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Geophysical data registration using modified plane-wave

destruction filters

Mason Daily Phillips, M.S.Geo.Sci.

The University of Texas at Austin, 2017

Supervisor: Sergey Fomel

I propose a method to efficiently measure local shifts, slopes, and scaling func-

tions between seismic traces using modified plane-wave destruction filters. Plane-

wave destruction can efficiently measure shifts of less than a few samples, making

this algorithm particularly effective for detecting small shifts. When shifts are large,

amplitude-adjusted plane-wave destruction can also be used to refine shift estimates

obtained by other methods.

Amplitude-adjusted plane-wave destruction separates estimation of local shifts

and amplitude weights, allowing the time-shift to be measured more accurately. This

algorithm has clear applications to geophysical data registration problems, including

time-lapse image registration, multicomponent image registration, automatic gather

flattening, automatic seismic-well ties, and image merging. The effectiveness of this

algorithm in predicting shifts associated with fluid migration, wave mode conver-

sions, and anisotropy and amplitude gradients associated with amplitude variations
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with offset or angle is demonstrated by applying the algorithm to a synthetic trace, a

time-lapse field data example from the Cranfield CO2 sequestration project, a multi-

component field data example from West Texas, and the Mobil AVO prestack seismic

data.

Finding correspondence between different parts of the same dataset falls into

the same category of problems as local shift estimation. Computation of structure-

oriented amplitude gradients for attribute-assisted interpretation requires the estima-

tion of local slopes by correlating reflections between neighboring seismic traces in

an image. One of the major challenges of interpreting seismic images is the delin-

eation of reflection discontinuities that are related to geologic features, such as faults,

channels, salt boundaries, and unconformities. Visually prominent reflection features

often overshadow these subtle discontinuous features which are critical to understand-

ing the structural and depositional environment of the subsurface. For this reason,

precise manual interpretation of these reflection discontinuities in seismic images can

be tedious and time-consuming, especially when data quality is poor. Discontinuity

enhancement attributes are commonly used to facilitate the interpretation process

by enhancing edges in seismic images and providing a quantitative measure of the

significance of discontinuous features. These attributes require careful pre-processing

to maintain geologic features and suppress acquisition and processing artifacts which

may be artificially detected as a geologic edge.

The plane-wave Sobel filter cascades plane-wave destruction filters with plane-

wave shaping in the transverse direction to compute an enhanced discontinuity at-

tribute. The plane-wave Sobel attribute can be applied directly to a seismic image

to efficiently and effectively enhance discontinuous features, or to a coherence image

to create a sharper and more detailed image. I demonstrate the effectiveness of this

ix



method by applying it to two field data sets from offshore New Zealand and offshore

Nova Scotia with several faults and channel features and compare the results to other

coherence attributes.
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Chapter 1

Introduction

Data registration refers to transformation of multiple different data sets or

parts of the same data set recorded by different instruments, at different times, or

at different locations into a common coordinate system by finding correspondences

between data points and aligning them. Registration is required when comparing

or integrating multiple data sets. The term “registration” was originally coined in

medical imaging (Maintz and Viergever, 1998), but has applications in situations

where multiple data sets must be analyzed, including computer vision (Horn and

Schunck, 1981), target recognition (Bar-Shalom, 1990), satellite image analysis (Kim

and Im, 2003; Nuth and Kääb, 2011), and geophysical data processing (Fomel et al.,

2005; Fomel and Jin, 2009; Baek et al., 2014; Zhang et al., 2014).

Many data analysis problems in geophysics involve measuring relative shifts

between two or more data sets, including time-lapse image registration and multi-

component image registration. Shifts between different parts of the same data set

correspond to local slopes and fall into the same category of problems. Estimation of

local slopes has clear applications in automatic gather flattening and fault detection

in seismic images. Though there are more applications (Fomel, 2002), in this thesis,

I will focus on these four topics. Greer and Fomel (2017) overviews recent advances

in image merging.
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Over the past 25 years, time-lapse seismic monitoring has evolved into the

standard method to detect spatial fluid changes in the subsurface (Lumley, 2001).

In some locations, permanent stations have been installed for continuous time-lapse

monitoring (Berron et al., 2015). In time-lapse seismic monitoring, sensitive acquisi-

tion and processing is required to detect small shifts induced by fluid migration.

Multicomponent receivers, as well as SH sources, allow S-waves to be processed

along with P-waves to create multiple images of the subsurface. Like time-lapse

seismic images, multicomponent seismic images must be registered to the same frame

of reference for proper interpretation (Hardage et al., 2011). In multicomponent

image registration, it is important to measure shifts to high resolution to ensure that

the images are in the same reference frame. Furthermore, useful attributes can be

computed from multicomponent timeshifts for fracture characterization (Tsvankin,

1997).

Prestack seismic data is routinely flattened using anisotropic moveout correc-

tions; however, it is still difficult to eliminate all reflection curvature while maintaining

a physically reasonable models of subsurface anisotropy and velocity. Flat gathers

also dramatically simplify the extraction of prestack attributes, such as amplitude

intercepts and gradients, for AVO analysis (Shuey, 1985; Castagna et al., 1998). Dy-

namic gather flattening algorithms are generally not constrained by physics and are

most suitable for refining gathers that are already nearly flat. Also, commonly used

algorithms typically use local cross-correlation or dynamic time warping to flatten

gathers. Conventional algorithms do not explicitly address amplitude variations as a

function of offset or angle in the estimation of residual moveout corrections.

Discontinuity enhancement attributes are among the most widely used seismic

2



attributes today (Chopra and Marfurt, 2007). These attributes are generally post-

stack image domain calculations of the similarity or dissimilarity along a horizon or

time-slice between a neighborhood of adjacent seismic traces. Discontinuous features,

such as faults, channels, salt boundaries, unconformities, mass-transport complexes,

and subtle stratigraphic features can be identified as area of low similarity. Such at-

tributes are powerful interpretation tools that make detailed interpretation of previ-

ously indistinguishable features possible. Orientation of amplitude gradient attributes

along seismic structures for discontinuity enhancement requires the estimation of local

slopes of seismic images.

In this thesis, I adopt and extend plane-wave destruction (Fomel, 2002) for

automatic estimation of time-variant shifts and scaling functions between seismic

traces. The proposed amplitude-adjusted plane-wave destruction filters effectively

estimate regularized time-shifts associated with fluid migration, mode conversions,

and anisotropy in the presence of noise and amplitude variations. I test the proposed

algorithm using synthetic and field data.

I subsequently propose to modify the classic Sobel filter (Sobel and Feldman,

1968) to explicitly follow seismic structures (Phillips and Fomel, 2017b). I modify

the Sobel filter by replacing the discrete differential operator with linear plane-wave

destruction (Fomel, 2002) and triangular smoothing with plane-wave shaping (Fomel,

2007b; Swindeman and Fomel, 2015). This method is particularly efficient because it

does not require computation of the eigenvectors of the covariance matrix or structure-

tensor. Local slopes are instead estimated using accelerated plane-wave destruction

(Chen et al., 2013a). I further modify the Sobel filter by orienting the filter along

the azimuth perpendicular to discontinuities by following the fast azimuth scanning

workflow proposed by Merzlikin et al. (2016). I test this modification on benchmark
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3D seismic images from offshore New Zealand and Nova Scotia, Canada and compare

the results with those from previously proposed coherence attributes.

