
Copyright

by

John Francis Bridgman, III

2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211388873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for John Francis Bridgman, III
certifies that this is the approved version of the following dissertation:

Reliable Distributed Information: Agreement and

Structure

Committee:

Vijay Garg, Supervisor

Ari Arapostathis

Sanjay Shakkottai

Mohamed Gouda

Sujay Sanghavi

Reliable Distributed Information: Agreement and

Structure

by

John Francis Bridgman, III

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2018

Reliable Distributed Information: Agreement and

Structure

Publication No.

John Francis Bridgman, III, Ph.D. The
University of Texas at Austin, 2018

Supervisor: Vijay Garg

The world is inherently distributed and concurrent. The more compli-

cated systems become, the more likely they are to fail or partially fail. This

work presents several results with Byzantine Agreement and some results of us-

ing coding in solving distributed and concurrent problems. We explore adding

weights to processes to model a priori knowledge of process reliability. Then,

some results of what can be done when performing repeated agreement. A

result between combinatorial geometry and approximate Byzantine agreement

is also provided. Coding is often used in communication, but here we provide

examples of the usage of coding to minimize broadcast information and to

solve a concurrent problem. The first use of coding is to notice the redun-

dant information in distributed protocols and how to use a code to reduce the

amount of information needed to be transmitted. The second is a method of

using coding to provide a buffer of memory in a concurrent system that can

be updated such that readers see the update as atomic.

iv

Table of Contents

Abstract iv

List of Tables viii

List of Figures ix

Chapter 1. Introduction 1

1.1 System Models . 5

1.2 Contributions . 7

1.2.1 Weighted Byzantine Agreement 7

1.2.2 Repeated Byzantine Agreement With Feedback 9

1.2.3 Vectorized Byzantine Agreement 10

1.2.4 Reducing Communication Complexity in All-to-All Broad-
casts . 11

1.2.5 Error Correction Codes to Synchronize Memory Access . 13

1.3 Overview of Dissertation . 14

Chapter 2. Byzantine Agreement 15

2.1 Introduction . 15

2.2 WBA Problem Specification 19

2.3 Weighted-Queen Algorithm . 21

2.4 Weighted-King Algorithm . 25

2.5 Updating Weights . 29

2.6 Weight Assignment . 33

2.7 Conclusions . 36

v

Chapter 3. Accurate Byzantine Agreement with Feedback 38

3.1 Introduction . 38

3.2 Model and Definitions . 43

3.3 The ABA Algorithm . 44

3.4 Accuracy Guarantees of the ABA Algorithm 48

3.4.1 Deterministic Accuracy 49

3.4.2 Probabilistic Accuracy 53

3.4.3 At-Least-One Accuracy 57

3.5 ABA Algorithm with Weighted Byzantine Agreement 61

3.6 Experimental Evaluation of ABA Algorithm 62

3.6.1 Experimental Setup and Parameters 63

3.6.2 Results . 63

3.7 Conclusion and Future Work 64

Chapter 4. Vectorized Byzantine Agreement 68

4.1 Introduction . 68

4.2 Definitions . 70

4.3 Results . 71

4.4 Conclusion . 74

Chapter 5. Error Correction Codes in Repeated Broadcast Com-
munication 75

5.1 Introduction . 75

5.2 One-to-All Gradecast . 81

5.3 Algorithm for All-To-All Gradecast 82

5.4 Example . 86

5.5 Proof of Correctness . 90

5.6 Application . 93

5.7 Conclusion . 94

vi

Chapter 6. Error Correction Codes for Data Structure Synchro-
nization 96

6.1 Introduction . 96

6.2 Approach . 97

6.3 Repetition Code Concurrent Buffer Algorithm 99

6.4 ECC Concurrent Buffer Algorithm 103

6.5 Atomic Swap Performance Comparison 106

6.6 Hash Map Performance Comparison 110

6.7 Conclusion . 112

Bibliography 113

vii

List of Tables

2.1 Weight assignments for P which satisfy the adversarial structure
A. 18

3.1 Notation in Chapter 3 . 44

5.1 Notation in Chapter 5 . 81

viii

List of Figures

2.1 Probability of the weight of failed processes exceeding 1/3 with
versus |B| with |A| = 6, fa = 0.1, fb = 0.3. 35

2.2 The number of rounds required for the King algorithm versus
the number of processes in set B for the different weight assign-
ments. 36

3.1 Deterministic accuracy: Ratio of Accurate Process Weights vs.
% Accurate Decisions . 65

3.2 Probabilistic Accuracy: Iterations vs. % Accurate Decisions,
d = 0.02 . 66

3.3 At-Least One Accuracy: Iterations vs. % Accurate Decisions,
One accurate process . 67

6.1 Atomic Swap Comparison . 109

6.2 Hash Map Comparison . 111

ix

List of Algorithms

1 Communicate Procedure . 21

2 Queen Algorithm for Weighted Byzantine Agreement at Pi . . 22

3 King Algorithm for Weighted Byzantine Agreement at Pi . . 26

4 Weight-Update Algorithm for the Queen Algorithm for Weighted

Byzantine Agreement at Pi 32

5 The ABA Algorithm at Pi . 45

6 Original One-to-all Gradecast Algorithm 83

7 All-to-all Gradecast Algorithm Declarations 86

8 All-to-all Gradecast Algorithm 87

9 Repetition Code Write Algorithm 100

10 Repetition Code Read Algorithm 101

11 Error Correction Code Write Operations 105

12 Error Correction Code Read Operation 106

13 Swap Test for ECC Comparison 107

x

Chapter 1

Introduction

The world is inherently distributed and concurrent. The more compli-

cated systems become, the more likely they are to fail or partially fail. Walk

into a room and there is likely more processors in the room than there are peo-

ple. For example, cellphones are ubiquitous and have more processing power

than super computers did decades ago. When a system is distributed over

hundreds of thousands of devices, the probability for one of them failing be-

comes a certainty. This brings up the question of how to deal with processes

or nodes failing. How can we model all possible failures for a system? The

worse case failure model is to assume that there is an all knowing adversary

that controls all failed processes. This is the model used for Byzantine failures.

There has been much study about Byzantine failures in distributed

systems. The problem that coined the term Byzantine in distributed systems

was the Byzantine Generals (BG) problem introduced by Lamport, Shostak

and Pease [35, 42]. There is extensive literature on the Byzantine Generals

problem and its variations [1,11,13,15,20,24,32]. In the BG problem, there is

a number of generals that may communicate using messengers. The generals

wish to agree on whether or not they should attack or retreat. A few of the

1

generals are traitors and wish to force some to attack and other to retreat. If

all non-traitor generals attack, then they will succeed. But, if some retreat

or attack, then they will be routed. Then, the questions of the problem are:

Can this problem be solved? If it can be solved, how many traitors can be

tolerated? What are the minimum resources (messages, computation, time)

required to solve the problem? The answer to these questions are now well

known. If f processes are faulty, then n ≥ 3f + 1 processes total are re-

quired and f + 1 rounds of communication are required in the worst case. A

popular variation of this problem, called Byzantine Agreement (BA), has not

one leader, but everyone proposes a value and all non-faulty processes must

come to an agreement on the output. So, every process starts with an in-

put value and the goal of the algorithm is to agree upon a common value in

the presence of f arbitrary faulty processes. These two problems are equiva-

lent because Byzantine Agreement and Byzantine Generals can be solved in

terms of each other. The original problems are restricted to a one bit value,

but there are several formulations of the problem where the values can be

arbitrary bit streams. Another popular variation is Approximate Byzantine

Agreement (ABA). ABA approximately agrees on a scalar value. In this varia-

tion, the processes propose a scalar value and then agree approximately on an

output value. Fischer, Lynch, Paterson and Paterson [21] prove that even with

one fault, BA is impossible in asynchronous systems. But, it turns out that if

you allow for error between the values, then it is still possible to agree within

that error in asynchronous systems. In general, all variations have constraints

2

similar to:

• Non-faulty processes consume a bounded amount of resources.

• Output values of non-faulty processes must satisfy a validity condition

based on the input values of non-faulty processes.

• Output values of non-faulty processes must satisfy an agreement condi-

tion.

These three conditions for Byzantine Agreement become: (1) terminate in a

bounded number of rounds, (2) the output must be proposed by a non-faulty

process, and (3) all non-faulty processes agree on the same value.

Another case of agreement to consider is agreeing upon the order in

which events happens. Serialized events and synchronization are things im-

posed upon the world by us. When a non-concurrent or centralized object

exists, the object is that way because the object was designed to be that way.

But, we, humanity, find reasoning about concurrent and distributed issues dif-

ficult. So, synchronization is imposed upon problems to make them tractable.

The simplest type of synchronization is complete serialization, where only one

action may take place at a time. The first processors used this sort of synchro-

nization internally. After advances, ways of performing more than one task

at a time where discovered. This underlines the importance of understand-

ing synchronization in distributed and concurrent systems. Synchronization

methods can be used in anything between scheduling when to meet a friend

for lunch to ensuring the atomicity of a transaction in a database.

