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Cluster analysis aims at segmenting objects into groups with similar

members and, therefore helps to discover distribution of properties and corre-

lations in large datasets. Data clustering has been widely studied as it arises in

many domains in marketing, engineering, and social sciences. Especially, the

occurrence of transactional and experimental datasets in large scale in recent

years significantly increased the necessity of clustering techniques to reduce

the size of the existing objects, to achieve a better knowledge of the data.

This report introduced fundamental concepts related to cluster anal-

ysis, addressed the similarity and dissimilarity measurements for cluster def-

inition, and clarified three major clustering algorithms-hierarchical cluster-

ing, K-means clustering and Gaussian mixture model fitted by Expectation-

Maximization (EM) algorithm-theoretically and experimentally to illustrate

the process of clustering. Finally, methods of determining the number of clus-

ters and validating the clustering were presented as for clustering evaluation.
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Chapter 1

Introduction

Cluster analysis or clustering, also called data segmentation, is related

to grouping or segmenting a set of objects such that objects in the same group

(called a cluster) are to some extent similar to each other, while are dissim-

ilar (in some sense) to objects belong to other groups. It is an unsupervised

learning method in data mining, and a common technique for statistical data

analysis used in various areas, including marketing, psychology, linguistics,

bioinformatics, machine learning, pattern recognition, etc.

Cluster analysis can also be used as a way to generate descriptive statis-

tics or visual aids to determine the potential existence of a set of distinct

subgroups within a sample dataset, each subgroup representing objects with

significantly different properties. Realization of that objective requires evalua-

tion of the differences between the objects assigned to their respective clusters.

Two major problems that cluster analysis concerns are to determine

the number of clusters and assign objects into each cluster appropriately. A

variety of clustering algorithms have been set up in order to effectively solve

such problems.

Cluster analysis [1] was originated in anthropology by Driver and Kroe-
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ber in 1932 and introduced to psychology by Zubin in 1938 and Robert C.

Tryon in 1939 [2], and famously used by Raymond B. Cattell beginning in

1943 [3] for trait theory classification in personality psychology.

Generally, data analysis mainly involves predictive modeling: given a

set of training data, we want to predict the class memberships of a set of test

data using predictive models based on training data. This kind of task is also

called learning. Learning problems are typically classified into two categories,

supervised learning (mainly classification) and unsupervised learning (mainly

clustering). Supervised learning deals with labeled data, while unsupervised

learning involves unlabeled data [4]. In this way, clustering is more abstract

and challenging than classification. More recently, semi-supervised learning

[5] has been proposed. It specified pairwise constraints (a ”weaker” way of

specifying the prior knowledge of the wanted model) instead of labeling the

class, and constraints are thought to be advantageous to data clustering [6] [7]

[8].

The purpose of this report is to to illustrate the process of cluster anal-

ysis, specifically, to clarify three major clustering algorithms-hierarchical clus-

tering, K-means clustering and Gaussian mixture model fitted by Expectation-

Maximization (EM) algorithm-theoretically and experimentally on real world

datasets. In clustering algorithms, this report emphasizes on the statistical

basis of Gaussian mixture model approach by EM algorithm, associated with

its experimental analysis based on the iris dataset.
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Chapter 2

Data Clustering

The objective of data clustering, also know as cluster analysis, is to

discover the natural groupings of a set of data points, patterns or objects, in-

cluding determining of the number of groups and assigning certain individuals

into respective groups. An example [9] of clustering is shown in Figure 2.1.

Figure 2.1: Clusters with Diversity

In Figure 2.1 (a), the input data is unlabeled and all the data points,

including the scattered dots, circles and swirls, pertain to one large group.

After a certain algorithm has been implemented, seven clusters are generated

and distinguished by colors in Figure 2.1 (b) with dissimilarities in shape, size

and density.
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2.1 Unsupervised Learning

Clustering is a typical unsupervised learning technique. To establish a

context, supervised learning will be firstly explained.

Supervised learning is a data mining task of inferring a function from

labeled training data. Suppose we observe a response variable Y and m dif-

ferent predictor variables x1, x2, ..., xm, and if there is a potential relationship

between the response Y and the predictors X = (x1, x2, ..., xm), such relation

could be presented in the following general form:

E(Y ) = F (X)

In the function above, E(Y ) is the expected value of the response Y , F indi-

cates the potential but unknown relation.

Under many situations, predictors are readily available, but Y often is

hard to get. Then Y could be predicted by:

Ŷ = F̂ (X)

where Ŷ is the prediction of the response variable, and F̂ is the estimate of

the relation between the response and the predictors.

In supervised learning, the goal [10] is to fit a model that relates the

response variable to the predictor variables, aiming at accurately predicting

the response for future observations (prediction) or better understanding the

relationship between the response and the predictors (inference).
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In contrast, unsupervised learning describes a more challenging situa-

tion in which for each observation i = 1, ..., n, we have a set of measurements

xi but no associated response y. It is unable to fit a predictive model (re-

gression, decision tree, support vector machine, k-nearest neighbor, etc), since

observations are unlabeled, and there is no response variable to predict. Such

situation is referred to as unsupervised, as a response variable is lacking to

supervise the learning.

After classifying learning problems as supervised and unsupervised,

semi-supervised learning was proposed, in which a small portion of the train-

ing data is labeled, and the unlabeled data, instead of being dropped, are also

used during the learning process.

2.1.1 Definition of a Cluster

Everitt [11] has studied the cluster and given a specific definition of a

cluster by evaluating the circular nature of most proposed definitions. A cluster

is a continuous region of variable space containing a relatively high density of

data points separated from other high density regions by areas containing a

relatively low density of data points.

