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Lighthouse Principle for Diffusion in Social Networks

Sanaz Azimipour

University of Tehran, Tehran, Iran

Pavel Naumov

Vassar College, Poughkeepsie, New York, USA

Abstract

The article investigates an influence relation between two sets of agents in
a social network. It proposes a logical system that captures propositional
properties of this relation valid in all threshold models of social networks
with the same structure. The logical system consists of Armstrong axioms
for functional dependence and an additional Lighthouse axiom. The main
results are soundness, completeness, and decidability theorems for this logical
system.

1. Introduction

1.1. Social Networks

In this article we study influence in social networks. When a new product
is introduced to the market, it is usually first adopted by a few users that are
called “early adopters”. These users might adopt the product because they
are fans of the company introducing the product, as a result of the marketing
campaign conducted by the company, or because they have a genuine need for
this type of product. Once the early adopters start using the product, they
put peer pressure on their friends and acquaintances in the social network,
who might eventually follow them in adopting the product. The friends of
the early adopters might eventually influence their own friends and so on,
until the product is potentially adopted by a significant part of the network.
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(Pavel Naumov)
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A similar phenomenon could be observed with the diffusion of certain be-
haviours, like smoking, the adoption of new words and technical innovations,
and the propagation of beliefs.

There are two most widely used models that formally capture diffusion
process in social networks. One of them is the stochastic model [20, 12]. This
model distinguishes active and inactive vertices of the network. Once a vertex
v becomes active, it gets a single chance to activate each neighbour u with a
given probability pv,u. This process continues until no more activations can
happen.

In this article we focus on the second model, called threshold model [26,
14, 11, 1], originally introduced by Granovetter [8] and Schelling [21]. In this
model each agent has a non-negative threshold value representing the agent’s
resistance to adoption of a given product. If the pressure from those peers
of the agent who already adopted the product reaches the threshold value,
then the agent also adopts the product. We assume that each of the other
agents has a non-negative, but possibly zero, influence on the given agent.
The peer pressure on an agent to adopt a product is the sum of influences on
the agent of all agents who have already adopted the product. It is assumed
in this model that, once the product is adopted, the agent keeps using the
product and putting pressure on her peers indefinitely.

p q r2

1 4

3

5

1 27

Figure 1: Social Network N1

Consider, for example, social network N1 depicted in Figure 1. This
network consists of three agents: p, q, and r that have threshold values 7, 1,
and 2 respectively. The threshold value of a node is shown on the diagram
above the node representing the agent. The influence of one agent on another
is shown in this figure by the label on the directed edge connecting the two
agents. For instance, the influence of agent r on agent p is 5. If an agent has
zero influence on another agent, no edge is shown. Thus, influence of agent
p on agent r is zero.

Suppose that a marketing company gives agent p a free sample of the
product and the agent starts using it. Since agent p has influence 2 on agent
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q and threshold value of agent q is only 1, she will eventually also adopt the
product. In turn, the adoption of the product by agent q will eventually
lead to an adoption by agent r because threshold value of agent r is only 2
and the influence of agent q on agent r is 3. Thus, the adoption by agent p
eventually leads to an adoption of this product by agent r. We denote this
fact by N1 ⊨ p� r.

In this article we study relation A�B between group of agents A and B
that could be informally described1 as “if all agents in set A use the product,
then all agents in set B will eventually adopt the product”. For example, for
the above discussed social network N1, we have N1 ⊨ {p} � {q, r}, which we
usually write as just N1 ⊨ p� q, r.

At the same time, if a free sample of the product is given to agent r,
then agent q will eventually adopt it because her threshold value is 1 and the
influence of agent r on her is 4. Once agent q adopts the product, however,
the product diffusion stops and the product will never be adopted by agent
p because her threshold value is 7 and the total peer pressure from agents q
and r on p will be only 1 + 5 = 6. Therefore, for example, N1 ⊨ ¬(r � p).

The properties of relation A�B that we have discussed so far were specific
to social network N1. Let us now consider social network N2 depicted in
Figure 2. If a free sample of the product is given in network N2 to agent r and

p q r2

1 4

3

5
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Figure 2: Social Network N2

she starts using it, then, like it was for the network N1, agent q will eventually
adopt the product because her threshold value is only 1 and influence of agent
r on agent q is 4. Unlike network N1, however, the product diffusion does not
stop at this point because now the total peer pressure of agents q and r on
agent p is still 1 + 5 = 6, but the threshold value of agent p in this network
is only 5.5. Thus, agent p eventually will adopt the product. In other words,
N2 ⊨ r � p.

1We formally specify this relation in Definition 7.
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An interesting property of network N2 is that agent r has threshold value
0. Thus, she will eventually adopt the product even if no free product samples
are given to any of the agents: N2 ⊨ ∅ � r.

