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Abstract

The secular equation for surface acoustic waves propagating on an

orthotropic incompressible half-space is derived in a direct manner,

using the method of first integrals.
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I INTRODUCTION

The problem of elastic waves propagating on the free surface of a semi-infinite
elastic body is a well-covered research topic, initiated by Rayleigh [1] in his
study of seismic waves within the context of classical linear elasticity. For
anisotropic crystals, Barnett and Lothe [2] have drawn on the works of Stroh
[3] to build a complete theory of surface waves based on an analogy between
surface wave propagation and straight line dislocation motion. Extensive
coverage and surveys of that topic can be found, for instance, in a textbook
by Ting [4].

Recently, there has been some interest [5, 6, 7] in the study of wave
propagation in anisotropic materials subjected to the constraint of incom-

pressibility. The purpose of the present paper is to establish the secular
equation for surface (Rayleigh) waves propagating on the free plane surface
of an incompressible orthotropic half-space. A similar problem was solved by
Chadwick [8] within the context of finite elasticity: he considered the propa-
gation of small-amplitude surface waves in a finitely deformed incompressible
material; the deformation was static and purely homogeneous, and the strain
energy function for the incompressible nonlinearly elastic material was such
that the deformed body presented orthotropic anisotropy. Following Nair
and Sotiropoulos [7], the present article focuses on an orthotropic linearly
elastic material for which the usual stress-strain relations are modified to
take the incompressibility constraint into account, by adding an isotropic
pressure term. These authors have argued that “the assumptions of incom-
pressibility and orthotropy are applicable to several materials such as, for ex-
ample, polymer Kratons, thermoplastic elastomers, rubber composites when
low frequency waves are considered to justify the assumption of material
homogeneity, etc.” Other studies use these assumptions for the modeling
of laminated composites made alternatively with reinforcing (filler) layers
and matrix (binder) layers [9], or with stiff fibers and incompressible epoxy
matrices [10].

The primary purpose of this paper is to show that the method of first
integrals used by Mozhaev [11] to derive, in a rapid and elegant manner, the
secular equation for surface waves in (compressible) orthotropic materials,
can also be employed in the case of incompressible orthotropic materials. This
can be achieved by applying the method of first integrals to a system of second
order ordinary differential equations for the components of the tractions on
surfaces parallel to the free surface, rather than for the components of the
mechanical displacement (as in Ref. [11]). In the latter case, the pressure
appears in the system of differential equations, whereas in the former case,
it does not, and hence the number of unknowns is reduced from four (the
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pressure and the components of the mechanical displacement) to three (the
components of the traction on surfaces parallel to the free surface). Also, the
mechanical boundary conditions are easily written, because they correspond
to the nullity of these traction components on the free surface of the half-
space, and at infinite distance from this surface. A third advantage of this
approach is that the assumption of plane strain [7] is not required a priori.

The paper is organized as follows. In Section II, the basic equations gov-
erning the propagation of elastic waves in an orthotropic incompressible ma-
terial are recalled. In Section III, these equations are written for the case of
surface acoustic waves. Then a system of six first order differential equations
for the displacement and the traction components is derived. Eventually
a system of three second order differential equations is found for the trac-
tion components. One of these three equations is trivially solved when the
boundary conditions are applied. In Section IV, the method of first integrals
[12, 11] is applied to the two remaining equations, and the secular equation
for surface waves in orthotropic incompressible materials is quickly derived.
As a check, the isotropic case is treated and Rayleigh’s original equation [1]
is recovered. Also, the correspondence between this paper’s result and Chad-
wick’s result [8] is shown. Finally in Section V, possible developments for
this work are presented.

