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Arc-continent collision is associated with vigorous mountain building and terrane 

accretion on relatively short (<10 Ma) geologic timescales. It is believed to be an 

important mechanism for the growth of continents. Taiwan represents one of the few 

active examples of this process. As such, is the perfect natural laboratory to investigate 

the nature of the continent ocean boundary and the uncertain behavior of the accretionary 

prism and extended, transitional rifted margin crust during the collision process. Taiwan 

also provides a unique opportunity to investigate structures in the backarc, yielding key 

insights into the still controversial tectonic conditions that were responsible for the 

unique subduction-collision system observed today. The obliquity of the collision 

between the North Luzon Arc and the Chinese rifted margin allows for examination of 

different temporal stages of collision at different locations.  

Recently acquired seismic reflection and wide-angle seismic refraction data, 

offshore Taiwan, document the crustal structure of the incipient mountain belt and of the 

Philippine Sea Plate in the backarc domain to the east. Geophysical profiles offshore 

southern Taiwan show evidence for a transition from the subduction of ocean crust to 

highly extended, transitional continental crust of the northern South China Sea distal 

margin. 



 viii 

 

During oceanic subduction, accretion and underplating of thick sedimentary cover 

sequences create a large 13-15 km thick accretionary prism. Prior to the encroachment of 

the continental shelf, there is evidence for further underplating of transitional distal 

margin crust to the base of the prism. These findings support a multi-phase collisional 

model in which early growth of the mountain belt is driven by structural underplating of 

the previously sedimentary-only accretionary prism with blocks of transitional crust from 

the distal rifted margin.  

Geophysical profiles offshore eastern Taiwan show evidence for asymmetric 

crustal thickening, from 12-18 km, along the entire length of the Gagua Ridge suggesting 

the West Philippine Basin oceanic crust is underthust beneath that of the Huatung Basin. 

In this interpretation, the Gagua Ridge was the result of a failed subduction initiation 

event during the early Miocene that may have existed simultaneously and, for a short 

time, competed with the Manila subduction zone in accommodating convergence 

between the Eurasia and Philippine Sea plates. 
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CHAPTER 1: INTRODUCTION AND OVERVIEW 

1-1: INTRODUCTION 

Mountain belts and orogenesis has been the subject of intense study and debate 

before plate convergence and collision were determined the driving forces behind their 

development (Dewey and Bird, 1970). Active coastal mountain belts are usually 

associated with high levels of seismicity, and therefore present potential earthquake and 

tsunami hazards. Despite significant advances in our understanding, many fundamental 

aspects concerning orogenesis and more specifically collisional orogenesis remain 

unanswered. Examples include the role of the rifted continental margin during collision 

and how the submarine mountain belt responds to a change in composition from 

subducting ocean crust to extended continental crust of the rifted margin, both of which 

can be addressed in Taiwan. 

Taiwan is the result of an ongoing, oblique collision between the N-S trending 

Luzon volcanic arc of the Philippine Sea Plate and the NE-SW trending rifted Chinese 

continental margin of the Eurasian Plate (Figure 1-1). Convergence is accommodated by 

the subduction of South China Sea lithosphere in the south along the Manila trench, and 

by the subduction of Philippine Sea lithosphere along the Ryukyu trench to the northeast. 

This collision between the N-S trending arc and NE-SW trending passive margin began 

~4-7 Ma (Huang et al. 2006), and has since propagated southward at a rate of ~60-95 

km/Ma with respect to the Eurasian Plate (Chai 1972; Seno, 1977; Suppe, 1984; Byrne 

and Liu, 2002 Lee et al., 2006). Because of this geometry, analyzing different spatial 

locations along the strike of the orogeny can be considered equivalent to viewing the 

orogen at different temporal stages in the evolution of the mountain belt (Suppe, 1981). 

This trait distinguishes Taiwan from the few other examples of arc-continent collision 
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and makes it an ideal natural laboratory for investigating how to both the overriding and 

subducting components are tectonically modified over the course of arc-continent 

collision. 

1-2: GEOLOGIC BACKGROUND 

The ongoing Taiwan arc-continent collision represents the final stage of a Wilson 

Cycle responsible for the opening and present closing of the South China Sea (SCS) 

(Figure 1-1). Cretaceous-Early Paleogene rifting of the South China continent formed the 

northern SCS rifted margin and the conjugate margin to the south near Palawan (Lee and 

Lawver, 1995; Nissen et al., 1995). Continental break-up and seafloor spreading followed 

to form the SCS during the late Oligocene-middle Miocene (Taylor and Hayes, 1983; 

Briais et al., 1993).  

Beginning in the Oligocene-early Miocene, the South China Sea oceanic crust has 

subducted eastward beneath the Philippine Sea Plate (PSP) along the Manila trench 

(Yang et al., 1996; Hall, 2002). Subduction has created a doubly-vergent accretionary 

prism, the Luzon Trough forearc basin, and Luzon volcanic arc (Figure 1-1). Deep 

seismicity and global tomography delineates the subducting Eurasian slab to depths of 

200-300 km (Kuo et al., 2000; Lallemand et al., 2001).  

In the northernmost part of the SCS, ongoing subduction has consumed the SCS 

ocean crust, resulting in the juxtaposition and collision of the rifted margin with the 

North Luzon Arc (NLA) (Figure 1-2). Morphological features associated with oceanic 

subduction far to the south begin to evolve into the earliest stages of a mountain belt just 

offshore southernmost Taiwan. The Manila accretionary prism thickens to become the 

Hengchun ridge and its onshore equivalent, the Hengchun Peninsula (Figure 1-2) (Huang 

et al 1997; Chang et al., 2009). The relatively undeformed Luzon Trough forearc basin 
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sediments in the normal oceanic subduction realm in the south become backthrust over 

the forearc to form the Huatung Ridge pop-up structure close to Taiwan (Lundberg et al., 

1997; Chi et al., 2003; McIntosh et al., 2005; Hirtzel et al., 2009). 

Onshore, the Taiwan orogen is divided into 5 morphotectonic units that are 

separated by major faults and increase in metamorphic grade from west to east (Ernst et 

al., 1985) (Fig. 1-2, 1-3). The five morphtotectonic units are further distinguished by 

sedimentary and metamorphic facies. The Coastal Plain, the onshore expression of the 

flexural foreland basin, consisting of syn-orogenic clastic alluvial sediments shed from 

the Taiwan mountain belt underlain by Neogene sediments (Figure 1-2, 1-3).  

To the east is the Western Foothills foreland fold-and-thrust belt (Figure 1-2, 1-3), 

separated from the Coastal Plain by the Shingchuang fault. The Western Foothills consist 

of thrust sheets of pre-orogenic Miocene passive margin sediments and Pleistocene 

shallow marine detrital material (Ernst et al., 1985, Mouthereau et al., 2002). The 

Western Foothills are characterized by northwest-verging thrust faults and folds 

consistent with the northwesterly direction of plate convergence (Mouthereau et al., 

2001; Simoes and Avouac, 2006). In northern Taiwan, the Western Foothills are bordered 

by the Hsuehshan Range and separated by the Chuchih fault (Ernst et al., 1985, Huang et 

al., 1997; Fisher et al., 2002; Chang et al., 2009). The Hsuehshan Range is a former 

continental shelf rift basin inverted during collision (Clark et al., 1993; Tillman and 

Byrne, 1995) consisting of Eocene-Oligocene quartz and carbonate-sandstone, argillites, 

and shales that from unmetamorphosed in the west, to lower greenschist facies in the east 

(Clark et al., 1993). 

The Lishan fault, a major morphologic and structural boundary, separating the 

Central Range from the Hsuehshan Range to the west (Figure 1-2, 1-3). The Central 

Range represents the exhumed metamorphosed core of the Taiwan orogen, and exhibits 
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the greatest elevations (~4km) and erosion rates present on the island. This unit consists 

of Miocene slates-turbidites in the west (Backbone Range) and Paleozoic-Mesozoic 

metamorphic rocks in the east (Cheng et al., 2009; Huang et al., 2006; Lee et al., 2006). 

Source rocks for the Miocene slates-turbidites are deep-marine sediments derived from 

the Chinese margin that were accreted to the prism and then deformed during further 

convergence and collision (Lee et al., 2006).  

The eastern portion of the Central Range (Tananao Complex) consists of Eocene 

quartzite-limestone-slates and schists with Paleozoic-Mesozoic metamorphic basement 

(schists and marbles) thought to represent the deformed sedimentary section and 

crystalline basement of the underthrust Chinese rifted margin (Figure 1-2, 1-3) (Ho, 

1986; Lan et al., 1996, Lee et al., 2006). The easternmost Tananao Complex contains a 

small distribution of mafic material primarily within the Lichi mélange in southern 

Taiwan, and the Kenting mélange on the Hengchun Peninsula (Chang et al., 2003). 

The Longitudinal Valley separates the Central Range to the west and the Coastal 

Range volcanic arc complex to the east (Figure 1-2, 1-3) (Angelier et al., 1997). The 

Longitudinal Valley and thrust fault are the surface expression of a suture zone dipping 

approximately 55º ESE. The Longitudinal Valley extends northward, eventually 

intersects the traced location of the Ryukyu trench, and extends southward offshore to 

align with the South Longitudinal Trough (Lallemand et al., 2001). The Longitudinal 

fault accommodates ~2-3 cm/yr of shortening with left lateral strike-slip motion of ~1.3 

cm/yr (Barrier, 1985; Lee and Angelier, 1993; Angelier et al., 1997; Chang et al., 2009).  

The easternmost morphotectonic unit in Taiwan is the Coastal Range (Figure 1-2, 

1-3), the accreted segment of the northern Luzon volcanic arc (Chai, 1972; Barrier and 

Angelier, 1986). It consists of intermediate-composition volcanic rocks, agglomerates, 
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and tuffs (Lundberg et al., 1997) and the Lichi Melange consisting of forearc sediments 

intermixed with exotic andesitic and ophiolitic blocks (Chang et al., 2009).  

East of Taiwan, the Philippine Sea Plate subducts beneath the Eurasian Plate 

along the Ryukyu trench. The Ryukyu trench extends to the north and east of Taiwan to 

Japan where its initiation preceded the initiation of arc-continent collision in Taiwan. 

Along this path, the Ryukyu subduction system is generally divided into 3 segments: 

Northern, Central, and Southern, separated by the Tokara Strait and the Kerama Gap 

respectively with decreasing volcanic activity moving south (Shinjo et al., 1999). 

Subduction of the Philippine Sea Plate generates the Ryukyu arc, Yaeyama Ridge 

accretioanry prism, and a series of forearc basins (Figure 1-1, 1-2) (Lallemand et al., 

1997; Huang et al., 2000). Locally, these features are deformed by the NS trending Gagua 

Ridge, which is thought to be an ancient fracture zone, transform boundary within the 

Philippine Sea Plate, or former plate boundary in the past (Deschamps et al., 1998; Font 

et al., 2000; Hall, 2002). Subduction has also resulted in extension in the form of the 

Okinawa trough back-arc-basin that extends to northern Taiwan, connecting with the so-

called northern Taiwan Volcanic Zone (Shinjo et al., 1999; Nakamura et al., 2003; Lin et 

al., 2007; Wang et al., 2008; Lin et al., 2009).  

 

1-3: MODELS OF COLLISION FOR TAIWAN 

The abundance of studies has prompted various models of mountain building that 

offer a spectrum of behavior for the converging crust and lithosphere. The studies are 

often discussed in terms of mutually exclusive hypotheses; each was developed to explain 

contrasting observations that constrain different elements of the mountain-building 
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process in Taiwan. It may be that aspects of different models are accurate to some 

capacity, and others may be incorrect. 

1-3-1: Wedge Models of Orogen Development 

The early and most ubiquitous model of the Taiwan mountain belt characterizes 

the orogen as being analagous to compressive mountain belts in that it displays large 

horizontal compressive strain within a deforming crustal wedge overlying a décollement 

(Suppe 1981). This model, modified from the critical taper of a deforming wedge 

(Chapple, 1978) is now called the classical-critical wedge model (Figure 1-4) (Davis and 

Suppe., 1980; Suppe., 1981; Davis et al., 1983; Dahlen et al., 1984). This model 

describes the mechanics of both fold-and-thrust belts and accretionary wedges as being 

analogous to a Coulomb wedge that develops in front of a rigid backstop. The shape of 

the wedge is governed by the brittle strength of the material (Paterson, 1978) and the 

frictional stress on the décollement (Byerlee, 1978). With continued convergence, the 

wedge will thicken or propagate into the foreland to maintain its geometry.  

Support for this model comes from surface mapping and topographic profiles of 

Taiwan, as well as, the décollement identified in the foreland fold and thrust belt (Suppe, 

1981). The décollement exists at ~6-10 km depth in the foreland and dips at a shallow 

angle toward the hinterland (Suppe, 1980; Johnson and Segall, 2004). Earthquake 

hypocenters were used to suggest the position of this main décollement (Carena et al., 

2002). Several investigators (Carena et al., 2002; Willett et al 2003; Johnson et al 2005) 

have attempted to extend the critical wedge model beyond the foreland fold-and-thrust 

belt, but the presence of a such a shallow décollement in the central part of Taiwan 

remains highly controversial. 
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The critical wedge model has been applied to various other mountain belts and 

accretionary wedges throughout the world and geologic time. Additional studies 

expanded our knowledge of this model, solving for thermal effects and rheological 

heterogeneity (Dahlen and Barr, 1989; Willet, 1999) and dynamic processes such as 

sedimentation, erosion and isostasy (Simpson, 1995; Konstantinovskaia and Malavieille, 

2005; Storti and McClay, 2010).  

Despite the importance of the so-called thin-skinned critical wedge model in 

Taiwan, there is significant evidence that suggests simultaneous involvement of the 

basement along with thin-skin processes in the mountain building process in Taiwan. The 

majority of the evidence can be found in the Central Range where the Pre-Tertiary 

basement of the northern Chinese continental margin is exhumed and exposed at the 

surface (Ho, 1986). Additionally, reactivation of former rift faults has been identified in 

the foreland beneath thin-skinned structures of the Western Foothills. (Lee et al., 2002; 

Mouthereau and Lacombe, 2006). Numerous investigations have proposed these thick-

skin wedge models, which involve the basement to account for these observations (Figure 

1-5). 

One approach to thick-skin wedge modeling imposes a deeper mid-crustal 

décollement (Figure 1-5a) that allows shortening and accretion within the shallow wedge 

to occur contemporaneously with ductile deformation and metamorphism in the deeper 

crust (Mouthereau et al 2001; Mouthereau and Lacombe, 2006; Yamato et al., 2009). The 

presence of a deep décollement at 10-15 km depth is inferred from inversion structures, 

structural restorations, and seismicity in the foreland of Taiwan (Huang et al., 1993; 

Mouthereau et al., 2001).  

Other thermochronologic and numerical approaches model the development of 

both the Hsueshan and Central Ranges with an emphasis on underplating (Figure 1-5b) as 
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the driving mechanism for the uplift and exhumation of both the Hsuehshan and Central 

Ranges (Beyssac et al., 2007; Simoes et al., 2007). These models predict a single 

décollement that steps-down towards the hinterland. Most of the shortening is absorbed 

in the foreland that sole into a shallow décollement (Simoes and Avouac, 2006). This 

shallow décollement steps down into the thick, buoyant continental crust of the 

subducting Eurasian Plate, shearing portions of the crust and underplating them into the 

overlying orogenic wedge.  

1-3-2: Forearc Detachment Model 

The previous wedge models describe how convergence between the Eurasian 

Plate and the Philippine Sea Plate is accommodated in the shallow wedge and shortening 

in the incoming rifted SCS rifted margin.  However, marine geophysical studies show 

that shortening is accommodated throughout the forearc (Hirtzel et al., 2009; Lundberg et 

al., 1997), as the NLA north of Luzon is much wider than the NLA near Taiwan or the 

accreted Coastal Range for that matter.  

These studies indicate that the forearc backstop evolves over the course of the 

collision and does not act as a simple rigid backstop proposed by critical wedge studies. 

Instead these data suggest forearc block detachment and subsequent subduction due to 

frictional coupling to subducting continental lithosphere as a result of the collision 

process (Figure 1-6). This idea has been explored by analog and numerical modeling 

studies (Chemenda et al., 2001; Tang et al., 2002; Malavieille and Trullenque, 2007). The 

studies converge on a model in which the forearc ruptures near a weaker volcanic arc and 

subducts in the earliest stages of collision. Underthrusting of the forearc induces 

shortening and rapid thickening at the rear of the accretionary prism that will eventually 

form the Central Range. 
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1-3-3 Lithospheric Collision Model 

The previous wedge models assume that the development of the Taiwan mountain 

belt is driven by steady state subduction of the SCS ocean crust and eventually the 

Chinese continental margin. A lack of seismicity in the upper 30-40 km and absence of a 

clear Wadati-Benioff zone north of 22.5° N, in the core of the orogeny, are inconsistent 

with thin-skinned models (Rau and Wu., 1995; Wu et al., 1997; Wu et al., 2004). 

Thermal modeling supports the previous observation revealing an elevated geothermal 

gradient beneath the interpreted aseismic Central Range crustal root (Lin, 2000, Song and 

Ma, 2002). Additionally, recent magnetotelluric data illuminate the Lishan fault to be a 

conductive feature that penetrates deep into the crust below any thin-processes (Bertrand 

et al., 2009). 

These studies support a model where Taiwan is the result of lithospheric collision 

between the Eurasian and Philippine plates with the edges of the plates engaged in 

compressional contact and resulting in thickening towards the core of the orogen (Figure 

1-7) (Wu et al., 1997). This model type is based on deep seismicity, tomographic and 

lithological evidence for the participation of lower crust and upper mantle in the 

development of the orogen that cannot be explained by thin-skinned models. Most likely, 

both thin and thick-skinned processes are acting simultaneously, thin-skinned processes 

limited to the foreland while thick-skin processes are likely more prominent in the 

hinterland.  

 

1-4: SUBDUCTION INITIATION 

A commonality between any of the collisional models is that Taiwan represents 

the culmination of a complete Wilson Cycle in which the final stage is the consumption 

of the SCS ocean basin and the collision of the Luzon volcanic arc with the passive 
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Chinese continental margin. Despite our current understanding of this active boundary, 

little is known of the Cenozoic plate kinematics and tectonic conditions present in the 

western Philippines that initiated the active subduction we observe along the Manila 

trench. This is due in large part to the absence of an undeniable Cenozoic example of a 

passive or compressional boundary transforming into an active margin and our lack of 

understanding of the fundamental driving forces for its initiation. Much theoretical and 

numerical work has focused on both the spontaneous and induced initiation of subduction 

in a variety of geodynamic environments that reveal a wide-range of fundamental 

variables that influence the initiation process in different ways. 

Spontaneous initiation is related to cycles of opening and closure of Atlantic type 

ocean basins, i.e. the Wilson Cycle, where rifted oceanic lithosphere ages and increases 

in density away from the mid-ocean ridge until a lithospheric instability arises and the 

plate sinks spontaneously into the mantle near the continental margin (Figure 1-8) (Stern 

and Bloomer 1992).  It is difficult to reconcile spontaneous nucleation of subduction with 

our current understanding of lithospheric strength. Modeling from Cloetingh et al (1989) 

suggested that by the time oceanic lithosphere adjacent to a continental margin is dense 

enough to spontaneously subduct, it is too strong to fail. More recently, numerical 

analysis from Nikolaeva et al., (2010) showed that the stability of a passive margin 

depends on the strength and thermal properties of the continental lithosphere rather than 

that of the oceanic lithosphere. 

In contrast to spontaneous initiation, induced or forced nucleation (Figure 1-8a-b) 

requires the rupture of the lithosphere via compressional tectonic forcing and likely 

represents the driving mechanism of initiation for most modern subduction systems 

including the Macquarie Ridge complex offshore south of New Zealand since the mid-

Miocene (Collot et al., 1995). However, similar to spontaneous nucleation, analyses of 
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available tectonic forces have suggested these may be to weak to overcome homogenous 

lithospheric strength. McKenzie, (1977) predicted the minimum force required for 

instability of the oceanic lithosphere to grow and for subduction initiate where ridge push 

and slab pull forces are resisted by friction on the fault plane and resistance to plate 

bending. A conclusion from this study is that subduction initiation would be difficult, but 

not impossible. In a similar study, Mueller and Phillips, (1991) argued that in most cases, 

the force required to overcome the strength of the lithosphere would be nearly an order of 

magnitude larger than known ridge push forces, and subduction would be nearly 

impossible to initiate. Toth and Gurnis (1998) outlined the forces necessary to initiate 

subduction on a preexisting fault cutting the lithosphere, and suggest a sequence of 

tectonic events based on numerical modeling and conclude that even with ridge push 

forces alone, it is still possible to initiate subduction. More recently, Gurnis et al., (2004) 

modeled catastrophic subduction initiation only when using a small coefficient of friction 

and speculate that large pore pressure plays a substantial role in reducing rock strength. 

Mesozoic and Cenozoic plate reconstructions indicate that changes in relative 

plate motion across preexisting transform faults and fracture zones can result in the 

formation of new compressional boundaries (Uyeda and Ben-Avraham, 1972; Hall, 

2002). Stern and Bloomer (1992), suggest that both the Eocene Bonin-Mariana and the 

Jurassic California arcs may have evolved in this manner. Potential examples of this 

process in its embryonic stages of evolution include the Mussau Trench and Macquarie 

Ridge complex south of New Zealand along the Pacific-Australian plate boundary 

(Figure 1-8b). Collot et al. (1995) interpreted the Puysegur Ridge as a strike-slip plate 

boundary that has recently undergone oblique convergence, due to the migration of the 

Pacific-Australian pole of rotation. The transpressional fault is evolving into an 

embryonic subduction zone further north. 
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1-5: DISSERTATION OUTLINE 

The wide range of models for the evolution of Taiwan demonstrates the uncertain 

behavior of the subduction/collisional related terranes prior and during arc-continent 

collision. Ultimately, the goal of this dissertation is to apply crustal-scale geophysical 

methods to: 

• Ascertain the crustal-scale structure and composition of the northern SCS 

in order to illuminate the likely position of the continent ocean boundary 

(COB) subducting along the Manila trench 

• Document compressional deformation and structure of the Gagua Ridge 

and Huatung Basin east of Taiwan and develop a chronologic model of 

their mutual development with regards to the initiation of subduciton 

along the Manila trench 

• Investigate accretion processes and morphology of the Manila 

accretionary prism offshore southern Taiwan  

 

 Results of these analyses will constrain a previously understudied phase of the 

arc-continent collision cycle and provide insight into the validity of the various 

evolutionary models developed to explain the Taiwan arc continent collision as well as 

the initial tectonic conditions that may have existed prior to the onset of subduction along 

the Manila trench. 

 The dissertation is organized into chapters consisting of published or publication 

ready manuscripts that address these goals. 

Chapter 2: Crustal-scale seismic profiles across the Manila subduction zone: the 

transition from intra-oceanic subduction to incipient collision (Eakin et al., 2013 Journal 

of Geophysical Research). 
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In chapter 2, I discuss travel-time tomographic velocity models and coincident 

seismic reflection images from the 2009 TAIGER (Taiwan Integrated Geodynamics 

Research) marine acquisition program. These profiles delineate the crustal architecture 

and features of the northern SCS continent-ocean transition (COB) and Manila 

accretionary prism south of Taiwan. These data also track the significantly stretched 

continental crust of the distal margin far south into the ocean basin rather than oceanic 

crust as previously interpreted. The velocity models and seismic images reveal the 

stretched continental crust is as thin as ~12 km, potential volcanic bodies, and syn-rift 

strata. Farther south, reflection images identify normal oceanic crust and a linear NE-SW 

trending bathymetric high that is likely associated with the COB.  

Shallow high velocities (5.0-6.5 km/sec) in the Manila prism are evidence for 

initial phases of structural underplating of stretched continental crust into the prism via 

inherited structural weaknesses from the rifting of the Chinese margin. Farther south, a 

second velocity model shows the accretionary prism to be composed of low velocity (2.5-

4.0 km/sec) material, diagnostic of a primarily sedimentary composition. These 

observations suggest that until recently ocean crust had been subducting here and that 

structural underplating begins at some point between. The models also indicate that the 

forearc backstop may be steeply dipping to near vertical contrary to previous geometries 

assumed by other studies. 

Chapter 3: New geophysical constraints on the structure and potential evolution of 

the Gagua Ridge and Huatung Basin (Eakin et al, (in revision) Geochemistry, 

Geophysics, Geosystems). 

	
  Chapter 3 uses a suite of new and previously published travel-time tomography 

models and coincident seismic reflection images to illuminate the shallow basement 

morphology and crustal structure of the Huatung Basin and Gagua Ridge. The velocity 



 14 

models indicate significant crustal thickening associated with the Gagua Ridge, to 12-18 

km along its entire length. Most importantly, the two central velocity models also show a 

significant asymmetry in the crustal thickening suggesting a failed underthrusting episode 

of the West Philippine Basin oceanic crust beneath the oceanic crust of the Huatung 

Basin. In this scenario, the present day Gagua Ridge represents a snapshot of a failed 

subduction initiation preserved in the geologic record. Additionally, the velocity models 

show evidence for normal (5-7 km) oceanic crustal thicknesses in the Huatung Basin and 

West Philippine Basin. 

Chapter 4: Along Strike Variability of Prism architecture in the Intra-Oceanic 

Subduction Domain Offshore Southern Taiwan (Eakin et al., in prep Tectonophysics).  

Chapter 4 uses a series of ~trench perpendicular seismic reflection profiles from 

the TAIGER program in the pre-collision setting of Taiwan offshore northern Luzon. 