1.2. Sociograms

So far, we have discussed properties of specific social networks. In this
article we study properties common to a class of networks. The classes of
networks can be defined on different levels of abstraction. Perhaps the most
natural approach is to study common properties of social networks that have
the same topological structure. In other words, to study properties that do
not depend on a specific choice of influence and threshold values, but only on
the (unlabeled) graph of the network. Although such an approach appears to
be the most natural, it unexpectedly results in a very complicated principles
that seems to capture more properties of real numbers than properties of the
influence relation.

We adopt a different level of abstraction in which we assume that the
graph and the distribution of influences is fixed. We study all properties
that are universal no matter what the threshold values are. This level of
abstraction results in a simple set of properties that can be captured by the
complete logic system presented in this paper. In the conclusion we discuss
examples of properties of influence that are true for all graphs without fixing
distribution of influences and distribution of the thresholds. To distinguish
graphs labeled with influences and thresholds from those labeled with in-
fluences only, we call the former social networks and the latter sociograms.
To some degree, the threshold values characterize the relation that exists
between the product and the individual agents and the sociogram describes
the influence relation between the agents. The term sociogram has been first
introduced by psychosociologist Jacob Levy Moreno [16]. The sociograms,
as defined in this article, are directed labeled graphs. The original Moreno’s
sociograms were neither directed nor labeled.

For example, the above discussed social networks N1 and N2 are different
only by the threshold values that the agents have. Thus, we say that social
networks N1 and N2 have the same sociogram. This common sociogram S1

for networks N1 and N2 is depicted in Figure 3.
We write S ⊨ φ if property φ is true for all social networks with sociogram

S. For example, as we show in Proposition 1,

S1 ⊨ p� r → q � r. (1)
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Figure 3: Sociogram S1

In other words, under any assignment of threshold values on sociogram S1,
if giving a free sample of the product to agent p will eventually lead to agent
r adopting the product, then giving a free sample of the product to agent q
would have the same effect.

1.3. Lighthouse Axiom

The main result of this article is a complete axiomatization of the propo-
sitional properties of relation A�B for any given sociogram. Such an axiom-
atization consists of three axioms common to all sociograms and a sociogram-
specific fourth axiom. The first three axioms are

1. Reflexivity: A�B if B ⊆ A,

2. Transitivity: A�B → (B � C → A� C),

3. Augmentation: A�B → (A,C �B,C),

where A,B denotes the union of sets A and B. These axioms were originally
proposed by Armstrong [2] to describe functional dependence relation in
database theory. They became known in database literature as Armstrong’s
axioms [7, p. 81]. Väänänen proposed a first order version of these prin-
ciples [24] and their generalization for reasoning about approximate depen-
dency [25]. Beeri, Fagin, and Howard [4] suggested a variation of Armstrong’s
axioms that describes properties of multi-valued dependence. Naumov and
Nicholls [17] proposed another variation of these axioms that describes ratio-
nally functional dependence. The influence semantics of these axioms that
we introduce in this article does not appear to be connected to the functional
dependency semantics.

The sociogram-dependent fourth axiom captures the fact that in every
group of agents in which at least one agent eventually adopts the product
there is always an agent (or a nonempty subgroup of agents) who adopts
the product first. In marketing such agents are sometimes called lighthouse
customers. In any given group of agents, the distinctive property of light-
house customers is that they adopt the product without any peer pressure
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coming from other agents in this group. The lighthouse customers adopt the
product as a result of the peer pressure from the outside of the group. Our
fourth axiom postulates the existence of lighthouse customers in any group of
agents in which at least one agent eventually will adopt the product. Thus,
we call this postulate Lighthouse axiom.

BA

a

`

w1

w2

wk

!

...

Figure 4: Lighthouse Axiom

One possible way to state Lighthouse axiom is to say that if all agents in
network N are partitioned into disjoint sets A and B, see Figure 4, and there
is an agent a ∈ A such that N ⊨ B� a, then there must exist a “lighthouse”
agent ℓ ∈ A such that the total peer pressure of all agents in set B on agent
ℓ is no less than the threshold value of agent ℓ:

θ ≤ w1 + w2 + · · ·+ wk.

Unfortunately, when stated this way, Lighthouse axiom refers to threshold
value θ of agent ℓ. Thus, in this form, it is a property of the social network,
rather than the corresponding sociogram.

It turns out, however, that there is a way to re-word the axiom so that it
does not refer to threshold values. Namely, let us assume that for every agent
a ∈ A we choose a set of agents Ca ⊆ A∪B such that peer pressure of set Ca

on agent a is no less than peer pressure of set B on agent a. The new form
of Lighthouse axiom states that, under the above condition, if N ⊨ B � a,
then there exists a “lighthouse” agent ℓ ∈ A such that N ⊨ Cℓ � ℓ. The
main result of this article is the completeness theorem for the logical system
consisting of this form of Lighthouse axiom and the three Armstrong axioms.