3

What exactly is synchronization? This work takes synchronization to

mean an enforced “happens before” relationship between two events [34]. That

is, the “happens before” relationship between the events is guaranteed to hap-

pen, regardless of all external input to the system or scheduling. A simple way

to ensure that a “happens before” relationship for two events is for all actors

in a system to agree upon the completion of one event before processing the

next event. There are several ways to accomplish this. One could be to have

a conductor, that signals intervals, such as a clock. To give an example, this

is the purpose of a conductor in a symphony, to ensure that all musicians are

kept synchronized with each other. Another example is an oscillator driving a

processor. In both of these cases, the interval signal is a global state. Most dis-

tributed and concurrent systems assume some global clock, that gives a count

of intervals that can be used to mark the passage of time in the system. In

concurrent contexts, this is often the processor’s memory bus clock. A single

memory location can only be accessed by one device at a time, and this is

enforced in hardware through things like cache consistency algorithms. So, in

concurrent systems, synchronization is done in terms of memory access “hap-

pens before” relationships. In distributed systems, they either use a highly

accurate low drift clock at each actor such as an atomic clock or make use of

timeouts with a low accuracy clock where the timeout is chosen to be much

larger than the clock synchronization error.

Another way to think about synchronization is to agree upon the “hap-

pens before” relationship rather than a priori enforce the relationship. One

4

simple way to agree upon a “happens before” is to time stamp all events with

a logical clock. This clock does not need to be related to real time, but can be

a logical clock. [34] Having a mark of some sort that indicates the passage of

time is required for any communication that is not guaranteed to succeed [21].

Once an agreement algorithm is obtained in a system, all other synchronization

methods can be implemented in terms of repeated agreement. This agreement

may be partial or spread out over the system’s idea of time. But, in the end,

agreement on the order of events that require a “happens before” relationship

must be made or no system can produce meaningful results.

1.1 System Models

The distributed execution model used in this paper is the standard re-

liable synchronous message passing model. Processes can only communicate

by passing messages. Processes are assumed to be fully connected. The un-

derlying system is assumed to be synchronous; i.e., there is an upper bound

on the message delay and on the duration of actions performed by processes.

The model assumes that processes may fail; but, the underlying communica-

tion system is reliable and satisfies first-in first-out (FIFO) message ordering.

Message passing is assumed to be such that a process knows the identity of

who sent the message. It is assumed that there is no source of randomness that

cannot be influenced by an adversary. As such, only deterministic algorithms

are considered. If faulty processes are allowed, they are assumed to be arbi-

trary. This includes faults as if an omniscient adversary controlled all faulty

5

processes. This work assumes that no secrets can be kept from an adversary,

as such authenticated protocols such as public private key authentication are

not usable.

The concurrent execution model used in this paper is based on typical

multicore workstation running a modern preemptive multi-tasking operating

system(OS). The model assumes that the OS scheduler makes the system

appear in the absence of outside information as if there are an infinite number

of cores. Each threads executes independently and can be interrupted by the

operating system scheduler at any time to maintain the illusion of infinite

cores. The model has a global shared memory region that all threads can

access. Writes of more than one location to memory are assumed to not be

atomic and may be interleaved with other writes and reads. The memory is

assumed to be synchronous on some clock, and for each clock tick, only one

thread may read or write a single location during that tick. It is assumed that

if a completed write event A happens before some other read event B of the

same location and no other write is concurrent with the interval from event A

to event B; then, the read B will read the value that A wrote. The model puts

no limit to the size of the individual memory locations. The location may be

one bit in size or something larger.

6

1.2 Contributions

1.2.1 Weighted Byzantine Agreement

The Byzantine Agreement (BA) [35, 42] is a fundamental problem in

distributed computing with extensive literature [1,11,13,15,20,24,32]. In the

usual set-up, there are N processes required to agree on a common value, given

that at most f of them may show arbitrary or Byzantine behavior.

In real-life applications, there may be multiple classes of processes. For

example, in a mobile computing scenario, mobile hosts may be more likely to

fail compared to mobile stations. In another example, processes in the same

data center may be more likely to fail together. One generic way of dealing

with different classes of processes is adversarial structure [30]. Adversarial

structure is to enumerate every set of processes that may fail together. This

work considers a simpler approach of assigning a weight to each process that

represents some a priori knowledge of the reliability of that process.

Chapter 2 defines a weighted version of the Byzantine Agreement Prob-

lem (WBA) [25] and provides lower bounds and algorithms for it. In WBA,

each process Pi is assigned a weight w[i], such that 0 ≤ w[i] ≤ 1 and the sum

of all weights is 1. The WBA problem requires a protocol to reach consensus

when the total weight of the failed processes is at most ρ. The weighted version

gives some surprising results for the BA problem. First, even if greater than

N/3 processes are Byzantine, the system can still reach consensus so long as

ρ is less than 1/3. This result is quite useful in the system with a small set of

trusted processes and a large set of less trusted processes.

7

The Weighted Byzantine Agreement (WBA) problem can be specified

as follows. All processes propose a binary value with the goal of deciding

on one common value. Given a weight assignment to all processes, and the

assumption that the weight of the processes that fail during the execution is at

most ρ, the WBA problem is to design a protocol that satisfies the following

conditions:

• Agreement: Two correct processes cannot decide on different values.

• Validity: The value decided must be proposed by some correct process.

• Termination: All correct processes decide in finite number of steps.

In Chapter 2, the anchor of a system (denoted by αρ) is defined as the

least number of processes whose total weight exceeds ρ. WBA can be solved

with the number of rounds equal to the system’s anchor is shown. The an-

chor for a system with ρ = f/N is f + 1 at most and, in many cases, is

much smaller than f + 1. Two algorithms for the WBA problem are given:

the weighted-Queen algorithm and the weighted-King algorithm. These algo-

rithms are generalizations of the algorithms proposed by Berman and Garay [5]

and Berman, Garay and Perry [4]. The weighted-Queen algorithm takes αρ

rounds, each with two phases, and can tolerate any combination of failures

so long as ρ < 1/4. The weighted-King algorithm takes αρ rounds, each with

three phases, and can tolerate any combination of failures so long as ρ < 1/3.

8

1.2.2 Repeated Byzantine Agreement With Feedback

Chapter 3 presents Accurate Byzantine Agreement(ABA) with Feed-

back, a joint work with Bharath Balasubramanian and Vijay Garg [26,27]. In

the standard version of Byzantine Agreement [15,20,24,35,42], the value that

is agreed upon may be either of the binary values so long as it is proposed by

at least one non-faulty process. In some scenarios, it is better for the system

to agree on a specific value among the two binary values. For example, sup-

pose in a distributed control system, a coordinated action needs to be taken

(such as opening or closing a valve) depending upon the observations made

by possibly faulty distributed processes. Depending upon the outcome of the

action, the environment can provide a feedback if the action taken was correct

or not.

The definition of ABA is as follows. Consider n processes consisting

of non-faulty and faulty processes. There are multiple binary decisions that

these n processes are required to make. For each possible decision (iteration

of the ABA problem), each of the non-faulty processes proposes either 0 or 1.

An algorithm that solves the Accurate Byzantine Agreement with Feedback

(ABA) problem, must guarantee the following properties:

• Agreement: For each iteration, all non-faulty processes decide on the

same value.

• Termination: The algorithm terminates in a finite number of rounds.

9

• Accuracy: The non-faulty processes agree on a value that is deemed

correct by environmental feedback.

1.2.3 Vectorized Byzantine Agreement

Sometimes exact agreement is unnecessary, too expensive or the re-

quirements are too difficult to satisfy. This is the motivation for Approximate

Byzantine Agreement(ABA). For ABA the constraints are: (1) terminate in

bounded time, (2) the output must be in the range of the values proposed by

non-faulty processes, and (3) the difference in output between any two non-

faulty processes in bounded by a constant. ABA is over a scalar value, but

what about the case of having a vector quantity that we wish to approximately

agree upon? The natural extension to the second requirement of ABA, that

output values be in the range of input values from non-faulty processes, is that

output values be in the convex hull of input values from non-faulty processes.

This turns out to be much more difficult to achieve than scalar approximate

agreement and the difficult appears to increase exponentially with dimension.

The 1-dimensional case is a special case of the multi-dimensional case and has

the same complexity.

The Multi-dimensional Approximate Byzantine Agreement (MDABA)

[39,47, 48] problem is approximately agreeing upon a vector where every pro-

cess proposes a vector and up to t processes can be arbitrarily faulty. It is

required that the final vector at all non-faulty processes be within the convex

hull of the proposed vectors of non-faulty processes. Performing approximate

10

agreement on each dimension separately does not satisfy the convex hull crite-

ria. This can be important to some problems as satisfying convexity means the

output is valid. For example, if the vectors represented empirically measured

probability distributions, then satisfying the convex constraint means that the

output is a convex combination of the non-faulty measurements and is a valid

probability distribution. Chapter 4 presents an equivalence between a piece of

the MDABA and the center point from combinatorial geometry.

