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Armstrong’s Axioms and Navigation Strategies

Kaya Deuser and Pavel Naumov
Vassar College

124 Raymond Avenue
Poughkeepsie, NY 12604

{kdeuser, pnaumov}@vassar.edu

Abstract

The paper investigates navigability with imperfect informa-
tion. It shows that the properties of navigability with perfect
recall are exactly those captured by Armstrong’s axioms from
database theory. If the assumption of perfect recall is omitted,
then Armstrong’s transitivity axiom is not valid, but it can be
replaced by a weaker principle. The main technical results are
soundness and completeness theorems for the logical systems
describing properties of navigability with and without perfect
recall.

Introduction
Navigation is a commonly encountered task by autonomous
agents that need to reach a destination or, more generally, to
find a solution to a problem, where the solution is a sequence
of instructions that transition a system from one state to an-
other. This task is often performed when the agent does not
have precise information about her current location. Exam-
ples of such agents are self-navigating missiles, self-driving
cars, and robotic vacuum cleaners.

Figure 1 depicts an example T0 of a transition system.
This system consists of eight states a, . . . , h represented by
the vertices of the graph. The agent cannot distinguish state
a from state b and state c from state d, which is denoted by
dashed lines connecting the indistinguishable states. The di-
rected edges of the graph represent transitions that the sys-
tem can make and the labels on these edges represent the
instructions that the agent must give to do this. For exam-
ple, if in state a the agent executes instruction 0, then the
system transitions into state g, if, instead, the agent executes
instruction 1, the system transitions into state e. Although in
this paper we consider non-deterministic transition systems
where the execution of the same instruction can transition
the system into one of the several states, for the sake of sim-
plicity the transition system T0 is deterministic.

Note that, in system T0 the agent can navigate from state
a to state c by using instruction 1 in state a and the same in-
struction 1 again in state e. However, a different sequence of
instructions is required to reach state c from state b. As the
agent cannot distinguish state a from state b, in state a she
does not know which instructions to use to accomplish her
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Figure 1: Transition System T0.

goal. Moreover, if the agent does reach state c, she cannot
verify that the task is completed, because she cannot distin-
guish state c from state d. For this reason, in this paper in-
stead of navigation between states, we consider navigation
between equivalence classes of states with respect to the in-
distinguishability relation. For example, the agent can navi-
gate from class ras “ ta, bu to class rcs “ tc, du by using
instruction 1 in each state she passes.

Perfect Recall In order to achieve a goal, the agent would
need to follow a certain strategy that must be stored in her
memory. We assume that the strategy is permanently stored
(“hardwired”) in the memory and cannot be changed dur-
ing the navigation. For example, a robotic vacuum cleaner
might be programmed to change direction when it encoun-
ters a wall, to make a circle when the dirt sensor is triggered,
and to follow a straight path otherwise. A crucial question
for us is if the vacuum cleaner can remember the walls and
the dirty spots it has previously encountered. In other words,
we distinguish an agent that can keep track of the classes of
states she visited and the instructions she used from an agent
who only knows her current state. We say that in the former
case the agent has perfect recall and in the later she does not.

A strategy of an agent without perfect recall can only use
information available to her about the current state to decide
which instruction to use. In other words, a strategy of such
an agent is a function that maps classes of indistinguishable
states into instructions. A strategy of an agent with perfect
recall can use information about the history of previous tran-



sitions to decide which instruction to use. In other words, a
strategy of such an agent is a function that maps classes of
indistinguishable histories into instructions. We call the for-
mer memoryless strategies and the later recall strategies.

In theory, a robotic vacuum cleaner without perfect recall
is only equipped with read-only memory to store the strat-
egy. A theoretical robotic vacuum with perfect recall in ad-
dition to read-only memory that contains the strategy also
has an unlimited read-write memory that contains logs of all
previous transitions. In practice, the most popular brand of
robotic vacuum cleaners, Roomba, is only using read-write
memory to store information, such as a cleaning schedule,
that is not used for navigation. This means that Roomba is
using a memoryless strategy. The other popular robotic vac-
uum cleaner, Neato, is scanning the room before cleaning
to use this information for navigation purposes. Although,
of course, Neato only has a read-write memory of a limited
size, the navigation strategy used by Neato is an example of
a recall strategy.

Examples Transition system T0 has a recall strategy to
navigate from class ras to class res. This might be surpris-
ing, because the same strategy must work to navigate from
both state a and state b of class ras to the only state e of
class res. Yet, one would expect to use instruction 1 in state
a and instruction 0 in state b to get to e. The recall strategy
to navigate from class ras to class res consists in first using
instruction 0 once no matter what the starting state is, and
then using instruction 1 until state e is reached. When this
strategy is used starting from a state in class ras, the system
first transitions into state g, then into state a, and then finally
into state e. This is a recall strategy because it uses a differ-
ent instruction in state a depending if the system has already
visited a state in class rgs or not.

To show that there is no memoryless strategy to navigate
from class ras to class res note that any such strategy will
have to use the same instruction i0 at every visit to states a
and b. If i0 “ 0, then when the navigation starts in state b,
the system stays “locked” in set of states ta, g, bu and never
reaches state e. Similarly, if i0 “ 1, then when the navi-
gation starts in state b, the system stays “locked” in set of
states tb, f, d, hu and never reaches state e. Thus, there is no
memoryless strategy to navigate from class ras to class res.

