, runtime eX-
ciency and query completeness for various lightweight index structures for source
selection. We describe the setup of our experiments, methods and the test data in
the following and discuss the obtained results afterwards.
We benchmark core functions of the index structures:

Index Build: The index structures should be able to handle the insertion of RDF
data streamed directly from a crawler. We measure the time and memory
needed to insert a given number of statements. We expect that our results
are very close to the theoretical complexity analyses.

Query Time: Ideally, the source selection of the index structure returns only rel-
evant sources for conjunctive SPARQL queries in milliseconds. The experi-
ment executes SPARQL queries with two implemented join operators – the
nested loop and inverted bucket list operator – and with and without the
join ordering optimisation. We measure the execution time for the diUerent
operators and the QTree and multidimensional histogram.

Source Selection: Hash-based data summaries, SLI and II return an estimation
of sources relevant to answering a query. Due to the approximate nature of
these indexes the returned sources are always a superset of the actually rele-
vant sources. Our experiment is designed to measure the average number of
estimated sources in comparison to the average number of actually relevant
sources. We expect that the number of selected sources is higher than the
number of actually relevant sources.

Query Answering: The query results should justify the expensive execution of a
SPARQL query directly over live Web content (we highlighted the challenges
that are involved in fetching the content for the selected sources; e.g polite-
ness and also temporarily server problems). Considering a source ranking,
a Linked Data query processor would ideally use only the top-k sources to
assure a worst case query time and still guarantee a certain degree of com-
pleteness of the results. We evaluates the quality of the source selection and
the completeness of the query answers wrt. the top-k selected sources. The
baseline results are derived from the test queries over the materialised data
set.

5.5.1.1 Datasets and Queries

We use two real-world datasets collected from the Web with the LDSpider [Isele
et al., 2010] framework. Two data set were gathered with a breadth-Vrst crawl start-
ing from a well connected RDF source with a content Vlter for sources that contain
application/rdf+xml Vles. This gathering method is similar to the BTC dataset
(which we presented in Section 3.1). For this experiment we required a smaller sub-
set of the Linked Data Web which is also connected. As such, we performed our

124



5.5 evaluation

Figure 5.8: Abstract illustration of used query classes.

own crawl rather than extracting a subset from the BTC dataset, which, we believe,
would be more challenging than a straightforward crawl. As a result, we obtained a
large dataset L consisting of 3.1m RDF statements from 15.7k sources and a smaller
data setM which contains the Vrst 50% of the content of L.
We used our QWalk query generator, as presented in Section 4.4.2, and experi-

mented with randomly generated queries corresponding to two general classes The
Vrst class of queries consist of “star-shaped queries”with one variable at the subject
position. The second type of queries are “path-shaped queries” with join variables
at subject and object positions. Figure 5.8 shows abstract representations of these
query classes. The query classes of choice are generally understood to be repre-
sentative for real-world use cases and are also used to evaluate other RDF query
systems (e.g., [Neumann and Weikum, 2010]).
The star-shaped queries were generated by randomly picking a subject URI from

the input data and arbitrarily selecting distinct outgoing links. Then, we substituted
the subject in each BGP with a variable. Path queries were generated using our
random walk approach. We randomly chose a subject URI and performed a random
walk of pre-deVned depth. The result of such a random walk was transformed into
a path-shaped join by replacing the connecting nodes with variables.
Using these approaches, we generated from the data 50 queries for each query

class with zero, one and two join operations. We use P-n to denote path queries
with n join operations and S-n to denote star-shaped queries with n join opera-
tions.

5.5.1.2 Setup

We use a dual core AMD Opteron 250 server with 4GB of memory and two 1TB
hard disks, running Ubuntu 9.10/x86_64 (latest stable release of Ubuntu) for our ex-
periments. We base our experiments on implementations in Java, and use Version
1.6 of the Sun Virtual Machine.

We used reference implementations for the schema-level index and the inverted
URI index:

• Schema-level Index (SLI): We use the standard Java HashMap implementa-
tion to store the list of source URIs that contain a property p and/or the object
(class) of an rdf:type statement. We arrive at two maps: one has as keys the
RDF properties and as values a list of sources containing the corresponding
property, and the second map has as keys the object of type statements and
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again as values the list of sources containing the corresponding type state-
ments. To select relevant sources, we extract all RDF properties and classes
contained in the query, perform lookups on the two maps, and return the
union of the results of the lookups as relevant sources. Note, this does not
involve any kind of ranking.

• Inverted URI Index (II): Our reference implementation of an inverted URI
index also uses in-memory Java HashMaps, where the keys are the URIs in
the dataset and the values are lists of source URIs which contain the key URI.
We select relevant sources for a given query by extracting all URIs contained
in the query, perform for each URI a lookup in the map and return the union
of all lookup results. Note, this does not involve any kind of ranking.

The reason why we use reference implementation are the following: Our focus
is not on the actual index and query performance, rather we are interested in how
suitable these indexes are for the source selection and thus focus only on number
of the resulting sources relevant to a query. The number of estimated sources is the
crucial performance factor of our proposed query system as we will show in the
evaluation section.

5.5.2 Results

In the following we present and discuss the results of our experiments. An overview
of the concrete setup of our evaluation is given in Table 5.5. We provide for each ex-
periments a selection of the results in plots, and compare and discuss the complete
results.

5.5.2.1 Index Build

The time needed for inserting a certain number of statements for MDH and QT
is shown in Figure 5.9. The plot shows (with log-scaled xy-axis) the time elapsed
to insert n-statements (total labelled point lines) for MDH and QT with diUerent
parameters.
We can see that MDH (two bottom lines) performs by order of magnitudes bet-

ter than QT. The best insert time of MDH was achieved with string hashing with
an average of 45 statements per millisecond. Among diUerent QT conVgurations,
mixed hashing performs best and needs in average 30 ms to insert a statement (or
0.04 statements per millisecond). Further, we observe that MDH increases the ratio
of the inserted statements per time (cold start), whereas QT is getting slower. The
diUerences between the insert times are due to the speed of the hash function in
the case of MDH. The string hash functions are in general faster than the hash
functions based on the preVx tree. In contrast, the string hashing functions sig-
niVcantly slow down QT. In general, string hashing equally distributes the string
hashes over the allocated numerical space, which causes the QTree to recompute
the bucket boundaries for nearly each inserted statements. PreVx based hashing
clusters the input data more and reduces the operations to optimise the bucket
boundaries in the QTree. (despite the fact that the computation time of the preVx
hashing is slower than the string hashing). We can observe in all insert experiments
that the at a certain stage we reach linear insert times (this corresponds with the
theoretical analysis of insert complexity).
A complete summary of the results of the insert benchmark is presented in Ta-

ble 5.6 (including the results for our reference implementation of II and SLI). The
Vrst column contains the index types and hash function as described in Table 5.5.
The value in the brackets indicate which data set was used as an input. The col-
umn compression shows the fraction of the index size compared to the size of the
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Datasets

L #stmt: 3.1m, #src: 16k

M #stmt: 1.53m, #src: 6.6k

Index Types

QTL QTree(bmax: 50kmmax: 1m fmax:20)

QTS QTree(bmax: 25kmmax: 1m fmax:20)

MDH Histogram(bmax: 50kmmax: 1m)

SLI Schema-level index

II Inverted URI index

Hashing

MIX PreVx and String hashing

STR String hashing

Queries

S-i, i = 0, 1, 2 50 Star-shaped query with i join(s)

P-i, i = 0, 1, 2 50 Path-shaped query with i join(s)

Query Planning

OpN Nested-loop join operator

OpI Inverted bucket index join operator

Table 5.5: Overview of the setup of our experiments.

raw data (561M for dataset L and 260M for dataset M). The table shows again the
relatively poor indexing performance of QT. However, we will show that QT out-
performs the other approaches in the quality of the source selection at the price
of indexing time. Please not that the current implementation is a proof of con-
cept, implemented with the standard Java data structures. We did not implement
any low-level optimisations such as bit-based index structures or string encoding
for the stored source URIs. For instance, we store full names of sources in each
bucket together with the cardinality values. The general advantages with respect
to the space complexity of the hash-based data summaries proposed in this work,
i.e., scaling with the number of sources but not with the number of triples, are
discussed in Section 5.2.2.

Index version Index Size (MBytes) Compression Index Time (sec) avg. stmts/ms

QTL-MIX (L) 42 7.4% 65147 0.04

QTL-STR (L) 54 9.6% 112835 0.02

QTS-MIX (L) 30 5.3% 48763 0.06

QTL-MIX (M) 32 5.7% 45345 0.04

MDH-STR (L) 36 6.4% 67 45.5

MDH-MIX (L) 11 1.9% 122 24.40

SLI (L) 12 2.13% 49 62.35

II (L) 49 8.7% 56 54.30

Table 5.6: Index size and insert time of diUerent approaches.
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Figure 5.9: Insert time per statements.

5.5.2.2 Query Time

We Vrst discuss the results of the join ordering optimisation and the various join
operators (Figure 5.10) and second, we present total query times for diUerent setups
of the QTree in Figure 5.11 and Figure 5.12.
As we highlighted already (cf. Section 5.4.2.3), we integrated a basic join ordering

method which optimises the query processing. The results in Figure 5.10 show that
join ordering has a huge impact for the runtime of the source selection. The values
above the plot boxes show the time beneVt of the ordering for the query execution.
The values are relative to the query time without ordering, thus a negative value
indicates that the query processing with join ordering is faster by the amount of
the value; e.g path-shaped queries with two joins are 59% faster using join ordering
and an inverted bucket list operator.
The plots show the average time needed to execute a query without and with

the join ordering optimisation for the nested loop (OpN) and inverted bucket list
(OpI) join operator. The selected index is QTL with hashing functions MIX and
STR. We omit in the plot the query runtime for other QTree or histogram versions
for a better readability. However, we observed the following eUects also for the
other index versions. The big plot boxes show the query time without the ordering
and the smaller light boxes the query time with ordering. The study of the results
shows that join ordering achieves a large runtime beneVt for path-shaped queries,
whereas we cannot really see an optimisation eUect for star-shaped queries. The
diUerence is mainly due to the type of queries. Star-shaped queries contain con-
stants at the predicate and object position which results in a more selective list of
buckets, whereas our path-shaped queries have only one triple pattern with two
constants and the other contain only one speciVed constant which makes join re-
ordering more beneVcial. We save more than 60% of the query time for path shaped
queries with two joins for the QTree and over 50% for the star shaped queries with
two joins.
Next, we present complete query runtime for diUerent index versions, query

types, join operators and our reference implementation of SLI and II. As expected,
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Figure 5.10: Average query time with/out join ordering.

the reference implementations provide nearly constant query times outperforming
the data summary indexes. The plots are limited on the y-axis to 10 seconds for
better readability of the graphs. In addition, average query times of more than 10
seconds are not very applicable in a real world scenario. The query times of the
reference implementation are for all query classes less than 300 ms for SLI and
less than 100ms for II. We can see in Figure 5.11 that the average query time is
less than 1 second for all query types using a nested loop join operator (beside the
two outliers for path-shaped queries with two join variables and an index using a
string hash function). Moreover, we can see that MDH is slightly faster than the QT
variants. The expected beneVt by applying a inverted bucket index join operator
was not observed ( Figure 5.12). We can see that this version of a join operators
has query times for many of the query types of more than 10 seconds. Further,
we observe an inWuence of the hashing function used; string hashing slows down
query processing of QT and speeds up query processing of MDH.
In summary, we can say that the nested loop join operator outperforms the in-

verted bucket list join operator. II oUer the fastest (and nearly constant) query
times followed by SLI and MDH. QT shows the slowest performance in most of
the queries.
However, these results about the actual source selection times are only one oper-

ation in the entire query processing and not the crucial factor. The most expensive
part in evaluating a query is the dereferencing of the relevant sources via HTTP
GET. Considering all the issues with accessing Linked Data (as highlighted in Sec-
tion 5.1) we can expect that the number of estimated sources is the crucial factor.

