
Copyright

by

Zeina Sinno

2015



The Report committee for Zeina Sinno certifies that this is the Approved
version of the following report:

A Closed-Form Correlation Model of Oriented

Bandpass Natural Images Beyond Adjacent Responses

APPROVED BY

SUPERVISING COMMITTEE:

Alan C. Bovik, Supervisor

Joydeep Ghosh



A Closed-Form Correlation Model of Oriented

Bandpass Natural Images Beyond Adjacent Responses

by

Zeina Sinno, B.E.

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2015



Dedicated to my parents, Hala and Zaki.



Acknowledgments

First, I would like to express my gratitude to my super supervisor

Professor Alan Bovik; for his exceptional teaching style that inspired me to

pursue my research in this area, guidance, support, valuable ideas, constructive

comments... and most importantly his infinite encouragement.

I would also like to acknowledge Professor Joydeep Ghosh as the second

reader of this report, Professor Brian Evans for his assistance in my first year,

Dr. Che Chun Su for his helping hand in this project and fellow LIVEr Todd

Goodall for his valuable feedback for this report.

I must express my very profound gratitude to my family; my mom, my

dad, my brother Mounir, my sister Farah and my brother-in-law Maher for

their transcontinental affection, unfailing support, and big faith in me. This

accomplishment would not have been possible without them.

Least but not last I would like to thank my friends for listening, offering

me advice and supporting me through the entire process and fellow LIVErs

for creating an agreeable lab environment.

v



A Closed-Form Correlation Model of Oriented

Bandpass Natural Images Beyond Adjacent Responses

Zeina Sinno, M.S.E.

The University of Texas at Austin, 2015

Supervisor: Alan C. Bovik

Building natural scene statistical models is crucial for a large set of

applications starting from the design of faithful image and video quality met-

rics to image enhancing techniques. Most predominant statistical models of

natural images characterize univariate distributions of divisively normalized

bandpass responses or wavelet-like decomposition of them. Previous mod-

els focusing on these bandpass natural responses offer optimized solutions to

numerous problems in image processing however, these models have not fo-

cused on finding a closed-form quantative model capturing the bivariate nat-

ural statistics. Towards the efforts for filling this gap, Su et. al. [1] recently

modeled spatially horizontally neighboring bandpass image responses on mul-

tiple scales; however, the latter work did not cover the response of distant

bandpass image responses with various spatial orientations. This work builds

on Su. et al ’s model and extends the closed-form correlation model to cover

distant bandpass image responses, up to a distance of 10 pixels; with multi-
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ple spatial orientations, encompassing all the discrete spatial angles for the

lastly-mentioned distances on multiple scales.
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Chapter 1

Introduction

The objective of this chapter is to emphasize the relationship between

Natural Scene Statistics (NSS) and the Human Visual System (HVS) and

to present relevant work that exploited a part of this interlacing relationship

across neighboring bandpass image responses.

1.1 An Interlaced Relationship between NSS and the
HVS

Understanding the functionalities of the different components of the

Human Visual System (HVS) and modeling the Natural Scene Statistics (NSS)

of the perceived images and videos are the building blocks of many reliable

image and video processing algorithms. These algorithms span a wide range

of applications starting from image/video quality assessment metrics [2–4] to

state of the art image enhancement techniques such as: image denoising [5],

image defocus [6], and image super-resolution [7]. Tremendous effort has been

made in an attempt to fathom these two interlacing components and to uncover

the links between them.
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The HVS is able of processing highly demanding tasks in a relatively short

amount of time such as fully visually recognizing the objects of an image within

40ms [8]. Processing this enormous amount of information is enabled by the

parallel and concurrent processing capability found in the primary visual cor-

tex [9]. The different cells of the primary visual cortex have a very well defined

map in the spatial information in the vision [10]. Thus, the connection between

a given location in primary visual cortex and in the subjective visual field is

very precise. This area can be modeled using a Gabor filter bank, capable

of decorrelating the received signal over multiple scales and orientations [11].

The resulting signal after decorrelation follows a well behaved Gaussian model

distribution.