1.4. Related Literature

Several logical frameworks for reasoning about diffusion in social networks
have been studied before. Seligman, Liu, and Girard [22] proposed Face-
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book Logic for capturing properties of epistemic social networks in modal
language, but did not give any axiomatization for this logic. They further
developed this approach in papers [23, 13] where they introduced dynamic
friendship relations. Christoff and Hansen [5] simplified Seligman, Liu, and
Girard setting and gave a complete axiomatization of the logical system for
this new setting. Christoff and Rendsvig proposed Minimal Threshold Influ-
ence Logic [6] that uses modal language to capture dynamic of diffusion in
a threshold model and gave a complete axiomatization of this logic. Baltag,
Christoff, Rendsvig, and Smets [3] discussed logics for informed update and
prediction update. Informally, the languages of the described above systems
feel significantly richer than the more succinct language of our system. How-
ever, neither of these systems capture principles similar to our Lighthouse
axiom. Naumov and Tao [19, 18] used Armstrong’s axioms to describe in-
fluence in social networks. They considered relation A�b B that stands for
“given marketing budget b, group of agents A can influence group of agents
B”. They gave modified versions of Armstrong axioms that capture prop-
erties of this relation for preventive and promotional marketing. Since they
do not assume a fixed sociogram of the network, their approach does not
capture any properties similar to our Lighthouse principle.

Diffusion in social networks is a special case of information flow on graphs.
Logical systems for reasoning about various types of graph information flow
has been studied before. Lighthouse axiom has certain resemblance with
Gateway axiom for functional dependence on hypergraphs of secrets [15],
Contiguity axiom [9] for graphical games, and Shield Wall axiom for fault
tolerance in belief formation networks [10].

1.5. Outline

This article is organized as following. In Section 2 we introduce formal
syntax and semantics of our logical system. Section 3 list the four axioms
of the system. In Section 4, we give several examples of formal proofs in
our system. In Section 5 we show some auxiliary results that are used later.
Section 6 and Section 7 prove soundness and completeness theorems respec-
tively. Section 9 concludes with a discussion of logical properties of unlabeled
sociograms.
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2. Syntax and Semantics

In this section we formally define a social network, a sociogram, and the
influence relation.

Definition 1. For any finite set A, let Φ(A) be the minimal set of formulas
such that

1. ⊥ ∈ Φ(A),

2. A�B ∈ Φ(A), for each subsets A,B ⊆ A,

3. φ→ ψ ∈ Φ(A) for each φ, ψ ∈ Φ(A).

We assume that disjunction ∨ is defined through implication → and false
constant ⊥ in the standard way.

Definition 2. A sociogram is pair (A, w), where

1. A is an arbitrary finite set (of agents),

2. w is a function that maps A2 into non-negative real numbers. Value
w(a, b) represents influence of agent a on agent b.

Definition 3. A social network is triple (A, w, θ), where

1. (A, w) is a sociogram,

2. θ is a function that maps A into non-negative real numbers. Value θ(a)
represents threshold value of agent a ∈ A.

We say that social network (A, w, θ) is based on sociogram (A, w). We
now proceed to define peer pressure on an agent by a group of agents in a
given sociogram.

Definition 4. For any sociogram (A, w) and any subset of agents A ⊆ A,
let ∥A∥b =

∑
a∈Aw(a, b).

In the introduction we said that if, at some moment in time, an agent
experiences peer pressure higher than her threshold value, then at some point
in the future she will adopt the product. For the sake of simplicity, in our
formal model we assume that time is discrete and that if at moment k an
agent experiences sufficient peer pressure, then she adopts the product at
moment k + 1. Although this assumption, generally speaking, affects the
“time dynamics” of product diffusion, it does not affect the final outcome of
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diffusion. Thus, this assumption, while simplifying the formal setting, does
not change the properties of influence relation A�B. Given this assumption,
if free samples of the product are given to all agents in set A at moment 0,
then by Ak we mean the set of all agents who will adopt the product by
moment k. The formal definition of Ak is below.

Definition 5. For any A ⊆ A and any k ∈ N, let subset Ak ⊆ A be defined
recursively as follows:

1. A0 = A,

2. Ak+1 = Ak ∪ {x ∈ A | ∥Ak∥x ≥ θ(x)}.

Corollary 1. (An)k = An+k.

If free samples of the product are given to all agents in set A, then by A∗

we mean the set of all agents who will eventually adopt the product. The
formal definition of A∗ is below.

Definition 6.
A∗ =

∪
k≥0

Ak.

The next definition specifies the formal semantics of our logical system.
In particular, item 2 in this definition specifies the formal meaning of the
influence relation.

Definition 7. For any social network N = (A, w, θ) and any φ ∈ Φ(A), let
satisfiability relation N ⊨ φ be defined as follows

1. N ⊭ ⊥,

2. N ⊨ A�B if B ⊆ A∗,

3. N ⊨ ψ → χ if N ⊭ ψ or N ⊨ χ.

3. Axioms

Our logical system for an arbitrary sociogram S = (A, w) consists of
propositional tautologies in language Φ(A) and the following additional ax-
ioms:

1. Reflexivity: A�B if B ⊆ A,
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2. Transitivity: A�B → (B � C → A� C),

3. Augmentation: A�B → (A,C �B,C),

4. Lighthouse: if A⊔B is a partition of the set of all agents A and {Ca}a∈A
is a family of sets of agents such that ∥B∥a ≤ ∥Ca∥a for each a ∈ A,
then ∨

a∈A

B � a→
∨
a∈A

Ca � a.