These profiles provide high-resolution ~dip oriented cross-sections of the subducting 

SCS oceanic crust and overriding Manila accretionary prism. The seismic reflection 

images reveal the majority of the sediments comprising the subduction trench are 

accreted directly to the toe of the prism while the deepest units are underthrust beneath 

the lower slope. A deep zone of reflectivity in the rear of the prism along the 

southernmost transects suggests thickening of the prism is primarily accomplished by 

underplating of previously underthrust material.  

The northern transects illuminate the development of a disparate lower slope and 

upper slope domains. The taper of the lower slope is nearly horizontal that is shown to be 

the result of a subducting topographic high in the basement that causes local compression 

and taper adjustment in the frontal slope of the prism. 
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1-7 SUMMARY 

This dissertation discusses the evolution of subduction related structures 

associated with the Taiwan arc-continent collision. In doing so, I seek to address 

outstanding issues regarding the early behavior of the Manila accretionary prism with the 

addition of buoyant, stretched continental crust in to the subduction system. Chapter 2 

identifies the transition zone between thick, highly stretched continental crust and oceanic 

crust actively subducting along the Manila trench well into the south offshore southern 

Taiwan. The stretched continental crust actively subducts along the Manila trench 

subduction zone, where there is evidence for the earliest growth of the mountain belt 

driven by structural underplating of this crust. Chapter 3 documents the deformation in 

the frontal part of the Manila accretionary prism offshore northwest Luzon and provides 

compelling evidence for underplating of underthrust sedimentary units derived from the 

subducting SCS crust. Chapter 4 focuses on the enigmatic Gagua Ridge and Huatung 

Basin to the south and east Taiwan and argues that this feature is the result of the failed 

underthrusting of the West Philippine Basin ocean crust beneath the ocean crust of the 

Huatung Basin. This chapter concludes with arguments that this feature previously 

existed as a transpressional boundary and a location of failed subduction event that was 

active just prior or coevally with the initiation of subduction along the Manila trench in 

the early-Miocene. The findings in this dissertation ultimately suggest a link between the 

Wilson Cycle of ocean basin rifting/subduction and the resulting mountain belt of Taiwan 

and regional compressional features preserved in the bathymetry. 
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Figure 1-1. Regional map of the South China Sea marginal basin, Southeast Asia, and the 
northern Philippines. Major tectonic features are labeled including the 
Eurasia Plate (EUP), Philippine Sea Plate (PSP), northern and southern SCS 
rifted margins, Manila trench, and Ryukyu trench. Red, yellow, and green 
boxes are locations of Figures 1-2, 2-1, 3-1, and 4-1 respectively. Black and 
white inset highlights the location of the SCS marginal basin relative to 
major structures and geography of the greater PSP plate. 
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Figure 1-2. Elevation map of the Taiwan arc-continent collision and northern SCS. 
Taiwan consists of five tectonostratigraphic terranes: CP – Coastal Plain 
foreland basin; WF – Western Foothills fold-and-thrust belt; HR – 
Hsuehshan Range inverted rift basin; CR – Central Range metamorphic 
hinterland; CoR – Coastal Range accreted arc complex; LV – Longitudinal 
Valley. Plate convergence is NW-SE at 7-8 cm/yr, but the collision 
propagates to the south due to the obliquity between the NE-SW trending 
passive Chinese continental margin and the ~N-S trending NLA. 
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Figure 1-3. Geologic map of Taiwan (modified from Ho, 1988). 
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Figure 1-4. Thin-skin critical wedge model (from Davis et al., 1983). In this model, the 
northern SCS continental margin of the EUP subducts beneath the NLA of 
the PSP. The NLA acts as a backstop, off-scraping incoming sediments 
derived from the passive Chinese continental margin into a deforming, 
doubly-vergent wedge. The shallow dipping décollement decouples the 
deforming wedge from the subducting crust below. 
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Figure 1-5. Examples of thick-skin wedge models that utilize a) both shallow and deep 
décollements (from Lacombe and Mouthereau, 2002) or b) a single 
décollement that steps down into the subducting crust, thickening the 
overriding wedge in the hinterland by underplating (from Simoes et al., 
2007). 
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Figure 1-6. Forearc subduction model adaptation of the critical wedge models (from 
Malavieille and Trullenque, 2009). During subduciton of the SCS 
lithosphere (lower panel), the forearc block shortens in the incipient stages 
of collision and increasing deformation of the mountain belt (middle panel) 
and eventually decoupling from the NLA and subducting with the 
downgoing EUP (top panel). 
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Figure 1-7. Lithospheric-scale collision model (from Wu et al., 1997). The entire crust 
and lithosphere of the continental margin and volcanic arc thicken during 
the collision. Neither the EUP or the PSP is subducting, instead a ductile 
crustal root has developed beneath the Central Range. 

 

 

 

 

 

 



 23 

Figure 1-8. a) General classes, and subclasses of the theories about how subduction zones 
form (from Stern, 2004). b) Three phases of induced subduction initiation 
shown schematically, with type locality (from Gurnis et al., 2004). 
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CHAPTER 2: CRUSTAL-SCALE SEISMIC PROFILES ACROSS 
THE MANILA SUBDUCTION ZONE: THE TRANSITION FROM 
INRA-OCEANIC SUBDUCTION TO INCIPIENT COLLISION. 1 

2-1: INTRODUCTION 

Arc-continent collisions play an important but poorly understood role in the 

growth and tectonic evolution of continental margins. It is an environment associated 

with vigorous mountain building and terrane accretion on relatively short geologic 

timescales. One of the few examples of active arc-continent collision is in progress in the 

Taiwan area. Much of the previous work conducted in Taiwan has been focused on uplift 

and erosion onshore (Suppe, 1987; Wu et al 1997) and post-orogenic collapse (Teng et al 

2000, 1996). Due to the obliquity of the Chinese margin with respect to the Luzon arc, 

and the angle of plate motion of the Philippine Sea Plate (PSP) with respect to the 

Eurasian Plate (EUP), the resulting arc-continent collision is time transgressive. Because 

of this, significant efforts have also been made in the northern South China Sea (SCS) 

and Bashi Strait south of Taiwan to understand the incipient collision. Ludwig (1969) and 

Taylor and Hayes (1983) analyzed seismic refraction data from transects west of Luzon 

that show the crust of the subducting South China Sea to be thin (5-6 km thick).  Briais et 

al (1993) compiled magnetic anomaly data sets to interpret timing of seafloor spreading 

in the northern SCS. Their work indicated that the continent-ocean-boundary (COB) 

intersects the Manila trench at ~19° N (Figure 2-1) and suggests that seafloor spreading 

                                                
1Eakin, D. H., K. D. McIntosh, H. J. A. Van Avendonk, L. Lavier, R. Lester, C.-S. Liu, and C.-S. Lee (2014), Crustal‐scale seismic 
profiles across the Manila subduction  zone: The transition from intraoceanic subduction to incipient collision, Journal of Geophysical 
Research: Solid Earth, 119, 1-17. 
Co-Author Contributions:  
Kirk McIntosh: Research Advisor. Guidance of tectonic concepts and acted as primary editor of manuscript. 
Harm Van Avendonk: Guidance of tomographic modeling concepts and edited of manuscript. 
Luc Lavier: Academic supervisor. Guidance of geodynamic concepts and edited manuscript. 
Ryan Lester: Guidance of multi-channel seismic reflection processing techniques during research phase. 
Char-Shine Liu: Edited manuscript.  
Chao-Shing Lee: Edited manuscript. 
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initiated at ~28-32 Ma. Wang et al (2006) constructed a seismic velocity model across the 

Chinese margin into the northern SCS ocean basin in which they interpret a broad (> 200 

km) continent-ocean transition zone (COT) that is composed of extended continental 

crust with a thickness of 11-15 km as far south as 19° N. More recently, reflection 

profiles from McIntosh et al (2013) have identified zones of thinned continental crust to 

the south of 20° N. Conversely, Hsu et al (2004) mapped E-W trending magnetic 

lineations offshore southwestern Taiwan interpreting that the northern SCS is composed 

entirely of ocean crust to 21.5° N.  

Several geophysical studies south of Taiwan have examined the structure of the 

Manila subduction zone and incipient collision. Liu et al (2004) and Lin et al (2008) used 

multi-channel seismic reflection (MCS) data characterize the Manila accretionary prism 

and Chinese rifted margin offshore southwest Taiwan. McIntosh et al (2005) used wide-

angle seismic data to construct several tomographic transects that illuminate the deep 

crustal processes of the collision in southernmost Taiwan including apparent forearc 

detachment and subduction. Chi et al (2003) used MCS and gravity data to study the 

deeper structural geometry and kinematics of the Manilla accretionary prism. A key 

result of that work was the observation of a free-air gravity anomaly high in the rear of 

the accretionary prism at 20.9° N, requiring a significant component of high-density 

material interpreted to be derived from the forearc. In contrast, gravity modeling on a 

parallel transect to the south at 20.2° N did not require this high-density material and is 

consistent with a deforming wedge composed only of sedimentary material.  

Despite the successes of various geophysical studies, there is still great 

uncertainty about the incipient collision zone offshore southern Taiwan due to the lack of 

crustal-scale information. To understand the collision from its incipient to mature stages, 

it is imperative to answer fundamental questions such as: Does the crustal structure of the 
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northern SCS suggest a continental or oceanic affinity? Is thinned continental crust 

actively subducting along the Manila trench? If subduction of rifted continental material 

is occurring to the north, do the deformation patterns in the Manila accretionary prism 

change as well? Is there an underlying structural process that is responsible for the 

appearance of the lower to upper slope transition zone and sudden volumetric increase in 

the accretionary prism offshore southern Taiwan? 

In this paper we describe results of 2 marine wide-angle ocean-bottom 

seismometer (OBS) transects and their coincident MCS data that show the crust 

subducting along the Manila trench between 20.5° N and 21.5° N, more than 200 km 

southeast of the continental shelf, to be composed of hyper-extended continental material 

from the rifted Chinese margin. The extended upper crust appears to be structurally 

underplated to the base of the accretionary prism during subduction along the 

northernmost OBS/MCS transect. In contrast, MCS reflection data from a third transect at 

19° N shows crust of typical oceanic thickness subducting along the Manila trench.  
 

2-2: GEOLOGIC AND TECTONIC SETTING 

Taiwan is the result of oblique collision of the N-S trending Luzon volcanic arc of 

the Philippine Sea plate (PSP) and the NE-SW trending passive Chinese continental 

margin of the Eurasian plate (EUP). Taiwan is situated in the northernmost SCS that was 

the result of late Cretaceous-Early Paleogene rifting of the south China continent 

followed by N-S seafloor spreading during the Oligocene-Miocene (Taylor and Hayes 

1983; Briais et al 1993; Lee and Lawver 1995; Nissen et al 1995). Here the PSP moves 

northwest and overrides the EUP at a rate of 7-8 cm/yr (Ranken et al 1984; Seno et al 

1993; Yu et al 1999; Yu and Kuo 2001). Due to the obliquity of convergence, many 
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authors interpret that the collision that initiated 4-7 Ma propagates south with respect to 

the continental margin (Huang et al 1997, 2006; Lee et al 2006). 

The onshore geology of Taiwan has been well studied and is often discussed in 

terms of its five-tectonistratigraphic units (Figure 2-1). These units are distributed parallel 

to the length of Taiwan, separated by major faults, and increase in metamorphic grade 

from west to east (Ernst et al 1985). The spatial relationships of the mapped onshore 

geology suggest a genetic link with the offshore incipient collision domain and have 

motivated the development of many evolutionary models of Taiwan (Suppe 1981; Rau 

and Wu, 1995; Chemenda et al 1997; Mouthereau et al 2002; Byrne et al 2002). Despite 

our understanding, sources of high-pressure low-temperature lithologies with blocks of 

passive margin metamorphic and igneous basement, such as the Tananao Complex 

exposed in the southern Central Range (Simoes et al 2007; Beyssac et al 2008) are still 

ambiguous. Our goal is to use the data acquired during the Taiwan Geodynamic Research 

(TAIGER) Project to understand the evolution of the accretionary prism as it progressed 

from subduction to collision and improve ideas about how each tectonic component may 

have been assembled in the incipient phase of the arc-continent collision. 
 

 

2-3: TAIGER EXPERIMENT 

The marine TAIGER experiment took place March through July 2009, and 

included the acquisition of 12 transects with coincident MCS and OBS data over the 

course of three legs (MGL0905, 06, 08). In this paper we describe the results from two 

east-west MCS and coincident wide-angle transects that extend across the Manila 

subduction zone south of Taiwan (Figure 2-1). The MCS transects (lines 25A and 23 
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from here forward) were acquired during leg 1 (MGL0905), with the coincident wide-

angle transects (lines T1 and T2 from here forward) acquired during leg 3 (MGL0908). 

Air-gun source firing and MCS acquisition were performed with the R/V Marcus G. 

Langseth. The seismic source array was composed of 4 sub-arrays consisting of 9 Bolt air 

guns each with a total volume of 6600 in3 towed at a depth of 8 m. Wide-angle and MCS 

reflection data were recorded separately to obtain shot spacing for ideal acquisition of 

both datasets. The nominal airgun source interval was 50 m for MCS data acquisition and 

120 m for wide-angle acquisition. The increased shot spacing for wide-angle acquisition 

is based on the timing of the predicted previous shot noise and attempts to place noise at 

far offsets in the OBS record so as not to interfere with usable signal. MCS data were 

recorded on a 6 km seismic streamer consisting of 486 channels with 12.5 m spacing. 

Taiwanese vessels deployed and recovered 18 OBSs of the National Taiwan Ocean 

University (NTOU) along line T1 over a distance of 178 km, and 29 OBSs along T2 

made up of 18 NTOU instruments and 11 instruments of the U.S. OBS instrument pool 

(OBSIP) over ~480 km. The key objectives for the analysis of these data are 1) 

Determine the velocity structure of the subducting SCS crust, and 2) Identify differences 

in morphology and crustal structure of the accretionary prism and North Luzon Arc to 

better understand the south to north transition from subduction to collision. 
 

2-3-1: OBS Data 

OBS spacing varied from ~10-15 km along both T1 and T2, and data were 

collected continuously during air-gun shooting. Both NTOU and OBSIP instruments 

recorded three geophone channels and a hydrophone. Sample interval was 4 ms for 

NTOU instruments and 5 ms for OBSIP instruments. Initial OBS data processing 

included instrument relocation and SEGY-header corrections. Levels of processing varied 
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depending on data quality and typically included band-pass frequency filtering and gain, 

such as amplitude gain with distance, and automatic gain control (AGC). Due to 

structural complexities present along these transects, several instruments required 

additional processing steps including spectral balancing to equalize frequency content as 

needed to increase signal to noise ratio and first arrival picking confidence in the far 

offsets. Data along line T1 and T2 provide excellent constraints on the velocity structure 

of the subducting South China Sea crust, accretionary prism and forearc crust, however, 

T1 does not represent a complete cross-subduction transect as the Luzon arc is not 

covered.  The first arrivals of T1 OBS data can be clearly seen at offsets up to 75 km 

(Figure 2-2a-b, e-f) and in some cases as far as 100 km (Figure 2-2c-d). Similarly, first 

arrivals of much of the T2 OBS data can be clearly seen at offsets up to ~65 km (Figure 

2-3a-f). Despite advanced processing steps, the data quality from OBS’s 17-22 positioned 

on the accretionary prism along T2 were poor, containing little signal past 20 km offset 

(Figure 2-3c-d). Poor data quality may be indicative of insufficient instrument coupling 

with the seafloor, complicated geological structures such as near vertical faults, or the 

presence of fluids in the shallow sediment preventing adequate signal penetration. 

Interestingly, despite average arrival offsets of ~65 km and a maximum of 100 km west 

of the trench, no clear velocity evidence of a refracted arrival from the Moho (Pn) is 

indicated on any record from line T1 or T2 that samples the EUP (Figure 2-2a-d; 3c-f) 

that may be due to a steep gradient in the upper mantle or low signal to noise ratio at long 

offset. Furthermore, the apparent velocity of the first arrivals is lower than what may be 

expected (~6.5-6.7 km/sec). The EUP crust here is dipping to the east into the Manila 

trench and therefore the apparent velocity observed here is likely greater than the true 

velocity, but still far less than expected for Pn. 
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2-4: METHODS 
 

2.4.1 MCS Data Processing 

Preliminary MCS processing took place aboard the R/V Langseth. Standard 

processing techniques were used including trace editing, sorting into common midpoint 

gathers, normal moveout velocity analysis and correction, stack, band-pass filtering, and 

f-k time migration. Subsequently, all MCS data shown here were subjected to a series of 

multiple attenuation techniques to improve crustal imaging including surface related 

multiple attenuation, Radon transform multiple attenuation, muting, and offset weighted 

stacking (see Lester and McIntosh 2012).  
 

2-4-2: Tomography 

The velocity structure of the Manila subduction zone is constrained with wide-

angle travel times from 18 OBS receiver gathers along T1, and 30 OBS receiver gathers 

along T2 (Figure 2-1). To develop a velocity model that fits our OBS data we used a 

regularized travel-time inversion method similar to that implemented by Van Avendonk 

et al (2004). In short, we created a starting velocity model and alternated between ray 

tracing and linear inversions of the updated travel time residuals to reduce χ2, defined by 

travel-time misfits weighted by pick uncertainties ranging between 40 ms and 200 ms for 

these data (Figure 2-2 and 2-3). Iterations of raytracing and inversion are completed when 

a satisfactory fit between observed and calculated arrival times within the tolerance of 

pick uncertainties. 

Both T1 and T2 extend across complicated structures including the Manila 

accretionary prism and Luzon forearc basin while T2 extends further east crossing the N. 
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Luzon arc. The tomography code coupled with the simplified starting models allow us to 

model first-arrival refraction travel-times without adding bias that may result from 

parameterization of a layer-based model. T1 spans 271 km in the horizontal direction and 

30 km in the vertical direction, and contains 271 x 90 = 24,390 grid nodes. Grid spacing 

is 1 km in the horizontal direction, and 0.3 km in the vertical direction. The initial 

velocity model was constructed from a gradational 1-D velocity function hung from the 

seafloor bathymetry. 9,455 first-arrival picks (Figure 2) 14 iterations of travel-time 

tomography were performed to update the model, reducing χ2 from 180 in the initial 

model to .95 in the final velocity model. The final velocity model has an RMS misfit of 

75 ms. 

T2 spans 510 km in the horizontal direction and 30 km in the vertical direction, 

and contains 510 km x 30 = 15,300 grid points, although only 360 km of the transect is 

shown here. Grid spacing is 1 km in the horizontal direction and 0.3 km in the vertical 

direction. The initial velocity model was constructed in an identical manner as T1. 12,223 

first-arrival picks (Figure 2-3) 13 iterations of travel-time tomography were performed to 

update the model, reducing χ2 from 160 in the initial model to .95 in the final velocity 

model. The final model has an RMS misfit of 75 ms. 
 

2-4-3: Tomography Resolution Testing  

The quality of our seismic data is quite variable especially along line T2 resulting 

in uneven ray coverage of our seismic velocity model. Ray coverage can be quantified 

with the derivative weight sum (DWS). DWS provides a useful measure of ray density at 

each model parameter in the final inversion (Thurber and Eberhart-Phillips 1999). In the 

profiles of T1 and T2, the DWS is higher in the crust than the upper mantle (Figure 2-2 - 
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2-4) due to the greater sampling and smaller uncertainties in the crustal refractions and at 

near offsets close to each instrument.  

To better express the ability of the inversion to constrain seismic structure we 

used a procedure similar to that described in Van Avendonk et al (2004) using the 

resolution matrix, which is derived from the generalized inverse. We first assume that the 

series of linearized inversions have converged to a stable model solution. We then 

calculate the resolution matrix from the generalized inverse matrix. It is expected that 

where the models are well covered with overlapping raypaths, the resolution matrix will 

approach the identity matrix, so the velocity image is not distorted. In the regions where 

ray coverage is poor, the off diagonal elements of the resolution matrix average the 

seismic velocity structure over large distances in the inversion. Resolution is still poor 

with high ray coverage if raypaths have the same direction. After calculating the 

resolution matrix for each velocity model, we then slide an elliptical window of fixed 

dimensions over the resolution matrix to see how well the object of this size is imaged 

(Van Avendonk et al 2004). 

Resolution testing investigates how well our data can resolve model features of 6 

km wide by 3 km high, and 12 km wide by 6 km high. Resolution values are scaled 

between 0.00 and 1.00 to indicate whether the features are poorly or well resolved and we 

consider a value of 0.5 an adequate resolution. In the first test (Figure 2-5a, 2-5c) the 

larger averaging window shows that structures of 12 km (horizontal) X 6 km (vertical) 

are very well resolved (> 0.5) throughout the entire crust (3-15 km) and upper mantle 

(~15-25 km) along T1. Resolution of the deeper prism structure is limited in the center of 

T2 (190-220 km) due to poor data quality. 

The second test (Figure -25b, 2-5d) shows that seismic velocity anomalies of 6 

km (horizontal) by 3 km (vertical) are resolved quite well in the upper 10 km throughout 



 33 

both model spaces although lateral variations in the seismic velocity of the upper crust 

are better resolved along T2. The lower crust (> 10 km) shows adequate resolution at this 

scale with low resolution in the upper mantle (> 15 km). We can therefore assume that 

our final velocity models are good representations of the seismic velocity structure of the 

Manila subduction zone along both T1 and T2 on these length scales. 
 
 

2-5: ANALYSIS AND RESULTS 

2-5-1: MCS Line 15 

Geological and geophysical data offshore western Luzon show that subduction 

has occurred along the Manila trench south of 18° N since the early Miocene (Lewis and 

Hayes 1983). West of Luzon, the Manila accretionary prism has been built from 

deformed sedimentary material accreted from the subducting SCS oceanic crust (Figure 

2-1). Line 15 provides data to help describe the tectonic environment of subduction and 

the nature of the subducting SCS crust at this latitude for comparison with lines 25A and 

23. 

The pre-stack time migrated (PSTM) segment of line 15 shows the basement of 

the SCS and overlying post-rift sedimentary strata outboard of the Manila accretionary 

prism (Figure 2-6). Residual multiple energy still exists between 10 and 11 sec two-way-

travel time (TWTT), however, this is much later than the arrival time of the Moho 

reflection and does not affect our imaging of it. The top of basement reflection is 

consistently smooth in character with a strong, high amplitude Moho reflection observed 

at 2 seconds TWTT below top of basement, suggesting a crustal thickness of ~6 km 

thick, which is typical for ocean crust (White et al 1992). The Moho clearly follows the 

bending of the subducting crust at it approaches the trench and is only obscured when 
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residual multiple energy from the accretionary prism cuts across it.  Outboard of the 

trench, normal faults are observed in the post-rift sedimentary cover that extend from the 

seafloor to the upper crust and increase in frequency approaching the trench. Several east-

dipping reflectors observed in the basement appear to penetrate the Moho. Spreading 

rates in the SCS from 32-17 Ma were intermediate with full rates of 50mm/yr and 37 

mm/yr from 27-16 Ma (Briais et al 1993). It is possible these are reactivated faults 

inherited from oceanic rifting, new faulting related to bending of SCS ocean crust as it 

enters the Manila trench, or a combination of both, similar to those observed in other 

convergent margins (Ranero et al 2003; Kopp et al 2004). 

Westward of CDP 21000 a basement high protrudes through the pre-rift 

sedimentary cover to be exposed at the seafloor. From the bathymetry we can see this 

feature is actually part of a larger linear structure trending NE-SW (Figure 2-1). Similar 

features observed elsewhere in the SCS have been speculated to be part of a zone of 

volcanism near the COB (Hu et al 2009; Wang et al 2006) or and exposed peridotite ridge 

associated with the COB (Franke et al., 2011). Lacking reliable velocity constraints or 

direct samples, the origin of this feature remains enigmatic. 

The post-rift sedimentary cover sequence is only slightly deformed on the flank of 

the ridge feature. A high amplitude sedimentary reflection at CDP 23000, ~6 sec TWTT, 

is observed to thin eastward and pinch out at ~CDP 11000. Assuming the thicker strata 

below this high amplitude reflection between CDP 20000-22000 are the oldest, it is likely 

that the oldest oceanic crust lies below, with crust becoming younger to the SE where the 

units thin and eventually pinch out.  
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2-5-2: MCS Line 25A 

Between Taiwan and Luzon the Manila accretionary prism trends ~N-S (Figure 

1). To the east of the prism, the North Luzon Trough (NLT) forearc basin deforms as the 

result of continuing convergence and uplift of the growing accretionary prism. Line 25A 

shows crust of the SCS subducting into the Manila trench, sediment deformation front, 

the deforming accretionary prism, top of subducting EUP slab reflection within the prism, 

and the deforming NLT (Figure 2-7a-e). West of the trench, we image 1-1.5 s TWTT 

post-rift sedimentary strata below the seafloor, intermittent weakly reflective packages 

capped by high amplitude reflections that we interpret to be pre or syn-rift sediments, and 

3.5 s TWTT thick crust. Strong reflectivity within the post-rift sediments and a clear 

unconformity with the surrounding strata below the seafloor between CDP 63000-64250 

marks the extent of a (~7 km wide) relict channel incised and then filled with sediment 

(Figure 2-7c). Between CDP 59000 and 64000 between 5-6 sec TWTT, the post-rift 

sedimentary sequence caps two weakly reflective packages that we interpret as syn-rift or 

possible pre-rift sediments below a high amplitude breakup unconformity (Figure 2-7c). 

McIntosh et al (2013) observed weakly reflective sedimentary packages interpreted to be 

syn-rift strata near to the north with a similar high amplitude breakup unconformity.  