THESIS OUTLINE

In chapter 2, I review conventional geophysical data registration techniques,

including local cross-correlation, dynamic time-warping, local similarity, and gradient

structure tensors and discuss the scenarios where each of these algorithms succeed

and fail. I subsequently review plane-wave destruction (Fomel, 2002) and introduce

the first modification of the algorithm, amplitude-adjusted plane-wave destruction.

In chapter 3, I apply amplitude-adjusted plane-wave destruction filters to a

synthetic example, a time-lapse example from the Cranfield CO2 injection experiment,

and a multicomponent example from a West Texas carbonate field.

In chapter 4, I apply amplitude adjusted plane-wave destruction filters to

flatten prestack seismic data to correct for non-hyperbolic moveout associated with

anisotropy in the presence of AVO anomalies, noise, and an imperfect initial subsur-

face velocity structure. I evaluate the effectiveness of this algorithm using a complex

synthetic midpoint gather and the famous Mobil AVO seismic data.

In chapter 5, I introduce the second modification of plane-wave destruction

filters, the plane-wave Sobel filter. This filter provides an image with isolated discon-

tinuous features commonly interpreted from seismic images, including channels and

faults. The effectiveness of this attribute is evaluated using two 3D marine seismic

volumes from offshore Nova Scotia and New Zealand. The results are compared to

other commonly used attributes and their performance is evaluated.
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In chapter 6, I summarize the work presented in this thesis with a brief dis-

cussion of the results and future applications.
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Chapter 2

Review of seismic attribute and plane-wave destruction

CROSSCORRELATION

Crosscorrelation is a measure of similarity between two digital signals system-

atically calculated at regularly spaced lags. This attribute has been used in countless

geophysical applications which involve pattern recognition. It is defined below as the

sum of the product of two digital signals where one signal has been statically shifted

γ(τ) =
Nt∑
t=0

f(t)g(t+ τ) , (2.1)

where f and g are zero mean digital signals of length Nt and τ is a time shift.

Normalized crosscorrelation can be computed over small windows to approxi-

mate the local correlation attribute. An arbitrary weighting function Wt (Gaussian,

box, triangle, etc.) can be applied to each sum.

γ(τ) =

τ+∆τ∑
t=τ−∆τ

Wtf(t)g(t+ τ)√
τ+∆τ∑
t=τ−∆τ

Wtf 2(t)

√
τ+∆τ∑
t=τ−∆τ

Wtg2(t)

, (2.2)

where ∆τ is the lag window over which the normalized crosscorrelation attribute is

computed.

By selecting the lag which corresponds to the highest correlation coefficient γ

at each sample, the warping path which maximizes the local crosscorrelation can be
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estimated; however, this warping path consists of only integer time-shifts. To alleviate

this “stair-stepping” artifact, a parabola can be constructed using least squares to fit

the lag which corresponds to the peak correlation coefficient and its two immediate

neighbors. The extreme point is calculated analytically and chosen to be the floating-

point precision time-shift (Figure 2.1).

Hale (2006) proposed an analagous algorithm which successfully predicts timeshifts

associated with reservoir compaction. Crosscorrelation based algorithms are surpris-

ingly robust given their simplicity, making them an attractive choice for geophysical

data registration problems (Rickett and Lumley, 2001). However, Kanu et al. (2016)

show that there are more reliable timeshift estimation algorithms in the application

of time-lapse reservoir monitoring.

DYNAMIC TIME WARPING

Dynamic time warping is an algorithm for measuring similarity between two

time series (Sakoe and Chiba, 1978). It is particularly effective for comparing time-

series which are similar, but temporally stretched or squeezed. This algorithm was

originally developed for speech recognition, but has found numerous applications in

image processing.

Dynamic time warping determines a warping path which optimally aligns two

signals. This path is determined by minimizing the alignment error e

e(t) = arg min
τ

(f(t)− g(t+ τ))2 . (2.3)

Traditional dynamic time warping may provide a solution which requires phys-

ically unreasonable time-shifts, so the minimization of alignment errors must be con-
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strained. Similar to the slope constraint of Sakoe and Chiba (1978), Hale (2013a) pro-

poses to impose a strain limit on the solution. This effectively windows the boundary

over which alignment errors are calculated. Additionally, Hale (2013a) smooths the

map of alignment errors before selecting the optimal warping path to alleviate high

frequency oscillations in the solution.

Dynamic time warping has been successfully applied to many geophysical data

registration problems. Hale (2013a) uses the algorithm for multicomponent image

registration and estimation of fault throws from seismic images. Qian et al. (2016)

modifies the algorithm to use an adaptive window for automatic gather flattening.

Munoz and Hale (2012) and Herrera and van der Baan (2012) use dynamic time

warping for automatic seismic-well ties. Wu and Caumon (2016) extends the work of

Munoz and Hale (2012) for automatic simultaneous multiple seismic-well ties.

Dynamic time warping can achieve a good match between two time series,

but commonly produces physically unreasonable timeshifts. Further, dynamic time-

warping cannot reliably measure small time-shifts (less than 1 sample). In applica-

tions such as time-lapse image registration, time-shifts are commonly very small (less

than one sample). Dynamic time warping may not provide sufficient resolution to

effectively address this problem.

LOCAL SIMILARITY

As the name suggests, local similarity (Fomel, 2007a) is a local attribute for

measuring the similarity between two digital signals. It can be represented as the
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product of two local attributes γ2(t) = p(t)q(t) where

p(τ) =

Nt∑
t=0

f(t)g(t+ τ)

Nt∑
t=0

g2(t)

(2.4)

and

q(τ) =

Nt∑
t=0

f(t)g(t+ τ)

Nt∑
t=0

f 2(t)

, (2.5)

are the solutions to the least-squares minimization problems

min
p

Nt∑
t=0

(f(t)− p(t)g(t))2 (2.6)

and

min
q

Nt∑
t=0

(g(t)− q(t)f(t))2 . (2.7)

Instead of using local windows, the problem can regularized by shaping regu-

larization (Fomel, 2007b). Local similarity has found successful applications to mul-

ticomponent image registration (Fomel et al., 2005), time-lapse image registration

(Fomel and Jin, 2009; Zhang et al., 2013, 2014), automatic seismic-well ties (Herrera

et al., 2014), and image merging (Greer and Fomel, 2017).

GRADIENT STRUCTURE TENSOR

On of the most common algorithms for seismic reflection slope estimation is

based on the eigendecomposition of the gradient structure tensor of a seismic image.

In 3D, the structure tensor S is a 3×3 matrix constructed as the smooth outer product

of image gradients in each dimension.

10



S =
〈
∇∇T

〉
=

 〈∂xx〉 〈∂xy〉 〈∂xz〉〈∂yx〉 〈∂yy〉 〈∂yz〉
〈∂zx〉 〈∂zy〉 〈∂zz〉

 , (2.8)

where 〈·〉 represents Gaussian smoothing. This matrix can be represented by the sum

of the outer product of its eigenvectors weighted by their corresponding eigenvalues

computed using singular value decomposition.

S =
3∑
i=1

λiuiu
T
i , (2.9)

where λi and ui are the ith eigenvalue and eigenvector pair. The order of the eigen-

vectors is defined such that λ1 ≥ λ2 ≥ λ3. u1 corresponds to the orientation which

maximizes the directional image gradient; u3 corresponds to the orientation which

minimizes the directional image gradient in the plane whose norm is defined as u1.

When applied to a seismic image with laterally continuous features, u1 is oriented

normal to seismic reflection events and u2 and u3 define the local plane which closest

approximates the seismic reflection structure. This assumption fails when discontin-

uous geological features, such as channels, faults, unconformities, and salt boundaries

are expressed in seismic images. Hale (2009b) and Wu (2017) orient anisotropic

smoothing filters along seismic structures using this formulation to compute discon-

tinuity enhancing attributes.

