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Abstract
We describe an application of probabilistic mod-
eling and inference technology to the problem of
analyzing sensor data in the setting of an inten-
sive care unit (ICU). In particular, we consider
the arterial-line blood pressure sensor, which is
subject to frequent data artifacts that cause false
alarms in the ICU and make the raw data almost
useless for automated decision making. The
problem is complicated by the fact that the sen-
sor data are acquired at fixed intervals whereas
the events causing data artifacts may occur at
any time and have durations that may be sig-
nificantly shorter than the data collection inter-
val. We show that careful modeling of the sensor,
combined with a general technique for detecting
sub-interval events and estimating their duration,
enables effective detection of artifacts and accu-
rate estimation of the underlying blood pressure
values.

1. Introduction

The work reported in this paper falls under the general
heading of state estimation, i.e., computing the posterior
distribution P (Xt|e1:t) for the state variables X of a par-
tially observable stochastic system, given a sequence of
observations e1:t. The specific setting for our work at
the Center for Biomedical Informatics in Critical Care
(CBICC) is an intensive care unit (ICU) at San Francisco
General Hospital (SFGH) specializing in traumatic brain
Presented at the ICML/UAI/COLT 2008 Workshop on Machine
Learning for Health-Care Applications, Helsinki, Finland, 2008.
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Figure 1. One day’s worth of minute-by-minute monitoring data
for an ICU patient.
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Figure 2. Arterial-line blood pressure measurement.

injury, part of a major regional trauma center. In this set-
ting, the state variables Xt include aspects of patient state,
while the evidence variables Et include up to 40 contin-
uous streams of sensor data such as blood pressures (sys-
tolic/diastolic/mean, arterial and venous), oxygenation of
blood, brain, and other tissues, intracranial pressure and
temperature, inspired and expired oxygen and CO2, and a
wide array of variables measured by the mechanical venti-
lator.

A short section of data from these sensors is shown in Fig-
ure 1. This section illustrates a number of artifacts, includ-
ing, in the top traces, sharp upward and downward devia-
tions in blood pressure due to external interventions in the
arterial line; in the middle traces, ubiquitous drop-outs in
the venous oxygen level (blue line); and in the lower traces,
many jagged spikes in measured lung compliance due to
coughing.

The artifacts cannot be modeled simply as “noise” in the
sensor model; many are extended over time (some for as
long as 45 minutes) and most exhibit complex patterns of
their own. Simple techniques for “cleaning” such data,
such as median filtering, fail. Instead, we follow the gen-
eral approach suggested by Russell and Norvig (2003),
which involves careful generative modeling of sensor state
using dynamic Bayesian networks (DBNs).

This paper focuses on the arterial-line blood pressure sen-
sor (Figure 2), a key element of the monitoring system.
As we describe in detail in Section 2, this sensor is sub-
ject to multiple artifacts, including drifting calibration er-
ror, discrete shifts due to manual recalibrations, and ar-

tificially high values due to the line flushes or the draw-
ing of blood samples from the arterial line. These artifacts
not only complicate the state estimation and diagnosis task;
they also cause a large number of false alarms in the ICU,
which lead in turn to true alarms being ignored and alarms
being turned off (Tsien & Fackler, 1997). By modeling the
artifact-generating processes, we hope to be able to infer
the true underlying blood pressure even when artifacts oc-
cur.

To this point, the task described would be an applied
Bayesian modeling problem of medium difficulty. What
makes it slightly unusual and perhaps of more general in-
terest is the fact that our sensor data are recorded at fixed
intervals (one minute averages in our ICU) whereas the
events of interest—in this case, re-zeroings, line flushes,
and blood draws—can occur at any time and have durations
ranging from under 5 seconds to over 100 seconds.

Thus, the natural time step for modeling the sensor state
transitions might be one second, whereas the measurement
interval is much larger. This brings up the question of how
a “slow” (one-minute) model might be constructed and how
it relates to a “fast” (one-second) model. This is an instance
of a very important issue studied in the dynamical systems
and chemical kinetics literatures under the heading of sepa-
ration of time scales (see, e.g., Rao & Arkin, 2003). Fortu-
nately, in our case the problem has a simple, exact solution:
Section 3 shows that a one-minute model can be derived ef-
ficiently, offline, from the more natural one-second model
and gives exactly the same evidence likelihood. The more
general problem of handling multiple time scales within
DBNs, noted by Aliferis and Cooper (1996), remains open.