In clustering problems, things to be clustered are usually called objects

or observations, also known as patterns, cases or entities. The aspects of these

objects for evaluating their similarities or dissimilarities are often and variously

called variables, attributes, features, or characters.

An example of four clusters is shown in Figure 2.2 by using the iris

5



flower dataset, a classical dataset from R. A. Fisher. The iris consists of

150 observations with 4 numerical attributes sepal length, sepal width, pedal

length and pedal width, and 1 categorical attribute, species, with 3 categories

setosa, versicolor and virginica. In Figure 2.2, after neglecting the categorical

attribute, all the data points are grouped into four distinct clusters based on

two principal components of numerical characters in the original dataset.

Figure 2.2: Clusters for iris Dataset

There are several characteristics of clusters which could be quantified

when observations are plotted as points in a p-dimensional variable space:

(1) Density – the within-cluster points are highly concentrated

(2) Variance – the dispersion from the cluster centroid is small for the

points in the cluster
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(3) Dimension – the size or radius of the cluster is small

(4) Shape – clusters are typically ellipsoidal

(5) Separation – clusters rarely overlap or they are disconnected.

Most of the clustering algorithms are set up based on these characteristics.

2.1.2 General Steps for Cluster Analysis

• Feature Selection: select observations to be clustered and define at-

tributes used for clustering such observations

• Proximity Measure: compute similarities or dissimilarities among obser-

vations

• Clustering Criterion: express via a cost function or certain rule and

choose proper clustering algorithm

• Cluster Generation: create clusters of similar objects

• Cluster Validation: validate the resulting clusters and interpret the result

2.2 Similarities and Dissimilarities

In a data matrix, observations could be thought of as the rows, with

attributes as the columns. If the number of observations and attributes are n

and p, respectively, the size of the data matrix would be n× p.

Then the proximity matrix between pairs of observations could be com-

puted in terms of the data matrix, it could be either similarity matrix or dis-
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similarity matrix, and typically, correlation is used for computing similarity,

while distance is used to measure dissimilarity.

2.2.1 Correlation Coefficients

For the similarity matrix resulting from the data matrix n×p, the entry

in row i and column j of the similarity matrix shows how similar (dissimilar)

object i and object j are. In this way, the similarity matrix must be n× n.

If correlation is used, the resulting similarity matrix is very different

from the ordinary correlation matrix for the same n× p data matrix. In this

case, the ordinary correlation matrix would be of size p× p. The entry in row

i and column j of the ordinary correlation matrix shows how similar variable

i and variable j are in the data matrix. On the other hand, the entry in row

i and column j of a similarity matrix shows how similar observation i and

observation j are. That is to say, an n×n similarity matrix shows how similar

the rows in the n× p data matrix are, whereas the ordinary p× p correlation

matrix shows how similar the columns in the n× p data matrix are.

So if one observation Xi = {xi1, ...xip} containing p values and an-

other observation Xj = {xj1, ...xjp} containing p values, and ∀ i, j =

1, ..., n, i 6= j, then the sample correlation coefficient for the similarity matrix

would be:

r = rXiXj
=

∑p
k=1(xik − xi)(xjk − xj)√∑p

k=1(xik − xi)2
√∑p

k=1(xjk − xj)2

8



Correlation measures are rarely used in practice for computing similar-

ities.

2.2.2 Distance Measurements

Most algorithms [12] presume a matrix of dissimilarities with non-

negative entries and zero diagonal elements: dii = 0, i = 1, 2, ..., n. If the

original data were collected as similarities, a suitable monotone-decreasing

function can be used to convert them to dissimilarities. Also, most algorithms

assume symmetric dissimilarity matrices, so if the original matrix D is not

symmetric, it could turn to be symmetric by replacing it with (D + DT )/2.

Subjectively constructed dissimilarities are seldom distances in the strict sense,

since the triangle inequality dii′ ≤ dik+dki′ , for all k ∈ {1, ..., n} does not hold.

Thus, some algorithms that assume distances cannot be used with such data.

Generally, for ∀i, j, k ∈ 1, 2, ..., n, and i 6= j 6= k, the dissimilarity

metric such that:

d(i, j) ≥ 0

d(i, i) = 0

d(i, j) = d(j, i)

d(i, j) ≤ d(i, k) + d(k, j)

And common distance measures for dissimilarities between observations are:

(1) Euclidean Distance =
√∑p

k=1(xik − xjk)2

(2) Manhattan Distance =
∑p

k=1 |xik − xjk|

9



(3) Mahalanobis Distance = (Xi −Xj)
′
S−1(Xi −Xj)

where xik is the value of observation i on variable k, xjk is the value of ob-

servation j on variable k, (Xi − Xj)
′

is the 1 × p row vector of differences

between row i and row j of the data matrix, and S−1 is the inverse of the p×p

covariance matrix of the attributes of data. And it is standard to standardize

variables prior to calculating distance measures used as dissimilarities.
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Chapter 3

Clustering Algorithms

3.1 Connectivity-based Model

Connectivity based clustering, also known as hierarchical clustering, is

based on the basic idea of general clustering thoughts that objects are more

similar to nearby objects than to objects farther away.

Hierarchical clustering methods require the user to specify a measure

of dissimilarity (mostly are the three distance measures introduced in 2.2.2)

between disconnected groups of observations. As the name suggests, they

produce hierarchical representations, called a dendrogram, in which the groups

at each level of the hierarchy are generated by merging two lower-level groups.

In this way, at the lowest level in this hierarchy, each group contains one single

observation; and at the highest level, there is only one group which contains

all the data information.

