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Abstract

We apply our work on Web service discovery with ini-
tially incomplete information to the problem of service com-
position. Rich semantic descriptions of Goals and Web ser-
vices allow the unambiguous specification of constraints on
what services are required and offered respectively. How-
ever, the data provided in service descriptions may be in-
complete. We describe how missing instance data may be
fetched dynamically and used for richer service discovery.
We show how the resultant knowledge base can be used for
simple compositions of services having mutual constraints.

1 Introduction and Definitions

In this paper we describe how we extend our work on
service discovery [11], with incomplete information in ser-
vice descriptions, in the direction of constraint-based ser-
vice composition. For example, we take a client wishing to
make an order for a laptop and a docking station. Each type
of laptop may only work with specific docking stations. The
constraints on combinations of laptops and docking stations
may either be declared explicitly or may only be available
from a service provider at runtime. In our approach, we
declare a generic relation between laptops and docking sta-
tions in a domain ontology and allow individual service on-
tologies to provide their own logical definition for the that
top-level relation e.g. a particular ontology used for IBM
products defines an axiom for the relation, specifying that
IBM laptops only work with IBM docking station.

Our system architecture is goal-oriented. At run-time,
we take a client goal and attempt to find a matching service.
Ontologies used to describe the goal and the service, includ-
ing axioms defining constraints, are merged into a knowl-
edge base. Conditions specified in the capability for the
goal provide the basis for a query on this knowledge base.
If no match is found, we apply simple goal decomposition
and then iteratively repeat this procedure for each new goal.
Two varieties of constraint are taken into account. The first

are the constraints that are included in the query itself e.g.
restrictions on price or delivery locations. The second are
those defined between multiple products from (potentially)
multiple services e.g. IBM laptops are only compatible with
IBM docking stations. We use WSMO [8] as our conceptual
model and adopt the definitions of information, functional
and behaviour semantics provided in WSMO-lite [10].

Information semantics is defined as a structure:

O = (C,R,E, I) (1)

with a set of classes, C, a set of relations R, a set of in-
stances of C and R, E and a set of axioms, I .

Functional Semantics is defined as:

F = (Σ, φpre , φeff ), (2)

where Σ ⊆ ({x} ∪ C ∪ R ∪ E) is the signature of sym-
bols, i.e. variable names {x} or identifiers of elements from
C,R, E of some information semantics O; φpre is a precon-
dition which must hold in a state before the service can be
invoked and φeff is the effect, a condition which must hold
in a state after the successful invocation.

Behavioral Semantics is a description of the public and pri-
vate behavior of a service. We only use the public behavior
(called choreography in WSMO). We define the choreogra-
phy X of the service using a state machine as

X = (Σ, L), (3)

where Σ ⊆ ({x} ∪ C ∪ R ∪ E) is the signature of sym-
bols, i.e. variable names {x} or identifiers of elements
from C,R, E of some information semantics O; and L is
a set of rules. Further, we distinguish dynamic symbols de-
noted as ΣI (input), and ΣO (output) and static symbols
denoted as ΣS . Each rule r ∈ L defines a state transi-
tion r : rcond → reff where cond is defined as an expres-
sion in logic which must hold in a state before the transition
is executed; eff is defined as an expression in logic describ-
ing how the state changes when the transition is executed.
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In addition, we denote the description of the Web service
and the goal as W and G respectively. For each D ∈W∪G,
we denote the information semantics as DO, the capability
as DF , and choreography as DX .

2 Composition with Data Fetching

Our approach to service composition has service discov-
ery, including fetching information at run-time, at its core.
There are two extensions (i) iterative goal decomposition
(if necessary) and (ii) maintaining the knowledge base used
of services matching any sub-goals until all sub-goals have
been matched. Goal decomposition is iterative because,
each time a goal can not be matched, an attempt is made
to break it up into sub-goals. This continues until a match
is found or no further decomposition is possible. Step (ii)
means that constraints defined for services that are found
to match one sub-goal are maintained when the discovery
process is applied to any subsequent sub-goals.

The algorithm wraps around discovery. Its purpose is
to maintain a stack of matching services and a knowledge
base, called Br, that is built up with the ontologies used by
each of the respective matching services.

