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Bayesian Estimation of the Discrepancy with
Misspecified Parametric Models

Pierpaolo De Blasi ∗ and Stephen G. Walker †

Abstract. We study a Bayesian model where we have made specific requests
about the parameter values to be estimated. The aim is to find the parameter
of a parametric family which minimizes a distance to the data generating density
and then to estimate the discrepancy using nonparametric methods. We illustrate
how coherent updating can proceed given that the standard Bayesian posterior
from an unidentifiable model is inappropriate. Our updating is performed using
Markov Chain Monte Carlo methods and in particular a novel method for dealing
with intractable normalizing constants is required. Illustrations using synthetic
data are provided.
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1 Introduction

We consider a semi–parametric density model which comprises two parts. One part is a
parametric family of densities, {fθ(x), θ ∈ Θ}, which is assumed to be misspecified but
is used as a possible approximation to the sampling density, labeled as f0(x). The other
part is a nonparametric component which is used to model the discrepancy between
f0(x) and the closest density, with respect to the Kullback–Leibler divergence, in the
family fθ(x). If θ0 is the parameter value that identifies this density, i.e.

θ0 = arg min
θ∈Θ

{
−
∫

log fθ(x) f0(x) dx
}
,

then the discrepancy of the parametric family can be measured via a divergence of
the type D(f0, fθ0) =

∫
fθ0(x) g[f0(x)/fθ0(x)]dx, where g is a convex positive function

such that g(1) = 0, see Liese and Vajda (2006). Such divergences can then be used
to undertake model selection and adequacy. Therefore it is of interest to estimate the
correction function

C0(x) = f0(x)/fθ0(x),

and a convenient way of targeting this ratio is by perturbing fθ(x) by a non-negative
function W (x),

fθ,W (x) =
fθ(x)W (x)∫
fθ(s)W (s)ds

, (1)

(provided the integral in the denominator exists) and to look at

C(x; θ,W ) =
W (x)∫

W (s) fθ(s) ds
(2)
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as the infinite dimensional parameter of interest. A graphical output of C(x; θ,W )
conveys also information about the local fit of the parametric model, the general in-
terpretation being that the closer the estimate of C0(x) is to a constant function, the
better the fit.

Model (1) builds upon the Gaussian process prior of Leonard (1978); Lenk (1988) and
its semi–parametric extension by Lenk (2003). Given a compact interval I on the real
line, a density on I is defined by

f(x) =
eµ(x)+Z(x)∫
I

eµ(s)+Z(s)ds
, (3)

where µ(x) is a fixed continuous function and Z(x) is a Gaussian process. Model (3)
defines a prior distribution on the space of density functions on I with well known
asymptotic properties such as posterior consistency and contraction rates. See Tokdar
and Ghosh (2007), van der Vaart and van Zanten (2008, 2009) and De Blasi and Walker

(2013). It is easy to see that (3) is an instance of (1) for fµ(x) = eµ(x)
M ∫

I
eµ(s)ds

perturbed by W (x) = eZ(x). Therefore posterior consistency at f0(x) implies that
the posterior distribution of eZ(x)/

∫
I

eµ(s)+Z(s)ds accumulates around the correction
function f0(x)/fµ(x). An alternative way of building a nonparametric density model
from a parametric one is by using the probability transform fθ(x)g(Fθ(x)) for Fθ the
cumulative distribution function of fθ and g a density on [0, 1]. A semi parametric
model is obtained by placing a nonparametric prior on g, see Verdinelli and Wasser-
man (1998) and Rousseau (2008) where this model is used for goodness-of fit testing
through Bayes factors. As noted by Tokdar (2007), model (1) can be recovered by taking

g(x) = eZ(x)/
∫ 1

0
eZ(s)ds for Z(x) a Gaussian process with covariance σ(u, v) since then

fθ(x)g(Fθ(x)) takes form (1) with W (x) = eZθ(x) and Zθ(x) = Z[Fθ(x)] the Gaussian
process with covariance σ(Fθ(x), Fθ(y)). In a frequentist setting, a construction simi-
lar to (1) has been considered by Hjort and Glad (1995), where an initial parametric
density estimate of f0 is multiplied with a nonparameteric correction factor estimated
via kernel-type methods. The aim in Hjort and Glad (1995) is not model comparison,
but rather showing that the this estimator of f0 is more efficient than traditional kernel
density estimators for f0 in a broad neighborhood around the parametric family.