In some situation, even when there is a path between ap-
propriate states, there might be no memoryless strategy and
no recall strategy. For example, transition system T0 has no
recall strategy to navigate from class rcs to class rgs. Indeed,
if such a recall strategy exists, it would have to use the same
instruction i0 when the system starts in either state c or state
d. Suppose i0 “ 0. Thus, if the system starts in state c it is
“locked” in state h. Assume now that i0 “ 1. Hence, if the
system starts in state d it is “locked” in state h. Therefore,
there is no recall strategy from class rcs to class rgs.

Table 1 shows when memoryless strategies and recall
strategies between classes of states of transition system T0
exist. In this table, letter “m” at the intersection of row x
and column y denotes the existence of a memoryless strat-
egy from class x to class y. Letter “r” denotes the existence
of a recall strategy, but no memoryless strategy, and dash “-”

ta, bu tc, du teu tfu tgu thu
ta, bu m m r r m r:

tc, du - m - - - r:

teu m m m r: m m
tfu m m r: m m m
tgu m m m m m m:
thu - - - - - m

Table 1: Navigability between classes in system T0.

denotes that neither memoryless strategy nor recall strategy
exist. Symbol : marks the cases that we have found to be
interesting to think about.

Navigability between Sets As we have seen, there is a re-
call strategy, but no memoryless strategy, to navigate from
class ras to class res. One can similarly show that there is no
memoryless strategy to navigate from class ras to class rf s.
However, if the goal is to navigate from class ras to either
class res or to class rf s, then there is a memoryless strategy
to do this. Indeed, consider a memoryless strategy that uses
instruction 1 in every state. This strategy can transition the
system from a state of class ras to a state of a class in set
tres, rf su.

Thus, navigability between sets of classes can not be re-
duced to navigability between classes. For this reason, in
this paper we study properties of navigability between sets
of classes. If there is a strategy to navigate from a set of
classes A to a set of classes B, then we write ABB. It will
be clear from the context if we refer to the existence of a
memoryless strategy or a recall strategy.

Universal Properties of Navigability In the examples
above we talked about properties of navigability for the tran-
sition system T0. In the rest of this paper we study universal
properties of navigability between sets of classes that are
true in all transition systems. An example of such a prop-
erty is reflexivity: A B B, where A Ď B. This property is
true for both memoryless and recall strategies because abso-
lutely any strategy can be used to navigate from a subset to
the whole set. In fact, in this case the goal is achieved before
the navigation even starts.

Another example of a property of navigation which is uni-
versally true for both memoryless and recall strategies is
augmentation: ABB Ñ pAYCqB pBYCq. It says that if
there is a strategy to navigate from set A to set B, then there
is a strategy to navigate from set AY C to set B Y C.

An example of a property which is universally true for
recall strategies, but is not universally true for memoryless
strategies is transitivity: A B B Ñ pB B C Ñ A B Cq. It
states that if there is a strategy to navigate from set A to set
B and a strategy to navigate from set B to set C, then there
is a strategy to navigate from set A to set C. To see that this
property is not universally true for memoryless strategies,
note that, in transition system T0, memoryless strategy that
always uses instruction 0 can be used to navigate from set
trasu to set trgsu and memoryless strategy that always uses
instruction 1 can be used to navigate from set trgsu to set
tresu. At the same time, as we have shown earlier, there is no



memoryless strategy to navigate from set trasu to set tresu.
In this paper we show that reflexivity, augmentation, and

transitivity principles form a sound and complete logical
system that describes all universal properties of naviga-
bility by recall strategies. These are the three principles
known in database theory as Armstrong’s axioms (Garcia-
Molina, Ullman, and Widom 2009, p. 81), where they give
a sound and complete axiomatization of functional depen-
dency (Armstrong 1974). We also give a sound and com-
plete axiomatization of universal properties of navigabil-
ity by memoryless strategies. It consists of the reflexivity
and augmentation principles mentioned above as well as the
monotonicity principle pA Y Cq B B Ñ A B B. The lat-
ter principle is true for the recall strategies as well, but it is
provable from Armstrong’s axioms.

Literature Review Most of the existing literature on log-
ical systems for reasoning about strategies is focused on
modal logics. Logics of coalition power were developed
by (Pauly 2001; 2002), who also proved the completeness
of the basic logic of coalition power. Pauly’s approach has
been widely studied in literature (Goranko 2001; van der
Hoek and Wooldridge 2005; Borgo 2007; Sauro et al. 2006;
Ågotnes et al. 2010; Ågotnes, van der Hoek, and Wooldridge
2009; Belardinelli 2014). Alternative logical system were
proposed by (More and Naumov 2012), (Wang 2015; 2016),
and (Li and Wang 2017). (Alur, Henzinger, and Kupferman
2002) introduced Alternating-Time Temporal Logic (ATL)
that combines temporal and coalition modalities. (van der
Hoek and Wooldridge 2003) proposed to combine ATL
with epistemic modality to form Alternating-Time Tempo-
ral Epistemic Logic. A completeness theorem for a logical
system that combines coalition power and epistemic modal-
ities was proven by (Ågotnes and Alechina 2012).