At CDP 62000, the post-rift sediments directly overlie the top of basement 

reflection. The top of basement reflection here is rugose and highly diffractive, disrupting 

the overlying sedimentary sequence (Figure 2-7c). This structure is similar to other 

examples of possible post-rift basaltic volcanic bodies in the SCS (Clift et al 2001; Lester 

et al 2013). Elsewhere in the seismic section, the top of basement exhibits highly variable 

topography with several alternating highs and lows that we interpret to be the expression 

of faulted blocks of upper crust whose fault traces are out of the plane with respect to the 

orientation of this transect (Figure 2-7a). Based on evidence from marine-magnetic 



 36 

studies of oceanic crust to the south that indicate that spreading in this area was ~N-S, so 

the E-W orientation of the transect places it perpendicular to the spreading direction, i.e., 

a strike line, and therefore limiting the resolution of rift structures including fault planes. 

Additionally, observations of faulted-rotated blocks of upper crust that correspond with 

variable basement topography are similar to observations along a ~N-S (parallel to dip of 

rifting) MCS line to the northwest (McIntosh et al 2013), and a NE-SW, trench 

perpendicular MCS to the north of transect T2 (Lester et al 2013). The water-bottom 

multiples have been sufficiently attenuated allowing for sparse imaging of the Moho 

between 8-8.5 sec TWTT and 3-3.5 sec TWTT below top of basement.  

In the area of the trench, post-rift strata are deformed into a series of highly 

reflective folds and imbricate thrusts that sole into a detachment near the top of the 

basement. Further east, a large topographic break in the prism separates the reflective 

folded strata from the less reflective upper slope of the prism (Figure 2-7d). Beneath the 

topographic break we observe sporadic, steeply dipping eastward reflections that may 

represent evidence of a large out-of-sequence thrust (OOST). This fault may dissect the 

entire prism and soles into a zone of high amplitude reflections. Motion history of this 

fault is difficult to determine as both the reflections signaling its presence are intermittent 

and marker reflectivity within the prism that would be used to identify this motion are 

deformed beyond our ability to image them.  

The reflective characteristics within the prism are intriguing, showing a high 

amplitude double reflection that may be evidence for structural underplating related to the 

imbricate thrusting above, reflectivity within the subducting crust, or more likely a pocket 

of underthrust, post-rift sediment. This point is illustrated by observing the geometry of 

the frontal thrust in Figure 2-7. Just below its position, a topographic low in the faulted 

basement is in filled with post-rift sediment. As convergence continues, the sediment 
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above the frontal thrust will be deformed and accreted at the next imbricate thrust in the 

series while the next thrust will likely break at a high structural level, potentially 

bypassing the sediment below ~ 6 sec. This pocket of sediment may continue to subduct 

with the basement and could produce a similar double reflection as observed beneath the 

prism. 

To the east, the uplifting arc-ward flank of the accretionary prism deforms the 

forearc basin strata of the NLT (Figure 2-7e).  Deformation of the NLT strata indicates 

uplift of the accretionary prism that will most likely result in the eastward backthrusting 

and formation of the Huatung Ridge compressional structure (Figure 2-1) similar to that 

documented by Hirtzel et al (2009). The deeper structure of the forearc backstop is 

obscured by residual multiple-energy, however we are able to constrain the crustal 

structure in the coincident tomographic model described below. 
 

2-5-3: Line T1 Model Description, Observations, and Interpretation 

The tomographic travel time inversion of T1 produced a velocity model that has 

for the first time defined some of the critical features across the Manila subduction 

system. The result (Figure 2-8a-b) shows the velocity model and OBS locations, a 

simplified tectonic interpretation and labels for the main tectonic elements with a 20-km-

wide swath of seismicity overlain.  

A swarm of seismicity extends from near the seafloor to depths approaching 40 

km at model range 100 km (Figure 2-8c). Fault motion solutions do not exist for these 

events; however, they seem to occur in a narrow time window between September and 

October 2006. Both the timing and location with respect to the trench correlate well with 

the magnitude Mw=7.0 Pingtung earthquake in November of the same year and we 

speculate the two swarms may be related. Seismicity from Pingtung extends to depths of 
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~50 km with focal mechanisms from Wu et al (2009) suggesting largely normal faulting 

associated with bending of the lithosphere. It is likely that this seismicity in Figure 2-8c 

and a similar package in Figure 2-10c are also related to bending related stresses on the 

subducting SCS slab. 

The green dashed line labeled M in Figure 2-8b shows the approximate position 

of the Eurasian plate Moho that is well constrained only in the model range ~50-110 km, 

but is consistent with previous estimates of transitional crust thickness (Nissen et al 1995; 

Qiu et al 2001; Wang et al 2006; Yan et al 2001). We estimate the position of the basal 

décollement from the coincident MCS profiles and the velocity model with a dashed 

white line labeled D. West of the accretionary prism the frontal thrust quickly cuts 

through the sedimentary section to the surface from the 5 km/sec contour which we infer 

to be near the top of crystalline crust. East of 180 km the subducting slab is not resolved 

with the OBS data. However, sparse earthquake hypocenters define a broad region of 

events beneath the prism that may be the result of subduction related seismicity in the 

upper mantle or within the slab near the plate interface. Furthermore, our interpretation of 

the plate boundary in the model space is consistent with deeper seismicity likely 

associated with the Benioff zone to a depth of 120 km (Figure 2-8c). 

Notably, the accretionary prism here appears to be composed entirely of relatively 

low velocity (3.0-4.5 km/sec) sedimentary material. Aside from the sedimentary 

composition of the prism, the most striking result from this model is the abrupt velocity 

change (see 5 and 6 km /sec contours) near 210 km. The abrupt vertical velocity contours 

in our model suggest that the western edge of the forearc is steeply dipping.. Previous 

studies of the forearc crust backstop interpret this feature to dip trenchward (e.g. Suppe, 

1981; Lewis and Hayes 1984, Chi et al 2003; Malavieille and Trullenque 2009) beneath a 

doubly-vergent accretionary prism. However, the asymmetric geometry of the prism at 
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this latitude agrees well with analogue modeling of accretionary prism development and 

deformation against a steeply dipping backstop (Rossetti et al 2002; Byrne 1993). A 

similar steeply dipping forearc backstop has been observed along the southern end of the 

Ryukyu trench forearc region (Font et al 2001). 
 

2-5-4: MCS Line 23 

Line 23 shows crust of the northern SCS and overlying sedimentary sequence 

subducting into the Manila trench, a lower slope characterized by imbricate thrust sheets, 

and highly diffractive upper slope (Figure 2-9a-c). West of the trench a thick, 2 s TWTT, 

highly reflective, post rift sedimentary sequence is imaged. The post rift sediments cap an 

intermittent, weakly reflective package that we interpret to be similar to the syn-rift or 

pre-rift sedimentary strata that overlay 3 s TWTT thick crust (Figure 2-9b). The post rift 

sediments are separated from the pre-syn-rift sediments by a high amplitude reflection 

that we interpret to be the break up unconformity.  

A similar topographically irregular basement reflection to that observed along line 

25A to the south is also observed here. Multiple suppression techniques were particularly 

successful outboard of the trench and allow for the imaging of deep crustal structure. We 

observe a high amplitude reflection extending from CDP 0-13800 at ~9 s TWTT as the 

Moho reflection (Figure 2-9b). Shallower in the section a strong continuous reflection in 

the mid-crust at ~8 s TWTT between CDP 0-8700 is observed beneath the interpreted 

syn-rift sedimentary packages. This reflection deepens to the east and eventually 

approaches the Moho reflection at CDP 8700. Both the Moho reflection and lower crustal 

reflection become weak near the trench and are not imaged further east beneath the 

accretionary prism.  
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While the structures and bathymetry observed in the prism along Line 25A are 

somewhat homogeneous, the prism along line 23 is separated into two distinct units based 

on the reflectivity character. The lower slope domain extends from the Manila trench 

(CDP 10000) to a sharp change in bathymetry at the prism upper slope (CDP 21000) 

(Figure 2-9c). At the deformation front, the frontal thrust cuts the post-rift strata at a steep 

angle near CDP 10000, and likely soles into a detachment surface near the basement-

sediment interface and possibly along the syn-rift-post-rift unconformity (Figure 2-9C).  

Eastward, between CDP 18000-21000, near the lower-upper slope domain 

transition, several westward verging listric thrust faults are imaged that penetrate up to or 

near the seafloor and likely sole into the basal décollement. Between this zone of faulting 

and the thrust ramp (CDP 10000-18000), the post-rift sediments are relatively 

undeformed suggesting this package is moving as a cohesively over the basal detachment 

surface. While this disparity between the geometry of the frontal thrust and zone of 

deformation to the east may seem anomalous, this behavior may be controlled by active 

sedimentation in the trench derived from the continental margin and growing mountain 

belt to the north. Analogue modeling from Simpson (2010) shows that if sedimentation 

occurs in the trench, deformation tends to be concentrated behind the zone of 

sedimentation. Deformation is also sporadic within the zone of active sedimentation on 

widely spaced thrusts that develop relatively little displacement, similar to what we 

observe along the frontal thrust in Figure 2-9.  

Any evidence of the basal detachment surface eastward of CDP 18000 is 

interrupted by residual multiple energy and poor signal to noise ratio, however, we 

believe it is likely that the detachment surface continues at the same structural level 

above the top of basement. The reflection image shows only the very shallow 

sedimentary features of the upper slope of the accretionary prism but little of the deeper 
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prism structure. This may be due to several factors including poor signal penetration 

through a hard seafloor, or the presence of steeply dipping thrust faults and structures not 

imaged by our acquisition geometry. Another reason, based on the observation of 

extremely low seismic velocities (1.5-1.8 km/sec) in the upper 2 km of the prism in the 

coincident tomographic model suggests that the shallow sediment in the upper slope may 

be fluid saturated and therefore inhibits the ability of the acoustic energy to penetrate the 

prism. 

Although we do not image thrust faults in the upper slope, the bathymetry and 

progressive steepening of thrusts we do image in the lower slope suggest fault planes may 

progressively steepen and rotate into orientations we cannot resolve in the MCS 

reflection data. We do not observe evidence of an OOST in the data, however we do 

observe several breaks in the topography between the lower and upper slope domains that 

may be the expressions of such faults reaching the surface.  

Unfortunately, the MCS data do not constrain the structural limits of the forearc 

backstop due to steeply dipping, complex structures resulting from the uplift and 

backthrusting of prism and forearc basin toward the arc. Instead, we must rely on the 

boundary inferred by coincident tomographic modeling that places the limit of the forearc 

east of the arcward flank of the accretionary prism. 
 

2-5-5: Line T2 Model Description, Observations, and Interpretation 

The T2 tomographic model (Figure 2-10a-c) is presented in the same manner as 

T1. West of the accretionary prism (model distance 0-100 km) a thick package (3-4 km) 

of low velocity material (1.8-4.5 km/sec) overlies the top of basement, here indicated 

with seismic velocity of ≥ 5 km/sec. A green dashed line labeled M shows the 

approximate position of Eurasian plate Moho that is well constrained between 40-130 km 
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model distance, and is again consistent with estimates of transitional crustal thickness (9-

15 km) (Nissen et al 1995; Qiu et al 2001; Wang et al 2006; Yan et al 2001). As noted by 

others, some of the lower crust is high velocity (>7 km/sec) and may be associated with 

magmatic underplating during the Eocene rifting of the SCS (Pin et al 2001), pre-existing 

mafic lower crust (Nissen et al 1995), serpentinized upper mantle (Wang et al 2006), or 

post rift magmatism (Franke 2012).  

We estimate the position of the basal décollement with the white dashed line 

labeled D using the coincident MCS reflection profile of line 23. This estimate quickly 

becomes uncertain due to the lack of resolution of both the OBS and MCS reflection data 

beneath the prism. Normally, the subducting slab is positioned ~80 km below the active 

volcanic arc, however, seismicity between 200-230 km and 20 km depth in Figure 2-10 

suggest the position of the slab here to be between 30-40 km beneath the NLA. The 

subduction of thicker and more buoyant hyper-extended continental crust may also 

explain cessation of volcanism in the NLA at this latitude. Again, our interpretation is 

consistent with deeper seismicity associated with the Benioff zone to a depth of 120 km 

(Figure 2-10c).  

For a typical subduction profile, the top of the subducting crust is expected to 

steadily deepen arcward beneath the prism similar to that observed along the top of the 

EUP (5 km/sec velocity contour) at model distance 70-150 km along T1 (Figure 2-8b). 

However, along T2, the top of the EUP initially deepens to the east at model distance 100 

km, but then we observe high velocities at a shallower depth between 130-180 km model 

distance, 12-15 km depth, corresponding with the transition from the lower slope to upper 

slope domain of the accretionary prism. We interpret these high seismic velocities to be 

likely evidence of crustal material structurally underplated from the subducting thinned-

continental crust and accreted to the prism. Addition of structurally underplated material 
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may account for much of the dramatic increase in the volume of the prism observed when 

comparing T1 and T2. 

Between 180-220 km, the resolved portion of the tomographic model shallows 

due to poor data quality. Despite this reduction, the model still illuminates important 

structures within the forearc and arc domains. The top of forearc crust is clearly resolved 

to a depth of ~10 km (model distance 220 km) where it abruptly steepens out of the well 

resolved model space. This observation may suggest a structurally blunt shape of the 

forearc backstop consistent with that observed at the forearc backstop along T1 to the 

south. Furthermore, seismicity in the bottom panel of Figure 2-10 supports the 

interpretation of a steeply dipping limit of the forearc backstop, with a concentrated band 

of events coincident with the apparent westward limit of the forearc crust in the velocity 

model.  

The structure of the NLA over model distance 250-300 km is complicated by a 

sudden westward shift in the trend of the arc that can be observed in the bathymetry 

where T2 bisects it (Figure 2-1). It is unclear why this sudden step occurs, although it 

may from a late-stage change in the dip of the EUP plate possibly as a function of 

composition or age of subducting crust. East of the NLA, the crust of the Huatung Basin 

thins to 6-8 km indicative of normal oceanic crust in this area. 
 

2-6: DISCUSSION 

2-6-1: Velocity Structure of SCS Crust and Likely Location of COB 

One of the debates in the northern SCS is the distribution of continental vs. 

transitional vs. oceanic crust and the location of the COB (Figure 2-1).  Although this 

debate reflects processes related to rifting, the potential subduction of rifted continental 
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material is likely to have profound consequences on the structural evolution of the 

accretionary prism and collision to the north. Specifically, the subduction of extended to 

hyper-extended continental crust with weaknesses such as faulting and mid-crustal shear 

zones in the upper and middle crust inherited from the rifting phase is expected to behave 

very differently than oceanic crust. It is possible that the weakened crust is subducted to 

10-15 km depth but then underplated into the overriding accretionary prism as suggested 

by McIntosh et al (2013). Evidence of thinned continental crust in the northern SCS was 

discussed earlier with tomographic evidence from this study (Figure 2-8 and 2-10) at 

latitude 20.5° (T1) and 21.5° (T2) where the thickness of the subducting crust is 10-15 

km. A detailed examination of crustal velocities (Figure 2-11) shows that the velocity 

models compare very well with the velocity structure of transitional crust of the southern 

Chinese margin (Nissen et al 1995; Yan et al 2001; Wang et al 2006), but are 

incompatible with the layer 2/layer 3 structure of typical ocean crust (White et al 1992) or 

thick ocean crust (Mutter and Mutter 1993). 

Coincident MCS reflection data provide several additional pieces of evidence to 

support this interpretation: 1) Highly faulted upper crust capped by an intermittent 

weakly reflective syn-rift sedimentary package separated from the overlaying post-rift 

strata by a break-up unconformity (Figures 2-7 and 2-9) similar to that identified by 

McIntosh et al (2013). 2) A high amplitude Moho reflection observed along both lines 

25A (Figure 2-7: CDP 61000-75000) and 23 (Figure 2-9: CDP 0-13700) at 3-4 sec two-

way travel time below the top of crust that is consistent with the 10-14 km thicknesses 

constrained by the coincident tomographic models. We also observe a fairly continuous 

reflection in the mid-crust along line 23 (Figure 2-9: CDP 0-8700) beneath what appear 

to be fault blocks. We interpret this reflection to be a mid-crustal detachment between the 

upper and lower crust similar to structures observed in other hyper-extended continental 
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margins such as Iberia (e.g. Sutra and Manatschal 2012). The strike orientation of the 

MCS line is not appropriate to image fault planes of crustal blocks, however evidence 

from nearby MCS profiles suggest that faults bounding these rotated blocks sole into this 

mid-crustal detachment (McIntosh et al 2013; Lester et al 2013).  

With evidence of extended to hyper-extended continental crust extending as far 

south as 20.5° N, the question still remains, where is the location of the COB and 

geophysical evidence of oceanic crust in the SCS? Line 15 images the transition from 

rifted continental crust to ocean crust in the SCS (Figure 2-6), the most striking being a 

strong Moho reflection at 2 sec TWTT, or ~6 km below top of basement, suggesting a 

typical thickness for ocean crust (White et al 1992). This reflection begins at CDP 1900 

and can be traced southeast across much of the profile and well beneath the accretionary 

prism.  

The origin of the large basement structure imaged on the west end of this line 

remains unclear. Several geophysical studies have observed similar features throughout 

the SCS, interpreting them to be a zone of increased volcanism near the COB (Zhu et al 

2012; Hu et al 2009; Wang et al 2006). With its likely proximity to the COB, and no 

reliable velocity constraints or direct sampling that would clarify the origin of this 

structure, we speculate that the large basement structure may be an exposed peridotite 

ridge similar to the interpretation from Franke et al (2011) north of Palawan, and those 

observed within the transition zones of other hyper-extended continental margins 

(Shillington et al 2006; Sutra and Manatschal 2012; Whitmarsh et al 2001; Boillot and 

Froitzheim 2001).  

Although we do not image a direct transition from hyper-extended continental 

crust to purely oceanic crust, our result favors a position of the COB similar to Briais et al 

(1993) (dashed yellow line in Figure 2-1). From the bathymetry, the basement high is 
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observed to be part of a series of linear features trending NE-SW while Figure 6 shows 

the crust to the southeast of this structure to be likely oceanic in origin. If we assume this 

structure represents the COB, separating extended to hyper-extended continental crust to 

the northwest from oceanic crust to the southeast and project its trend northeast, we see 

that it intersects the Manila trench just to the south of line T1 (Figure 2-1). This suggests 

the COB has only recently subducted at T1 and in turn that the extended to hyper-

extended continental crust has only recently started to subduct there. The recent addition 

of hyper-extended continental crust into the subduction system may explain the lack of 

basement underplating and purely sedimentary nature of the prism along T1.  

If T1 marks the approximate seaward limit of hyper-extended continental crust in 

the SCS, as much as ~100 km of this material has potentially subducted at the position of 

transect T2. Continuous subduction of hyper-extended continental crust may result in the 

structural underplating of mid-upper crustal blocks into the prism similar to the collision 

model of McIntosh et al (2013). We submit that the high velocities (5.0-6.5 km/sec) 

observed in the accretionary prism in T2 (Figure 2-10) are indicative of the first phases of 

structural underplating of mid-upper crustal blocks from the subducting EUP plate in 

agreement with this model.  
 

2-6-2: Accretionary Prism Structure  

The Manila trench accretionary prism is the dominant tectonic feature offshore 

southern Taiwan due to its dramatic structural variability and its tectonic role in the 

evolving arc-continent collision to the north. Between Luzon and Taiwan, the prism 

increases in width from ~80 km at 20.5° N to over 135 km just offshore Taiwan (Figure 

2-1). This increase in width and elevation is accompanied by a significant change in 

morphology and the development of two distinct structural domains; the lower slope, 
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consisting of west-verging folded strata and thrusts, and the extremely deformed and non-

reflective upper slope domain (Reed et al 1992) (see Figure 2-9).  

Although much of the structural variation reflects the rapid vertical growth of the 

accretionary prism due to the addition and incorporation of thick passive margin 

sequences and orogenic sediments from the north and the presence of steeply dipping 

backstop, the fact that a much larger volume of accretionary material now rests on the 

subducting, hyper-extended continental crust may have profound effect on the style of 

accretion. Specifically, rather than passively subducting the thinned continental crust, the 

huge mass of the sedimentary prism sitting above the subducting plate may promote 

underplating of rifted blocks of upper crust material along detachment surfaces or shear 

zones inherited from the previous rifting phase of the continental margin. Evidence for 

one of these surfaces is shown in Figure 2-9. Observations of similar lower crustal shear 

zones facilitating the tectonic emplacement of subducting material has been observed 

beneath Vancouver Island from 15-30 km depth (Calvert et al 2003). While the evolution 

of these lower crustal shear zones may differ, the manner in which they are utilized to 

tectonically emplace material into the overlying plate may be analogous. 

If these observations of a mid-crustal shear zone are true, what becomes of the 

weakened, buoyant upper crust during subduction? The seismic velocities of the 

accretionary prism along T2 reveal a possible mechanism and explanation. The velocity 

model shows an increase in seismic velocities at a shallow level of 10-15 km within the 

prism near the transition from the lower-slope to upper-slope domain (Figure 2-10: model 

distance 130-180 km). While it is expected that seismic velocities in the prism would 

increase somewhat due to compaction, dewatering processes, cementation, continued 

sedimentary accretion and even low-grade metamorphism, we observe velocities greater 

than 6.0 km/sec at shallow structural level, which are far greater than any sedimentary 
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velocities observed to the south along T1 or in other accretionary prisms (Westbrook et al 

1988; Fowler et al 1998; Christeson et al 1999).  

It is possible that the high velocities observed represent accreted and/or 

underplated ophiolitic material or oceanic crust similar to observations in Sumatra by 

Singh et al 2008. However, given the likely position of the COB and the nature of the 

hyper-extended continental margin currently subducting north of T1, it is highly unlikely 

that such a large volume of oceanic crust would accrete rather than continue to subduct. 

Additionally, the dimensions of the high velocity anomaly (~5 km vertical X 10 km 

horizontal) would be anomalously large for a structural high such as a seamount in the 

SCS. 

Alternatively, we interpret the high velocity material to be evidence of the 

initiation of structural underplating of blocks of hyper-extended upper crust into the 

accretionary prism. Earlier, we discussed what might be expected from a cross section 

through a normal subduction profile. We observe an initial eastward steepening of the top 

of subducting basement at model distance 110 km, followed by an abrupt shoaling of 

high velocities between 130-180 km model distance (Figure 2-10). Lester et al (2013) 

observes a similar high velocity anomaly (>6.0 km/sec) in same position and depth within 

the prism on a NNE-SSW line that crosses T2 (Figure 2-1). Tomographic modeling along 

T1 to the south shows a ~15 km thick, highly developed sedimentary prism with no 

evidence of high velocity material. Additional tomographic modeling from McIntosh et al 

(2013) to the north of T2 (Figure 2-1) shows the uplifted Hengchun peninsula to be cored 

by a large volume high velocity (>6.0 km/sec) material. This south to north progression 

and development of this high velocity anomaly suggests this is an evolutionary process 

involving structural underplating of rifted continental basement. Structural underplating 

of this nature may contribute to the significant volume increase observed in the prism and 
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provide an explanation for high-pressure low-temperature lithologies of apparent 

continental in origin such as the Tananao Complex exposed in the southern Central 

Range (Simoes et al 2007; Beyssac et al 2008; Malavieille 2010).  

We can only speculate the significance of imbricate thrusting given the lack 

deeper resolution the MCS images. The thrusts along transect T2 seem to be blind with 

minimal offset that may or may not interact with the basement. Although the role of the 

imbricate thrusts remains enigmatic at this stage of tectonic underplating due to lack of 

MCS data resolution, it is possible that thrust faulting becomes more important later in 

the evolution of this process. 
 

2-6-3: Forearc Backstop Geometry and Implications 

Previous shallow geophysical studies of the NLA forearc have assumed a 

seaward-dipping backstop without sufficient crustal scale data to support this claim. 

Although the presence and potential role of the forearc in the evolving arc-continent 

collision have been modeled and discussed in terms of deformation in the forarc basin 

(Lundberg et al., 1997; Hirtzel et al 2009), and even detachment and subduction of the 

forearc as modeled by Chemenda et al (1997) and Malavieille et al (2002), its role prior 

to the onset of collision may be of equivalent importance. Our models provide constraints 

that will modify the previous ideas concerning the architecture and orientation of the 

forarc block prior to collision. Specifically, rather than a gentle trench dipping wedge as 

assumed by most investigators, we observe evidence of a steeply dipping forearc 

backstop.  

Although MCS reflection data acquired along T1 and T2 in this study were 

insufficient to image forearc basement at depth due to signal attenuation and multiple 

contamination, coincident tomographic models provide detailed insight of the of the 
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deeper velocity structure of the forearc crust. We interpret the steeply dipping 5 km/sec 

velocity contour extending to a depth of 15 km in T1 (Figure 2-8) and an abrupt 

steepening of the 5 km/sec velocity contour along T2 as evidence for the near vertical 

nature of the forearc backstop (Figure 2-10). This boundary is not defined below 10 km 

along T2 except for a concentration of seismicity, which suggests a steep boundary at 

depth. These observations are consistent with tomographic modeling of an E-W onshore 

offshore wide-angle transect from McIntosh et al (2013) (Figure 2-1) that shows the 

trench-ward limit of the forearc block bound to the west by a similar near vertical 

concentration of seismicity. Similarly, a tomographic model of an E-W onshore offshore 

transect by Cheng, (2009) using P-and S-wave travel times from local earthquakes shows 

the trench-ward limit of the forearc block to be steeply dipping in the vicinity of 

Hengchun Peninsula. 