3.1.1 Hierarchical Agglomerative Clustering

There are two basic paradigms for hierarchical clustering: agglomera-

tive and divisive. The former paradigm will give a bottom-up dendrogram,

while the latter one is expected to show a top-down dendrogram. Four major
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methods are used to compute the similarity of clusters where each of them

may contain multiple instances:

• Single Link : Nearest neighbor, clustering two most similar members.

• Complete Link : Farthest neighbor, clustering two least similar members.

• Average Link : Average neighbor, clustering members in average similar-

ity.

• Ward’s Method : Minimum variance criterion, clustering objects by min-

imizing the total within-cluster variance.

The basic procedures for all of the three methods are similar:

Step 1 Start with clusters C1, C2, ..., Cn, each contains a single observation.

Step 2 Find the proper pair of distinct clusters, say Ci and Cj , merge Ci

and Cj , and decrease the number of clusters by 1.

Step 3 When # cluster equals to 1, stop the process; else, return to Step 2.

3.1.2 Clustering Analysis on Romano-British Pottery

This section clarifies how hierarchical agglomerative clustering works

by using the data of Romano-British Pottery [13].

The data shown in Table 3.1 conveys numeric information for the chem-

ical composition of Romano-British pottery with 45 specimens, determined by

atomic absorption spectrophotometry [14] with the values for nine oxides [15].
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In addition to the chemical composition of the pots, the kiln site at which the

pottery was found is categorized into 5 places, with label 1 through 5. Based

on such group of data, people would like to know whether, in terms of these

chemical compositions, the pots can be divided into distinct clusters, and how

these groups are related to the kiln site.

Table 3.1: Romano-British Pottery Data

Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 MnO BaO Kiln

18.8 9.52 2.00 0.79 0.40 3.20 1.01 0.077 0.015 1
16.9 7.33 1.65 0.84 0.40 3.05 0.99 0.067 0.018 1
18.2 7.64 1.82 0.77 0.40 3.07 0.98 0.087 0.014 1
... ... ... ... ... ... ... ... ... ...

16.7 0.92 0.53 0.01 0.05 1.76 0.91 0.004 0.013 5
14.8 2.74 0.67 0.03 0.05 2.15 1.34 0.003 0.015 5
19.1 1.64 0.60 0.10 0.03 1.75 1.04 0.007 0.018 5

Among the 45 observations of pottery data, first 21 observations belong

to kiln site 1, next 12 observations belong to kiln site 2, next 2 observations

kiln site 3, next 5 observations kiln site 4, and the last 5 observations belong

to kiln site 5.

For hierarchical clustering analysis, first, an intuitive impression of the

potential clusters of all the 45 specimens of chemical composition of pottery

is necessary. In Figure 3.1, the image of dissimilarity matrix of the pottery

data using Euclidean distance is given. Each cell of the dissimilarity matrix

in the plot has a color-based value from 0 through 12 with color from pink

across turquoise, which means the closer to pink the color is, the closer to zero

Euclidean distance the cell will be, indicating such group of cells more probably
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belong to the same cluster. Specifically, Figure 3.1 leads to a direct impression

that at least 3 clusters exist with much smaller within-cluster distances than

those can be seen in other cells.

Figure 3.1: Image of Euclidean Distance based Dissimilarity Matrix on Pottery
Data

Then, hierarchical agglomerative algorithms is implemented using the

first three methods in computing similarities, with dendrograms to visualize

the results of hierarchical clustering. This could be realized by the R function

hclust, a function specialized in hierarchical cluster analysis. As is shown in

Figure 3.2, each dendrogram of single link, complete link and average link, has

3 clusters.

Typically, to determine the number of clusters for a dendrogram, one

14



needs to look for natural groupings defined by long stems. If we cut at height

= 2.0 for single link, height = 7.0 for complete link and height = 4.0 for average

link, we get exactly 3 clusters in each of the three dendrograms. If Manhattan

distance or Mahalanobis distance is used as measurement of dissimilarity, then

the dendrograms would be a little bit different.

Figure 3.2: Dendrogram of Hierarchical Clustering using Euclidean Distance

In such case, the problem of whether the pots can be divided into

distinct clusters has been solved, then the problem of how these clustering

relate to kiln sites could also be solved. The relationships between the clusters

and the kiln sites could be seen in Table 3.2. Choose the average link as an

example, all the 21 pots from Kiln Site 1 belong to Cluster 1; all the 12 pots

from Kiln Site 2 and all the 2 pots from Kiln Site 3 are found in Cluster 2; all

the pots from Kiln Site 4 and 5 are found in Cluster 3.
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Table 3.2: Relations between Clusters and Kiln Sites for Average Link
# Cluster Kiln 1 Kiln 2 Kiln 3 Kiln 4 Kiln 5

1 21 0 0 0 0
2 0 12 2 0 0
3 0 0 0 5 5

3.2 Centroid-based Model

In centroid-based clustering, clusters are represented by a central vec-

tor, usually called a centroid, which may not necessarily be an existing member

of the current data set. When the number of clusters k is fixed, K-means clus-

tering tries to solve such an optimization problem: find the optimal k centroids

of potential clusters and assign all the objects to proper centroids in creating

clusters, such that the total sum of squared distances between each object and

its centroid within a cluster are minimized.

3.2.1 K-means Clustering

Typically, the procedure for K-means clustering would be:

Step 1 Randomly pick data points as initial representatives.

Step 2 Assign each data point to its closest representative.

Step 3 Recompute ”means” for each potential cluster.