Ruderman [12], showed that a local mean subtraction operation followed

by division by local variance, known as divisive normalization reproduces this

decorrelation effect. Therefore, the resulting signal after these two operations

is Gaussian, for which the signal coefficients follow a robust statistical model

[12]. This concept was deeply exploited in the establishment of first order

statistical models; and in attempts to understand the models across scales

and orientations which is not completely uncovered. A summary of these

attempts will be presented next.

2



1.2 Relevant Observations and Models

Before diving into relevant models to our problem, some notable obser-

vations from the literature will be briefly presented.

1.2.1 Relevant Observations

Previous work led to a few prominent observations concerning wavelet

coefficients computed from natural images. First, Simoncelli et. al. [13]

observed that the coefficients of orthonormal wavelet decomposition of natural

images are decorrelated but not independent. Secondly, Liu et. al. [14] noted

the presence of inter and intra-scale dependencies between wavelet coefficients.

Thirdly, Sendur. et. al. [15] used a circularly symmetric bivariate distribution

to model the dependencies between image wavelet coefficients and their parents

(at coarser scale locations).

1.2.2 Relevant Models

Inspired by the work accomplished by Geman et. al. [16] , which makes

use of a Markov random field to implement a image restoration technique at

low signal-to-noise ratios, Portilla et. al. [17, 18] targeted the problem of tex-

ture modeling of the images. The latter method uses a set of parametric con-

straints on pairs of complex wavelet coefficients at adjacent spatial locations,

orientations and scales in addition to incorporating Markov Random Field and

non-Gaussian Statistics. The major issue with this method is in the choice

of statistical constraints, obtained by applying a form of reverse-engineering
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of the early HVS. The selection process of the parameters is achieved by ob-

serving failures to synthesize particular types of texture. As a result, this

selection process does not guarantee the optimality of the solution. Given the

under-determined nature of the solution, additional constraints are required.

Subsequently, this method does not guarantee success in modeling the texture.

On the other hand, Po et. al. [19] modeled natural images using a hidden

Markov tree, Gaussian mixture model, and a two dimensional contourlet to

capture interlocation, interscale, and interdirection dependencies. The con-

tourlet transform is an extension of the wavelet transform using multiscale

and directional filter banks. This model is not limited to texture retrieval but

it could be used for denoising applications and offers a valuable tool in image

processing.

Mumford et. al. [20] proposed an infinitely divisible model of generic image

statistics. This model assumes that the environment may be subdivided into

objects cast against an ergodic field while also containing regions with very

little information (e.g: blue sky). This model seemed to fit a small portion of

the data only; but is short of capturing all the basic qualitative properties of

many images.

Among the previously presented models characterizing the bivariate behav-

ior, none offers a closed form model. The presence of such a model however
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would provide an optimal solution to various image processing applications.

Su et. al. [1] proposed a closed form correlation model of oriented bandpass

natural images for horizontally adjacent pixels across sub-band bandpass ori-

entations across multiple scales. This model is valid for all natural images,

correlating highly with the HVS, proving to be very useful in a wide variety

of image processing applications including stereoscopic image quality metrics

with depth information [21]. Su. et. al. designed a 3D image quality predictor

based in part on the new model. This predictor outperforms state-of-the-art

full- and no-reference 3D IQA algorithms on both symmetrically and asym-

metrically distorted stereoscopic image pairs. An additional application of

this model is a depth estimator based on single luminance images [22]. Con-

sequently, extending the above mentioned model will be very propitious.

This work will provide an extension to Su et. al.’s model. The latter work

did not cover the response of distant bandpass image responses with vari-

ous spatial orientations. This work will fill in this gap by covering distant

bandpass image responses, up to a distance of 10 pixels; with multiple spatial

orientations, targeting all the discrete spatial angles for the lastly-mentioned

distances on multiple scales. In chapter 2, we will present the proposed model

and how it relates to the human visual system. In chapter 3, we will present

the extended model and validate it. In chapter 4, we will compare our model

to the truncated fourier series expansion. In chapter 5, we will open the door

for future extensions of our model.
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Chapter 2

The Steps Followed

In this chapter we present the steps to obtain our model out of the input

images. The steps consist of a steerable pyramid decomposition accompanied

by a divisive normalization for preprocessing followed by modeling the resulting

coefficients with a bivariate joint distribution model. The motivation behind

each step will be presented with similarity aspects to the HVS. In order to

build our model, the LIVE IQA database [3] was used.