Section 4 describes the complete model for blood pressure
estimation, including artifact models, and Section 5 then
evaluates the model on real patient data. We show a num-
ber of examples of artifacts, their detection, and inference
of the underlying state values. We analyze model perfor-
mance over more than 300 hours of data from 7 patients,
containing 228 artifacts. Our results show very high pre-
cision and recall rates for event detection; we are able to
eliminate over 90% of false alarms for blood pressure while
missing fewer than 1% of the true alarms.

Our work is not the first to consider the probabilistic anal-
ysis of intensive care data. Indeed, one of the most well-
known of the early Bayes net applications was the ALARM

model for patient monitoring under ventilation (Beinlich
et al., 1989)—although this model had no temporal ele-
ment. The work most closely related to ours is that of
Williams, Quinn, and McIntosh (2005), who apply factorial
switching Kalman filters—a particular class of DBNs—to
artifact detection in neonatal ICU data. Their (one-second)
model is roughly analogous to the models described by
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Figure 3. 1-second (top) and 1-minute-average (bottom) data for systolic/mean/diastolic pressures. On the left, a blood draw and line
flush in quick succession. On the right, a zeroing.

Russell and Norvig, using Boolean state variables to rep-
resent events that block normal sensor readings. Another
important line of work is the MIMIC project, which, like
ours, aims to apply model-based methods to the interpreta-
tion of ICU data (Heldt et al., 2006).

2. Blood Pressure Monitoring

Blood pressure provides useful information about much of
physiology and is typically measured continuously in the
ICU. The most common ICU blood pressure measurement
device is the arterial line, illustrated in Figure 2; a catheter
placed into one of the patient’s small arteries is connected
to a pressure transducer whose output is displayed on a bed-
side monitor.

Because blood flow varies during the cardiac cycle, blood
pressure is pulsatile. In medical records, including our data
set, blood pressure measurements are summarized in two
or three values: systolic blood pressure, which is the max-
imum reached during the cardiac cycle, diastolic, which is
the corresponding minimum, and sometimes the mean. (A
derivative measure, the pulse pressure, is equal to the dif-
ference between the systolic and diastolic pressures.)

We consider the three common artifact types illustrated in
Figure 3(top): 1) in a blood draw, sensed pressure gradu-
ally climbs toward that of the pressure bag, then suddenly
returns to the blood pressure when the stopcock is closed,
seconds or minutes later; 2) in a line flush, the transducer
is exposed to bag pressure for a few seconds; 3) during
zeroing, the transducer is exposed to atmospheric pressure
(defined as zero). We refer to blood draws and line flushes
collectively as “bag events.”

Figure 3(top) shows the artifacts using data collected at

one-second intervals. In our clinical setting, however, data
are collected as one-minute average values, as shown in
Figure 3(bottom). Each one-minute interval may be par-
tially or wholly corrupted by one or more artifacts, and the
recorded value is a linear function of the true pressure, the
artifactual pressure(s), and the fraction of the minute occu-
pied by artifact. Using systolic pressure s as an example,
for an artifact of length p (as a fraction of the averaging in-
terval) and mean artifact pressure x, the apparent systolic
pressure s′ = px+ (1− p)s.

Our DBN model in Section 4 includes summary variables
and equations relating the one-minute readings to the true
underlying pressures, artifacts’ durations, bag and atmo-
spheric pressure, etc.; it can therefore estimate the duration
and other characteristics of artifacts that have corrupted the
data. Patterns produced by artifacts in the one-minute data
are highly varied, but it turns out (see Section 5) that the
detailed modeling pays off in revealing the characteristic
relationships that follow from the nature of the corrupting
events.

3. Modeling Sub-Interval Events

The data we work with are generated by a combination of
physiological processes that vary over timescales of sev-
eral minutes and artifactual events lasting perhaps only a
few seconds. Thus, a natural choice would be to choose
a “fast” time step for the DBN model, e.g., 1 second. On
this timescale, the sensor state variables indicate whether or
not an artifactual event is currently in progress. The transi-
tion model for these variables indicates the probability that
a new event begins and the probability that it continues if
already in progress. These probabilities can be estimated
simply by measuring event frequencies and durations. For
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memoryless (geometric) duration distributions, such as we
find in Section 5, the model requires very few parameters.