We write ⊢S φ if formula φ can be derived in our system using Modus
Ponens inference rule. We sometimes write just ⊢ φ if the value of subscript
S is clear from the context. We also write X ⊢S φ if formula φ could be
derived in our system extended by a set of additional axioms X.

4. Examples

In this section we give three examples of formal proofs in our logical
system to illustrate how the system works. Soundness of the system is shown
in Section 6. We start by proving statement (1) from the introduction.

Proposition 1. ⊢S1 p � r → q � r, where S1 is the sociogram depicted in
Figure 3.

p q r2

1 4

3

5B

Cr

A

Figure 5: Towards Proof of Proposition 1

Proof. Let A = {r}, B = {p, q}, and Cr = {q}, see Figure 5. Note that

∥B∥r = w(p, r) + w(q, r) = 0 + 3 = 3 = w(q, r) = ∥Cr∥r.

Hence, by Lighthouse axiom,

⊢ p, q � r → q � r. (2)
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At the same time, by Transitivity axiom,

⊢ p, q � p→ (p� r → p, q � r).

By Reflexivity axiom, ⊢ p, q � p. Thus, by Modus Ponens inference rule,

⊢ p� r → p, q � r.

Therefore, ⊢ p� r → q � r using statement (2) and propositional logic rea-
soning. ⊠

p q r2 3

Figure 6: Sociogram S2

Let us now consider sociogram S2 depicted in Figure 6. Since in this
sociogram agent r has higher influence on agent q than agent p, one might
expect the following statement to be true for all social networks over so-
ciogram S2:

p� q → r � q. (3)

Surprisingly, this is false. Namely, this statement is false for the social net-
work depicted in Figure 7. This happens because agent r in this social

p q r2 3

1 4 0

Figure 7: Social Network

network has threshold value 0. In other words, agent r is an “early adopter”
who does not need any external peer pressure in order to buy the product.
As a result, see Figure 8, we have {p}1 = {p, r}. Once agent r adopts the
product, the total peer pressure on agent q becomes 2 + 3 = 5 and she will
adopt the product as well. On the other hand, if the free sample is given to
agent r, then neither agent p nor agent q ever adopt the product.
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p q r2 3

1 4 0

{p}0

{p} 1

{p} 2 = {p} 3 = ... = {p}✱

Figure 8: Social Network

Although statement (3) does not hold for some social networks over so-
ciogram S2, in the next proposition we show that a slightly modified version
of this statement does hold for all such networks.

Proposition 2. ⊢S2 p � q → (r � q ∨ ∅ � r), where S2 is the sociogram
depicted in Figure 6.

Proof. Let A = {q, r}, B = {p}, Cq = {r}, and Cr = ∅, see Figure 9. Note

p q r2 3

A
B Cq Cr

Figure 9: Towards Proof of Proposition 2

that
∥B∥q = w(p, q) = 2 < 3 = w(r, q) = ∥Cq∥q

and
∥B∥r = w(p, r) = 0 = ∥∅∥r = ∥Cr∥r.
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Thus, by Lighthouse axiom,

⊢ p� q ∨ p� r → r � q ∨∅ � r.

Therefore, ⊢ p� r → r � q ∨∅ � r. ⊠

p q r1 3

4

2

Figure 10: Sociogram S3

Proposition 3. ⊢S3 q� p∨ q� r → p� r∨ r� p, where S3 is the sociogram
depicted in Figure 10.

p q r1 3

4

2

BCr Cp

A

Figure 11: Towards Proof of Proposition 3

Proof. Let A = {p, r}, B = {q}, Cp = {r}, and Cr = {p}, see Figure 11.
Note that

∥B∥p = w(q, p) = 1 < 2 = w(r, p) = ∥Cp∥p
and

∥B∥r = w(q, r) = 3 < 4 = w(p, r) = ∥Cr∥r.

Therefore, by Lighthouse axiom, ⊢ q � p ∨ q � r → p� r ∨ r � p. ⊠

13



5. Properties of Star Closure

In this section we prove several technical properties of A∗ that are used
later in the proofs of soundness and completeness.

Lemma 1. If A1 = A, then Ak = A for each k ≥ 0.

Proof. We prove this lemma by induction on k. If k = 0, then A0 = A by
Definition 5. If k > 0, then by Corollary 1, assumption A1 = A, and the
induction hypothesis, Ak = (A1)k−1 = Ak−1 = A. ⊠

Lemma 2. A∗ = Ak for some k ≥ 0.

Proof. The statement of the lemma follows from the assumption in Defini-
tion 3 that set A is finite. ⊠

Lemma 3. If x /∈ A∗, then θ(x) > ∥A∗∥x, for each subset A ⊆ A and each
agent x ∈ A.

