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Stoneley waves and interface stability
of Bell materials in compression;

Comparison with rubber.

Michel Destrade

2005

Abstract

Two semi-infinite bodies made of prestressed, homogeneous, Bell-
constrained, hyperelastic materials are perfectly bonded along a plane
interface. The half-spaces have been subjected to finite pure homoge-
neous predeformations, with distinct stretch ratios but common prin-
cipal axes, and such that the interface is a common principal plane of
strain. Constant loads are applied at infinity to maintain the defor-
mations and the influence of these loads on the propagation of small-
amplitude interface (Stoneley) waves is examined. In particular, the
secular equation is found and necessary and sufficient conditions to
be satisfied by the stretch ratios to ensure the existence of such waves
are given. As the loads vary, the Stoneley wave speed varies accord-
ingly: the upper bound is the ‘limiting speed’ (given explicitly), be-
yond which the wave amplitude cannot decay away from the interface;
the lower bound is zero, where the interface might become unstable.
The treatment parallels the one followed for the incompressible case
and the differences due to the Bell constraint are highlighted. Finally,
the analysis is specialized to specific strain energy densities and to
the case where the bimaterial is uniformly deformed (that is when the
stretch ratios for the upper half-space are equal to those for the lower
half-space.) Numerical results are given for ‘simple hyperelastic Bell’
materials and for ‘Bell’s empirical model’ materials, and compared to
the results for neo-Hookean incompressible materials.
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1 INTRODUCTION

This paper is a prolongation of a series of articles concerned with the prop-
agation of small-amplitude waves in deformed Bell materials. Beatty and
Hayes [1] wrote the incremental equations of motion for a hyperelastic body
maintained in a state of static finite homogeneous deformation and subject
to the constraint of Bell [2]: tr V = 3, where V is the left stretch tensor
associated with the finite deformation. They studied plane [1] as well as
torsional [3] waves. Then this author [4] found the secular equation for sur-
face (Rayleigh) waves propagating on a semi-infinite deformed body made of
Bell-constrained material. Next [5] the surface stability of such a half-space
under compression was analyzed and compared with that of incompressible
rubber. Now the propagation of interface (Stoneley) waves is considered for
two rigidly bonded semi-infinite bodies made of distinct Bell materials. Each
half-space was subjected to a finite homogeneous predeformation and the
principal axes of each deformation are assumed to coincide at the interface,
which is a common principal plane. Moreover, the interfacial wave is assumed
to propagate in a principal direction. These common [6, 7] restrictions aside,
a general necessary and sufficient condition of existence of a Stoneley wave
is established, together with the corresponding secular equation.

These general results are obtained in Section 3, after the basic equations of
the problem have been written in Section 2. For purposes of comparison and
contrast, these latter equations are written in a manner which is similar to
those governing the propagation of interfacial waves in deformed hyperelastic
materials subject to the constraint of incompressibility, det V = 1. Then in
Section 4, the analysis is specialized to the case where the infinite body
made of the two bonded half-spaces is uniformly prestrained, that is when
the principal stretch ratios of strain are the same for the upper half-space
and for the lower half-space. For “simple hyperelastic Bell” materials, the
influence of the initial deformation on the wave speed is highlighted. As the
half-spaces are more and more compressed, this speed tends to zero and the
secular equation gives the “neutral equation”. The critical stretch ratios,
at which the neutral equation is reached, are obtained. In the case of a
plane prestrain, these critical stretches, and the corresponding ones for “Bell’s
empirical model”, are compared with the critical stretches obtained by Biot
[8] for the interfacial stability of (incompressible) neo-Hookean materials,
often used to model rubber. The conclusion is that, as far as interfacial
stability is concerned, rubber may be compressed more than Bell’s empirical
materials, but not as much as Bell simple hyperelastic materials, before the
critical stretches are reached.
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2 PRELIMINARIES

2.1 Deformed Bell half-spaces

Consider two semi-infinite bodies made of different homogeneous Bell-con-
strained hyperelastic materials, separated by plane interface x2 = 0. Initially,
each body is at rest in a reference configuration, denoted by B0 for the lower
half-space x2 ≥ 0, and by B∗0 for the upper half-space x2 ≤ 0. The constitu-
tive equation for the lower half-space is [2]

T = pV + ω01 + ω2V
2, (1)

expressing the Cauchy stress tensor T in terms of the left stretch tensor
V. Here p is an undetermined scalar, to be found from the equations of
motion or of equilibrium, and from the boundary conditions. The constitutive
parameters ω0 and ω2 are defined in terms of the derivatives of the strain
energy density Σ = Σ(i2, i3) of the hyperelastic body with respect to the
principal invariants i2 = [(tr V)2 − tr (V2)]/2, i3 = det V, as

ω0 = ∂Σ/∂i3 ≤ 0, ω2 = −i−1
3 ∂Σ/∂i2 > 0. (2)

The inequalities above are called the ‘Beatty-Hayes A-inequalities’ [2]. Also,
the Bell constraint is satisfied at all times:

i1 ≡ tr V = 3. (3)

Similar (starred) equalities and inequalities apply for the upper half-space
x2 ≤ 0.