Implications of such a steeply dipping backstop are significant as this parameter 

defines the flow trajectories of accreted material as well as the states of stress in the 

hinterland and foreland of the deforming prism. A number of authors have proposed that 

the structure of the Manila accretionary prism near Taiwan is analogous of a double-

wedge, consisting of a pro-wedge that verges and deforms to the west and a retro-wedge 

that verges and deforms to the east over a trench dipping forearc backstop (Suppe, 1981; 

Davies et al 1983). The velocity model from transect T2 and its coincident MCS 

reflection data (Figure 2-9 and 2-10) seem to agree with this interpretation. However, 

farther south along transect T1, the prism structure becomes highly asymmetric and 

coincident MCS reflection data (Figure 2-7) show dominantly westward verging 

structures with little evidence of retro-wedge behavior. Our observations of a steep 

forearc backstop and a dominantly west-verging prism agree with experimental results 

from Rossetti et al., (2002) that measure the effects of convergence rate and backstop dip 
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angle on the evolution of deforming wedges. Their results indicate that a decrease of the 

convergence velocity and/or an increase of the backstop dip angle can effect a change 

from prevalent hinterland–to foreland-vergent deformation, similar to the architecture we 

observe in the MCS along transect T1. As stated previously, further north, the 

accretionary prism seems to conform to the double-wedge geometry. This may be due to 

increased uplift with the involvement of thinned continental crust, a volumetric increase 

of the prism resulting from the accretion of terrigenous sediments she from the 

continental margin and Taiwan orogen to the north, or a change from a steep backstop 

configuration to a lower angle configuration promoting backthrusting in the hinterland. 

Additionally, this result may have alternative significance regarding the flow 

trajectory of accreted/underplated materials in the prism. That is, steeply-dipping 

backstop geometries promote extreme particle motion through the prism, allowing 

structurally underplated crustal material to be accreted and buried, exposing it to hi-

pressure-low-temperature metamorphic conditions, before quickly returning it to the 

surface similar to the analogue and thermo-mechanical modeling of Fuller et al (2006) 

and Malavieille (2010). Moreover, if the steeply dipping backstop is prevalent further 

north, it may be a key component in the process controlling the trajectory and 

exhumation of high velocity material beneath the Hengchun Peninsula identified by 

McIntosh et al 2013. 
 

2.7 CONCLUSIONS 

MCS reflection imaging of the Moho along Line 15 (19° N), indicate the 

subducting crust to be ~6 km thick, typical oceanic crust. A linear, NE-SW trending 

basement high, likely associated with the COB, can be projected NE into the Manila 



 52 

trench to intersect transect T1, suggesting that until recently oceanic crust was subducting 

there.  

Our model across T1 (~20.5° N), along with coincident MCS reflection profile 

25A, indicates that 10-12 km thick, hyper-extended continental crust has recently begun 

to subduct along the Manila trench at this location. Low seismic velocities (2.5-4.0 

km/sec) are diagnostic of a primarily sedimentary composition of the prism and provide 

further evidence that until recently oceanic subduction may have been occurring here. 

Our model across T2 (~21.5° N), along with coincident MCS profile 23, suggest 

as much as ~100 km of 10-15 km thick, hyper-extended continental crust have subducted 

at this location. A high amplitude mid-crustal reflection is observed beneath faulted 

basement blocks outboard of the trench that we interpret to be a relic detachment surface 

from previous rifting. Unusually shallow high velocities (5.0-6.5 km/sec) in the prism in 

our model are evidence for initial phases of structural underplating of EUP basement to 

the base of the prism via inherited weaknesses from the rifting of the Chinese margin. 

Our models across the NLA forearc, along with seismicity data, indicates that the 

forearc backstop may be steeply dipping, and near vertical contrary to the seaward 

dipping backstop geometries previously assumed in other studies. 

Our set of transects support a model of collision where prior to true arc-continent 

collision blocks of hyper-extended continental crust of the rifted Chinese margin are 

subducted and underplated into the accretionary prism along pre-existing detachment 

surfaces. Prior to collisional uplift, continued convergence and buoyancy forces are likely 

the main components in the exhumation, although erosion may have an underappreciated 

role in expediting and focusing exhumation after the prism is uplifted above sea level.  
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Figure 2-1. Regional bathymetry and elevation of Taiwan and major tectonic features. 
Major morphotectonic units of Taiwan are shown: CP - Coastal Plain; WF – 
Western Foothills; HR – Hsueshan Range; CnR – Central Range; CR – 
Coastal Range. MCS reflection data from this study (black lines) were 
acquired along MGL0905_15, MGL0905_25A, and MGL0905_23. Wide-
angle OBS data (red-yellow circles) were acquired along transects T1 and 
T2. White and yellow dashed lines show approximate location of interpreted 
COB from Hsu et al., (2004) and Briais et al., (1993). Thin black lines 
denote position of other MCS and wide-angle transects from Lester and 
McIntosh (2013) and McIntosh et al (2013) referred to in this paper. White 
transparent zone shows our updated interpretation of oceanic crust and COB 
(black dashed line). NLT = North Luzon Trough; HR = Huatung Ridge; HP 
= Hengchun Peninsula. 
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Figure 2-2. Example OBS records from the western (OBS04), central (OBS09), and 
eastern (OBS16) parts of transect T1 (MGL0905_25A). OBS locations are 
marked in Figure 1. Left and right panels show data with minimal 
processing (bandpass filter, spectral balancing) which was sufficient to 
resolve first arrival refractions to offsets greater than 40 km. Left panels a., 
c., and e. show uninterpreted records, while the right panels b., d., and f. 
show picked first arrivals (solid blue line), pick uncertainties (green 
window), and calculated first arrivals (red dashed lines). 
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Figure 2-3. Example OBS records from the eastern (OBS13), central (OBS22), and 
western parts of transect T2 (MGL0905_23). OBS locations are marked in 
Figure 1. Left and right panels are with minimal processing (bandpass filter, 
spectral balancing) which was sufficient to resolve first arrival refractions to 
offsets greater than 40 km. Left panels a., c., and e. show un-picked records, 
while the right panels b., d., and f. show picked first arrivals (solid blue 
line), pick uncertainties (green window), and calculated first arrivals (red 
dashed lines). 
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Figure 2-4. Derivative weight sum (DWS) of transect T1 (lower) and T2 (upper) show 
ray coverage throughout the model spaces. Ray coverage is very good in the 
shallow crust between OBS locations but shows significant variation at 
depth due to variable data quality. 
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Figure 2-5. Resolution matrix for first-arrival tomography models T1 (bottom) and T2 
(top). Regions with resolution values of >0.5 are considered well-resolved. 
This test shows that features in the crust are well resolved. Outside OBS 
locations, resolution suffers, although large-wavelength features are still 
resolved. 
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Figure 2-6. Pre-stack time migrated data from MGL0905_15 image sediment and crustal 
structures along the incoming, oceanic SCS crust. Bending faults are 
highlighted along with main tectonic structures. 
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Figure 2-7 
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Figure 2-7. Pre-stack time migrated data from MGL0905_25A (SCS crust and 
accretionary prism: a-d; forearc basin: e).  Panels b-d show the incoming 
hyper-extended continental crust of the SCS, intermittent Moho reflection at 
~8.5 sec TWTT, syn-rift and post-rift sedimentary structures, and structures 
within the rapidly growing accretionary prism. Panel e. shows early-stage 
thrusting and deformation structures within the N. Luzon Trough forearc 
basin. OBS positions are marked by black triangles and labeled 2-19; M = 
water bottom multiple reflection. 
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Figure 2-8. Tomographic model of Line T1 transect with seismicity across the Manila 
subduction zone. a.) Tomographic velocity model and instrument locations. 
Instruments highlighted in yellow are those shown in Figure 2. The curving 
edges of the colored model show the limits of the rays traced during the 
inversion. b.) First-order interpretation of the model, using additional 
constraints from MCS reflection data, and surface morphology including 
seismicity from the IRIS database (20 km swath width). The basal 
detachment between the accretionary prism and subducting thinned-
continental crust is labeled D, and the base of the crust is labeled M. 
Vertical dashed white line denotes position of 1-D velocity profile shown in 
Figure 11. NLA = North Luzon arc; NLT = North Luzon Trough. c.) 
Seismicity from the IRIS database along the tomographic model showing 
consistency between picked plate boundary fault (red corresponds to dash in 
B) and the deeper seismicity of the Benioff zone. 
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Figure 2-9. Pre-stack time migrated data from MGL0905_23 from the incoming hyper-
extended continental crust across the Hengchun peninsula into the 
deforming N. Luzon trough. OBS positions are marked with triangles and 
labeled. Multiple reflections re marked with M. Boxes in the upper panel 
mark the portions of MGL0905_23 included in the lower panels, including: 
a.) the incoming hyper-extended continental crust, Moho reflection at ~9.0 
sec TWTT, syn-rift and post-rift strata, and mid-crustal detachment, and b.) 
lower slope structures of the accretionary prism. 
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Figure 2-10. First-arrival tomography model of Line T2 transect. This figure is organized 
in panels identical to Figure 8. Instruments highlighted in yellow are those 
shown in Figure 3. NLA = North Luzon arc. 
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Figure 2-11. 1D velocity profiles show the structure of the SCS crust along transect T1 
(a: model distance 80 km) and T2 (b: model distance 70 km) are consistent 
with velocity structure of SCS transitional crust of (Nissen et al., 1995; Qiu 
et al., 2001; Wang et al., 2006; Yan et al., 2001) that contains hyper-
extended continental crust. The velocity structure is also incompatible with 
the faster, two-layer velocity structure of typical ocean crust (White et al., 
1992) and thick ocean crust (Mutter and Mutter, 1993). 
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CHAPTER 3: NEW GEOPHYSICAL CONSTRAINTS ON THE 
STRUCTURE AND POTENTIAL EVOLUTION OF THE GAGUA 

RIDGE AND HUATUNG BASIN 

 

3-1: INTRODUCTION 

Subduction initiation is a fundamental phase of the plate tectonic cycle, yet the 

mechanisms that might trigger it remain unclear. Based on our current understanding of 

driving and resistive forces and of lithospheric strength, theoretical studies (Cloetingh et 

al., 1989; McKenzie, 1977; Mueller and Phillips, 1991; Stern and Bloomer, 1992; Toth 

and Gurnis, 1998) conclude that it is very difficult, but not impossible to initiate a new 

subduction zone in a passive margin or transform setting. In addition, there is little 

evidence of subduction initiation in the geological record, because the leading edge of the 

downgoing plate is immediately lost and subsequent deformation and volcanism often 

overprint the structure of the overriding plate. It is therefore important to identify 

examples of subduction initiation in an early stage, such as the Macquarie Ridge 

Complex and Puysegur trench at the Australian-Pacific plate boundary (Collot et al., 

1995; Massell et al., 1999). The Gagua Ridge and associated trough on the Philippine Sea 

plate southeast of Taiwan may represent an additional example of early subduction, but in 

this case failed to fully develop as a convergent plate boundary. 

The Gagua Ridge (GR) is a continuous bathymetric high that extends north over 

300 km from the island of Luzon to intersect the Ryukyu subduction zone east of Taiwan. 

The N-S ridge separates the West Philippine Basin (WPB) to the east from the Huatung 

Basin (HB) to the west. Early interpretations of GR include a trench break of an inactive 

subduction zone (Karig and Wageman, 1975), the remnants of an extinct spreading center 

(Bowin et al., 1978), and an uplifted sliver of oceanic crust (Morzowski et al., 1982). 
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Hilde and Lee (1984) interpreted GR as an intra-oceanic fracture zone. Deschamps et al., 

(1998) expanded on this idea relating the structure to an intra-oceanic fracture zone 

uplifted during a compressional episode during a plate reorganization in the mid-Eocene. 

More recently, Deschamps et al. (2000) conclude that GR may have acted as an important 

transpressional plate boundary between the Eocene Philippine Sea Plate (PSP) and 

Cretaceous HB ocean crust. A similar hypothesis is suggested by Sibuet et al. (2002), 

however, in their scenario GR acted as a plate boundary between the independently 

formed Eocene PSP and the ‘old’ Taiwan Sea Plate. 

Despite extensive analysis of the various geophysical studies conducted in this 

area, the origin and tectonic significance of GR has remained controversial. This is in part 

due to our lack of understanding of the complex evolution and interaction of the 

Philippine Sea Plate (PSP) and South China margin in Mesozoic and Cenozoic times. 

Additionally, deeply penetrating geophysical data that may provide crustal scale 

structural information of this feature have not been available until now.  

In this paper, we describe results of four marine wide-angle ocean-bottom 

seismometer (OBS) transects and their coincident multichannel seismic (MCS) reflection 

profiles that cross the GR. The resultant seismic images indicate crustal thickening on the 

order of ~12-18 km beneath the GR, between 20.5° N and 23° N. The asymmetric 

velocity structure of GR suggests that the oceanic crust of the West Philippine Basin 

(WPB) underthrusts the oceanic crust of the HB to the west and may represent a rare 

example of a failed subduction attempt preserved in the geologic record. 
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3-2: TECTONIC BACKGROUND 

3-2-1 Philippine Sea Plate 

The Philippine Sea Plate (PSP) is a major plate that separates the Pacific, 

Australian, and Eurasian plates. It is bounded on all sides by active subduction zones that 

separate it from an oceanic ridge system, and it lacks an accreting boundary (Hall et al., 

1995). The greater PSP is composed of three large sub-basins (Figure 3-1) that include 

the Shikoku Basin (SB; ~25-15 Ma), the Parece Vela Basin (PVB; ~30-17 Ma), the West 

Philippine Sea Basin (WPB; ~56-35 Ma) (Rangin and Pubellier, 1990), and the smaller 

Mariana Basin (~6 Ma) (Hussong and Uyeda, 1981) and Huatung Basin (Hilde and Lee, 

1984). Presently, the PSP is moving N308° at a rate of 7-8 cm/yr relative to the Eurasian 

plate near Taiwan (Ranken et al., 1984; Seno et al., 1993; Yu et al., 1999; Yu and Kuo, 

2001) and subducts northward along the Ryukyu trench, which constitutes the northwest 

boundary of the PSP. Several seismic refraction experiments (Murauchi et al., 1968; 

Henry et al., 1975; Hayes et al., 1978; Louden, 1980; Langseth and Mrozowski, 1980) 

have confirmed that the WPB is floored by ocean crust (6-8 km thick). Hilde and Lee, 

(1984) analyzed magnetic lineations and bathymetric structures of the WPB to show that 

it was likely formed from the Central Basin Spreading Center (CBSC) in two distinct 

spreading phases, one from ~60 Ma – 45 Ma, and one from ~45 Ma – 30 Ma. Ar/Ar dated 

gabbro samples recovered by deep-sea drilling (DSDP) site 293 (Ozima et al., 1977) in 

the WPB produced an age of ~42 Ma in reasonable agreement with ages derived from 

Hilde and Lee (1984).  

3.2.2 Huatung Basin and Gagua Ridge 

The HB is located on the western edge of the PSP and is bounded by the Ryukyu 

subduction zone, GR, the northern Luzon volcanic arc (NLA), and eastern Taiwan 
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(Figure 3-1). The dimensions of the basin are small, ~150 km in width by ~250 km in 

length. Thick sedimentary units  (~4 km; Van Avendonk et al., Deep crustal structure of 

an arc-continent collision: Constraints from seismic travel times in central Taiwan and 

the Philippine Sea, submitted to Journal of Geophysical Research Solid Earth, 2014) in 

the basin are derived primarily from the uplift and erosion of the Taiwan mountain belt 

and have become ponded within the basin due to the presence of the GR bounding to the 

east. No deep-sea drilling exists within the basin, and as a result, most of the previous 

interpretations concerning the age of the seafloor are based on marine magnetic anomaly 

data. Early work from Hilde and Lee (1984) identified several E-W trending magnetic 

anomalies, interpreted as anomalies 19 to 16 in the northern part of HB, and indicating an 

age for the seafloor between 44 and 36 Ma. This interpretation was based on the 

correlation of these magnetic anomalies in the HB to anomalies in the later phase of WPB 

seafloor spreading during the Eocene. More recently, Ar/Ar dating of gabbros collected 

from several basement highs in the southern HB were dated as Early Cretaceous in age, 

between 115 and 125 Ma, leading to the hypothesis that the basin could be a trapped 

piece of Cretaceous Proto-South China Sea, or perhaps a piece Mesozoic New Guinea 

Basin oceanic crust (Deschamps et al., 2000; Hall, 2002). Conversely, Sibuet et al. 

(2002), using updated marine magnetic anomaly and gravity anomaly data collected 

offshore southern and southeastern Taiwan, suggest an alternate age and origin for the 

HB. These authors support the interpretation that the HB is part of a separate plate, the 

‘old’ Taiwan Sea Plate, formed 51 to 15 Ma, the majority of which has already subducted 

beneath the Ryukyu trench to the north. More recently, Kuo et al. (2009) estimated that 

the age of the HB is close to the age of the PVB (~15-30 Ma) of the eastern PSP based on 

the similarity of Rayleigh wave seismic velocities between the two basins.  
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Several geophysical studies have examined the morphology, seismic velocity 

structure, and seismicity in the lithosphere of the basin and their relation to the ongoing 

Taiwan arc continent collision occurring along the west margin of the basin. Schnürle et 

al. (1998) analyzed seismic reflection data exploring the potential for E-W structural 

control on the Taitung Canyon within the Huatung Basin. These authors found that in 

most cases, the canyon followed a depression in the oceanic basement and identify the 

existence of local WSW-ENE strike-slip seismicity in the vicinity. However, such faults 

are not well expressed in seismic reflection data, and they do not outcrop in bathymetry 

data. More recently, Lallemand et al. (2013) examined the interaction of the PSP and 

EUP using a combination of a new 3D velocity model, earthquake relocations, and MCS 

reflection data in an effort to reconcile the observed deformation style with the 

distribution of seismicity. The authors argue for NW-SE shortening of the northern, 

subducted portion of the HB between 23.3° N and 24.3°N through folding and slicing of 

the ocean crust corresponding with two concentrated clusters of seismicity at or near the 

subduction interface. Despite this new evidence, it is unclear whether the deformation 

observed by these authors corresponds to an existent structural fabric within the HB that 

has been reactivated or if the deformation is limited to the region proximal to the 

collision. Additionally, the deformation identified is interpreted on the already subducted 

portion of the HB and therefore difficult to confirm.  

The GR, is a linear, ~300 km long, 25-30 km wide, N-S trending bathymetric high 

to the south and east of Taiwan that rises 2 to 4 km above the surrounding seafloor 

(Deschamps et al., 1998). The ridge extends north from the eastern flank of the NLA (on 

Luzon Island) and isolates the HB from the WPB (Figure 3-1). The ridge is continuous to 

the north and has been shown to subduct beneath the Ryukyu trench, forming a reentrant 
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scar into the Yaeyama ridge accretionary prism (Lallemand and Liu, 1997; Dominguez et 

al., 1998).  

Past interpretations concerning the origin and tectonic significance of GR are 

speculative, because they are largely based on indirect observation from geophysical 

studies of the adjacent ocean basins. Recent studies agree that GR likely represents a 

zone of earlier compressional and strike-slip deformation. However several investigations 

(Deschamps et al., 2000; Sibuet et al., 2002) suggest that the GR may have acted as an 

important plate boundary rather than an intra-oceanic fracture zone between what would 

have been a separate HB plate from the younger Eocene age WPB to the east. Because 

great uncertainty remains regarding the age of the ocean crust in the HB, it is difficult to 

establish the role of GR in the regional tectonic history. Below we describe a detailed 

geophysical study of the GR that provides fundamental constraints on the crustal scale 

structure of the ridge and surrounding ocean crust that can then be used to analyze the 

true nature of this boundary and its importance in the development of the PSP.  
 

3-3: GEOPHYSICAL DATA AND PROCESSING 

3-3-1: TAIGER Experiment 

MCS reflection and wide-angle refraction data were acquired in the vicinity of 

GR as part of the 2009 TAIGER (Taiwan Integrated Geodynamics Research) program, 

designed to study the evolution and geodynamics of the Taiwan arc-continent collision 

and surrounding region. We present subsets of wide-angle OBS transects T1B, T2 (Eakin 

et al., 2014), T4A (McIntosh et al., 2013), and T5 (Van Avendonk et al., Deep crustal 

structure of an arc-continent collision: Constraints from seismic travel times in central 

Taiwan and the Philippine Sea, submitted to Journal of Geophysical Research Solid 
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Earth, 2014) and MCS reflection profiles, MGL0905_17 and MGL0906_14 and 

MGL0906_30N from this program acquired offshore south and east of Taiwan (Figure 3-

1). These data constrain the crustal structure of the HB ocean crust, GR, and WPB. MCS 

reflection data were acquired with the seismic vessel R/V Marcus Langseth using a 468 

channel, 6 km streamer and a source array consisting of 36 air guns with a total volume 

of ~6600 in3 towed at a depth of 9 m. Source spacing was 50 m for MCS data acquisition 

with hydrophone spacing of 12.5 m resulting in nominal common midpoint (CMP) 

spacing of 6.25m. MCS data were recorded for 15 sec with a 2 ms sample rate. Wide-

angle data were acquired using the same seismic source, and recorded on OBS 

instruments from National Taiwan Ocean University (NTOU) and U.S. OBS instrument 

pool (OBSIP). Lines T5 and T4A also recorded seismic arrivals with instruments on land; 

however, the model and data subsets presented in this paper show only the marine 

portions of these transects. Shot spacing for wide-wide angle acquisition was 150 m with 

instrument spacing of 12-15 km for lines T5, T4, and T2, and 10 km for line T1B. 

Sample interval was 4 ms for NTOU instruments and 5 ms for the OBSIP instruments. 

3-3-2: MCS Data 

Data processing was performed using the Paradigm Focus software. MCS data 

processing included advanced multiple attenuation techniques to improve deeper crustal 

imaging, as outlined by Lester and McIntosh, (2012) and Eakin et al. (2014), including 

gap deconvolution, 2D surface-related multiple attenuation (SRME), radon de-multiple 

filtering, offset-weighting, and time-variant bandpass filtering. The final pre-stack time 

migrated images provide high-resolution constraints on the sedimentary and crustal 

structure across the HB, GR, and WPB ocean crust. 
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3.3.3: OBS Data 

OBS data quality are generally of fair quality in the vicinity of GR, however 

additional processing steps were applied to improve signal to noise ratio and increase 

picking confidence at longer offsets. The processing steps for the near-to-middle offsets 

(0-40km) varied between instruments depending on data quality but typically included 

band-pass frequency filtering, automatic gain control (AGC), or gain with offset. 

Additional processing steps were applied including gap deconvolution and spectral 

balancing to equalize frequency content as needed to increase signal-to-noise ratio for 

picking first arriving wide-angle refractions.  

In Figure 3-2, OBS records from two instruments along transect T1B show wide-

angle seismic refractions from sediments, crust and uppermost mantle, along with 

calculated first arrivals, picked first arrivals, and travel-time uncertainties. These data are 

representative for the other transects, and they can be used to constrain the velocity 

structure associated with the NLA, GR, and the WPB. Similar OBS data records from 

transect T2 were presented by (Eakin et al., 2014), from T4A in (McIntosh et al., 2013), 

and T5 in (Van Avendonk et al., Deep crustal structure of an arc-continent collision: 

Constraints from seismic travel times in central Taiwan and the Philippine Sea, submitted 

to Journal of Geophysical Research Solid Earth, 2014). 
 

3-4: METHODS 

3-4-1: Tomography and Resolution Testing 

All of the seismic velocity models presented in this paper were created by 

inverting the travel times of first arriving refractions that were recorded on OBSs, using 

the regularized inversion method of Van Avendonk et al. (2004). First, a simple starting 

seismic velocity model is created, composed of a water layer above a subsurface layer. 
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Here we assume the seismic velocity increases with depth beneath the seafloor. Iterative 

steps of ray tracing and linearized inversion with smoothness constraints are then 

performed to reduce travel-time misfits until a satisfactory fit between calculated and 

observed arrival times is achieved within the tolerance level of the pick uncertainties.  

While the inversion procedure that led to each velocity model shown in this 

manuscript was nearly identical, the velocity model for line T1B has not been presented 

previously, and details of the modeling process and resolution testing will be given here. 

T1B (Figure 3-3a,b) spans 207 km in the horizontal and 30 km in the vertical direction, 

and contains 414 x 91 = 37,674 grid nodes. Grid spacing is 0.5 km in the horizontal 

direction, and 0.3 km in the vertical direction. 3,467 first arrival picks and 15 iterations of 

travel-time tomography were performed to update the model, reducing χ2 from 160 in the 

initial model to 0.95 in the final model iteration. The final velocity model has an RMS 

misfit of 86 ms.  

The resolution and reliability of the final velocity models can be assessed using 

the derivative weight sum (DWS) and a display of the resolution matrix. DWS provides a 

measure of the ray density at each model parameter in the final inversion (Thurber and 

Eberhart-Phillips, 1999).  Along profile T1B, DWS is much higher in the upper ~10 km 

between 0-80 km (Figure 3-3a) due to the greater sampling and smaller uncertainties in 

the first arrivals at the near offset of each instrument.  

The resolution of the final velocity models can be further assessed by computing 

the resolution matrix (van Avendonk et al., 2004), which can be used to test how well 

model features of specific dimensions are resolved in the inversions. Figure 3-3b 

demonstrates that 6 km horizontal by 3 km vertical and 12 km horizontal by 6 km vertical 

elliptical velocity anomalies in the crust are well resolved from model distance 0 km – 

100 km and adequately resolved at shallow depths (0 km – 5 km). Upper mantle 
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velocities are well resolved between 20 km and 80 km. Resolution is poorer at depth at 

model distance 80 km – 140 km where we lack coverage with crossing ray paths. This 

resolution analysis indicates that the crustal thickness and upper mantle structure beneath 

the GR and northern Luzon Arc crust to the west is well resolved. Similar tests were 

performed for each wide-angle transect shown in Figure 3-7. More details of the outcome 

of tomographic modeling and resolution testing for T2, T4A, and T5 can be found in 

(Eakin et al., 2014; McIntosh et al., 2013; and Van Avendonk et al., Deep crustal 

structure of an arc-continent collision: Constraints from seismic travel times in central 

Taiwan and the Philippine Sea, submitted to Journal of Geophysical Research Solid 

Earth, 2014). 
 