In this paper we discuss how the semi–parametric density fθ,W (x) in (1) can be used to
find a coherent and consistent estimation of C(x; θ,W ) in (2) with Bayesian techniques.
The problem to be faced is that (1) is an over–parametrized density whereas C(x; θ,W )
targets the correction function C0(x) which is defined in terms of a particular value of
θ, i.e. θ0. In Section 2 we introduce and motivate an update for (θ,W ) which deals with
this problem by using the parametric model {fθ(x), π(θ)} to estimate a nonparametric
functional. In Section 3 we derive an Markov Chain Monte Carlo(MCMC) sampling
scheme which deals with the normalizing constant in (1) and we provide illustration of
inference with synthetic data. In Section 4 we investigate the asymptotic behavior of
the proposed update. Section 5 has some final concluding remarks.
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2 Posterior Updating

Before we discuss how we update the parameters, so that we can properly explain the
procedure, we consider a parametric model which is misspecified, and which can be
exactly the fθ(x) described in the semi–parametric model (1). So let us assume the
observations are independent and identically distributed from some density function
f0(x) which is not contained in the parametric family fθ(x). Now talking about making
inference on θ sounds hollow. There is a need to define exactly what parameter value of
θ ∈ Θ we are interested in learning about. Without such it would appear problematic
to specify a π(θ) so that we can interpret the meaning of Π(A) =

∫
A
π(θ)dθ for all sets

A. It would appear clear that we would want to learn about the best parameter value
possible and this can adequately be defined in terms of the Kullback–Leibler divergence
between the family {fθ(x) : θ ∈ Θ} and f0(x). This is a real parameter value and hence
it is possible to assign a probability (the prior) to such a value.

Moreover, it is also appropriate and foundationally sound to update the prior to the
Bayes posterior in spite of the classification of fθ(x) as misspecified. The justification
can be derived from the representation theorem of symmetric densities obtained by de
Finetti in the {0, 1} setting and the more general representation by Hewitt and Savage
(1955) in more general spaces of observations. The idea is that a sequence of guesses as
to where the next observation is coming from, say m1(x) for the first observation, and
subsequently, mn(x|x1, . . . , xn−1) for the nth, would form a joint density which would
need to be symmetric, as the observations are independent and identically distributed.
Every sequence of symmetric densities will adhere to the representation theorem and
hence for all joint guesses m(x1, . . . , xn) this can be written as

m(x1, . . . , xn) =

∫
Θ

n∏
i=1

f(xi|θ)π(dθ)

for some π(θ), even though one is acknowledging this sequence is simply guessing.
The basic fact is that the representation theorem applies to all sequences of symmet-
ric densities whether they be correct or misspecified models in the form of guesses.
The less demanding version of Bayes theorem which applies to misspecified models
is then to be found within the representation theorem. The fuller argument can be
found in Walker (2013). Hence, with the data, and interest in the θ0 which minimizes
−
∫

log fθ(x) f0(x) dx, the appropriate update of π(θ) is the Bayesian posterior; i.e.

π(θ|x1, . . . , xn) ∝ π(θ)

n∏
i=1

fθ(xi). (4)

It is also well known that this sequence of posteriors accumulates at θ0 under general and
mild regularity conditions, see Section 4. This fact provides an asymptotic validation
that the Bayesian is indeed learning about θ0 rather than any other parameter value.

We explain now how we update (θ,W ) to estimate C(x; θ,W ) in (2). It is clear that
(1) is an over–parametrized density in the sense that for each θ there is a correction
function C(x; θ,W ), and hence a W , which yields the same density. However, for fixed
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θ and a prior distribution π(dW ) on the space W of possible perturbation functions W ,
the conditional posterior distribution

π(dW |θ, x1, . . . , xn) ∝ π(dW )

n∏
i=1

fθ,W (xi) ∝ π(dW )

n∏
i=1

C(xi; θ,W ) (5)

is a valid update for learning about the correction function f0(x)/fθ(x) via C(x; θ,W ).
Therefore, we keep the parametric model {fθ(x), π(θ)} as the working model as it is
identifiable and hence it has a posterior distribution which is theoretically sound to
construct and to interpret. Then we consider the posterior mean

C(x; θ, x1, . . . , xn) :=

∫
W
C(x; θ,W )π(dW |θ, x1, . . . , xn) (6)

as a functional depending on both the data and θ, to be estimated by using the model
{fθ(x), π(θ)}. This estimation procedure would be valid whenever we are interested in a
quantity B(x; θ,W ) and the true B0(x) is strictly and only of the form B0(x) = B(x; θ0).
Estimating the functional (6) in terms of the model {fθ(x), π(θ)} now means that our
estimate of C0(x) is given by

C(x;x1, . . . , xn) :=

∫
W
C(x; θ, x1, . . . , xn)π(θ|x1, . . . , xn)dθ

=

∫
Θ

∫
W
C(x; θ,W )π(dW |θ, x1, . . . , xn)π(θ|x1, . . . , xn)dθ.