5.5.2.3 Source Selection

An important aspect is the quality and amount of the relevant sources estimated by
the index structures. Figure 5.13 shows two interesting characteristics of the diUer-
ent index structures and query types and can be interpreted as follows: The diUer-
ence between the number of estimated and real sources is the number of sources
which are falsely selected as relevant. We show only the results for one setup of
an QTree (QTLMIX) with mixed hashing and a histogram with string hashing
MDHSTR. These two setups return the best query answer completeness and thus,
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Figure 5.11: Query time for diUerent query types and approaches using a nested loop join
operator.

we decided to use them as the best representatives for the source selection evalu-
ation. First, we see that the number of real query relevant sources are increasing
with the number of joins for path-shaped queries and again, decreasing with the
number of joins for the star-shaped queries. The same eUect can be observed for
the number of estimated sources for the path-shaped queries. As a surprise, the
estimated number of sources relevant to answer the star-shaped queries is also in-
creasing with the number of joins, which stands in contrast to the number of real
query-relevant sources. Second, we Vnd that QT shows the best performance in
terms of the number of estimated sources to answer a given query. QT estimates
the least number of sources for all types of queries. SLI, in contrast, estimates for
nearly all query types the largest amount of sources.
Next we discuss the results of the query time to estimate the relevant sources

and the number of the estimated sources itself. Let us consider an average lookup
time of 500 ms to dereference a relevant source on moderate hardware that allows
to perform 75 lookups in parallel (cf. [Hogan et al., 2011]). Further, let us assume
that all the returned sources are equally distributed over at least 75 domains which
would allow us to perform the lookups in parallel. Thus, a round of 75 lookups
would take in average 500 ms. From the results in Figure 5.13 we can see that QT
outperforms the other approaches in the total number of estimated sources (for
some queries by a factor of ten). The number of estimated sources for QT ranges
between 600 and 1200, which would require 8 and 16 lookup rounds or a fetching
time of 4 to 8 seconds. MDH, SLI, and II estimate for all query types at least 1500
sources. Fetching the sources requires at least 20 lookup rounds or 10 seconds. The
diUerence in the number of estimated sources slows down the query processing by
at least 2 seconds. If we consider the query time to estimate the relevant sources
and the time needed to fetch the content of the sources we can conclude that QT
clearly outperforms the other approaches.
Eventually, the estimated time and performance of the source lookup operation

is idealised and in a real-world setup one cannot assume that we can fetch all
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Figure 5.12: Query time for diUerent query types and approaches using a inverted bucket list
join operator.

relevant sources in parallel while being polite at the same time. Thus, to be able to
reduce the number of relevant sources we implemented basic ranking functions and
evaluated these ranking functions next. Please note that the ranking also decreases
the eUects of false positives.

5.5.2.4 Source Ranking

Querying all sources that were determined as relevant will still be too expensive in
most cases for two reasons: (i) a huge number of sources may actually contribute
to answering a query, where some of them contribute only minimally; and (ii) due
to the approximation of the data summaries there may be false positives. For both
issues, ranking becomes crucial. Ideally, false positives and sources that contribute
only few results are ranked lower than the sources that are actually relevant and
can contribute the majority of results. Then, we can still provide a satisfying degree
of completeness by querying only the top-k sources. The study of the top-k results
presented in Figure 5.14 shows that QT signiVcantly outperforms MDH. There are
missing values for the histogram with mixed hashing for path-shaped queries with
2 joins (P-2) due to the fact that these queries timed out in our experiment (query
timeout was set to 3 minutes). As our reference implementations for SLI and II do
not support any kind of ranking and the returned sources are in random order, we
omit the presentation of the results.
The source selection in QT returns over 40% of a query answer with the top-

200 sources independent of the query type. MDH achieves only a query answer
completeness of maximum 20% with the top-200 sources for all query types. We
can observe that QT returns with the top-200 sources on average over 80% of the
result statements for simple lookups with either the subject (S-0) or object (P-0)
deVned as a variable. For queries with one join (P-1,S-1) we still get over 60% of the
results (with the top-200 sources). Moreover, our simple ranking algorithm yields
40% of the results with only the top-10 sources for simple lookups and queries with
one join.
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Figure 5.13: Number of estimates and real query relevant sources (the dark area of the bars
are the false positives).

We can observe the same correlation between the hashing function and the index
structure as in our other experiments. A string hashing favours the histogram and
returns more results than a histogram with the mixed hashing. In contrast, the
QTree performs better with the mixed hashing function than with a string hashing.
In addition, we can see that the QTree version with more buckets performs better
than with less buckets for the same input data.
Furthermore, Figure 5.14 illustrates the inWuence of bmax on our approach. The

general rule is that the more buckets we allow a QTree to use (higher bmax), the
less approximation has to be used in order to meet the bmax constraint. Therefore,
the QTree provides more details in terms of smaller buckets and the number of false
positives is reduced. However, by increasing bmax, we also increase the required
space in main memory. So, we need to Vnd a tradeoU between false positives and
index size. In general, the inWuence of fmax is negligible. As bmax and fmax are
QTree speciVc parameters, discussing their inWuences in detail is out of the scope
of this thesis.
We decided not to perform the actual live lookup of the query processor since

there are many factors involved which we cannot inWuence or ignore. Some of the
main factors are the time-dependent usage of the network and the available band-
width which aUect the download rate of the source contents. Another factor is the
domain distribution of the selected sources which impacts politeness scheduling. In
the best case we have k distinct domains in the top-k selected sources and can fetch
the content with k parallel lookups. In the worst case we have a single domain in
the top-k sources and need to perform k sequential lookups with a wait time be-
tween each request. We refer also to our discussion and Vndings about the server
reliability and repeatability of the experiments presented previously in Chapter 4.
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Figure 5.14: Average query completeness.

5.5.3 Discussion

Based on our experimental results, we can state that the data summary approach,
instantiated here by the QTree, represents a promising alternative for querying
Linked Data on the Web.
The quality of the source selection and the fraction of possible answers is rea-

sonably good using the QTree and rather poor for the other approaches. The QTree
data structure outperforms the other approaches with the least number of esti-
mated sources and the best query completeness. The basic query planning algo-
rithms, together with the straightforward ranking algorithm, provide reasonably
good query times and answer completeness for simple lookups and queries with
one join operation. The QTree achieves a query answering completeness of over
40% (compared to global knowledge) with the top-200 sources throughout all our
experiments (top value of 90% for star-shaped queries).
Regarding indexing times, the QTree data structure is the slowest approach com-

pared to the alternatives. The diUerence in performance is due to the fact that MDH
uses Vxed and predeVned bucket boundaries, whereas the QTree dynamically ad-
justs and optimises the boundaries based on the state of the inserted data. Our ref-
erence implementation of SLI and II require only to parse the necessary statements
in the input Vle to build an index.
The QTree is not designed to support bulk indexing of large amounts of data.

However, the current insert times are reasonable in a very dynamic setup, in which
an agent would index the content of Web sources either during runtime or only
from a small number of sources at a time.
In summary, we can clearly state that our approach – using data summaries

like the QTree – provides the highest quality for the selection of query-relevant
sources. However, as a price for the beneVts, the aimed applications have to bear
slower index times compared to other approaches, due to the higher complexity of
the QTree as a summary. A crucial advantage of the proposed data summaries is
that their size grows only with the number of inserted sources, and not with the
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number of inserted statements as it holds for the schema-level and inverted URI
index.

5.6 conclusion

We presented in this chapter our approach for determining relevant sources for
SPARQL queries over RDF published as Linked Data. As these queries are issued
ad-hoc, optimisation has to be done for all possible queries and cannot specialise on
a speciVc type or a subset of queries. The presented approach uses hash functions to
transform RDF statements into numerical space and data summaries to eXciently
describe the data (RDF triples) provided by the sources.
Herein, we presented two variants of data summaries in conjunction with several

hash functions and how to construct them. Furthermore, we discussed how to use
these summaries to determine relevant sources for queries with and without joins.
To limit query execution costs, i.e., the number of queried sources, we proposed
the optional use of ranking to prioritise sources. In addition to theoretical analyses,
we provided an extensive evaluation highlighting the inWuence of data summaries,
hash functions, and query types on performance. Overall, our results show that
our approach is able to handle more expressive queries and return more complete
results to queries compared to previous approaches.
An ideal application scenario for the proposed data summary approach should

have the following requirements: Firstly, it is not necessary to have complete an-
swers, rather the application will return only the top-k results. Secondly, the focus
is on guaranteed up-to-date answers instead of possibly outdated results from old
snapshots. Finally, the application allows a certain amount of time to execute and
evaluate a given query.
Based on our obtained results, we can see our proposed approach very suitable as

the underlying infrastructure for smart Linked Data browsers. A combination of a
sophisticated user interface and our QTree approach would allow users to navigate
and browse the Linked Data Web. In general, user interfaces over Linked Data use
already conjunctive SPARQL queries for the user interactions. Further, these user
interfaces do not require to show the complete set of answers for a given query in
general; typically, they display only the top-k results (similar to the front-ends of
the traditional Web search engines). The current systems use materialised indexes
as the underlying index structure which requires a signiVcant amount of on-disk
storage capacity and/or do not allow to use complex SPARQL queries. This envi-
sioned solution can be a very interesting alternative to the existing ones and will
provide a lightweight application which still oUers fast query times and reason-
able query completeness over the top-ranked sources. Using live query evaluation
over sources which check access control in a decentralised manner would allow for
application of Linked Data in corporate environments.
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6HYBR ID SPARQL QUERY PROCES S ING :
F RE SH VS . FA S T RE SULT S

503 SERVICE TEMPORARILY UNAVAILABLE

— Public SPARQL endpoint(s), 2012

In the previous two chapters we studied Linked Data query approaches which
access query relevant data remotely from Web resources at runtime and thus can
return up-to-date results. However, the retrieval of remote content from diverse
sources at query-time naturally implies much slower response times compared to
optimised local indexes which replicate data from parts of the Web. We depict
in Figure 6.1 this inherent trade-oU between approaches that give fresh results ver-
sus approaches that give fast results, represented at two ends by live query tech-
niques and centralised “store” respectively.
Herein, we propose a novel hybrid query framework that returns fresher results

from a broader range of sources vs. the centralised scenario, while speeding up re-
sults vs. the live scenario. Our engine features a original query planner that decides
which parts of the query to run live and which to run locally based on knowledge
of the coherence for triple patterns of the SPARQL store with respect to remote data.
The coherence involves both the dynamicity of remote data and the coverage of the
store. By getting the store to quickly service query-patterns for which it has good
up-to-date coverage, and by running the rest of the query live, our hybrid approach
aims to strike a balance between fresh and fast results.
The remainder of this chapter is organised as follows:

• In Section 6.1, we introduce our hybrid query architecture.

• Section 6.2 describes how to collect the necessary coherent estimates for the
query planner.

• In Section 6.3, we present details about our hybrid query-planning compo-
nent, including diUerent reordering and split strategies.

speed of results

fr
es
hn

es
s
&
co
ve
ra
ge

of
re
su
lt
s

live query

store

? ?

high

low

low high

Figure 6.1: Query Trade-oU
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6.1 architecture of a hybrid query engine
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Figure 6.2: Architecture of a hybrid query engine.

• Section 6.4 describes our evaluation methodology to compare diUerent hy-
brid query plans and presents the results which show the feasibility of the
hybrid query execution approach.

• In Section 6.5, we conclude with a critical discussion.

6.1 architecture of a hybrid query engine

Our hybrid engine can be thought of as a “live-wrapper” for centralised SPARQL
stores that splits a query into two groups, where the patterns in one group are
executed over a centralised store and the other part is executed using existing live-
querying techniques. Our proposed hybrid query engine has the following targets:

T1 fast response times, ideally close to those of centralised queries;

T2 coherence of results close to those of live query processing such that we retrieve
fresh answers;

T3 system independence, i.e., being compatible with any SPARQL engine or live-
query processor; and

T4 lightweight implementation with low resource requirements, particularly re-
garding main memory.