1.2.4 Reducing Communication Complexity in All-to-All Broad-
casts

What does it mean to know something? In a distributed or concurrent

system, each node has things the actor knows. But then, there are also things

that are known that others know. And this can be layered, such as “I know that

you know that I know something.” Many distributed problems can be classified

by what level of knowledge they require [28]. For problems that require higher

levels of knowing, every node may need to send to every node what it currently

knows. Naively done, this results in O(mn2) messages bit complexity. One

solution is to make a spanning tree and then only communicate over that

spanning tree. For example, elect a leader, everyone sends what they know to

the leader, the leader collects all information and sends to everyone. But quiet

a lot of information is duplicated in even such a simple broadcast. Chapter 5

considers the approach of using systematic error correction codes to allow the

nodes to only communicate the differences in what they know. An example

using gradecast is given. The gradecast algorithm, first proposed by Feldman

11

and Micali [19], is a broadcast algorithm that gives the receivers a confidence

level in the value received. The confidence level returned is from the set

{0, 1, 2} and the confidence value gives information about the state of the

other processes. The gradecast algorithm provides three main properties of

the confidence level that allow a process to reason about the knowledge of

other processes.

1. For all non-faulty process Pi, and non-faulty process Pj, and any pro-

cess Pk, if confidencej[k] > 0 and confidence i[k] > 0; then, valuej[k] =

value i[k].

2. For any non-faulty process Pi, and non-faulty process Pj, and any process

Pk, |confidence i[k]− confidencej[k]| ≤ 1.

3. If Pk is non-faulty, then for all non-faulty processes Pi, confidence i[k] = 2

and value i[k] = vk.

The original one-to-all gradecast algorithm broadcasts a value from one pro-

cess to all the other processes. Message bit complexity is defined as the total

number of bits sent by all non-faulty processes in one invocation of the al-

gorithm. The one-to-all gradecast algorithm has a message bit complexity of

O(mn2), where m is the length of the message and n is the number of pro-

cesses. The properties of gradecast make it a useful primitive in distributed

systems.

Consider the case where all processes wish to broadcast a value to all

other processes using gradecast. This is referred to as all-to-all gradecast and

12

it is used in many applications such as Byzantine agreement, approximate

agreement, and multiconsensus [3]. The standard implementation of all-to-all

gradecast, where n instances of the one-to-all gradecast algorithm are used,

has O(mn3) message bit complexity. Chapter 5 shows a method, using coding,

that gives an all-to-all gradecast algorithm with only O(mtn2) message bit

complexity, where t is the specified maximum number of faulty processes. [7,8]

This is a significant reduction in message bit complexity when t is much smaller

than n, which is usually the case. Furthermore, gradecast requires t < n/3 for

correctness.

1.2.5 Error Correction Codes to Synchronize Memory Access

In a concurrent program, reading and writing values can cause conflict

if a read happens during a write or if more than one writer writes at the same

time. Many programs require data structures to satisfy certain validity con-

straints. If a data structure is in the middle of being modified and someone

reads it, they can’t know what was modified and what was not modified. So,

some sort of synchronization is required. Chapter 6 presents a method to

achieve atomic updates of a buffer using error correction codes for synchro-

nization.

The method is basically as follows. Model a buffer of memory as a

point in a vector space. Each write is like moving this point by adding a

vector. Some modifications wish to be relative, and some with to be absolute.

For reasoning about synchronization, it is wanted that each update appear

13

atomic to observers. But we know that memory subsystems have a maximum

sized word that they can modify at a time, so the systems notion of time must

pass between updates of elements of this point. How then can the point be

read in such a way that it appears to move atomically from updates? Error

correction codes map a low dimension space into a higher dimension space with

good separation. Pick such a mapping for a point representing the memory

such that all updates that are going to be performed do not move the point

in the higher space more than half the minimum distance, and a line between

any two code points is only ever closest to those two points. A writer then

incrementally moves the point from the old code to the new code. Now, using

this code, it is possible for observers to capture a snapshot during an update

that will either be the new value or the old value.

1.3 Overview of Dissertation

The rest of the dissertation is laid out as follows. First, in Chapter 2,

the idea of Weighted Byzantine Agreement is given. Chapter 3 discusses a

method track faults with weights in a system performing repeated Byzantine

Agreement. Chapter 4 gives a result relating approximate Byzantine agree-

ment of vectors to combinatorial geometry. Then, Chapter 5 shows the usage

of error correction codes to reduce message complexity in a distributed algo-

rithm. Finally, Chapter 6 presents a method to use error correction codes to

perform atomic memory operations in a concurrent shared memory system.

14

Chapter 2

Byzantine Agreement

2.1 Introduction

This chapter defines a weighted version of the Byzantine Agreement

Problem (WBA) [25] and provides lower bounds and algorithms for it. In

WBA, each process Pi is assigned a weight w[i], such that 0 ≤ w[i] ≤ 1

and the sum of all weights is 1. The WBA problem requires a protocol to

reach consensus when the total weight of the failed processes is at most ρ.

The weighted version gives some surprising results for the BA problem. First,

even if greater than N/3 processes are Byzantine, the system can still reach

consensus so long as ρ is less than 1/3. This result is quite useful in the system

with a small set of trusted processes and a large set of less trusted processes.

Secondly, the message complexity and the number of rounds required

to achieve consensus for the weighted version is shown to always be less than

or equal to those for the unweighted version. Suppose the system must toler-

ate ρ = f/N for any integer f such that 0 ≤ f < N/3. It is known that any

The work presented in this chapter is based on the following publication.
Vijay K. Garg and John Bridgman. The weighted byzantine agreement problem. In

25th IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2011,
Anchorage, Alaska, USA, 16-20 May, 2011 - Conference Proceedings, pages 524–531. IEEE,
2011.

15

protocol for BA requires at least f + 1 rounds [16]. The unweighted version

of the Queen algorithm [5] requires f + 1 rounds, each with two phases. In

this chapter, the anchor of a system (denoted by αρ) is defined as the least

number of processes whose total weight exceeds ρ. This chapter shows that

WBA can be solved with the number of rounds equal to the system’s anchor.

The anchor for a system with ρ = f/N is f + 1 at most and, in many cases,

is much smaller than f + 1. Two algorithms for the WBA problem are given:

the weighted-Queen algorithm and the weighted-King algorithm. These algo-

rithms are generalizations of the algorithms proposed by Berman and Garay [5]

and Berman, Garay and Perry [4]. The weighted-Queen algorithm takes αρ

rounds, each with two phases, and can tolerate any combination of failures

so long as ρ < 1/4. The weighted-King algorithm takes αρ rounds, each with

three phases, and can tolerate any combination of failures so long as ρ < 1/3.

The weighted version of BA gives a general framework to study many algo-

rithms by instantiating BA with different weights. When the weight vector is

(1, 0, 0, 0..0), our algorithm reduces to a centralized algorithm, where the first

process is expected not to fail and any number of other processes may fail. If

M out of N processes are considered more trusted, two classes of processes can

be specified by setting the weight of the M trusted processes to 1/M and 0

for rest. The traditional BA problem is represented by setting all the weights

to 1/N.

A general approach to the problem of knowing structure to the ways

processes can fail, has been considered by Hirt and Maurer [30]. Hirt and

16

Maurer come up with what is called an adversarial structure. This structure

is the set of all subsets of processes whose failure must be tolerated. Consider

a set of processes P = {d, e, f, g, h, i}; then, the adversarial structure A would

be all subsets of P that should be tolerated. Hirt and Maurer show that as long

as the union of any three sets in the adversarial structure does not contain all

processes in P ; then, an algorithm for Byzantine agreement that can tolerate

that adversarial structure exists. The basis of A, which is all maximal sets in

A, is Ā.

Ā = {{d, e, f}, {d, g}, {e, h}, {e, i}, {f, g}}

The traditional BA algorithm can only handle one faulty process from P ; but,

there exists an algorithm that can handle at least one additional faulty process

for any one faulty process as indicated by Ā. Fitzi and Maurer [22] give an

algorithm that can perform Byzantine agreement on such an adversarial struc-

ture. The algorithm by Fitzi and Maurer has message complexity polynomial

in the number of processes and round complexity of less than two times the

number of processes. The round complexity for our algorithms are optimal.

For this particular example, a weight assignment can be found so that the

King algorithm presented here can tolerate all processes in one of the subsets

of P in A being faulty. One such weight assignment is shown in Table 2.1.

Also, the adversarial structure may be exponentially larger than the weight

assignment. The algorithms presented in this chapter are considerably simpler

than the one presented by Fitzi and Maurer.

Others have considered the use of artificial neural networks (ANN) for

17

Table 2.1: Weight assignments for P which satisfy the adversarial structure
A.

Process d e f g h i
Weight 1/9 1/18 8/57 1/6 5/19 5/19

BA [36, 49]. The ideas in this chapter could also be extended to use ANN.

Randomization or authentication is not assumed to be available. There are

many algorithms for BA with randomization [6, 43] or with authentication

[16,42]. The method for using and updating weights presented here is expected

to be applicable in these settings as well.

Methods to update weights for future rounds of WBA are also discussed.