This now is effectively pursued by sampling C(x; θ,W ) with respect to the joint distri-
bution of (θ,W ) given by equations (4) and (5), i.e.

π(dW, dθ|x1, . . . , xn) = π(dW |θ, x1, . . . , xn)π(θ|x1, . . . , xn)dθ. (7)

The mathematical justification of (7) is to be found in terms of estimation of the non-
parametric functional (6) with the parametric model {fθ(x), π(θ)}. In Section 4 we
provide an asymptotic study of the proposed estimation procedure by proving that the
joint distribution (7) accumulates in L1-neighborhoods of C0(x), which in turns implies
that C(x;x1, . . . , xn) provides a consistent estimator of C0(x).

On the other hand the use of a formal semi–parametric Bayesian model to update (θ,W )
would be through the posterior

π̃(dW, dθ|x1, . . . , xn) ∝ π(dW )π(θ)dθ

n∏
i=1

fθ,W (xi). (8)

However, while (8) is appropriate for learning about f0; it is not so for learning about
(θ0, C0) due to the lack of identifiability of (1). A practical consequence is that the
marginalized π̃(θ|x1, . . . , xn) =

∫
π̃(θ,W |x1, . . . , xn)dW has no interpretation, since it

is not clear what parameter value this π̃ is targeting. That is Π̃(θ ∈ A|x1, . . . , xn) is
meaningless as it is no longer clear what is the real parameter value the prior π(θ) is spec-
ifying beliefs on. Moreover, the posterior mean

∫
W
∫

Θ
C(x; θ,W ) π̃(dW, θ|x1, . . . , xn)dθ
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is not a valid estimator of C0(x) since the posterior (8) does not target any particular
(θ,W ).

An alternative ad hoc derivation of the joint distribution (7) is achieved by writing the
formal semi–parametric posterior (8) as

π̃(θ,W |x1, . . . , xn) = π̃(θ|W,x1, . . . , xn)π̃(W |x1, . . . , xn)

where

π̃(θ|W,x1, . . . , xn) ∝ π(θ)
∏n
i=1 fθ,W (xi)

∝ π(θ)
∏n
i=1 fθ(xi)× [

∫
W (s)fθ(s)ds]

−n

and then removing the term [
∫
W (s)fθ(s)ds]

−n. This modification of the conditional of
θ can be seen as a way of preventing estimation of θ to be confounded by estimation of W
and it concurs with the notion that whether we are interested in W or not, beliefs about
θ are unchanged. Within Bayesian analysis there is an increasing use of modifications
to posterior distributions that do not strictly correspond to a full probability model.
See Liu et al. (2008) for a review.

3 Inference via MCMC

The posterior update (4) for θ is a straightforward application of Bayes theorem to a
parametric model and we do not believe taking space here to detail standard MCMC
algorithms for parametric models is worthy. On the other hand, sampling from the
conditional distribution (5) of W poses two problems. First, for any positive constant
φ, C(x; θ,W ) = C(x; θ, φW ), and so it is important to fix a scale through the prior
distribution for W . Second, it is difficult to deal with the normalizing constant in
posterior sampling. A way to deal with these problems is to fix the prior expectation
of W and to constrain W to be bounded. Hence, rather than take W (x) = eZ(x) as in
(3), which has been a standard practice in the literature, we take

W (x) =
eZ(x)

1 + eZ(x)
, (9)

with Z(x) a mean zero Gaussian process. Note that one can equally use other trans-
formations to the unit interval, see Section 4 for a discussion. However we confine to
the logistic link for the sake of illustration. In fact we do not believe the actual trans-
formation is relevant as long as it is monotone and maps the real line onto the unit
interval.

In this situation Walker (2011) describes a latent model which can deal with the in-
tractable normalizing constant. This is based on the result that

∞∑
k=0

ˆ

n+ k − 1
k

˙„∫
fθ(s)ds p1−W (s)q

k

=

ˆ

1∫
W (s) fθ(s)ds

˙n

,
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suggesting that a suitable latent model which removes the normalizing constant is

p(x1, . . . , xn, k, s1, . . . , sk) =

ˆ

n+ k − 1
k

˙ n∏
i=1

W (xi)

k∏
l=1

p1−W (sl)q fθ(sl).

Hence, in any MCMC algorithm for now estimating the posterior, or drawing samples
from it, would need to sample the variables (k, s1, . . . , sk,W ).

The remaining cause for concern is that W (x) is an infinite dimensional object and so
sampling using MCMC methods from this latent model is still not going to be simple.
However, a common procedure here is to use a grid of points on I; we will in the
illustrations be using I = [0, 1] and hence we split this I into intervals Ij = ((j −
1)/J, j/J ] and define the process W (x) as follows. We approximate the Gaussian process
Z(x) by the piecewise constant process Z ′(x) = Zj whenever (j − 1)/J < x ≤ j/J and
Zj = Z((j−1/J)). Hence we define W (x) = Wj = eZj/(1+eZj ) for (j−1)/J < x ≤ j/J .