Next, consider that each half-space is subject to a finite static pure ho-
mogeneous static deformation B0 → B1 and B∗0 → B∗1 by the application
of suitable loads. The principal axes of these deformations along x2, and
x1 and x3, two orthogonal directions in the x2 = 0 plane. Hence the finite
deformations are described in the coordinate system of the principal axes by

xΓ = λΓXΓ (x2 ≥ 0), and xΓ = λ∗ΓXΓ (x2 ≤ 0), (Γ = 1, 2, 3; no sum),
(4)

where the λΓ, λ∗Γ are the principal stretch ratios for each half-space. For the
lower half-space we have

V = Diag(λ1, λ2, λ3),

λ1 + λ2 + λ3 = 3, i2 = λ1λ2 + λ2λ3 + λ3λ1, i3 = λ1λ2λ3, (5)

and the following constant Cauchy stress tensor

TΓΓ = poλΓ + ω0 + ω2λ
2
Γ (Γ = 1, 2, 3; no sum), Tij = 0 (i 6= j), (6)
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where po is constant, and ω0, ω2 are given by (2) and valuated at i2, i3 given
by (5)3,4, clearly satisfies the equilibrium equations Tij,j = 0. So does T∗, the
equivalent starred version for the upper half-space. Finally, the half-spaces
are rigidly bounded. At the interface x2 = 0, the continuity of the tractions
imposes that

poλ2 + ω0 + λ2
2ω2 = p∗oλ

∗
2 + ω∗0 + λ∗22 ω

∗
2. (7)

The half-spaces are maintained in these deformed states B1, B∗1 by the ap-
plication at infinity of the loads PΓ = −TΓΓ, P ∗Γ = −T ∗ΓΓ. It follows from (7)
that P2 = P ∗2 .

2.2 Small-amplitude interface wave

Now consider that a small amplitude wave travels with speed v and a wave
number k at the interface, in the direction of x1, with attenuation away from
x2 = 0. The following expressions describe this incremental motion B1 → B1,
B∗1 → B

∗
1:

x = x + ε<{U(kx2)eik(x1−vt)}, and x = x + ε<{U∗(kx2)eik(x1−vt)}, (8)

for x2 ≥ 0 and for x2 ≤ 0, respectively. Here ε is small enough to allow
linearization and the amplitudes U and U∗ are of the form U = [U1, U2, 0]T,
U∗ = [U∗1 , U

∗
2 , 0]T. The remainder of this paper is devoted to the study of

these interfacial (Stoneley) waves. Dowaikh and Ogden [6] and Chadwick [7]
conducted similar studies for prestrained incompressible and compressible
materials, respectively. In both cases, the authors proved that the initial
normal traction T22 = T ∗22 played no role in the resolution and analysis of
the problem. It can be checked that such is also the case for deformed Bell
materials and without loss of generality, we choose T22 = T ∗22 = 0, and thus
P2 = P ∗2 = 0 (of course, the traction T22 might play a role in issues other
than the derivation of the secular equation for Stoneley waves.) Hence the
following loads P1 = −T11, P3 = −T33 and P ∗1 , P ∗3 are applied at x1 = ±∞
and x3 = ±∞ in order to sustain the finite homogeneous deformation,

PΓ = (λ2 − λΓ)(−ω0 + λΓλ2ω2)/λ2,

P ∗Γ = (λ∗2 − λ∗Γ)(−ω∗0 + λ∗Γλ
∗
2ω
∗
2)/λ∗2,

(Γ = 1, 3). (9)

Moreover, this assumption enables us to use previously established results for
the incremental equations of motion. Specifically, the equations are written
as the following system of first order differential equations for the components

4



of the displacements U, U∗, and of the tractions t, t∗ on the planes x2 =
const. (see Ref.[4] for details):

b3λ
2
2U
′
1 + ib3λ

2
2U2 − t1 = 0, t′1 + iλ1λ

−1
2 t2 − (λ1λ

−1
2 C − ρv2)U1 = 0,

U ′2 + iλ1λ
−1
2 U1 = 0, t′2 + it1 − [b3(λ2

1 − λ2
2)− ρv2]U2 = 0, (10)

where

b3 =
−ω0 + λ1λ2ω2

λ2(λ1 + λ2)
,

C = λ−1
1 λ2C11 + λ1λ

−1
2 C22 − C12 − C21 − 2ω0 − (λ2

1 + λ2
2)ω2,

Cij = 2λ2
i δijω2 − λ2

j(ω02 + λ2
iω22) + λ1λ2λ3(ω03 + λ2

iω23), (11)

for x2 ≥ 0, and a starred version for x2 ≤ 0. Here ρ (ρ∗) is the mass density
of the lower (upper) half-space, and the derivatives ω0Γ, ω2Γ (Γ = 2, 3) of the
material parameters ω0, ω2 are taken with respect to iΓ and evaluated at i2,
i3 given by (5). The half-spaces are rigidly bonded at x2 = 0 so that the
following boundary conditions apply,

U(0) = U∗(0), t(0) = t∗(0), (12)

together with the requirement that the wave vanishes as x2 → ±∞.

3 GENERAL PREDEFORMATIONS AND

STRAIN ENERGY FUNCTIONS

Here we solve the problem at hand, that is we solve the equations of motion
(10) and then apply the boundary conditions (12) in order to derive the
secular equation for the speed of Stoneley waves in deformed Bell materials.
We adopt an approach reminiscent of that used by Dowaikh and Ogden [6]
for Stoneley waves in incompressible materials and show how each constraint
leads to different results.