II PRELIMINARIES

First, the governing equations for an incompressible orthotropic elastic ma-
terial are recalled. The material axes of the body are denoted by x1, x2, and
x3. The equations may be derived from the classical linearized equations
of anisotropic elasticity [13] by adding an isotropic pressure term p1 (say)
to the nominal stress σ (say). Hence, for orthotropic incompressible elastic
bodies [7],

σ11 = −p+ C11ǫ11 + C12ǫ22 + C13ǫ33,
σ22 = −p+ C12ǫ11 + C22ǫ22 + C23ǫ33,
σ33 = −p+ C13ǫ11 + C23ǫ22 + C33ǫ33,
σ32 = 2C44ǫ32, σ13 = 2C55ǫ31, σ12 = 2C66ǫ12,

(1)

where ǫ’s denote the strain components, and C’s the elastic constants. The
strain components are related to the displacement components u1, u2, u3

through
ǫij = (ui,j + uj,i)/2 (i, j = 1, 2, 3). (2)

Finally, the incompressibility constraint reads

u1,1 + u2,2 + u3,3 = 0, (3)
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and the equations of motion, in the absence of body forces, are written as

σij,j = ρui,tt (i = 1, 2, 3), (4)

where ρ is the mass density of the material, and the comma denotes dif-
ferentiation. These are the equations established by Nair and Sotiropoulos
[7]. These authors also note that for plane strain deformations, the strain-
energy function density is positive definite when the following inequalities
are satisfied,

C66 ≥ 0, C11 + C22 − 2C12 ≥ 0. (5)

III SURFACE WAVES

Here the equations of motion for a surface wave in a semi-infinite body made
of an orthotropic incompressible elastic material are established. Attention
is restricted to propagating inhomogeneous surface waves which are subsonic
with respect to homogeneous body waves. The modelisation of the surface
wave follows that of Mozhaev [11]: the plane wave propagates with speed v,
wave number k, and corresponding displacement and pressure of the form

[uj(x1, x2, x3), p(x1, x2, x3)] = [Uj(x2), kP (x2)]e
ik(x1−vt) (j = 1, 2, 3), (6)

where the U ’s and P are unknowns functions of x2 alone. For these waves,
the planes of constant phase are orthogonal to the x1-axis, and the planes of
constant amplitude are orthogonal to the x2-axis. The stress-strain relations
(1) reduce to

t11 = −P + iC11U1 + C12U
′

2,
t22 = −P + iC12U1 + C22U

′

2,
t33 = −P + iC13U1 + C23U

′

2,
t32 = C44U

′

3, t13 = iC55U3, t12 = C66(U
′

1 + iU2),

(7)

where the prime denotes differentiation with respect to kx2, and the t’s are
defined by

σij(x1, x2, x3) = ktij(x2)e
ik(x1−vt) (i, j = 1, 2, 3). (8)

The surface x2 = 0 is assumed to be free of tractions, and the mechanical
displacement and pressure are assumed to be vanishing as x2 tends to infinity.
These conditions lead to the following boundary conditions,

ti2(0) = 0, Ui(∞) = 0 (i = 1, 2, 3), P (∞) = 0. (9)

4



Finally, the equations of motion (4) and the incompressibility constraint
(3) reduce to

it11 + t′12 = −ρv2U1, it12 + t′22 = −ρv2U2, it13 + t′32 = −ρv2U3,
iU1 + U ′

2 = 0.
(10)

Note that a classical approach would be to substitute in this last equa-
tions, the expressions obtained earlier for the stress tensor components, which
would lead to a system of four second order differential equations for the un-
known functions U1, U2, U3, P . Instead, the Stroh formalism is now used to
derive a system of six first order differential equations for the components of
the displacement and the tractions on the surface x2 =const. Thus, intro-
ducing the notation

ti = ti2 (i = 1, 2, 3), (11)

and using Eqs. (7)-(10), the system is found as

U ′

1 = −iU2 + (1/C66)t1, U ′

2 = −iU1, U ′

3 = (1/C44)t3,
t′1 = (C11 + C22 − 2C12 − ρv2)U1 − it2, t

′

2 = −ρv2U2 − it1, t
′

3 = (C55 − ρv2)U3.
(12)