3-5: ANALYSIS AND RESULTS 

The TAIGER OBS and MCS data shown in the following sections provide new, 

high-resolution constraints on the structure of the oceanic crust offshore southeast 

Taiwan. The tomographic velocity models and coincident pre-stack time-migrated images 

cross the HB and the GR and yield for the first time, first-order constraints of the crustal 

structure, basement morphology, and sedimentary cover associated with the GR as well 

as the adjacent HB and WPB. In the following sections, we will first describe the MCS 

reflection profiles and discuss the tomographic velocity models. 
 

3-5-1: MCS Line MGL0906_17 

Between 22° N and 23° N, the HB achieves its maximum width of ~150 km. To 

the west of the basin at this latitude, the remnant NLA is in the incipient stages of 

collision with the Chinese passive margin. Line 17 provides important constraints on the 

structure and thickness of HB ocean crust and deformation associated with the GR 
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(Figure 3-4a). In the majority of the HB (CMP 6000-18000), 1.5-2.0 sec TWTT, or 1.5-2 

km thick, sediments overlay a high amplitude basement reflection assuming a 

sedimentary velocity between 2-3 km/sec. The sedimentary section generally thickens 

westward and reflectivity is relatively continuous until the base of the steep slope section. 

There is a slight wavy pattern in the shallow sedimentary section up to the seafloor, from 

CMP 13500 west to the flank of the NLA similar to structures observed by McIntosh et 

al. (2005). These features do not seem to extend deep in to the section and are likely due 

to gravity sliding from the arc flank toward in the HB.  

Intermittent Moho reflections can be traced across much of the profile (Figure 3-

4b: CMP 7500-16000), at ~2 sec TWTT below the top of basement, or 5-7 km assuming 

an average velocity of 6 km/sec. The top of basement is relatively smooth in the central 

part of the profile and is bound by two large, symmetric troughs, ~18-20 km in width 

located at CMP 11000 to the west, and CMP 20594 (Figure 3-4b-c) to the east, 

approximately 50 km apart. Interestingly, the spatial distribution of these structures 

roughly coincide with previously published magnetic data (Deschamps et al., 2000) that 

show an established pattern of N-S trending fracture zones spaced ~50 km apart. The 

overlying, collision-derived sedimentary (~1.5-2.0 sec TWTT thick or 1.5-3.0 km 

assuming a sedimentary velocity of 2.0-3.k km/sec) cover infilling the troughs is 

undeformed, requiring that the basement deformation pre-dated sedimentation associated 

with the Taiwan arc-continent collision, and likely occurred in a deep ocean environment 

with extremely low sedimentation rates. The seafloor above the easternmost trough is 

dominated by the Taitung Canyon system indicating that it is structurally controlled at 

this location (Figure 3-4c). Between CMP 19000 and 25000, the top of the basement 

shoals very near the seafloor. Within this interval, the top of basement is deformed into a 

series of alternating ridges and troughs, and the sedimentary cover thins from an average 
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of ~1 s TWTT to less than 0.5 s TWTT near the eastern flank of GR. Unfortunately, the 

crustal heterogeneity obscures possible deeper Moho reflections. 

The GR (Figure 3-4c: CMP 26000-29000) rises ~2.8-3.0 s TWTT, or ~2.1-2.8 km 

from the surrounding seafloor assuming a water velocity of 1.5 km/s, and consists of a 

main promontory and a secondary promontory on the western flank. The slope of the 

ridge is slightly asymmetric, with the eastern flank at a steeper angle than the western 

flank. The ridge itself lacks significant internal reflectivity and appears to exhibit similar 

seismic characteristics as the surrounding ocean crust. Potential deep Moho reflections 

are obscured by strong residual multiple energy that we were unable to remove due to its 

steeply dipping nature. A sedimentary basin, ~1 s TWTT, or 1-1.5 km assuming 2-3 km/s 

sedimentary velocity, has developed on the east side of the GR (Figure 3-4c: CMP 

29000-30900). Layered sediments on either side of GR onlap onto its flanks and show no 

evidence of tectonic deformation. 

Line 17 terminates 12 km east of GR and as a result does not constrain the ocean 

crust of the WPB. At this position, the top of the WPB oceanic basement is observed at 

~9 s TWTT, or ~7.5 km depth, assuming a water velocity of 1.5 km/sec and sedimentary 

velocity of 2.5 km/s. Edge effects from the migration acting on the low fold areas at the 

end of the profile limit the resolution of the deeper structure in this area. However, two 

strong, linear, westward dipping reflectors (CMP 30500: 9 sec TWTT) extend from the 

edge of the profile several km west beneath the flank of GR. These reflections may 

represent a continuation of the top of WPB ocean crust and evidence for partial 

underthrusting beneath the GR and HB oceanic crust. 
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3-5-2: MCS Line MGL0906_14 

Line 14 extends SE from the eastern flank of the NLA at 23° N, across the arc 

slope and HB, and bisects the GR near 22° N (Figure 3-1). The eastern end of Line 14 

crosses Line 17 before continuing SE providing an interesting opportunity to analyze the 

spatial continuity and distribution of similar basement structures in the HB. Similar to 

Line 17, sedimentary thickness increases to the west approaching the NLA as the 

basement deepens away from GR. Sedimentary thickness for the majority of the basin 

(CMP 6000-16000) is on the order of 1.5-2.0 sec TWTT, or ~1.5-3.0 km thick, assuming 

a sedimentary velocity between 2.0-3.0 km/sec (Figure 3-5a). A wavy pattern similar to 

that of Line 17 is observed in the shallow sedimentary section east of CMP 6000, to CMP 

16500 where the Taitung Canyon is observed at the seafloor (Figure 3-5b). The wavy 

structures soles into a high amplitude reflector that may represent a local detachment 

facilitating gravity sliding in to the HB. Arc-ward of CMP 5000, there is a large scarp at 

the seafloor and reflections show large folds with wavelengths >4 km (Figure 3-5a). This 

area may mark the limit of collision related deformation similar to that observed by 

McIntosh et al. (2005). 

Intermittent Moho reflections are visible throughout much of the western part of 

the profile at 1.5-2.0 sec TWTT, or 4-6 km depth (Figure 3-5b). Further interpretation of 

Moho becomes difficult in the eastern end of the profile, possibly due to increasing 

deformation approaching GR. The basement is fairly smooth between CMP 12000-

16000, but is bounded on either side by abrupt structural breaks in the basement. West of 

CMP 12000, we image the same graben-like trough observed on Line 17 (Figure 3-5b). It 

is unclear whether the arc-ward flank of this depression represents a previously active 

footwall or simply the seaward extent of the NLA edifice in the HB. Because the 
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overlying sedimentary cover is undeformed, it is likely that the deformation and faulting 

are pre-collisional, related to the seafloor-spreading episode that formed the HB.  

The seafloor expression of the Taitung Canyon marks the transition from the 

relatively smooth basement to the west to the rugged, apparently deformed basement to 

the east. Here (CMP 17000-25000) the basement consists of a series of sharp ridges and 

troughs that shoal and eventually emerge at the seafloor to the west of GR (Figure 3-5c). 

Sporadic reflectivity in the basement may be a further indication of faulting and extensive 

deformation, making it extremely difficult to identify Moho consistently. Despite the 

evidence for deformation in the underlying basement, the overlying sedimentary cover is 

relatively undisturbed within the troughs only show slight folding near the sediment 

basement interface that decreases rapidly near the seafloor. 

The GR rises ~4.5 sec TWTT, or ~3.5 km from the surrounding seafloor on line 

14 (Figure 3-5c). The shape of the ridge is slightly asymmetric in cross section, where the 

western flank has a steeper angle than the eastern flank. The upper 2.5-3.0 sec TWTT of 

the ridge lacks significant coherent reflectivity and appears to exhibit similar seismic 

characteristics as the surrounding ocean crust. Deeper reflectivity including evidence for 

Moho reflections are obscured by strong residual multiples. Sediment-filled troughs 

bound the GR to the east and west. Sediments within the troughs onlap the ridge 

unconformably similar to line 17 and show little evidence for significant deformation, 

indicating GR has been relatively stable tectonically since its formation. A high-

amplitude reflection extends to the west from the base of the easternmost trough 

bounding GR. We interpret this reflection to be the top of WPB ocean crust and evidence 

for underthrusting beneath the GR, however the reflection is quickly obscured by residual 

multiple energy. 
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3-5-3: MCS Line MGL0906_30N 

Line 30N extends NE from the eastern flank of the NLA and terminates in the 

middle of the HB near 22.5° N (Figure 3-1). This profile exhibits quite different 

basement structure than the profiles to the north and it also provides new information on 

the nature of the regional, bench-like feature that dominates the southwest margin of the 

Huatung Basin. The majority of the HB imaged here (Figure 3-6a: CMP 500-11000) 

consists of ~1.0-2.0 sec TWTT, or ~1.0-3.0 km thick sedimentary section, assuming 

sedimentary velocities between 2-3 km/sec. In general, the overlying sedimentary cover 

is far more deformed than the previous MCS reflection transects. Between CMP 500 and 

7200 minor faulting of the lower units is commonly observed, however no faults are seen 

to reach the seafloor (Figure 3-6b).  

Intermittent Moho reflections are visible throughout the profile (Figure 3-6b: 

CMP 500-5000; Figure 3-5d: CMP 6000-8750) at ~2 sec below the top of the basement, 

or 5-7 km thick assuming an average crustal velocity between 5-7 km/sec, in agreement 

with observations from line 17 and 14. The top of the oceanic basement is quite smooth 

and regular in stark contrast with the large amounts of basement deformation that can be 

identified in lines 17 and 14 to the north. None of the graben-like troughs identified on 

those reflection profiles to the north, specifically the trough closest to the NLA, are 

observed here.  

We observe the sudden emergence of a prominent, bathymetric bench protruding 

from the NLA slope at the west end of the profile (Figure 3-5c). Interestingly, the 

emergence of this structure is coincident with the appearance of a major regional 

bathymetric high that widens to fill the basin south of 22° N as the deeper basin itself 

narrows (Figure 3-3-1). The seismic character of this structure is unusual. Shallow in the 

section between CMP 14300-15000 at 5-5.75 sec TWTT, the structure is composed of 
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semi-coherent, layered strata that are easily differentiated from the arc basement 

reflection. Subtle reflectivity in the upper sedimentary unit outlines the flanks of what 

appears to be a submarine canyon approximately 5 km wide by ~1 km deep. Seaward of 

CMP 14300, the coherent layer is underlain by a lens of material (Figure 3-6c: CMP 

13000-14300 at 5.75-6.75 TWTT) with poor internal reflectivity and floored by a high 

amplitude reflection that clearly separate it from the arc-basement below. This lower unit 

reaches its maximum thickness near CMP 13600 where it forms small pinnacle or 

platform. Additional MCS reflection lines (not shown here) cross the structural high as it 

broadens to the south and show a similar structural trend. Farther south the underlying 

layer increases in volume and it becomes increasingly difficult to differentiate it from the 

arc basement below. Fortunately, both tomographic models T1B and T2 (discussed later) 

cross the same bathymetric feature to the south after it has widened to fill the majority of 

the basin and provide important velocity information of the structure. Based on the 

velocity structure and observations derived from this analysis, we are confident this 

underlying layer is likely related to the arc, but separate from the arc basement. This 

point will be discussed in further detail in the Discussion section. 
 

3-5-4: OBS Derived Velocity Model Description, Observations, and Interpretation 

The tomographic travel time inversions of T1B, T2, T4A, and T5 have for the 

first time defined the crustal structure across the HB and GR bathymetric feature. The 

resulting velocity models (Figure 3-7a-e) show the OBS locations, a simplified tectonic 

interpretation, and labels for the main tectonic elements. The green dashed lines labeled 

M in Figure 3-7b-e denote the approximate location of the HB and WPB Moho that are 

well constrained in all of the models shown. Because line T4A is coincident with MCS 

line 17, we infer that the 5 km/sec contour is close to the top of crystalline crust. 
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3-5-5: Line T1 Model Description, Observations, and Interpretation 

The southernmost line T1 (Figure 3-7c) crosses the GR near its intersection with 

the NLA and provides important velocity constraints for the regional, bench-like feature 

that dominates the southwest margin of the Huatung Basin. East of the GR (model 

distance 115-155 km), low velocity material (3.0-4.5 km/sec) marks a small trough that is 

also visible in the satellite-derived gravity data (Sandwell et al., 2013) forming a large 

negative anomaly highlighted in the associated gravity profile (Figure 3-7b, c). Most 

notably, the velocity structure beneath the GR indicates a doubling of the crust, to about 

12-15 km thick. West of GR, the thickness of the HB is consistent (5-7 km) with other 

profiles to the north and then shows a rapid thickening to >15 km toward the NLA 

(model distance 40-100 km), however the resolution westward quickly degrades due to 

lack of crossing ray paths.  

The basement west of the GR (denoted by the 5km/sec contour) is covered by ~3-

4 km of low-velocity (2.5-4.0 km/sec) sedimentary material. This thick package 

correlates with the regional bathymetric platform described along line MGL0906_30N 

(Figure 3-1, 3-6c) that extends into the HB from the eastern flank of the NLA. The 

obvious disparity in the velocity structure when compared to the underlying basement is 

further evidence that this feature is likely unrelated to the arc basement. The bench spans 

the entire HB at the location of this transect and becomes narrower to the north, 

eventually pinching out at ~22° N. While the bench of low-velocity material represents a 

structural high in the bathymetry, the feature is associated with a large negative gravity 

anomaly on the eastern flank of the NLA that is continuous along the westernmost HB 

south of ~22.4° N until it intersects the gravity high produced by the GR. (Figure 3-7b, 

c). This observation is significant when considering the potential relationship this feature 
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has to the NLA to the west that will be discussed in further detail in the Discussion 

section. 
 

3-5-6: Line T2 Model Description, Observations, and Interpretation 

Line T2 extends E-W and crosses the HB and GR at ~21.5° N. Here, the NLA 

trends ~NW and GR ~N with the HB filling the area in between (Figure 3-1). This profile 

has quite different basement structure than T1B to the south and also provides additional 

coverage of the bench-like bathymetric feature as well as a crustal scale definition of the 

GR. Analysis of the tomographic model (Figure 3-7d) (model distance 300-390 km) 

confirms the thin (5-7 km) oceanic nature of the HB, east of the NLA, estimated from the 

position of Moho observed in the MCS reflection profiles discussed previously. The crust 

thickens to the west approaching the NLA and the overlying low velocity (2.5-3.0 

km/sec) sedimentary cover thickens from 0-2 km at model distance 380 km at to upwards 

of 5-6 km near the NLA as a result. A key observation is that the thickest low-velocity 

material seems to correspond to the same bathymetric bench identified along T1B to the 

south. The low seismic velocities of this bench are intriguing and are associated with the 

same linear negative gravity anomaly trending NW-SE on the eastern flank of the NLA 

as T1B (Figure 3-7b). While a first-order interpretation of the bathymetry might suggest 

that the bench is an eastward continuation of the NLA basement, the negative gravity 

anomaly correlates with the thickest low-velocity zone observed in the velocity model 

(Figure 3-7c: model distance 320-340 km) suggesting it is unrelated to the higher velocity 

arc basement below. The tectonic significance of such a continuous bathymetric feature is 

intriguing and will be discussed further in the Discussion section. 

The most striking observation along line T2 concerns the velocity structure of the 

GR and immediate surrounding area. Directly east of the ridge (model distance 410-450 
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km) a deep basin of low velocity (2.5-3.0 km/sec) sedimentary material covers the 

deepening oceanic basement of the WPB similar to that observed to the south along line 

T1B (Figure 3-7c). The GR is composed of high velocity material (5-6.5 km/sec) and is 

actually the surface expression of a thicker root on the order of 15-18 km total thickness. 

Unlike line T1, the thickening appears to be asymmetrically distributed beneath the 

bathymetric expression of the ridge suggesting the ocean crust of the WPB may be 

partially underthrust beneath the ocean crust of the HB. Directly west of the ridge (model 

distance 380-400 km), the basement of the HB shoals to very near the seafloor. This 

shallowing of the oceanic basement is consistent with a large positive gravity anomaly 

(Figure 3-7b) that dominates the southern part of the HB. 
  

3-5-7: Line T4A Model Description, Observations, and Interpretation 

Line T4A, located at ~22.8° N, extends E-W from the eastern flank of the NLA 

across the HB and GR into the WPB (Figure 3-7e). Here, the HB reaches its maximum 

width (~135-140 km) and the entire crustal velocity structure is constrained along with 

the GR and WPB ocean crust. The basement-controlled Taitung Canyon is clearly visible 

at model distance 310 km, as a slightly thicker zone (~3.0 km) of low velocities (2.5 

km/sec) relative to the surrounding 1.5-2 km sedimentary cover. The oceanic crustal 

thickness is variable throughout the HB with areas as thin as ~5 km and as thick as ~7-8 

km, but overall consistent with estimates derived from Moho reflections in the MCS 

reflection profiles and previous wide-angle transects. The thin zones in the ocean crust 

seem to correlate with the position of potential N-S trending fracture zones, described 

earlier and identified in previous magnetic studies (Hilde and Lee, 1984; Deschamps et 

al., 2000; Sibuet et al., 2002). 
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The HB oceanic crust shoals from ~3-4 km below the seafloor, to >~2 km as it 

approaches the GR. Similar to line T2, the most striking feature of line T4A is the 

velocity structure of the GR itself. The ridge consists of a thickened high velocity 

material (5-6.5 km/sec) to a total of 12-15 km. Most interestingly, the velocity structure 

beneath the ridge exhibits the same asymmetry observed to the south along line T2 to the 

south, again indicating underthrusting of the WPB beneath the HB and suggesting that 

this tectonic process responsible was likely active along the entire ridge.  

East of the GR, the T4A velocity model extends 80 km into the WPB. Here, the 

velocity structure indicates an average oceanic crustal thickness of 5-7 km. Between 355 

km and 390 km, we observe a clear deepening of the WPB oceanic basement as it 

approaches GR from the east. This sudden deepening forms a trough filled with low 

velocity (2.0-4.0 km/sec) material confirmed by the coincident reflection profile, line 17 

(Figure 3-4), and consistent with the linear negative gravity anomaly parallel to the 

eastern flank of GR and in the associated gravity profile (Figure 3-7b and 3-7e). 
 

3-5-8 Line T5 Model Description, Observations, and Interpretation 

Line T5, the northernmost wide-angle transect shown in this study, extends SE 

across the Ryukyu accretionary prism, crosses GR at 123°E, and terminates in the 

Ryukyu trench to the east (Van Avendonk et al., Deep crustal structure of an arc-

continent collision: Constraints from seismic travel times in central Taiwan and the 

Philippine Sea, submitted to Journal of Geophysical Research Solid Earth, 2014) (Figure 

3-1, 3-7f). Here, the PSP subducts beneath the Ryukyu accretionary prism and the top of 

the basement now resides at ~ 10 km depth. As a result, the GR also actively underthrusts 

the Ryukyu prism, deforming the prism as it does so, and leaving a clear reentrant scar in 

the bathymetry (Schnürle et al., 1998). 
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Since the PSP has underthrust the toe of the Ryukyu prism along transect T5, the 

deeper crustal velocity structure here is not very well constrained (Van Avendonk et al., 

Deep crustal structure of an arc-continent collision: Constraints from seismic travel times 

in central Taiwan and the Philippine Sea, submitted to Journal of Geophysical Research 

Solid Earth, 2014). Nonetheless, some important observations concerning the evolution 

of GR and the surrounding area can still be made. Throughout the profile (Figure 3-7f), a 

thick package (6-8 km) of low velocity (2.5-4.0 km/sec) sedimentary material, the 

Ryukyu accretionary prism, overlies the PSP basement (5 km/sec contour). To the west 

of GR (model distance 200-260 km) the velocity structure confirms the presence of 

normal ocean crust (5-7 km) in the HB in agreement with observations from wide-angle 

and MCS data discussed previously. The top of the basement here deepens slightly from 

~9 km to 12-13 km as it approaches GR. To the east of GR (model distance 315-370 km) 

the velocity structure also suggests relatively thin crust (~5 km) in the WPB, also in 

agreement with previously discussed geophysical data. The ocean crust here also deepens 

slightly as it approaches GR. 

Because GR is buried here and adjacent crust is partially thrust beneath the 

Ryukyu prism, it is not clear whether the same asymmetric velocity structure observed on 

lines T4A and T2 farther south also exists here. However, the velocity structure does 

indicate evidence for at least doubling of the crust to about 15-18 km similar to the 

velocity structure of the ridge farther south. 
 

3-6: DISCUSSION 

Based on the data presented herein, we interpret GR to have formed as a result of 

a failed subduction initiation event. It is likely that this event preceded the ongoing arc-

continent collision in Taiwan. Here, we will discuss the observations from our 
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geophysical data and other geophysical studies and the implications toward the likely age 

distribution of the HB. We then discuss possible mechanisms responsible for the 

formation of GR and propose a hypothetical scenario for its development. 
 

3-6-1: Huatung Basin Structure 

The HB is an important tectonic feature offshore southern Taiwan in spite of its 

relatively small area. The relationship of the HB to the adjacent SCS, WPB, and plate 

reconstruction of the greater western Pacific remains speculative, because its age and 

crustal affinity have not yet been adequately determined. As noted in the Geological 

Background section, early studies, primarily based on magnetic anomaly data (Hilde and 

Lee, 1984; Deschamps et al., 1998), suggest that the oceanic crust within the basin is 

Eocene in age, and genetically related to oceanic crust of the WPB on the opposite side of 

the Gagua Ridge. However, dredged gabbros (Figure 3-1: RD 19 and RD 20) from the 

southern HB appear to indicate that the crust of the HB was generated in the early 

Cretaceous and trapped by the northward migration of the PSP (Deschamps et al., 2000). 

The correlation of the limited magnetic anomalies with a magnetic model yield solutions 

that are inherently non-unique. Conversely, gabbro samples dated from dredging must 

also be scrutinized due to the possibility that those samples may represent rafted material 

from an older oceanic domain to the south displaced by previous strike-slip motion of 

GR. Evidence for Upper Cretaceous to Eocene volcanic rocks in Luzon and the eastern 

Philippines is well known (Karig, 1983).  

The series of tomographic velocity models presented in this paper provide 

comprehensive coverage of the crustal structure here (Figure 3-7). The seismic velocities 

strongly indicate that the majority of the basin consists of oceanic crust on the order of 5-

7 km thick, consistent with McIntosh et al. (2005) and an important revision of the ~10-
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12 km estimates postulated by previous studies (Yang and Wang, 1998; Deschamps et al., 

2000). Additionally, our tomographic models are substantiated further by MCS reflection 

profiles 17, 14, and 30N, (Figures 3-4 – 3-6) that show intermittent Moho reflections at 

1.5-2.0 sec TWTT below the top of basement. Furthermore, gravity modeling from an E-

W transect across the basin from Li et al. (2007) requires ocean crust of average thickness 

(~5-6 km) to satisfy the observed gravity anomaly. 
 

3-6-2: Deepening of the Huatung Basin Crust Towards the NLA 

MCS lines 17, 14, and 30N (Figures 3-4 – 3-6) as well as tomographic models T2 

and T4A (Figure 3-7d and 3-7e) show a deepening of the top of the HB oceanic basement 

westward toward the NLA. Given the proximity to subduction and collisional zones 

acting on western and northern boundaries of the basin it is difficult to determine if they 

are associated with this observed deepening. One possibility may be that the western 

margin of the basin is loaded by deep crustal bodies emplaced during volcano building 

along the NLA similar to the process described by Watts et al. (1985). Another possibility 

(Bahlburg and Furlong, 1996; Smith et al., 2002; Waltham et al., 2008) is that the arc 

volcanism itself produces significant near-surface loads leading to the flexure of the 

western part of the basin. Alternatively, the deepening of the ocean crust could also 

simply be the result of the uplift of the GR in the eastern part of the basin, such that the 

uplift creates the illusion of a deepening of the basement to the west. In light of the data 

presented here, we propose that the observed deepening of the HB to the west is likely 

the result of a combination of flexural loading by the NLA complemented by the strike-

slip/compressional deformation in the eastern part of the basin leading to uplift of the 

GR. 
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3-6-3: Huatung Basin Shallow Basement Structure and Deformation 

We observe a shift in the style of basement deformation in the HB MCS reflection 

data, from a series of highly deformed ridges and troughs in the east near GR (Figure 3-

4a-c and 3-5a-c), to smooth, relatively undeformed basement and potential relict 

extensional features similar to graben in the west-central part of the basin (Figures 3-4a-

b, 3-5a-b, and 3-6). The shift is coincidental with the emergence of the oceanic basement 

at seafloor near GR and may be evidence of the poly-phase tectonic history of HB. The 

less deformed, western-central portion of the basin may represent the original seafloor 

architecture. The significance of the N-S trending troughs (Figure 3-4c and 3-5c) 

bounding the smooth ocean crust is ambiguous, however one possibility may be that 

these structures are related to fracture zones or transforms that accommodated N-S 

seafloor spreading that produced the ocean crust here. The preserved portions of smooth 

oceanic basement are on the order of ~50-60 km wide and are similar to the width of 

crustal segments between fracture zones associated with slow spreading ridges (Schouten 

et al., 1985). This idea has circumstantial support because spreading rates used by many 

investigators in magnetic reconstructions of the HB, are in the low (10-20 mm/yr: Sibuet 

et al., 2002) to medium (25-30 mm/yr: Deschamps et al., 2000) range for ocean crust 

production. The more deformed ridges and troughs in the eastern part of the basin may 

represent a later stage compressional episode related to the underthrusting of the WPB 

oceanic crust and subsequent uplift of the GR. The linearity of the ridges and troughs 

associated with the deformation may also indicate that these features may have started as 

fracture zones or transforms that were reactivated and/or deformed during the later stage 

transpression associated with the GR. 
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3-6-4: Bench in the Huatung Basin 

South of ~22.5° N, HB decreases from its maximum width of ~150 km to less 

than 75 km near 21° N. This change in width is accompanied by the appearance of a 

peculiar bathymetric high that increases in width away from the NLA to the south until it 

comprises the entirety of the basin (Figure 3-1). Many authors have investigated the 

abrupt emergence of this feature, associating its emergence with the NLA and changes in 

subduction processes along the Manila trench father west. Yang et al. (1996) propose that 

the subduction of an aseismic ridge segment of the SCS coupled with a clockwise 

rotation of the overriding PSP created a wide zone of volcanism of the NLA south of 

21°N. Others propose a flattening of the SCS slab resulting from the introduction of 

buoyant material, i.e. continental crust, into the Manila trench north of 20°N, also 

resulting in a wide zone of volcanism at the surface (Bautista et al., 2001). While it is 

difficult speculate on the tectonic process responsible for the emplacement of this 

structure, the data presented here provide important constraints on its seismic character 

and velocity structure. Line 30N images the initial emergence of this structure near 22°N 

and shows that it can be divided in a lower, poorly reflective zone, and an upper highly 

reflective sedimentary unit that provides the distinctive seafloor morphology (Figure 3-

6c). Although the lower unit is internally, poorly reflective, a strong reflector can be 

traced along its base that we believe represents the arc basement contact. This lower unit 

provides a platform that has allowed for the accumulation of the upper sedimentary unit. 