As we discussed at the beginning, T1 and T2 are antagonist targets and our query
engines tries to Vnd the best trade-oU between query time and coherence of the
results.
The resulting architecture is illustrated in Figure 6.2 and consist of four core

components. The main component in the architecture is the query plannerwhich
tries to Vnd an overall “optimal” trade-oU for a given request, deciding what parts
of the query to delegate to the local and remote engines. With regards to T3 , we
can initialise our architecture with an index query interface and a live query
interface as black-box components; both consume SPARQL queries and produce
SPARQL results, but the former interfaces with a local index, whereas the latter in-
terfaces with the Web. Finally, to help Vnd that trade-oU, the coherence monitor
collects high-level empirical statistics (see Section 6.2) about the endpoint’s cover-
age of data for diUerent query patterns compared with the Web. These compact
estimates are easy to maintain and their storage costs are low (as per T4 ).
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Along these lines, the hybrid query engine oUers a SPARQL interface that sits
on top of a centralised SPARQL engine and a live query processor. These two inter-
faces build the connections to the black boxes of SPARQL store(s) and live query
processor. The index query interface can be a (possibly remote) public SPARQL
store or any data warehousing approach which oUers the SPARQL protocol (e.g.,
an intranet database). The live query interface also accepts SPARQL queries and
could be based on, for instance, a bottom-up link-traversal engine Chapter 4 or a
top-down source selection index (e.g., as we proposed in Chapter 5), or some com-
bination thereof. Here we instantiate the live query processor with our bottom-up,
link-traversal based query execution approach (LTBQE). In such scenarios, LTBQE
is required to deal with simple sub-queries, which we have shown to be feasible in
the previous Chapter 4.
The coherence monitor collects information about the coverage and freshness

of diUerent triple patterns and sources. The coherence estimates of individual pat-
terns is used by the query planner component to split a given query into two
sub-queries—a local and a live sub-query. Eventually, the query processor forwards
the local part to the index query interface and the live part is processed over the
relevant Web sources in situ. We see this conceptually straightforward architecture
as a Vrst step towards freshening up centralised results: topics such as adaptive co-
herence estimates and more Vne-grained interaction between the local and remote
query processors are left to future work.
Note that since the local SPARQL engine is treated as a black-box (as per T3 ), we

cannot inWuence the design of the physical plan for the static sub-query: we del-
egate generating the Vnal sub-query plan to the engine, which we assume imple-
ments, e.g., local selectivity estimates to organise optimal execution. In the general
case, a similar situation exists for the live query processor.
In the following sections, we elaborate further on the coherence monitor com-

ponent (Section 6.2) and the query planner component (Section 6.3).

6.2 coherence estimation

Given the scope [Bizer et al., 2011] and dynamicity of Linked Data, one can expect
that results returned by a centralised store are inherently limited by its coverage of
the Web and by the freshness of its local index which our experiment in Chapter 3
showed.
The coherence monitor component of our framework computes and stores

the coherence estimates of query patterns for an store with respect to live query
execution. These coherence estimates are used in the query planner to identify
which patterns are more likely to be up to date on the store and which patterns are
likely to be stale or missing.
In order to acquire the coherence estimates of a given store, we use the data from

our index freshness study experiment, presented in Section 3.3. BrieWy recapturing
the experiment, we probed both the store and theWeb with a broad range of simple
SPARQL queries, compared the results and characterised parts of the cache’s index
that are likely to be stale or missing. Table 6.1, reintroduces the notation from the
experiment which we also will use in the following.
We use the results of each query from the experiment to create coherence es-

timates for our query planner by identifying data predicate–source combinations
that are likely to be stale. Again, we view results as consisting of variable–binding
pairs (i.e., S, L⊂ V×UL reusing common notation for the set of all query variables,
URIs and literals resp.) and we exclude answers involving blank nodes to avoid is-
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S set of results returned from the store

L set of results returned by LTBQE

∆S := S \ L set of results returned by the cache but not LTBQE

∆L := L \ S answers found by LTBQE but not returned by the cache

∆∩ := L∩ S set of coherent results

Table 6.1: Notations used for coherence estimation.

sues of scoping and inconsistent labelling. We identiVed two possible methods by
which queries can be used to test coherence.

source-based estimates Assuming the SPARQL cache uses Named Graphs
to track the original source of information on the Web, we can compare the data
for a Web source against the data cached in the corresponding graph using GRAPH

queries. However, (and as is the case for the two caches we test later) many stores
do not have consistent naming of graphs: sometimes the graph may indeed refer
to a particular Web source, but oftentimes the graph will be a high-level URI (e.g.,
http://dbpedia.org), informally indicating a dump from which the data were
loaded but which cannot be directly retrieved.

triple pattern estimates Thus, we instead focus on triple-based estimates.
We centre our notion of coherence for triple patterns around predicates. This re-
stricts our approach to triple patterns with a constant as predicate; other patterns
are assigned a default estimate. To generate such triple-pattern estimates, we use
the results from our experiment. To quantify the coherence of predicates based
on the results, we study two measures. To present these, we apply the notations
from Figure 3.7 – and which are listed in Table 6.1 – to the results of the probe
queries (see Query 3.1), adding subscripts to indicate results for a certain query,
e.g., ∆L

q. We denote results involving a predicate p as, e.g., ∆L
q(p) := {r ∈ ∆L

q :

(?pIn,p) ∈ r∨ (?pOut,p) ∈ r}, and say p ∈ ∆L
q iU ∆L

q(p) 6= ∅.

query-based coherence : The coherence of a predicate p is measured as the
ratio of queries for which p appeared in ∆L. For the full set of queries Q, let
Mq(p) denote for how many queries a live result involving the predicate
was missing at least once in the cache results (Mq(p) = |{q ∈ Q : p ∈ ∆L

q}|).
In addition, we count Lq(p) = |{q ∈ Q : p ∈ Lq}| as the queries for which
the live engine returned at least one result containing p. The query-based
coherence of the predicate p is then computed as:

cohq(p) = 1−
Mq(p)

Lq(p)
.

result-based coherence : For this measure, we inspect the ratio of missing
results for a predicate p, rather than the fraction of stale queries. LetMr(p)
denote the count of all live results involving the predicate p that were missed
by the cache, summated across all queries (Mr(p) =

∑
q∈Q |∆L

q(p)|). Let
Lr(p) denote the count of all results involving p retrieved by the live engine
(Lr(p) =

∑
q∈Q |Lq(p)|). The result-based coherence is then:

cohr(p) = 1−
Mr(p)

Lr(p)
.
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We performed the experiment in early March 2012 and gathered coherence infor-
mation for 2,550 predicates for OpenLink and 1,627 predicates for Sindice endpoint.
For the two stores under analysis, Figure 6.3a illustrates the number of pred-

icates that fall into diUerent intervals of coherence values; the y-axis is in loga-
rithmic scale, and the linear x-axis intervals represent the coherence measures as
percentages (the right of the graph indicates increasingly coherent predicates).
The Vgure shows that the OpenLink store is more in sync with current Web

data than Sindice; we believe that OpenLink was extensively updated in Feb. 2012.
We measured that 67% of the tested predicates in the OpenLink index are entirely
up-to-date (cohr(p) = 1), versus 30% of the predicates for the Sindice store. In
contrast, information for 14% of the tested predicates in the OpenLink index are
entirely missing or out-of-date (cohr(p) = 0), versus 40% for Sindice; these high
percentages are due to partial coverage of Web sources, outdated data-dumps in
the index, and predicates with dynamic values.

№
OpenLink Sindice

pred. queries pred. queries

1 swivt:creationDate 510 swivt:creationDate 118

2 vitro:mostSpecificType 104 skos:narrower 48

3 swivt:wikiPageModificationDate 45 skos:historyNote 43

4 aims:hasDateCreated 42 bibo:doi 34

5 madsrdf:hasCloseExternalAuthority 31 prism21:doi 34

Table 6.2: Most dynamic and prevalent predicates

In more detail, Table 6.2 shows the top 5 predicates where cohr(p) = 0 for both
stores, ordered by the number of queries in which they featured as a result.1 First,
we see a mix of dynamic time-stamp predicates that change for every access or
modiVcation of a document (swivt:creationDate, swivt:wikiPageModifica-
tionDate and aims:hasDateCreated). Second, we see predicates not covered by
the index. For Sindice, the incoherent *:doi predicates are due to a lack of coverage
of the dx.doi.org domain and the high incoherency of skos: predicates is due
to bulk changes in the esd-toolkit.eu, esd.org.uk and bio2rdf.org domains;
for OpenLink, the incoherency of vitro:mostSpecificType relates to data on the
cornell.edu domain.
We further analysed the correlation for coherence estimates of the same pred-

icates across the two stores. We used Kendall’s τ which measures the agreement
in ordering for two measures in a range of [−1, 1], where −1 indicates perfectly
inverted ordering and 1 indicates the exact same ordering. The τ-score across the
two stores was 0.16, with a negligible p-value, indicating a weak, signiVcant and
positive correlation between the coherence of predicates for the two stores. The
low correlation highlights the store-speciVc nature of these measures, which are
as much about index coverage than about the dynamicity of values. As such, our
approach tackles both the global problem of dynamicity and the local problem of
index coverage.
Finally, we looked at the correlation between the selectivity of predicates (i.e.,

how often they occur) and their coherence, which may lead to potential conse-
quences for query planning. SpeciVcally, for each store, we compared the number
of (Web) results generated for each predicate across all queries and their cohr(p)
value. The τ-value for OpenLink was 0.1, indicating that less selective patterns tend
to have slightly lower coherence; the analogous τ-value for Sindice was −0.03, in-
dicating a very slight correlation in the opposite direction. Though limited, we take

1 See http://vitro.mannlib.cornell.edu/ns/vitro/0.7# for vitro:, http://prefix.cc/ for oth-
ers.
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Figure 6.3: Distribution of predicate coherence values and variation across PLDs

this as anecdotal evidence to suggest that correlation between the selectivity and
coherence of predicates is weak, if any.
Above, we naïvely assume a single coherence value for predicates in all cases,

ignoring subject or object URIs: keeping information for each subject/object would
have a high overhead. However, we can generalise subject/object values into pay-
level-domains (PLD)2 and then track coherence for predicate–domain pairs. Thus,
we mapped the entity URIs of the queries to their PLDs (581 PLDs with a maximum
of 74 queries per domain) and resolved the coherence of predicates for individual
PLDs. Focussing on the coherence measure, we divided the scores into eleven in-
tervals as per the x-axis of Figure 6.3b, and for each predicate, count how many in-
tervals it falls into for diUerent PLDs. We observe that the subject and object URIs
can be ignored for roughly 40% of the Openlink and roughly 15% for the Sindice
predicates. However, we see the importance of tracking coherence for predicate–
domain pairs for the remaining predicates. The plurality of predicates (∼40%) show
two intervals of coherence values.

maintenance Assuming the cooperation of the SPARQL endpoint, various
methods can be used to learn about content changes or updates to the centralised
index (similar in principle to internal SPARQL caching proposals as presented
by Williams and Weaver [2011]). Data providers may push change notiVcations to
the stores and/or the stores can learn about changes by actively monitoring remote
sources as we performed in Chapter 3; this information can then be pushed to the
coherence monitor. In a strict black box scenario, where only the public SPARQL
interface is available for the cache, one has to periodically re-run or update the
gathered statistics, where queries that are observed to return static results could
be probed less frequently in an adaptive monitoring setup as proposed by Käfer
et al. [2012]. In addition, the system could perform a demand-based or “lazy” main-
tenance of statistics that is based on, e.g., (i) keeping only frequent query patterns
up-to-date or (ii) actively updating coherence estimates as hybrid queries are pro-
cessed.

6.3 query planner

Our hybrid engine combines local and live query execution to obtain a balance
between fresh and fast results. The query planner is responsible for splitting the
query into a part for local execution and a part for live execution. Traditional query
planning within closed systems focuses on optimising for performance by order-
ing the execution of query operators to minimise intermediate results. Such query

2 A pay-level-domain is the domain name one has to register and pay for.
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Query Planning

selectivity based

./

./

∼

tp1

≈
tp2

tp3

tp4

coherence based

./

∼

./

≈

tp4 tp1

tp2

tp3

BGP (s,p,o) cohr(p) selectivity

tp1: <http://status.samnoble.org/user/1> foaf:knows ?o1 . 0.86 0.98

tp2: ?o1 foaf:interest ?o2 . 0.32 0.43

tp3: ?o1 swivt:wikiPageModificationDate ?o3 . 0.00 0.21

tp4: ?o2 foaf:accountProfilePage ?o0 . 0.91 0.15

split rule

∼ lowest

≈ threshold

Figure 6.4: Example hybrid query plans for diUerent orderings and splits

planning often relies on selectivity estimates, which indicate the amount of results
a given operation will generate.
For hybrid query planning, we wish to optimise for both speed and freshness.