Now a system of three second order differential equations for t1, t2, t3 is
derived as follows. First, differentiation of (12)4−6 yields relations between
the t′′i and the u′

i, t
′

i, or equivalently, using (12)1−3 between the t′′i and the
ui, t

′

i, ti. Then, substitution for the ui by their expression in terms of the t′i, ti
obtained from (12)4−6 is performed. Eventually it is found that the t′′i , t

′

i, ti
(i = 1, 2, 3) must satisfy the following equations,

(ρv2)t′′1 − i(C11 + C22 − 2C12 − 2ρv2)t′2
+(C11 + C22 − 2C12 − ρv2)(1− ρv2/C66)t1 = 0,

(C11 + C22 − 2C12 − ρv2)t′′2 + i(C11 + C22 − 2C12 − 2ρv2)t′1 + ρv2t2 = 0,
C44t

′′

3 − (C55 − ρv2)t3 = 0,
(13)

and are subject to the following boundary conditions,

ti(0) = ti(∞) = 0 (i = 1, 2, 3). (14)

The third differential equation in the system (13) is decoupled from the
two others, and can be solved exactly. Taking the boundary conditions (14)3
into account, it is seen that

t3(x2) = 0, for all x2, (15)

and hence the motion is a pure mode [14] for the tractions on the surface
x2 = const. Now the coupled system of the two remaining equations may be
solved.
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IV SECULAR EQUATION

For surface waves in compressible orthotropic materials, Mozhaev [11] ap-
plied the method of first integrals to a system of two differential equations
for the two nonzero components of the mechanical displacement. Here a sim-
ilar procedure for the two nonzero components t1, t2 of the tractions on the
surface x2 =const. is followed, and the secular equation for surface waves in
incompressible orthotropic materials is obtained in a direct manner.

The differential equations (13)1,2 for t1, t2 are expressed as

ξt′′1 + i(δ − 2ξ)t′2 − (δ − ξ)(1− ξ)t1 = 0,
(δ − ξ)t′′2 − i(δ − 2ξ)t′1 − ξt2 = 0,

(16)

where ξ and δ are defined by

ξ = (ρv2)/C66, δ = (C11 + C22 − 2C12)/C66. (17)

The speed given by ξ = 1 (that is, ρv2 = C66) corresponds to the speed of
a body (homogeneous) wave propagating in the x1-direction, and gives there-
fore an upper bound for the speed of subsonic surface waves. Throughout
the rest of paper, it is assumed that the surface wave travels with a speed
distinct from that given by ξ = δ (that is, ρv2 6= (C11 + C22 − 2C12)/C66).

Now multiplication of (16)1 by t′1 and (16)2 by t′2, and integration between
x2 = 0 and x2 = ∞, yields, using the boundary conditions (14),

ξt′1(0)
2−2i(δ−2ξ)

∫
t′1t

′

2 = 0, and (δ−ξ)t′2(0)
2+2i(δ−2ξ)

∫
t′1t

′

2 = 0, (18)

so that
ξt′1(0)

2 + (δ − ξ)t′2(0)
2 = 0. (19)

Similarly, multiplication of (16)1 by ξt′1+ i(δ−2ξ)t2 and (16)2 by (δ− ξ)t′2−
i(δ − 2ξ)t1, and integration between x2 = 0 and x2 = ∞, yields

ξ2t′1(0)
2 + 2i(δ − 2ξ)(δ − ξ)(1− ξ)

∫
t1t2 = 0,

and (δ − ξ)2t′2(0)
2 − 2i(δ − 2ξ)ξ

∫
t1t2 = 0, (20)

so that
ξ3t′1(0)

2 + (δ − ξ)3(1− ξ)t′2(0)
2 = 0. (21)

Eqs.(19) and (21) form a trivial system of two equations for the unknowns
t′1(0)

2 and t′2(0)
2, whose determinant must be zero:

ξ(δ − ξ)[(δ − ξ)2(1− ξ)− ξ2] = 0. (22)
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It follows that the secular equation is given by

(δ−ξ)2(1−ξ) = ξ2, i.e. (C11+C22−2C12−ρv2)2(C66−ρv2) = C66(ρv
2)2.
(23)

This equation constitutes the main result of the paper: the direct and explicit
derivation of the secular equation for subsonic surface waves propagating
in a semi-infinite body made of orthotropic incompressible linearly elastic
material. It is worth mentioning that this result can be used for other types of
anisotropy: Royer and Dieulesaint [15] have indeed proved that with respect
to surface waves, results established for the orthotropic case may be applied
to 16 different configurations, including cubic, tetragonal, and hexagonal
anisotropy.