PLANE-WAVE DESTRUCTION

Finite-difference plane-wave destruction filters (Fomel, 2002) perform well in

applications such as noise separation, interpolation, and fault detection. The local-

plane wave model assumes seismic traces can be effectively predicted by dynamically

shifting adjacent seismic traces. This model is useful for seismic data characterization
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and is the basis for plane-wave destruction filters. The local plane-wave differential

equation is defined by Claerbout (1992) as

∂u

∂x
+ p

∂u

∂t
= 0 , (2.10)

where u is the seismic wavefield and p is the temporally and spatially variable local

slope. The optimal local slopes are determined by minimizing the regularized plane-

wave residual (Fomel, 2002).

High order plane-wave destruction filters are described in the Z-transform

notation as

C(p, Z1, Z2) = B(p, Z−1
1 )− Z2B(p, Z1) , (2.11)

where C is the plane-wave destruction filter, B is an all-pass filter, p is the local slope,

and Zi is a local shift in the ith dimension.

The coefficients of third and fifth order expansions of B are defined by Fomel

(2002) as

B3(p) =



(1− p)(2− p)
12

(2 + p)(2− p)
6

(1 + p)(2 + p)

12


(2.12)
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and

B5(p) =



(1− p)(2− p)(3− p)(4− p)
1680

(4− p)(2− p)(3− p)(4 + p)

420

(4− p)(3− p)(3 + p)(4 + p)

280

(4− p)(2 + p)(3 + p)(4 + p)

420

(1 + p)(2 + p)(3 + p)(4 + p)

1680



, (2.13)

respectively and correspond to Thiran filters (Thiran, 1971; Chen et al., 2013b)

Plane-wave destruction filters perform well in the application of slope esti-

mation, fault detection, trace interpolation, and noise separation in seismic images;

however, these filters require laterally consistent amplitudes. It is important to allow

subtle amplitude variations in the application of these types of filters to images with

lateral amplitude variations.

AMPLITUDE-ADJUSTED PLANE-WAVE
DESTRUCTION FILTERS

In the slope estimation application of plane-wave destruction filters, the proper

slope may be difficult to estimate in the presense of lateral amplitude variations.

Though the assumption of consistent lateral amplitudes may not be a limiting factor

in local slope estimation in seismic images, in the velocity independent imaging work-

flow, seismic reflections are flattened in the offset, angle, or image domain using the

local slope of seismic reflection events in gathers (Fomel, 2007c). Amplitude variations

commonly exist as a function of offset, angle or azimuth in gathers and are crucial
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for interpretation of seismic data; therefore, it is important to consider these varia-

tions when flattening gathers (Phillips, 2017). Similarly, amplitude variations exist

between time-lapse due to changes in fluid saturation. Ignoring amplitudes when

estimating 4D timeshifts may produce arbitrarily large spurious timeshift estimates

at the reservoir, particularly when the layers are below seismic resolution (MacBeth

et al., 2016).

I propose to estimate local scaling functions and spatially variable temporal

shifts by modifying plane-wave destruction (Fomel, 2002) to include scaling. A scaling

function is incorporated in the description of high-order plane-wave destruction filters.

I modify this formulation to incorporate a scaling function as follows (Phillips and

Fomel, 2016):

D(a, p, Z1, Z4) = B(p, Z−1
1 )− aZ2B(p, Z1) , (2.14)

where a is a scaling coefficient. In the matrix-vector notation, equation (2.14) can be

expressed as

D(a,p)d = Bl(p)d− diag(a)Br(p)d , (2.15)

where B and D denote the convolution operator with the filters B and D, respectively,

and d is the concatenation of multiple datasets (d =
N−1∑
i=0

diZ
i
4). r and l denote the

right and left hand side of the polynomial filter B. Our goal for the warped and

scaled data is to match the base data, therefore we seek to minimize the output

D(a,p)d ≈ 0. (2.16)
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The dependence of D on a is linear, however p enters in a nonlinear way (Chen

et al., 2013a). It is convenient to separate the problem into a linear and nonlinear

part and use the variable projection technique (Golub and Pereyra, 1973; Kaufman,

1975).

The proposed algorithm is outlined below.

1. Set p0 = 0 and a0 = 1

2. Hold the scale an constant and compute the shift pn using accelerated plane-

wave destruction (Chen et al., 2013a)

3. Shift the traces image using pn

4. Hold the shift pn constant and compute the amplitude ratio an by the smooth

division of the left and right side of the plane-wave destruction filter D in

equation (2.15):

an =

〈
Bl(pn)d

Br(pn)d

〉
(2.17)

5. Scale the gather using an

6. Iterate until convergence (return to step 2)

This algorithm efficiently shifts and scales seismic traces to match associated

traces. The estimated shifts and scaling weights are constrained to be smooth using

shaping regularization (Fomel, 2007b).
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SOBEL FILTER

The traditional Sobel operator approximates a smoothed gradient of the image

intensity function. It is defined as the convolution of an image with two 3×3 filters.

The first of these filters (Si) differentiates in the inline direction and averages in the

crossline direction. The second filter (Sx) differentiates in the crossline direction and

averages in the inline direction.

Si =

 −1 0 1
−2 0 2
−1 0 1

 =

 1
2
1

 [ −1 0 1
]

(2.18)

Sx = STi =

 −1 −2 −1
0 0 0
1 2 1

 (2.19)

In the Z-transform notation, filters (1) and (2) can be expressed as

Si(Zi, Zx) = (Zx + 2 + Z−1
x )(Zi − Z−1

i )
Sx(Zi, Zx) = (Zx − Z−1

x )(Zi + 2 + Z−1
i )

, (2.20)

where Zj is a phase shift in the j direction.

The inline and crossline images are combined to approximate the magnitude

of the image gradient (Chopra and Marfurt, 2007) where d is the data and Si and Sx

are convolution operators with the filters Si and Sx, respectively.

‖∇d‖ ≈
√

(Sid)2 + (Sxd)2 (2.21)

This filter can be applied to images to enhance discontinuous features; however,

when applied to seismic images, it is important to orient the filter along seismic

reflection structures to avoid enhancement of dipping reflection events (Phillips and

Fomel, 2017b).
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Chapter 3

Seismic image registration using amplitude-adjusted
plane-wave destruction

I propose a method to efficiently measure timeshifts and scaling functions be-

tween seismic images using amplitude-adjusted plane-wave destruction filters. Plane-

wave destruction can efficiently measure shifts of less than a few samples, making this

algorithm particularly effective for detecting small shifts. Separating shifts and scales

allows shifting functions to be measured more accurately. When shifts are large,

amplitude-adjusted plane-wave destruction can also be used to refine shift estimates

obtained by other methods. The effectiveness of this algorithm in predicting shifting

and scaling functions is demonstrated by applying it to a synthetic trace, a time-lapse

field data set from the Cranfield CO2 sequestration project and a multicomponent

field data set from West Texas.

INTRODUCTION

Over the past 25 years, time-lapse seismic monitoring has evolved into the

standard method to detect spatial fluid changes in the subsurface (Lumley, 2001).

In some locations, permanent stations have been installed for continuous time-lapse

monitoring (Berron et al., 2015).