In Figure 3.3, an intuitive impression for the procedure of K-means clustering

is shown from left to right. And such procedure is constrained to minimize the

total sum of squared distances between data points and the centroid within

each cluster, the objective function is given below:

16



J = argmin
{µ1,...,µk}

k∑
c=1

∑
i=1,xi∈χc

‖ xi − µc ‖2

where µ1, ..., µk are k centroids, which are the means within each cluster, xi ∈

χc indicates the ith data point in the cth cluster, c = 1, ..., k.

Figure 3.3: The Way K-means Clustering Works

3.2.2 K-means Experimental Study on Pottery Data

This section clarifies how K-means clustering works using the same

pottery data used in Section 3.1.2. The pottery data is grouped into 1 through

10 clusters, respectively, the values of ”total within-cluster sum of squared

distance” for 1 cluster through 10 clusters are listed in Table 3.3.

Table 3.3: Total Within-cluster Sum of Squared Distance
# C 1 2 3 4 5 6 7 8 9 10
SSD 753.7 402.8 145.1 116.8 94.5 74.1 57.6 55.0 55.6 34.1

It can be found in Table 3.3 that the total within-cluster SSD decreases

when the data is grouped into 1 cluster through 8 clusters, with the value

17



decreases from 753.7 to 55.0. Then the value for such measurement increases

a little to 55.6 when there are 9 clusters and drops to 34.1 when there are 10

clusters.

Figure 3.4: Relations between SSD and Number of Clusters

Values in Table 3.3 could be reflected in Figure 3.4, and there is a

decreasing trend between number of clusters and the total within-cluster SSD.

By means of the ”Elbow” method for determining the number of clusters, the

optimal number of clusters using K-means clustering would be three, which

matches the number when we use hierarchical agglomerative clustering method

based on the same dataset. And when 3 clusters are generated, the explained

variance of the clusters (between-cluster SSD) is 80.8 % of the total variance,

which is good enough.

18



The cluster means in terms of each chemical composition could be found

in Table 3.4.

Table 3.4: Cluster Means for Each Cluster
# C Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 MnO BaO

1 12.44 6.21 4.78 0.21 0.23 4.19 0.68 0.12 0.02
2 17.75 1.61 0.64 0.04 0.05 2.02 1.02 0.03 0.02
3 16.92 7.43 1.84 0.94 0.35 3.10 0.94 0.07 0.02

Meanwhile, a table is available to show the relations between clusters

and kiln sites in Table 3.5. All the 12 pots from Kiln Site 2 and all the 2 pots

from Kiln Site 3 are found in Cluster 1, all the pots from Kiln Site 4 and 5 are

found in Cluster 2, and all the 21 pots from Kiln Site 1 belong to Cluster 3.

Table 3.5: Relations between Clusters and Kiln Sites using K-means
# Cluster Kiln 1 Kiln 2 Kiln 3 Kiln 4 Kiln 5

1 0 12 2 0 0
2 0 0 0 5 5
3 21 0 0 0 0

In such case, it is clear that relations between clusters and kiln sites

resulted from K-means clustering in Table 3.5 and those resulted from average

link of hierarchical clustering in Table 3.2 are the same, despite the difference

in the notation of cluster numbers.

3.2.3 Extensions of K-means

Based on the basic algorithms of K-means clustering, many extensions

have been shown in public. Some of these extensions involves with merging,
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splitting clusters and minimizing the cluster size. Two famous derivation of

K-means in pattern recognition are the ISODATA method by Ball and Hall

[16] and the FORGY method by E.W. Forgy [17].

Besides, there’s one significant fact in K-means is that, each data ele-

ment is finally assigned to one distinct cluster, clustering in such way is also

called hard clustering. One important extension ofK-means clustering is called

Fuzzy c-means, proposed by J.C. Dunn [18] and improved by J.C. Bezdek [19],

indicating that each data point can belong (with different amounts of mem-

bership level) to multiple cluster. Fuzzy clustering technique is also referred

to as soft clustering, compared to hard clustering.

3.3 Model-based Clustering

Model-based clustering, also known as distribution-based clustering, is

a general clustering technique based on distribution models. This clustering

method defines clusters as observations belonging most likely to the same dis-

tribution, and it is similar to the way that some sample data set are generated

by Gibbs sampling or MetropolisHastings in Bayesian statistics, by sampling

observations from a distribution.

Actually, distribution-based clustering often suffers from a common

problem which is overfitting, if there are no constraints set up for the model

complexity. In such case, a model with higher complexity for the clustering

job would better explain the data, which, at the mean time, add up to the

inherent difficulty of choosing the appropriate complexity of the model.
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One effective and commonly used method to solve the problem above

is known as Gaussian mixture models, which is often fitted by expectation-

maximization algorithm. Specifically, the data set or objects are usually mod-

eled with a finite (to avoid overfitting) number of normal distributions, such

normal distributions are randomly initialized, and then the initial parameters

of such distributions are iterated with multiple runs to reach optimum in order

to better fit the data set or objects.

3.3.1 Gaussian Finite Mixture Models

Gaussian finite mixture model is a linear combination of finite number

of Gaussian distributions. Several necessary terms related to such model are

clarified step by step.

• Gaussian Distribution

Let X be a normally distributed random variable with mean µ and standard

deviation σ, for ∀xi ∈ X, i = 1, 2, ...., n, the probability function of X would

be:

f(xi) = N(xi|µ, σ2) =
1

σ
√

2π
exp{−1

2
(
xi − µ
σ

)2}

• Likelihood Function

Then the likelihood function L(µ, σ|xi) of µ and σ for the given x1, x2, ..., xn

would be:

L(µ, σ|xi) =
n∏
i=1

N(xi|µ, σ2)
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• Multivariate Gaussian and Log-likelihood

Let x = {X1, X2, ..., Xn} be a n-dimensional random vector, if every linear

combination of its n components has a univariate normal distribution, then X

is said to be n-variate normally distributed, with the multivariate Gaussian

distribution:

x ∼ Nn(µ,Σ) =
1√

(2π)n|Σ|
exp{−1

2
(x− µ)TΣ−1(x− µ)}

where µ is the n-dimension mean vector with µ = [E[X1],E[X2], ...,E[Xn]],

and Σ is the n×n covariance matrix with Σ = [Cov[Xi, Xj]], i = 1, 2, ..., n; j =

1, 2, ..., n.