Proof. By Lemma 2, there is k ≥ 0 such that A∗ = Ak. Suppose that
∥A∗∥x ≥ θ(x). Thus, ∥Ak∥x ≥ θ(x). Hence, x ∈ Ak+1, by Definition 5. Thus,
x ∈ A∗ by Definition 6, which is a contradiction to the assumption of the
lemma. ⊠

Lemma 4. A ⊆ A∗.

Proof. By Definition 5 and Definition 6, A = A0 ⊆
∪

k≥0A
k = A∗. ⊠

Lemma 5. (A∗)∗ ⊆ A∗.

Proof. By Lemma 2, there are n, k ≥ 0 such that A∗ = An and (A∗)∗ = (A∗)k.
Thus, by Corollary 1 and Definition 6,

(A∗)∗ = (A∗)k = (An)k = An+k ⊆
∪
m≥0

Am = A∗.

⊠
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Lemma 6. If A ⊆ B, then Ak ⊆ Bk, for each k ≥ 0.

Proof. We prove the statement of the lemma by induction on k. If k = 0,
then A0 = A ⊆ B = B0 by Definition 5.

Suppose that Ak ⊆ Bk. Let x ∈ Ak+1. It suffices to show that x ∈ Bk+1.
Indeed, by Definition 5, assumption x ∈ Ak+1 implies that either x ∈ Ak or
∥Ak∥x ≥ θ(x). In the first case, by the induction hypothesis, x ∈ Ak ⊆ Bk.
Thus, x ∈ Bk. Therefore, x ∈ Bk+1 by Definition 5.

In the second case, by Definition 4 and assumption Ak ⊆ Bk,

∥Bk∥x =
∑
b∈Bk

w(b, x) ≥
∑
a∈Ak

w(a, x) = ∥Ak∥x ≥ θ(x).

Therefore, x ∈ Bk+1 by Definition 5. ⊠

Corollary 2. If A ⊆ B, then A∗ ⊆ B∗.

Lemma 7. A∗ ∪B∗ ⊆ (A ∪B)∗.

Proof. Note that A ⊆ A ∪ B and B ⊆ A ∪ B. Thus, A∗ ⊆ (A ∪ B)∗ and
B∗ ⊆ (A ∪B)∗ by Corollary 2. Therefore, A∗ ∪B∗ ⊆ (A ∪B)∗. ⊠

6. Soundness

In this section we prove the soundness of our logical system with respect
to the semantics given in Definition 7. The soundness of propositional tau-
tologies and Modus Ponens inference rule is straightforward. Below we show
the soundness of each of the remaining four axioms as separate lemmas. In
the lemmas that follow we assume that S = (A, w, θ) is a social network and
A, B, and C are subsets of A.

Lemma 8. If B ⊆ A, then S ⊨ A�B.

Proof. By Lemma 4, A ⊆ A∗. Thus, B ⊆ A∗ by the assumption of the
lemma. Therefore, S ⊨ A�B, by Definition 7. ⊠

Lemma 9. If S ⊨ A�B and S ⊨ B � C, then S ⊨ A� C.
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Proof. By Definition 7, assumption S ⊨ A�B implies that B ⊆ A∗. Hence,
B∗ ⊆ (A∗)∗ by Corollary 2. Thus, B∗ ⊆ A∗ by Lemma 5. At the same
time, C ⊆ B∗ by assumption S ⊨ B � C and Definition 7. Thus, C ⊆ A∗.
Therefore, S ⊨ A� C by Definition 7. ⊠

Lemma 10. If S ⊨ A�B, then S ⊨ A,C �B,C.

Proof. Suppose that S ⊨ A � B. Thus, B ⊆ A∗ by Definition 7. Note that
C ⊆ C∗ by Lemma 4. Thus, B ∪ C ⊆ A∗ ∪ C∗ ⊆ (A ∪ C)∗, by Lemma 7.
Therefore, S ⊨ A,C �B,C, by Definition 7. ⊠

Lemma 11. If S ⊨ B � a0 for some a0 ∈ A, then there is ℓ ∈ A such that
S ⊨ Cℓ � ℓ, where A⊔B is a partition of the set of all agents A and {Ca}a∈A
is a family of sets of agents such that ∥B∥a ≤ ∥Ca∥a for each a ∈ A.

Proof. Note that assumption S ⊨ B�a0 by Definition 7 implies that a0 ∈ B∗.
On the other hand, assumption a0 ∈ A implies that a0 /∈ B because A⊔B is
a partition of set A. Thus, B∗ ̸= B. Hence, by Definition 6, there must exist
k such that Bk ̸= B. Then, B1 ̸= B by Lemma 1. Thus, there must exist
ℓ ∈ B1 \ B. Hence, ∥B∥ℓ ≥ θ(ℓ) by Definition 5. Then, by the assumption
of the lemma, ∥Cℓ∥ℓ ≥ ∥B∥ℓ ≥ θ(ℓ). Thus, ℓ ∈ C1

ℓ , by Definition 5. Hence,
ℓ ∈ C∗

ℓ by Definition 6. Therefore, S ⊨ Cℓ � ℓ by Definition 7. Finally, note
that ℓ ∈ A because ℓ ∈ B1 \B and A ⊔B is a partition of the set A. ⊠
This concludes the proof of the soundness of our logical system.