The main drawback of using a fast time step is computa-
tional: inference must be carried out over 60 time steps for
every one measurement that arrives. Furthermore, much of
this inference is pointless given the lack of evidence at all
the intervening time steps.

We could instead build a model with a “slow” time step
of one minute, so that evidence arrives at each time step.
The problem here is to determine the structure and param-
eters of such a model. First, to explain the evidence, we
will need a count variable for each event type saying how
many seconds of that minute were occupied by such events.
Now, it is easy to see that such variables must depend on
their corresponding variables one minute earlier: for exam-
ple, if the preceding minute was fully occupied by a blood
draw event, then that event was in progress at the beginning
of the current minute, so the current minute is likely to be
at least partially occupied by the event. Moreover, if the
event types are mutually exclusive, then each count vari-
able depends on all the preceding variables. As each count
variable has 61 values, this leads to huge conditional distri-
butions that summarize all possible ways that the preceding
60 seconds could be divided among the various event types.
How could we possibly estimate these?

The astute reader will have noticed two things: first, adding
a state variable for “event in progress at the minute bound-
ary” will simplify the model somewhat. Second, the CPTs
for the slow model can be derived from the fast model and
need not be estimated or guessed. This is the typical situ-
ation with separation of time scales: slow-time-scale mod-
els are computationally more tractable but can only be con-
structed by deriving them from a fast-time-scale model. We
now explain briefly how this is done for our problem.

Consider a fast model as shown in Figure 4(a). Let the
fast time step be ε and a measurement interval be Nε
(where N = 60 in our domain). fi = 1 iff an event is
occurring at time iε; GNj ≡

∑Nj−1
i = N(j−1) fi counts the

number of fast time steps within the jth measurement in-
terval during which an event is occurring. The jth ob-
served measurement ENj is determined entirely by GNj ;
therefore, it suffices to consider the joint distribution over
G0, GN , . . . , GNt.

To obtain a model containing only variables at the slow in-
tervals, we simply need to sum out the fi variables other
than the ones at interval boundaries. We can do this topo-
logically by a series of arc reversal and node removal oper-
ations (Shachter, 1986); a simple proof by induction (omit-
ted) shows that, regardless of the number of fast steps per
slow step, we obtain the reduced structure in Figure 4(b).

f0 f1 f2 f3 f4 f5 f6 f7 f8

G0 G4 G8

E0 E4 E8

f0 f4 f8

G0 G4 G8

E0 E4 E8

b)

a)

Figure 4. (a) DBN model showing relationships among the fast
event variables fi, interval count variables GNj , and measure-
ment variables ENj . (b) A reduced model that has the same dis-
tribution for G0, GN , . . . , GNt.

By construction, this model gives the same joint distribu-
tion for G0, GN , . . . , GNt. Importantly, neither fNj nor
GNj depends on GN(j−1).1

To complete the reduced model, we need the conditional
distributions P (GNj |fN(j−1)) and P (fNj |fN(j−1)GNj).
That is, how many “ones” do we expect in an interval, given
the event status at the beginning of the interval, and what
is the probability that an event is occurring at the begin-
ning of the next interval, given also the number of ones in
the current interval? Given the fast model’s parameters,
these quantities can be calculated offline using dynamic
programming, as follows. A table is constructed for the
variables fi and Ci for i from 1 up to N , where Ci is the
number of ones up to i−1 and C0 = 0. The recurrences for
fi and Ci are as follows:

P (Ci, fi = 1|f0) =

pP (Ci−1 =Ci − 1, fi−1 = 1|f0) +

q P (Ci−1 =Ci, fi−1 = 0|f0) (1)

P (Ci, fi = 0|f0) =

(1− p)P (Ci−1 =Ci − 1, fi−1 = 1|f0) +

(1− q)P (Ci−1 =Ci, fi−1 = 0|f0) (2)

Extracting the required conditional probabilities from the
table is straightforward. The table is of size O(N2), so the
total time to compute it is negligible for any plausible value
of N . Now we have the following result:

Theorem 1 Given the conditional distributions computed
by Equations 1 and 2, the reduced model in Fig-

1Intuitively, the distribution over GNj for the N th interval is
determined by the value of f at the beginning of the interval, inde-
pendent of GN(j−1), whereas fNj depends on the count GNj for
the preceding interval because, for example, a high count implies
that an event is likely to be in progress at the end of the interval.
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Figure 5. The blood pressure artifact detection DBN. Gray edges connect nodes within a time slice; black edges are between time slices.
“Nodes” without surrounding ovals are deterministic functions included for clarity.

ure 4(b) yields the same distribution for the count sequence
G0, GN , . . . , GNt as the fine-grained model in Figure 4(a).