1. Sampling the (sl)
k
l=1 given k and (Wj)

J
j=1. With this set up it is possible, given

k and Z, to sample the {sl : l = 1, . . . , k} independently, as is required, from the density

f(s|· · ·) ∝
J∑
j=1

wj fj,θ(s)

where

fj,θ(s) =
fθ(s)1(s ∈ Ij)

Fθ(Ij)
, wj ∝ (1−Wj)× Fθ(Ij)

with Fθ(Ij) =
∫
Ij
fθ(s) ds. Hence, the sampling of the sl given k and Z is done in the

usual way for sampling from a finite mixture model.

2. Sampling k given the (sl)
k
l=1 and (Wj)

J
j=1. The sampling of k given the current

values involves a reversible jump MCMC step (Green 1995; Godsill 2001) by using a
technique detailed in Walker (2011). The idea is to complete an infinite sequence of
s = (s1, s2, . . .) and to consider

p(k, s1, . . . , sk, sk+1, . . . |W ) ∝
ˆ

n+ k − 1
k

˙

{
k∏
l=1

(1−W (sl)) fθ(sl)

}
×

∞∏
l=k+1

fθ(sl).

So when a proposal is made to move from k to k − 1 or k + 1, each with probability
1/2 of being proposed, the accept probability is, for example when proposing to move
to k + 1, given by

min

{
1,
p(k + 1, s|W )

p(k, s|W )

}
= min

{
1,
n+ k

k + 1
(1−W (sk+1))

}
and sk+1 is sampled from fθ(·). Hence, due to the cancelation of terms, in order to
implement this strategy we only need to actually sample (s1, . . . , sk+1) at any iteration.
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3. Sampling (Zj)
J
j=1 given the (sl)

k
l=1 and k. Finally, Z can be sampled as a J–

multivariate Gaussian distribution. The exact form of the conditional distribution for
Zj is given by

π(Zj |Z−j , · · ·) ∝ π(Zj |Z−j)
emj Zj

(1 + eZj )lj
,

where mj = #{xi ∈ Ij} and lj = #{xi ∈ Ij} + #{sl ∈ Ij}. This can adequately be
sampled using a rejection algorithm or a Metropolis–Hastings algorithm.

Thus, we can sample a (piecewise constant) C(x; θ,W ) from the joint distribution (7)
by, at each iteration of the MCMC, sampling a θ from the posterior (4) and then sample
the corresponding (k, s1, . . . , sk, Z1, . . . , ZJ) and compute C(x; θ,W ) in (2).

Here we present an illustration using simulated data; we take n = 500 independent and
identically distributed samples from the density on [0, 1] given by f0(x) = 2(1−x), and
we take

fθ(x) =
θ exp(−xθ)

1− e−θ
.

It is then straightforward to compute that θ0 ≈ 2.15. We first run the code with θ fixed
at θ = 2, that is we only update W according to (5), and at each iteration of the chain
we compute C(x; θ,W ) for such a fixed θ, with the integral being easy to perform as
we are taking W to be piecewise constant. The correction function to be estimated is
f0(x)/fθ(x) = (1−x) (1−e−2) exp(2x). The code was run with a grid size of 1/50 and a
correlation of 0.9 between neighboring Zj , and marginally each Zj had a mean of 0 and
a standard deviation of 1.5. For the examples we considered we did fix the correlation,
and thus the covariance kernel of the Gaussian process, on the basis of the smoothness
of the densities involved. For neighboring Zj and Zj′ we can anticipate high closeness
and hence the appropriateness of the high correlation. We acknowledge in general that
a hyper–parameter with associated prior would be needed if one is not sure that fθ
reflects the smoothness of f0. But this is a straight forward procedure to achieve in
practice and hence we felt it unnecessary to undertake on this occasion. The algorithm
was run for 20,000 iterations and the estimate presented in Figure 1 is the average over
all C(x; θ,W ) from all iterations, which corresponds to C(x; θ, x1, . . . , xn) in (6).