2.1 Color Space Transformation and Steerable Pyramid
Decomposition Steps

First, the obtained image is transformed to the CIELAB color space.

This color space mirrors that of the human color perception [23]. The light-

ness component, L, of this color space matches closely the human perception of

lightness. Only the L component will be fed into the next stages. Second, the

steerable pyramid is a linear multi-scale, multi-orientation image decomposi-

tion. It has been deployed in a wide variety of applications in image processing

as it overcomes some limitations of orthogonal separable wavelet decomposi-

tions. Its properties include independent representations of scale and orienta-

tion, translation and rotation invariance and most importantly similarity to
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the bandpass responses of simple cells in the primary visual cortex [24–26].

Simple cells compute a linearly weighted sum of the input over space

and time (usually a Gabor-like function). This simple cells response is then

normalized by the responses of neighboring neurons and passed through a

pointwise nonlinearity. They are characterized by their oriented receptive field

and their responses are space-time separable. The steerable pyramid obtains

decorrelated representations over scale and orientation which resembles these

seperable responses found in the HVS. Specifically, the steerable pyramid mod-

els the orientation selective behavior of individual simple cell responses found

in the primary visual cortex. These simple cells are combined to cover all ori-

entations and receptive field sizes [27]. Lastly, receptive field size is modeled

by the multiple scales in the steerable pyramid.

Note that in our case, we used a steerable pyramid of 4 scales where

scale 1 represents the finest and scale 4 represents the coarsest scale and fifteen

frequency tuning orientations of values [0, π/15, 2π/15, ..., π].

2.2 Divisive Normalization Step

Divisive normalization on all the wavelet coefficients is obtained from

the steerable pyramid decomposition output. Applying this step is analogous

to the normalization taking place in the area V1 of the visual cortex [28]. The

divisive normalization is defined as:
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u(xi, yi) =
w(xi, yi)√
s+wT

gwg

=
w(xi, yi)√

s+
∑

j g(xj, yj)w(xj, yj)2
(2.1)

where (xi, yi) are the spatial coordinates, w are the wavelet coefficients,

u represent the coefficients obtained after the divisive normalization, s is the

semi saturation constant (in our case it is set to 0.0001). The weighted sum is

computed over a spatial neighborhood of pixels in the same sub-band index by

j (in our case we considered a window of dimensions 3× 3 hence j = 9). The

Gaussian weighting function, g(xi, yi), is circularly symetric and unit volume.

2.3 Modeling the Bivariate Joint Distribution

The bivariate joint distribution targets pixels with a gap in the distance

between 1 and 10, and covering all possible discrete angles in an image in the

divisive normalization result, or u . This is the extension to Su et. al.’s work

[1], where the bivariate joint distribution targeted adjacent pixels horizontally

and vertically only.

Inspired by the fact that the univariate generalized Gaussian distribu-

tion was used to model univariate natural scene statistics [29, 30], the multi-

variate generalized Gaussian distribution (MGGD) will be used to model the

bivariate joint histogram of the two target pixels. This choice is also justified

by the fact that MGGD was an accurate tool for modeling multi-dimensional

image histograms [31]. The probability density function of the MGGD used

is:
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p(x;M , α, β) =
1

|M |12
gα,β(xTM−1x) (2.2)

where x ∈ RN , M is an N × N scatter matrix α and β are the scale

and shape parameters respectively and gα,β(.) is the density generator defined

by:

gα,β(y) =
βΓ(N

2
)

(2
1
β πα)

N
2 Γ( N

2β
)
e−

1
2
( y
α
)β (2.3)

where y ∈ R+. We note that if β = 0.5 then equation (2.2) yields to

the multivariate Laplacian distribution and when β = 1 then equation (2.2)

corresponds to the multivariate Gaussian distribution.

The bivariate empirical histograms of the target sub-band coefficients in

natural images is modeled using a bivariate generalized Gaussian distribution

(BGGD), by setting N = 2. Similarly to Su et. al. [1] the parameters of the

BGDD were estimated using Maximum Likelihood Estimation.
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Chapter 3

The Generalized Model

Before describing the extended model and validating it, we will present

some observations that directed Su et. al. towards the closed form model for

the horizontally adjacent bandpass responses.