Simple crosscorrelation based algorithms are among the most commonly used

methods for estimating 4D timeshifts. Rickett and Lumley (2001) propose cross-
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equalization, which includes spatial and temporal registration to compensate for dif-

ferent acquisition geometries and amplitude balancing to scale the data to the same

amplitude. Fomel and Jin (2009) estimate 4D timeshifts by picking a regularized

warping path which maximizes the local similarity attribute (Fomel, 2007a). Karimi

et al. (2016) use the local similarity attribute to estimate 4D timeshifts after flatten-

ing the time-lapse seismic images using the stratigraphic coordinates transformation

(Karimi and Fomel, 2015). Dynamic time warping (Sakoe and Chiba, 1978) was

originally proposed for speech recognition and has been applied to estimating 4D

timeshifts and many other data registration problems in geophysics (Hale, 2013a).

Williamson et al. (2007) explain timeshifts and amplitude changes by integrating

classical warping and impedance inversion in the limit of small offset and dip and

low frequency. This method is particularly attractive, as it iteratively compensates

for amplitude changes associated with velocity variations induced by fluid injection

or production. Hoeber et al. (2008) incorporate complex trace analysis (Taner et al.,

1979) to match local phase and amplitudes between time-lapse seismic images. Lie

(2011) extracts both timeshifts and 4D signal using a constrained inversion scheme.

Zhang and Du (2016) borrow the optical flow technique (Horn and Schunck, 1981) to

predict multidimensional timeshifts at multiple scales.

In this thesis, I adopt and extend plane-wave destruction (Fomel, 2002; Chen

et al., 2013a) for automatic estimation of time-variant shifts and rescaling functions

between seismic images. This technique iteratively refines timeshift estimates by

predicting amplitude changes from the seismic data. In time-lapse seismic monitoring,

sensitive acquisition and processing is required to detect small shifts induced by fluid

migration. I show that the proposed amplitude-adjusted plane-wave destruction filters

are particularly effective in measuring small shifts and test the proposed algorithm
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using synthetic and field data examples.

Multicomponent receivers and SH sources allow S-waves to be processed along

with P waves to create multiple images of the subsurface. Similarly to time-lapse

images, multicomponent images must be registered to the same frame of reference for

proper interpretation (Hardage et al., 2011). In multicomponent image registration,

it is important to measure shifts to high resolution to ensure that the images are in

the same reference frame.

THEORY

In the application of estimating timeshifts between time-lapse and multicom-

ponent seismic images, I modify the amplitude-adjusted plane-wave destruction filter

to

C(a, p, Z1, Z4) = B(p, Z−1
1 )− aZ4B(p, Z1) , (3.1)

where Z4 represents a shift between images. The objective of this filter remains the

same – to minimize the plane-wave residual. In the time-lapse application, I scale

and warp the monitor image to match the baseline image. In the multicomponent

application I scale and warp one component to match another. Timeshifts between

vertical-horizontal or horizontal-horizontal can be used to characterize subsurface

fractures.

This algorithm efficiently matches images by estimating shifting and scaling

functions. The estimated shifts and scaling weights are constrained to be smooth

using shaping regularization (Fomel, 2007b).
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SYNTHETIC EXAMPLE

I first test the proposed algorithm by generating a random synthetic base

trace, shifting function, and scaling function (Figure 3.1(a)). The warping and scal-

ing functions are applied to the base trace to create a synthetic monitor trace. I

attempt to measure the shifting and scaling functions from the synthetic base and

monitor traces using the proposed algorithm and compare the results with those from

alternative algorithms.

I first apply the dynamic time warping algorithm (Sakoe and Chiba, 1978;

Herrera and van der Baan, 2012; Hale, 2013b). This algorithm is particularly effective

when measuring large shifts, but it only computes integer shifts between samples on

a predefined grid. In this synthetic example and many real examples from time-lapse

monitoring, shifts are quite small and dynamic time warping is not always effective.

Indeed, the shifting function measured with dynamic time warping does not effectively

measure the small shifts in the synthetic trace and contains the unappealing “stair-

stepping” artifact due to the algorithm’s inability to measure shifts outside of the

predefined sampling grid (Figure 3.1(a)).

I then apply the local similarity scan (Fomel, 2007b, 2009) to measure the local

shifting function. This algorithm scans through shifts, computing local similarity and

picking the optimal warping path automatically. In our synthetic tests, this algorithm

effectively measures the low frequency component of the synthetic shifting function,

but fails to detect higher-frequency variations (Figure 3.1(b)).

Finally, I measure the shift using the proposed amplitude-adjusted plane-wave

destruction algorithm. Compared to dynamic time warping and local similarity,

plane-wave destruction proves to be particularly effective when measuring small,
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rapidly varying shifting functions. After only 5 iterations, the measured shifting

function converges to the predefined synthetic shift (Figure 3.1(c)). Synthetic scaling

functions are also measured effectively (Figure 3.1(d)). After applying the measured

shifting and scaling functions to the synthetic monitor trace, the result is visually

indistinguishable from the synthetic base trace (Figure 3.1(f)).

TIME-LAPSE DATA REGISTRATION

I then apply amplitude-adjusted plane-wave destruction to time-lapse field

data from the Cranfield CO2 sequestration experiment (Zhang et al., 2013, 2014).

This data set consists of a base (Figure 3.2) and monitor (Figure 3.3) image.

Plane-wave destruction is particularly effective for measuring very small shifts.

Furthermore, rescaling the monitor image to match the amplitude of the base images

allows local shifts to be measured even more precisely. Upon applying the algorithm,

high resolution shifting (Figure 3.4) and scaling (Figure 3.5) functions are computed

and applied to the previously shifted image to improve the match between the base

and monitor image.

To display the results, I interleave a slice of the base cube with slices of the un-

altered monitor cube (Figure 3.13(a)) and the shifted monitor cube (Figure 3.13(a))

and see that reflections become aligned effectively after applying the proposed algo-

rithm, indicating that the shifting and scaling functions have been properly predicted.

I finally compute the time-lapse difference (Figure 3.7) and the registered

difference (Figure 3.8). Coherent signal can be interpreted throughout the time-lapse

difference due to the timeshift between the images. Upon registering the images, the

difference outside of the reservoir interval reduces to noise. The signal between 2.2
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and 2.3 s corresponds to the reservoir where CO2 injection took place between the

surveys.

MULTICOMPONENT DATA REGISTRATION

Next, I apply amplitude-adjusted plane-wave destruction filters to a multicom-

ponent field data example from a carbonate field in West Texas.

This example consists of two PS images from different horizontal components.

Events in one image are consistently faster than the other due to anisotropic effects

associated with fractures (Figures 3.9 and 3.10).

I use a similarity scan to calculate an initial estimate of the shift between the

fast and slow images (Figure 3.11). I subsequently apply amplitude-adjusted plane-

wave destruction filters to estimate the time-shift to higher resolution. Plane-wave

destruction is particularly effective for measuring very small shifts. Furthermore,

rescaling the the slow image to match the amplitude of the fast image allows local

shifts to be measured more precisely. Upon applying the algorithm, high resolution

shifting and scaling functions are computed and applied to the previously shifted

image to improve the correlation between the fast and slow PS image (Figure 3.12).

To visualize the effectiveness of local similarity and amplitude-adjusted plane-

wave destruction filters in estimating time-shifts between PS fast and slow images,

I interleave the images before registration (Figure 3.13(a)), after registration using

timeshifts estimated using the local similarity attribute (Figure 3.13(b)), and after

registration using amplitude-adjusted plane-wave destruction filters (Figure 3.13(c)).