The weight update method guarantees that the weight of a correct process is

never reduced. When the maximum weight of failure is less than 1/4, a faulty

process suspected by correct processes whose total weight is at least 1/4 will

be reduced to 0. Initial weight assignment is application specific. Some ideas

for weight assignment and resulting probabilities and round complexity are

discussed. The WBA algorithm will fail if ρ ≥ 1/3 for any round. ρ ≥ 1/3 is

equivalent to N/3 failed processes in traditional BA.

The organization of the rest of this chapter is as follows. First, the

model of the system that runs algorithms is defined. Second, the Weighted-

Queen Algorithm is given. Next, the Weighted-King Algorithm is discussed.

Following that, a simple weight update method is given. Then, some initial

weight assignment strategies are presented. Finally, concluding remarks are

made.

18

2.2 WBA Problem Specification

This chapter assumed the synchronous message passing model described

in Chapter 1 Section 1.1. The system model used in this chapter is a dis-

tributed system with N processes, P1..PN , with a completely connected topol-

ogy. The processes may fail in an arbitrary fashion; in particular, they may lie

and collude with other failed processes to foil any protocol. The processes that

do not fail in any computation are called correct processes. Assume that there

is a non-negative weight w[i] associated with each process Pi. All processes

in the system have complete knowledge of weights of all the processes. For

simplicity, assume that weights are normalized; i.e., the sum of all weights is

one. Let ρ be the sum of weights of all failed processes. This chapter assumes

that ρ is strictly less than one.

The Weighted Byzantine Agreement (WBA) problem can be specified

as follows. All processes propose a binary value with the goal of deciding

on one common value. Given a weight assignment to all processes, and the

assumption that the weight of the processes that fail during the execution is at

most ρ, the WBA problem is to design a protocol that satisfies the following

conditions:

• Agreement: Two correct processes cannot decide on different values.

• Validity: The value decided must be proposed by some correct process.

• Termination: All correct processes decide in finite number of steps.

19

The following lower bounds follow easily from the standard BA lower

bound arguments.

Lemma 1. There is no protocol to solve the WBA problem for all values of w

when ρ ≥ 1/3.

Proof. Any protocol to solve WBA can be used to solve standard BA by

setting w[i] = 1/N for all i. For this weight assignment, ρ ≥ 1/3 implies that

the number of failed processes f in the standard BA protocol is at least N/3. It

is well-known that no protocol exists for standard BA when 3f ≥ N [42].

For simplicity, also assume that weights associated with Pi are in non-

increasing order. This can be achieved by renumbering processes, if necessary.

Given any ρ and weight assignment w, define the anchor αρ as the minimum

number of processes such that the sum of their weights is strictly greater than

ρ. Formally,

αρ = min {k |
i=k∑
i=1

w[i] > ρ}.

To get an insight into αρ, consider the case when ρ is f/N and each process has

equal weight 1/N. In this case, αρ equals f+1. The significance of αρ is that at

least one process from P1..Pαρ is guaranteed to be correct. When ρ is zero, αρ

is 1. The largest possible value of αρ is N, because ρ < 1 by assumption. The

following lower bound on the number of rounds for any consensus protocol is

obtained from standard consensus arguments.

Lemma 2. Any protocol to solve the WBA problem for a system with ρ < 1

takes at least αρ rounds of messages, in the worst case.

20

Proof. If not, a protocol exists to solve BA in less than f + 1 rounds when all

weights are uniform.

We assume that communicate is synchronous and we posses a broadcast

as shown in Algorithm 1.

Algorithm 1 Communicate Procedure

1: function communicate(i, V, w)
2: if w[i] > 0 then
3: broadcast(V [i])
4: end if
5: for j such that w[j] > 0 do
6: V [j]← receive(j)
7: end for
8: end function

2.3 Weighted-Queen Algorithm

In this section, an algorithm is given that takes αρ rounds, each round

of two phases, to solve the WBA problem. The algorithm is based on the

unweighted version of the algorithm given by Berman and Garay [5]. The

algorithm uses constant-size messages, but requires that ρ < 1/4. Each pro-

cess has a preference for each round, which is initially its input value. The

algorithm shown in Figure 2 is based on the idea of a rotating queen (or coordi-

nator). Processor Pi is assumed to be the queen for round i. In the first phase

of a round, each process exchanges its value with all other processes. Based on

the values received and the weights of the processes sending these values, the

process determines its estimate in the variable myvalue. In the second phase,

21

the process receives the value from the queen. If Pi receives no value (because

the queen has failed), then Pi assumes 0 (a default value) for the queen value.

Now, Pi decides whether to use its own value or the queenvalue. This decision

is based on the sum of the weights of the processes which proposed myvalue

given by the variable myweight . If myweight is greater than 3/4, then myvalue

is chosen for V [i]; otherwise, queenvalue is used.

Algorithm 2 Queen Algorithm for Weighted Byzantine Agreement at Pi
1: function Weighted-Queen-BA(i, Vi, w[N])
2: V ← array(N) — N length array initialized to 0
3: V [i]← Vi
4: for q = 0 to αρ do

. First Phase
5: communicate(i, V, w)
6: myweight ←

∑
j|Vj=1w[j]

7: myvalue ← 1
8: if myweight ≤ 1/2 then
9: myweight ←

∑
j|Vj=0w[j]

10: myvalue ← 0
11: end if

. Second Phase
12: if q = i then
13: broadcast(myvalue)
14: end if
15: queenvalue ← receive(q)
16: if myweight > 3/4 then
17: V [i]← myvalue
18: else
19: V [i]← queenvalue
20: end if
21: end for
22: return V [i]
23: end function

22

The correctness of the protocol is shown by the following sequence of

lemmas.

Lemma 3 (Persistence of Agreement). Assuming ρ < 1/4, if all correct pro-

cesses prefer a value v at the beginning of a round; then, they continue to do

so at the end of the round.

Proof. If all correct processes prefer v, then the value of myweight for all

correct processes will at least be 3/4; because, ρ is at most 1/4. Hence, they

will choose myvalue in the second phase and ignore the value sent by the

queen.

Lemma 4. There is at least one round in which the queen is correct.

Proof. By assumption, the total weight of processes that have failed is ρ. The

for loop is executed αρ times. By definition of αρ, there exists at least one

round in which the queen is correct.

Now the correctness of the protocol can be shown.

Theorem 1. The algorithm in Figure 2 solves the agreement problem for all

ρ < 1/4.

Proof. The validity property follows from the persistence of agreement. If all

processes start with the same value v, then, v is the value decided. Termination

is obvious because the algorithm takes a fixed number of rounds. Next, the

agreement property is shown. From Lemma 4, at least one of the rounds

23

has a correct queen. Each correct process decides either on the value sent by

the queen in that round or its own value. It chooses its own value w only if

myweight is at least 3/4. Therefore, the queen of that round must have weight

of at least 1/2 for that value; because, at most, 1/4 of the weight in Pi is from

faulty processes. Thus, the value chosen by the queen is also w. Hence, each

process decides on the same value at the end of a round in which the queen is

non-faulty. From persistence of agreement, the agreement property at the end

of the algorithm follows.

Let us analyze the algorithm’s message complexity. There are αρ

rounds, each with two phases. In the first phase, all processes with positive

weight send messages to all processes. This phase results in pN messages where

p ≤ N is the number of processes with positive weight. The second phase uses

only N messages. Thus, the total number of messages is αρ(pN + N). The

number of messages can be further reduced by sending messages to zero weight

processes only in the last round. Note that the algorithm from [5] takes f + 1

rounds (each with two phases) when the maximum number of allowed failures

is f. The following lemma shows that the number of rounds for the weighted

version is at most the number required for the unweighted version.

Lemma 5. αf/N ≤ f + 1 for all w and f.

Proof. It is sufficient to show that for all f,

i=f∑
i=1

w[i] ≥ f/N.

24

Suppose
∑i=f

i=1 w[i] < f/N for some f. This implies that the sum of the re-

maining weights is
∑i=n

i=f+1w[i] > (N − f)/N, because all weights add up to

1. Since w is in non-decreasing order, w[f + 1] > 1/N ; otherwise, the sum of

the remaining weights would be at most (N − f)/N. But, this implies that∑i=f
i=1 w[i] > f/N, because w[i] for all i ≤ f is at least w[f+1]. This contradicts

our original assumption.

2.4 Weighted-King Algorithm

This section gives an algorithm that takes αρ rounds with three phases

per round to solve the WBA problem. The algorithm is based on the Phase

King algorithm by Berman, Garay and Perry [4]. The King algorithm only

requires ρ < 1/3; but, adds an additional phase per round compared to the

Queen algorithm. The King algorithm is given in Figure 3. As in the Queen

algorithm, the King algorithm has a rotating coordinator. It is assumed that

the coordinator for round k is process Pk. Each process Pi has a current pref-

erence V [i] which can be 0, 1, or undecided . Initially, for every Pi, V [i] is either

0 or 1.

In the first phase, if process Pi has a positive weight, then Pi sends V [i]

to all processes including itself and receives values from other processes. Next,

if the cumulative sum of the weights of processes that sent 0 or 1 is greater

than 2/3 then Pi sets V [i] to that value, otherwise Pi sets V [i] to undecided .