We then repeated the study by incorporating the prior for θ which is taken to be
the improper prior on the positive reals proportional to 1/θ, and obtained posterior
inference according to the proposed update (7). The estimate C(x;x1, . . . , xn) of C0(x)
is presented in Figure 2, top panel. Samples from the posterior of C(x; θ,W ) are given in
lower panel of Figure 2. Note that the accuracy of estimating C0(x) is comparable with
the case of fixed θ, an illustration of the asymptotic results of Remark 1 and Theorem 2.
The shape of C0(x) illustrates clearly the lack of fit fθ for x close to 1 as: in fact f0(x)→
0 while fθ0(1) remains bounded away from 0. As pointed out by an Associate Editor, a
graphical output of C0(x) is not immediately informative about the discrepancy of the
parametric model as measured by the divergence D(f0, fθ0) =

∫
fθ0(x) g[C0(x)]dx. In

fact, for g(t) = t log t (Kullback-Leibler divergence), D(f0, fθ0) =
∫
f0(x) logC0(x)dx,

so departures of C0(x) from 1 are weighted differently according to the size of f0. The
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Figure 1: Estimated (bold) and true (dashed) function f0(x)/fθ(x) with θ fixed at 2.

histogram representation of the posterior (4) for θ is presented in Figure 3. The posterior
mean for θ is given by 2.13, very close to the actual value of θ0 as expected, since the
posterior distribution for the parametric model is consistent at θ0, see Theorem 1 below.

Finally, we compare update (7) with the formal semi–parametric update (8) using the
same set up as before save this time we sample from the conditional posterior for θ given
by

π̃(θ|x1, . . . , xn, k, s1, . . . , sk) ∝ π(θ)

n∏
i=1

fθ(xi)

k∏
l=1

fθ(sl).

The estimated C0(x) is now presented in Figure 4 and the histogram representation
of the formal semiparametric posterior for θ is presented in Figure 5. The posterior
mean for θ in this case is given by 1.97. The plots indicate that both the formal semi–
parametric update (8) and the proposed update (7) provide a suitable estimate for
C(x; θ,W ), which is not surprising given the flexibility of model (1) to estimate C0(x)
with alternative values of θ. Yet the formal semi–parametric posterior for θ is less
accurate than with the parametric posterior (4), a difference which did not disappear
when we increased the sample size (indeed, n = 500 was already quite large).

To further explore the difference between the parametric and the formal semi–parametric
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Figure 2: Estimated (bold) and true (dashed) functions of C0(x) with update (7) (top);
samples of C(x; θ,W ) (bottom).
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Figure 3: Posterior distribution of θ with update (4). Posterior mean is 2.13.



790 Bayesian Estimation of the Discrepancy with Misspecified Models

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

C
(x

)

Figure 4: Estimated (bold) and true (dashed) functions of C0(x) using formal semi–
parametric posterior (8).
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Figure 5: Posterior distribution of θ based on formal semi–parametric posterior update
(8). Posterior mean is 1.97.
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updates for θ we use the model

fθ(x) = θxθ−1

with 0 < θ, x < 1 and a uniform prior for θ. If f0(x) = 2x then θ0 = 1. Based on a
sample of n = 50 we obtain the posterior distributions presented in Figure 6; the top is
based on the parametric posterior update and is accumulating at 1, whereas the formal
semiparametric update is accumulating at around 0.9. Furthermore for this example
we draw the estimated C0(x) functions for both methods. This is in Figure 7 where it
can clearly be seen that a better estimate of the true correction function C0(x) = 2x is
provided by update (7).

4 Asymptotics

In this section we study the asymptotic behavior of the update (7) when the data
X1, . . . , Xn are i.i.d. from f0. We recall the definition of θ0 as the parameter value that
minimizes −

∫
log fθ(x) f0(x) dx and of C0(x) = f0(x)/fθ0(x) as the correction function.

Theorem 1 provides a rate of convergence of the posterior distribution (4) at θ0, while
Theorem 2 establishes that the conditional distribution of C(x; θ,W ) corresponding to
update (7) accumulates at C0.

To set the notation, let F be the space of density functions on I and C(I) be the space
of continuous functions on I. Also let F0 denote the probability measure associated
to f0 and Fn0 stand for the associated n-fold product measure over the n-fold product
space In. Integrals

∫
I
g(x)f0(x)dx and

∫
In
g(x1, . . . , xn)

∏n
i=1 f0(xi)dxi are written as

F0(g) and Fn0 (g), respectively. For f, g ∈ F, the Hellinger distance between f and g
is h(f, g) = [

∫
I
(
?
f − ?

g)2]1/2; the Kullback-Leibler divergence of g relative to f is
K(f, g) =

∫
I
f log(f/g). Moreover, the sup norm and the L1-norm of a real-valued

function h are given by ‖h‖∞= supx∈I |h(x)| and ‖h‖1=
∫
I
|h(x)|dx, respectively, while

‖ · ‖ stands for the Euclidean norm in Θ. Finally, the notation À is used for “ less than
or equal to a constant times ”.

The following are regularity assumptions on fθ.