In order to justify the existence of a real wave speed, the secular equation
(23) is expressed as

f(ξ) = 0, where f(ξ) = ξ2 − (δ − ξ)2(1− ξ). (24)

As noted earlier, for traveling subsonic surface waves, this secular equation
is subject to

0 ≤ ξ ≤ 1. (25)

Within this range, it is easy to prove that f is a monotonic increasing function
of ξ, and that

f(0) = −δ2, f(1) = 1. (26)

It follows that the secular equation has a unique positive root in the interval
(25).

For consistency purposes, the main result established in this paper is
related to previous studies. First, attention is given to the isotropic limit,
when C11 = C22 = λ+ 2µ, C12 = λ, C66 = µ, where λ and µ are the classical
Lamé moduli of elasticity. In this case, the secular equation, written for
ξ = ρv2/µ, reduces to

(4− ξ)2(1− ξ) = ξ2, or ξ3 − 8ξ2 + 24ξ − 16 = 0, (27)

which is the well-known equation derived by Lord Rayleigh [1], by considering
the incompressible limit (λ = ∞) for an isotropic linear elastic material.

Next, another previous result is put into perspective. Chadwick [8] has
adapted the Stroh formalism to the theory of prestressed incompressible non-
linearly elastic materials. Considering a material whose stored energy func-
tion is such that the body will present orthorhombic anisotropy once it has
been subjected to a large pure homogeneous deformation, he obtained the
secular equation for surface waves propagating in a principal direction as

[2(B + C − σ)− ρv2][C(A− ρv2)]1/2 = (C − σ)2 − C(A− ρv2), (28)
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where A,B,C are constants defined in terms of the strain energy, initial
pressure, and initial stretch ratios, and σ is the normal stress applied on
the surface x2 = 0. When this surface is free of tractions, σ = 0 and after
squaring, Eq. (28) reduces to

(2B + C −A− η2)2(C − η2) = C(η2)2, (29)

where η2 = C − A + ρv2. This equation may be formally compared to
Eq. (23)2, where η

2, C, and 2B−A play the role of ρv2, C66, and C11+C22−

C66 − 2C12, respectively.
Finally, Nair and Sotiropoulos [6] have obtained an implicit form of the

secular equation for surface waves propagating in a monoclinic incompress-
ible material. By taking the elastic coefficients C16 and C26 to be zero in
their analysis, the reader may check that the explicit secular equation (23)
is recovered.

V DISCUSSION

The secular equation for surface waves on an incompressible orthotropic half-
space was derived directly. Hence it has been shown that a powerful method
presented by Mozhaev [11], but which seems to have remained unnoticed,
can be adapted to take the constraint of incompressibility into account.

For monoclinic or triclinic materials, the method of first integrals cannot
be applied in the case of a three dimensional displacement. As demonstrated
by Mozhaev [11], it leads to a trivial system of 18 equations for 18 unknowns,
but the rank of the system turns out to be 17 at most, a fact which appears
to have been overlooked by the author.

However, for plane strain deformations, some further results may be es-
tablished. For instance, Sotiropoulos and Nair [5] have studied the reflection
of plane elastic waves from a free surface in incompressible monoclinic mate-
rials with plane of symmetry at x3 = 0, and Nair and Sotiropoulos [6] have
considered interfacial waves with an interlayer in the same type of materials.
In particular, they derived the secular equation for surface (Rayleigh) waves
in an implicit form. The first integrals method makes it possible to write
the secular equation in explicit form, as is proved in a forthcoming article.
Possibly, interfacial (Stoneley) waves may also be investigated.
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