The conditional distributions that we obtain by dynamic
programming have some interesting limit cases. In par-
ticular, when events are short compared to measurement
intervals and occur frequently, we expect the dependence
on fN(j−1) to disappear and the distribution for GNj to
be approximately Gaussian with mean N

1+p/(1−q) . When
p= q, the fis become i.i.d. and GNj is exactly binomial—
the recurrences compute the binomial coefficients via Pas-
cal’s rule.

Generalizing the analysis to the case of multiple disjoint
event types (i.e., fi takes on more than two values) is
mathematically straightforward and the details are omitted.
There is, however, a complexity problem as the number of
event types increases. The count variables GNj , HNj , and
so on at time Nj are all dependent on each other given
fN(j−1), and fNj depends on all of them; thus, using the
approach given above, the precomputed tables will scale
exponentially with the number of event types. This is not
a problem in our application, where we do not expect sen-
sors to have more than a few distinct types of “error” state.
Furthermore, if each event type occurs independently of the
others (except for the mutual exclusion constraint), then the
conditional distribution for the count variable of each de-
pends not on the combination of counts for the other types
but on the sum of those counts, leading to low-order poly-
nomial growth in the table sizes.

The preceding analysis covers only the case in which fi

depends just on fi−1, leading to independently occurring
events with a geometric length distribution. Construct-
ing models with other length distributions is a well-studied
problem in statistics and most cases can be well approxi-
mated with a modest increase in the size of the dynamic

programming table. Handling non-independent event oc-
currence is often more important; for example, blood draws
may occur in clusters if multiple samples are required.
Such dependencies can be handled by augmenting the state
with timer variables, again at modest cost.

Before we move on to describe the complete model, it is
important to note that a model with a finer time scale that
the measurement frequency can provide useful extra infor-
mation. By analogy with sub-pixel localization in com-
puter vision, such a model can estimate the time of occur-
rence of an event within a measurement interval.

4. Combined model

The complete model for blood pressure measurements is
shown in Figure 5. It has the same basic structure as the
reduced model in Figure 4(b) but extends it in various ways.

The evidence variables ENj are just the three reported
blood pressure values ObservedDiaBP, ObservedSysBP,
and ObservedMeanBP. These reflect, with some Gaussian
noise, idealized Apparent values, determined in turn by

• the true time-averaged pressures: TrueDiaBP, True-
SysBP, and TrueMeanBP;

• the total duration of artifacts within the preceding
minute (i.e., the GNj variables): BagTime and Zero-
Time;

• the average induced pressure to which the transducer
is exposed during each event type: BagPressure and
ZeroPressure (these have their own slowly varying dy-
namics).

The Apparent variables are deterministic functions of
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Figure 6. ROC curves for the model’s detection of (left) bag events, (middle) zeroing events, and (right) hypertension events.

Figure 7. Event count by duration exceeded (dark line), with the
fitted exponential (light line).

their parents. For example, we have

ApparentDiaBP =

BagTime · BagPressure + ZeroTime · ZeroPressure +

(1− BagTime− ZeroTime) · TrueDiaBP

The physiological state variables in this model are TrueSys-
tolicFraction (the average portion of each heartbeat spent
ejecting blood), TruePulseBP (the peak-to-trough size of
the pressure wave generated by each heartbeat), and True-
MeanBP. For simplicity, basic physiologic factors are mod-
eled with random walks weighted toward physiologically
sensible values.2

The key event variable in the model, corresponding to fNj

in Figure 4(b), is EndingValveState. This has three values
for the three possible stopcock positions at the one-minute
boundary: open to patient, open to bag, or open to air. The
CPTs for this variable and for its children (at the next time

2More accurate modeling of the physiology actually improves
the accuracy of artifact detection, but this point is explored in a
separate paper.

step) BagTime and ZeroTime are the ones computed by the
method of Section 3. The CPT for EndingValveState has
3× 3× 61× 61 =33, 489 entries.