A1) fθ is continuous and bounded away from 0 on I for each θ ∈ Θ;

A2) θ → log fθ(X1) is differentiable at θ0 in F0-probability with derivative 9̀
θ0(X1) and

F0
9̀
θ0

9̀T
θ0

is invertible;

A3) there is an open neighborhood U of θ0 such that for all θ1, θ2 ∈ U :

‖log fθ1/fθ2‖∞ À ‖θ1 − θ2‖;

A4) K(f0, fθ) has a 2nd-order Taylor expansion around θ0;

A5) F0(fθ/fθ0) <∞ for all θ in a neighborhood of θ0;
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Figure 6: Posterior distributions of θ with update (4) (top) and formal semi–parametric
update (8) (bottom).
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Figure 7: Posterior estimates of C(x; θ,W ) based on (4) update (- - -) and formal
semi–parametric update (8) (...), along side the true C0(x) = 2x.
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A6) for Qθ(A) =
∫
A
f0(fθ/fθ0), Qθ(I) < ∞ for all θ ∈ U and, for every ε > 0, there

exists a sequence of test (φn) such that

Fn0 φn → 0, sup
{θ:‖θ−θ0‖>ε}

Qnθ (1− φn)→ 0

Assumption A1) is a technical condition needed for the proof of Proposition 1. Since
I is a bounded interval of R, it also implies that fθ is bounded. Assumptions A2)–A6)
reproduce the hypotheses of Theorem 3.1 of Kleijn and van der Vaart (2012), although
the local property A3) is stronger than the corresponding one in Kleijn and van der
Vaart (2012) and is later used in Theorem 2.
Theorem 1 (Kleijn and van der Vaart, 2012). Assume that π(θ) is continuous and
positive in a neighborhood of θ0 and that Assumptions A2)-A6) are satisfied. Then the
posterior (4) converges at rate 1/

?
n,

Π
{
θ : ‖θ − θ0‖> Mnn

−1/2|X1, . . . , Xn

}
→ 0, (10)

in Fn0 -probability for any sequence Mn →∞.

We now discuss the choice of the prior distribution for W . We take W (x) to be bounded
by 1 by mapping a Gaussian process through a link function:

W (x) = Ψ(Z(x)),

where Ψ(u) is a cumulative distribution function (cdf) on the real line and Z(x) is a
zero mean Gaussian process with covariance σ(s, t). See Ghosal and Roy (2006) for a
similar construction of priors for nonparametric binary regression. We further impose
a Lipschitz condition on log Ψ(u) by assuming that Ψ is differentiable with bounded
derivative ψ(u) such that

ψ(u)/Ψ(u) < m, for any u ∈ R (11)

for m a positive constant. Examples of Ψ(u) satisfying (11) are the logistic cdf, the
Laplace cdf and the Cauchy cdf. The probit link used in Ghosal and Roy (2006) violates
this condition; indeed in Ghosal and Roy (2006) the Lipschitz condition is required
directly on Ψ(u).

Proposition 1 establishes posterior consistency of model (1) for fixed θ, that is with
respect to the conditional posterior (5). The key condition is on A(σ), the reproducing
kernel Hilbert space of the covariance kernel σ of Z, see van der Vaart and van Zanten
(2008) for a formal definition. Let Ā(σ) be the closure of A(σ) with respect to the sup
norm.
Proposition 1. Let W (x) = Ψ(Z(x)) for Ψ satisfying (11) and Ā(σ) = C(I). Let also
fθ satisfy assumption (A1) and f0(x) be continuous and positive on I. Then, for any
ε > 0, there is some d > 0 such that

Π {h(f0, fθ,W ) > ε|θ,X1, . . . , Xn} ≤ e−dn,

in Fn0 -probability as n→∞.
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Proof. The proof is based on an adaptation of the arguments used in van der Vaart and
van Zanten (2008, Theorem 3.1) and amounts to (i) the derivation of inequalities (13)
and (15) which relate the Hellinger distance and the Kullback-Leibler divergence with
the sup distance on the space of real-valued functions z(x); (ii) showing that the map

x 7→ Ψ−1
”

f0(x)/Mfθ(x)
ı

is a continuous function on I for M a large enough positive

constant.