After registering the images, the reflections become aligned, indicating that the time-

shifts have been estimated properly.
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DISCUSSION AND CONCLUSIONS

The proposed amplitude-adjusted plane-wave destruction algorithm provides

high resolution scaling and vertical shifting functions to be computed between time-

lapse seismic images. Accurate prediction of time-lapse timeshifts is important for

monitoring fluid migration and reservoir compaction (Hatchell and Bourne, 2005).

In seismic image registration, vertical shifts are sometimes insufficient for matching

the images. Lateral shifts may be required as well (Hale et al., 2008; Hale, 2009a;

Cox and Hatchell, 2008). Multidimensional shifts may be estimated by incorporat-

ing amplitude-adjustment into omnidirectional plane-wave destruction (Chen et al.,

2013b).

Furthermore, traditional time-lapse seismic image registration algorithms per-

form well in the absence of amplitude changes between baseline and monitor images.

This assumption generally fails at the reservoir level where fluid injection and/or

production induce changes in the elastic and sonic properties of the interval. These

changing amplitudes can produce spurious timeshift anomalies (MacBeth et al., 2016).

This effect is most pronounced near the tuning thickness due to interference between

reflection events associated with thin beds. Similarly, low frequencies can produce

arbitrarily large timeshifts. Phillips and Fomel (2017a) proposes an extension of

this algorithm to estimate timeshifts in the presence of these problematic ampli-

tude changes by decomposing time-lapse images into discrete frequencies components

and simultaneously inverting for regularized timeshifts and amplitude ratios between

baseline and monitor seismic images.

The proposed algorithm utilizes a modification of plane-wave destruction filters

to acquire high-resolution shifting and scaling functions between monitor images and
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a base image. Plane-wave destruction is particularly effective for measuring small

shifts. When shifts are small, amplitude-adjusted plane-wave destruction can be

used as a standalone algorithm to efficiently measure shifting and scaling functions

between seismic images. When shifts are large, the proposed algorithm can be used

to refine shift predictions from other registration algorithms. Separating scaling and

shifting allows local shifts to be measured more precisely. The proposed algorithm

has immediate applications to time-lapse and multicomponent seismic analysis (as

demonstrated), as well as automatic gather flattening, legacy image merging, and

automatic seismic-well ties.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: (a-c) Exact shift (dashed) and measured shift (solid) using: (a) dy-
namic time warping, (b) local similarity scanning, and (c) amplitude-adjusted
plane-wave destruction. (d) Exact scaling function (solid) and measured scal-
ing function using amplitude-adjusted plane-wave destruction (dashed), (e) syn-
thetic base trace (dashed) and monitor trace (solid), and (f) synthetic base
trace (dashed) and shifted and scaled monitor trace (solid) using shifting
and scaling functions measured by amplitude-adjusted plane-wave destruction.
ch03-regis/synth cdtwshift,lsshift,dip,a,traces,reg
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Figure 3.2: A subset of the baseline seismic image from the Cranfield CO2 injection
experiment. ch03-regis/cran baseline3
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Figure 3.3: A subset of the monitor seismic image from the Cranfield CO2 injection
experiment. The injection interval is the bright reflection at approximately 2.2 - 2.3
s. ch03-regis/cran monitor3
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Figure 3.4: The time-shift estimated using amplitude-adjusted plane-wave destruction
ch03-regis/cran dip5
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Figure 3.5: The amplitude weight estimated using amplitude-adjusted plane-wave
destruction ch03-regis/cran a5
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(a) (b)

(c) (d)

Figure 3.6: (a-b) The base image interleaved with the (a) monitor image
and (b) registered monitor image and (c-d) NRMS maps between the base-
line image and (c) the monitor image and (d) the registered monitor image.

ch03-regis/cran int1,int2,nrms1,nrms2
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Figure 3.7: Time-lapse residual between the baseline and monitor seismic images.
ch03-regis/cran res1
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Figure 3.8: Time-lapse residual between the baseline and registered monitor seismic
images. ch03-regis/cran res2
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Figure 3.9: PS Fast image ch03-regis/hark Fast
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Figure 3.10: PS Slow image ch03-regis/hark Slow
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Figure 3.11: Time-shift between PS images estimated using the local similarity at-
tribute. ch03-regis/hark pick
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Figure 3.12: Time-shift between PS images estimated using amplitude-adjusted plane-
wave destruction filters ch03-regis/hark shift
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(a) (b)

(c)

Figure 3.13: PS images interleaved (a) before and (b-c) after registration using the (b)
local similarity attribute and (c) amplitude-adjusted plane-wave destruction filters.

ch03-regis/hark int1,int2,int3
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Chapter 4

Automatic gather flattening for AVO analysis using
amplitude-adjusted plane-wave destruction

I propose a method to efficiently measure regularized residual non-hyperbolic

moveout from seismic offset or angle gathers using amplitude-adjusted plane-wave de-

struction filters. Plane-wave destruction can efficiently measure shifts of less than a

few samples, making this algorithm particularly effective for detecting small timeshifts

between seismic traces. Separating estimation of timeshifts and amplitude variations

allows residual non-hyperbolic moveout to be measured more accurately in the pres-

ence of AVO (amplitude variation with offset). The effectiveness of this algorithm

in predicting residual moveout is demonstrated by applying it to a synthetic CMP

gather and the Mobil AVO seismic data.

INTRODUCTION

Prestack seismic data is routinely flattened using moveout corrections; how-

ever, it is still difficult to eliminate all reflection curvature while maintaining a phys-

ically reasonable models of subsurface anisotropy and velocity. Flat gathers also

dramatically simplify the extraction of amplitude attributes for AVO analysis.

Hinkley et al. (2004) propose to calculate offset-dependent timeshifts required

to flatten all events within a gather simultaneously by crosscorrelating traces within

a small 2D window. Crosscorrelations are computed between each pair of traces in
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the window, building a linear system which can be solved by least-squares inversion.

Gulunay et al. (2008) modifies this algorithm by tracking events using a climbing

correlation window and rejecting and replacing timeshifts associated with low corre-

lations.

Qian et al. (2016) propose to use dynamic time warping (Sakoe and Chiba,

1978; Hale, 2013a) to flatten gathers rather than crosscorrelation. Both crosscorrela-

tion and dynamic time warping perform comparatively well when shifts are large and

rapidly varying; however, in the application of automatic gather flattening, timeshifts

associated with residual moveout between neighboring traces are generally quite small

and such algorithms are not always effective.

Zhang and Du (2016) apply the Multi-Scale and Iterative Refinement Optical

Flow (MSIROP) technique (Horn and Schunck, 1981) to seismic data registration

problems, including gather flattening. This method provides a stable estimate of

multidimensional timeshifts required to residually flatten image gathers. It also avoids

the common cycle-skipping problem in data registration and is effective for estimating

both small and large timeshifts.

None of the algorithms described above explicitly address amplitude variations

as a function of offset or angle in the estimation of residual moveout corrections. In

this chapter, I propose to adopt amplitude-adjusted plane-wave destruction filters, as

described in chapter 2, to simultaneously estimate regularized timeshifts associated

with residual non-hyperbolic moveout and amplitude variations with angle or offset.

The method is capable of flattening gathers in the presence of noise, class II AVO

anomalies, and anisotropy.
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THEORY

Automatic gather flattening can be described as offset gather registration and

falls into the same category of problems as image registration. I propose to estimate

residual non-hyperbolic moveout corrections using amplitude-adjusted plane-wave de-

struction filters. When applied to gathers, amplitude-adjusted plane-wave destruc-

tion filters estimate dynamic timeshifts between seismic traces which correspond to

non-hyperbolic moveout corrections associated with uncertainty in the velocity and

anisotropy models. I specify the definition of amplitude-adjusted plane-wave destruc-

tion filters in equation 2.14 to

D(a, p, Zt, Zx) = B(p, Z−1
t )− aZxB(p, Zt) , (4.1)

where Zt and Zx represent phase shifts in time and offset or angle, respectively.