3.1 Secular equation; comparison with incompressible
materials

For small-amplitude waves of the form (8)1, the incremental constraint of
incompressibility, u1,1 + u2,2 + u3,3 = 0, imposes that

iU1 + U ′2 = 0, (13)
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suggesting the introduction of the function ϕ̂ defined by

U1(kx2) = iϕ̂′(kx2), U2(kx2) = ϕ̂(kx2). (14)

In our context, the incremental constraint of Bell, λ1u1,1+λ2u2,2+λ3u3,3 =
0, imposes Eq.(10)3, that is

iλ1λ
−1
2 U1 + U ′2 = 0,

suggesting the function ϕ defined by

U1(kx2) = iϕ′(kλ1λ
−1
2 x2), U2(kx2) = ϕ(kλ1λ

−1
2 x2). (15)

From (10)4,1, the traction components are also expressed in terms of ϕ and
its derivatives:

t1 = ib3λ
2
2(λ1λ

−1
2 ϕ′′+ϕ), t2 = −b3λ1λ2ϕ

′′′+λ−1
1 λ2(λ1λ

−1
2 C−b3λ1λ2−ρv2)ϕ′.

(16)
Finally, Eq.(10)2 reads

b3λ
2
1ϕ
′′′′ − (λ1λ

−1
2 C − 2b3λ1λ2 − ρv2)ϕ′′ + (b3λ

2
1 − ρv2)ϕ = 0. (17)

The same procedure is of course also valid for the upper half-space, with the
introduction of a function ϕ∗.

Dowaikh and Ogden [6] expressed the strain energy density as a function
Ŵ (λ1, λ2, λ3) of the principal stretches of deformation, rather than as a func-
tion of the invariants Σ̂(i1, i2, i3), a practice also favored by Biot [9]. With
this choice, and the introduction of the function ϕ̂ in (15), they proved that
for incompressible materials, the counterpart to (17) is

γ̂ϕ̂′′′′ − (2β̂ − ρv2)ϕ̂′′ + (α̂− ρv2)ϕ̂ = 0, (18)

where α̂, β̂, and γ̂ are defined in terms of Ŵ and its derivatives with respect
to the λi as

α̂λ2
2 = γ̂λ2

1 = (λ1Ŵ1 − λ2Ŵ2)λ2
1λ

2
2/(λ

2
1 − λ2

2),

2β̂ + 2γ̂ = λ2
1Ŵ11 + λ2

2Ŵ22 − 2λ1λ2Ŵ12 + 2λ2Ŵ2. (19)

Also, for incompressible materials, the assumption of strong ellipticity for
the equations of motion implies that

α̂ > 0, γ̂ > 0, β̂ +
√
α̂γ̂ > 0. (20)
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For Bell constrained materials, introduce by analogy α, β, and γ, defined
by

α = b3λ
2
1, γ = b3λ

2
2, 2β + 2

√
αγ = λ1λ

−1
2 C, (21)

or equivalently, by

αλ2
2 = γλ2

1 = (W1 −W2)λ2
1λ2/[λ3(λ2

1 − λ2
2)],

2β + 2
√
αγ = (W11 +W22 − 2W12)λ1/(λ2λ3). (22)

Now rewrite the equation of motion (17) as

αϕ′′′′ − (2β − ρv2)ϕ′′ + (α− ρv2)ϕ = 0. (23)

Using the strong ellipticity condition for the equations of motion in deformed
Bell materials (see Appendix) together with Eqs.(2) and (11), we also find
the following inequalities,

α > 0, γ > 0, β + α > 0. (24)

The contrast between the effects of incompressibility and of the Bell con-
straint is striking (compare for instance the first term in (18) and in (23).)
Now Equation (23) and its starred version for the upper half-space are solved.

Because Stoneley waves vanish with distance from the interface, the so-
lutions ϕ and ϕ∗ must be of the form

ϕ(z) = Ae−s1z +Be−s2z (z ≥ 0), ϕ∗(z) = A∗es
∗
1z +B∗es

∗
2z (z ≤ 0), (25)

where s1 6= s2, <(si) > 0, s∗1 6= s∗2, <(s∗i ) > 0, for some constants A, B, A∗,
B∗. Explicitly, the si, s

∗
i are roots of the biquadratics

αs4 − (2β − ρv2)s2 + α− ρv2 = 0, α∗s∗4 − (2β∗ − ρ∗v2)s∗2 + α∗ − ρ∗v2 = 0,

s2
1 + s2

2 = (2β − ρv2)/α, s∗21 + s∗22 = (2β∗ − ρ∗v2)/α∗,

s2
1s

2
2 = (α− ρv2)/α, s∗21 s

∗2
2 = (α∗ − ρ∗v2)/α∗.