As for (i), let pz = fθ,Ψ(z). Using the Lipschitz condition (11),

‖log Ψ(z1)− log Ψ(z2)‖∞< m‖z1 − z2‖∞. (12)

Since ‖log Ψ(z1) − log Ψ(z2)‖∞= ‖log fθΨ(z1) − log fθΨ(z2)‖∞ we can use the first
inequality in van der Vaart and van Zanten (2008, Lemma 3.1) to conclude that

h(pz1 , pz2) ≤ m‖z1 − z2‖∞em‖z1−z2‖∞/2. (13)

Moreover, (12) together with ‖log pz1/pz2‖∞≤ 2‖log fθΨ(z1) − log fθΨ(z2)‖∞, see last
equation in the proof of Lemma 3.1 in van der Vaart and van Zanten (2008), implies

‖log pz1/pz2‖∞< 2m‖z1 − z2‖∞ (14)

and an application of Lemma 8 in Ghosal and van der Vaart (2007) leads to

K(pz1 , pz2) À m2‖z1 − z2‖2∞ em‖z1−z2‖∞ p1 + 2m‖z1 − z2‖∞q (15)

cf. the second inequality in van der Vaart and van Zanten (2008, Lemma 3.1). Following
the lines of the proof of van der Vaart and van Zanten (2008, Theorem 3.1), we conclude
that

Π {Z : h(f0, pZ) > ε|X1, . . . , Xn} → 0,

in Fn0 -probability as n → ∞ provided that there exists z(x) ∈ C(I) such that pz = f0,
that is there exists a constant M such that

z := Ψ−1(f0/Mfθ) ∈ C(I).

Since Ψ(u) is Lipschitz (as implied by (11)), the latter corresponds to continuity of
f0/Mfθ and 0 < f0/Mfθ < 1. Continuity is implied by that of f0 and fθ. f0/Mfθ < 1
holds whenever M > maxx f0(x)/minx fθ(x), and existence of M is guaranteed by
Assumption A1). Finally f0/Mfθ > 0 is implied by the condition on f0(x) being
positive on I. Finally, that convergence to 0 of the posterior probability can be made
exponentially fast is then a side result of the way posterior consistency (and posterior
contraction rate as well) is actually derived, see Choi and Ramamoorthi (2008).

Remark 1. It is well known that the Hellinger distance and the L1-distance induce
equivalent topologies on F, therefore Proposition 1 can be also formulated in terms of
L1 neighborhood. Note that

‖fθ,W − f0‖1 =

∫
I

ˇ

ˇ

ˇ
W (x)

M ∫
I
fθ(s)W (s)ds− f0(x)/fθ(x)

ˇ

ˇ

ˇ
fθ(x)dx

≥ min
x∈I

fθ(x)

∫
I

|C(x; θ,W )− f0(x)/fθ(x)| dx
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and minx∈I fθ(x) > 0 by Assumption A1). Therefore, Proposition 1 implies that, for
fixed θ, C(x; θ,W ) in (2) consistently estimates the correction function f0(x)/fθ(x) in
the L1–metric. 2
Remark 2. Here we discuss the case of f0(x) not being strictly positive. In this case

one cannot rely on the continuity of the map x 7→ Ψ−1
”

f0(x)/Mfθ(x)
ı

to conclude

consistency by an application of van der Vaart and van Zanten (2008, Theorem 3.1).
A possibility is to use a more general consistency result like Theorem 2 of Ghosal et al.
(1999). We only mention here how to deal with the Kullback-Leibler condition, as the
the entropy condition can be easily verified by using (13) along the lines of van der
Vaart and van Zanten (2008, Theorem 2.1). Specifically, we use a technique laid down
in Tokdar and Ghosh (2007, Theorem 4.6) which consists of constructing a strictly
positive continuous density f1 for which K(f0, f1) is arbitrarily small. For fixed ε > 0,
define f1(x) = (f0(x) + δ)/(1 + δ) with log(1 + δ) < ε/2. Then

K(f0, pz) = log(1 + δ) + F0 log[f0/(f0 + δ)] + F0 log(f1/pz) ≤ ε/2 + F0 log(f1/pz).

Note that f1(x) is strictly positive and bounded by (maxx f0(x) + δ)/(1 + δ). There-
fore for M > maxx f1(x)/minx fθ(x) = [maxx f0(x) + δ]/[(1 + δ) minx fθ(x)], z1 :=
Ψ−1(f1/Mfθ) ∈ C(I) by arguments similar those used in the proof of Proposition 1.
Now, by the hypothesis made on the reproducing kernel Hilbert space A(σ), Π{‖Z −
z1‖∞< η} > 0 for any positive η and

Π{K(f0, pz) < ε} ≥ Π{F0 log(f1/pz) < ε/2} ≥ Π {‖log(f1/pz)‖∞< ε/2}
≥ Π {‖Z − z1‖∞ < ε/4m} > 0

where the last inequality follows from (14). 2

We are now ready to state and prove the main result about the L1-consistency of update
(7) at C0(x).
Theorem 2. Assume that the hypothesis of Theorem 1 and Proposition 1 are satisfied.
Then, for every ε > 0,

Π
{∫
I
|C(x; θ,W )− C0(x)|dx > ε|X1, . . . , Xn

}
→ 0,

as n→∞ in Fn0 -probability.