Thus, analogous to (and in combination with) selectivity estimates that optimise
for speed, we need other metrics to optimise for freshness. Recalling that (sub-
)queries will often be answered faster by materialised indexes than live engines,
in the interest of speed, we wish to push as much of the query processing to the
store. However, we only want to send requests for which the cache has fresh data
available. Hence, along with selectivity estimates, we also need coherence estimates
to measure how well synchronised the cache is wrt. the Web.

Example 6.1. At this stage, we introduce a simple and abstract example to
better explain our query planning approach which is described in the follow-
ing in detail. Figure 6.4 depicts two diUerent hybrid query plans (selectivity
bon the top) for a query consisting of four triple patterns (at the bottom part
of the Vgure). The left query plan shows the query execution if the triple pat-
terns are ordered by their selectivity. Whereas the right query plan shows the
execution order based on a coherence based ordering. The coherence and se-
lecitivy values for each triple pattern is also listed in the Vgure. Moreover, the
Vgure also contains some possible split choices for the diUerent query plans.

6.3.1 Split Types

The core aim of the query planner is to decide which parts of the input query
should go to the cache, which parts should go live, and how the obtained results
can be combined. The crucial question question for the query planner is: How to
split a query?. There exists two high-level options:

multi-split
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In this approach, there is no restriction placed on how many splits are made
in the query or on which parts go where. This is the most general case. How-
ever, if the query is split into many parts, processing the query will involve a
lot of coordination of interim results and synchronisation between the cache
and the live engines.3 Thus, this then requires a lot of coordination and syn-
chronisation between the engines. Also, if the cache is accessed through a
public interface, it may not allow a suXcient query rate for this approach to
work.

single-split

Another simpler (but more restricted) option is to perform a single-split and
separate the query into two queries: a cache and a live sub-query. Much less
coordination is then required between engines. Assuming nested evaluation,
an open question is whether the cache or live request should be run Vrst.4

Considering the practicability of the diUerent split types, we argue that a sin-
gle split of the query plan into one local and one live part is more practical in the
open Web environment. While in theory it would also be possible to use multi-
ple splits, the resulting intertwined dependencies between the local and live parts
would lead to very complex query planning, and would require shipping bindings
back and forth between the live and local engines. Second, and most important
in our scenario, this will result in several small queries sent to the store in high
frequency, which is usually blocked by public accessible SPARQL stores.5 Thus, ad-
vanced splitting approaches are better suited to controlled environments (i.e., not
public SPARQL stores).

execution order Given the focus on a split into (at most) two parts, the
results of the Vrst executed sub-query serve as input bindings for the second part.
We must then decide whether the local part is processed Vrst (i.e., at the bottom
of the query plan) or last (i.e., at the top of the plan). We argue to Vrst execute the
bottom part of the query against the local cache and afterwards the top part of the
query live against the data on the Web. This order of execution has the beneVt that:

(i) it only require a single query to be run against the cache’s materialised index,
thus avoiding overloading the public interface;

(iii) it does not pose any restriction on the triple patterns in the local part, thus
avoiding constraints such as the requirement for dereferenceable URIs in
some of the query patterns for the live query execution of SPARQL queries
(as shown in Chapter 4 and Chapter 5 );

(iv) running the local part Vrst, does not only obtain the results from the store
more quickly, but also provide additional dereferenceable URI bindings for
the live querying phase (passed to the live query using the VALUES, previous
BINDINGS, clause in SPARQL 1.1).

Next, we must then decide the execution order of join patterns given that we
decided to use only one split and execute the bottom part Vrst against the store,

3 Where supported, SPARQL 1.1 VALUES could be helpful to ship bindings, but would still require a syn-
chronisation point for each split.

4 If both parts of the query are deemed to have low selectivity, they could be run in parallel and hash-
joined.

5 This could be solved using SPARQL 1.1 BINDINGS, but Virtuoso has no support.
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6.3.2 Reordering Strategies

We can see in our example the emphasis for the two diUerent query execution
orders. An intuitive approach, which we call coherence-based ordering, is to build
a query plan with the most coherent patterns at the bottom for local execution,
and the most incoherent patterns at the top for live execution. This increases the
likelihood that the Vnal result set is fresh and it limits the number of patterns
executed live. However, the most coherent patterns may also be the least selective
(i.e., return the most bindings) thus inWating the number of intermediate results to
process. Consequently, this can increase the number of bindings for the patterns
executed live, potentially hurting the performance. Because of this and backed by
the absence of correlation between coherence and selectivity (cf.Section 6.2), we
also consider another approach following traditional selectivity-based reordering,
where the most restrictive patterns are executed Vrst reducing intermediate results.

coherence-based ordering

Query patterns are ordered by the coherence of cache data available for them;
coherence gauges the coverage and freshness of cache indexes for answering
a pattern (more coherence implies broader and fresher cache coverage). Co-
herence measures can be computed for patterns based on analysis of the
dynamicity of Web data, using probe queries against the cache which can be
compared with live results, or (assuming cooperation of the cache) by listen-
ing for updates to the cache indexes [Williams and Weaver, 2011]. A single-
split strategy is appropriate for this ordering, where patterns that can be best
answered by the cache will be executed Vrst and the rest then answered live.

selectivity-based ordering

Query patterns in the join tree are Vrst ordered by selectivity. Selectivities for
each pattern can be computed by rule-based estimates or variable-counting
techniques [Schwarte et al., 2011]), from analysis of prevalence of patterns
in Web data, by sampling data from the cache using probe queries, or (where
supported) by posing SPARQL 1.1 COUNT queries or queries for statistical
summaries against the cache indexes. Patterns that match and return fewer
data are executed earlier to minimise interim results.

Both orderings have inherent advantages and disadvantages. The coherence-
based ordering maximises freshness but makes no guarantees about the size of
interim results. This ordering lends itself well to a single-split strategy, where all
of the highly-coherent patterns can be Vrst sent directly to the cache; for deciding
where to split, a threshold can be used as mentioned before, or a simple Vxed-
position split strategy can be employed (e.g., always send only the least coherent
pattern live). However, in this approach, the cache sub-query may have a low se-
lectivity and require the cache to materialise a lot of results. In the best case, high
selectivity and high coherence correlate with each other such that there is no con-
Wict in the fresh vs. fast trade-oU. However, as we will see for experiments in the
next section, this is not necessarily the case.The selectivity-based ordering should
minimise interim results but makes no guarantees about freshness. In particular,
(in)coherent patterns will be mixed throughout the query tree.

The remaining question for the query planner is to: where to split a query?.

6.3.3 Split Pattern

The term split pattern refers to the position in the query plan in which the query is
divided. Everything below the split is executed locally, and everything above and
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including the split pattern is executed live. We identiVed three diUerent options to
Vnd the split position for a given query

most incoherent pattern

Following the same intuition of executing low-coherence patterns live, one
option is to choose the most incoherent triple pattern as the split. However,
the store may still receive highly incoherent patterns (below the max) for
which it will return incoherent results.

threshold based

Another approach is to deVne a constant value indicating a threshold of inco-
herence, where the lowest pattern breaching the threshold becomes the split
pattern; this ensures that the store does not receive patterns that are highly
incoherent.

fixed split position

A further option is to split by a Vxed position n, whereby the n bottom pat-
terns are executed by the store and the rest are run live. Choosing between
the diUerent split options aUects the core trade-oU of fresh vs. fast results,
and thus may depend on individual user needs.

6.3.4 Expected Query Performance

Eventually, given our example in Figure 6.4, we see in the selectivity-based ordering
that diUerent types of coherence thresholds may lead to more patterns being run
live than when explicitly ordered by coherence. Conversely, at the base of the plan
for the coherence-based ordering, we see that tp4 will return a lot of intermediate
bindings (since it has a low selectivity) and does not share a join variable with tp1
on the right-hand side of the join. In general, one may expect that the selectivity-
based operator order would provide low answer times by minimising intermediate
bindings, but would return less fresh results since low coherence patterns can ap-
pear below the split. However, this ordering also ends up pushing more patterns
live since patterns with low selectivity and high coherence are often above the split.
Conversely, a coherence-based ordering will lead to more intermediate results, but
will run more patterns locally. Thus, a general conclusion about which ordering is
preferable is not possible; we instead compare combinations of orderings and splits
on an empirical basis in Section 6.4.
In fact, since we consider the SPARQL store and the live-query component as

black boxes, the local and live parts of the query will be reordered by the respec-
tive engines, thus mitigating some of the performance penalty associated with the
possibly naïve ordering used to decide the split in the hybrid query plan. For ex-
ample, referring back to the coherence-ordered plan of Figure 6.4, if the lowest
coherence split rule is applied, the store may internally decide to run tp1, tp2 and
then tp4 in that order, avoiding the (huge) expense of running tp4 Vrst.
Finally, we highlight that the hybrid query planner is responsible for ordering,

splitting, delegating and executing sub-queries. The sub-queries sent to the cache
or to the live engines are then subject to internal optimisations. This is particularly
relevant for single-split coherence-ordering, where the sub-query delegated to the
SPARQL interface of the store will be reordered according to internal selectivities.
We focus on evaluating conjunctive queries (i.e., SPARQL BGPs) which LTBQE
supports. Other features of SPARQL, except OPTIONAL (and MINUS & [NOT] EXISTS
in SPARQL 1.1) can be layered on top.
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6.4 evaluation

We now present the setup and methodology to evaluate our proposed hybrid query
execution and critically discuss our results.

6.4.1 Setup

Our concrete goals for this evaluation can be summarised as follows:

(i) prove of concept and show that with the correct plan, hybrid query execution
can extend and freshen up local results while speeding up live results;

(ii) to evaluate diUerent query plan strategies by comparing

(iia) selectivity- and coherence-based ordering and

(iib) diUerent split strategies for the query planning.

In parallel, we are interested to see how useful our coherence estimates are for
the hybrid-query planning phase. Crucially, we wish to evaluate our proposals in
a realistic setting. To do so, our evaluation is run against the two selected public
accessible stores: Sindice and OpenLink.
To be able to evaluate the above mentioned points, we need a large and diverse

set of queries which helps us to achieve a good overview of how our approach
performs in a realistic scenario.

6.4.1.1 Evaluation Queries

We require a set of evaluation queries that are answerable by a Linked Data query
engine. We would like these queries to have broad coverage of diverse Web sources
in order to properly test coherence estimates and hybrid splits. Hence, we used
again our QWalk query generator, presented in Section 4.4.2, to generate queries
from the Billion Triple Challenge 2011 dataset, which covers a broad range of Web
documents as shown in Section 3.1.
We apply our random walk technique on the dataset to select random paths

between dereferencable URIs in the data. The resulting queries guarantee to re-
turn non-empty results if executed with the linked-traversal based query execu-
tion (LTBQE) live query interface (see Chapter 4 for more details).
Using this method, we produce 200 SPARQL SELECT queries of diUerent shapes

(star, path, mixed), with varying numbers of patterns (2–6). We randomly assigned
distinguished variables to each of the generated queries. Further, we ensure that
each query contains at least one pattern above and below a coherence threshold of
0.5. This guarantees that our queries are suitable for a hybrid execution.

6.4.1.2 Selectivity-based Query Planning

In practice, we create our hybrid SPARQL query plan using ARQ based on a “vari-
able counting” technique [Stocker and Seaborne, 2007] for the selectivity based or-
dering. This method estimates the selectivity of diUerent triple patterns based on
rules involving the number and position of variables it contains. The basic func-
tion of this ordering heuristic is that execution costs increase with the number of
variables in the triple pattern and but also considering the position of the variables.
A variable at the subject position has also a higher execution cost as a variable at
the predicate or object triple position. In more detail, we list all possible combina-
tion of variables in triple patterns by descending order of estimated execution costs
(variables are denoted with “?”, query constants with #): ?s ?p ?o . > ?s ?p #o . >
?s #p ?o . > #s ?p ?o . > ?s #p #o . > #s ?p #o . > #s #p ?o .
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notation description

sel-* selectivity-based ordering

coh-* selectivity-based ordering

*-best best theoretical split

*-incoh split at the most incoherent pattern

*-thr split based on a coherence threshold of 0.5

*-rnd random split (i.e., by guessing)

*-1 query is split after the Vrst pattern

*-2 query is split after the second pattern

live live query approach

ep SPARQL store

Table 6.3: Overview of notation used in the evaluation.