(26)

The roots s2
1 and s2

2 of the real quadratic (26)1 are either both real or both
complex; if they are real, they are non-negative, otherwise s1 and s2 are
purely imaginary in contradiction with the decaying requirement <(si) > 0;
if they are complex, they are conjugate, because the coefficients of (26)1 are
real. In both cases, s2

1s
2
2 ≥ 0 and similarly, s∗21 s

∗2
2 ≥ 0, so that

0 ≤ v ≤ min{vL, v∗L}, where vL =
√
α/ρ, v∗L =

√
α∗/ρ∗. (27)

7



In fact, the interval of possible values for v for which the wave decays away
from the interface (the subsonic interval) might be smaller than the interval
defined above. This point is clarified in §3.2. For the time being, we derive
an explicit expression for the secular equation. Equations (12) express the
continuity of the displacement and traction incremental amplitudes at the
interface x2 = 0. Using the expressions (14), (16) of Ui, U

∗
i , ti, t

∗
i , in terms

of ϕ, ϕ∗ and their derivatives, they lead to

ϕ(0) = ϕ∗(0), ϕ′(0) = ϕ∗
′
(0),

γ[

√
γ

α
ϕ′′(0) + ϕ(0)] = γ∗[

√
γ∗

α∗
ϕ∗
′′
(0) + ϕ∗(0)], (28)

−√αγϕ′′′(0) +

√
γ

α
(2β +

√
αγ − ρv2)ϕ′(0) =

−
√
α∗γ∗ϕ∗

′′′
(0) +

√
γ∗

α∗
(2β∗ +

√
α∗γ∗ − ρv2)ϕ∗

′
(0).

Using (26)3,4 and (25), we rewrite this system as four homogeneous linear
equations for the unknowns A, B, A∗, B∗:

A+B = A∗ +B∗,

s1A+ s2B = −s∗1A∗ − s∗2B∗,
(
√
αγs2

1 + γ)A+ (
√
αγs2

2 + γ)B =

(
√
α∗γ∗s∗21 + γ∗)A∗ + (

√
α∗γ∗s∗22 + γ∗)B∗,

s1(
√
αγs2

2 + γ)A+ s2(
√
αγs2

1 + γ)B =

− s∗1(
√
α∗γ∗s∗22 + γ∗)A∗ − s∗2(

√
α∗γ∗s∗21 + γ∗)B∗. (29)

The vanishing of the corresponding determinant yields the secular equation.
Dropping the factor (s1 − s2)(s∗1 − s∗2) and using the quantities η, r (and η∗,
r∗) defined as follows,

η =

√
α− ρv2

α
, r =

√
(η + 1)2 + 2

β − α
α

, (30)

the secular equation is written compactly as

i(v) ≡ γ2[
α

γ
ηr2 − (

√
α

γ
η − 1)2] + γ∗2[

α∗

γ∗
η∗r∗2 − (

√
α∗

γ∗
η∗ − 1)2]

+ γγ∗[

√
αα∗

γγ∗
(η + η∗)rr∗ + 2(

√
α

γ
η − 1)(

√
α∗

γ∗
η∗ − 1)] (31)

= 0.

The quantities η, η∗ are real by (27) and so are r, r∗, at least as long as the
decaying condition is satisfied. We now elaborate on this last point.
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3.2 The subsonic interval

From (26) and the definition (30) of r, expressions for the squared sum and
difference of the roots si follow:

(s1 + s2)2 = r2, (s1 − s2)2 = s2, (32)

where

s2 =
2β − ρv2

α
− 2

√
α− ρv2

α
= (η − 1)2 + 2

β − α
α

= r2 − 4η. (33)

Hence the requirement of exponential decay <(si) > 0 is equivalent to

<(r ± s) > 0. (34)

Now we span the subsonic range, that is the interval I (say) of possible values
for v such that (34) is satisfied. This interval is I = [0, v̂] where v̂ is called
the limiting speed.

Starting at v = 0, we have, using the strong ellipticity condition (24)3,

v = 0, η = 1, r =

√
2
β + α

α
> 0, r2 − s2 = 4 > 0, (35)

so that (34) is satisfied.
Now, if 2β−α > 0, then we may increase v from 0 to vL =

√
α/ρ, where

v = vL, η = 0, r =

√
2β − α
α

> 0, r2 − s2 = 0, (36)

and η, r, r2 − s2, decrease monotonically with v but remain non-negative
real numbers, so that (34) is satisfied over the interval [0, vL]. Clearly in this
situation, the limiting speed is v̂ = vL =

√
α/ρ.

However, in the situation where 2β − α < 0, we may increase v from 0
only up to ṽ (where r = 0) in order to satisfy (34), where ṽ is defined by

ρṽ2 = 2[β − α +
√

2α(α− β)] < α = ρv2
L. (37)

Clearly the limiting speed is then v̂ = ṽ.
Conducting a similar analysis for the upper half-space, we conclude that

the limiting speed is

v̂ =


min{vL, v∗L}, when 2β > α, 2β∗ > α∗,
min{ṽ, v∗L}, when 2β < α, 2β∗ > α∗,
min{vL, ṽ∗}, when 2β > α, 2β∗ < α∗,
min{ṽ, ṽ∗}, when 2β < α, 2β∗ < α∗.

(38)
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Note that the analysis conducted in this subsection (defining the subsonic
interval) and in the following one (defining the conditions of existence of a
Stoneley wave) rely directly upon the methods developed by Chadwick [7]
for compressible materials, with the modifications required to accommodate
the Bell constraint.