The notion of a strategy that we consider in this paper
is much more restrictive than the notion of strategy in the
works mentioned above. Namely, we assume that the strat-
egy must be based only on the information available to the
agent. This is captured in our setting by requiring the strat-
egy to be the same in all indistinguishable states or his-
tories. This restriction on strategies has been studied be-
fore under different names. (Jamroga and Ågotnes 2007)
talk about “knowledge to identify and execute a strategy”,
(Jamroga and van der Hoek 2004) discuss “difference be-
tween an agent knowing that he has a suitable strategy
and knowing the strategy itself”. (van Benthem 2001) calls
such strategies “uniform”. (Naumov and Tao 2017a) use
the term “executable strategy”. (Naumov and Tao 2017b)
proposed a complete trimodal logical system describing an
interplay between distributed knowledge, uniform strategic
power modality, and standard strategic power modality for
achieving a goal by a coalition in one step. (Fervari et al.
2017) developed a complete logical system in a single-agent
setting for uniform strategies to achieve a goal in multiple
steps. (Naumov and Tao 2017a) developed a similar system
for maintaining a goal in multi-agent setting. Our contribu-
tion is different from all of the above papers by being the first
to propose complete logical systems for recall strategies and
memoryless strategies.

Paper Outline In the next section we define transition sys-
tems and the syntax of our logical systems. This section ap-
plies equally to recall and memoryless strategies. The rest
of the paper is split into two independent sections. The first
of them proves the soundness and the completeness of Arm-
strong’s axioms for navigability under recall strategies and
the second gives an axiomatization for memoryless strate-
gies.

Syntax and Semantics
In this section we formally define the language of our logi-
cal system, the notion of a transition system, and the related
terminology. In the introduction, relation B was viewed as
a relation between equivalence classes of a given transition
system. Thus, our language depends on these classes and
changes from transition system to transition system. In or-
der to have a single language for all transition systems we
introduce a fixed finite set of “views” V , whose elements act
as names of the equivalence classes in any given transition
system.

Definition 1 Φ is the minimal set of formulae such that
1. ABB P Φ for all nonempty1 sets A,B Ď V ,
2.  ϕ,ϕÑ ψ P Φ for all formulae ϕ,ψ P Φ.

Each transition system specifies a mapping ˚ of views into
equivalence classes of states. Transitions between states un-
der an instruction i are captured by a transition function ∆i.
Definition 2 pS,„, ˚, I, t∆iuiPIq is a transition system, if

1. S is a set of states,
2. „ is an equivalence (indistinguishability) relation on S,
3. ˚ is a function from V to S{„,
4. I is an arbitrary nonempty set of “instructions”,
5. ∆i maps set S into nonempty subsets of S for each i P I .
We write a˚ instead of ˚paq, where a P V . An example of a
transition system is system T0 depicted in Figure 1.

Definition 3 A finite sequence w0, i1, w1, . . . , in, wn,
where n ě 0, is called a history if

1. wk P S for each k such that 0 ď k ď n,
2. ik P I , for each k such that 1 ď k ď n,
3. wk P ∆ikpwk´1q, for each k such that 1 ď k ď n.

For example, sequence g, 1, a, 1, e, 1, c, 0, h is a history for
system T0. The set of all histories is denoted by H .

Definition 4 History h “ w0, i1, w1, . . . , in, wn is indis-
tinguishable from history h1 “ w10, i1, w

1
1, . . . , in, w

1
n if

wk „ w1k for each k such that 0 ď k ď n.

For example, histories a, 0, g and b, 0, g are indistinguish-
able in transition system T0. Indistinguishability of histories
of h and h1 is denoted by h « h1. The equivalence class
of history h with respect to this equivalence relation is de-
noted by vhw. Equivalence class of a state w with respect to
equivalence relation „ is denoted by rws.

1If one allows sets A and B to be empty, most of the proofs
in this paper will remain unchanged, but both logical systems will
need an additional axiom  pAB∅q for each nonempty set A.



Lemma 1 If w0, i1, w1, . . . , wn « w10, i1, w
1
1, . . . , w

1
n, then

rwks “ rw
1
ks for each k ď n. b

Definition 5 A memoryless strategy is a function from set
S{„ to set I . A recall strategy maps set H{« to set I .
We write srws and svhw instead of sprwsq and spvhwq.
Definition 6 An infinite sequence w0, i1, w1, i2, w2 . . . is
called a path under a memoryless strategy s if for each
k ě 1

1. w0, i1, w1, i2, w2 . . . , wk´1 P H ,
2. ik “ srwk´1s.
Lemma 2 For any history w0, i1, w1, . . . , in, wn and any
memoryless strategy s, if ik “ srwk´1s for each k such
that 1 ď k ď n, then there are states wn`1, wn`2, . . .
and instructions in`1, in`2, . . . such that sequence
w0, i1, w1, . . . , in, wn, in`1, wn`1, in`2, wn`2, . . . is a
path under strategy s.
Proof. Elements in`1, wn`1, in`2, wn`2, . . . can be
constructed recursively because (a) there is a state
wk`1 P ∆ik`1

pwkq for any state wk and any ik`1 P I by
item 5 of Definition 2; (b) I ‰ ∅ by item 4 of Defini-
tion 2. b

Definition 7 An infinite sequence w0, i1, w1, i2, w2 . . . is
called a path under a recall strategy s if for each k ě 1

1. w0, i1, w1, i2, w2 . . . , wk´1 P H ,
2. ik “ svw0, i1, w1, i2, w2 . . . , wk´1w.
Definition 8 A˚ “ ta˚ | a P Au, for all sets A Ď V .
Definition 9 For a given memoryless strategy or re-
call strategy s, let PathspAq be the set of all paths
w0, i1, w1, i2, w2 . . . under s such that rw0s P A

˚.
Definition 10 Let set V isitspBq be the set of all paths
w0, i1, w1, i2, w2 . . . under s such that rwks P B

˚ for some
k ě 0.
We write V isitpBq instead of V isitspBq when value of s is
clear from the context.