3.1 Su et. al’s Model

The BGGD model allows us to observe that the shape and height of

the bivariate distributions vary with the tuning orientation of the sub-band

responses. Su et. al. [1] observed the case of horizontally spatially adjacent

responses. When the spatial relationship between bandpass samples matches

the sub-band tuning orientation, the joint distribution becomes peaky and ex-

tremely elliptical, implying that the bandpass responses are highly correlated,

as depicted in Figure 3.1. Conversely, when the spatial relationship and the

sub-band tuning orientation are orthogonal, the joint distribution becomes

nearly a circular Gaussian indicating that we have uncorrelated sub-band re-

sponses.

In order to more deeply understand the effect of the relative orienta-

tion, Su et. al. [1] modeled the correlation coefficients as a function of the

10



Figure 3.1: Joint histograms of horizontally adjacent bandpass coefficients
from a pristine image and the corresponding BGGD fits at the finest scale
with different orientations. From left column to right column: 0 (rad), π

4
, π

2
,

3π
4

, and 11π
12

. Top row: 3D illustration of bivariate histogram and BGGD fit,
middle row: 2D iso-probability contour plot of histogram, and bottom row:
2D iso-probability contour plot of BGGD fit (a) 0(rad) (b) π

4
(c) π

2
(d) 3π

4
(e) 11π

12

(f) 0(rad) (g) π
4

(h) π
2

(i) 3π
4

(j) 11π
12

(k) 0(rad) (l) π
4
(m) π

2
(n) 3π

4
(o) 11π

12
, source

[1]

relative orientation. The authors observed a periodic behavior with a period

π. The author was able to obtain a significant fit of the correlation coefficients

for horizontally adjacent bandpass responses using:

ρ = Acos(θ2 − θ1)2γ + c (3.1)

where θ1 and θ2 represent the sub-band and spatial tuning orientations,
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A represents the amplitude, γ is the exponent and c is the offset. The relative

orientation is represented by θ2 − θ1. Consequently, the authors were able

to obtain a closed form model by fitting the correlation coefficients between

horizontally adjacent bandpass responses as a function of the sub-band tuning

orientations using the images of the LIVE IQA database. The exponenti-

ated sine model for horizontally adjacent bandpass responses of Su et. al is

presented in Figure 3.2.

Figure 3.2: The exponentiated cosine function and its fit to correlation coeffi-
cients as a function of relative orientation (a) Exponentiated cosine function
(b) Fit to correlation coefficients., source [1]

3.2 Extending the Model

Our goal is to be able to generalize Su et. al. ’s model across more

points in the space. We redefined the relative distance to be equal to θ1+θ2. θ2

is defined to be equal to arctan( δy
δx

) where δx and δy represent the relative row

and column differences between the correlated pixels in the lightness image

12



obtained after the divisive normalization. The reason behind redefining the

relative orientation is that the new convention allowed us to align the maximum

correlation coefficients at 0 and multiples of π. On the other hand, if we follow

the convention of the previous model, the maximum correlation will occur at

2(θ2 − θ1), hence if we consider points not horizontally or vertically adjacent

the peak will not occur at 0 or multiples of π .

To examine the effect of the distance on the observed correlation, we

considered different points with the same digital distance. To do so, we used

the midpoint circle algorithm [32] to obtain the digital circles of radius varying

between 1 to 10, and considered all the points covered by these circles. These

different points are shows in Figure 3.3. Our model considers 158 points where

θ2 lies in [−π/2, π/2) in each scale. Since we have four different scales due to

the use of the steerable pyramid, we obtained a total of 632 cases. Since the

model is π periodic in the space in terms of θ2, it accounts for a total of 1264

points.

To compute the correlation model, we consider an origin pixel at the

top leftmost corner of the image obtained after the divisive normalization, then

we move a sliding window across all the image and store the values of these

two pixels in two vector. Next, we correlate the two vectors using the Pearson

Correlation. At a fixed (δx, δy) corner to the window, the spatial orientation θ2

is fixed. Hence we repeat the process across all the 15 sub-band orientations

0, π
15
, 2π
15
, ..., , 14π

15
rad and across the four scales obtained from the steerable

pyramid. This process is also repeated across all the images of the LIVE IQA

13



Figure 3.3: The covered points of the extended model

database. For fitting our model, we considered the average correlation across

all the images of this database.