3.3 Existence and uniqueness of interfacial (Stoneley)
waves; comparison with surface (Rayleigh) waves

Here we derive the conditions of existence for a Stoneley wave at the interface
of two deformed Bell-constrained half-spaces, using a “matrix reformulation”
of the secular equation (31), a method suggested by Chadwick [7] and based
on the surface impedance method of Barnett et al. [10]. Indeed, introducing
the following symmetric 2× 2 matrices

M(v) = γ

 √
α
γ
ηr 1−

√
α
γ
η

1−
√

α
γ
η

√
α
γ
r

 , M∗(v) = γ∗

 √α∗

γ∗
η∗r∗

√
α∗

γ∗
η∗ − 1√

α∗

γ∗
η∗ − 1

√
α∗

γ∗
r∗

 ,
(39)

we find that the secular equation (31) corresponds to

i(v) = det N(v) = 0, where N(v) = M(v) + M∗(v). (40)

From then on, it is an easy matter to transpose Chadwick’s results [7] for
incompressible materials to Bell materials, and to show inter alia that the
eigenvalues of N(v) decrease monotonically as v increases in I. Then the
following results apply (see also Barnett et al. [10] for Stoneley waves in
linear anisotropic elasticity): when an interfacial wave exists, it is unique; it
propagates at a speed which is greater than the speed of the Raleigh wave
associated with either each half-space; it exists if and only if

i(0) > 0, i(v̂) < 0. (41)

In the (λ1, λ2, λ3, λ
∗
1, λ
∗
2, λ
∗
3)-space, the curve i(v̂) = 0 is called the limiting

equation and the curve i(0) = 0 is the neutral equation. Dowaikh and Og-
den [6] refer to this latter equation as the “exclusion equation” because it
rules out the possibility of incremental inhomogeneous static deformations
in homogeneously deformed half-spaces. Biot [8] called it the “characteristic
equation for instability”, because it “corresponds to the spontaneous appear-
ance of sinusoidal deformations at the interface.” We obtain this equation
for Bell materials by taking η = η∗ = 1 in the secular equation (31):√

2γ(β + α) +
√

2γ∗(β∗ + α∗)± (
√
αγ −

√
α∗γ∗ + γ∗ − γ) = 0. (42)
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4 UNIFORM PREDEFORMATION AND

SPECIFIC STRAIN ENERGY FUNCTIONS

In the preceding section, we covered some ground on the propagation of
Stoneley waves in deformed Bell materials. We obtained results for general
prestrains and unrestricted strain energy density functions. We now turn our
attention to special configurations. First, we assume that the infinite body
made of the two bonded Bell-constrained semi-infinite bodies is predeformed
uniformly in the whole space, so that the principal stretches are the same for
the lower and upper half-spaces:

λ∗1 = λ1, λ∗2 = λ2, λ∗3 = λ3. (43)

This deformation is possible with the application of the following loads,

PΓ = (λ2 − λΓ)(−ω0 + λΓλ2ω2)/λ2,

P ∗Γ = (λ2 − λΓ)(−ω∗0 + λΓλ2ω
∗
2)/λ2,

(Γ = 1, 3). (44)

Next, we specialize the analysis to specific forms of the strain energy
functions and make the connection with historical results obtained for in-
compressible materials.

4.1 Simple hyperelastic Bell materials

Here we consider that the lower and upper half-spaces are made of “Simple
hyperelastic Bell” materials, for which the strain energy functions are of the
form [2],

WSHB = C1(3− λ1λ2 − λ2λ3 − λ3λ1) + C2(1− λ1λ2λ3),

W ∗
SHB = C∗1(3− λ1λ2 − λ2λ3 − λ3λ3) + C∗2(1− λ1λ2λ3). (45)

The material constants Ci, C∗i satisfy, according to the A-inequalities (2),

C1 > 0, C2 ≥ 0, C∗1 > 0, C∗2 ≥ 0. (46)

Now, the expressions (22) and (30)2 for α, β, γ, and r (and for α∗, β∗, γ∗,
and r∗) reduce to

γ = (C1λ
−1
3 +C2)λ2/(λ1 +λ2) > 0, α = β = λ2

1λ
−2
2 γ > 0, r = η+ 1. (47)
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Because here 2β − α = α > 0, we deduce from the discussion undertaken in
§3.2 that the limiting speed for two bonded simple hyperelastic Bell materials
is

v̂ = min{
√
α/γ,

√
α∗/γ∗}. (48)

For v ∈ I = [0, v̂], the secular equation (31) reduces to

λ−2
1 λ2

2i(v) ≡ γ2[η3 + η2 + (1 + 2λ−1
1 λ2)η − λ−2

1 λ2
2]

+ γ∗2[η∗3 + η∗2 + (1 + 2λ−1
1 λ2)η∗ − λ−2

1 λ2
2] (49)

+ γγ∗[(η + η∗)(η + 1)(η∗ + 1) + 2(λ−1
1 λ2 − η)(λ−1

1 λ2 − η∗)]
= 0.