Navigation with Recall Strategies
In this section we show that Armstrong’s axioms give a com-
plete axiomatization of navigability between sets of classes
with recall strategies. We start with a formal semantics of
navigability relation B under recall strategies.
Definition 11 T ( A B B if PathspAq Ď V isitpBq for
some recall strategy s of transition system T .

Axioms The axioms of the logical system that we consider
in this section are the tautologies in language Φ and the fol-
lowing additional principles known as Armstrong’s axioms
(Garcia-Molina, Ullman, and Widom 2009, p. 81):

1. Reflexivity: ABB, where A Ď B,
2. Augmentation: ABB Ñ pAY CqB pB Y Cq,
3. Transitivity: ABB Ñ pB B C Ñ AB Cq.
We write $ ϕ if formula ϕ is provable from these axioms
using the Modus Ponens inference rule. We write X $ ϕ if
ϕ is provable using a set of additional axioms X .

Soundness In this section we prove soundness of the
above axioms with respect to perfect recall semantics.
Theorem 1 If $ ϕ, then T ( ϕ for every system T .

The soundness of Armstrong’s axioms with respect to per-
fect recall semantics is established in Lemma 10, Lemma 11,
and Lemma 12 below. We start with technical notions that
we need to prove Lemma 12.
Definition 12 For any history w0, i1, . . . , in, wn and any
set B Ď V , let truncation pw0, i1, . . . , in, wnq|B be

1. w0, i1, . . . , in, wn, if n “ 0 or rw0s P B
˚,

2. pw1, i2, . . . , in, wnq|B , otherwise.

For transition system T0, if B “ tbu and b˚ “ res, then
truncation pg, 1, a, 1, e, 1, c, 0, hq|B is history pe, 1, c, 0, hq.
Lemma 3 If h1 « h2, then h1|B « h2|B . b

Definition 13 For any recall strategies s1 and s2, any set
B Ď V , and any history h “ w0, i1, . . . , wn, let

ps1 ˝B s2qvhw “

"

s1vhw, if @k ď n prwks R B
˚q,

s2vh|Bw, otherwise.

In other words, “composition” strategy s1˝Bs2 follows strat-
egy s1 until a state w is reached such that rws P B˚. Once
this happens, the memory of all prior states and instructions
is erased and strategy s2 is executed as if navigation started
from state w.
Lemma 4 Operation s1 ˝B s2 is well-defined.

Proof. See Definition 12, Lemma 1, and Lemma 3. b

Definition 14 For any path w0, i1, w1, i2, . . . and any set
B Ď V , let truncation pw0, i1, w1, i2, . . . q|B be

1. path w0, i1, w1, i2, . . . , if rw0s P B
˚,

2. path pw1, i2, w2, i3 . . . q|B , otherwise.

Lemma 5 For any recall strategies s1, s2 and any sets
A,B Ď V , if path π P Paths1˝Bs2pAq X V isitpBq, then
π|B P Paths2pBq. b

Lemma 6 Paths1˝Bs2pAq Ď V isitpBq if Paths1pAq Ď
V isitpBq, for any recall strategies s1, s2 and A,B Ď V .

Proof. Assume that there is a path w0, i1, w1, . . . in
Paths1˝Bs2pAq such that w0, i1, w1, ¨ ¨ ¨ R V isitpBq. Thus,
ik “ ps1 ˝B s2qvw0, i1, w1, . . . , wk´1w for each k ě 1
and rw0s P A˚ by Definition 9 and Definition 7. Also,
rwks R B

˚ for each k ě 0 by Definition 10. Hence, by Def-
inition 13, we have ik “ s1vw0, i1, w1, . . . , wk´1w for each
k ě 1. Thus, w0, i1, w1, ¨ ¨ ¨ P Paths1pAq by Definition 7
and Definition 7. Therefore, w0, i1, w1, ¨ ¨ ¨ P V isitpBq by
the assumption Paths1pAq Ď V isitpBq of the lemma. b

Lemma 7 For any recall strategies s1, s2 and A,B Ď V ,
if Paths1˝Bs2pAq Ď V isitpBq, then pPaths1˝Bs2pAqq|B Ď
Paths2pBq.
Proof. Consider any path π P Paths1˝Bs2pAq. Then,
π P V isitpBq because Paths1˝Bs2pAq Ď V isitpBq.
Hence, π|B P Paths2pBq by Lemma 5. b



Lemma 8 PathspAq Ď V isitpCq, if pPathspAqq|B Ď

V isitpCq, for any s and any A,B,C Ď V . b

Lemma 9 For any recall strategy s and any A,B,C Ď V ,

1. PathspAq Ď PathspBq if A Ď B,
2. PathspAq Ď V isitpAq,
3. PathspAY Cq “ PathspAq Y PathspCq,
4. V isitpBq Y V isitpCq “ V isitpB Y Cq.

Proof. See Definition 7 and Definition 10. b

The next three lemmas prove soundness of Armstrong’s ax-
ioms with respect to the perfect recall semantics.

Lemma 10 T ( ABB, where A Ď B.

Proof. By Definition 2, set I is nonempty, and thus it
contains at least one instruction i0. Let s be a recall strategy
such that svhw “ i0 for each history h. By item 1 and
item 2 of Lemma 9, PathspAq Ď PathspBq Ď V isitpBq.
Therefore, T ( ABB by Definition 11. b

Lemma 11 If T ( ABB, then T ( pAY CqB pB Y Cq.