The objective of this filter remains the same - to minimize the plane-wave residual.

The gather flattening application, I accumulate timeshifts and amplitude weights by

minimizing the plane-wave residual between neighboring traces and perturbing the

warping function with each offset step.

Automatic gather flattening was proposed mainly to improve the reliability

and efficiency of AVO analysis, yet previously proposed algorithms can be sensitive

to amplitude variations with angle or offset, particularly class II AVO anomalies.

Amplitude-adjusted plane-wave destruction filters are particularly effective in this

application because they simultaneously provide regularized (Fomel, 2007b) estimates

of residual moveout and amplitude variations with angle or offset.
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EXAMPLE I

I first test the proposed automatic gather flattening algorithm using amplitude-

adjusted plane-wave destruction filters on a synthetic CMP gather with random noise,

velocity variations with depth, multiples, TI anisotropy (Alkhalifah and Tsvankin,

1995), and two reservoirs with class II AVO anomalies (Castagna et al., 1998) (Fig-

ure 4.1).

Fomel (2009) proposed the AB semblance attribute, which is suitable for ve-

locity analysis of prestack seismic data with amplitude variations with offset. This

attribute can yield a good estimate of the subsurface velocity structure in the absence

of anisotropy.

When amplitude-adjusted plane-wave destruction filters are applied to gathers

to account for residual curvature of seismic reflection energy, it is important to remove

multiple reflection energy while preserving seismic amplitudes. Multiples interfere

with local slope calculation due to the presence of conflicting steep slopes. These

steeply dipping events are effectively predicted and subtracted using the surface-

related multiple elimination method (Verschuur et al., 1992) (Figure 4.1).

Amplitude-adjusted plane-wave destruction filters are subsequently applied

to residually flatten NMO-corrected gathers and correct for non-hyperbolic moveout

associated with anisotropy (Figure 4.2). The gather is residually flattened, even in

the presence of noise, anisotropy, and class II AVO anomalies (Figure 4.1).
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Figure 4.1: (a) Synthetic CMP gather with noise, velocity variations with depth,
multiples, anisotropy, and two reservoirs with class II AVO anomalies, (b) NMO-
corrected gather, (c) isolated primary reflections, and (d) residually flattened gather

using amplitude-adjusted plane-wave destruction filters. ch04-agf/synth flat1
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Figure 4.2: (a) Timeshifts and (b) amplitude weights predicted using amplitude-

adjusted plane-wave destruction filters. ch04-agf/synth apwd1
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EXAMPLE II

Amplitude-adjusted plane-wave destruction filters are next tested on the Mobil

AVO prestack-stack seismic data. This 25 km 2D marine seismic line was acquired

by Mobil Oil in the Viking Graben, North Sea, and has been widely used to validate

AVO and multiple attenuation algorithms (Keys and Foster, 1998). The data set

is available in the SEG open data repository (http://wiki.seg.org/wiki/Mobil_

AVO_viking_graben_line_12).

The data is preprocessed in the shot domain, including deconvolution with the

far field wavelet, hyperbolic muting of the direct-wave and diving waves, spherical di-

vergence corrections (Fowler and Claerbout, 1983), and surface-consistent amplitude

normalization (Taner and Koehler, 1981). The shots are transformed to the CMP

domain and the same workflow applied in the synthetic case is applied to the field

data: AVO-friendly semblance-based velocity analysis (Fomel, 2009), surface-related

multiple elimination (Verschuur et al., 1992), and residual gather flattening using

amplitude-adjusted plane-wave destruction filters (Figure 4.3). The workflow de-

scribed automatically flattens gathers, improving the reliability of automatic AVO

interpretation from prestack seismic data.

CONCLUSIONS

Amplitude-adjusted plane-wave destruction filters provide an estimate of regu-

larized residual non-hyperbolic moveout when applied to gathers. Because plane-wave

destruction is particularly effective for measuring small shifts, when residual move-

out corrections are relatively small, amplitude-adjusted plane-wave destruction can

be used to efficiently and automatically flatten gathers for AVO analysis. Separating
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Figure 4.3: (a) Mobil AVO CMP gather # 1201, (b) NMO-corrected gather, (c) iso-
lated primary reflections, and (d) residually flattened gather using amplitude-adjusted

plane-wave destruction filters. ch04-agf/vik flat2

45



Figure 4.4: (a) Timeshifts and (b) amplitude weights predicted using amplitude-

adjusted plane-wave destruction filters. ch04-agf/vik apwd2
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the computation of residual moveout and amplitude variations allow each term to be

measured more precisely.
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Chapter 5

Plane-wave Sobel attribute for discontinuity enhancement in
seismic images

Discontinuity enhancement attributes are commonly used to facilitate the in-

terpretation process by enhancing edges in seismic images and providing a quantita-

tive measure of the significance of discontinuous features. These attributes require

careful pre-processing to maintain geologic features and suppress acquisition and pro-

cessing artifacts which may be artificially detected as a geologic edge.

I propose the plane-wave Sobel attribute, a modification of the classic Sobel

filter, by orienting the filter along seismic structures using plane-wave destruction

and plane-wave shaping. The plane-wave Sobel attribute can be applied directly to

a seismic image to efficiently and effectively enhance discontinuous features, or to a

coherence image to create a sharper and more detailed image. Two field benchmark

data sets with many faults and channel features from offshore New Zealand and

offshore Nova Scotia demonstrate the effectiveness of this method in comparison with

conventional coherence attributes.

One of the major challenges of interpreting seismic images is the delineation of

reflection discontinuities that are related to distinct geologic features, such as faults,

channels, salt boundaries, and unconformities. Visually prominent reflection features

often overshadow these subtle discontinuous features which are critical to understand-

ing the structural and depositional environment of the subsurface. For this reason,
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precise manual interpretation of these reflection discontinuities in seismic images can

be tedious and time-consuming, especially when data quality is poor. Discontinuity

enhancement attributes are among the most widely used seismic attributes today.

These attributes are generally post-stack image domain calculations of the similarity

or dissimilarity along a horizon or time slice between a neighborhood of adjacent

seismic traces (Barnes, 2016). Discontinuous features, such as faults, channels, salt

boundaries, unconformities, mass-transport complexes, and subtle stratigraphic fea-

tures can be identified as areas of low similarity. Such attributes are powerful in-

terpretation tools that enable detailed interpretation of previously indistinguishable

features.

Bahorich and Farmer (1995) proposed the first celebrated discontinuity en-

hancement attribute and coined the term “coherence”. The attribute produces im-

ages of the normalized local cross-correlations between adjacent seismic traces and

combines them to estimate coherence. This algorithm provided the framework for

semblance, the generalization to an arbitrary number of traces, proposed by Marfurt

et al. (1998). Using multidimensional correlations, this approach improves vertical

resolution. Both of these correlation-based methods can be sensitive to lateral am-

plitude variations, which may obscure features such as faults and channels.

The local covariance matrix measures the uniformity of a seismic image in each

dimension. Decomposing this matrix into its eigenvectors and eigenvalues provides

a quantitative measure of local variations of seismic structures. Gersztenkorn and

Marfurt (1999) propose to compute the ratio of the largest eigenvalue and the sum

of all eigenvalues of the covariance matrix at each sample, highlighting areas where

there is no dominant texture in the seismic image. This attribute is commonly called

“eigenstructure coherence” and is only sensitive to lateral changes in phase. A sim-
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ilar decomposition can be applied to the structure-tensor which measures the local

covariance of the image in each dimension (Randen et al., 2000, 2001; Bakker, 2002).