Input:
• The client’s goal, G.

• A set of candidate Web services, Wc.

Output:
• A stack of services, Wm, matching the client’s goal.

Uses:
• A stack, Gu, that holds any goals that have to be

matched – initialized with the client’s goal.

• A variable, m, that holds the result of each discovery
call. It can have the values, match or nomatch.

• A knowledge base, Br, that holds the ontologies and
corresponding instance data for each Web service that
matches the goal, G, or any subgoal.

• The information semantics of a specific service, wi(o).

• A discovery function, discover() (see algorithm 2).

• A decomposition function, decompose().

• A set of decomposed goals, Gd.

The algorithm pops unmatched goals from Gu. For each
goal, a discovery function is called iteratively for each can-
didate Web service. If a match is found, the service is
added to Wm and its supporting ontologies and instances

Algorithm 1 High Level Algorithm for Composition
1: Wm.init()
2: Br ← ∅
3: m← nomatch
4: while not Gu.isempty() do
5: gi ← Gu.pop()
6: while m 6= match and wi ←Wc.getnext() do
7: m← discover(gi, wi, Br)
8: if m = match then
9: Br ← Br ∪ wi(o)

10: Wm.push(wi)
11: else
12: Gd ← decompose(gi)
13: if Gd = ∅ then return error
14: for all gj ∈ Gd do
15: Gu.push(gj)
16: end for
17: end if
18: end while
19: end while

are added to the knowledge base, Br. If the result of dis-
covery is nomatch, then a decomposition function is called
to break the goal into subgoals, which are added to Gu.
The algorithm continues until the Gu stack is empty or an
unmatched goal can not be decomposed. The knowledge
base Br is important because it maintains the ontologies,
instance values and constraints for each of the services al-
ready discovered as a complete, or partial match, to the
client’s goal. This, along with a goal and Web service, pro-
vide the input for each call of the discovery function. We
assume a goal decomposition function is available, that for
example, breaks up a goal based on conjuncted clauses in
its postcondition.

3 Discovery

In [11], we defined two phases for discovery: Web Ser-
vice Discovery and Service Discovery. Web Service Dis-
covery operates on the capability descriptions of the goal
GF and web service WF . For this paper, we only use the
second phase where instance data, constraining the service
that may only be available at runtime, is taken into account.
For completeness, we include the data fetch algorithm of
[11]. It is modified to take an additional input of a knowl-
edge base containing knowledge previously retrieved for the
composition. The matching function for service discovery
is defined as:

s← matching(G,W,Bgw), (4)

where G andW is a goal and a service description respec-
tively and Bgw is a common knowledge base for the goal
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and the service. The knowledge base contains data which
must directly (through Web service and goal ontologies, GO

and WO respectively) or indirectly (through data fetching)
be available so that the matching function can be evaluated.
The result s of this function can be: (1) match when the
match was found (in this case all required data in Bgw is
available), (2) nomatch when the match was not found (in
this case all required data in Bgw is available), or (3) nodata
when some required data in Bgw is not available and thus
the matching function cannot be evaluated.

We further assume that all required data for the goal is
directly available in the description GO. The data fetching
step is then performed for the service when the matching
function cannot be evaluated (the result of this function is
nodata). We then define the knowledge base as:

Bgw = GO ∪WO ∪ {y1, y2, ..., ym}, (5)

where {yi} is all additional data that needs to be fetched
from the service in order to evaluate the matching function.

Further, we denoteWX as the data-fetch interface of the
serviceW with output symbols ΣO and input symbols ΣI .
The matching function can be then evaluated if data {yi}
can be fetched from the service through the data fetch in-
terface if input data ΣI is either initially available in the
knowledge base Bgw (data directly available from the goal
or web service ontologies) or the input data becomes avail-
able during the processing of the interface.

In algorithm 2, the matching function is integrated with
the data fetching which provides instance data for the con-
cepts referred from the goal effect φeff . The algorithm oper-
ates on inputs, produces outputs and uses internal structures
as follows:

Input:
• Web service W for which we denote WO as the web

service ontology with initial instance data andWX as
data-fetch interface of the Web service with rule base
L. In addition, for each rule r ∈ L we specify the data
of the rule effect reff as r.data and the action r.action
with values add, update, delete meaning that if the
rule is executed the action performs the effect of the
rule, i.e. changing the state by adding, updating or
deleting data in the memory (knowledge base).