The first observation that could be drawn by looking at the average

correlation is that the maximal correlation is obtained when θ1 +θ2 is equal to

0 and at multiples of π. This observation is always true when the average cor-

relation is high enough. The maximal correlation drops as the relative distance

between the origin and target increases. This could be seen in Figure 3.4 where

we present the maximal correlation as a function of δx and δy for the case of

scale 1 (the finest scale obtained using the steerable pyramid decomposition).

Similar trends are observed across the other more coarse scales.
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Figure 3.4: Maximal correlation as function of δx and δy

To study the impact of θ2, we fixed the distance and observed the

obtained correlations. The spatial angle θ2 = π/2 rad seems to achieve the

highest maximal correlation followed by θ2 = 0 rad. The reason behind this

could be explained by the fact that the world contains many vertical and

horizontal structures. Hence these two orientations contain most of the energy

15



[33]. The maximal correlation drops at other values of θ2.

We observed that at small distances the correlation has a Gaussian

shape. As the distance increases, we start to observe lobes on the right and

left sides of the origin. As the distance increases further, we remark that the

lobes increase in magnitude while the maximal correlations continues to drop.

Although for high distances the correlation was extremely low (in the order of

less than 0.05), our model was still able to perform well.

In order to fit our obtained correlations and account for the different

observed lobes we considered the following new model:

ρ′ = A1cos(
2(θ1 + θ2)

1
) + A2cos(

2(θ1 + θ2)

2
)

+ A3cos(
2(θ1 + θ2)

3
) + A4cos(

2(θ1 + θ2)

4
) + c (3.2)

One advantage of this model compared to Su. et al’s model is that we

were able to get rid of the exponent term. Some of the correlations and fitted

models are presented in Figures 3.5 to Figure 3.9. All these correlations are

at a fixed θ2 = π/2 with a varying relative distance. Scale 1 represents the

finest scale and scale 4 the coarsest. We present the cases when the relative

distance is equal to 1, 3, 5, 7 and 9. As we can observe that for a given spatial

distance, the same trend holds across the different scales.

For the displayed cases in Figure 3.5 to Figure 3.9, the obtained pa-

rameters using a non-constrained non-linear regression, are shown in Table

3.1.
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Figure 3.5: Correlation coefficients and fitted model for δx = 0, δy = 1

Figure 3.6: Correlation coefficients and fitted model for δx = 0, δy = 3
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Figure 3.7: Correlation coefficients and fitted model for δx = 0, δy = 5

Figure 3.8: Correlation coefficients and fitted model for δx = 0, δy = 7
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Figure 3.9: Correlation coefficients and fitted model for δx = 0, δy = 9

19



Distance Scale δx δy A1 A2 A3 A4 c
1 1 0 1 0.470409 0.043307 -0.01347 -0.0023 0.456836
1 2 0 1 0.484666 0.037684 -0.01676 -0.00317 0.453898
1 3 0 1 0.47898 0.031725 -0.01758 -0.00447 0.470419
1 4 0 1 0.477693 0.027308 -0.01586 -0.00352 0.47322
3 1 0 3 0.305609 0.377222 0.117863 -0.0035 -0.11247
3 2 0 3 0.310583 0.375779 0.111905 -0.01086 -0.08856
3 3 0 3 0.346922 0.378423 0.099425 -0.01558 -0.08922
3 4 0 3 0.34467 0.389593 0.099488 -0.01561 -0.10387
5 1 0 5 -0.04864 0.133167 0.144128 0.065612 0.088165
5 2 0 5 -0.03018 0.148893 0.141853 0.059077 0.085984
5 3 0 5 -0.02539 0.169892 0.149169 0.053445 0.089213
5 4 0 5 -0.04393 0.169591 0.160285 0.056721 0.083716
7 1 0 7 0.029407 0.048917 0.012009 0.056447 0.010242
7 2 0 7 0.034771 0.051545 0.021183 0.059737 0.008786
7 3 0 7 0.041484 0.053756 0.025799 0.069 0.007483
7 4 0 7 0.047003 0.042343 0.016912 0.070032 -0.00752
9 1 0 9 0.009523 0.057285 0.01457 0.008165 0.012609
9 2 0 9 0.014562 0.059066 0.017154 0.012592 0.015227
9 3 0 9 0.015124 0.067409 0.018245 0.015866 0.010489
9 4 0 9 0.002443 0.080375 0.003974 -0.00058 0.014513