Local linearity and planarity can be computed from the eigenvalues of the structure-

tensor. Wu (2017) proposes to modify the traditional structure-tensor decomposition

by orienting the image gradient along seismic structures. Discontinuous features are

highlighted further by smoothing along discontinuities.

Information about reflection dip in seismic images allow filters to be oriented

along seismic reflections. Variance is a simple, but effective attribute which high-

lights unpredictable signal associated with discontinuous features. The local variance

calculation is oriented along structure using the eigenvectors of the structure-tensor

(Randen et al., 2001). Hale (2009b) also orients semblance along seismic reflections us-

ing the eigenvectors of the structure-tensor, and additionally applies smoothing along

directions perpendicular to the reflections to provide an enhanced image. Karimi

et al. (2015) uses predictive painting (Fomel, 2010) to generate multiple predictions

of local structures in seismic images. The difference between the predicted and real

data provides an image with isolated discontinuities.

To compute a discontinuity enhancement image for detection and extraction

of fault surfaces, semblance can be computed along fault strike and dip orientations.

Cohen et al. (2006) use the normalized differential entropy attribute to enhance faults.

Local fault planes are separated and extracted using an adaptive image-binarization-

and-skeletonization algorithm. This method effectively extracts fault surfaces by seg-

menting the coherence image. Hale (2013b) and Wu and Hale (2016) propose to scan

through fault strikes and dips to maximize the semblance attribute. Fault surfaces

are constructed by picking along the ridges of the likelihood attribute. Addition-

ally, images can be unfaulted by estimating fault throws using correlations of seismic

50



reflections across fault surfaces (Wu et al., 2016).

In image analysis, the traditional Sobel filter can be used to efficiently compute

an image with enhanced discontinuities (Sobel and Feldman, 1968). The Sobel filter

is an edge detector which computes an approximation of the gradient of the image

intensity function at each point by convolving the data with a zero-phase discrete

differential operator and a perpendicular triangular smoothing filter. This 2D filter

is small and integer-valued in each direction, making it computationally inexpensive

to apply to images (O’Gorman et al., 2008). Luo et al. (1996) first proposed the

applications of Sobel filters to seismic images. Since, modifications of the Sobel filter

have been proposed for edge detection in seismic images by orienting the filter along

local slopes estimated by maximizing local cross-correlation and dynamically adapting

the size of the filter based on local frequency content (Aqrawi et al., 2011; Aqrawi

and Boe, 2011; Aqrawi, 2014). Dip-oriented Sobel filters can be applied directly to a

seismic image to compute an image with enhanced edges, or to coherence images to

further sharpen previously enhanced edges (Chopra et al., 2014).

I propose to modify the definition of the Sobel filter to follow seismic struc-

tures. I modify the Sobel filter by replacing the discrete differential operator with

linear plane-wave destruction (Fomel, 2002) and triangular smoothing with plane-

wave shaping (Fomel, 2007b; Swindeman and Fomel, 2015; Phillips et al., 2016).

This method is particularly efficient because it does not require computation of the

eigenvectors of the covariance matrix or structure-tensor. Local slopes are instead esti-

mated using accelerated plane-wave destruction (Chen et al., 2013a). I further modify

the Sobel filter by orienting the filter along the azimuth perpendicular to discontinu-

ities by implementing an azimuth scanning workflow (Merzlikin et al., 2016). This

modification is tested on benchmark 3D seismic images from offshore New Zealand
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and Nova Scotia, Canada and compare the results with those from alternative coher-

ence attributes.

THEORY

I propose to modify the traditional Sobel filter for application to 3D seismic

images by orienting the filter along the structure of seismic reflectors. I modify

the Sobel filter by replacing the derivative operation with plane-wave destruction

(Fomel, 2002) and the smoothing operation with plane-wave shaping (Fomel, 2007b;

Swindeman and Fomel, 2015). High order plane-wave destruction filters are described

in the Z-transform notation according to equation 2.11 as follows:

Ci(pi) = B(pi, Z
−1
t )− ZiB(pi, Zt)

Cx(px) = B(px, Z
−1
t )− ZxB(px, Zt)

, (5.1)

where C is the plane-wave destruction filter, B is an all-pass filter, and pi and px are

the local slopes in the inline and crossline directions, respectively.

Inline and crossline shaping filters are applied to the crossline and inline plane-

wave destruction images, respectively. Thus, the plane-wave Sobel filter modifies

equation (3) by effectively replacing Zi with

Zi
B(pi, Zt)

B(pi, Z
−1
t )

(5.2)

and Zx with

Zx
B(px, Zt)

B(px, Z
−1
t )

. (5.3)

This modification effectively orients the plane-wave Sobel filter along seismic

reflection structures.
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In the conventional implementation, the inline and crossline images are com-

bined to produce the final image (equation 2.21). I propose an alternative approach

based on the efficient azimuth scanning workflow (Merzlikin et al., 2016). I scan

through a window of azimuths and compute the Lq norm of linear combinations of

the inline and crossline images weighted by the sine and cosine of the azimuth α

Ŝ(α, pi, px) = ‖Si(pi, px)d cosα + Sx(pi, px)d sinα‖q , (5.4)

where Si(pi, px) and Sx(pi, px) correspond to convolution operators with the filters

Si(pi, px) and Sx(pi, px), respectively. The azimuth which corresponds with the discon-

tinuous features produces the best image at each point is picked on a semblance-like

panel using a regularized automatic picking algorithm (Fomel, 2009). The ensemble

of images is then sliced using the pick to generate the optimal image This improves

the resolution of discontinuous features by effectively orienting the plane-wave Sobel

filter perpendicular to edges in the seismic image.

EXAMPLE I

Our first example is a subset of the Parihaka seismic data (full-stack, anisotropic,

Kirchhoff prestack time migrated). This marine 3D seismic volume was acquired

offshore New Zealand and is available in the SEG open data repository (http:

//wiki.seg.org/wiki/Parihaka-3D).

This image contains complex geologic structures, including multiple genera-

tions of faulting, meandering channel systems, and prominent unconformities. Fig-

ure 5.1 shows a particularly interesting time-slice (1.311 s) containing many faults

and channels.
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Figure 5.1: (a) The Parihaka seismic data. ch05-sobel/pari sub
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I first apply the traditional Sobel filter. This attribute enhances discontinuous

geologic features, but also enhances dipping reflectors (Figure 5.3(a)).

In order to optimally enhance discontinuous features, it is important to ori-

ent the filter along local slopes. I compute the structural dip in the inline (Fig-

ure 5.2(a)) and crossline (Figure 5.2(b)) directions using accelerated plane-wave de-

struction (Chen et al., 2013a). Using the local slopes, I apply structure-oriented

smoothing to enhance seismic structures and attenuate noise without blurring geo-

logic edges (Liu et al., 2010). I subsequently apply the proposed plane-wave Sobel

filter and compute the magnitude of the inline and crossline plane-wave Sobel images.

Discontinuous geologic features, most prominently faults and channels, are enhanced,

revealing subtle details which would be difficult to interpret from the original seismic

image (Figure 3b).