The conditions of existence of a Stoneley wave are (41), with the above
simplifications. Explicitly, the neutral condition i(0) > 0 factorizes to

[(3γ∗ + γ)λ1 − (γ∗ − γ)λ2][(3γ + γ∗)λ1 − (γ − γ∗)λ2] > 0. (50)

The sign of each factor depends on the sign of γ − γ∗. Introducing the
quantity ε defined by

ε =

{
γ/γ∗ = (C1 + C2λ3)/(C∗1 + C∗2λ3) when γ < γ∗,
γ∗/γ = (C∗1 + C∗2λ3)/(C1 + C2λ3) when γ∗ < γ,

(51)

we write the neutral condition (50) as

(3 + ε)λ1 − (1− ε)λ2 > 0. (52)

Note that the neutral condition (52) gives an implicit relationship between
the stretch ratios λ1 and λ2 because λ3 appearing in ε is linked to λ1 and
λ2 through the Bell constraint: λ3 = 3− λ1 − λ2 (explicitly, the relationship
between λ1 and λ2 is quadratic.) However, for the plane strain λ3 = 1 (and
λ2 = 2 − λ1), ε is independent of the stretch ratios and the critical stretch
(λ1)cr, at which the neutral equation is reached, is

(λ1)cr = 1
2
(1− ε). (53)

Note also that when one half-space is absent (γ = 0 or γ∗ = 0) then ε =
0 in (52) and we recover the relative universal surface stability condition
3λ1 − λ2 > 0 for the remaining half-space [5].

Finally we express the limiting condition i(v̂) > 0 in the case where
v∗L =

√
α∗/ρ∗ < vL =

√
α/ρ. Then we have

v̂ = v∗L =

√
α∗

ρ∗
, η∗(v̂) = η∗L = 0, η(v̂) = ηL =

√
α− ρv∗2L

α
=

√
1− ρα∗

ρ∗α
,

(54)
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and the limiting condition i(v̂) > 0 is

ηL(ηL + 1)(ηL + 1 + γ∗/γ)− [ηL − λ−1
1 λ2(1− γ∗/γ)]2 < 0. (55)

In the case where vL =
√
α/ρ < v∗L =

√
α∗/ρ∗, the starred and unstarred

quantities above are interverted.
In his seminal paper, Stoneley [11] showed, by means of numerical exam-

ples, that the existence of ‘waves at the surface of separation of two solids’
depended heavily on the material properties of each half-space. We treat
two numerical examples below, choosing ρ, α, γ, ρ∗, α∗, γ∗, such that a
connection is made with his results.

Example 1: α∗/ρ∗ = α/ρ, with ρ = 8.2, ρ∗ = 3.2.
In this case, we have

ε =
γ∗

γ
=
α∗

α
=
ρ∗

ρ
=

3.2

8.2
= 0.39024. (56)

Important simplifications occur in this special case, as

η = η∗ =

√
1− ρv2

α
=

√
1− ρ∗v2

α∗
,

v̂ = vL = v∗L =

√
α

ρ
=

√
α∗

ρ∗
,

ηL = η∗L = 0. (57)

Hence, the limiting condition i(v̂) > 0 is automatically satisfied, because
ηL = 0 in (55). The only condition of existence of a Stoneley wave is the
neutral condition (52), that is

λ1 − 0.17986λ2 > 0. (58)

Finally, the secular equation (49) reduces further to

(1 + ε)2[η3 + η2 + (1 + 2λ−1
1 λ2)η − λ−2

1 λ2
2] + 4ε(η − λ−1

1 λ2)2 = 0, (59)

with ε given in (56). In particular, when the materials are undeformed in
the static state (λ1 = λ2 = λ3 = 1), the constraint of Bell coincides with
the constraint of incompressibility [2], and we recover Stoneley’s result [11]:
v = 0.99287v̂, for linear isotropic incompressible materials with material
parameters matching those of this example.

Figure 1(a) shows the intersection of the triangle λ1 +λ2 +λ3 = 3 of pos-
sible values for the stretch ratios in Bell materials with the neutral condition

13
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Figure 1: Simple hyperelastic Bell materials (α∗/ρ∗ = α/ρ, ρ = 8.2, ρ∗ =
3.2).

(58) for the combination of simple hyperelastic Bell materials in this example;
the visible part of the triangle represents the configurations where a Stoneley
wave exists, and where the interface is stable with respect to incremental
deformations.

Figure 1(b) illustrates the influence of the loads on the Stoneley wave
speed (thick curve) in the case of plane strain λ3 = 1. Then λ2 = 2 − λ1,
and the critical load obtained from (58) is (λ1)cr = 0.30488. The speed,
scaled with respect to the limiting wave speed v̂ =

√
α/ρ =

√
α∗/ρ∗, is the

coordinate on the vertical axis; the stretch ratio λ1 is the coordinate on the
horizontal axis. In tension (1 ≤ λ1 < 2) the Stoneley wave propagates at a
speed which is within less than 1% of the limiting speed; under increasing
compression (1 ≥ λ1 > (λ1)cr), the speed drops rapidly to zero. The Figure
also shows the scaled Rayleigh wave speed associated with either half-space
[5], computed by taking ε = 0 in (59) (thin curve, always below the Stoneley
wave speed curve as expected).

Example 2: α∗/ρ∗ = 3
2
α/ρ, with ρ = 2, ρ∗ = 1.