Then the log-likelihood function would be:

l(µ,Σ|Xi) = ln
n∏
i=1

N(Xi|µ,Σ)

= −n
2

ln |Σ| − 1

2

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ) + constant

(3.1)

Thus, the Maximum Likelihood Estimator of µ and Σ would easily be found:

µ̂ =
1

n

n∑
i=1

Xi

Σ̂ =
1

n

n∑
i=1

(Xi − µ)(Xi − µ)T

• Gaussian Finite Mixture Models
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Gaussian finite mixture models is a weighted sum of finite number

of Gaussian probability density functions. Suppose we have K multivariate

Gaussian distributed random vectors x1,x2, ...,xK, µk and Σk are each vector’s

mean vector and covariance matrix, then the probability density function for

the Gaussian finite mixture model would be:

p(x) =
K∑
k=1

πkN(x|µk,Σk)

where πk is the weight with
∑K

k=1 πk = 1, 0 ≤ πk ≤ 1, and πk, µk and Σk are

parameters to be estimated. N(x|µk,Σk) is called the kth component model,

each component is a multidimensional Gaussian with its own mean µk and

covariance matrix Σk. Figure 3.5 [20] is how p(x) would be like and changing

associated with the change of its parameters.

Figure 3.5: Gaussian Mixture Model with Two Gaussian Distributions

Clustering technique based on Gaussian Finite Mixture Models is used

to cluster data points generated from each component model. The following

two steps are to generate sample data points from each component model, and

assign a latent variable to each of the data point.
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Step 1 To generate data points

Firstly, randomly pick one of the components with probability πk, then draw

a sample data points xi, i = 1, 2, ..., n from that component distribution

Step 2 Assign a latent variable to each data point

After each data point is generated from one of the K components, a latent

variable zi = (zi1, zi2, ..., ziK) is associated with each xi, where
∑K

k=1 and

p(ziK = 1) = πk

Since the probability density function of Gaussian finite mixture model

is already given, then the log-likelihood function for the generated data points

from the Gaussian mixture is not hard to find:

l(π, µ,Σ|x) = lnL(π, µ,Σ|x) = ln
n∏
i=1

K∑
k=1

πkN(xi|µk,Σk)

=
n∑
i=1

ln{
K∑
k=1

πkN(xi|µk,Σk)}

(3.2)

Right now, values of the latent variables, which are associated with data

points xi, are not known, then the maximization of the incomplete log likeli-

hood is needed, and Expectation-Maximization (EM) algorithm can be used

to estimate the mixture parameters πk, µk and Σk by iteratively maximizing

the likelihood.
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3.3.2 Expectiation-Maximizations Clustering

The ExpectationMaximization (EM) algorithm is an iterative method

for finding estimates of parameters by maximizing the log-likelihood in statis-

tical models, which depend on unobserved latent variables. The EM iteration

alternates between performing an expectation step (E-step) and a maximiza-

tion step (M-step), where the E-step creates a function for the expectation

of the log-likelihood which is evaluated by the current estimate for the pa-

rameters, and the M-step computes estimate of parameters by maximizing the

expected log-likelihood resulted from the E-step. The parameter-estimates

obtained from the M-step are then used to determine the distribution of the

latent variables in the next E- step.

For the Gaussian Finite Mixture Model given in Section 3.3.1, the spe-

cific expectation and maximization steps are as follows.

• E-step: evaluate ”responsibilities” of each cluster of data points with the

current parameters

For the given initial parameters, it is doable to compute the expected values

of the latent variables using Bayes Theorem, such values are also known as

responsibilities of the data points.
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τik = E(zik) = p(zik = 1|xi, π, µ,Σ)

=
p(zik = 1)p(xi|zik = 1, π, µ,Σ)∑K
k=1 p(zik = 1)p(xi|zik = 1, π, µ,Σ)

=
πkN(xi|µk,Σk)∑K
k=1 πkN(xi|µk,Σk)

(3.3)

where responsibilities τik ∈ [0, 1] and
∑K

k=1 τik = 1 for all i.

• M-step: re-estimate parameters using the existing ”responsibilities”

Use the responsibilities to maximize the expected complete log-likelihood to

give parameter updates.

Combine Equation 3.2 and Equation 3.3, then the maximum likelihood

estimator with responsibilities for the parameters could be found:

∂l(π, µ,Σ|x)

∂µk
=

n∑
i=1

πkN(xi|µk,Σk)∑K
k=1 πkN(xi|µk,Σk)

Σ−1k (xk − µk) = 0

=
n∑
i=1

τikΣ
−1
k (xi − µk) = 0

(3.4)

µk =

∑n
i=1 τikxi∑n
i=1 τik

Similarly, optimizations of πk and Σk are as follows:

πk =

∑n
i=1 τik
n
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Σk =

∑n
i=1 τik(xi − µk)(xi − µk)T∑n

i=1 τik

After the estimates for the parameters are obtained, iterate E-step and

M-step until the log-likelihood of data does not increase any more-reach max-

imum of log-likelihood, in such case, parameters are iteratively optimized to

fit the data set.

In order to obtain a hard clustering, objects or data points are often

then assigned to the Gaussian distribution they most likely belong to, for soft

clustering, this is not necessary.