Table 3.1: The parameters obtained for some samples points
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3.3 General trend of the parameters in the Generalized
Model

We studied how the coefficients vary as a function of the distance for

a given spatial orientation. We studied in total 12 cases of θ2: -1.57 rad, 0

rad,-1.24 rad, 1.24 rad, -1.10 rad, 1.10 rad, -0.785 rad, 0.785 rad, -0.463 rad,

0463 rad, -0.321 rad and 0.321 rad.

It was interesting to observe that the parameters on the different scales

behave similarly for the 12 cases. For small distances, the first cosine in

the model contributes the most. As the distance increases, its contribution

decreases, and the other cosines with higher frequency start to take over.

Also we observed some form of symmetry in the behavior of the pa-

rameters for θ2 around 0 rad. That is, we remarked a similar behavior of the

parameters at -0.321 rad and 0.321 rad, -0.463 rad and 0.463 rad... Also we

observed a symmetric behavior between 1.57 rad and 0 rad. Figures 3.10 and

3.11 provide an example of the latter case.
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Figure 3.10: General trend in the parameters of the model as a function of the
distance for θ2 = 0 rad

Figure 3.11: General trend in the parameters of the model as a function of the
distance for θ2 = 1.57 rad
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3.4 Validation of the Generalized Model

We computed the Mean Squared Error (MSE) and χ2 test across the

images of the LIVE IQA database [3] to validate our model. The χ2 test is

computed as:

χ2 =
N∑
i=1

S∑
j=1

(ρij − ρ′j)2

ρ′j
(3.3)

where {ρ′j} = ρ′ ∈ RDis the model, {ρij} = ρi ∈ RD are the correlation

coefficients as a function of the i− th pristine image, and N is the number of

pristine images. N = 29 for the LIVE IQA database.The MSE and χ2 test of

the samples previously presented are shown in Table 3.2.

Additionally, we observed the values of the parameters estimated in-

dividually on each each image of the LIVE IQA database [3]. We visualized

these parameters using boxplots (Figure 3.12 to Figure 3.16). It is notable

to observe how the parameters obtained by estimating the average correlation

closely match the parameters estimated on the images individually.
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Distance Scale δx δy MSE
χ2 for

the LIVE IQA Database
1 1 0 1 3.94E-07 3.761252571
1 2 0 1 1.44E-06 5.646435045
1 3 0 1 2.69E-06 8.925839408
1 4 0 1 4.46E-06 15.00274839
3 1 0 3 2.32E-05 -0.980905718
3 2 0 3 5.01E-05 -1.690234587
3 3 0 3 9.26E-05 -5.078580082
3 4 0 3 9.84E-05 -11.37689956
5 1 0 5 4.47E-05 -98.50399357
5 2 0 5 2.09E-05 57.87348179
5 3 0 5 1.98E-05 38.62702038
5 4 0 5 0.000155 345.8776777
7 1 0 7 0.000149 41.37185147
7 2 0 7 0.000116 24.19320404
7 3 0 7 9.34E-05 62.36532159
7 4 0 7 0.00028 106.7090611
9 1 0 9 0.000124 21.39735822
9 2 0 9 0.00012 27.68330054
9 3 0 9 0.000138 40.69777252
9 4 0 9 0.000261 64.6202476

Table 3.2: The MSE Error and χ2 of the LIVE IQA database for some sample
points
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Figure 3.12: Boxplot of the parameters for δx = 0, δy = 1

Figure 3.13: Boxplot of the parameters for δx = 0, δy = 3
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Figure 3.14: Boxplot of the parameters for δx = 0, δy = 5

Figure 3.15: Boxplot of the parameters for δx = 0, δy = 7
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Figure 3.16: Boxplot of the parameters for δx = 0, δy = 9
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Chapter 4

Comparison to the Short Fourier Series

Expansion

In this section we compare our model against the truncated fourier

series expansion.