Proof. By Definition 11, the assumption T ( ABB implies
that there exists a recall strategy s such that PathspAq Ď
V isitpBq. Thus, by item 3, item 2, and item 4 of Lemma 9,

PathspAY Cq “ PathspAq Y PathspCq

Ď V isitpBq Y PathspCq

Ď V isitpBq Y V isitpCq

Ď V isitpB Y Cq.

Therefore, T ( pAY CqB pB Y Cq by Definition 11. b

Lemma 12 If T ( ABB and T ( BBC, then T ( ABC.

Proof. By the assumption T ( A B B and Definition 11,
we have Paths1pAq Ď V isitpBq for some recall strategy
s1. Similarly, the assumption T ( B B C implies that there
exists a recall strategy s2 such that Paths2pBq Ď V isitpCq.

By Lemma 6, statement Paths1pAq Ď V isitpBq implies
Paths1˝Bs2pAq Ď V isitpBq. Thus, by Lemma 7,

pPaths1˝Bs2pAqq|B Ď Paths2pBq.

Hence, we have pPaths1˝Bs2pAqq|B Ď V isitpCq be-
cause of Paths2pBq Ď V isitpCq. Thus, by Lemma 8,
Paths1˝Bs2pAq Ď V isitpCq. Therefore, T ( A B C by
Definition 11. b

Completeness In the rest of this section we prove the com-
pleteness of Armstrong’s axioms with respect to the perfect
recall semantics. We start by defining a canonical transition
system T pXq “ pV Y töu,“, ˚, I, t∆iuiPIq for an arbi-
trary maximal consistent set of formulae X Ď Φ. The set of
states of this transition system consists of a single state for
each view, plus one additional state that we denote by sym-
bol ö. Informally, the additional state is a sink or a “black
hole” state from which there is no way out. State h in tran-
sition system T0 depicted in Figure 1 is an example of a
black hole state. Note that the indistinguishability relation

on the states of the canonical transition system is equality
relation “. That is, the agent has an ability to distinguish
any two different states in the system. The fact that equality
is suitable as an indistinguishability relation for the canon-
ical transition system with perfect recall is surprising. The
indistinguishability relation for the canonical transition sys-
tem for memoryless strategies, discussed in the next section,
is different from equality.

Each view v P V is also a state in the canonical transition
system. The equivalence class of state v consists of the state
itself: rvs “ tvu. We define v˚ to be class rvs.

Lemma 13 u P A iff rus P A˚ for each view u P V and
each set A Ď V . b

Informally, if setX contains formulaABB, then we want
the canonical transition system T pXq to have a recall strat-
egy to navigate from set A˚ “ tras | a P Au “ ttau | a P
Au to set B˚ “ trbs | b P Bu “ ttbu | b P Bu. It turns
out that it is sufficient to have just a single instruction that
transitions the system from any state in set A to a state in set
B. We denote this instruction by pair pA,Bq.

Definition 15 I “ tpA,Bq | ABB P Xu.

Recall that assumption ABB P X requires sets A and B to
be nonempty due to Definition 1.

As discussed above, for any instruction pA,Bq we define
the nondeterministic transition function ∆pA,Bq to transition
the system from a state in A to a state in B. If used outside
of set of states A, instruction pA,Bq transitions the system
into black hole state ö:

Definition 16

∆pA,Bqpwq “

"

B, if w P A,
töu, otherwise.

This concludes the definition of the transition system T pXq.
Next, for any recall strategy s and any set of statesG Ď V ,

we define a family of sets of states tGs
nuně0. Informally, set

Gs
n is the set of all states from which strategy s “draws” the

system into set G after at most n transitions. For any history
h “ w0, i1, w1, . . . , in, wn, by hdphq we mean the state wn.

Definition 17 For any recall strategy s and any nonempty
set G Ď V , let chain of Gs

0 Ď Gs
1 Ď ¨ ¨ ¨ Ď V Y töu be

defined as

1. Gs
0 “ G,

2. Gs
n`1 “ Gs

nY
 

hdphq
ˇ

ˇ h P H and ∆svhwphdphqq Ď Gs
n

(

for all n ě 0.

Note that this definition, in essence, has an existential quan-
tifier over history h. Thus, informally, strategy s is allowed
to “manipulate” the history in order to “draw” the system
into set G.

Lemma 14 ö R Gs
n for each n ě 0.

Proof. We prove this statement by contradiction. Let n be
the smallest non-negative integer number such that ö P Gs

n.
Note that n ‰ 0 because Gs

0 “ G Ď V by Definition 17.
Thus, n ą 0. Hence, by Definition 17, there exists a history
h such that hdphq “ ö and ∆svhwpöq Ď Gs

n´1. Note that



∆svhwpöq “ töu by Definition 16. Therefore, ö P Gs
n´1,

which contradicts the choice of integer n. b

Definition 18 Gs
8 “

Ť

kě0G
s
k.

We now prove properties of the family of sets tGs
nuně0 that

are needed to finish the proof of the completeness.
Lemma 15 X $ tgu B Gs

n´1 for each integer n ě 1 and
each state g P Gs

n.
Proof. By Definition 17, assumptions n ě 1 and g P Gs

n
imply that there is a history h such that hdphq “ g and

∆svhwpgq Ď Gs
n´1. (1)

Furthermore, by Definition 15, there are nonempty sets
A,B Ď V such that svhw “ pA,Bq.
Case I: g R A. Then, ∆svhwpgq “ töu by Definition 16.
Hence, töu Ď Gs

n´1 by equation (1), which contradicts
Lemma 14.
Case II: g P A. Then, $ tgu B A by the Reflexivity axiom.
At the same time, X $ A B B by Definition 15. Thus, by
the Transitivity axiom, X $ tguBB.