7. Completeness

In this section we prove the completeness of our logical system with re-
spect to the semantics given in Definition 7. This result is formally stated
as Theorem 1 in the end of this section. The proof of completeness consists
in the construction of a “canonical” social network. We start, however, we a
few technical lemmas and definitions.

7.1. Preliminaries

Let us first prove a useful property of real numbers.

Lemma 12. If ε > 0 is a real number and x and y are any real numbers
such that either x = y or |x− y| > ε. Then, x+ ε > y implies x ≥ y.

16



Proof. Suppose y > x. Hence, x ̸= y. Thus, |x − y| > ε, by the assumption
of the lemma. Then, y − x > ε, because y > x. Therefore, x+ ε < y. ⊠

We now assume a fixed sociogram (A, w) and a fixed maximal consistent
subset X of Φ(A).

Definition 8. Â = {a ∈ A | X ⊢ A� a} for each subset A ⊆ A.

Choose ε to be any positive real number such that ε < ∥A∥a−∥B∥a for each
agent a ∈ A and each subsets A,B ⊆ A, such that ∥A∥a > ∥B∥a. This could
be achieved because set A is finite.

Lemma 13. For any subsets A,B ⊆ A and any agent a ∈ A if ∥A∥a + ε >
∥B∥a, then ∥A∥a ≥ ∥B∥a.

Proof. By the choice of ε, we have either ∥A∥a = ∥B∥a or |(∥A∥a−∥B∥a)| > ε.
Thus, ∥A∥a ≥ ∥B∥a by Lemma 12. ⊠

Lemma 14. A ⊆ Â for each subset A ⊆ A.

Proof. Suppose that a ∈ A. Thus, ⊢ A� a by Reflexivity axiom. Therefore,
a ∈ Â by Definition 8. ⊠

Lemma 15. X ⊢ A� Â, for each subset A ⊆ A.

Proof. Let Â = {a1, . . . , an}. By the definition of Â, X ⊢ A � ai, for any
i ≤ n. We prove, by induction on k, that X ⊢ A � a1, . . . , ak for each
0 ≤ k ≤ n.
Base Case: X ⊢ A� ∅ by Reflexivity axiom.
Induction Step: Assume that X ⊢ A� a1, . . . , ak. By Augmentation axiom,

X ⊢ A, ak+1 � a1, . . . , ak, ak+1. (4)

Recall that X ⊢ A� ak+1. Again by Augmentation axiom, X ⊢ A�A, ak+1.
Hence, X ⊢ A� a1, . . . , ak, ak+1, by (4) and Transitivity axiom. ⊠
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7.2. Canonical Social Network

Next, based on the sociogram (A, w) and the maximal consistent set X,
we define the “canonical” social network NX = (A, w, θ). We then proceed
to prove the core properties of this network.

Definition 9.

θ(a) =

{
0, if X ⊢ ∅ � a,

maxa/∈B̂ ∥B̂∥a + ε, otherwise.

The maximum in the above definition is taken over all subsets B of A such
that B̂ does not contain agent a.

Lemma 16. Function θ(a) is well-defined for each a ∈ A.

Proof. We need to show that if X ⊬ ∅ � a, then there is at least one subset
B ⊆ A such that a /∈ B̂. It suffices to show that a /∈ ∅̂, which is true due to
assumption X ⊬ ∅ � a and Definition 8. ⊠

Lemma 17. For any subset B ⊆ A, if a ∈ A\B∗, then there is C ⊆ A such

that a /∈ Ĉ and θ(a) = ∥Ĉ∥a + ε.

Proof. If θ(a) = 0, then a ∈ B1 due to Definition 5. Thus, a ∈ B∗ by Defini-
tion 6, which is a contradiction to the assumption a ∈ A \B∗. Suppose now
that θ(a) > 0, thus, by Definition 9, there is at least one C ⊆ A such that

a /∈ Ĉ and θ(a) = ∥Ĉ∥a + ε. ⊠

Lemma 18. If B ⊆ A and a ∈ A \ B̂, then θ(a) > ∥B̂∥a.

Proof. Case I: X ⊢ ∅�a. Note that X ⊢ B�∅ by Reflexivity axiom. Thus,
X ⊢ B � a by Transitivity axiom. Hence, a ∈ B̂ by Definition 8, which is a
contradiction to the assumption of the lemma.