4.1 Motivation behind the Fourier Series Expansion

The motivation behind comparing our model against the fourier series

expansion is that any periodic signal x(t) with period T0 and fundamental

frequency ω0 = 2π/T0 can be represented by a sum of scaled sines and cosines

at multiples of the fundamental frequency. The series can also be expressed as

sums of scaled complex exponentials at multiples of the fundamental frequency

[34]. That is:

x(t) =
a0
2

+
∞∑
n=1

ancos(nω0t) + bncos(nω0t) (4.1)

We computed the truncated Fourier Series of order 4 using least-square

fits. This method makes use of the fact that Fourier coefficients give the

best least-squares fit when a function is expanded in a set of orthonormal
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functions[35]. Sampling the function:

x(tn) = xn, tn =
nT

N
, n = 1, 2, ...N (4.2)

We obtain:

xn = a0 +
M∑
m=1

amcos(
2πmn

N
) + bmsin(

2πmn

N
) (4.3)

As a result, the problem can be reformulated as; given a column vector

x = [x1x2...xN ]T , find the set of coefficients coef = [a0a1...anb1...bn]T that fits

the expansion above the best. Define:

A =


1 cos(w0.t1) ... cos(nw0.t1) sin(w0.t1) ... sin(nw0.t1)
1 cos(w0.t2) ... cos(nw0.t2) sin(w0.t2) ... sin(nw0.t2)
... ... ... ... ... ...
1 cos(w0.tN) ... cos(nw0.tN) sin(w0.tN) ... sin(nw0.tN)


(4.4)

And use ordinary least-squares to find the coefficient matrix coef such that:

x = A.coef (4.5)

implying:

coef = A−1.x (4.6)

4.2 Results of the Short Fourier Series Expansion

For a fair comparison with the model presented in the previous chapter,

we computed the fourier series expansion truncated at m = 4:
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xn = a0 +
4∑

m=1

amcos(
2πmn

N
) + bmsin(

2πmn

N
) (4.7)

The obtained plots are presented in Figures 4.1 to 4.5. The resulting

coefficients, MSE and χ2 test can be observed in Table 4.1 to Table 4.3.

Figure 4.1: Original plot and fitted model using truncated fourier series for
δx = 0, δy = 1
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Figure 4.2: Original plot and fitted model using truncated fourier series for
δx = 0, δy = 3

Figure 4.3: Original plot and fitted model using truncated fourier series for
δx = 0, δy = 5
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Figure 4.4: Original plot and fitted model using truncated fourier series for
δx = 0, δy = 7

Figure 4.5: Original plot and fitted model using truncated fourier series for
δx = 0, δy = 9
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Distance Scale δx δy a0 a1 a2 a3 a4
1 1 0 1 0.485679 0.450819 0.015282 -0.00593 -0.00303
1 2 0 1 0.483929 0.463436 0.00935 -0.00725 -0.00363
1 3 0 1 0.500467 0.457618 0.004113 -0.00765 -0.00486
1 4 0 1 0.5035 0.455344 0.000706 -0.00519 -0.00475
3 1 0 3 -0.10832 0.337741 0.33756 0.05891 -0.0032
3 2 0 3 -0.08406 0.34229 0.336292 0.054526 -0.00697
3 3 0 3 -0.0829 0.377731 0.33698 0.044175 -0.00997
3 4 0 3 -0.0984 0.378793 0.347147 0.044887 -0.0056
5 1 0 5 0.08168 -0.03486 0.140418 0.10823 0.030228
5 2 0 5 0.079919 -0.01417 0.154338 0.104424 0.026893
5 3 0 5 0.082668 -0.00769 0.173369 0.108296 0.025399
5 4 0 5 0.076321 -0.02602 0.181452 0.122393 0.025846
7 1 0 7 0.016187 0.011575 -0.04947 0.018159 0.015918
7 2 0 7 0.015723 0.004995 -0.04432 0.021445 0.015858
7 3 0 7 0.017437 0.00242 -0.04868 0.02481 0.017102
7 4 0 7 0.025644 0.000524 -0.05819 0.030337 0.020398
9 1 0 9 0.008712 0.058906 0.012949 0.009786 0.017019
9 2 0 9 0.013671 0.060848 0.015371 0.014375 0.018715
9 3 0 9 0.014152 0.069352 0.016302 0.01781 0.020406
9 4 0 9 0.001281 0.082698 0.00165 0.00174 0.0244