Assumption g P A implies ∆svhwpgq “ B, by Defi-
nition 16. Thus, B Ď Gs

n´1 due to equation (1). Hence,
$ B BGs

n´1 by the Reflexivity axiom.
Finally, statementsX $ tguBB and$ BBGs

n´1 by the
Transitivity axiom imply, using Modus Ponens inference
rule twice, that X $ tguBGs

n´1. b

Lemma 16 For any n ě 1 and any views a1, . . . , an P V , if
X $ takuBB for each k ď n, thenX $ ta1, . . . , anuBB.
Proof. We prove this statement by induction on n. In the
base case, X $ ta1u B B due to the assumption of the
lemma.

By the induction hypothesis, X $ ta1, . . . , an´1u B B.
Thus, by the Augmentation axiom,

X $ ta1, . . . , an´1, anuBB Y tanu. (2)

At the same time, X $ tanu B B by the assump-
tion of the lemma. Hence, by the Augmentation axiom
X $ B Y tanu B B. Thus, X $ ta1, . . . , an´1, anu B B
by statement (2) and the Transitivity axiom. b

Lemma 17 X $ Gs
n BGs

n´1 for each n ě 1.
Proof. The statement of the lemma follows from Lemma 15
and Lemma 16. b

Lemma 18 X $ Gs
n BG for each n ě 0.

Proof. We prove this statement by induction on integer n. In
the base case, due to Definition 17, it suffices to show that
$ GBG, which is an instance of the Reflexivity axiom.

For the induction step, note that X $ Gs
n B Gs

n´1
by Lemma 17. At the same time, X $ Gs

n´1 B G by
the induction hypothesis. Hence, X $ Gs

n B G by the
Transitivity axiom. b

Lemma 19 There is n ě 0, such that Gs
8 “ Gs

n.

Proof. Since Gs
0 Ď Gs

1 Ď Gs
2 Ď ¨ ¨ ¨ Ď V Y töu

and set V is finite, there must exist an integer n such that
Gs

n “
Ť

kě0G
s
k. Therefore,Gs

n “ Gs
8 by Definition 18. b

Lemma 20 Set p∆svhwphdphqqqzG
s
8 is non-empty for each

history h such that hdphq R Gs
8.

Proof. Suppose ∆svhwphdphqq Ď Gs
8 for some history h.

It suffices to show that hdphq P Gs
8. Indeed, by Lemma 19

there is n such that Gs
8 “ Gs

n. Thus, ∆svhwphdphqq Ď Gs
n.

Hence, hdphq P Gs
n`1 by Definition 17. Then, hdphq P Gs

8

by Definition 18. b

Lemma 21 For any positive integer k and any history
w0, i1, w1, . . . , wk´1, if wk´1 R G

s
8, then there is a state

wk R Gs
8 such that w0, i1, w1, . . . , wk´1, ik, wk is a his-

tory, where ik “ svw0, i1, w1, . . . , wk´1w.
Proof. By Lemma 20, set p∆ikpwk´1qqzG

s
8 is not empty.

Let wk be any state such that wk P ∆ikpwk´1q and
wk R Gs

8. Then, w0, i1, w1, . . . , wk´1, ik, wk is a history
by Definition 3. b

Lemma 22 For each state w0 R Gs
8 there exists a path

w0, i1, w1, . . . under recall strategy s such that wk R G
s
8

for each k ě 0.
Proof. Note that single-element sequence w0 is a history by
Definition 3. Due to Lemma 21, there is an infinite sequence
w0, i1, w1, . . . such that for each integer k ě 1,

1. w0, i1, w1, . . . , wk´1 is a history,
2. ik “ svw0, i1, w1, . . . , wk´1w,
3. wk R G

s
8.

By Definition 7, sequence w0, i1, w1, . . . is a path under
recall strategy s. b

Lemma 23 If X $ ABB, then T pXq ( ABB.
Proof. Assumption X $ A B B implies pA,Bq P I by
Definition 15. Consider recall strategy s such that svhw “
pA,Bq for each class of histories vhw. Consider any path
w0, i1, w1, . . . under recall strategy s where rw0s P A˚.
Then, w0 P A by Lemma 13.

By Definition 11 and Definition 10 it suffices to show that
rw1s P B

˚. Indeed, i1 “ pA,Bq by choice of recall strategy
s. Thus, ∆i1pw0q “ ∆pA,Bqpw0q “ B by Definition 16 and
due to the assumption w0 P A.

By Definition 7, sequence w0, i1, w1 is a history. Hence,
w1 P ∆i1pw0q by Definition 3. Thus, w1 P ∆i1pw0q “ B.
Then, rw1s P B

˚ by Lemma 13. b

Lemma 24 If T pXq ( E BG, then X $ E BG.
Proof. By Definition 11, assumption T pXq ( EBG implies
PathspEq Ď V isitpGq for some recall strategy s.
Case I: E Ď Gs

8. By Lemma 19 there exists an integer
n ě 0, such that E Ď Gs

n. Thus, $ E B Gs
n by the Reflex-

ivity axiom. At the same time, X $ Gs
n BG by Lemma 18.

Therefore, X $ E BG by the Transitivity axiom.