Model-based clustering produces complex models for clusters that can

capture correlation and dependence between attributes. However, there’s one

obvious limitation for users: for many real data sets, there may be no well-

defined distribution model, that is to say, for example, Gaussian distributed

is a strong assumption on the data.

3.3.3 Experimental Analysis on iris Dataset

As is used in Section 2.1.1 as an example of clusters, the iris dataset

here is another good example to show how model-based clustering works, espe-

cially the Gaussian finite mixture model fitted by Expectation-Maximization

clustering algorithm.

In this section, only the first two columns Sepal.Length and Sepal.Width

from iris are used, since the data with two dimensions makes the analysis more

friendly to visualize. The bivariate iris dataset is shown in Figure 3.6.
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Figure 3.6: The Bivariate iris Dataset

Figure 3.7: Density Estimate for Bivariate iris Dataset
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And from the density estimate for the data in Figure 3.7, a relatively

obvious mixture model with 2 Gaussian distributions can be seen, thus, the

clustering technique Gaussian Finite Mixture Model fitted by EM algorithm

is suitable to be operated on the data.

The R package mclust [21] is used, which is specialized in normal

mixture modeling for model-based clustering, classification, and density esti-

mation. The function Mclust performs clustering analysis based on Gaussian

finite mixture model fitted by EM clustering, and a brief result in shown in

Table 3.6, the corresponding plots are shown in Figure 3.8

Table 3.6: Brief Results of EM Clustering
Log-likelihood Observations DF BIC Clustering Table

-225.9263 150 10 -501.9589 #1: 49, #2: 101

In this case, the best model according to BIC is an variable-covariance

model with 2 clusters, the maximum log-likelihood is -225.9263, optimal BIC -

501.9589, and 49 observations belong to Cluster 1 and 101 observations belong

to Cluster 2.

Additionally, parameters π, µ,Σ in the Gaussian finite mixture model

could be found by EM iterations which are shown in Table 3.7 and Table 3.8

Table 3.7: Parameter Estimates of Mixing Probabilities and Means
Cluster # Mixing Probability π Means µ

1 0.3223103 S.L: 5.016245; S.W: 3.454680
2 0.6776897 S.L: 6.236698; S.W: 2.868354
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Table 3.8: Parameter Estimates of Covariances
Cluster # 1 Σ Sepal.Length Sepal.Width
Sepal.Length 0.12129045 0.09030555
Sepal.Width 0.09030555 0.11938505

Cluster # 2 Σ Sepal.Length Sepal.Width
Sepal.Length 0.4643624 0.1251138
Sepal.Width 0.1251138 0.1117615

In the mean time, the formation of the two clusters could be found

using function classification in mclust package: observation 1 through 41

and observation 43 though 50 are grouped in Cluster 1, and rest of the total

150 observations belong to Cluster 2.

Figure 3.8: Plots Associated with the Function Mclust for iris dataset

Figure 3.8 shows three plots resulted from the Mclust function in the

mclust package.
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Upper left: Change of BIC from for the 10 available model parameterizations

as the increase of the number of clusters up to 9. Different symbols and line

types indicate different model parameterizations. The best model is thought of

as the one with the highest BIC among the fitted models. Combined with Table

3.6, it is known that the optimal BIC -501.9589 is reached at the best number

of clusters 2, by the VEV model, which specifically is a Ellipsoidal Gaussian

mixture model with variable volume, equal shape and variable orientation.

Upper right: The specific clustering of iris data, with different symbols

indicating diverse clusters corresponding to the best model as determined by

function Mclust. The mean values for each cluster are marked and ellipses

with axes are drawn corresponding to their covariances. In such case, there

are two clusters, each with a different covariance.

Lower center: A projection of the iris data showing the uncertainty for the

clustering. Larger and dark symbols indicate more uncertain observations. As

is shown in the this plot, uncertain observations occur with higher frequencies

at the boundaries between two clusters.
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Chapter 4

Cluster Validation

4.1 Determination of Number of Clusters

Determining the number of clusters for a dataset, as illustrated in Chap-

ter 2, is one of the two major concerns in clustering analysis, and also a frequent

problem in data clustering. The quantity is often labeled k as in the K-means

algorithm.

The appropriate choice of k is often fuzzy, with interpretations depend-

ing on the shape and scale of the data points’ distribution and the desired clus-

tering resolution of the user, which sometimes could be subjective. Actually,

increasing k without penalty will always reduce the amount of within-cluster

sum of squared distance in the resulting clustering, and in the mean time, in-

crease the amount of between-cluster sum of squared distance, improving the

percentage of explained variance for the clustering.

Under the extreme clustering situation of zero within-cluster sum of

squared distance, each data point is thought of as its own cluster, then k equals

the size of the data. In such case, the highest proportion of explained variance

has been reached, however, leading the clustering to be meaningless, since

without clustering, each original data point is its own ”cluster”. Therefore,
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the optimal choice of k will strike a trade-off balance between a high volume of

explained variance of clusters and a relatively small number of clusters. There

are several categories of methods for making this decision.

4.1.1 Invalidity of Statistical Significance Testing

Firstly, one method which is commonly used but theoretically invalid

for determining the number of clusters should be explained, the method is

statistical significance testing, like F test based on ANOVA. Unlike many

other statistical procedures, most clustering algorithms are used when there

are no prior hypotheses, and cluster analysis is structure-imposing, sometimes

it will find clusters even if none exist. Consequently, F tests are almost always

misleadingly significant.