Proof. The proof comprises two parts. We first show that, for any ε > 0,

Π{h(f0, fθ0,W ) > ε|X1, . . . , Xn} → 0. (16)

Reasoning as in Remark 1, (16) implies that Π
{∫
I
|C(x; θ0,W )− C0(x)|dx > ε|X1, . . . , Xn

}
→

0, hence the thesis would follow by additionally showing that, for any ε > 0,

Π
{∫
I
|C(x; θ,W )− C(x; θ0,W )|dx > ε|X1, . . . , Xn

}
→ 0. (17)
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To simplify the notation, let X1:n = X1, . . . , Xn, A0,ε = {W : h(f0, fθ0,W ) > ε} and
Iθ,W =

∫
I
fθ(x)W (x)dx. Split Π(A0,ε|X1:n) as follows

Π(A0,ε|X1:n) =

∫
‖θ−θ0‖≤Mnn−1/2

Π(A0,ε|θ,X1:n)π(θ|X1:n)dθ

+

∫
‖θ−θ0‖>Mnn−1/2

Π(A0,ε|θ,X1:n)π(θ|X1:n)dθ

where the second term in the right hand side vanishes to zero because of (10). As for
the first term, we aim at establishing that

sup
‖θ−θ0‖≤Mnn−1/2

Π(A0,ε|θ,X1:n)→ 0.

Using the notation Iθ,W , we write

Π(A0,ε|θ,X1:n) =

∫
A0,ε

(Iθ0,W /Iθ,W )n
∏n
i=1 fθ0,W (xi)π(W )dW∫

(Iθ0,W /Iθ,W )n
∏n
i=1 fθ0,W (xi)π(W )dW

.

It is easy to see that, for any W ,

exp{−‖log(fθ0/fθ)‖∞} ≤ Iθ0,W /Iθ,W ≤ exp{‖log(fθ0/fθ)‖∞} (18)

so that, under Assumption A3),

Π(A0,ε|θ,X1:n) ≤ exp(2nc‖θ0 − θ‖)×Π(A0,ε|θ0, X1:n)

for some positive constant c. By Proposition 1, Π(A0,ε|θ0, X1:n) ≤ e−dn for some positive
d, hence

sup
‖θ−θ0‖≤Mnn−1/2

Π(A0,ε|θ,X1:n) ≤ e2cMnn
1/2

e−dn

and the right hand side goes to 0 F∞0 - a.s. when n→∞ given the arbitrariness of the
sequence Mn. This concludes the proof of (16).

As for (17), by (10) it is sufficient to show that, for any W ,

sup
|θ−θ0|≤Mnn−1/2

∫
I
|C(x; θ,W )− C(x; θ0,W )|dx→ 0, F∞0 –a.s. (19)

Consider that∫
I
|C(x; θ,W )− C(x; θ0,W )|dx =

1

E[fθ0(S)]

ˇ

ˇ

ˇ

ˇ

1− E[fθ0(S)]

E[fθ(S)]

ˇ

ˇ

ˇ

ˇ

where E[fθ(S)] is the expected value of fθ(S) for S distributed according to the density
proportional to W (s). Now, because of (18), Assumption A3) implies that, for any W ,

e−c‖θ−θ0‖ ≤ E[fθ0(S)]

E[fθ(S)]
≤ ec‖θ−θ0‖
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for some positive constant c. Also, E[fθ0(S)] ≥ minx∈I fθ0(x) for any W . Finally, for
‖θ − θ0‖≤Mnn

−1/2,

1− ecMnn
−1/2

≤
ˇ

ˇ

ˇ

ˇ

1− E[fθ0(S)]

E[fθ(S)]

ˇ

ˇ

ˇ

ˇ

≤ 1− e−cMnn
−1/2

implies that ∫
I
|C(x; θ,W )− C(x; θ0,W )|dx ≤ ecMnn

−1/2 − 1

minx∈I fθ0(x)

which goes to 0 as n → ∞ by taking Mn diverging slow enough to infinity and using
minx∈I fθ0(x) > 0. From this result (19) follows and the proof is complete.

5 Conclusions

We have discussed a popular form of semi–parametric density model. We argue that
if interest is in density estimation then there is no need for a semi–parametric model.
The semi–parametric model as we have set it up is specifically about estimating how
good a particular parametric model is by examining the ratio between the true data
generating density and the closest density within the parametric family to it with re-
spect to the Kullback–Leibler divergence. We have also highlighted how this update
and estimation can be done coherently and consistently which by necessity avoids the
formal semi–parametric posterior update. Specifically, to learn about the parameter
which minimizes the Kullback–Leibler divergence, the coherence and consistency of the
parametric posterior update should have practical consequences and this is illustrated
in density estimation examples.
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