In phase two, Pi first communicates its new preference of V [i] to every

process if Pi’s weight is positive. Note that in this phase, unlike in phase one,

25

Algorithm 3 King Algorithm for Weighted Byzantine Agreement at Pi
1: function Weighted-King-BA(i, Vi, w[N])
2: V ← array(N) – N length array initialized to undecided
3: V [i]← Vi
4: for k = 0 to αρ do

. First Phase
5: communicate(i, V, w)
6: if

∑
j|V [j]=0w[j] ≥ 2/3 then V [i]← 0

7: else if
∑

j|V [j]=1w[j] ≥ 2/3 then V [i]← 1

8: else V [i]← undecided
9: end if

. Second Phase
10: communicate(i, V, w)
11: s0 ←

∑
j|V [j]=0w[j]

12: s1 ←
∑

j|V [j]=1w[j]

13: if s0 > 1/3 then (V [i],myweight)← (0, s0)
14: else if s1 > 1/3 then (V [i],myweight)← (1, s1)
15: else (V [i],myweight)← (undecided , 1− s0 − s1)
16: end if

. Third Phase
17: if k = i then
18: broadcast(V [i])
19: end if
20: kingvalue ← receive(k)
21: if V [i] = undecided or myweight < 2/3 then
22: V [i]← kingvalue
23: end if
24: if V [i] = undecided then
25: V [i]← 1
26: end if
27: end for
28: return Vi
29: end function

26

processes may propose the value undecided .

Then, Pi accumulates the sum of weights of processes into s0 for pro-

cesses who propose 0, into s1 for processes who propose 1. The final step in

phase two is for Pi to set its preference to a new value based on the cumula-

tive weights computed in the first part of this phase. If one of the cumulative

weights is greater than 1/3, Pi sets its preference to that value. If more than

one of the sums is greater than 1/3, Pi gives preference to 0, then 1, then

undecided . Pi also sets myweight to the cumulative weight of the value that

V [i] is set.

In phase three, if Pi is the king for the current phase, Pi sends its

preference V [i] to every process. Next, all processes receive the king’s value

into kingvalue. Then, if Pi is undecided (V [i] = undecided) or the weight stored

in myweight from phase two is less than 2/3, Pi sets its preference to kingvalue

if kingvalue is not undecided or 1 if kingvalue is undecided . After executing for

αρ rounds, Pi outputs V [i] as the decided value. The correctness of the King

algorithm is shown in the following lemmas.

Lemma 6 (Persistence of Agreement). Assuming ρ < 1/3, if all correct pro-

cesses prefer a value v at the beginning of a round; then, they continue to do

so at the end of the round.

Proof. If all correct processes agree at the beginning of the round; then, for the

first phase, by definition, the same value must be chosen as ρ < 1/3. For the

second phase, the same value must again be chosen as ρ < 1/3. For the third

27

phase, because all correct processes agree and ρ < 1/3, all correct processes

will ignore the king’s value and keep their own.

Lemma 7. There is at least one round in which the king is correct.

Proof. By assumption, the total weight of processes that have failed is less

than ρ. The for loop is executed αρ times. By definition of αρ, there exists at

least one round in which the king is correct.

Theorem 2. The algorithm in Figure 3 solves the agreement problem for

ρ < 1/3.

Proof. Validity is satisfied by persistence of agreement. If all processes start

with the same value, then that value will be decided. Termination is obvious

because the algorithm takes a fixed number of rounds. From Lemma 7, in at

least one round, the king will be correct. In that round, every correct process

will choose either the king’s value, 1, or its own value. The only way that a

process may choose its own value is if myweight ≥ 2/3 and the process is not

undecided; otherwise, the process will choose the king’s value or 1 if the king

is undecided. If a process chooses its own value, then, myweight ≥ 2/3 for

that process and the weight of its value V [i] will be ≥ 1/3. So, the king must

also have chosen the same value. If myweight < 2/3 or V is undecided, then

the process will choose the kings value or 1 if the king is undecided. Because

the king is correct, then all processes will choose the same value.

28

The King algorithm takes αρ rounds with three phases per round. In

phase one and two, each process with positive weight sends N messages. In

phase three, the king process sends N messages. This results in αρ(2pN +N)

messages where p is the number of processes with positive weight.

2.5 Updating Weights

In this section, the case when the system is required to solve BA mul-

tiple times is considered. This case arises in most real-life applications of BA,

such as, maintenance of replicated data and fault-tolerant file systems [9]. In

addition, each execution of the BA protocol provides certain feedback in terms

of the processes’ behavior. For example, if a process did not follow the pro-

tocol (i.e., did not send the required messages), it should be considered less

reliable for future BA instances. In this section, a fault-tolerant method to

update weights is given. For simplicity, only the weighted-Queen algorithm is

given; the extension to weighted-King algorithm is similar.

The following lemma gives the conditions sufficient for Pi to detect that

Pj is faulty.

Lemma 8. In the Weighted-Queen algorithm, a correct process Pi can detect

that Pj is faulty if any of the following conditions are met:

1. If Pj either does not send a message or sends a message with wrong

format in any of the rounds, then Pj is faulty.

29

2. If myweight > 3/4 in any round and the value sent by the queen in that

round is different from myvalue, then the queen is faulty.

Proof. The first part is obvious. For the second part, note that if myweight >

3/4; then, the weight for the queen for that value in that round is at least

1/2. If the queen is correct, the value sent by the queen would have matched

myvalue.

The algorithm in Figure 2 is modified by adding a variable faultySet

that keeps track of all processes that Pi has detected to be faulty based on

Lemma 8. Now a method is presented to update the weights of the processes

such that with every execution of WBA, the processes get better in solving

WBA by increasing the weights of reliable processes. These algorithms require

that the weight assignment for all correct processes be identical; so, it is not

sufficient for a process to update its weight individually. All correct processes

need to agree on the faulty set.

The algorithm to update weights shown in Figure 4 consists of three

phases. In the first phase, called the learning phase, processes broadcast their

faultySet to learn about faulty processes from other correct processes. The

main idea is that if processes with total weight at least 1/4 inform Pi that

some process Pj is faulty; then, Pj is in faultySet of at least one correct pro-

cess. The second phase consists of processes agreeing on the set of faulty

processes. For each process j, if j is in the faultySet of Pi , then Pi invokes

30

Weighted-Queen-BA algorithm with 1 as the proposed value; otherwise, it in-

vokes it with 0 as the proposed value. The output variable value denotes the

decided value by the Weighted-Queen-BA algorithm. Therefore, the set of

faulty processes that all correct processes agree upon is consensusFaulty . In

the third phase, processes update their weights based on consensusFaulty .

The correctness of the algorithm in Figure 4 is shown in the following

lemma and theorem.

Lemma 9. All correct processes with positive weights before the execution of

the algorithm have identical w vectors after the execution of the algorithm.

Proof. The weight assignment is done based on consensusFaulty . The variable

consensusFaulty is identical at all correct processes based on the correctness

of Weighted-Queen algorithm.

Theorem 3. A correct process can never be in consensusFaulty . Any faulty

process that is in the initial faultySet of correct processes with total weight at

least 1/4 will be in consensusFaulty of all correct processes.

Proof. A correct process Pj can never be in the initial faultySet of any cor-

rect process (due to Lemma 8). In the learning phase, suspectWeight [j] at

any process can never be equal or more than 1/4, because only faulty pro-

cesses can suspect Pj. Therefore, j is not in faultySet of any correct process

after the learning phase. Since all correct processes will invoke WBA with

0 for Pj, by validity of the Weighted-Queen-BA algorithm, it will not be in

31

Algorithm 4 Weight-Update Algorithm for the Queen Algorithm for
Weighted Byzantine Agreement at Pi

1: faultySet : set of processes based on Lemma 8
2: consensusFaulty : set of processes initially {}
3: suspectWeight : array[1..p] of float initially all 0.0

. First phase (learning phase)
4: for j such that w[j] > 0 do
5: send faultySet to all (including itself)
6: end for
7: for j such that w[j] > 0 do
8: receive faultySet j from Pj
9: for k ∈ faultySet j do

10: suspectWeight [k]← suspectWeight [k] + w[j]
11: end for
12: end for
13: for j such that w[j] > 0 do
14: if suspectWeight [j] ≥ 1/4 then faultySet ← faultySet ∪ {j}
15: end if
16: end for

. Second phase
17: for j such that w[j] > 0 do
18: if j ∈ faultySet then value ←Weighted-Queen-BA(1)
19: else value ←Weighted-Queen-BA(0)
20: end if
21: if value = 1 then consensusFaulty ← consensusFaulty ∪ {j}
22: end if
23: end for

. Third phase
24: totalWeight ← 1.0
25: for j ∈ consensusFaulty do
26: totalWeight ← totalWeight − w[j]
27: w[j]← 0
28: end for
29: for all j do
30: w[j]← w[j]/totalWeight
31: end for

32

consensusFaulty . Any faulty process that is in the initial faultySet of correct

processes with total weight of at least 1/4 will be in faultySet of all correct

processes after the learning phase. Again, from the validity of WBA, the faulty

process will be in consensusFaulty .