I compute a more segmented image by cascading another iteration of filtering

to the Sobel image, this time orienting the filter along both the dip of seismic re-

flections and the azimuth of the faults and channels. The plane-wave Sobel filter is

applied to the Sobel filter image using structural information derived from the origi-

nal seismic image. I compute linear combinations of these inline and crossline images

weighted by the cosine and sine of the azimuth. The local azimuth of the faults and

channels corresponds to the orientation which creates the optimal image at each point

(Figure 5.2(c)). Faults and channels are further segmented in the cascaded image by

automatically orienting the Sobel filter along geologic structures (Figure 5.3(c)).
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(a) (b)

(c)

Figure 5.2: (a) Inline and (b) crossline reflection slopes computed using accelerated
plane-wave destruction and (c) azimuth of faults and channels estimated using az-

imuthal plane-wave destruction. ch05-sobel/pari idip,xdip,az
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(a) (b)

(c)

Figure 5.3: (a) The traditional Sobel filter, (b) proposed plane-wave Sobel fil-
ter, and (c) cascaded plane-wave Sobel filter applied to the Parihaka seismic data.

ch05-sobel/pari flat,sobel,slice
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EXAMPLE II

The next example is a subset of the Penobscot data used previously by Kington

(2015) (Figure 5.4). This small marine 3D seismic volume was acquired offshore Nova

Scotia, Canada and is available in the SEG open data repository (http://wiki.seg.

org/wiki/Penobscot_3D).

Figure 5.4: Penobscot 3D seismic data ch05-sobel/pen pen

I apply cross-correlation coherence, semblance, eigenstructure coherence, gradient-

structure-tensor (GST) coherence, and predictive coherence attributes to the data and

compare the results to the proposed plane-wave Sobel attribute. Correlation-based
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coherence attributes (Bahorich and Farmer, 1995) produce an image of normalized

local cross-correlation between adjacent seismic traces and combines them to esti-

mate coherence. This attribute is more efficient than most of the alternative coher-

ence attributes, but lacks robustness and has poor vertical resolution (Figure 5.5(a)).

Semblance (Marfurt et al., 1998) provides better vertical resolution by incorporating

a local window of traces (Figure 5.5(b)). Eigendecomposition of the local covariance

matrix (Gersztenkorn and Marfurt, 1999) or gradient-structure-tensor (Randen et al.,

2000) allows information about local structures to be incorporated into the coherence

calculation. These attributes provide significantly better vertical and lateral resolu-

tion (Figures 5.5(c) and 5.5(d)) compared to correlation-based coherence; however,

calculation and decomposition of the local covariance matrix or gradient-structure-

tensor introduces significant computational cost. Furthermore, all of these attributes

contain some noise contamination in coherent sections of the image. Predictive coher-

ence (Karimi et al., 2015) uses plane-wave destruction to compute residuals between

adjacent traces predicted by painting along local slopes. Discontinuities are enhanced

in this image with minimal noise contamination compared to the previous attributes

(Figure 5.5(e)).

I compare these results to the proposed plane-wave Sobel attributes. As ex-

pected, the filter enhances the faults and channels in the seismic image without sig-

nificant noise contamination or highlighting continuous dipping reflectors (Figure 5f).

CONCLUSIONS

I have modified the Sobel filter by orienting it along the dip of seismic reflec-

tions and the azimuth of discontinuous features. I find that the proposed plane-wave

Sobel filter is a straightforward and inexpensive means for enhancing discontinuous
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Comparison of discontinuity enhancement attributes: (a)
cross-correlation, (b) semblance, (c) eigenstructure, (d) gradient-structure-
tensor, and (e) predictive coherence, and the (f) plane-wave Sobel filter.

ch05-sobel/pen coh0,coh1,coh2,coh,pcoh,sobel
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features in 3D seismic images. Many popular coherence attributes come with consid-

erable computational cost because they require calculation and eigendecomposition

of the local covariance matrix or structure tensor at each point in the 3D image.

The significant cost of eigendecomposition can be partially alleviated in practice by

parallelization. One of the key benefits of this method is its superior efficiency in

comparison with other similar attributes. The main costs of this attribute are the

estimation of local slopes and azimuth scanning. Local slopes can be estimated using

accelerated plane-wave destruction. The additional azimuth scanning and picking is

easy to parallelize. As demonstrated in this paper, the proposed plane-wave Sobel

attribute can help geological interpretations of subsurface faults and channels. It

can also be used to enhance other discontinuous or chaotic features commonly inter-

preted in seismic images, such as unconformities, salt boundaries, and mass transport

complexes.
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Chapter 6

Conclusions

In this thesis, I proposed two modifications of plane-wave destruction filters:

amplitude-adjusted plane-wave destruction filters and plane-wave Sobel filters.

The proposed amplitude-adjusted plane-wave destruction algorithm utilizes

a modification of plane-wave destruction filters to acquire a regularized estimate of

high-resolution shifting and scaling functions between seismic traces. Plane-wave

destruction is particularly effective for measuring small shifts. When shifts are small,

amplitude-adjusted plane-wave destruction can be used as a standalone algorithm

to efficiently measure shifting and scaling functions between seismic images. When

shifts are large, the proposed algorithm can be used to refine shift predictions from

other registration algorithms. Separating scaling and shifting allows local shifts to

be measured more precisely. The proposed algorithm has immediate applications to

time-lapse image registration, multicomponent image registration, automatic gather

flattening, automatic seismic-well ties, and image merging.

As briefly discussed in chapter 3, the current implementation of amplitude-

adjusted plane-wave destruction filters assumes only vertical timeshifts. Hale et al.

(2008), Hale (2009a), and Cox and Hatchell (2008) show that lateral timeshifts are ob-

served between time-lapse seismic images. For future research, I suggest implementing

amplitude-adjusted omnidirectional plane-wave destruction (Chen et al., 2013b) for

estimation of multidimensional time-lapse timeshifts. Furthermore, MacBeth et al.
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(2016) evaluates the problem of spurious timeshifts estimates apparent in time-lapse

seismic images associated with tuning effects. Phillips and Fomel (2017a) partially

alleviates this problem by decomposing time-lapse seismic images into discrete fre-

quency components using the local time-frequency transform (Liu and Fomel, 2013).

For future research, I suggest to use the local time-frequency transform to perform

non-stationary deconvolution (Zhang and Fomel, 2016). This may further alleviate

the problem of spurious timeshifts between time-lapse seismic images.

I have also modified the Sobel filter by orienting it along the dip of seis-

mic reflections and the azimuth of discontinuous features. I find that the proposed

plane-wave Sobel filter is a straightforward and inexpensive means for enhancing dis-

continuous features in 3D seismic images. Many popular coherence attributes come

with significant computational cost because they require calculation and eigendecom-

position of the local covariance matrix or structure tensor at each point in the 3D

image. One of the key benefits of the plane-wave Sobel filter is its superior effi-

ciency in comparison with other similar attributes. The main costs of this attribute

are the estimation of local slopes and azimuth scanning. Local slopes can be esti-

mated efficiently using accelerated plane-wave destruction and azimuth scanning is

easy to parallelize. As demonstrated in this thesis, the proposed plane-wave Sobel

attribute can help expedite and improve geological interpretations of subsurface faults

and channels. This attribute can likely be used to enhance other discontinuous or

chaotic features commonly interpreted in seismic images, such as unconformities, salt

boundaries, and mass transport complexes.

For further research, I suggest replacing the azimuth scanning workflow with

a steerable implementation of the plane-wave Sobel filter. Furthermore, structural

smoothing may be improved by incorporating non-stationary smoothing where the
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radius is weighted by the magnitude of the plane-wave Sobel attribute. This will

effectively smooth seismic amplitudes along continuous structures while preserving

discontinuous features which may be critical for interpretation.
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