Tomographic modeling from lines T1B and T2 cross the structure to the south where it 

has grown laterally to fill the HB. Interestingly, both models (Figure 3-7c: 50-90 km; 

Figure 3-7d: 300-340 km) show that the comparable structure is composed of relatively 

lower seismic velocity material (3-4 km/sec) than would be expected for arc basement. 

Based on these data, it is clear that the bench does not represent the edge of the arc-
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basement as the bathymetry might lead one to believe. Instead, this structure may 

represent a large clastic wedge of pyroclastic and epiclastic debris erupted and deposited 

on the flank of the NLA similar to the submarine debris and transport processes outlined 

by Fisher (1984). 
 

3-6-5: Age of the Huatung Basin 

The data presented in this manuscript do not provide direct insight into the 

potential age of the HB apart from some lower bounds. The age of the HB oceanic crust 

must be greater than the onset of arc-continent collision to the northwest (4-6 Ma). 

Secondly, the NLA is built on the western boundary of the HB and therefore should be 

younger than the basin itself. Radiometric dating of volcanic rocks of the accreted NLA 

in the northern Coastal Range show a maximum age of ~16 Ma (Yang et al., 1995) and 

thus a more reasonable lower bound for the HB age. 

Several other investigations have proposed upper age limits for HB based on 

magnetic anomaly data and correlation in basement depths that generally cluster within 

the mid-late Eocene: ~40 Ma (Hilde and Lee, 1984); 51 Ma (Sibuet et al., 2002) with the 

exception of Early Cretaceous ages derived from the dredged gabbro samples 

(Deschamps et al., 2000 (130 Ma)). It is difficult to consider paleomagnetic a robust 

constraint due to the non-uniqueness of solutions for such a small basin. Similarly, while 

the Ar/Ar dating techniques from Deschamps et al. (2000) are likely sound, the samples 

were taken from basement highs far to the south near the GR and extrapolated for the 

entirety of the basin. Considering that it is likely that the GR originally formed as a 

transform fault, it is possible the samples represent exotic Early Cretaceous material from 

farther south emplaced by strike-slip faulting. In situ data from elsewhere in the basin is 

needed to add credibility to this claim.  
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Recently, Kuo et al. (2009) analyzed interstation phase velocities between OBS 

stations off the eastern coast of Taiwan and found that in the short period range, the phase 

velocities were comparable to those characterizing the 15-30 Ma Parece-Vela Basin. 

These authors also noted that the HB is 500-1000 m shallower than the Eocene age WPB, 

despite claims that the HB is much older. Deschamps et al. (2000) attribute this depth 

mismatch to thermal rejuvenation via heat produced from Manila subduction zone and 

NLA. However, Kuo et al. (2009) calculated the heat flux necessary to buoyantly raise a 

portion of Cretaceous crust in an area equivalent to HB to its present observed depth. 

They conclude that to raise the seafloor by the hypothesized 1.3 km, a plume restricted 

spatially to the HB and comparable to the Hawaiian plume, the strongest in the world in 

terms of buoyancy flux (Sleep, 1990) would be required. With no evidence of a deep 

mantle plume in this region, it is difficult to support thermal rejuvenation as a mechanism 

to explain such a shallow depth for early Cretaceous crust in the HB. Instead, the 

geometry of the interacting WPB and HB oceanic crust in our velocity models combined 

with recent geophysical studies tend to support a younger (~20-50 Ma) origin for the HB. 

The absolute age distribution of the HB will remain unknown until significant 

efforts are made to sample the in situ ocean crust. In the following section, we will 

discuss the significance of the shallow and crustal velocity structure of the GR and 

comment on the potential understanding these observations may impart to the evolution 

of the ridge itself. 
 

3-6-6: Gagua Ridge Structure and Development 

Our velocity models (Figure 3-7), for the first time, provide important 

fundamental details about the velocity structure of the GR that also shed light on the 

interaction of the WPB and HB oceanic lithospheres. The models show that GR is 
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comprised of ~12-18 km of high velocity (5.0-6.5 km/sec) material, similar to the 

velocity of the surrounding ocean crust. Most importantly, the two velocity models that 

cross the central part of the ridge (T2: Figure 3-7d and T4A: Figure 3-7e) show a 

significant asymmetry in the crustal thickening indicating that the ocean crust of the 

WPB has been partially underthrust to the west beneath the ocean crust of the HB. In this 

scenario, GR represents the surface deformation associated with incipient subduction that 

failed to progress towards a full-fledged subduction system. The velocity models also 

show the shoaling of the HB ocean crust to the west of GR that is likely the result of 

deformation resulting from the underthrusting of the WPB ocean crust. The MCS 

reflection profiles presented here show that dipping reflectors from the top of the WPB 

basement clearly extend beneath the ridge on lines 17 and 14 (Figure 3-4c and 3-5c). The 

flexure of the WPB oceanic crust forms a deep sedimentary trough that is continuous 

along the length of GR in free-air gravity data (Figure 3-4c, 3-5c, and 3-7b) and is also 

visible in the velocity models as a depression of low velocity material (2.5-4.0 km/sec) to 

the east of GR (Figure 3-7). Previous studies (Deschamps et al., 1998; Li et al., 2007) 

observe an asymmetric gravity profile associated with the GR and corresponding 

sedimentary trench that are very similar to type examples of gravity profiles acquired 

across active subduction systems. We observe a similar asymmetry in the gravity profiles 

coincident to transects T1B, T2, and T4A (Figure 3-7c, 3-7d and 3-7e).  

The geodynamic environment where subduction initiation occurs, as well as, the 

age and presence of structural heterogeneities within the lithosphere are important in the 

subsequent evolution of a subduction system. Specifically, they control the success or 

failure of the system to nucleate into a self-sustaining subduction zone. Discussing the 

GR in these terms is difficult considering the lack of critical information about the 

tectonic components involved in its formation, i.e. the are of HB,  the WPB, and absolute 



 93 

PSP motion in the Cenozoic. Mesozoic and Cenozoic plate reconstructions indicate that 

changes in relative plate motion across preexisting transform faults and fracture zones 

can result in the formation of new convergent boundaries via induced subduction 

initiation (Uyeda and Ben-Avraham, 1972). Stern and Bloomer (1992) suggest that both 

the Eocene Bonin-Mariana and the Jurassic California arcs may have evolved in this 

manner, as well as, the ongoing subduction initiation along the northern segment of the 

Macquarie Ridge Complex south of New Zealand (Collot et al., 1995; Massell et al., 

1999). The transpressional component of these systems may be a requirement for intra-

oceanic underthrusting considering what we know about lithospheric strength. Mueller 

and Phillips (1991) argued that in most cases, the force required to overcome the strength 

of the lithosphere would need to be an order of magnitude larger than known ridge push 

forces, and subduction would be nearly impossible to initiate. More recently, Toth and 

Gurnis (1998) outlined the forces necessary to initiate subduction on a preexisting fault 

cutting the lithosphere. In contrast, these authors conclude that even with ridge push 

forces alone, it is still possible to initiate subduction and initiation along transform 

boundaries. 

There are two previously published hypotheses regarding the initial geometry of 

the boundary that evolved into what is now the GR, and both are tied to the supposed age 

of the HB. In the first, the GR existed as a relict intra-oceanic fracture zone from the 

early stage of seafloor spreading of the WPB (Hilde and Lee, 1984; Deschamps et al., 

1998). In the second, the GR existed as an important plate boundary separating the 

Eocene oceanic crust of the WPB from the exotic Early Cretaceous crust of the HB 

(Deschamps et al., 2000). Plate tectonic reconstructions from Hall (2002) require a large 

portion of the motion between the PSP and EUP to be accommodated by large, N-S 

strike-slip faults in the Cenozoic. Although both scenarios are adequate environments for 
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a subduction initiation event to occur, it is difficult to reconcile the geometry of the 

underthrusting observed in our velocity models with the proposed Cretaceous age of the 

HB oceanic crust. Hypothetically, if two oceanic plates of largely differing age (>30 Ma 

difference) were juxtaposed via a heterogeneity in the crust (strike-slip fault or fracture 

zone) and compressional stress is imposed on the system, one would expect the older 

dense lithosphere to sink into the mantle as the younger, more buoyant lithosphere 

overrides it. While this scenario is an obvious over simplification, recent numerical 

modeling by Gurnis et al. (2004) analyzed subduction initiation at a fracture zone 

separating oceanic lithosphere of 10 Myr and 40 Myr. They found that during the initial 

phases of convergence (the time span we are interested in), deformation concentrates in 

the younger plate near the original fracture zone and large amounts of uplift are recorded 

as the older, denser oceanic lithosphere underthrusts. As the region becomes weaker, 

deformation localizes in the younger plate near the original fracture zone. Our velocity 

models (Figure 3-7d and 3-7e) indicate the Eocene oceanic crust of the WPB has been 

partially underthrust beneath the oceanic crust of the HB. The corresponding MCS 

reflection profiles (Figure 3-4 and 3-5) show large amounts of deformation in the 

basement to the west of the GR, although it is unclear whether it is associated with 

compression related to failed subduction or earlier transform/fracture zone activity. If the 

HB were early Cretaceous, this observation is contradictory to our knowledge of plate 

density and subductability. It is unlikely the much older (>60 Ma) plate would overthrust 

and deform so readily. Based on the geometry of the underthrusting in our velocity 

models, the deformation observed in the accompanying MCS reflection images, and 

recent geophysical work discussed above, it seems more likely that the age of the HB is 

young (20-40 Ma; Kuo et al., 2009). If this assessment of the HB age is correct, then it is 
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possible to propose a hypothetical yet reasonable timeframe for the transpressional event 

and subsequent underthrusting that formed the GR. 
 

3-6-7: Gagua Ridge: An Example of Failed Subduction Initiation in the Miocene?  

Based on the observations and references discussed above, we interpret that the 

early Eocene (~50 Ma) WPB ocean crust has been underthrust beneath presumably 

younger (~20-40 Ma) oceanic crust of the HB. The HB ocean crust would, in this case, 

represent the second phase rifting of the WPB, as identified by Hilde and Lee (1984), and 

the GR, an intra-oceanic fracture zone similar to that suggested by Deschamps et al. 

(l998). Initial deformation at the fracture zone may have resulted from same the 

clockwise rotation of the WPB identified by Deschamps et al. (1998) between 50-40 Ma. 

However, based on the oldest volcanics associated with the NLA (Yang et al., 1996) and 

evidence for a possibly younger HB age (Kuo et al., 2009), the primary phase of 

deformation and subsequent failed underthrusting responsible for the emplacement of the 

GR may have extended throughout the Oligocene and into the early Miocene. 

Interestingly, this timeframe roughly corresponds with the onset of ~N-S seafloor 

spreading in the SCS in the mid-Oligocene (Taylor and Hayes, 1983; Briais et al., 1993; 

Lee and Lawver, 1995; Nissen et al., 1995). Additionally, Hall (1995; 2002) suggests that 

the PSP has been translating N-NW throughout the Cenozoic relative to the EUP and the 

motion of which was likely accommodated by large N-S strike-slip faults on its western 

boundary. It is this transpressional plate motion that may have been the driving 

component for the subsequent tectonic provinces and relict seafloor topography of the 

GR we observe today. In this scenario, during the Oligocene both the eastern bounding 

transform fracture zone (proto-GR), and the western strike-slip plate boundary (proto-

Manila trench) separating the newly formed SCS ocean crust from the HB ocean crust 
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may have deformed coevally. It is possible that a slight change in the PSP plate vector in 

the earliest Miocene to a more oblique angle introduced a transpressive component into 

the system instigating a competition between the two strike-slip boundaries to initiate 

subduction. For unknown reasons, the transient subduction episode that uplifted the GR 

was short lived. The newly formed SCS ocean crust coupled with the proximity of the 

SCS spreading center to a transpressional plate boundary likely provided a weaker, more 

easily deformed mechanical boundary to exploit such as the inner corner of the ridge 

transform intersection as suggested by (Casey and Dewey, 1984). When subduction 

initiated along the Manila trench, the strain and deformation occuring along the GR was 

abandoned and transferred to the new active boundary.  

Regardless of the timing validity of our scenario, it is apparent that the GR is the 

result of a transient underthrusting episode that was abandoned. GR is unique in this way 

and potentially represents an important, relict part of the subduction initiation process 

rarely preserved in the geologic record. A potential analogue to the process that formed 

the GR is ongoing in the Macquarie Ridge complex south of New Zealand along the 

Pacific-Australian plate boundary. This boundary is dominated by linear 1500 km long, 

4-5 km bathymetric peaks, including the Puysegur Ridge, roughly the same dimensions 

as GR. Collot et al. (1995) interpreted the Puysegur Ridge as a strike-slip plate boundary 

that has recently undergone oblique convergence, due to the migration of the Pacific-

Australian pole of rotation. The transpressional fault is evolving into an embryonic 

subduction zone further north. Despite the similarities to the GR, the process of 

subduction initiation is in inherently unique, with a variety of tectonic environments and 

variables specific to each example that cannot be explained by a single hypothesis. For 

these reasons it is important to locate and document not only existing examples of 

subduction initiation, but also relict evidence of where this process may have failed in 
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order to better understand the full range of variables important for the evolution of 

subduction zones. 
 

3.7 CONCLUSIONS 

Our set of wide-angle transects (Figure 3-7) indicate that there is 12-18 km of 

crustal thickening associated with the GR. The central transects T2 and T4A clearly 

indicate an asymmetry associated with the crustal thickening that likely represents the 

failed underthrusting of the WPB oceanic crust beneath that of the HB. The observed 

underthrusting likely initiated along an intra-oceanic fracture zone of the WPB that 

underwent a period of strike-slip deformation throughout the Eocene-Oligocene followed 

by a short lived compression in the early Miocene. The underthrusting was subsequently 

abandoned potentially in favor of the Manila subduction system further west later in the 

Miocene. 

Our MCS reflection data along with wide-angle velocity models indicate that the 

oceanic crust of the HB is thin to normal ocean crustal thickness, on the order of 5-7 km. 

The crust is relatively undeformed in the west-central part of the basin and highly 

deformed into a series of ridges and troughs near the GR. The deformation observed 

within the HB basement is likely older than the onset of arc volcanism associated with 

the NLA (>16 Ma). Furthermore, the geometry of the underthrusting of the WPB and HB 

oceanic crust agrees with a young age for the basin (~20-40 Ma) and is consistent with 

recent geophysical studies (Kuo et al., 2007; Li et al., 2009). The Cretaceous ages 

determined by Deschamps et al., (2000) likely represent rafted material from another 

oceanic domain farther south, emplaced by strike-slip faulting during the evolution of the 

GR and its probable predecessor transform boundary.  
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MCS reflection data show the bathymetric bench in the HB to be a separate unit 

from the NLA basement consisting of a shallow layered sedimentary unit underlain by 

material seismically similar to the basement. A strong reflector at the base of the unit 

separates it from the arc-basement below. Additionally, the low velocity (3.0-4.0 km/sec) 

nature of the bench derived from wide-angle velocity models relative to the high velocity 

(5.0+ km/sec) basement below support this interpretation. Instead, it is likely the bench 

represents a large accumulation of volcaniclastic and epiclastic debris related to the 

volcanic activity along the NLA. It is still unclear how or why such an accumulation of 

volcaniclastic debris was deposited. Further geophysical study and sampling are 

necessary to provide clues to its origin and depositional history. 

The absolute age distribution of the Huatung Basin and timing of the formation of 

the Gagua Ridge remain unknown. Drilling and accurate dating of sites within the basin 

as well as along the ridge axis are required to accurately determine the absolute age and 

style of deformation. Furthermore, detailed seismicity, magnetic, and gravity studies are 

necessary to confirm the location of intra-basin fracture zones, faults, and the extent of 

the NLA at all structural levels. Finally, 3D geodynamic modeling is also necessary to 

accurately represent the evolution of this complex tectonic environment. 
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Figure 3-1. Shaded relief map (lower right), and regional bathymetric and elevation map 
showing the major tectonic elements offshore south and east of Taiwan. 
MCS reflection data from this study (red lines) were acquired along 
MGL0906_17, MGL0906_14, and MGL0906_30N. Wide-angle OBS data 
(red-yellow circles) were acquired along transects T1B, T2, T4A and T5. 
Black dashed lines denote position of other MCS and wide-angle transects 
from McIntosh et al., (2005) referred to in this study. Yellow stars (RD 19 
and RD20) denote locations of dredge samples from Deschamps et al., 
(2000). Green circle (DSDP 293) denotes the position of Deep Sea Drilling 
Site 293 (Hilde and Lee, 1984). Orange transparent zone outlines the 
bathymetric structure in the Huatung Basin described in this manuscript.  
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Figure 3-2. Example OBS records from the western (OBS 20) and central (OBS 23) parts 
of transect T1B. OBS locations are marked in Figure 3-3-1a. Left and right 
panels show data with minimal processing (bandpass filter, spectral 
balancing) which was sufficient to resolve first arrival refractions to offsets 
greater than 50 km. Left panels a. and c., show uninterpreted records, while 
the right panels b. and d. show picked first arrivals (solid blue line), Pick 
uncertainties (green window), and calculated first arrivals (dashed red line). 
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Figure 3-3. a) Derivative weight sum (DWS) of transect T1B shows the ray coverage 
throughout the model space. Ray coverage is very good in the shallow crust 
between OBS locations but shows significant variation at depth and to the 
west due to variable data quality and non crossing raypaths. b-c) Resolution 
matrix for first-arrival tomography model T1B. Regionals with resolution 
values of >0.5 are considered well resolved. This test shows that features in 
the crust are well resolved. Outside OBS locations, resolution suffers, 
although large wavelength features are still resolved. 
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Figure 3-4. 
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Figure 3-4. a) Pre-stack time migrated data from MGL0906_17 coincident with T4A 
(North Luzon Arc: a; Huatung Basin: b; Gagua Ridge: c). b) The oceanic 
crust of the Huatung Basin, intermittent Moho reflections and post-
collisional sedimentary overburden. c) The deformation associated with the 
Gagua Ridge bathymetric feature, top of the underthrust West Philippine 
Basin ocean crust, marginal basins on either side of the structure, and 
position of the structurally controlled Taitung Canyon. OBS positions from 
coincident wide-angle transect T2 are marked by black triangles and labeled 
05-17; M = water bottom multiple reflection. 
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Figure 3-5. 
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Figure 3-5. a) Pre-stack time migrated data from MGL0906_14 (North Luzon Arc a; 
Huatung Basin b-c; Gagua Ridge b-c). b) The oceanic crust of the Huatung 
Basin, intermittent Moho reflections, and post-collisional sedimentary 
overburden. c) Basement deformation associated with the Gagua Ridge 
bathymetric feature, marginal troughs on either side of the ridge, top of the 
underthrust West Philippine Basin ocean crust and potential associated 
Moho reflection. M = water bottom multiple reflection. 
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Figure 3-6. 



 107 

Figure 3-6. a) Pre-stack time migrated data from MGL0906_30N from the eastern flank 
of the North Luzon Arc into the Huatung Basin. Panel b shows the structure 
of the Huatung Basin ocean crust including intermittent Moho reflections, 
and the overlying post-collisional sedimentary cover. c) Zoom of the bench-
like bathymetric structure located near the slope break of the North Luzon 
Arc. The structure is composed of an upper sedimentary layer and a basal 
layer that is seismically similar but separate from the arc basement that may 
represent volcaniclastic and epiclastic debris. An in-filled channel and 
associated levy deposits are highlighted in the upper sedimentary section. 
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Figure 3-7. 
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Figure 3-7. a-b) Regional bathymetry and elevation map and equivalent area satellite 
derived marine gravity map showing the locations of wide angle transects 
T1B, T2 (Eakin et al., 2013) T4A (McIntosh et al., 2013), T5 (Van 
Avendonk et al., 2014, Deep crustal structure of an arc-continent collision: 
Constraints from seismic travel times in central Taiwan and the Philippine 
Sea, submitted to Journal of Geophysical Research Solid Earth) and 
associated gravity profiles. c-f) First-arrival tomographic models of transects 
of c) T1B, d) T2, e) T4A, and f) T5, across the Huatung Basin and Gagua 
Ridge. All transects are annotated identically and show the velocity model, 
instrument locations, and the white dashed line marks the limit of good 
model resolution. Major bathymetric features including the Huautng Basin, 
Gagua Ridge, West Philippine Basin, and N. Luzon Arc are labeled. The 
green dashed line and M in the models marks the approximate location of 
the base of the crust, using additional constrains from seismic reflection 
profiles. The panel above each model shows an equivalent gravity profile 
extracted from the same dataset used to create the satellite derived marine 
gravity map (Sandwell et al., 2013). Red arrow marks the location negative-
positive anomaly associated with the Gagua Ridge referred to in the 
manuscript. 
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CHAPTER 4: ALONG STRIKE VARIABILITY OF PRISM 
ARCHITECTURE IN THE INTRA-OCEANIC SUBDUCTION 

DOMAIN OFFSHORE SOUTHERN TAIWAN. 

4-1: INTRODUCTION 

Accretionary prisms occur between a trench and associated volcanic arc in a 

subduction system. In both intra-oceanic and ocean-continent subduction, sediments 

deposited on the ocean floor are offscraped, accreted and stacked in the accretionary 

prism (e.g., Karig and Sharman, 1975). In the instance of arc-continent collision, this 

process can be further complicated by the presence of thick passive continental margin 

sedimentary sequences (Karig et al., 1987; Teng, 1990) and variable lower plate 

topography resulting from a change in the composition of the subducting crust from 

oceanic, to highly faulted extended continental crust. Yet there are few examples of 

active margins where a transition occurs between subduction of ocean crust and 

subduction of extended continental crust along the strike (subduction-to-incipient 

collision) in the present day to inform evolutionary models of an accretionary prism-to-

collisional mountain belt.  

This problem is particularly pertinent in Taiwan, where there has been much 

debate over the time-transgressive evolution of the Manila accretionary prism from an 

intra-oceanic prism to a collisional mountain belt. Huang et al., (2006) noted the Central 

Range is morphologically contiguous with the Hengchun peninsula and offshore 

Hengchun Ridge that extends hundreds of kilometers to the south. Recent onshore-

offshore tomographic modeling shows the Hengchun Peninsula and southern Central 

Range (McIntosh et al., 2013) to be comprised of >20 km of high velocity (>5 km/sec) 

material indicative of basement underplating of extended to hyper-extended continental 

crust. This underplating is thought to be facilitated by rift-related faulting and 
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detachments developed during the Paleogene rifting of the Chinese continental margin. 

Additional wide-angle tomographic models from Lester et al., (2013) and Eakin et al., 

(2013) documented the early stages of this underplating process in the submarine 

Hengchun ridge, some 50 km offshore southern Taiwan. Together, these models argue 

that Taiwan is the result of a multi-stage collision in which, thinned continental crust, 

between 12-15 km thick, is subducted and structurally underplated to the prism prior to 

the encroachment of the continental shelf (Lester et al., 2013). Eakin et al., (2013) also 

present an additional wide-angle tomographic profile T1 near 20.6° N that constrains the 

velocity structure of the Manila accretionary prism and forearc backstop. This result is 

consistent with previous work from gravity modeling from Chi et al., (2003) that shows 

the majority of the prism is low velocity (2.5-4.0 km/sec) indicating primarily 

sedimentary composition and suggesting that until recently, ocean crust was subducting 

at this location. Perhaps the most intriguing result from this study is the thickness of the 

prism, reaching a maximum thickness of ~15 km near what appears to be a near vertical 

forearc backstop.  

Although the fundamental mechanisms of sedimentary underplating and accretion 

are well documented (Karig and Sharmin, 1975; Silver et al., 1985; Meneghini et al., 

2009), how these mechanisms operate to construct the unusually large pre-collisional 

Manila accretionary prism has not been documented. For instance, how does a larger 

sediment supply affect accretion processes within the prism? What is the proportion of 

frontal accretion vs. underplating? How does this proportion vary from S-N? We 

investigate these questions with multi-channel seismic (MCS) reflection data that reveal 

the sedimentary structures and deformation of the intra-oceanic Manila accretionary 

prism prior to the subduction of the rifted Chinese continental margin crust. These data 

reveal a thick sedimentary section (~ 2.0 km – 3.0 km assuming a seismic velocity 
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between 2.0-3.0 km/sec) on the subducting Eurasia plate (EUP) and a well-developed 

trench wedge. The data show both an increase in the width of the prism as well as a 

significant change in the seaward slope taper from south to north. These data also show a 

clear pattern of frontal accretion of the majority of the incoming sedimentary sequence, 

while a significant volume is bypassed and underthrust beneath the prism. Lines 15 and 

17 also highlight a large volume of discontinuous, west and east dipping reflectivity 

deeper within the prism may indicate that the majority of the uplift of the prism is 

accomplished by underplating of previously underthrust sedimentary material. Continued 

increase in the dimensions of the prism along the northern lines 23 and 22 support a 

model of accretionary prism development where thickening near the toe is accomplished 

by the frontal accretion and continued deformation of trench wedge sediments and the 

majority of the uplift is accomplished by underplating of underthust sedimentary 

material. 
 