Noteworthy, the variable counting technique could be replaced with cost-based
planning using empirical selectivity estimates. However, we would need to obtain
the statistics about the underlying data, either again by probing the store or with
published statistics. Ideally, every SPARQL store would publish such statistics as
voiD Vles [Alexander and Hausenblas, 2009]. However, following a rule-based ap-
proach is more in line with targets T3 system independence, and T4 lightweight
implementation (cf. Section 6.1). A coherence-based operator order is supported by
reordering the triple patterns in the query plan produced by ARQ based on their
coherence values.

6.4.1.3 Execution

To evaluate diUerent orders and diUerent cut-oU positions, we created query plans
for each query using both the selectivity- and coherence-based reordering strate-
gies. Each query plan is then run entirely live, entirely against the store, and also
run for every possible split position in both orders where part goes live and part
goes to the store. This allows to analyse the eUect of diUerent strategies by simply
computing the split position without the need to rerun the query.

measures We obtained the speed-up and recall compared to a pure live execu-
tion for each query and the diUerent hybrid query plans and split position, but also
for the execution of the query against the cache, SpeciVcally, to calculate speed
up, the total time taken by the live approach to run all queries is divided by the
total time taken for each individual approach; e.g., a speed up of 6 indicates that
the approach in question was 6× faster than live querying. Conversely, recall is
measured by taking live querying as the gold standard.

notations An overview about the notation used for the diUerent ordering and
splitting approaches for the discussion of the results is presented in Table 6.3. We
intuitively denote the diUerent orderings with a sel-* preVx for the selectivity
based and a coh-* preVx for coherence based. The best split approaches are repre-
sented by *-best; these splits cannot be determined before query execution, but
rather represent the ideal case. Splitting at the most incoherent pattern is indicated
by *-incoh. Using a coherence threshold of 0.5 to perform the split is indicated
by *-thr. A random split (i.e., a guess) is indicated by *-rnd. Fixed split posi-
tions are indicated by *-1 and *-2 for n = 1, 2. Note that the threshold strategies
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store stable(X) local error(X) no live(X) total

OpenLink 98 18 84 200

Sindice 91 25 84 200

Table 6.4: Statistics about evaluation queries per store

avg. deviation

approach recall time

LTBQE 3% 2.7%

OpenLink 0–5% 2–36%

Sindice 0–2% 1–17%

Table 6.5: Average time and recall deviation for all queries across four runs/

*-incoh/*-thr can go fully live or fully local depending on the coherence values
found for the query, whereas *-best, *-rnd, *-1 and *-2 must split the query.

6.4.2 Results

Given that we run queries over remote data and public accessible SPARQL stores,
we may encounter unstable behaviour. Thus, we reran all experiments four times
over a period of eight days. Despite our precautions, as summarised in Table 6.4,
we could not use all of the original 200 queries for our evaluation. First, although
our query generation algorithm is designed to only derive queries that LTBQE can
answer, 84 of the queries would return no live results, possibly due to changes
in remote data since the BTC’11 dataset was crawled, or due to prolonged down-
times in remote sources. This provides even more evidence of the dynamicity of
the Web data. Second, 18 queries for OpenLink and 25 for Sindice returned an
error (e.g., memory exceptions, timeouts, 50x response codes) in all four runs for
all conVgurations involving the store. We exclude these queries from subsequent
analysis, though it should be noted that we end up Vltering over half of the original
queries. Our benchmark results thus refer to 98 stable queries for the OpenLink
endpoint and 91 stable queries for the Sindice endpoint.

repeatability In terms of the repeatability of results, for each conVguration,
we measured deviations for recall of results and query time across the four runs
vs. the best approach (highest recall, lowest time). We then averaged the deviations
across all queries. Table 6.5 shows the obtained values. We measured an average
recall deviation of 3% and a time deviation of 2.7% for the LTBQE approach. For
the various conVgurations, the recall deviation varied between 0–5% for OpenLink
and between 0–2% for the Sindice endpoint. Although the recall of the endpoints
was very stable, we observed average time deviations of up to 36% for the Openlink
and 17% for the Sindice endpoint, indicating variable query response times. Here
acknowledging that public endpoints and remote data sources can be unstable, we
henceforth wish to factor out this instability to derive comparable results across
diUerent hybrid strategies: our focus herein is to evaluate and compare diUerent
hybrid query plans, not the performance of public SPARQL stores. Thus, to avoid
outliers, for each query and each conVguration, we only select the best run in terms
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improvement
OpenLink Sindice

sel coh sel coh

Better Than Local Recall: 43% 53% 87% 91%

Better Than or Equal Local Recall: 97% 100% 99% 97%

Better Than Live Time: 92% 45% 16% 3%

Better Than Local Recall & Live Time 39% 13% 8% 1%

Better Than Or Equal Local Recall & Live Time: 92% 45% 16% 3%

Table 6.6: For both stores, the percentage of queries that can potentially be improved for
each order assuming the best split position is picked.

of recall, and in case two runs have the same recall, we select the one with the lower
query time.

6.4.2.1 Proof of Concept

To initially prove concept, we Vrst want to show that, in practice, hybrid query
execution can potentially improve the recall of fresh results over the store while
reducing the time taken for the live approach.

Table 6.6 presents such an analysis for both stores, where we see the potential
percentage of queries that can be improved using our hybrid approach for both
orders. For these results we assume that the best possible split position is picked
(i.e., given the results, we select the split position that gave the highest recall and if
tied, the lowest time; we evaluate split-selection strategies later). Recall is measured
relative to the entirely live results, which we know to be fresh. For OpenLink, we
see that the recall of the store can only be improved for roughly half of the queries;
however, the recall of the store is already 1 in many cases and cannot be improved,
only equalled. Note that ties in time are much more rare. In terms of improving the
time for live results, the sel ordering seems much more beneVcial for OpenLink
than coh, likely due to fewer intermediate results being generated in the former
ordering: sel improves or equals the local recall while improving the live time in
92% of the queries. For Sindice, we found that the store often returned no query
results: 84% of the queries ran entirely live as a fallback. Thus, the recall of many
queries can be improved outright, but few queries are faster than the live approach.
Since only 16% of the queries for Sindice are run in a truly hybrid fashion, we
henceforth focus on OpenLink. All hybrid query results for Sindice were very close
to the live approach. Table 6.6 shows that, in an ideal case, the hybrid approach
can indeed improve result freshness while reducing the time required to process
queries. Further, the chosen strategy seems to have a clear impact on the achieved
freshness and query time.

6.4.2.2 DiUerent splits and ordering combinations

Of course, Table 6.6 does not tell the whole story for OpenLink, but rather gives a
quantitative validation for the improvements theoretically possible through hybrid
querying. Crucially, we are still left to determine a strategy to Vnd the optimal
split for each ordering, and we have yet to see the degree to which local recall is
improved and live querying is sped up. To compare diUerent splits and ordering
combinations, we Vrst Vlter out queries that, across the four runs, did not provide
results for all possible split positions and orderings for one or more of the setups.
We also removed queries with only two patterns, for which the choice of split is
trivial. This results in a Vnal set of 43 queries.
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Figure 6.5: Recall vs. speed-up trade-oU for all diUerent hybrid plans with thr = 0.5

For each ordering and for a variety of diUerent split strategies, Figure 6.5 plots
the aggregate speed up and recall ratio versus live querying. Figure 6.6 shows the
same analysis, but for varying coherence threshold values. Based on our approach
to compute recall and speed-up, the live querying approach is placed at point (1, 1)
in the Vgure. In fact, both plots oUer an empirical version of the trade-oU intro-
duced in Figure 6.1, where our hybrid strategies sit between live querying and the
store. We can see, that non of the hybrid approaches was in average slower than the
live approach. For both graphs, we see that the store is the fastest, and about 12×
faster than the live approach; however, the recall of the store is poor with around
a third of the recall of the live approach. Looking at the performance of the hybrid
approaches in Figure 6.5, we see that the selectivity based ordering approaches (col-
ored blue) have in general a higher recall but lower speed-up than coherence based
ordering approaches (colored red). From the former, 5 out of 6 approaches achieve
an average recall of above 80%, whereas 3 out of the 6 coherence based approaches
are below this 80% recall mark. Regarding the speed-up, we see exactly the opposite,
with 5 out of 6 coherence based approaches showing a speed-up of more than 4×,
whereas 3 out of the 6 sel-* approaches are below this speed-up mark. However,
the most promising hybrid query planning is guided by the coherence measures if
we look at the approaches which have the best trade-oU between recall and speed-
up. The best trade-oU of a full recall and a 7× speed-up is achieved by coh-best.
Also the best speed-up and also recall is achieved by planning approaches guided
by the coherence measures. Interestingly, a Vxed split position as in coh-2 in Fig-
ure 6.5, which is ∼ 5× faster than live, but maintains an almost perfect recall, can
approach the ideal of coh-best quite closely. Looking closer at Figure 6.6, we can
see that perhaps the best hybrid approach is coh-thr=0.75 in, which maintains an
almost perfect recall but oUers a speed up of more than 6× live querying, slightly
beating the ideal of coh-best (which must deVnitely split the query).

6.4.2.3 Recall and speed-up per query

While such an aggregated view presents very interesting insights into the overall
performance of the diUerent strategies, we cannot identify the distribution over
the queries in terms of achieved freshness and time. This is supported by Figure 6.7
which shows the recall per query for the diUerent approaches and by Figure 6.8the
query time for each query respectively. For both Vgures, we plot the number of
queries on the x-axis that achieve a certain recall or time ratio shown on the y-
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Figure 6.7: Queries ordered by recall for our diUerent order and split strategies

axis. Further, all 43 queries are sorted for each approach separately. This provides
us with a global view on each performance, but does not yet support a per-query
comparison of the strategies.

recall Figure 6.7 shows that querying only the centralised store results in the
fewest number of queries with a recall of 1, and also results in the most queries
with a recall between 0 and 1. On the contrary, coh-best and coh-2 are tied for
keeping 100% recall across 42 queries and provide 0% only for the last query. This
aligns with the results shown in Figure 6.5. Interestingly, most queries run with
any hybrid strategy result in a recall of either 1 or 0.

time ratio Figure 6.8 shows the time ratio of the diUerent approaches com-
pared to the live approach. As expected, the time required for querying the store
is far below all other approaches in most cases. However, it is in fact slower for 2
queries. We found that this was due to some anomalous queries that consistently
returned slow results.6 We see that the approaches sel-incoh and also sel-thres
did not improve the time of the live approach for around 13 queries, which means

6 One such example at the time of writing was http://bit.ly/IPRec9.
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Figure 6.8: Queries ordered by time for diUerent order and split strategies
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Figure 6.9: Evolving average for query recall with diUerent order and split strategies

that the determined split position indicated that the queries should be run com-
pletely live. All other strategies show very similar overall performance by means
of query time. They decrease the time of the live approach for all queries.

6.4.2.4 Per-query comparison of strategies

Eventually, we are interested in how recall and query times compare for diUerent
approaches for the same queries. Thus, we ordered the queries for each approach
identically, using the results of the store approach as basis. This means that in
these Vgures each point on the x-axis presents the same query for each approach.
In this case, plotting the absolute values would not allow any meaningful insights
due to the ups and downs that each plot would show. Instead, we plot an “evolving
average”, whereby the result for query n indicates the average value for all queries
up to and including n. This allows to compare the degree of increase or decrease
in recall and time at each point, i.e., for each query. Figure 6.9 shows the recall
values for each approach and query (note that the y-axis is zoomed in on [0.7, 1.1]).
Figure 6.10 shows the “evolving average” of the time ratio across the queries.
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Figure 6.10: Evolving average for query time with diUerent order and split strategies

recall Interestingly, we see that the store can sometimes return better recall
than the hybrid approaches, as happens for query 27. A manual inspection of the
execution of the query revealed that the interim bindings returned by OpenLink
cannot be dereferenced. In that case, the live approach fails to collect query relevant
information and thus misses results. However, the hybrid approaches improve the
recall for the subsequent queries.
Furthermore, it is interesting to observe that the hybrid approaches seem to be

“grouped”. We can see that coh-best, coh-2 and sel-best show very similar per-
formance over all queries. Whereas, coh-incoh Vrst “follows” sel-thr and others,
but performs similar to sel-2 for later queries.

time ratio The evolving average of the query times in Figure 6.10 basically
conVrm the results from Figure 6.8. The store query time evolves to be the fastest
after around 20 queries. Moreover, we can see the same two groups as in Figure 6.8,
consisting of sel-incoh and sel-thr in the one and the remaining hybrid ap-
proaches in the other group.