The model assumed here for updating weights is that once a process

is faulty, it will always be faulty. A modification can be considered where a

process may become non-faulty after being faulty for a period of time. In this

case, instead of setting the weight to zero, the weight can be reduced by some

multiple.

2.6 Weight Assignment

Deciding what weight assignment to use is application specific. A sim-

plified example will be considered for this section. Consider two sets of pro-

cesses A and B where all processes in A have probability of failure fa and all

processes in B have probability of failure fb. We will consider four weight as-

signments. The first is a uniform weight assignment for everyone. This weight

assignment produces the same results as the classical algorithm. The next

assignment is to only give non-zero weights to the set with a lower probability

of failure. The third is to give weights to each process proportional to the

inverse of their probability of failure. Weights proportional to the probability

of not failing is the final assignment considered.

The graph in Figure 2.1 is the probability of the weight of failed pro-

33

cesses exceeding 1/3 versus |B| with |A| = 6, fa = 0.1, fb = 0.3. This graph is

only taken for points where the number of processes is divisible by three. The

number three is chosen because taking every point produces many more jumps

in the graph which just add noise and distract from the trend. Notice that

there are still some jumps. These jumps are caused by the effect of adding a

process to a group where that addition does not increase the number of faulty

processes that can be tolerated. But, adding that one process increases the

expected weight of failed processes. So, there is a jump in the probability of

the total weight of failed processes being above 1/3. Each curve starts at the

same value because set B is empty. Observe that each curve initially has a

positive average slope. It is not until a significant number of additional pro-

cesses are added that the curve begins to have a negative slope. The uniform

assignment gives the worse probability for a small size of B relative to the size

of A. Changing the number of processes in set A moves the curves vertically

in relation to each other. Which weight assignment is best depends upon the

number of processes in both A and B and their probability of failure. In this

particular example, setting the weight proportional to the inverse probability

of failure gives the best results.

Figure 2.2 shows the number of rounds required for the King algorithm

to ensure success. Notice the uniform assignment is the highest. In both of

these graphs, the uniform weight assignment was the least attractive. The

most attractive assignments are only giving positive weights to group A and

setting the weight proportional to the inverse probability of failure. For this

34

0 50 100 150 200 250 300 350 400
Number of processes in set B

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Pr
ob

ab
ilit

y
of

 th
e

we
ig

ht
 o

f f
ai

le
d

pr
oc

es
se

s e
xc

ee
di

ng
 1

/3

Only A non-zero
Uniform
Proportional to the inverse probability of failure
Proportional to the probability of not failing

Figure 2.1: Probability of the weight of failed processes exceeding 1/3 with
versus |B| with |A| = 6, fa = 0.1, fb = 0.3.

particular setup, setting weights proportional to the inverse probability of

failure is the best. When the size of set B is not much larger than A, only

giving positive weights to set A may be the best. When the size of set B is

significantly larger than A, then setting the weights to be proportional to the

inverse probability of failure is the best.

35

0 50 100 150 200 250 300 350 400
Number of processes in set B

0

20

40

60

80

100

120

140
Nu

m
be

r o
f r

ou
nd

s

Only A non-zero
Uniform
Proportional to the inverse probability of failure
Proportional to the probability of not failing

Figure 2.2: The number of rounds required for the King algorithm versus the
number of processes in set B for the different weight assignments.

2.7 Conclusions

This chapter has presented a weighted version of the Byzantine Agree-

ment Problem and provided solutions for the problem in a synchronous dis-

tributed system. We show that the weighted version has the advantage of

using fewer messages and tolerating more failures (under certain conditions)

than is required by the lower bound for the unweighted version. These algo-

rithms have applications in many systems in which there are two classes of

processes: trusted and untrusted processes. Instead of tolerating any f faults

36

in the BA problem, these algorithms tolerate failure of processes with total

weight less than f/N. For example, an implementation can now tolerate more

than f faults of untrusted processes; but, fewer than f faults of trusted pro-

cesses depending on the weight assignment. A fault-tolerant method has also

been presented to update the weights at all the correct processes. This algo-

rithm is useful for many applications where the agreement is required multiple

times. Our update algorithm guarantees that the weight of a correct process

is never reduced and the weight of any faulty process, suspected by correct

processes whose total weight is at least 1/4, is reduced to 0.

37

Chapter 3

Accurate Byzantine Agreement with Feedback

3.1 Introduction

This chapter presents Accurate Byzantine Agreement with Feedback,

a joint work with Bharath Balasubramanian and Vijay Garg [26, 27]. In the

standard version of Byzantine Agreement [15, 20, 24, 35, 42], the value that is

agreed upon may be either of the binary values so long as it is proposed by at

least one non-faulty process. In some scenarios, it is better for the system to

agree on a specific value among the two binary values. For example, suppose

in a distributed control system a coordinated action needs to be taken (such as

opening or closing a valve) depending upon the observations made by possibly

faulty distributed processes. Depending upon the outcome of the action, the

environment can provide a feedback if the action taken was correct or not. As

another example, suppose that the system is making decision on whether to

sell a stock based on recommendations made by multiple processes. The final

closing price of the stock provides a feedback for the decision made. Thus,

The work presented in this chapter is based on the following publication, all authors
contributed equally.

Vijay K. Garg, John Bridgman, and Bharath Balasubramanian. Accurate byzantine
agreement with feedback. In Antonio Fernàndez Anta, Giuseppe Lipari, and Matthieu
Roy, editors, Principles of Distributed Systems, pages 465–480, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

38

the system or the environment can usually provide feedback to the non-faulty

processes about which of the values was preferred or correct for that iteration

of the agreement algorithm. Can the non-faulty processes use this feedback in

a way that the probability of choosing the correct value increases in subsequent

iterations of the algorithm?

We refer to this version of the BA problem as Accurate Byzantine

Agreement (ABA) and define it as follows. Assume a set of n processes among

which at most f Byzantine faults can occur. All non-faulty processes are

required to make decisions for multiple rounds or iterations. For each iteration,

a process can propose a binary value 0 or 1. All non-faulty processes must

agree on each decision and must take finite time to agree. After each decision,

the environment provides a common feedback to all processes indicating if

their decision was correct or wrong. The goal is to design an algorithm that

maximizes the (expected) number of correct decisions by non-faulty processes

over iterations of the algorithm.

In this chapter, we give an algorithm, referred to as the ABA algo-

rithm for the ABA problem. Our method relies on maintaining a common

weight vector at all processes and updating this vector based on the feedback

for each iteration. Initially, the weight of each process is a non-negative value

proportional to the trust of the system on that process. If there is no prior

information available, then the weights can simply be initialized to 1/n. We

use a weighted majority rule to determine the agreed upon value for the ABA

problem. Once the value is committed, the feedback determines whether the

39

decided value was a mistake or not. An important aspect of the algorithm is

how the weights are updated based on the feedback. One possibility is to pe-

nalize all processes that proposed a wrong value after each iteration. Another

possibility is to penalize processes only if the value decided in that iteration

was wrong. Somewhat surprisingly, the behavior of the ABA algorithm may

crucially depend upon which rule is used. We provide guarantees on the ac-

curacy of the algorithm based on different assumptions on the accuracy of the

processes and different weight update rules.

Byzantine Agreement is a well-studied problem in the field of dis-

tributed computing with research in both the theoretical [1, 22, 30, 32] and

practical aspects [9, 11, 13]. For the synchronous model of communication (as

assumed in this chapter), it is known that agreement can be achieved only

when n ≥ 3f + 1 [42]. In our work in Chapter 2 [25], we present algorithms

and bounds for weighted BA, where processes are assigned weights according

to the application. In that chapter, we give Byzantine agreement protocols

that work even when n < 3f + 1, where f is the number of processes that

have failed so long as the ratio of the weight of the failed processes to the

weight of non-faulty processes is at most 1/2. We also present techniques to

increase the weights of the non-faulty processes relative to that of the faulty

processes based on detection of faulty behavior. The Weighted BA problem

does not have any notion of accurate value for agreement or environmental

feedback as required for the ABA problem. It can be used as a subroutine in

the ABA algorithm as shown in Section 3.5. Other approaches to BA include

40

the use of artificial neural networks [36, 49], randomized algorithms [6, 43] or

authentication based algorithms [16, 42]. None of these works explore the no-

tion of accurate processes or the correct value for agreement. Our work can

be applied to extend the results of these papers.

The concept of weighted majority and multiplicative weight update

is used in many disciplines such as learning theory, game theory and linear

programming [31, 38]. In the literature for this methodology, the experts are

independent entities and there is no notion of liars that can collude and confuse

other experts into suggesting the wrong value. In this chapter, we assume

the presence of malicious Byzantine experts and design algorithms to tolerate

them. In summary, we make the following contributions:

• The ABA Problem: We introduce the problem of Accurate Byzantine

Agreement, where the processes have to agree on a correct binary value

as deemed by environmental feedback. The goal is to use this feedback

to improve the accuracy of the algorithm in subsequent iterations.