In this case, we have

ε =
γ∗

γ
=
α∗

α
=

3ρ∗

2ρ
=

3

4
. (60)

The limiting speed is

v̂ = vL =

√
α

ρ
< v∗L =

√
α∗

ρ∗
=

√
3α

2ρ
, (61)
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and the corresponding η’s are

ηL = 0, η∗L =

√
1− ρ∗v2

L

α∗
=

√
1− ρ∗α

ρα∗
=

1√
3
. (62)

The limiting condition (55) (with the starred and unstarred quantities
interverted) is now satisfied for λ1, λ2 such that

(

√
10 + 8

√
3−
√

3)λ1 − λ2 < 0, or λ1 − 0.31723λ2 < 0. (63)

Here we see that no interface wave may propagate when the materials are
undeformed in the static state (λ1 = λ2 = λ3 = 1), as noted by Stoneley
[11] for linear isotropic incompressible materials with material parameters
matching those of this example.

The other condition of existence of a Stoneley wave is the neutral condi-
tion (52), that is here

15λ1 − λ2 > 0. (64)

Figure 2(a) shows the intersection of the triangle λ1 + λ2 + λ3 = 3 of
possible values for the stretch ratios in Bell materials with the limiting con-
dition (63) and with the neutral condition (64) for the combination of simple
hyperelastic Bell materials in this example; the plane of the Figure coincides
with the plane of the triangle. We see that the range of possible stretch ratios
is far smaller here than in the previous example. For instance, in the case of
plane strain λ3 = 1, the stretch ratio λ1 must belong to the (compressive) in-
terval ]0.125, 0.48167[. Note that in this plane strain case, the Stoneley wave
exists in a range where Rayleigh waves do not exist (in [5] it is proved that
the domain of existence of Rayleigh waves in plane strain is: λ1 ∈]0.5, 2[.)

Figure 2(b) illustrates the influence of the loads on the Stoneley wave
speed (thick curve) in the case of plane strain λ3 = 1. The stretch ratio λ1

is the coordinate on the horizontal axis. The speed, scaled with respect to
the limiting wave speed v̂ =

√
α/ρ, is the coordinate on the vertical axis;

it is computed by solving numerically (49) for y = v/v̂ with η =
√

1− y2,

η∗ =
√

1− 2
3
y2, and γ∗ = 3

4
γ. Also represented are the Rayleigh wave

speeds (thin curves) associated with each half-space, computed by solving
numerically (49) for y = v/v̂ with η =

√
1− y2 and γ∗ = 0 (lower thin

curve, with y = 1 as an horizontal asymptote) or η∗ =
√

1− 2
3
y2 and γ = 0

(upper thin curve, with y =
√

3
2

as an horizontal asymptote).
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Figure 2: Simple hyperelastic Bell materials (α∗/ρ∗ = 3
2
α/ρ, ρ = 2, ρ∗ = 1).

4.2 Bell’s empirical model

For Bell’s empirical model materials [2], the strain energy functions of each
half-space are

WBEM = 2
3
ν0[2(3− λ1λ2 + λ2λ3 + λ3λ1)]

3
4 ,

W ∗
BEM = 2

3
ν∗0 [2(3− λ1λ2 + λ2λ3 + λ3λ1)]

3
4 , (65)

where ν0, ν∗0 are positive constants. For these models, the material response
functions ω0, ω2, ω∗0 and ω∗2 provided by (2) are

ω0 = ω∗0 = 0, ω2 = i−1
3 ν0[2(3− i2)]−

1
4 , ω∗2 = εω2, ε = ν∗0/ν0, (66)

with i2, i3, given by (5)3,4. Then α, β, γ, α∗, β∗, γ∗ are computed as:

α =
λ3

1

λ1 + λ2

ω2 =
λ2

1

λ2
2

γ, β =
λ2

1

2

[
2− (λ1 − λ2)2

4(3− i2)

]
ω2 −

λ2
1λ2

λ1 + λ2

ω2, (67)

α∗ = εα, β∗ = εβ, γ∗ = εγ. (68)

Although the strain energy function of a “Bell’s empirical model” material
depends only upon one material constant (ν0), as opposed to two (C1 and
C2) for a “simple hyperelastic Bell” material, the full analysis of the Stoneley
wave existence is too cumbersome and lengthy to be followed here. Indeed,
we saw in §3.2 that the definition of the limiting speed depends on the sign
of 2β − α which, for these materials, is equal to

2β − α = ω2λ
2
1[3λ3

1 − (12− 5λ2)λ1(λ1 + λ2)− λ3
2]/[4(3− i2)(λ1 + λ2)]. (69)
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The sign of this quantity (and hence the definition of v̂) depends heavily
on the values of the stretches λ1 and λ2 (For instance in the equibiaxial
case λ1 = λ3, we have 2β − α = ω2λ

2
1(7λ1 − 9)/[4(3 − λ1)], which changes

sign at λ1 = 9
7
.) Consequently, the limiting condition is difficult to obtain

in general. Moreover, the connection with Stoneley’s results [11] cannot
be made because the parameters ω2, ω∗2 are singular when the material is
isotropic (then i2 = 3), where a different approach must be adopted [2].