4-2: GEOLOGIC BACKGROUND 

The arc-continent collision in Taiwan is the final stage in the life of the South 

China Sea (SCS) marginal basin that began with the rifting of South China in the late 

Cretaceous forming the southern Chinese continental margin and conjugate margin 

farther south (Ru and Pigott, 1986). Continental rifting eventually led to break-up and 

sea-floor spreading in the SCS in the Oligocene – mid-Miocene constrained by magnetic 

anomaly correlation and seismic reflection studies (Taylor and Hayes, 1983; Briais et al., 

1993; Nissen et al., 1995; Barckhausen et al., 2014). Oceanic crust of the SCS likely 

began subducting east beneath the PSP starting in the earliest Miocene (Yang et al., 1995; 

Hall, 2002). The consumption of the SCS oceanic crust formed the Manila accretionary 

prism and NLA that acts as a backstop to the deforming prism (Figure 1).  
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Due to the obliquity of the convergence between the NLA and passive Chinese 

margin, the Taiwan arc-continent collision initiated in central-northern Taiwan ~4-7 Ma 

(Huang et al., 2006) and actively propagates southward at a rate of 60-90 km/Myr (Byrne 

and Liu, 2002; Lee et al., 2006; Suppe, 1984). Previous investigators have exploited this 

time-transgressive geometry interpreting different spatial transects across Taiwan as 

representations of different temporal stages of collision evolution. In northern Taiwan, 

post-collisional processes have waned while active collision is believed to be occurring in 

the south central portion of the island, and incipient collisional process operate 

immediately offshore to the south (Huang et al., 2000). Further south, offshore northern 

Luzon likely represents the pre-collisional, intra-oceanic subduction conditions of the 

SCS and Manila trench subduction system (Byrne and Liu, 2002).  

Numerous geophysical studies have focused on the Manila trench and 

accretionary prism south of Taiwan. North of 20° N, the Manila accretionary prism grows 

significantly (Figure 4-1), likely due to incipient collisional processes initiated by the 

introduction of the rifted continental margin crust near ~20.5°N and proximity to 

sediment sources of the Chinese margin and Taiwan mountain belt (Huang et al., 2006). 

In this area, several studies (Davis et al., 1983; Liu et al., 1997) describe the accretionary 

wedge as a doubly-vergent prism, with a lower slope domain consisting of imbricate 

folds and thrusts, and an upper slope domain characterized by a lack of seismic 

reflectivity and an increase in the bathymetric slope from the thrust fault ridges of the 

lower slope. Lin et al., (2009) infer that this bathymetric change may be controlled by the 

presence of one or more out-of-sequence thrusts (OOSTs) while others (Reed et al., 

1992) infer that thickening was accomplished via passive duplex undeplating. Liu et al 

(2004) and Lin et al (2008) used multi-channel seismic reflection (MCS) data and swath 

bathymetry offshore southwest Taiwan to show that the pre-deformational architecture 
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and morphology of the rifted continental margin exerts strong controls on the structural 

style of the lower, frontal part of the accretionary prism. Ku et al., (2009) used MCS 

reflection images to study the deformation of the trench fill sediments and crustal 

structures in the incipient collision realm of the Bashi Strait.  

Shortening of the accretionary prism is also accommodated by deformation in the 

rear of the wedge (Lundberg et al., 1997) and of the forearc basin (Cheng, 2008; 

Malavieille et al., 2002; McIntosh et al., 2005). Chi et al., (2003) used MCS and 

shipboard gravity to study the deeper structure of the Manila accretionary prism. A key 

result of their work was the presence of a free-air gravity high at the rear of the prism at 

20.9° N, requiring a significant component of high-density material. In contrast, a second 

transect to the south near 20.2° N did not express the same free-air gravity high and is 

consistent with an accretionary prism composed entirely of sedimentary material.  

Despite the successes of the various geophysical studies presented above, none of 

these investigations clearly image the key structural components in the interior of the 

prism in the intra-oceanic subduction domain. This is extremely significant, as the 

structures developed here are likely similar to those modified by basement underplating 

of rifted continental crust to the north as shown by McIntosh et al. (2013). Our goal is to 

use selected MCS transects to document the early evolution of the sedimentary 

accretionary prism to improve the understanding of the accretion and underplating 

processes in the Manila trench prior to the subduction of the distal margin crust. The key 

objectives of this analysis are 1) Identify the primary modes of deformation and growth 

in the accretionary prism, and 2) Identify differences in morphology to document 

characteristics of the south to north evolution of the prism. Documenting this first stage 

of accretionary prism development will help complete the picture of the entire 

evolutionary process of arc-continent collision. 
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4-3: DATA AND PROCESSING 

MCS reflection profiles included in this manuscript (lines 15, 17, 22, and 23 from 

here forward) were acquired over the course of two of the three legs of the 2009 marine 

TAIGER experiment. Each transect is approximately trench perpendicular and constrains 

the structures associated with the subducting SCS crust and overriding accretionary prism 

of the Manila subduction system (Figure 4-1). MCS acquisition and source firing was 

performed with the R/V Marcus G. Langseth with a source array that consisted of 36 air-

guns with a total volume of 6600 in3 towed at a depth of 8 m. Nominal source interval 

was 50 m and recorded on a 6 km, 468 channel streamer with a channel spacing of 12.5 

m. Data were recorded for 15 sec at a 2 ms sample rate. 
 

4-3-1: MCS data processing  

MCS data were processed through pre-stack time migration following standard 

techniques including trace editing, sorting into common mid-point (CMP) gathers, 

normal-moveout (NMO) velocity analysis and correction, stack, band-pass filtering and f-

k migration. Additionally, all data were subject to advanced multiple attenuation 

techniques including surface-related multiple (SRME) attenuation and Radon transform 

multiple attenuation designed to improve resolution of important structures within the 

deeper portions of the accretionary prism (see additional description in Lester and 

McIntosh, 2012). Prior to the application of Radon, the data were re-sorted to 12.5 m 

CMP effectively increasing the number of traces from ~60 traces per CMP to ~120 traces 

per CMP in an effort to increase the signal to noise ratio. Following the multiple removal 

applications, muting and offset weighted stacking were applied to reduce residual 

multiple energy and enhance deeper reflectivity following pre-stack time migration.  
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4-4: STRUCTURE OF THE INTRA-OCEANIC MANILA ACCRETIONARY PRISM 

The MCS data provide new, high-resolution constraints on the sedimentary 

structures and deformational processes of the Manila accretionary prism offshore 

northern Luzon. Our results yield new insights into the nature of accretionary processes at 

the toe, lower-slope, and upper slope domains along the strike of the Manila accretionary 

prism.  The MCS reflection profiles will be described from south to north. Lines 17 and 

15 show similar morphology and structure in the south whereas lines 23 and 22 share 

similar characteristics farther north. 
 

4-4-1: MCS Reflection Line 15 

Line 15 extends southeast from the SCS basin and crosses the Manila subduction 

zone near 20°N (Figure 4-1, 4-2a-c). Here the Manila Trench accretionary prism 

maintains an average width of ~50 km. West of the trench, we image ~1.8-2.7 km thick 

sediments (assuming seismic velocities between 2.0-3.0 km/sec) on top of the incoming 

oceanic basement (Figure 2a). Seaward of the frontal thrust (CMP 9370-7651), a well-

developed trench wedge is imaged that is composed of horizontal strata (Figure 4-2b-c). 

On average, the trench wedge is ~22 km wide and ~1.0 sec TWTT thick, or ~1.0-1.5 km 

(assuming a seismic velocity of 2.0-3.0 km/sec). Between CMP 9447-9849, the upper 

~1.5 sec TWTT of the sedimentary section are deformed by east and west dipping thrusts 

that sole into a sub-horizontal reflector interpreted near 7.0 sec TWTT and form a popup 

structure at the seafloor. The sedimentary section below this reflection is thinly bedded 

and less reflective. (Figure 4-2b-c). East of this initial deformation, a high amplitude 

reflection separates the faulted sedimentary section from the lower unit below and 

separates sediments that will be accreted at the toe from those bypassed with the 
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subducting ocean crust. Based on these observations, we infer that this reflector likely 

represents the basal décollement. The lower interval is ~0.75-1.0 km in thickness and 

continues to the east beneath the frontal thrust zone, maintaining its thickness as it does 

so. East of CMP 10653, the reflectivity within this interval increases and the position of 

the reflector becomes difficult to interpret.  

Near CMP 10251, we observe an increase in slope associated with east dipping 

frontal thrusts and west dipping backthrusts bounding a lightly folded package of trench 

wedge sediment (Figure 4-2b-c). The east dipping thrusts extend from the seafloor to a 

depth of ~7.0 sec TWTT, where we infer that they likely sole into the location of the 

décollement interpreted above. It appears that initial thickening of the prism is 

accomplished by the frontal accretion and continued deformation of primarily trench 

wedge sediment while a large thickness (0.75-1.0 km) are bypassed and allowed to 

underthrust with the subducting oceanic basement. 

The taper of the prism slope is consistent between the frontal thrust zone and the 

highest elevations of the prism and therefore does not distinguish a separate upper slope 

domain (Figure 3a). Figure 3b-c shows a segment of the prism east of that shown in 

Figure 2b-c. Within this interval, the prism reaches its maximum thickness (~8-10 km). 

Apart from a small wedge of slightly deformed layered strata near the seafloor at CMP 

11615 and very fine scale shallow bedding near the seafloor, the shallow section of the 

upper slope is largely incoherent suggesting perhaps the original bedding is largely 

dismembered at this state of advanced deformation (Figure 4-3b-c). Shallow in the 

section, we observe an intermittent, high-amplitude low-frequency reflector between 

CMP 12019 and the eastern end of the zoomed profile at 3.0-3.5sec TWTT that mimics 

the seafloor topography (Figure 4-3b-d) and most likely represents evidence for fluid 

accumulation or bottom simulating reflector (BSR). Water-bottom multiple reflection 
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attenuation techniques were very successful in this part of the prism and reveal a large 

zone of semi-coherent reflectivity below ~5.0 sec TWTT (Figure 4-3b). Within this zone 

we observe both west and east dipping reflections, segments where the reflectivity 

appears horizontal, and both anitformal and synformal reflectivity. These intermittent 

reflectors appear at different depths and may indicate multiple levels of deformation 

(Figure 4-3c). Near the seafloor, intermittent, east-dipping reflectivity may be an 

indication of widely spaced thrusts. The majority these faults appear to sole out ~2.0-2.5 

sec TWTT below the seafloor, near the top of the zone of deep reflectivity. East of CMP 

11615 the faults potentially extend deeper than 5.0 sec TWTT. These observations 

suggest that much of the volume increase is accomplished by thickening of the 

underthrust sedimentary interval, however due to the complex nature of the reflectivity a 

unique interpretation is difficult, therefore we offer several alternate explanations in the 

discussion.  

The rear of the prism represents the highest seafloor topography and is 

characterized by east dipping reflective fabric on the arcward slope (Figure 4-4a-c). A 

high-amplitude low frequency reflector, ~0.5 sec TWTT from the seafloor, can be traced 

from the west end of the profile, down the prism slope to near the forearc basin. The 

shallow strata above this horizon are very finely bedded and locally deformed and folded 

and likely represent recent sedimentation above the older deformed prism strata.  The 

high amplitude-low frequency horizon is offset near CMP 13029 and most notably near 

CMP 13331 where we interpret a large thrust faults that extend from the seafloor to near 

the forearc basement before the residual seafloor multiple obscures further interpretation. 

Additional evidence for uplift in this area is shown by the eastward tilting of the forearc 

basin strata near CMP 14241 (Figure 4-4b-c).  
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4-4-2: MCS Reflection Line 17 

Line 17 extends E-W near 20°N from the SCS basin and crosses the Manila 

subduction zone and line 15 at an oblique angle (Figure 4-1, 4-5a). As a result, the 

morphology observed along this transect is very similar. West of the trench, we image 

~2.0-3.0 km of horizontal sediments (assuming seismic velocities between 2.0-3.0 

km/sec) on top of the incoming oceanic basement (Figure 4-5a). Seaward of the frontal 

thrust (CMP 7035), the data show a well-developed trench wedge that is composed of flat 

lying strata (Figure 4-5b-c), ~28 km wide (oblique transect) and a maximum of ~1.0 sec 

TWTT thick, or ~1.0-1.5 km assuming a seismic velocity of 2.0-3.0 km/sec. The trench 

wedge strata are lightly deformed with minor extensional faulting (Figure 4-5b-c). 

Between CMP 6433-7035 we observe both east and west dipping thrust faults that sole 

into a sub-horizontal reflector near 7.0 sec TWTT similar to that observed along line 15 

and likely representing the basal décollement. These faults bound an uplifted and slightly 

deformed package of strata into the popup structure. East of CMP 6231 this pattern is 

repeated upslope where we clearly observe east dipping thrusts and oppositely dipping 

backthrusts bounding packages of uplifted trench sediment. The east dipping thrusts sole 

into the same sub-horizontal décollement observed near the toe in the lower sedimentary 

unit above the basement. The lower sedimentary section is ~0.75-1.0 km in thickness, 

and less reflective than the overlying trench wedge strata. The underthrust interval 

maintains its thickness beneath the frontal thrust zone (CMP 5025-6231) with little 

evidence of deformation from the east dipping thrusts (Figure 4-5b-c). 

Similar to line 15, the taper of the prism slope is constant between the frontal 

thrust zone and the highest elevations of the prism (Figure 4-6a), with only limited 

convex curvature. Figure 4-6c-d shows a segment of the prism to the east of that shown 

in Figure 4-5b-c. The shallow section (CMP 4623-3417; 1.5-2.0 sec TWTT) consists of 
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fault bound packages of layered sedimentary strata that appear to have been accreted in a 

similar manner to those observed in the frontal thrust zone and coherently uplifted to their 

present position. Steep, east dipping reflectivity highlight the paths of thrust faults that 

can be traced to ~5.5 sec TWTT. Water-bottom multiple reflection attenuation techniques 

were again very successful and reveal a zone of semi-coherent reflectivity below ~5.0 sec 

TWTT that is very similar to that observed along line 15 (Figure 4-3b-c). Within this 

zone we again observe both west and east dipping reflections, as well as segments where 

the reflectivity appears horizontal, and others appearing to ‘roll-over’ forming antiformal 

structures (Figure 4-6b). The relatively undeformed nature of the shallow section of the 

prism may indicate that these strata were passively uplifted to their current position by 

underplating from below, possibly in the form of a duplex or series of duplexes. 

Therefore, we offer similar interpretations to line 15 in the discussion to explain the 

nature of the deeper reflectivity (Figure 4-6b-c).  

The rear of the prism is highly reflective, showing evidence for folding and 

continued deformation along steeply dipping thrusts (Figure 4-7a-c). A high-amplitude 

reflection dominates much of the shallow section with ~0.5 sec TWTT of thinly bedded 

sedimentary sediments draped over much of the prism slope. The high amplitude 

reflection is segmented between CMP 1809-2211 and folded between CMP 1407-1809, 

further indicating the presence of steeply dipping thrusts (Figure 4-7b-c). The sediments 

in the westernmost forearc basin are deformed possible by an east dipping thrust 

indicating continuing deformation and uplift in the rear of the prism. Unfortunately, 

interpretation below ~5.0 sec TWTT is compromised due to the presence of residual 

multiple energy, however steeply dipping reflective fabric supports the interpretation of 

steeply dipping structures (Figure 4-7b-c). 
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4-4-3: MCS Reflection Line 23 

Line 23 extends NW-SE and crosses the Manila prism ~50 km north of lines 15 

and 17 (Figure 4-1, 4-8a). Over this interval, the prism increases in width to ~70 km 

compared to ~50 km along the southern transects. West of the trench, ~2.5 sec TWTT, or 

~2.5-3.75 km of flat-lying sediments (assuming seismic velocities between 2.0-3.0 

km/sec) cover the incoming oceanic basement (Figure 4-8a). Seaward of the frontal 

thrust, pervasive normal faulting cuts the entire sedimentary section (Figure 8a) that are 

likely related to plate bending as the SCS ocean crust enters the Manila trench. Notably, 

we observe a basement high seaward of the trench near CMP 4000 that is completely 

buried by the overlying sedimentary sequence. This variability in basement topography 

continues beneath the frontal thrust zone and lower slope (Figure 4-8b-c). Interestingly, 

in contrast to the MCS profiles described previously, the dimensions of the trench wedge 

decrease here to an average width of ~15 km and ~0.75-1.0 sec TWTT thick, or ~1.0-

1.25 km assuming a seismic velocity of 2.5 km/sec (Figure 4-8a). A similar observation 

was made by Ku and Hsu (2007) and may be an early indication of a seaward migration 

of the prism.  

The frontal thrust zone is characterized by east dipping thrust faulting and 

anticlinal folding (Figure 4-8b-c). Interestingly, the frontal thrust cuts nearly the entire 

trench wedge package and appears to sole into a sub-horizontal décollement near 7.0 sec 

TWTT. The décollement is likely stratigraphically controlled, however its exact location 

is difficult to interpret.  

Between CMP 6600-7400 (Figure 4-8b-c) a topographic high emerges from the 

prism slope that is coincident with local high in the basement topography. The shallow 

section of the uplifted area is composed of layered sedimentary strata similar to that in 

the trench wedge that has been lightly deformed and uplifted primarily by east dipping 
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thrusts and west dipping backthrusts. Within this same CMP interval, between 6.0 and 

7.0 sec TWTT, the section is characterized by closely spaced, oppositely dipping 

reflectivity with evidence of sub-horizontal reflectivity between. The significance of the 

complex reflectivity may indicate a complex series of folding and faulting at depth 

(Figure 8c). We propose that the subducting basement topography is responsible for the 

intensified deformation and local uplift at the seafloor. 

East of the local uplift, the surface taper of the prism slope becomes horizontal 

between CMP 7000-8400. The shallow section within this CMP interval (~4.5-5.5 sec 

TWTT) is composed of layered strata similar to that observed in the trench wedge that is 

deformed by a dense network of minor faulting. Linear, east-dipping reflectivity supports 

the interpretation of larger thrust faults that likely sole into a décollement interpreted near 

7.0 sec TWTT. East of CMP 7000, the nature of the décollement is difficult to interpret. 

Faint reflectivity between CMP 7200-7800 near 7.0 sec TWTT may indicate a structural 

or stratigraphic boundary, however this zone becomes diffuse farther east making further 

interpretation speculative. The dense network of faulting in the shallow section may be to 

blame for the lack of deeper coherent reflectivity below, as a significant portion of the 

seismic energy may have been attenuated at shallow depths. Although it is poorly 

defined, we tentatively suggest that the décollement surface continues to the east at a 

similar depth (~6.5-7.0 sec TWTT) as the décollement we interpret in the frontal thrust 

zone. 

Unlike lines 15 and 17 to the south, the prism along line 23 has developed a 

distinct upper slope domain that is delineated from the lower slope by an increase in the 

surface slope to the crest of the prism (Figure 4-9a-c). Reflectivity within the prism at this 

location is largely discontinuous apart from a zone of thinly bedded sedimentary drape at 

the seafloor and a small, perched basin near CMP 9000. Topographic highs on the upper 
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slope may signal the presence of widely spaced thrust faults, however evidence for fault 

plane reflectors is limited to the upper ~2.0 sec TWTT. This is due to the presence of 

strong residual multiple energy that limits our ability to interpret potential structures 

below ~6.0 sec TWTT.  Therefore, we can only speculate on the potential for thickening 

of the prism from below although we would expect similar structures to those observed 

along lines 15 and 17 to the south. 

The morphology of the arcward slope of the prism is very similar to that observed 

on lines 15 and 17 to the south (Figure 4-10a-c). The majority of the prism slope is 

draped with ~0.25 sec TWTT, or 250-375 m, of thinly bedded sediments separated from 

the heterogeneous, and presumably older prism strata below by a high amplitude 

reflective zone (Figure 4-10b-c). Large folding deforms the reflective zone, most notably 

between CMP 10200-10800. This large wavelength folding is likely accomplished by 

high angle thrust faults that radiate from a location near the forearc backstop (Figure 

10c). Deeper interpretation of potential structures including the subducting SCS slab is 

obscured by strong residual multiple energy below 5.0 sec TWTT. Near CMP 11200, an 

east dipping thrust uplifts and deforms the sedimentary strata of the forearc basin. The 

fault likely extends to the sediment basement interface and suggests the rear of the prism 

is actively uplifting and deforming. 
 

4-4-4: MCS Reflection Line 22 

Line 22 extends ~E-W south of 20° N and is the northernmost transect discussed 

in this paper. While the entire transect extends eastward across the Manila accretinary 

prism and NLA, we only show a subset from the entire profile that crosses the 

accretionary prism (Figure 4-11a). The prism width at this latitude is ~90 km, compared 

to ~70 km along line 23, and ~50 km along the southern transects 15 and 17, again, 
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indicating lateral growth of the prism. West of the trench, ~2.0 sec TWTT, or ~2.0-3.0 

km of flat-lying sediments (assuming seismic velocities between 2.0-3.0 km/sec) cover 

the incoming oceanic basement (Figure 4-11a). Pervasive faulting is clearly observed in 

the sediments below the trench wedge. Only a handful of these faults slightly offset the 

trench wedge strata (Figure 4-11a). Similar to line 23, the trench wedge is ~15 km in 

width, ~1.0-1.5 km maximum thickness, and separated from the sedimentary section 

below by a series of high amplitude reflectors that dip towards the frontal thrust zone.  

The frontal thrust zone shows a series of east dipping thrusts and anticlinal 

folding of the  (CMP 13800-13000) followed by the development of landward verging 

backthrusting east of CMP 13200 (Figure 4-11b-c). The frontal thrust clearly cuts and 

deforms the trench wedge strata, however, unlike line 23, the curvature of the faults 

suggest a shallow basal décollement at or near the base of the trench wedge strata. If true, 

the entire lower interval (~1.5 km) is bypassed with the subducting oceanic crust and 

underthrust beneath the prism. The seismic character of the lower strata is less reflective 

than the trench wedge strata.  

Between CMP 11600-12600, the seafloor is locally uplifted into a topographic 

high similar to that observed along line 23. The majority of the uplift appears to be 

achieved by a large, east dipping thrust that extends from the seafloor near CMP 12600 

and becomes sub-horizontal near ~7.0 sec TWTT, possibly indicating the presence of a 

décollement at this depth. This inferred décollement is present at a similar structural 

depth to that observed near the frontal thrust zone to the west. We interpret that the 

décollement continues east at a similar stratigraphic level (Figure 4-11c). The shallow 

section of the topographic high is composed of accreted trench wedge strata that have 

been lightly deformed by larger east dipping thrust and smaller west dipping backthrusts.  
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East of CMP 11800, the prism slope surface exhibits the same horizontal taper 

angle observed along line 23.  Between CMP 11400-19000, west-dipping reflectivity is 

observed between 4.5-5.5 sec TWTT, which may be an indication of fault plane 

reflectivity (Figure 4-11b-c). It is possible these reflectors represent a series of 

backthrusts branching off of a larger, east dipping thrust. Interestingly, east of CMP 

11400, deeper reflectivity indicates the presence of buried, east dipping fault planes. The 

nature of the décollement within this interval is difficult to determine. Based on its 

position in the frontal thrust zone, it is likely that the décollement continues east at a 

similar structural depth (~7.0 sec TWTT) to that observed in the frontal thrust zone.  

The upper slope is delineated from the lower slope by an increase in the taper 

angle to the crest of the prism (Figure 4-12a-c). Similar to line 23, reflectivity within the 

prism is largely discontinuous apart from a zone of thinly layered strata draped at the 

seafloor. In the upper 2.0 sec TWTT of the section, east dipping reflectivity is associated 

with topographic changes at the seafloor and may indicate the presence of fault planes at 

depth (Figure 4-12b-c). The dip of the interpreted reflectivity increases to the east, 

consistent with observations on line 23 to the south. Interpretation of these fault planes in 

the deeper section is difficult due to the presence of residual seafloor multiple and 

migration artifacts. However, based on evidence for similar east dipping reflectivity on 

line 23 to the south, we interpret that the upper slope here is deformed and uplifted in a 

similar manner (Figure 4-12b-c). 

The morphology of the arcward slope of the prism is different from the previous 

transects. The rear of the prism appears to be uplifted >1.0 sec TWTT, or ~1.5 km in 

elevation when compared with line 23 to the south (Figure 4-13a-c). Additionally, the 

well developed strata of the North Luzon trough forearc basin that are present on all 

transects to the south are missing and the flank of the NLA is juxtaposed against the rear 
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of the prism (Figure 13b-c). The thinly bedded draped strata are limited to the highest 

elevations (CMP 8000-8800) where the taper is low. The upper 1.0-1.5 sec TWTT of this 

same CMP interval shows prominent, steeply east dipping reflectivity that we interpreted 

to be evidence of fault plane reflections. The shallow draped strata are disturbed above 

several of these faults indicating that faulting reaches the seafloor. Strong residual 

multiple energy dominates much of the deeper section below ~4.0 sec TWTT making 

deeper interpretation of fault traces difficult. However, it is likely that these faults are 

deeply seated and localize near the prism interface with the forearc backstop. 
 