• The ABA Algorithm: We present an algorithm to solve the ABA problem

that uses a standard solution to the BA problem and a multiplicative

method to maintain and update process weights. We make guarantees

on the accuracy of the algorithm for the following models:

– Deterministic Accuracy : We make assumptions on two ratios, the

accuracy ratio (α) and the initial fault ratio (r0). The accuracy ratio

41

is the ratio of weight of the accurate processes to the weight of the

non-faulty processes. The fault ratio r is the ratio of the weight

of the faulty processes to that of the non-faulty processes. When

α > 3/4, the algorithm is always accurate if r0 < 1/2. We relax

this bound and show that when α > (1/2+d), for any 0 ≤ d ≤ 1/2,

the algorithm is always accurate if r0 < 2d.

– Probabilistic Accuracy : We make assumptions on the probability

with which non-faulty processes propose the correct value, β, and

on the fault ratio r. When β > 1/2 + d for any 0 < d < 1/2, the

probability of the algorithm being inaccurate is exponentially small

if r < 2d.

– At-Least-One Accuracy : If there exists at least one process such

that it is inaccurate at most b times, then the ABA algorithm is

inaccurate only O(b+ log n) times. Hence, the algorithm tracks the

most accurate process in the system.

• Experimental Evaluation: We present simulation results evaluating the

performance of three distinct solutions: the ABA algorithm (with up-

date on inaccuracy), the ABA algorithm with update on every iteration

(always update) and the standard Byzantine Agreement (never update).

While always-update and never-update perform very well for one of the

models each, they perform poorly for the other one. The update on

inaccuracy method performs well for both the models.

42

3.2 Model and Definitions

This chapter assumes the execution model described in Chapter 1 Sec-

tion 1.1. Furthermore, we classify the processes in our system based on their

behavior into non-faulty, accurate and faulty processes. While the notion of

faulty and non-faulty processes is common to all BA problems, we introduce

the concept of accurate processes that captures the idea of a correct proposal.

A non-faulty process is considered accurate for an iteration if it proposes the

correct value for that iteration.

In the standard BA problem, all non-faulty processes must agree on

a common value. The only requirement on the decided value is that it must

be proposed by a non-faulty process. In our proposal, the value decided by

the algorithm is important as there is a reward function associated with the

value decided, awarded by the environment or the system. The correct value

is assigned 1 unit of reward and an incorrect value is assigned 0 units, i.e.,

no reward. Based on the reward, we replace the standard concept of validity

with the notion of accuracy. Validity specifies that the value decided by the

non-faulty processes must have been proposed by at least one of the non-faulty

processes. This condition eliminates the trivial solution where all non-faulty

processes agree on a fixed value all the time. In our system, the accuracy

requirement eliminates the trivial solution. We define our problem below.

Definition 1. (Accurate Byzantine Agreement with Feedback) Consider n pro-

cesses consisting of non-faulty and faulty processes. There are multiple binary

43

decisions that these n processes are required to make. For each possible deci-

sion (iteration of the ABA problem), each of the non-faulty processes proposes

either 0 or 1. An algorithm that solves the Accurate Byzantine Agreement with

Feedback (ABA) problem, must guarantee the following properties:

• Agreement: For each iteration, all non-faulty processes decide on the

same value.

• Termination: The algorithm terminates in a finite number of rounds.

• Accuracy: The non-faulty processes agree on a value that is deemed cor-

rect by environmental feedback.

To incorporate the feedback provided by the environment we assign a

non-negative weight wi to each process Pi that provides an estimate, possibly

erroneous, of the trust placed on that process. We summarize our notation in

Table 3.1.

Table 3.1: Notation in Chapter 3

n Number of processes f Number of Byzantine faults
wi Weight of process Pi a Total weight of accurate processes
p Total weight of non-faulty processes q Total weight of faulty processes
r Fault Ratio (= q/p) α Accuracy ratio (= a/p)

3.3 The ABA Algorithm

In this section, we propose an algorithm (Algorithm 5) for the ABA

problem. The algorithm is identical at all processes and executes in syn-

44

Algorithm 5 The ABA Algorithm at Pi
1: W ← array(N) initialized to system trust (default value all 1/n)
2: V ← array(N) initialized to 0
3: t← total number of iterations
4: for iteration = 1 to t do
5: V [i]← value proposed by Pi

. Step 1: Exchange values with all
6: broadcast(V [i])
7: for j = 1 to N do
8: V [j]← receive(j)
9: end for

. Step 2: Agree on V
10: for j = 1 to N do
11: V [j]← ByzantineAgreement(V [j])
12: end for

. Step 3: Compute support and choose majority
13: decided ←

∑
{j:V [j]=0}W [j] <

∑
{j:V [j]=1}W [j]

. Step 4: Wait for reward and determine the correct value based on the
feedback

14: correctVal ← reward = 1 ? decided : ¬decided
. Step 5: multiplicative weight update on inaccuracy: ABA(UI)

15: if reward = 0 then
16: for j : V [j] 6= correctValue do
17: W [j]← W [j] · (1− ε)
18: end for
19: end if

. Alternative Step 5’: multiplicative weight update on all iterations
ABA(UA)

20: for j : V [j] 6= correctValue do
21: W [j]← W [j] · (1− ε)
22: end for
23: end for

45

chronous iterations. At each process, we maintain two vectors W and V .

Vector W stores the weight of each process while vector V stores the value

proposed by each of them. Initially, the weight of each process is a non-

negative value directly proportional to the initial trust on that process. In

each iteration of the algorithm each non-faulty process proposes a value and

executes Step 1 to Step 5 of the algorithm.

In Step 1, all processes exchange their proposed values to populate V .

If no value is received from some process, the corresponding entry is set to 0.

Since faulty processes may send conflicting values to other processes, it is not

guaranteed that the V vector is identical at all non-faulty processes after Step

1.

In Step 2, the algorithm requires all non-faulty processes to agree on

the value proposed by every other process and thereby make the V vector

identical at all non-faulty processes after Step 2 of any iteration. For this step,

we can use any standard BA algorithm such as the King algorithm [4] that

requires n ≥ 3f + 1, or the Queen algorithm [5] that requires n ≥ 4f + 1. The

validity property satisfied by these algorithms ensures that the value of V [i]

for any non-faulty process Pi is exactly the value proposed by Pi.

In Step 3, processes determine the sum of weights of all processes that

support value 0 or 1. The value with larger support, i.e., the weighted majority

is chosen as the value in decided .

In Step 4, processes receive the common feedback from the environment

46

to determine the correct value.

In Step 5, we carry out the update of weights. If the value decided

was incorrect, then the weights of the processes that proposed an incorrect

value is reduced by some constant proportion ε (0 < ε < 1) of its previous

weight (multiplicative update). As an alternative to step 5, in step 5’, we

carry out the weight update on all iterations irrespective of the reward value.

If we update weights only on inaccuracy, we refer to the algorithm as ABA(UI)

(“update on inaccuracy”). If we update weights on all iterations, we refer to

the algorithm as ABA(UA) (“update always”). We now prove that both the

versions of the algorithm guarantee the agreement and termination property

specified in Definition 1 independent of the assumptions on accuracy.

Theorem 4. (Agreement & Termination) Assuming n ≥ 3f+1, all iterations

of the ABA algorithm guarantee agreement and termination.

Proof. Agreement : We show that after Step 2 of every iteration, all non-faulty

processes have identical W and V vectors. The proof is by induction on

the iteration number. At the first iteration, the vector W is identical at all

non-faulty processes by the initialization. Now, assume that the vector W is

identical at the beginning of any iteration i. Because all processes agree on

vector V using Byzantine agreement, all non-faulty processes will have identi-

cal V after Step 2. This implies that all non-faulty processes will have identical

support for 0, support for 1 and value of decided after step 3 because these

variables depend only on W and V . Since the reward function is assumed to

47

be common, all non-faulty processes will have identical value of correctVal and

therefore will update W in an identical manner. The value decided depends

only on W and V vectors and hence all non-faulty processes agree on the same

value.

Termination: This is a synchronous algorithm which executes in finite

number of rounds and hence, termination is satisfied trivially.

The ABA algorithm guarantees another useful property: if a non-faulty

process proposes an accurate value, then it can never be penalized. This

property exploits the validity condition satisfied by the BA algorithm used in

Step 2. A non-faulty process Pi will send the same value to all non-faulty

processes. Therefore, all non-faulty processes will have identical V [i] when

they invoke the BA algorithm. Therefore, by validity of the BA algorithm,

V [i] at all non-faulty processes will be identical to the one proposed by Pi.

3.4 Accuracy Guarantees of the ABA Algorithm

In the previous section, we have shown that ABA algorithm guarantees

agreement and termination. This section focuses on the accuracy guarantees

the algorithm can provide based on varying assumptions about the accuracy

of the processes in the system. Since standard Byzantine agreement is used

in Step 2, in this section we assume that n ≥ 3f + 1, according to the lower

bound for the BA problem [42]. In Section 3.5, we consider the case when

n ≥ 3f + 1 does not hold.