Nevertheless, the neutral equation, which is independent of v̂ and takes
place away from isotropy, can be obtained and compared with Biot’s “stabil-
ity equation” for rubber-like incompressible materials [8]. We deduce it by
specializing (42) to the values (67) of α, β, γ, α∗, β∗, γ∗, as

4λ1

λ1 + λ2

− (λ1 − λ2)2

4(3− i2)
−
[1− ε

1 + ε

]2 (λ1 − λ2)2

λ1(λ1 + λ2)
= 0. (70)

In the case of plane strain λ3 = 1, the equation reduces to

(2λ1 − 1)λ1 − 2
[1− ε

1 + ε

]2

(λ1 − 1)2 = 0. (71)

Note that when ε = 0 in (70), only the lower half-space subsists and we re-
cover the surface bifurcation criterion for Bell’s empirical materials in com-
pression [12],

3− (λ1 − λ2)2

4(3− i2)
− λ−1

1 λ2 = 0. (72)

Figure 3 (where the plane of the Figure coincides with the plane of the
triangle) shows the intersection between the triangle of possible stretch ratios
for Bell materials and the neutral curve in the cases where ε = 0.0 [5] (thickest
curve), ε = 0.2, ε = 0.4, ε = 0.6 (thinnest curve), and ε = 0.8 (dotted curve).

4.3 Comparison with neo-Hookean incompressible ma-
terials

Biot [8] investigated the surface instability of incompressible materials under
finite compression, and obtained the neutral condition, which he called the
“characteristic equation for interfacial instability.” He then discussed the
equation in the particular case of a neo-Hookean strain energy function,

WnH = µ0(λ2
1 + λ2

2 + λ2
3 − 3), (73)

and expressed it, in the case of plane strain λ3 = 1, as:

λ2
1

[1 + λ2
1

1− λ2
1

]2

=
[1− ε

1 + ε

]2

, ε =
µ0

µ∗0
. (74)
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Figure 3: Neutral curves for ‘Bell empirical model’ materials.

He did not mention that the result was also valid for the neo-Hookean strain
energy function,

WMR = D1(λ2
1 + λ2

2 + λ2
3 − 3) +D2(λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 − 3), (75)

by replacing the rigidity ratio ε with

ε =
D∗1 −D∗2
D1 −D2

. (76)

Table 1 shows the numerical values of the critical stretches for the classes
of Bell’s empirical model (2nd column), of neo-Hookean and Mooney-Rivlin
incompressible materials (3rd column), and of simple hyperelastic Bell ma-
terials (4th column) in the case of plane strain, for different values of the
rigidity ratio ε. It appears that rubber can be compressed more than Bell’s
empirical model but less than simple hyperelastic Bell materials, before the
neutral equation is satisfied.

Table 1: Critical stretch ratios for interface instability (λ3 = 1)

ε Bell empirical rubber simple Bell

0.0 0.6667 0.5437 0.5000
0.2 0.6105 0.4457 0.4000
0.4 0.5625 0.3393 0.3000
0.6 0.5266 0.2257 0.2000
0.8 0.5060 0.1085 0.1000
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Appendix

Strong ellipticity conditions for the incremental equations of motion in Bell
materials.

For an unconstrained hyperelastic material maintained in a static state
of pure homogeneous deformation, the incremental equations of motion are

Ajilkuk,jl = ρui,tt, (1)

where A is the fourth-order instantaneous linear elasticity tensor. The
nonzero components of A are:

Aiijj = λiλjWij,

Aijij = (λiWi − λjWj)λ
2
i /(λ

2
i − λ2

j), (2)

Aijji = Aijij − λiWi,

(no sum) when the underlying deformation has distinct principal stretch
ratios λ1, λ2, λ3. The assumption of strong ellipticity for the equations of
motion (1) imposes that

Ajilkmjnimlnk > 0, for all nonzero m,n. (3)

When the material is incompressible, det V = 1, where V is the left
stretch tensor, and an arbitrary pressure P is introduced [13]. Then the
equations of motion are strongly elliptic for all values of P when the inequal-
ities (3) hold subject to

m · n = 0. (4)

.
When the material is subject to the Bell constraint tr V = 3, an arbitrary

scalar p is introduced [2]. Then the equations of motion are strongly elliptic
for all values of p when the inequalities (3) hold subject to

m ·Vn = 0. (5)

The unit vectors

m = λ
−1

2
1 cos θi + λ

−1
2

2 sin θj, n = −λ
−1

2
1 sin θi + λ

−1
2

2 cos θj, 0 ≤ θ ≤ 2π,
(6)

are two such vectors, and the strong ellipticity condition says that

A cos4 θ + 2B sin2 θ cos2 θ + C sin4 θ > 0, (7)
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for all θ, where A, B, C, are given by

A = λ−1
1 λ−1

2 A1212, C = λ−1
1 λ−1

2 A2121,

B = (λ−2
1 A1111 + λ−2

2 A2222)/2− λ−1
1 λ−1

2 (A1122 +A1221). (8)

Choosing θ = arctan(A/C)−
1
4 , we arrive at B+

√
AC > 0, which is equivalent

to
β + α > 0, (9)

where

α = (W1 −W2)λ2
1/[λ2λ3(λ2

1 − λ2
2)],

β = (W11 +W22 − 2W12)λ1/(2λ2λ3)− αλ2/λ1. (10)
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