• Goal description G for which we denote GO as the
goal ontology with initial instance data and Geff as the
goal capability effect. For W and G it must hold that
they match at abstract level (Web service discovery).

• A knowledge base, Br, which contains information on
services already discovered as part of a composition.

Output:

• Boolean variable s indicating the result of the match-
ing function between W and G, i.e. match or
nomatch.

Uses:
• Processing memory M containing data fetched during

execution of rules of the data fetching interface.

• Knowledge base Bgw which contains data for process-
ing of the matching function.

• Boolean variable modified indicating whether the
knowledge base has been modified or not during the
processing.

Algorithm 2 Minimized Data Fetching for Discovery
1: Bgw ← GO ∪WO ∪Br

2: M ← Bgw

3: repeat
4: modified← false
5: s← matching(G, W, Bgw)
6: if s = nodata then
7: while get r from L: holds(rcond ,M) and

r.data ∈ Geff and not modified do
8: if r.action = add then
9: add(r.data,M)

10: add(r.data,Bgw)
11: modified← true
12: end if
13: if r.action = remove then
14: remove(r.data,M)
15: end if
16: if r.action = update then
17: update(r.data,M)
18: update(r.data,Bgw)
19: modified← true
20: end if
21: end while
22: end if
23: until s 6= nodata or not modified

The algorithm tries to fetch data from the service by
processing the service’s data-fetch interface. For each rule
present, which can be executed, it checks whether its result
will provide any information referenced by Geff . For ex-
ample Geff may refer to the concept price of a given prod-
uct which is unavailable in the Bgw, however a rule exists
which can result in an instance of the price concept being
obtained. Once the data fetching operations are executed
and new facts are added, updated or removed, a modified
flag is set to true and Bgw can be matched again. This cycle
ends when no data can be fetched from the interface or the
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matching function can be evaluated (the result is match or
nomatch).

The algorithm assumes that the rules of the data-fetch
interface can be executed independently. In particular this
means that if there is a symbol referencing a concept in the
knowledge base and there is a rule which can fetch an in-
stance for that concept, there will be no other rule which
needs to be executed first.

The algorithm uses independent memory (memory M )
from the knowledge base (Bgw) for processing the data-
fetch interface. This allows that already-obtained data can-
not be removed from the knowledge base while, at the same
time, correct processing of the interface is ensured. The
memory M is used not only for data but also for control of
interface processing (in general, the content of the memory
does not need to always reflect the content of the knowledge
base).

4 Implementation and Evaluation

We extended our implementation for service discovery,
including runtime data fetching, to tackle the problems of
simple composition presented by the Challenge. The com-
position is described as simple because it assumes that the
order in which the services are invoked is unimportant. The
criteria for the tests are that the constraints on individual
services and those defined in the tasks (represented as goals)
are met and that the constraints between particular services
are also satisfied.

We define a common ontology to define shared con-
cepts used in the descriptions of goals and services, such as
Location, Notebook, DockingStation, etc. In addition,
we use this ontology to specify named relations. Specific
ontologies for goals and services declare axioms that define
the relations to represent their conditions. As before for dis-
covery, we define a set of relations in the common ontology
which represent the axioms that a service may need to de-
fine. Axioms provide the definitions for these relations with
specific conditions. For example, listing 1 shows the simple
declaration for the isCompatible relation in the common
ontology and how it can be defined in the service ontology.� �
1 /∗ isCompatible relation in the domain ontology ∗/
2

3 relation do#isCompatible (ofType do#Notebook, ofType do#
DockingStation)

4

5 /∗ implementation of the isCompatible relation in the service ontology ∗/
6

7 axiom isCompatibleDef definedBy
8 ?notebook[do#GTIN hasValue ?gtinX]
9 memberOf do#Notebook and

10 ?dockingstation[do#supportsGTIN hasValue ?gtinY]
11 memberOf do#DockingStation
12 and ?gtinX = ?gtinY) implies
13 do#isCompatible(?notebook, ?dockingstation).� �

Listing 1. isCompatible relation

The variables ?gtinX and ?gtinY hold Global Trade Iden-
tication Numbers (GTIN)1 for products, a standard specifi-
cation used by the Challenge. The axiom isCompatible is
true if the notebook sold by the service provider can be used
with a discovered DockingStation. This axiom can be used
in the goal query to check compatibility of the two compo-
nents.