4.1.2 The Elbow Method

The elbow method looks at the proportion of variance explained as a

function of the number of clusters k. An ideal value of k such that adding

another cluster doesn’t give much better goodness of fit of the data. In partic-

ular, if the percentage of variance explained by the clusters is drawn against

the number of clusters, the first added cluster will provide much explained

information (explained variance), but at some point the marginal gain will

inevitably drop, giving an angle in the plot. The number of clusters is chosen

right at this point, which is the ”elbow criterion”. This ”elbow” cannot always

be unambiguously identified [22].
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Percentage of the explained variance is the ratio of the between-cluster

variance to the total variance. A slight variation of this method plots the

curvature of the within-cluster variance [23], and Figure 3.4 in Section 3.2.2

is an example of such variation of the regular elbow method. The example of

the regular elbow method for determining the number of clusters, compared

to Figure 3.4, could be seen in Figure 4.1, which is based on the same dataset

of Romano-British Pottery [24].

Figure 4.1: Explained Variance by Clustering against Number of Clusters

The explained variance of clustering, which is calculated as the between-

cluster sum of squared distance divided by the total sum of squared distance,

reaches the ”elbow” when the number of clusters is three, which is the same

result obtained in Figure 3.4.
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At this time, 80.8 % of the total variance is explained, which is good

enough and can be found in Table 4.1. When the number of clusters increases

from 3 to 4, it does not add much (only 3.7%) increase in the percentage of

explained variance. Thus, 3 clusters would be an ideal solution for clustering

the pottery data using K-means algorithm.

Table 4.1: Percentage of Explained Variance against Number of Clusters
# C 1 2 3 4 5 6 7 8 9 10
% ≈ 0 46.6 80.8 84.5 87.5 90.2 92.4 92.7 92.6 95.5

4.1.3 Information Criterion Approach

Another set of methods for number of clusters determination are the in-

formation criteria, such as the Akaike information criterion (AIC) or Bayesian

information criterion (BIC), which are often used as means for model selec-

tion in statistical modeling or predictive modeling if it is possible to construct

the likelihood function for the clustering model. For example: The K-means

model to some extent is a Gaussian mixture model, and the likelihood for the

Gaussian mixture model is not hard to find and then also the information

criterion values [25].

4.1.4 Three Top Performing Heuristic Methods

Milligan and Cooper [26] [27] developed three heuristic methods in their

studies to determine the number of clusters, which are cubic clustering criterion

(CCC), pseudo-F statistic and pseudo-T 2 statistic. All the three criterion or
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statistic have been implemented into the statistical software SAS, and could

been obtained by SAS command PROC CLUSTER.

• Cubic Clustering Criterion (CCC): the local peaks in CCC when

plotted against the number of clusters provide a list of candidates for k.

• Pseudo-F Statistic: measures the separation among all clusters, and

the local peaks in pseudo-F statistic when plotted against the number of

clusters would would provide a list of candidates for k.

• Pseudo-T 2 Statistic: measures the separation between the two clusters

most recently joined, when the pseudo-T 2 is plotted against the number

of clusters, the number to be one more than the peaks (or end of a run

of large values) of pseudo-T 2 would provide a list of candidates for k.

Since in each of the above method, the number of local peaks may

be more than one, then the three heuristic methods only provide a list of

candidates for the number of clusters. In order to determine the optimal

choice of k, the underlying theory of the subject being studied should be paid

attention to, and other approaches for determining the k need to be used

associated with the heuristic methods.

4.2 Cluster Validation

When clustering procedures are completed and the clustering results

are obtained with a confirmed number of clusters and an assignment of data
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points into each cluster, the next and also the final step is to evaluate the

goodness of the resulting clusters, which is also known as cluster validation,

and cluster validation usually is associated with the process of determining

the number of clusters.

As for the motivation of cluster validation, it involves several concerns:

to avoid finding clusters in noise, to compare different clusters, or to compare

the effectiveness of different clustering algorithms on a specific dataset. One

potentially useful validation technique is Cross-validation.

For cross-validation, firstly, randomly split the observations, and then

choose one clustering technique to perform cluster analysis on each set of ob-

servations. If similar clusters develop, then such clustering result is potentially

good to accept. However, if different clusters appear, then the clustering result

is not generalizable. A variation on this method is to perform cluster analysis

(specifically, using K-means algorithm) on the first set of observations, then

use its cluster centroids as seeds to cluster the second set. This forces the

same number of clusters in the cross-validation. If the cluster centroids from

the first set reproduce similar assignments of data points and the clusters in

the second set of observations, which have small within-cluster errors and big

between-cluster errors, then this would be a good clustering.

Halkidi, et al [28] introduced the fundamental concepts of cluster va-

lidity, such as compactness and separation, and gave a systematic analysis of

how cluster validity indices are used in cluster validation, including external

criteria, internal criteria and relative criteria.

37



Brook, et al [29] developed an R package clValid which contains specific

functions for validating the clustering results. There are three main types of

cluster validation measures available which are ”internal”, ”stability”, and

”biological”, and such package can evaluate the cluster analysis resulted from

up to 9 clustering algorithms, including hierarchical, K-means, self-organizing

maps (SOM), model-based clustering, etc.
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Appendix A

R Code for Figure 2.2 & Clustering Analysis

on Romano-British Pottery

## Figure 2 .2 C lu s t e r s f o r i r i s Dataset on Page 6
l i b r a r y ( dev too l s )
i n s t a l l g i t h u b ( ’ s i nh rk s / g g f o r t i f y ’ )
l i b r a r y ( ggp lot2 )
l i b r a r y ( g g f o r t i f y )
l i b r a r y ( c l u s t e r )
s e t . seed (1 )
autop lo t ( fanny ( i r i s [−5] , 4 ) , frame = TRUE)