6.5 conclusion

In summary, we found that sending more patterns live with fewer bindings (as
with the selectivity-based ordering) is in parts faster than sending less patterns live
with more bindings (coherence-based ordering). The fact that more of the query
is executed live compensates for that fact that the coherence estimates are not
considered in the ordering; in some cases it can even help to overcome estimate
errors. The lower query times suggested by the coherence-based orderings are of-
ten compensated by the low selectivities of operators in the lower levels of query
plans. Still, as a guideline, if the objective is to maximise recall, one should choose
coherence-based ordering, which is still faster then the live approach. If one is will-
ing to sacriVce some recall for even faster results, then selectivity-based ordering
is a good choice. However, the performance of the selectivity-based approaches
seems to heavily depend on the actually chosen split strategy. Generally, the ques-
tion of how to pick the split position cannot be ultimately answered without taking
the actual query and other characteristics into account. While the actual value of
the coherence threshold did not have an impact as high as expected, we could show
that the coherence estimates themselves are of great beneVt.
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6.5 conclusion

We see this combination of live and materialised querying approaches as an
important development for Linked Data. Herein, we may only have scratched the
surface of what is possible, essentially validating the core idea of hybrid query
execution and demonstrating the inclusion of coherence dynamicity estimates into
query planning. We hope to see further works expanding upon this central theme
in the future. We elaborate further on future direction later in Section 7.3.
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7CONCLUS ION

“Keep up the spirit for the last mile!”

— Axel Polleres, 2012

Semantic Web technologies and the Linked Data guidelines bear the potential to
transform the Web into a network of knowledge which can be eXciently processed
by machines. Some crucial requirements in this movement are eXcient techniques
to search and query relevant information, which becomes (even more) challeng-
ing when query relevant data is dynamic and up-to-date/fresh query results are
expected.
The presented thesis was motivated by the observation that existing query ap-

proaches for Linked Data facilitate either fast query times (by using optimised cen-
tralised stores) or up-to-date results (by processing a query directly online over the
Web). However, there existed no solution to eXciently query dynamic Linked Data
and guarantee up-to-date results at the same time.

7.1 contributions

(contribution to H1)
We have conVrmed that a signiVcant share of Linked Data is dynamic – around

40% of the monitored sources changed at least once during the four month experi-
ment we performed and 18% changed at least every week. We then observed that
centralised search engines (based on data replication) cannot always guarantee up-
to-date query results due to the dynamicity of Linked Data.

We systematically investigated alternative query approaches which guarantee
up-to-date results in the remainder of this thesis.

(contribution to H2 and H3)
We have studied pure linked-traversal based query execution approaches, which

guarantee up-to-date results but pose practical restrictions on the type of exe-
cutable queries and suUer from potentially low result recall. Our experiments have
shown that the selection of sources can be successfully reduced, without inWuenc-
ing the query results, by ignoring predicate URIs, object URIs for type-triples, and
URIs bound to non-join positions. Furthermore, we have extended the standard link
traversal based query execution approach to exploit the semantics of a subset of the
RDFS rules and of owl:sameAs equality statements. Our comprehensive evaluation
showed that the owl:sameAs extension can increase the number of results by 50%
for 20% of our query classes, but also comes at signiVcant costs and introduces
unstable behaviour when executed live over domains such as DBpedia. Similarly,
we observed that RDFS reasoning increases results more frequently (e.g., in around
80% of the query classes) than owl:sameAs extensions (e.g., in lower percentiles
of the QWalk experiments), but exhibits more moderate increases than the latter
extensions (e.g., in the 100th percentiles of QWalk experiments).
Overall, we can conclude that linked-traversal based query execution works well

for simple queries with a dereferenceable subject, but, in uncontrolled environ-
ments, struggles for more complex queries that involve accessing many remote
sources at runtime.
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(contribution to H4)
We have compared in-depth various source selection approaches to loosen the

query type restriction posed by pure link traversal based approaches. As a result,
we developed a hash-based index structure to summarise the graph-structured data
(RDF), provided algorithms for processing conjunctive SPARQL queries and in-
cluded a source ranking to further control the query time. Experimental results
showed that our lightweight hash-based index structure returns potentially faster
and more complete results compared to other studied approaches.

Both approaches (link traversal and data summaries) are complementary and of-
fer the potential to get fresher answers than centralised approaches and to discover
new sources when dynamic information is involved. However, retrieving remote
content from diverse sources at query-time naturally implies a slower response
times compared to optimised local indexes with data replicated from (parts of) the
Web.

(contribution to H5)
To obtain the best of both worlds, we proposed and developed a hybrid query

framework that combines centralised and distributed query approaches. Our en-
gine features a novel query planner that decides which parts of the query to answer
directly over theWeb and which query parts to run locally. The query planner splits
a query into a local and live part based on knowledge how coherent/up-to-date a
speciVc centralised index is with respect to the given query patterns against remote
Web data. The dynamicity knowledge also involves both the dynamicity of remote
data and the coverage of the centralised index. Our results show that hybrid query
execution can indeed improve freshness vs. fully cached results while reducing
the time taken vs. fully live execution when compared with linked-traversal based
query execution, the hybrid approach in average maintains an almost perfect recall
while oUering a signiVcant speed up.

7.2 lessons learnt

During the initial designs for our experiments to study the dynamicity of Linked
Data and the coherence of centralised public SPARQL stores, we realised that it is
far from trivial to sample a representative collection of Linked Data sources due to
the current uptake of Linked Data. The number of data providers continuously in-
creases and new data becomes available every months. This makes it hard to decide
which sources can be seen as generally representative. Furthermore, to perform in-
teresting experiments and derive meaningful conclusion it is necessary to have a
complete history of snapshots for the speciVc monitoring intervals. However, this
requires the availability of several resources, such as storage space, backup solu-
tions and stable bandwidth. Ideally, the eUort is community driven to collect a
broad range of use cases and coordinated by several partners. We currently try to
establish such a community and started a dynamic Linked Data observatory.
We recognised during the evaluation of our approaches that the eXciency of a

query approach for the Web does not only depend on the chosen algorithms and
index structures, but it is also inWuenced by external factors such as the available
bandwidth, politeness guidelines and data provider resources. We also emphasise
that runtimes in uncontrolled environments are often inWuences by external factors
like “politeness policies”, for instance when queries often touch upon documents
from the same domain. There are further crucial issues with the hosting reliability
of data providers.
Another issue we had to face was the lack of proper benchmarks for decen-

tralised Linked Data query approaches. Many of the available benchmarks are de-
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7.3 future directions

signed to evaluate centralised approaches in a controlled environment. We over-
come this challenge by designing our own query generator which allowed us to
create large numbers of queries in various shapes. These random generated queries
are well suited to systematically evaluate our approaches but do not necessarily re-
Wect the query types and use the datasets of real-world applications. Ideally, one
would like to have a collection of queries with diUerent complexity, from various
domains and which are actually used in applications.
Ultimately, we believe that our hybrid query approach makes a signiVcant step

towards a new generation of Linked Data query engines by combining and exploit-
ing the strength of diUerent query approaches. Given the potential scope and dy-
namicity of Linked Data, we are believe that the next generation of query engines
will need to deploy a range of techniques to eXciently oUer fresh results with broad
coverage. Our algorithms are (to provide) the Vrst steps in this direction.

7.3 future directions

In this thesis, we performed studies to conVrm the dynamicity of Linked Data,
investigated query approaches which can operate over the dynamic data and devel-
oped a new type of hybrid query engine. We now highlight what we believe to be
important future directions one can take from here.

7.3.1 Dynamic Linked Data Observatory

We know from a plethora of published studies that the traditional Web is highly
dynamic and that the various Vndings about the dynamic processes can have an
essential impact in developing optimisations for tasks such as web crawling and
caching [Cho and Garcia-Molina, 2003b], maintaining link integrity [Popitsch and
Haslhofer, 2011], servicing of continuous queries [Pandey et al., 2003] or for repli-
cation and synchronisation task [Tummarello et al., 2007]. In contrast to the well
studied Web, the change and creation processes on the Web of Data are still an
almost entirely unexplored Veld and most of the research is based on little knowl-
edge or on the assumptions that similar dynamic characteristics can be found as on
the traditional Web.
We contribute to this research area by providing access to the datasets collected

by our Dynamic Linked Data Observatory, which we featured in Section 3.2 and
which is described in detail by Käfer et al. [2012]. The collection of weekly snap-
shots allows the community to study not only high level dynamics of sources (as
we did in Section 3.2) but also to study dynamics between sources, e.g., by applying
spatio-temporal correlation analysis on linking patterns to uncover root causes of
change to the link structure of the Web graph as we identiVed earlier [Umbrich
et al., 2010b].
We are convinced that a comprehensive understanding of the dynamics of the

Web of Data is a necessary requirement to eXciently develop algorithms and frame-
works to deal with the dynamic Web of Data. This will be even more important, if
we consider that in the future even more dynamic data sources will be part of the
Web of Data (e.g., sources which publish information about temperature, location,
seismic activities or user content from moving mobile devices).

7.3.2 On Hybrid Querying

Ultimately, we are convinced that a hybrid query model, such as the one proposed
herein, is the a very promising approach to eXciently query the dynamic Web of
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Data. While we believe in the proposed approach that combines live Web queries
with the access to centralised repositories, we understand and highlighted the wide
range of challenges it bears. However, the Vrst steps that we take in order to over-
come these challenges do serve to validate the feasibility of the proposed architec-
ture.
We have looked at a wide variety of conVgurations which hint at the potential

complexity of hybrid query planning. More complex cost models – including, e.g.,
the potential for multiple splits as discussed in Section 6.3 – may reveal novel opti-
misations that we have not yet considered herein, further pushing the boundaries
of fresh vs. fast results. Furthermore, we can only estimate the accuracy of endpoint
results using coherence estimates; other mechanisms that cross-check the sources
of data (i.e., the named graphs) from which the endpoint computes answers against
their current versions could yield more accurate statistics. A mix between push
based (e.g. ping services) and pull based (e.g. continuos crawling) can also result in
eXcient strategies to learn, discover and update knowledge about changes. Further
experiences from research about (Web) caching [Douglis et al., 1997] and replica-
tion, in conjunction with the results from mining Web data [Umbrich et al., 2010b],
will have major impact on the chosen combination of these methods.

Also, in our hybrid framework, we assume that the live and index query compo-
nents are strongly decoupled, which allows to use any third party query provider
such as the studied public SPARQL endpoints (cf. Chapter 6). One can even think
of a tight integration between the live query processor and the used repository
and develop a query engine which has direct access to the optimised local index
combined with an integrated LTBQE engine. In addition, the local index may serve
as a source selection index to enhance the live results given by a zero-knowledge
approach such as LTBQE (similar to [Ladwig and Tran, 2011]).

7.3.3 Towards a Query Language for the Web

We see from the results in Chapter 4 that LTBQE cannot be considered a complete
solution for running complex SPARQL queries over Linked Data due to various
fundamental (e.g., no support for OPTIONAL, etc.) and practical issues like the:

• reliance on dereferenceability of URIs,

• assumptions that query-patterns connect relevant sources through derefer-
enceable URIs,

• slow access to remote sources, and

• varying stability of remote hosts.