We create WSMO semantic descriptions of the services
provided by the Challenge. Service descriptions include
data-fetch interfaces, for the dynamic properties services
may have, that are only available on request at run-time.
The capability of service descriptions may use their own
logical definition of the isComaptible relation to specify
constraints of the service (e.g. IBM laptops only fit IBM
docking stations). For each of the tasks specified by this
part of Challenge, we specified a WSMO goal. An exam-
ple for the correlated composition goal is shown below in
listing 2. This specifies that we are looking for a correlated
notebook and docking station with specified constraints on
memory and hard-drive capacity.� �
1 Goal GoalPurchaseHardware
2 ...
3 capability GoalPurchaseHardwareCapability
4 postcondition
5 definedBy
6 (?x[po#price hasValue ?priceX, po#GTIN hasValue ?gtinX,
7 po#hddGB hasValue ?hddGBX, po#memoryMB hasValue ?

memMBX] memberOf po#Notebook
8 and ?memMBX >= 512
9 and ?hddGBX >= 40 and

10 ?y[po#price hasValue ?priceY, po#supportsGTIN hasValue ?
gtinY] memberOf po#DockingStation

11 and isCompatible(?gtinX, ?gtinY)
12 and ?price = (?priceX + ?priceY)
13 ).
14 ...� �

Listing 2. User Goal in WSMO

For each goal of the service requester (may be multiple
if decomposition invoked) discovery is carried out. For the
first goal only the ontologies of that goal, and each candi-
date service in turn, form the knowledge base for the dis-
covery. In our example, we look for a service selling IBM
laptops first. Once a matching service is found, its ontolo-
gies are stored (including the constraint that it only operates
with IBM docking stations), and the process moves on to the
next goal (search for docking stations). Now the knowledge
base used for discovery is constructed from the ontologies
of the goal and each Web service in turn and the ontologies
of the Web service discovered earlier. During this discovery
step, Web services that match the goal will only be consid-
ered if they do not break the constraints specified by ser-
vices discovered beforehand e.g. a HP docking station will
not be a successful match.

From a functional perspective, the solution provided was
able to successfully complete all composition tasks speci-

1http://www.gtin.info/
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fied by the SWS Challenge. The focus was on being able to
handle both constraints on the services themselves and con-
straints on the goals that represented client requests. Ad-
ditionally, it was possible to handle correlation constraints
specified between services in a simple composition.

5 Related Work

Sheth identifies four types of semantics (data, functional,
non-functional and execution) for Web services in [9] and
there is ongoing discussion on this topic. We use WSMO-
lite as it does not contradict this discussion and provides a
defined formal semantics.

The service discovery aspect of this paper focuses on the
use of instance data that may be fetched from service inter-
faces at run-time. This is in contrast to the static-description
only approach of many semantic and non-semantic ser-
vice discovery initiatives. For example in [7], subsumption
reasoning is used over the concepts representing the post-
conditions and effects of service requests and descriptions.
Keyword-based discovery using ebXML and UDDI is de-
scribed in [3]. Additionally in the course of our work in
the Challenge we have detailed a comparison between our
approach and that submitted by DEI Politecnico di Milano,
and CEFRIEL Milano in [12].

For the purposes of the Challenge, we provide a solu-
tion for constrained service composition with the assump-
tion that invocation order was unimportant. For business
processes, this is usually not the case and there is a wealth
of research in AI planning, workflow and business pro-
cess management examining rich composition techniques.
These include the work of McIlraith et al. [5] modelling re-
quests and services using first-order situation calculus, Mc-
Dermott [4] in planning using PDDL and DAML-S, Van der
Aalst using workflow patterns [1], and Osman et al. [6] on
bridging workflow with Semantic Web service based com-
position. There is also much research on constraint-based
service composition such as [2]. The progression of our
work is that the instance data on which constraints are eval-
uated can be fetched from services at run-time rather than
extracted from a static service registry.
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