5. Experimental Results

To estimate the CPT parameters (P (ft+1 = 1|ft = 0) and
P (ft+1 = 1|ft = 1)) for the one-second model, and to eval-
uate the one-minute model’s performance, we first needed
to obtain ground truth for event occurrence. With special
dispensation from the ICU nurses, we were able to obtain
300 hours of 1Hz data, a total of more than one million
data points. One of us (a physician) examined all of the
data and marked the 228 events (119 bag events and 109
zero events). With half the annotated data we estimated
the one-second CPT parameters from the event frequencies
and durations, verifying that event durations were indeed
approximately exponentially distributed (Figure 7). Then,
as described in Section 3, we calculated corresponding one-
minute-interval CPTs.

After transforming the remaining data into 1-minute aver-
ages equivalent to those returned by the regular recording
system, we used particle filtering to derive posteriors for
true blood pressure and the presence and length of each
type of artifact. Figure 6(a) is the ROC curve for the
model’s detection of bag events; it reaches a true positive
rate of 80% with almost no false positives, or a TPR of
90% with 10% false positives. It does less well with zero-
pressure events, as shown in Figure 6(b): a TPR of nearly
70% is achievable with minimal false positives, but beyond
that false positives increase quickly.

Detection of hypertensive events is a simple but important
clinical application. Standard ICU alarms are threshold-
based and susceptible to triggering by artifact, as illustrated
in the two days of raw data in Figure 8(left). After filter-
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Figure 8. Two days’ blood pressure data for one patient, with the hypertension threshold overlaid. Raw data are on the left; on the right
are filtering results showing elimination (here) of false declarations of hypertension.

Figure 9. Sensed blood pressure (dark lines) and inferred true blood pressure (lighter bands, representing mean ±1SD) across two
observed blood draws. In the upper trace, a blood draw straddles two minutes and is followed a few minutes later by a zeroing; in the
lower trace, a blood draw straddles three minutes and is followed by either another short blood draw or a line flush. (The bottom two
lines in each tracing show the inferred fraction of each minute occupied by bag or zero artifact.)
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ing with our model, all of the false alarms in this section
of data were eliminated, without false negatives, as shown
in Figure 8(right). The model’s performance on the entire
test data set is shown in Figure 6(c). (For the purposes of
this ROC curve, the presence or absence at each minute of
systolic blood pressure of at least 160mmHg constitutes an
event; reference events were defined by a physician dur-
ing event tagging.) With a true positive rate of 100% in our
data set, the model has a false positive rate of less than 10%,
a significant achievement given the 86% false-positive rate
reported for ICU alarms in general (Tsien & Fackler, 1997).

The model’s accuracy in tracking true blood pressure is
harder to evaluate since we have no minute-by-minute gold
standard. Four of the authors (all physicians) have ex-
amined many hours of measured and inferred blood pres-
sure traces, a typical example of which is shown in Fig-
ure 9. The results were generally very encouraging and
we believe the approach will improve data quality to a
level useful for inferring underlying physiological condi-
tions. Where the system’s inferences were questionable, it
was often the case that examining other sensors helped to
reveal whether a pressure change was real or artifactual.

6. Conclusions and Further Work

We have applied dynamic Bayesian network modeling to
the problem of handling aggregated data with sub-interval
artifacts. In preliminary experiments, this model of a typi-
cal blood pressure sensor appears quite successful at track-
ing true blood pressure and determining the presence, type,
and duration of artifacts.

Our approach has reduced the need for learning (as dis-
tinct from modeling and inference) to the small but crucial
role of determining the distribution of event durations. It
would be interesting to test whether direct supervised learn-
ing methods could achieve similar results in event detec-
tion; it is not obvious, however, how to define the input to
a classifier and how to label intervals corrupted by multiple
events.

Modified to run at 1Hz, this model could run on-line at the
bedside, helping to reduce false alarms. We are currently
extending the model to include more sensors and physio-
logical state variables and anticipate further improvements
in detection accuracy as a result of combining multiple sen-
sors.
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