SPARQL is simply too complex a query language to be supported in its entirety
and in a practical fashion by LTBQE. As such, one may consider diUerent lan-
guages for navigational queries. In general, a query language that would allow
for declaratively specifying navigational aspects of query execution – e.g., stick
to the data.semanticweb.org domain, follow foaf:knows links, do not follow
foaf:homepage links, etc. – would be interesting, and would allow users to better
guide the query-engine than using a simple SPARQL query.
Along these lines, various authors have also questioned whether SPARQL is the

right language to query the Web of Data: again, SPARQL is deVned for closed
datasets and was originally proposed with materialised settings in mind. Relatedly,
there have been a number of proposals to extend SPARQL with regular expressions
that capture navigational patterns, including work by Alkhateeb et al. [2009] and
work on the nSPARQL language [Pérez et al., 2010]. SPARQL 1.1 includes a similar
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notion called property paths [Harris and Seaborne, 2012] which we have not yet
investigated in the context of LTBQE. Recently, Fionda et al. [2012] proposed Nau-
tiLOD, a novel declarative language for navigating paths in the Web of Data guided
by regular expressions over RDF predicates, using SPARQL ASK queries to test some
conditions over the data encountered (i. e., to Vnd data matching a query), and al-
lowing to trigger some actions whenever some condition is met. Such work goes
beyond pure SPARQL querying, but perhaps touches upon some of the broader
potential of consuming the Web of Data in a declarative manner.
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APRE F I X E S

PreVx URI

cb: http://www.bizer.de#

cbDoc: http://www4.wiwiss.fu-berlin.de/bizer/foaf.rdf

dblpA: http://dblp.l3s.de/d2r/resource/authors/

dblpADoc: http://dblp.l3s.de/d2r/data/authors/

dblpP: http://dblp.l3s.de/d2r/resource/publications/conf/semweb/

dblpPDoc: http://dblp.l3s.de/d2r/data/publications/conf/semweb/

dbpcat: http://dbpedia.org/resource/Category:

dbpedia: http://dbpedia.org/resource/

dbpprop: http://dbpedia.org/property/

dbpowl: http://dbpedia.org/ontology/

dcterms: http://purl.org/dc/terms/

drugbank: http://www4.wiwiss.fu-berlin.de/drugbank/resource/

drugbank/

ebiz: http://www.ebusiness-unibw.org/ontologies/

consumerelectronics/v1

foaf: http://xmlns.com/foaf/0.1/

geo: http://www.geonames.org/ontology#

nytimes: http://data.nytimes.com/elements/

oh: http://www.informatik.hu-berlin.de/~hartig/foaf.rdf#

ohDoc: http://www.informatik.hu-berlin.de/~hartig/foaf.rdf

owl: http://www.w3.org/2002/07/owl#

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

skos: http://www.w3.org/2004/02/skos/core#

swc: http://data.semanticweb.org/ns/swc/ontology#

swrc: http://swrc.ontoware.org/ontology#

swIswc08pd: http://data.semanticweb.org/conference/iswc/2008/poster_

demo_proceedings

swEswc10: http://data.semanticweb.org/conference/eswc/2010

Table A.1: Mappings for all preVxes used
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Table B.1: Fraction of sources with certain access and lifespan combination (presented as
percentage).
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CF EDBENCH QUER I E S

Herein, we present the results for the individual FedBench queries. We run the
queries four times for each of the ten LiDaQ experiments, and for comparability
across diUerent conVgurations, we present the best run in terms of results returned,
and if tied, by time; we thus select the run which provided the most stable be-
haviour and returned the most results. The variation between the four runs has
already been analysed in Section 4.5.2.1. We also show results for the SQUIN li-
brary: we highlight that we only run the SQUIN implementation once since (to the
best of our knowledge) it does not implement politeness policies, and thus the Li-
DaQ conVgurations may have an advantage in comparison—in any case, we show
that SQUIN is generally faster. Note that we do not have measurements for the
triples processed by SQUIN.
To avoid repetition, we discuss results incrementally; wemay only brieWy remark

again on observations that have already been made for earlier queries.

SELECT DISTINCT *
WHERE {

?paper swc:isPartOf swIswc08pd: .

?paper swrc:author ?p .

?p rdfs:label ?n .

}

Query C.1: [LD1]: List author(s) with their paper(s) for the poster/demo
track of ISWC 2008.

Setup Terms Results Time (s) First (s) HTTP Data Inferred

Core 582 333 342.9 4.9 633 23,968 —

Core− 582 333 343.5 3.7 628 23,013 —

seeAlso 582 333 361.5 3.6 704 25,229 —

sameAs 668 529 391.4 3.9 761 26,269 8,109

RDFSs 615 380 478.8 3.8 628 23,013 11,501

RDFSd 615 380 350.3 5.2 666 23,013 13,984

RDFSe 615 380 356.1 6.6 865 23,013 18,587

Combs 715 692 571.9 4.4 842 29,212 26,804

Combd 713 680 461 8.4 1,002 28,485 27,745

Combe 715 692 512.6 15.8 1,269 29,212 35,418

Squin 582 333 86.8 28 703 — —

Table C.1: Benchmark results for query LD1

The results for Query C.1 come mostly from one site: the data.semanticweb.

org “Dog Food” server. The query engine Vrst Vnds the list of URIs for all 85 demo/-
poster papers published at ISWC 2008 on the Vrst document, dereferences these 85
URIs and builds a list of 288 unique authors, then Vnally dereferences these to Vnd
a list of 333 unique names (some authors have multiple versions of names, partic-
ularly for abbreviations). As such, we see that the overall time taken for baseline
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LiDaQ methods is roughly a function of the politeness policy (two lookups per sec-
ond) and the number of HTTP lookups required: the query times of over 5minutes
are attributable to the high number of sources that must be accessed. Conversely,
although Squin performs more lookups than, e.g., Core− and Core, and generates
the same results, it is much faster, but only by performing at least eight HTTP
lookups per second to data.semanticweb.org which is four times more than the
bounds of our politeness policy.
In this case, we see that Core− saves few lookups and little time when compared

with Core, and that seeAlso increases the number of sources but not the number
of results. We see that RDFS reasoning Vnds some additional results: foaf:name
and skos:prefLabel are found to be sub-properties of rdfs:label and provide
additional name variations, including with language tags. Some of the authors have
owl:sameAs relations to external sources, which, with sameAs, provide additional
URIs for authors and name variations using a sub-property of label. The most re-
sults are thus given by the Comb approaches, which are also the slowest overall.1

SELECT DISTINCT *
WHERE {

?proceedings swc:relatedToEvent swEswc10: .

?paper swc:isPartOf ?proceedings .

?paper swrc:author ?p .

}

Query C.2: [LD2]: List author(s) with their paper(s) in proceedings re-
lated to ESWC 2010.

Setup Terms Results Time (s) First (s) HTTP Data Inferred

Core 236 185 260.3 3.9 478 20,356 —

Core− 236 185 69.8 3.5 128 3,662 —

seeAlso 236 185 70 3.5 128 3,662 —

sameAs 236 185 70.3 3.6 128 3,662 —

RDFSs 236 185 202.5 4 128 3,662 2,139

RDFSd 236 185 73.6 5.7 148 3,662 8,193

RDFSe 236 185 77.7 7 363 3,662 12,312

Combs 236 185 219 4.8 128 3,662 2,139

Combd 236 185 76.9 12.8 148 3,662 8,124

Combe 236 185 79.7 22.9 363 3,662 12,162

Squin 236 185 24 4.4 171 — —

Table C.2: Benchmark results for query LD2

Although Query C.2 is very similar to Query C.1—requiring data mostly from the
same Dog-Food provider—the measures in Table C.2 tell a diUerent story. The re-
sults are the same for all conVgurations: none of the extensions Vnd any additional
results in this case, though they do add an additional 10 seconds to the results. In
fact, given that sameAs and RDFSs retrieve the same number of sources as Core−,
this result gives us an insight into the local overhead of reasoning, which we see
has little eUect on query times.
The most striking observation is the source-selection savings for Core− vs.

Core, where Core does not dereference the 173 authors bound to ?p (requiring

1 The additional answers available for RDFS and same-as reasoning can be seen from, e.g., http://data.
semanticweb.org/person/mathieu-daquin/rdf.
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173× 2 = 346 lookups including 303 redirects) since ?p bindings are not part of a
join, translating into a major time saving. We also note that Squin performs fewer
lookups than we would expect if it were to dereference authors, but still derefer-
ences more URIs than Core− and its analogues. As such, it would seem that Squin
also implements some reduced source-selection optimisations.

SELECT DISTINCT *
WHERE {

?paper swc:isPartOf swIswc08pd: .

?paper swrc:author ?p .

?p owl:sameAs ?x ; rdfs:label ?n .

}

Query C.3: [LD3]: List the author(s) with their same-as relation(s), and
with their paper(s) for the poster/demo track of ISWC 2008.

Setup Terms Results Time (s) First (s) HTTP Data Inferred

Core 247 191 388.1 4 760 27,538 —

Core− 247 191 342.8 8.1 628 23,013 —

seeAlso 247 191 360 8.2 704 25,229 —

sameAs 394 951 389.5 4.2 763 26,248 8,014

RDFSs 263 246 474.7 5 628 23,013 11,501

RDFSd 263 246 349.5 4.9 666 23,013 13,991

RDFSe 263 246 355.8 4.8 865 23,013 18,775

Combs 422 1,469 569.3 10.4 839 28,485 25,797

Combd 425 1,583 461.8 18.8 1,008 29,212 28,814

Combe 425 1,583 511.6 19.1 1,269 29,212 35,547

Squin 247 191 87.3 32.2 728 — —

Table C.3: Benchmark results for query LD3

Query C.3 adds a triple pattern to query Query C.1, restricting the list of authors
to (explicitly) look for those with an owl:sameAs relation. This reduces the number
of authors involved to 288 in Query C.1 to 54 in Query C.3. We can see in Table C.3
that for conVgurations without reasoning, Query C.3 returns ∼57% of the number
of results of Query C.1: the decrease in authors is partially balanced by the addition
of another variable in the results. Core− oUers a moderate performance improve-
ment over Core while returning the same results. RDFS reasoning increases result
sizes for similar reasons as before, and at little cost. sameAs shows a marked in-
crease in results size: the additional ?x variable is replaced by all equivalent URIs
for each author, leading to an additional product of result terms.

SELECT DISTINCT * WHERE {

?role swc:isRoleAt swEswc10: .

?role swc:heldBy ?p .

?paper swrc:author ?p .

?paper swc:isPartOf ?proceedings .

?proceedings swc:relatedToEvent swEswc10: .

}

Query C.4: [LD4]: List the author(s) with paper(s) in the proceedings of
ESWC 2010 who also had role(s) at the conference.
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Setup Terms Results Time (s) First (s) HTTP Data Inferred

Core 60 50 986.9 33.5 1,805 74,635 —

Core− 60 50 984.5 50.9 1,801 73,767 —

seeAlso 60 50 1,019.4 51.9 1,982 81,864 —

sameAs 105 146 1,167.4 56.5 2,462 102,286 104,431

RDFSs 60 50 1,140.2 17.5 1,801 73,767 45,352

RDFSd 60 50 1,003 66 1,843 73,767 45,943

RDFSe 60 50 1,023.2 11.5 2,173 73,767 58,374

Combs 162 203 4,658.4 68.9 2,834 115,707 297,620

Combd 162 203 2,249.4 172.4 3,383 115,663 557,880

Combe 80 126 7,211.6 52.9 9,225 109,8581,702,602

Squin 60 50 244.3 236.7 1,981 — —

Table C.4: Benchmark results for query LD4

Again, Query C.4 is an extension of Query C.2 and restricts the list of authors
to those who, as well as having a paper at ESWC 2010, also had a role at the con-
ference. Looking at the results in Table C.4, even for Core−, the query processor
performed over 1,800 lookups and our source selection approach does not aUect
the number of lookups (in this case, ?p falls into a join position and 251 people
had a role at ISWC). The fastest time was around 16 minutes for Core− (again,
approximately 1,800

2 seconds). RDFS reasoning alone produces no additional re-
sults, but also does not overly inWuence runtime. Conversely, sameAs produces
additional results, where author pages are this time dereferenced and owl:sameAs
relations found, adding aliases for bindings in ?p. The combined approaches be-
came unstable, adding additional HTTP load to what is already a demanding query.
In particular, Combs and Combe actually timeout after roughly two hours; for ex-
ample, the Combe approach retrieved almost ten thousand sources before timing
out, where the owl:sameAs links from authors on data.semanticweb.org form a
bridge to DBpedia, whose schema data has a high fan-out. From previous queries,
we have seen that the schema data directly referenced from data.semanticweb.

org is relatively easy to retrieve using dynamic import mechanisms; however, the
schemata for other sites requires many more sources to retrieve, particularly in the
RDFSe/Combe conVgurations.

SELECT DISTINCT *
WHERE {

?a dbowl:artist dbpedia:Michael_Jackson .

?a rdf:type dbowl:Album .

?a foaf:name ?n .

}

Query C.5: [LD5]: List the name(s) of the album(s) by Michael Jackson.