## Clus t e r i ng Ana lys i s on Romano−B r i t i s h Pottery
## on Page 14−16
l i b r a r y (HSAUR)
k i l n <− rep ( 1 : 5 , c (21 , 12 , 2 , 5 , 5 ) )
k i l n <− as . data . frame ( k i l n )
pot te ry [ , 10 ] <− k i l n
p o t t e r y d i s t <− d i s t ( pot te ry [ , colnames ( pot te ry ) !=

” k i l n ” ] , method = ” euc l i d ean ”)

# Figure 3 . 1 : Image o f Eucl idean Distance based
# D i s s i m i l a r i t y Matrix on Pottery Data
l i b r a r y ( l a t t i c e )
l e v e l p l o t ( as . matrix ( p o t t e r y d i s t ) , x lab = ”Number o f

Pot ” , ylab = ”Number o f Pot ”)

p o t t e r y s i n g l e <− h c l u s t ( p o t t e r y d i s t , method =
” s i n g l e ”)

pot te ry comple te <− h c l u s t ( p o t t e r y d i s t , method =
” complete ”)
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pot t e ry ave rage <− h c l u s t ( p o t t e r y d i s t , method =
” average ”)

# Table 3 . 2 : Re la t i on s between C lu s t e r s and Kiln S i t e s
# f o r Average Link
c l u s t e r s <− cut r e e ( pot te ry average , h = 4)
xtabs (˜ c l u s t e r s + k i ln , data = potte ry )

# Figure 3 . 2 : Dendrogram of H i e r a r c h i c a l C lu s t e r i ng
# us ing Eucl idean Distance
par ( mfrow =c ( 1 , 3 ) )
p l o t ( p o t t e r y s i n g l e , main = ” S i n g l e Link ” , sub = ”” ,

xlab = ””)
p l o t ( pottery complete , main = ”Complete Link ” , sub = ”” ,

xlab = ””)
p l o t ( pot te ry average , main = ”Average Link ” , sub = ”” ,

xlab = ””)
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Appendix B

R Code for K-means Experimental Study on

Pottery Data

## K−means Experimental Study on Pottery Data on
## Page 17−19
l i b r a r y ( ggp lot2 )
l i b r a r y (HSAUR)
l i b r a r y (HSAUR2)
s e t . seed (13)
r e s . kmeans <− l app ly ( 1 : 1 0 , f unc t i on ( i ) {

kmeans ( pot te ry [ , 1 : 9 ] , c e n t e r s = i )
})

#Within SS f o r each c l u s t e r (1 c l u s t e r to 10 c l u s t e r s )
l app ly ( r e s . kmeans , f unc t i on ( x ) x$wi th ins s )

#Table 3 . 3 : Total Within−c l u s t e r Sum of Squared Distance
r e s . with in . s s <− sapply ( r e s . kmeans , f unc t i on ( x )

sum( x$wi th ins s ) )
r e s . with in . s s

#Figure 3 . 4 : Re la t i on s between SSD and Number o f C lu s t e r s
ggp lo t ( data . frame (No . o f C l u s t e r s = 1 :10 ,

SSD = r e s . with in . s s ) ,
aes (No . o f C l u s t e r s , SSD) ) +
geom point ( ) + geom l ine ( ) +
s c a l e x c o n t i n u o u s ( breaks = 0 : 10 )

#Table 3 . 4 : C lus te r Means f o r Each Clus te r &
#Table 3 . 5 : Re la t i on s between C lu s t e r s and Kiln S i t e s
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#using K−means
r e s . kmeans [ 3 ]

## Table 4 . 1 : Percentage o f Explained Variance aga in s t
## Number o f C lu s t e r s on Page 35
r e s . between . s s <− sapply ( r e s . kmeans , f unc t i on ( x )

( x$betweenss )/ ( x$ to t s s ) )
r e s . between . s s

# Figure 4 . 1 : Explained Variance by C lu s t e r i ng aga in s t
# Number o f C lu s t e r s on Page 34
ggp lot ( data . frame (No . o f C l u s t e r s = 1 :10 ,

BSS in TOTSS = r e s . between . s s ) ,
aes (No . o f C l u s t e r s , BSS in TOTSS ) ) +
geom point ( ) + geom l ine ( ) +
s c a l e x c o n t i n u o u s ( breaks = 0 : 10 )
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Appendix C

R Code for Experimental Analysis on iris

Dataset

## Experimental Ana lys i s on I r i s Dataset on Page 28−30
l i b r a r y ( mclust )
imc lus t <− Mclust ( i r i s [ , 1 : 2 ] )

# Table 3 . 6 : B r i e f Resu l t s o f EM Clus t e r i ng &
# Table 3 . 7 : Parameter Est imates o f Mixing P r o b a b i l i t i e s
# and Means
# Table 3 . 8 : Parameter Est imates o f Covar iances
summ <− summary( imclust , parameters = TRUE)
summ
imclust$BIC
i m c l u s t $ c l a s s i f i c a t i o n

# Figure 3 . 6 : The B iva r i a t e i r i s Dataset
p l o t ( i r i s $ S e p a l . Length , i r i s $ S e p a l . Width ,

xlab = ” Sepal . Length ” , ylab = ” Sepal . Width” ,
pch = ”o ”)

# Figure 3 . 7 : Density Estimate f o r B iva r i a t e i r i s Dataset
i r i s D e n s <− dens i tyMclust ( i r i s [ , 1 : 2 ] )
p l o t ( i r i sDens , type = ” persp ” , c o l = grey ( 0 . 8 ) )

# Figure 3 . 8 : P lo t s Assoc iated with the Function Mclust
# f o r i r i s Dataset
p l o t ( imc lus t )
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