Case II: E Ę Gs
8. Then, there is an element w0 P E

such that w0 R Gs
8. Thus, by Lemma 22 there is a path

π “ w0, i1, w1, . . . under recall strategy s such that
wk R Gs

8 for all k ě 0. Hence, wk R G for all k ě 0
because G “ Gs

0 Ď Gs
8 by Definition 17 and Defini-

tion 18. Thus, rw0s P E˚ and rwks R G˚ for all k ě 0
by Lemma 13. Then, states in path π P PathspEq by
Definition 9 and π R V isitpGq by Definition 10. Therefore,
PathspEq Ę V isitpGq, which contradicts the choice of
strategy s. b

Lemma 25 X $ ϕ iff T pXq ( ϕ for each ϕ P Φ.

Proof. We prove this lemma by induction on the structural
complexity of ϕ. The base case follows from Lemma 23
and Lemma 24. The induction case follows from the max-
imality and the consistency of setX in the standard way. b

We are now ready to state and prove the completeness
theorem for the recall strategies.
Theorem 2 If T ( ϕ for every system T , then $ ϕ.

Proof. Suppose & ϕ. Let X be a maximal consistent set
containing formula  ϕ. Thus, T pXq (  ϕ by Lemma 25.
Therefore, T pXq * ϕ. b

Navigation with Memoryless Strategies
In this section we give a sound and complete axiomatiza-
tion of navigability under memoryless strategies. We start
by modifying Definition 11 to refer to memoryless strate-
gies instead of recall strategies:

Definition 19 T ( A B B if PathspAq Ď V isitpBq for
some memoryless strategy s of a transition system T .

Axioms The logical system for memoryless strategies is
the same as for recall strategies with the exception that the
Transitivity axiom is replaced by the following principle:

3. Monotonicity: A1 BB Ñ ABB, where A Ď A1.

This principle can be derived from Armstrong’s axioms.

Theorem 3 If $ ϕ, then T ( ϕ for every system T .

Proof. Soundness of the Reflexivity axiom and the Aug-
mentation axiom is similar to the case of perfect recall, see
Theorem 1. Soundness of the Monotonicity axiom follows
from PathspAq Ď PathspA

1q, where A Ď A1. b

Completeness In the rest of this section we prove com-
pleteness of our logical system with respect to the memory-
less semantics. First, we define a canonical transition system
T pXq “ pS,„, ˚, I, t∆iuiPIq for an arbitrary maximal con-
sistent set of formulae X Ď Φ.

Like in the perfect recall case, the canonical system has
one state for each view and an additional “black hole” state
ö. Unlike the previous construction, the new canonical tran-
sition system has more additional states besides state ö.
Drawing on our original intuition of a transition system as a
maze, we think about these new states as “wormholes”. For

any sets of states A and B in the maze there is a wormhole
state wpA,Bq that can be used to travel one-way from set A
to set B. Then, S “ V Y töu Y twpA,Bq | A,B Ď V u.

The agent can distinguish any two different non-
wormhole states, but she can not distinguish wormholes. In
other words, each non-wormhole state v P V Y töu forms
its own indistinguishability class rvs “ tvu, while all worm-
holes belong to the same single indistinguishability class of
wormholes. Like in the perfect recall case, for each v P V ,
we define v˚ to be class rvs.

Lemma 26 u P A iff rus P A˚ for each view u P V and
each set A Ď V . b

Like in the canonical model for the perfect recall case, for
sets A,B Ď V such that X $ A B B, we introduce an
instruction pA,Bq that can be used to navigate from set A
to set B. Unlike the perfect recall case, we introduce such
an instruction only if sets A and B are disjoint. This is an
insignificant technical restriction that we use to simplify the
proof of Lemma 29.

Definition 20

I “ tpA,Bq | X $ ABB and AXB “ ∅u.

Recall that assumption X ( AB B implies that sets A and
B are nonempty due to Definition 1.

In the perfect recall case, instruction pA,Bq can be used
to transition the system directly from a state in set A to a
state in set B. In our case, this transition happens via the
wormhole state wpA,Bq. In other words, when instruction
pA,Bq is invoked in a state from set A, the system transi-
tions into state wpA,Bq. When the same instruction is in-
voked in wpA,Bq, the system transitions into a state in B.
Definition 21

∆pA,Bqpuq “

$

&

%

twpA,Bqu, if u P A,
B, if u “ wpA,Bq,

töu, otherwise.

Lemma 27 If X $ A B B and sets A and B are disjoint,
then T pXq ( ABB.

Proof. Assumptions X $ A B B and A X B “ ∅ imply
that pA,Bq P I , by Definition 20. Consider a memoryless
strategy s such that spxq “ pA,Bq for each class x. By Def-
inition 19, it suffices to show that PathspAq Ď V isitpBq.

Consider any w0, i1, w1, ¨ ¨ ¨ P PathspAq. Then, by Def-
inition 9, sequence w0, i1, w1, . . . is a path under strategy s
such that rw0s P A

˚. Hence, w0 P A by Lemma 26. Thus,

∆pA,Bqpw0q “ twpA,Bqu (3)

by Definition 21.
At the same time, w1 P ∆i1pw0q by Definition 3. Hence,

w1 P ∆srw0spw0q by Definition 6. Thus, w1 P ∆pA,Bqpw0q

by the choice of strategy s. Then, w1 “ wpA,Bq by equa-
tion (3). Hence,

∆pA,Bqpw1q “ B (4)
by Definition 21.

Similarly, w2 P ∆i2pw1q by Definition 3. Hence,
w2 P ∆srw1spw1q by Definition 6. Thus, w2 P ∆pA,Bqpw1q



by the choice of strategy s. Then, w2 P B by equa-
tion (4). Hence, rw2s P B˚ by Lemma 26. Therefore,
w0, i1, w1, i2, w2, ¨ ¨ ¨ P V isitpBq by Definition 10. b

Lemma 28 If X $ ABB, then T pXq ( ABB.