This query shifts the focus to the dbpedia.org data provider. First dbpedia:
Michael_Jackson is dereferenced to retrieve URIs for Michael Jackson’s albums,
which are subsequently dereferenced to conVrm that they are albums and to re-
trieve their name. Primarily, the results show that following owl:sameAs links from
the DBpedia domain introduces high overhead: there are a total of 425 URI aliases
for Michael Jackson and his albums on the DBpedia, including owl:sameAs links
to freebase.com, sw.cyc.com, linkedmdb.org and zitgist.com. Although the
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Setup Terms Results Time (s) First (s) HTTP Data Inferred

Core 85 43 63.3 6 121 9,017 —

Core− 85 43 66.8 9 116 8,285 —

seeAlso 85 43 65.2 7.2 116 8,285 —

sameAs 313 271 212.7 14 593 15,179 119,907

RDFSs 85 43 218.3 23.5 116 8,284 7,115

RDFSd 83 42 417.7 9.4 698 8,203 163,163

RDFSe 36 18 4,886.6 12.9 9,729 4,087 302,609

Combs 0 0 7,341.5 — 780 17,027 745,534

Combd 15 14 7,200.6 353.7 1,452 14,450 958,611

Combe — — — — — — —

Squin 85 43 16.2 3.9 115 — —

Table C.5: Benchmark results for query LD5

sameAs conVguration runs through (taking 3.28× longer than Core−), when same-
as and RDFS reasoning are combined, LiDaQ becomes unstable: all of the Comb
approaches timed out, where Combe threw an OutOfMemoryException in all four
runs before the timeout was reached due to massive amounts of inferences. Further-
more, the RDFSe conVguration without owl:sameAs reasoning showed that the dy-
namic import of extended schema does not work well for DBpedia, again touching
upon nearly ten thousand sources and generating fewer results than Core− (which
it extends). In general, the high fan-out of owl:sameAs and schema-level links on
DBpedia—and on sites linked by DBpedia such as sw.cyc.com—combined with a
query that already accesses over one hundred DBpedia pages in the baseline setup,
prove too much for RDFSe and Comb approaches.

SELECT DISTINCT * WHERE {

?director dbowl:nationality dbpedia:Italy .

?film dbowl:director ?director.

?x owl:sameAs ?film .

?x foaf:based_near ?y .

?y geo:officialName ?n .

}

Query C.6: [LD6]: List the movie director(s) from Italy, their Vlm(s) and
the oXcial name(s) of location(s) for the Vlm(s).

Query C.6 intends to span the DBpedia (Vrst three patterns), LinkedMDB (fourth
pattern) and GeoNames (Vfth pattern) data providers. However, as we can see in Ta-
ble C.6, no setup returned any results. At the time of running the experiments,
the dereferenced document for dbpedia:Italy contained 10,001 triples due to a
manual cut-oU set for the exporter 2, where many triples (including inlinks) were
omitted and where the dereferenced document included no dbowl:nationality

triples. At the time of writing, the dereferenced document contains 44,421 triples,
including 842 dbowl:nationality inlinks. 3 In any case, as we discuss for the next
query, the GeoNames exporter hosting data for the Vnal triple pattern bans access
from all agents through its robots.txt. Aside from such issues, we would expect
this query to oUer a major challenge to LTBQE, and to again introduce unstable
behaviour for Comb conVgurations.

2 Last accessed on 2012/02/28.
3 Last accessed on 2012/08/09.
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Setup Terms Results Time (s) First (s) HTTP Data Inferred

Core 0 0 9.6 — 12 17,864 —

Core− 0 0 6.8 — 2 10,001 —

seeAlso 0 0 3.6 — 2 10,001 —

sameAs 0 0 49.5 — 7 10,067 20,090

RDFSs 0 0 145.2 — 2 10,001 4,580

RDFSd 0 0 27.3 — 49 10,001 1,329

Combs 0 0 215.3 — 7 10,067 24,922

Combd 0 0 59 — 64 10,067 71,560

Combe 0 0 7,223.5 — 945 10,067 427,421

Squin 0 0 5.9 — 1 — —

Table C.6: Benchmark results for query LD6

SELECT DISTINCT *
WHERE {

?x geo:parentFeature <http://sws.geonames.org/2921044/> .

?x geo:name ?n .

}

Query C.7: [LD7]: List the name(s) of the parent feature(s) of Germany.

LiDaQ will not run Query C.7 since the robots.txt4 forbids software agents
to access information on the sws.geonames.org domain. SQUIN does access the
sws.geonames.org domain, but even aside from the robots.txt issue, the Vrst
query pattern is not matched by any data in the document dereferenced by the
given GeoNames URI for Germany: dereferenced documents on the GeoNames do-
main only contain triples where the URI in question appears in the subject position,
not “inlinks”. If not for these two issues, we would expect this query to be straight-
forward for LiDaQ/SQUIN to run.

SELECT DISTINCT *
WHERE {

?drug drugbank:drugCategory drugbank:micronutrient .

?drug drugbank:casRegistryNumber ?id .

?drug owl:sameAs ?s .

?s foaf:name ?o .

?s dcterms:subject ?sub .

}

Query C.8: [LD8]: List the drug(s) in the micronutrient category, their
CAS registry number(s), alias(es), name(s) and subject(s).

From the results in Table C.7, we see the improvements of Core vs. Core−

for Query C.8. Most prominently however, the results for Query C.8 show highly
unstable behaviour for all reasoning extensions except RDFSs. In particular, the
consideration of owl:sameAs links snowballs and introduces massive problems,
which we believe to be due to data quality issues with this relation within Linked
Drug Data, and which we had previously observed in other work [Hogan et al.,
2012b].5 This of course highlights the problem whereby – even with counter mea-
sures such as authoritative analysis of schema data – reasoning exacerbates data

4 http://sws.geonames.org/robots.txt
5 We refer the reader to https://groups.google.com/forum/?fromgroups#!topic/pedantic-web/
rXQPcFLMOi0 for detailed discussion.

179

http://sws.geonames.org/robots.txt
https://groups.google.com/forum/?fromgroups#!topic/pedantic-web/rXQPcFLMOi0
https://groups.google.com/forum/?fromgroups#!topic/pedantic-web/rXQPcFLMOi0


bibliography

Setup Terms Results Time (s) First (s) HTTP Data Inferred

Core 39 19 78.9 17.6 351 20,655 —

Core− 39 19 61.9 25.5 257 7,245 —

seeAlso 39 19 96.2 21.4 334 7,309 —

sameAs 294 21,071 1,374.4 67.1 856 12,839 515,297

RDFSs 39 19 198.5 15.9 257 7,245 4,979

RDFSd 8 4 181.4 132.6 231 774 43,814

RDFSe 24 12 7,514.8 155.5 7,175 5,491 143,236

Combs 347 29,139 7,354.9 35.5 1,217 15,209 407,741

Combd 0 0 7,212.1 — 1,289 11,416 73,304

Combe — — — — — — —

Squin 22 10 120.9 10.5 482 — —

Table C.7: Benchmark results for query LD8

quality issues for remote data providers. When owl:sameAs and dynamic RDFS
import and reasoning is combined for Combd and Combe, we encountered further
OutOfMemoryExceptions.

SELECT DISTINCT *
WHERE {

?x dcterms:subject

dbpcat:FIFA_World_Cup-winning_countries .

?p dbpowl:managerClub ?x .

?p foaf:name "Luiz Felipe Scolari"@en .

}

Query C.9: [LD9]: List the football team(s) that won a FIFA World Cup
and that were managed by “Luiz Felipe Scolari”.

Setup Terms Results Time (s) First (s) HTTP Data Inferred

Core 0 0 147.3 — 266 29,326 —

Core− 0 0 147.4 — 260 27,821 —

seeAlso 0 0 136.4 — 260 27,821 —

sameAs 0 0 182.6 — 337 7,915 92,485

RDFSs 0 0 299.2 — 202 22,791 19,642

RDFSd 0 0 904.8 — 1,512 19,133 227,663

RDFSe 0 0 1,607.5 — 3,488 4,928 33,810

Combs 0 0 7,342.9 — 984 28,211 558,187

Combd 0 0 7,202 — 1,437 16,1091,432,297

Combe — — — — — — —

Squin 0 0 25.6 — 247 — —

Table C.8: Benchmark results for query LD9

As we can see from the results in Table C.8, none of the setups returned any con-
tent for Query C.9. At the time of the experiments, the document for the Brazilian
national football team (the answer to ?p) contained parser errors, which have since
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been Vxed.6 We again see that following owl:sameAs and schema level links from
the DBpedia causes huge overheads, with Combs and Combd hitting timeouts, and
Combe again throwing an OutOfMemoryException after inferring too much data.

SELECT DISTINCT *
WHERE {

?n dcterms:subject dbpcat:Chancellors_of_Germany .

?n owl:sameAs ?p2 .

?p2 nytimes:latest_use ?u .

}

Query C.10: [LD10]: List the chancellor(s) of Germany, their alias(es) and
latest article(s).

Setup Terms Results Time (s) First (s) HTTP Data Inferred

Core 0 0 55.5 — 165 15,008 —

Core− 0 0 52.7 — 160 13,692 —

seeAlso 0 0 52.6 — 160 13,692 —

sameAs 200 5,825 7,200.6 310.4 937 18,120 811,104

RDFSs 0 0 195 — 160 13,692 17,008

RDFSd 0 0 321 — 855 4,011 79,345

Combs 0 0 7,351 — 897 18,404 387,428

Combd — — — — — — —

Combe — — — — — — —

Squin 0 0 50.1 — 158 — —

Table C.9: Benchmark results for query LD10

Query C.10 aims to combine data from the dbpedia.org domains and the data.
nytimes.com domain. We already explained that we changed the query predicate
skos:subject to dcterms:subject in order to reWect changes in the DBpedia
data model. However, we found that although the content returned for the entities
that are in the DBpedia category “Chancellors of Germany” contains several owl:
sameAs relations to aliases in the data.nytimes.com domain, these are found in
the inverse order of the query pattern. This fact is reWected in the results shown
in Table C.9, where we only Vnd results if owl:sameAs inferencing is enabled; in
fact, both conVgurations which returned results timed out doing so, and again, both
conVgurations involving the dynamic import of schema data threw exceptions.

SELECT DISTINCT *
WHERE {

?x dbpowl:team dbpedia:Eintracht_Frankfurt .

?x rdfs:label ?y .

?x dbpowl:birthDate ?d .

?x dbpowl:birthPlace ?p .

?p rdfs:label ?l .

}

Query C.11: [LD11]: List the name(s) of the player(s) on the Eintracht
Frankfurt team, their birthday(s) and the name(s) of their
birthplace(s).

6 The document URL in question—http://dbpedia.org/data/Brazil_national_football_team.
xml—was tested with the W3C RDF/XML validator.
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Setup Terms Results Time (s) First (s) HTTP Data Inferred

Core 4,240 25,445 607.3 15.1 1,125 354,880 —

Core− 3,936 23,621 595.8 7.6 1,073 336,615 —

seeAlso 4,194 25,068 599.2 12.7 1,113 353,961 —

sameAs 40 572 7,210.2 80.9 3,741 94,2632,327,965

RDFSs 1,496 6,982 8,297.4 25.6 450 128,281 103,769

RDFSd 1,281 7,319 2,392.5 27.7 3,896 123,839 271,772

RDFSe — — — — — — —

Combs 259 77,484 7,345.9 104.5 3,077 97,925 575,314

Combd 275 196,448 7,201.6 51 5,974 92,2851,577,530

Combe 240 157,198 7,207.9 92.2 17,996 21,5741,930,660

Squin 2,673 15,900 158.9 31.1 1,116 — —

Table C.10: Benchmark results for query LD11

Table C.10 shows that this query involves the largest amount of results and
source lookups of all the FedBench queries.7 The combination of over 300 play-
ers, each of which typically has labels in several languages and has two or three
birth-places, each of which in turn has labels in several languages, leads to large
results sets, even without reasoning. The number of HTTP lookups also reWects
the breadth of this query, primarily due to lookups on players and places. The rea-
soning extensions again exhibit unstable behaviour, either eventually timing-out
or throwing an exception.

7 We remark that the public centralised SPARQL endpoint for DBpedia often times-out with a 509 re-
sponse code for this query.
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With respect to the detailed average measures for the QWalk experiments, Ta-
ble D.1 presents the results for entity-* queries, Table D.2 and Table D.4 gives
results for star-* queries, and Table D.3 and Table D.5gives results for *-path-*
queries. For space reasons, we only present standard deviations for terms, results
and time.
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