4-5: DISCUSSION 
 

4-5-1: Variability in behavior of the frontal thrust zone and lower slope 

The frontal thrust zone in all transects (Figures 4-2, 4-5, 4-8, and 4-11) show 

variations in the style of thrusting, however all transects exhibit frontal accretion of the 

upper 1.5-2.0 km of incoming sediment and underthrusting of the remaining bottom 

~0.75-1.5 km of sediments. Both MCS lines 15 and 17 (Figures 4-2 and 4-5) show popup 

structures and uplifting wedges of sediments into the lower slope similar to those 

observed in the Aleutian (Davis and Von Huene, 1987), Oregon, and Nankai accretionary 

prisms (Lallemand et al., 1994). These authors used these popup structures to determine 

the “internal” and “basal effective” coefficient of friction at the toe of these prisms. 

Primary east dipping thrusts sole into a sub-horizontal reflection that we interpret to 

represent a décollement near 7.0 sec TWTT (Figure 2b-c; 5b-c). Based on its parallelism 

with the strata above and below, the décollement is clearly stratigraphically controlled, 

however it is not associated with a strong, distinctive reflector in the sedimentary 

sequence in front of the accretionary complex. Lewis and Hayes, (1984) speculated that 
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trench turbidites are the preferentially accreted whereas pelagic or hemipelagic sediments 

are preferentially bypassed and subducted. Below the interpreted décollement, the 

reflectivity of the strata is low, potentially indicating a compositional change and/or the 

presence of high pore fluid pressures. The low reflectivity decreases within this interval 

as it continues beneath the frontal thrust zone. The loss in reflective character may be due 

to the intersection with a thrust fault that acts as a conduit for pore water (Cloos, 1984), 

and so the loss in brightness might be from dewatering of the sequence through pathways 

provided by the faulting. Alternatively, fluid escape may occur as a result of 

hydrofracturing through a system of dilatant fractures parallel and perpendicular to the 

décollement as proposed by Meneghini et al., (2009).  

Initial thickening of the prism along line 23 and line 22 is accomplished by 

primarily east dipping imbricate thrusts that deform the upper section of the incoming 

strata into a series of anticlinal folds (Figure 4-8 and 4-11). The development of 

conjugate backthrusting occurrs after initial faulting as a result of continued compression. 

The position of the interpreted décollement changes in the frontal thrust zone from a 

position within the strata below the trench wedge along line 23 to a position 

corresponding with the base of the trench wedge on line 22 to the north. Although a 

change in the position of the décollement is not unusual over such a short distance, we 

submit that local variations in the topography of the subducting oceanic basement, 

observed along both line 23 and 22 (Figure 4-8b-c; 4-11b-c) alter the behavior of the 

décollement in a way similar to a subducting basement asperity as modeled by Lallemand 

et al., (1994). Similar topographical morphologies are observed in several other 

accretionary prisms as a result of seamount subduction including Tonga (Ballance et al., 

1989). In these examples, the subducting basement topography cause prism-ward 

compression/shortening, local uplift of the prism above the basement topography and 
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obstruction or partial obstruction the basal décollement propagation. The décollement is 

then forced up-section and a new décollement forms near the top of the basement 

topography. The explanation for the sudden jump of the active décollement to the base of 

the trench wedge observed along line 22 is unclear (Figure 4-11). It is likely that the 

boundary between the trench wedge sediments and underlying sedimentary section 

represents a weaker mechanical boundary that is easier to exploit. 

The subduction of variable basement topography may cause local uplift near CMP 

7000 on line 23 (Figure 4-8b-c) and CMP 12200 on line 22 (Figure 4-11b-c), and may 

explain the horizontal taper of the prism slope to the west of the observed uplift. Park et 

al., (1999) observe similar uplift and low taper geometry of the landward part of the 

wedge associated with seamount subduction. In their model, as the seamount subducts, 

the prism uplifts landward and subsides seaward. These combine to form a thickened 

prism with low taper and a local high at the location of the seamount. As the seamount 

continues to subduct, strong compression is expected within the landward, thickened part 

of the prism. We observe strong evidence of both east and west dipping thrust faulting 

east of the interpreted subducting basement topography along lines 23 and 22 (Figure 4-8 

and 4-11) in agreement with this model.  
 

4-5-2: Models for Accretionary Prism Growth  

While it has recently been shown that the subduction of the extended continental 

margin crust of the northern SCS margin is an important phase in the evolution of the 

Manila accretionary prism and subsequent arc-continent collision (McIntosh et al., 2013; 

Lester et al., 2013; Eakin et al., 2013), our data highlight a number of previously 

unrecorded fundamental observations of prism structures in the intra-oceanic subduction 

domain offshore northern Luzon. For instance, the topographic slope of the prism 
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changes dramatically from south to north from a fairly consistent taper along lines 15 

(Figure 4-2a) and 17 (Figure 4-5a), to the development of distinct lower slope and upper 

slope domains along lines 23 (Figure 4-8a) and 22 (Figure 4-11a). Over this same 

interval, the width of the prism nearly doubles from an average of ~50 km along the 

southernmost line 15, to more than 90 km along the northernmost line 23 (Figure 4-1). 

One of the surprising features of our data is deeper prism reflectivity associated with the 

highest elevations of the prism along lines 15 (Figure 4-3b-d) and 17 (Figure 4-7b-d). 

Unfortunately, our data do not unambiguously constrain the structures responsible for the 

observed reflectivity. However, we can gain insight into its nature by considering our 

interpretation of the deeper reflectivity within the prism and the mechanisms by which a 

wedge thickens to achieve critical taper. 

If we have imaged a large volume of structurally thickened material in the rear of 

the prism, then it may be possible that frontal accretion is the dominant mode of 

deformation and continued growth of the prism is accomplished by large thrusts and 

perhaps OOSTs that uplift and deform material previously accreted at the toe of the 

prism. A simplified model of this process is shown in Figure 4-14a-b where the prism 

growth is driven by frontal accretion of the entire incoming sedimentary section by a 

series of imbricate thrust faults or imbricate fan of thrusts that sole into a central 

décollement located at the top of the basement (Figure 4-14a). With continued 

convergence, OOSTs may develop as a mechanism to structurally thicken the wedge and 

maintain critical taper (Figure 4-14b).  Reed et al., (1992) suggested significant 

shortening in the central part of the prism is accomplished with out-of-sequence thrusting 

in the Manila prism father north near 22°N, though its development may have been in 

response to significant shortening occurring in the forearc domain. Evidence of east-

dipping faults is observed in the upper 2.0 sec TWTT of the arcward parts of the prism in 
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all reflection profiles (Figures 4-3, -6, -9, and -12). Large imbricate thrusts and OOSTs 

could act as conduits for dewatering occurring as a result of continuing compaction deep 

within the prism. The high-amplitude low-frequency reflections observed in the shallow 

section on Figure 3b-c may therefore represent accumulations of dewatered fluids that 

have migrated along permeable fault planes similar to observations associated with the 

“bottom-simulating-reflector” in the Makran accretionary prism (Minshull and White, 

1989). However, it is difficult to determine the magnitude of slip and the depth of 

penetration of the observed fault planes given the variability of the resolution in the 

reflection profiles and therefore difficult to determine if the observed thicknesses of the 

prism (8-10 km) can be achieved by frontal accretion alone and continued thickening via 

OOSTs. 

Alternative to prism growth via complete frontal accretion, our interpretations 

support a model where the deeper zone of reflectivity represents a large accumulation of 

underplated material. A simplified model of this process is shown in Figure 4-14b-c 

where the upper ~2.0 km of the incoming sedimentary section including the trench wedge 

are accreted by imbricated thrusts that sole into a shallow décollement within the 

sedimentary section, while the remaining ~1.0 km of sediment below the décollement are 

underthrust and subsequently underplated. Underplating requires the décollement to  

“step-down” to a deeper structural level, so that material below the original décollement 

is uplifted above the new décollement (Figure 4-14b). Unfortunately, we do not constrain 

the location of this “step-down” in our reflection profiles, however we would infer that its 

location as being coincident with the appearance of the deeper zone of reflectivity along 

lines 17 and 15 (Figure 4-3 and 4-6). Within the context of this model, the deeper zone of 

east and west dipping reflectivity we observe along lines 15 and 17 (Figure 4-3 and 4-6) 

may represent thrust ramps of a passive duplex, while intermittent horizontal reflectivity 
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may represent portions of the former shallow décollement surface preserved in the 

underplated unit. Underplating may also explain the passive uplift of relatively 

undeformed accreted material observed in the highest elevations of the prism along line 

17 and would not preclude thrust faulting in the overlying decoupled accreted section 

with continued convergence.. A subaerial analog of this proposed system is a passive roof 

duplex structure in the central Foothills, Rocky Mountain thrust belt identified by 

Couzens-Schultz and Wiltschko (1999). 

We believe the underplating is a plausible mechanism to explain the large volume 

of deeper reflectivity along lines 15 and 17, as well as the continued growth of the prism 

to the north along lines 23 and 22. Between 0.75 km and 1.0 km of sedimentary material 

underthrust at the toe of the prism along all transects (Figure 4-2b-c; 4-5b-c). Coupled 

with convergence rates of ~70 km/Myr (Seno, 1977) along the Manila trench at this 

latitude, a volume of underplated sediments on the order of what we interpret along lines 

15 and 17 can be emplaced over relatively short timescales, growing a thick prism 

quickly. Tomographic modeling from Eakin et al., (2013) shows the prism thickness to be 

between ~13-15 km near 20.5°N in support of this hypothesis.  
 

4-6: CONCLUSIONS 

The new MCS reflection images for lines 15, 17, 23, and 22 provide constraints 

on the internal structure of the accretionary prism in the intra-oceanic subduction domain 

offshore northern Luzon. Our data reveal both an increase in width of the prism and 

development of disparate lower and upper slope domains from south to north. We image 

local uplift and low taper of the prism slope along lines 23 and 22. The structures and 

deformation are similar to those associated with the subduction of a basement asperity 

similar to that modeled by Lallemand et al., (1994) and observed by Park et al., (1999). 
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This may be a significant observation as the prism develops a distinct lower slope and 

upper slope in response to the subducting topography. This zonation of the prism appears 

to be a local phenomenon when compared with lines 15 and 17 to the south, and 

previously published MCS reflection profiles to the north (Eakin et al., 2014) that show 

the prism lacking these two domains. 

In the south, a zone of complex, deep reflectivity occupies a large volume of the 

rear of the Manila accretionary prism along MCS profiles 15 and 17. Evidence of steeply 

dipping fault planes may indicate the presence of large thrust faults, however the deeper 

nature of these faults is difficult to interpret and we cannot speculate whether the deeper 

reflectivity is a result of faulting alone. Alternatively, we propose a model where the zone 

of deeper reflectivity is associated with a large volume of underplated material derived 

from sedimentary units underthrust at the prism toe and deformed into passive duplex or 

series of duplexes. Similar reflectivity cannot be constrained in the rear of the prism 

along lines 23 and 22, however the prism does show continued deformation and an 

increase in elevation consistent with thickening at depth. These results support a model of 

a deforming critical wedge that increases its taper via underplating by basal duplex. The 

results support previously published tomographic models north of the profiles shown here 

that indicate prism thicknesses > 13 km and provide a mechanism to build such a large 

wedge over a short geologic time. Together, the data presented here illuminate a 

previously unrecorded phase of prism growth prior to the transition from oceanic 

subduction to the subduction of transitional continental crust of the SCS distal margin 

and provides a snapshot of the structures that are likely modified farther north by 

subsequent basement underplating. 
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Figure 4-1. Shaded relief map (lower right), and regional bathymetric and elevation map 
showing the major tectonic elements offshore south and east of Taiwan. 
MCS reflection data from this study (black-red lines) were acquired along 
MGL0905_15, MGL0905_17, MGL0908_23, and MGL908_22. Black 
dashed lines denote the positions of the Chinese continental margin and 
continent-ocean boundary interpreted by Eakin et al., 2013. (COB = 
continent-ocean boundary).  
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Figure 4-2. 
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Figure 4-2. a) Time-migrated seismic reflection section of Line 15 (a) with outline of 
zoomed uninterpreted (b) and interpreted (c). Line 15 shows the subducting 
SCS oceanic basement and sedimentary cover sequence, the Manila 
accretionary prism, and Luzon Trough forearc basin. b-c) Uninterpreted and 
interpreted zooms of the frontal thrust zone showing bi-vergent thrusting 
that develops a popup structure seaward of the trench and sole into an 
interpreted basal dècollement within the sedimentary section. Sediments 
above the dècollement are accreted and deformed by seaward verging 
thrusts and conjugate backtrhusts while those sediments below are 
subducted. BSR = bottom-simulating-reflector.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 136 

 

Figure 4-3. 
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Figure 4-3. a) Time-migrated seismic reflection section of Line 15 (a) with outline of 
zoomed uninterpreted (b) and interpreted (c). b-c) Uninterpreted and interpreted zooms of 
the central part of prism showing evidence for thrusting in the shallow section and a large 
area below composed of discontinuous, bi-vergent reflectivity that extends to the top of 
subducting basement. The position of the dècollement is inferred from the position 
interpreted in Figure 2. Intermittent high-amplitude low-frequency near 3.0 sec TWTT 
may indicate the presence of a bottom-simulating-reflector. 
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Figure 4-4. 
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Figure 4-4. a) Time-migrated seismic reflection section of Line 15 (a) with outline of 
zoomed uninterpreted (b) and interpreted (c). b-c) Uninterpreted and 
interpreted zooms of the rear of the prism showing evidence for large, 
steeply dipping faults. A thin layer of lightly bedded sedimentary material is 
separated by the older prism strata by a continuous high-amplitude 
refelction. This boundary is deformed and offset by large steeply dipping 
thrust faults.  
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Figure 4-5. 
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Figure 4-5. a) Time-migrated seismic reflection section of Line 17 (a) with outline of 
zoomed uninterpreted (b) and interpreted (c). b-c) Uninterpreted and 
interpreted zooms of the frontal thrust zone showing bi-vergent thrusting 
that develops a popup structure seaward of the trench and sole into an 
interpreted basal dècollement within the sedimentary section. Sediments 
above the dècollement are accreted and deformed by seaward verging 
thrusts and conjugate backtrhusts while those sediments below are 
subducted. BSR = bottom-simulating-reflector. 
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Figure 4-6. 
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Figure 4-6. a) Time-migrated seismic reflection section of Line 17 (a) with outline of 
zoomed uninterpreted (b) and interpreted (c). b-c) Uninterpreted and 
interpreted zooms of the central part of prism showing evidence for 
thrusting in the shallow section and a large area below composed of 
discontinuous, bi-vergent reflectivity that extends to the top of subducting 
basement. The shallow section is composed of deformed, layered strata 
similar to packages accreted at the toe of the prism on Figure 5. The position 
of the dècollement is inferred from the position interpreted in Figure 2.  
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Figure 4-7. 
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Figure 4-7. a) Time-migrated seismic reflection section of Line 17 (a) with outline of 
zoomed uninterpreted (b) and interpreted (c). b-c) Uninterpreted and 
interpreted zooms of the rear of the prism showing evidence for large, 
steeply dipping faults. A thin layer of lightly bedded sedimentary material is 
separated by the older prism strata by a continuous high-amplitude 
refelction. This boundary is deformed and offset by large steeply dipping 
thrust faults. The forearc basin strata near the arcward slope of the prism are 
folded and faulted indicating active deformation and uplift of the rear of the 
prism or shortening in the forearc. 
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Figure 4-8. 
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Figure 4-8. Time-migrated seismic reflection section of Line 23 (a) with outline of 
zoomed uninterpreted (b) and interpreted (c). b-c) Uninterpreted and 
interpreted zooms showing fault bend folding and a seaward dipping frontal 
thrust that soles into the sediemtn basement interface. A basement high near 
CMP 7000 is associated with local uplift at the seafloor. The uplifted strata 
are deformed by seaward verging thrusts and conjugate backtrhusts. West of 
CMP 7000 the prism slope taper is low and deformed by a series of 
landward verging thrusts that sole into a dècollement interpreted near the 
sediment basement interface.  
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Figure 4-9. 
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Figure 4-9. a) Time-migrated seismic reflection section of Line 23 (a) with outline of 
zoomed uninterpreted (b) and interpreted (c). A large seamount is observed 
searwad of the frontal thrust near CMP 4000. b-c) Uninterpreted and 
interpreted zooms of the central part of prism showing evidence for 
thrusting associated with local topography at the seafloor. A thinly layered 
sedimentary section is draped over much of the prism slope. Deeper 
interpretation of prism structure is obscured by strong multiple energy. The 
position of the dècollement is inferred from the position interpreted in 
Figure 8. 
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Figure 4-10. 
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Figure 4-10. a) Time-migrated seismic reflection section of Line 23 (a) with outline of 
zoomed uninterpreted (b) and interpreted (c). b-c) Uninterpreted and 
interpreted zooms of the rear of the prism showing evidence for large, 
steeply dipping faults. A thin layer of lightly bedded sedimentary material is 
separated by the older prism strata by a continuous high-amplitude 
reflection. This boundary is deformed and offset by large steeply dipping 
thrust faults. The forearc basin strata near the arcward slope of the prism are 
folded and uplifted by a steeply dipping thrust indicating shortening in the 
forearc.  
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Figure 4-11. 
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Figure 4-11. Time-migrated seismic reflection section of Line 22 (a) with outline of 
zoomed uninterpreted (b) and interpreted (c). b-c) Uninterpreted and 
interpreted zooms showing fault bend folding and a seaward dipping frontal 
thrust that soles into base of the trench wedge sediments. The remainder of 
the sedimentary section continues to subduct. A basement high similar to 
that observed along line 23 near CMP 12200 is associated with local uplift 
at the seafloor. The uplifted strata are deformed by seaward verging thrusts 
and conjugate backtrhusts. West of 11800 the low taper zone is deformed by 
lanward verging backthrusts in the east, and seaward verging thrusts in the 
west. 
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Figure 4-12. 
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Figure 4-12. a) Time-migrated seismic reflection section of Line 22 (a) with outline of 
zoomed uninterpreted (b) and interpreted (c). b-c) Uninterpreted and 
interpreted zooms of the central part of prism showing evidence for deep 
seeded thrusting associated with local topography at the seafloor. The thinly 
layered sedimentary section drapes much of the prism slope. Deeper 
interpretation of prism structure is obscured by strong multiple energy.  
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Figure 4-13. 
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Figure 4-13. a) Time-migrated seismic reflection section of Line 22 (a) with outline of 
zoomed uninterpreted (b) and interpreted (c). b-c) Uninterpreted and 
interpreted zooms of the rear of the prism showing evidence for large, 
steeply dipping faults. Deeper interpretation of the faulting is obscured by 
residual multiple energy at ~4.0 and 6.0 sec TWTT. The layered forearc 
basin strata are missing and the seaward flank of the NLA abuts the 
prismward slope of the prism. 
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Figure 4-14. 
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Figure 4-14. Summary of potential accretionary prism evolution scenarios as inferred 
from geophysical observations offshore northern Luzon. a-b). Prism growth 
driven by frontal accretion. c-d) Prism growth driven by accretion and 
underplating via passive duplex.  
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APPENDIX A: SEISMIC REFLECTION IMAGES 

This appendix contains seismic reflection images used to inform the 

interpretations throughout the main body of the dissertation, but not presented in their 

entirety in the submitted manuscripts. The seismic images were produced using the 

processing flow discussed in chapters 2-4. 
 

 

Figure A-1: Location of seismic profiles in Appendix A. 
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 Figure A-2. Reflection profile MGL0905_17. 



 162 

 

 
 
 
 

Figure A-3. Reflection profile MGL0905_15. 
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Figure A-4. Reflection profile MGL0908_23. 
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Figure A-5. Reflection profile MGL0908_22. 
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 Figure A-6. Reflection profile MGL0905_25A. 
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Figure A-7. Reflection profile MGL0905_23. 
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Figure A-8. Reflection profile MGL0906_30N. 
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Figure A-9. Reflection profile MGL0906_14. 
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 Figure A-10. Reflection profile MGL0906_17. 
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APPENDIX B: LINE T1 OBS 

 This section of the appendix contains the ocean bottom seismometer 

(OBS) records acquired along line T1 not included in chapter 2. OBS 04, OBS09, and 

OBS 16 are presented in chapter 2. Each includes the unprocessed record and a fully 

processed record with similar processing as described in chapter 2. 

 
OBS Long Lat 
OBS-02 119.375 20.5732 
OBS-03 119.566 20.5745 
OBS-04 119.753 20.5653 
OBS-05 119.864 20.5707 
OBS-06 119.953 20.5676 
OBS-08 120.141 20.5703 
OBS-09 120.236 20.5649 
OBS-10 120.331 20.5703 
OBS-11 120.433 20.5678 
OBS-12 120.522 20.568 
OBS-13 120.627 20.5732 
OBS-14 120.714 20.5706 
OBS-15 120.807 20.569 
OBS-16 120.904 20.5666 
OBS-17 121. 20 5653 
OBS-18 121.098 20.5697 
OBS-19 121.19 20.5705 

 

Table B-1. Line T1 OBS locations. 
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Figure B-1. Location map of line T1 coincident reflection and wide-angle refraction 
profile. 
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Figure B-2. OBS 02 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure B-3. OBS 03 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure B-4. OBS 05 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure B-5. OBS 06 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure B-6. OBS 08 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure B-7. OBS 10 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure B-8. OBS 11 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure B-9. OBS 12 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure B-10. OBS 13 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure B-11. OBS 14 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure B-12. OBS 15 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure B-13. OBS 17 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure B-14. OBS 18 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure B-15. OBS 19 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure B-16. Ray coverage of line T1 velocity model. 
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APPENDIX C: LINE T1B OBS 

 This section of the appendix contains the ocean bottom seismometer 

(OBS) records acquired along line T1B not included in chapter 3. OBS 20 and OBS 23 

are presented in chapter 3. 

 

OBS Long Lat 

OBS-20 122.527 20.5675 
OBS-21 122.628 20.5672 
OBS-22 122.723 20.5676 
OBS-23 122.819 20.5677 
OBS-24 123.003 20.5679 
OBS-25 123.105 20.5652 

OBS-26 123.197 20.5619 
 

Table C-1: Line T1B OBS locations. 
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Figure C-1. Location map of line T1B wide-angle refraction profile. 
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Figure C-2. OBS 21 hydrophone component with first-arrival travel-time picks. Top is 
un-processed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 

 



 190 

 

Figure C-3. OBS 22 hydrophone component with first-arrival travel-time picks. Top is 
un-processed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure C-4. OBS 24 hydrophone component with first-arrival travel-time picks. Top is 
un-processed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure C-5. OBS 25 hydrophone component with first-arrival travel-time picks. Top is 
un-processed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure C-6. OBS 26 hydrophone component with first-arrival travel-time picks. Top is 
un-processed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, AGC and gaining with offset. 
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Figure C-7. Ray coverage of line T1B velocity model. 
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APPENDIX D: LINE T2 OBS 

 Appendix D contains the ocean bottom seismometer (OBS) records 

acquired along line T2. Three instruments (OBS 04, OBS 09, and OBS 16) are presented 

in the chapter 2 manuscript, and the other records are presented here. Each contains the 

unprocessed record and fully processes with similar parameters described in chapter 2 

including gapped deconvolution and bandpass filtering. 

 
OBS Long Lat 
OBS-01 123.08371 21.41701 
OBS-02 122.78369 21.41666 
OBS-03 122.69003 21.41624 
OBS-04 122.58936 21.41821 
OBS-06 122.35509 21.42046 
OBS-07 122.20772 21.42153 
OBS-08 122.06498 21.4206 
OBS-09 121.90083 21.42004 
OBS-10 121.77063 21.42413 
OBS-11 121.62478 21.42367 
OBS-12 121.47881 21.42567 
OBS-13 121.38452 21.42513 
OBS-14 121.29148 21.42635 
OBS-15 121.19689 21.42737 
OBS-16 121.00285 21.42663 
OBS-17 120.90568 21.42767 
OBS-18 120.80978 21.42607 
OBS-19 120.7136 21.42587 
OBS-20 120.616 21.4261 
OBS-21 120.471 21.4254 
OBS-22 120.326 21.4256 
OBS-23 120.181 21.4257 
OBS-24 120.037 21.425 
OBS-25 119.892 21.424 
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OBS-26 119.747 21.4231 
OBS-27 119.602 21.4219 
OBS-28 119.457 21.4209 
OBS-29 119.312 21.4195 
OBS-30 119.167 21.4181 
OBS-31 119.022 21.4151 

Table D-1. T2 OBS locations.  

 

 

 

 

 

 

 

Figure D-1. T2 coincident reflection and wide angle refraction profile and OBS locations. 
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Figure D-2. OBS 01 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-3. OBS 02 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-4. OBS 03 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-5. OBS 04 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-6. OBS 06 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-7. OBS 07 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-8. OBS 08 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-9. OBS 09 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-10. OBS 10 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-11. OBS 11 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-12. OBS 12 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 



 208 

 

Figure D-13. OBS 14 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-14. OBS 15 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-15. OBS 16 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-16. OBS 17 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-17. OBS 18 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-18. OBS 19 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-19. OBS 20 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-20. OBS 21 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-21. OBS 23 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-22. OBS 24 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-23. OBS 25 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-24. OBS 27 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-25. OBS 28 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-26. OBS 29 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-27. OBS 30 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 



 223 

 

Figure D-28. OBS 31 hydrophone component with first-arrival travel-time picks. Top is 
unprocessed; bottom is processed to suppress the previous shot noise using 
gapped deconvolution, bandpass filtering, ACG and gaining with offset. 
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Figure D-29. Ray coverage of line T2 velocity model. 
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