Case II: X ⊬ ∅ � a. Thus, θ(a) > ∥B̂∥a by Definition 9. ⊠

Lemma 19. (B̂)k = B̂ for each B ⊆ A and each k ≥ 0.
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Proof. We prove this statement by induction on k. If k = 0, then (B̂)k = B̂,
by Definition 5. Note next that by Definition 5, the induction hypothesis,
and Lemma 18,

(B̂)k+1 = (B̂)k ∪ {a ∈ A | ∥(B̂)k∥a ≥ θ(a)}
= B̂ ∪ {a ∈ A | ∥B̂∥a ≥ θ(a)}
= B̂ ∪ {a ∈ A \ B̂ | ∥B̂∥a ≥ θ(a)} = B̂ ∪∅ = B̂.

⊠

Lemma 20. (B̂)∗ = B̂ for each B ⊆ A.

Proof. By Definition 6 and Lemma 19, (B̂)∗ =
∪

k≥0(B̂)k =
∪

k≥0 B̂ = B̂. ⊠

Lemma 21. For each B ⊆ A, if a ∈ B∗, then X ⊢ B � a.

Proof. Suppose a ∈ B∗. By Lemma 14, B ⊆ B̂. Then, B∗ ⊆ (B̂)∗ by Corol-

lary 2. Thus, a ∈ (B̂)∗. Hence, a ∈ B̂ by Lemma 20. Therefore, X ⊢ B � a
by Definition 8. ⊠

Lemma 22. For each B ⊆ A and each a ∈ A, if X ⊢ B � a, then a ∈ B∗.

Proof. By Lemma 3, θ(x) > ∥B∗∥x for each x ∈ A \ B∗. At the same

time, by Lemma 17, for each x ∈ A \ B∗ there is Cx such that x /∈ Ĉx and

θ(x) = ∥Ĉx∥x + ε. Hence, ∥Ĉx∥x + ε > ∥B∗∥x for each x ∈ A \B∗. Thus, by

Lemma 13, ∥Ĉx∥x ≥ ∥B∗∥x for each x ∈ A \B∗.
Consider partition (A \B∗) ⊔B∗ of A. By Lighthouse axiom,

⊢
∨

x∈A\B∗

B∗ � x→
∨

x∈A\B∗

Ĉx � x. (5)

Suppose that a /∈ B∗, Lemma 4 and Reflexivity axiom imply that ⊢ B∗ �B.
Thus, by assumption X ⊢ B�a and Transitivity axiom, X ⊢ B∗ �a. Hence,
statement (5) implies that

X ⊢
∨

x∈A\B∗

Ĉx � x.
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Then, due to the maximality of set X, there must exist x0 ∈ A\B∗ such

that X ⊢ Ĉx0 � x0. Thus, X ⊢ Cx0 � x0, due to Lemma 15 and Transitivity

axiom: ⊢ Cx0 � Ĉx0 → (Ĉx0 � x0 → Cx0 � x0). Hence, x0 ∈ Ĉx0 by Defini-
tion 8, which is a contradiction with the choice of set Cx. ⊠

Lemma 23. NX ⊨ φ if and only if φ ∈ X, for each formula φ ∈ Φ(A).

Proof. We prove this lemma by induction on structural complexity of formula
φ. Cases when formula φ is ⊥ or has form ψ1 → ψ2 follow in the standard
way from Definition 7 and the assumptions of maximality and consistency of
set X. Suppose that φ has form A�B.

(⇒) : Suppose that NX ⊨ A� B. Then B ⊆ A∗ by Definition 7. Hence,
b ∈ A∗ for each b ∈ B. Thus, X ⊢ A�b for each b ∈ B by Lemma 21. Hence,
b ∈ Â for each b ∈ B by Definition 8. In other words, B ⊆ Â. Thus, by
Reflexivity axiom, ⊢ Â� B. On the other hand, X ⊢ A� Â by Lemma 15.
Therefore, X ⊢ A�B by Transitivity axiom.

(⇐) : Assume X ⊢ A�B. By Reflexivity axiom, ⊢ B�b for every b ∈ B.
Hence, X ⊢ A � b for each b ∈ B by Transitivity axiom. Thus, b ∈ A∗ for
each b ∈ B, by Lemma 22. In other words, B ⊆ A∗. Therefore, NX ⊨ A�B
by Definition 7. ⊠

7.3. Main Result

We are now ready to state and prove the completeness theorem for our
logical system with respect to the semantics given in Definition 7.

Theorem 1. For any sociogram (A, w) and any formula φ ∈ Φ(A), if N ⊨ φ
for each social network N based on sociogram (A, w), then ⊢ φ.

Proof. Suppose that ⊬ φ. Let X be a maximal consistent subset of Φ(A)
such that φ /∈ X. By Lemma 23, NX ⊭ φ. ⊠

8. Decidability

In this section we discuss decidability of our logical system for any fixed
sociogram (A, w). Note that we allow arbitrary real numbers as subscripts
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in formula A�cB. Thus, the set of all formulas Φ(A) is uncountable and its
elements can not be used as inputs of a Turing machine. In order to avoid this
issue, in this section we modify Definition 1, Definition 3, and Definition 2
by assuming that only rational numbers could be used as subscripts in our
atomic formulas A �c B, as influence values, and as threshold values. It is
easy to see that the above proof of completeness is still valid. From this
change point of view, the only non-trivial place is the choice of ε for the
given sociogram (A, w) that we have made right after Definition 8. Note,
however, that the required ε could always be choose to be a rational number
because 0 is a limit point of the set of positive rational numbers.