Proof. Suppose that X $ ABB.
If AzB ‰ ∅. Thus, X $ AzB B B by the Monotonicity

Axiom. Hence, T pXq ( AzBBB by Lemma 27. Therefore,
T pXq ( A B B due to the soundness of the Augmentation
axiom, see Theorem 3.

If AzB “ ∅, then A Ď B. Therefore, T pXq ( A B B
due to the soundness of the Reflexivity axiom. b

Recall that all wormhole states belong to a single indistin-
guishability class of wormholes. For any memoryless strat-
egy s, let pAs, Bsq be the instruction assigned by strategy
s to the class of wormholes. Once strategy s is fixed, the
states of the canonical transition system can be partitioned
into five groups: set As, set V zAs, the single element set
töu containing the black hole state, the single element set
twpAs, Bsqu containing the wormhole state wpAs, Bsq, and
the set twpC,Dq | pC,Dq ‰ pAs, Bsqu of all other worm-
holes. Definition 21 restricts transitions under strategy s that
are possible between these five groups of states. For exam-
ple, from set V zAs one can transition either into set töu or
into set twpC,Dq | pC,Dq ‰ pAs, Bsqu. The arrows in Fig-
ure 2 show all possible transitions between these five groups
of states allowed under Definition 21. These five groups of
states can be further classified into “above the line” and “be-
low the line” states, as shown. Notice that once the sys-
tem transitions into one of the “below the line” states, it is
trapped there and it will never be able to transition under the
memoryless strategy s into an “above the line” state.

below
the line 

above
the line

Figure 2: Transitions under memoryless strategy s.

Lemma 29 If T pXq ( E BG, then X $ E BG.

Proof. If E Ď G, then $ E B G by the Reflexivity axiom.
In the rest of the proof we suppose that there is e0 P EzG.
By Definition 19, assumption T pXq ( E B G implies that
there exists a memoryless strategy s such that PathspEq Ď
V isitpGq.

First, we show that EzG Ď As. Suppose there is a view
e1 P E such that e1 R G and e1 R As. By Definition 3,
single-element sequence e1 is a history. Thus, by Lemma 2,
there is a path π P PathspEq that starts with state e1. Since
path π starts in a state from set V zAs, all non-initial states of
this path are “below the line”, see Figure 2. Hence, neither
of the states in path π belong to set G, because e1 R G and
none of the states “below the line” are in set G either. Thus,
π P PathspEq and π R V isitpGq, which contradicts the
choice of strategy s. Therefore, EzG Ď As. In particular
e0 P As.

Second, we show that sre0s “ pAs, Bsq. Suppose that
sre0s “ pC,Dq, where pC,Dq ‰ pAs, Bsq. If e0 R C,
then π “ e0, pC,Dq,ö, srös,ö, srös, . . . is a path un-
der strategy s by Definition 6 and Definition 21. Note that
π R V isitpGq because e0 R G and π P PathspEq. This con-
tradicts PathspEq Ď V isitpGq. Similarly, if e0 P C, then
sequence π “ e0, pC,Dq, wpC,Dq, pAs, Bsq,ö, srös, . . .
is a path such that π R V isitpGq and π P PathspEq, which
again contradicts PathspEq Ď V isitpGq.

Third, we prove that Bs Ď G. Suppose that there
is a state b0 P BszG. By Definition 3, Defini-
tion 21, and the choice of instruction pAs, Bsq, sequence
e0, pAs, Bsq, wpAs, Bsq, pAs, Bsq, b0 is a history. Thus, by
Lemma 2, there is a path π P PathspEq that starts
as e0, pAs, Bsq, wpAs, Bsq, pAs, Bsq, b0. Assumption b0 P
BszG implies that b0 P V zAs because sets As and Bs are
disjoint by Definition 20. Thus, path π after state b0 contains
only states “below the line”, see Figure 2, none of which are
in set G Ď V . Recall also that e0, b0 R G by the choice of
states e0 and b0. Thus, π P PathspEq and π R V isitpGq,
which again contradicts PathspEq Ď V isitpGq.

Note that X $ As B Bs by Definition 20. Hence, X $

pAs Y Gq B pBs Y Gq by the Augmentation axiom. Thus,
X $ pAs Y Gq B G because Bs Ď G. At the same time,
EzG Ď As implies thatE Ď AsYG. Therefore,X $ EBG
by the Monotonicity axiom.

b

Lemma 30 X $ ϕ iff T pXq ( ϕ for each ϕ P Φ.

Proof. We prove this lemma by induction on the structural
complexity of ϕ. The base case follows from Lemma 28
and Lemma 29. The induction case follows from the max-
imality and the consistency of setX in the standard way. b

We are now ready to state and prove the completeness
theorem for memoryless strategies.

Theorem 4 If T ( ϕ for every system T , then $ ϕ.

Proof. Suppose & ϕ. Let X be a maximal consistent set
containing formula  ϕ. Thus, T pXq (  ϕ by Lemma 30.
Therefore, T pXq * ϕ. b

Conclusion
In this paper we have shown that the properties of naviga-
bility under perfect recall strategies are exactly those de-
scribed by Armstrong’s axioms for functional dependency



in database theory. In the absence of perfect recall, the Tran-
sitivity axiom is no longer valid, but it could be replaced by
the Monotonicity axiom.
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