Table 4.1: Coefficients of the truncated fourier series expansion part 1
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Distance Scale δx δy b1 b2 b3 b4
1 1 0 1 0.103337 0.0084627 -0.00628 -0.00166
1 2 0 1 0.106717 0.0053964 -0.00858 -0.00221
1 3 0 1 0.102436 0.0038912 -0.00935 -0.00256
1 4 0 1 0.102763 0.0019906 -0.00855 -0.00263
3 1 0 3 0.07862 0.1635395 0.049134 -0.00749
3 2 0 3 0.080063 0.1609028 0.043031 -0.01339
3 3 0 3 0.089716 0.1555794 0.036318 -0.01573
3 4 0 3 0.084351 0.1592687 0.033488 -0.01798
5 1 0 5 -0.00604 0.0681758 0.087381 0.036753
5 2 0 5 -0.00521 0.0722994 0.084045 0.03154
5 3 0 5 -0.00122 0.0836137 0.084577 0.02489
5 4 0 5 -0.00588 0.0731232 0.084762 0.025887
7 1 0 7 -0.0192 -0.017494 0.025865 0.042851
7 2 0 7 -0.01712 -0.015946 0.027585 0.041445
7 3 0 7 -0.02238 -0.022718 0.026215 0.043071
7 4 0 7 -0.0136 -0.017117 0.032936 0.049285
9 1 0 9 0.012609 0.0060478 0.009385 0.021825
9 2 0 9 0.015227 0.0081978 0.010616 0.021787
9 3 0 9 0.010489 0.0056245 0.013824 0.025046
9 4 0 9 0.014513 -0.011261 0.010888 0.029166

Table 4.2: Coefficients of the truncated fourier series expansion part 2
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Distance Scale δx δy MSE
χ2 for

the LIVE IQA
1 1 0 1 3.94E-07 3.786108
1 2 0 1 1.44E-06 5.302242
1 3 0 1 2.69E-06 8.599795
1 4 0 1 4.46E-06 14.30204
3 1 0 3 2.32E-05 -1.05237
3 2 0 3 5.01E-05 -1.74872
3 3 0 3 9.26E-05 -5.09735
3 4 0 3 9.84E-05 -11.4321
5 1 0 5 4.47E-05 -54.5984
5 2 0 5 2.09E-05 96.3525
5 3 0 5 1.98E-05 44.03968
5 4 0 5 0.000155 0.239492
7 1 0 7 0.000149 150.4983
7 2 0 7 0.000116 49.64248
7 3 0 7 9.34E-05 49.57876
7 4 0 7 0.00028 109.6757
9 1 0 9 0.000124 21.72763
9 2 0 9 0.00012 33.19539
9 3 0 9 0.000138 -29.6458
9 4 0 9 0.000261 87.47455

Table 4.3: MSE and χ2 test results for the truncated fourier series expansion
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4.3 The Generalized Model versus The Truncated Fourier
Series

In terms of performance, the generalized model and the truncated

fourier series method perform as well. However the truncated fourier series

model requires more coefficients; we need to use 9 coefficients instead of 5

(case of the generalized model). So the chance of overfitting our model is

smaller. As a result, using the proposed extended model is more favorable as

it is less complex. In fact, because our correlation coefficients are symmet-

ric around the origin, except for high distances where the correlation is low

using cosines to model the correlation coefficient should be sufficient. Further-

more, we remark a similarity between of the values of the coefficients between

the truncated fourier series and our model. In fact, a0, a1, a2, a3, and a4 in

the truncated fourier series model take values close to c, A1, A2, A3 and A4

repectively in the generalized model.
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Chapter 5

Conclusion

In this report, we proposed a new closed-form correlation model of

oriented bandpass natural images covering distant points in the space for up

to a distance of 10 pixels and over four different scales. We modeled in total

632 points in the space, accounting in total for 1264 data points. We were able

to validate our model statistically. Furthermore, we compared our model to

the truncated fourier series expansion, and showed that both models achieve a

similar performance; however, our generalized model requires less coefficients

5 only versus 9 for the truncated fourier series expansion. For this reason the

extended model is more favorable. For future work, we plan to extend the

generalized model further by studying the impact of the sub-band orientation

and modeling the correlation coefficients accordingly.
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