Theorem 2. For any given sociogram S = (A, w), set {φ ∈ Φ(A) | ⊢S φ}
is decidable.

Proof. According to Theorem 1, ⊢S φ if and only if formula φ is true for
each social network (A, w, θ) based on sociogram S. This, of course, does
not imply the decidability because there are infinitely many social networks
based on sociogram S. However, it turns out that the proof of Theorem 1
that we gave above actually shows a stronger result: ⊢S φ if and only if
formula φ is true for each social network from a specific finite class C(S) of
networks based on sociogram S.

Once existence of such finite class of social networks C(S) is establish, we
should be able to claim the decidability result because one can always verify
if a formula φ is true for each out of finitely many given networks.

We are now ready to describe the finite class of social networks C(S).
The social network over sociogram S is completely defined by specifying
threshold function θ. In the proof of Theorem 1, this is done in Definition 9.
This definition depends on ε and maximal consistent set of formulas X. Note
however that the choice of ε does not depend on X and could be made based
on sociogram S alone. Once ε is fixed, the set of all values of function θ, as
specified in Definition 9, belongs to finite set

{0} ∪ {∥A∥a + ε | a ∈ A, A ⊆ A}.

The set of all social networks over sociogram S whose threshold functions use
only values from the above set is the desired finite class of social networks
C(S). ⊠
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9. Conclusion

In this article we have studied properties of influence common to all social
networks with the same weighted sociogram. We introduced a logical system
for reasoning about these properties and proved soundness and completeness
of this system. We have established that the logical system is decidable if its
syntax and semantics are restricted to rational numbers.

As has been mentioned in that introduction, perhaps more natural ques-
tion to consider is axiomatization of all common influence properties of social
networks with the same graph, without fixing distribution of either weights
or thresholds. Surprisingly, such setting yields a much more complicated set
of properties. We discuss some of these properties below.

p1

p2

r

q1

q2

Figure 12: Unweighted Sociogram U1

Consider, for example, unweighted sociogram U1 depicted in Figure 12.
LetN = (A, w, θ) be a social network based on U1. Furthermore, assume that
in social network N (i) neither of the agents p1, p2, q1, q2 is an early adopter,
(ii) N ⊨ p1, p2 � r, and (iii) N ⊨ q1, q2 � r. Thus, w(p1, r) + w(p2, r) ≥ θ(r)
and w(q1, r) + w(q2, r) ≥ θ(r). The first inequality implies that at least one
out of w(p1, r) and w(p2, r) is greater or equal than θ(r)/2. In other words,
there is i ∈ {1, 2} such that w(pi, r) ≥ θ/2. Similarly, the second inequality
implies that there is j ∈ {1, 2} such that w(qj, r) ≥ θ/2. Thus,

∥{pi, qj}∥r = w(pi, r) + w(qj, ) ≥ θ/2 + θ/2 = θ.

Hence, r ∈ {pi, qj}1 ⊆ {pi, qj}∗. Then, N ⊨ pi, qj �r. So, we have shown that
for any social network N based on unweighted sociogram U1 and satisfying
the conditions (i), (ii), (iii), there are i, j ∈ {1, 2} such that N ⊨ pi, qj � r.
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This could be formally stated as

U2 ⊨ p1, p2 � r ∧ q1, q2 � r →
2∨

i=1

2∨
j=1

pi, qj � r ∨
∨

x∈{p1,p2,q1,q2}

∅ � x,

where disjunction
∨

x∈{p1,p2,q1,q2} ∅ � x captures the statement that one of
agents p1, p2, q1, q2 is an early adopter. The above principle is just an example
of a non-trivial property of diffusion common to all social networks with the
same unweighted sociogram. This example can be stated in a more general
form as

U2 ⊨
n∧

i=1

pi1, pi2, . . . , pin � q

→
n∨

j1=1

n∨
j2=1

· · ·
n∨

jn=1

p1j1 , p2j2 , . . . , pnjn � q ∨
n∨

i=1

n∨
j=1

∅ � pij,

where U2 is unweighted sociogram depicted in Figure 13. Complete axioma-

p11

qp12

...

p1n
p21

p22

...

p2n

...

pnn

Figure 13: Unweighted Sociogram U2

tization of properties of influence common to all social networks with a given
graph remains an open problem.

Another possible extension of our work, suggested by an anonymous re-
viewer, is to consider common logical principles of all social networks in which
all agents have the same threshold values. Such more narrow class of models
would results in a larger set of universally true principles, some of which will
not be provable from the axioms of our logical system. Formula p�q → p�r
is an example of such principle for the sociogram depicted in Figure 14. To
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p q r3 2

1

Figure 14: Sociogram S4

see how much different this new setting is from the one discussed earlier in
the article, note that in all models from this class, either all agents are early
adopters or none is.
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