48

3.4.1 Deterministic Accuracy

For deterministic accuracy, we make guarantees based on the accuracy

ratio α (ratio of the weight of accurate processes to the weight of non-faulty

processes) and the fault ratio of the system r (ratio of the weight of faulty

processes to the weight of non-faulty processes). We show that if α > 3/4

for each iteration and if the initial fault ratio r0 < 1/2; then, the algorithm

guarantees accuracy. Next, we relax this requirement and show that it is

sufficient that α > (1/2 + d) for each iteration such that r0 < 2d, to guarantee

accuracy.

We first show that as long as α > 1/2 for each iteration, r never in-

creases if we update weights only on error. This enables us to make guarantees

just based on the initial fault ratio of the system. The proof crucially depends

on the fact that we update the weights of inaccurate processes only when the

algorithm chooses the incorrect value.

Lemma 10. (Non-Increasing Fault Ratio) For any iteration, if the accuracy

ratio α > 1/2, then the fault ratio r cannot increase after that iteration of the

ABA(UI) algorithm.

Proof. In the ABA(UI) algorithm, the weights of the processes changes only

when the algorithm makes a mistake. Consider the weight of the non-faulty

processes, p. Since α > 1/2, when the algorithm makes a mistake, greater

than p/2 of the weight will be unaffected and less than p/2 of the weight will

be reduced by a factor of 1 − ε. Hence, if p′ is the weight of the non-faulty

49

processes after a weight update,

p′ > p/2 + (1− ε)p/2 = p(2− ε)/2. (3.1)

Now, consider the weight of the faulty processes q. The algorithm

chooses the wrong value only when a majority weight, i.e. > (p + q)/2 of the

weights are inaccurate. Since greater than p/2 of the weights are accurate, at

least q/2 of the weights are inaccurate. Hence, if q′ is the weight of the faulty

processes after a weight update,

q′ < q/2 + (1− ε)q/2 = q(2− ε)/2. (3.2)

Dividing equation 3.2 by equation 3.1, we get, q′/p′ < q/p.

Note that the proof for Lemma 10 does not hold for the always up-

date rule. If the faulty processes keep proposing the correct value, then the

ABA(UA) algorithm will increase the relative weight of the faulty processes

and consequently the fault ratio. If the fault ratio increases beyond 1, then

Byzantine processes can force the ABA algorithm to choose incorrect values

on crucial decisions.

In the following theorem we show that if α > 3/4, then the ABA(UI)

algorithm never makes a mistake as long as the initial fault ratio is less than

1/2.

Lemma 11. If the accuracy ratio α > 3/4 for all iterations, and the initial

fault ratio r0 < 1/2, then the ABA(UI) algorithm always guarantees accuracy.

50

Proof. If the accuracy ratio a/p is greater than 3/4, then the weight of accu-

rate proposals a is at least 3p/4. This implies that the weight of inaccurate

proposals is at most p+ q− 3p/4 = p/4 + q. The algorithm selects the correct

value if the accurate weight is more than the inaccurate weight. We need to

show that, p/4 + q < 3p/4. Dividing both sides by p and rearranging, this

is equivalent to showing that r < 1/2. Since r0 < 1/2, from Lemma 10, for

all iterations, r < 1/2. Note that, for the ABA(UI) algorithm, we update

the weights only when the algorithm makes a mistake. So for any iteration,

if α > 3/4 and r < 1/2, it will remain so for every subsequent iteration and

hence the ABA(UI) algorithm never makes a mistake.

In the following theorem, we show that even if the accuracy ratio is just

above 1/2, the ABA algorithm never makes a mistake as long as the initial

fault ratio is less than a certain threshold.

Theorem 5. (Deterministic Accuracy) If the accuracy ratio α > 1/2 + d for

all iterations and if the initial fault ratio r0 < 2d, for any 0 ≤ d ≤ 1/4, then

the ABA(UI) algorithm always guarantees accuracy.

Proof. If the weight of accurate proposals is at least p(1/2 + d), then the

weight of inaccurate proposals is at most p(1/2−d)+ q. The algorithm selects

the correct value if the accurate weight is more than the inaccurate weight.

Therefore, we need p(1/2− d) + q < p(1/2 + d). This condition is equivalent

to r < 2d. Since r0 < 2d, from lemma 10, for any iteration, r < 2d. Since

51

the correct decision was made, the weights are not updated and the algorithm

continues to chose the correct value in the subsequent iterations.

Note that when d equals 1/4, this theorem reduces to lemma 11. Thus,

theorem 5 generalizes lemma 11, when d < 1/4. Accuracy of the ABA(UI)

is guaranteed if either an overwhelming majority of non-faulty processes is

accurate (d is large) or there is a large percentage of non-faulty processes (r0

is small).

In the following theorem, we make guarantees based on the number of

accurate processes and the number of faulty processes in the system.

Theorem 6. If the number of accurate processes is greater than 1/2 +d times

the number of non-faulty processes for all iterations and if the initial number

of faulty processes is less than 2d times the number of non-faulty processes, for

any 0 ≤ d ≤ 1/4, then the ABA(UI) algorithm always guarantees accuracy.

Proof. We initialize the weights of all processes to 1/n. This proof follows

directly from theorem 5. If the number of accurate processes is greater than

1/2 + d times the number of non-faulty processes then the accuracy ratio

α > 1/2 + d, since the weights are equally initialized. Similarly, the initial

fault ratio r0 < 2d. Hence from theorem 5, the ABA(UI) algorithm guarantees

always guarantees accuracy. As mentioned in the proof of theorem 5, since

the algorithm decides on the correct value, the weights are not updated and

hence the algorithm continues to chose the correct value in the subsequent

iterations.

52

The following theorem handles the case when a majority of the non-

faulty processes are accurate but the fault ratio is not smaller than 2d.

Theorem 7. (Accuracy after some initial mistakes) If the accuracy ratio α >

1/2 + d for all iterations, for any 0 ≤ d ≤ 1/4, then the ABA(UI) algorithm

guarantees accuracy after some initial mistakes.

Proof. (Sketch) Similar to the proof of lemma 10, it is easy to show that there

exists a constant γ such that the fault ratio decreases by a factor of at least

γ for any mistake. Therefore, eventually the fault ratio becomes less than

2d. Subsequently, by theorem 5 the algorithm ABA(UI) does not make any

mistake.

It is easy to show that ABA(UA) algorithm can be forced to make

unbounded mistakes by the Byzantine processes for any accuracy ratio less

than 3/4. Byzantine processes may initially propose correct values to increase

the fault ratio. Once the fault ratio is high, they can ensure that ABA makes

mistakes. They can repeat this cycle forever.

3.4.2 Probabilistic Accuracy

For probabilistic accuracy, we make guarantees based on the probability

of accuracy of each non-faulty process β, and the fault ratio r, of the system.

We show that if β > 1/2 + d (0 < d < 1/2), and r < 2d, the ABA algorithm

guarantees accuracy with high probability.

53

Theorem 8. (Probabilistic Accuracy) Let all weights in the system be in [0, 1].

If the accuracy probability of non-faulty processes β > 1/2 + d and the fault

ratio r < 2d, for any (0 < d < 1/2), for all iterations, then the ABA algorithm

guarantees accuracy with probability greater than 1 − (e−δ

(1−δ)(1−δ))
µ, where µ =

p(1/2 + d) and δ = (2d− r)/(2d+ 1).

Proof. Let Xi be the random variable indicating the non-faulty process Pi

making an accurate proposal. Let X =
∑

iwiXi, where wi is the weight of

process Pi. We have E[Xi] = 1/2 + d. Therefore, E[X] = (1/2 + d)
∑

iwi =

p(1/2 + d).

Let µ = E[X]. We now show that (1− δ)µ = (p+ q)/2.

(1− δ)µ = (2d+ 1− (2d− r))/(2d+ 1) · p · (2d+ 1)/2

= (1 + r)p/2

= (1 + q/p)p/2

= (p+ q)/2.

When r < 2d ≤ 1, we get that 0 < δ < 1. Hence, from Chernoff’s

bound, we have,

Pr[ABA algorithm makes wrong decision]

= Pr[
∑

j:V [j]=correctV alW [j] < (p+q)
2

] {From the algorithm}

≤ Pr[X < (p+ q)/2)] {Considering only non-faulty processes}

= Pr[X < (1− δ)µ] {Shown above}

<
(

e−δ

(1−δ)(1−δ)

)µ
{From Chernoff’s bound and 0 < δ < 1}.

54

In Theorem 8, the error probability depends upon δ = (2d−r)/(2d+1).

As r decreases, δ increases. We now show that for the ABA(UA) algorithm

the ratio r is expected to decrease exponentially with increasing iterations.

Theorem 9. (ABA(UA): Exponentially Decreasing Expected Fault Ratio) If

the accuracy probability of non-faulty processes is at least 1/2 + d, and the

accuracy probability of faulty processes is at most 1/2−d, then there exists k >

1, such that after j iterations of the ABA(UA) algorithm, the expected ratio

of the weight of the non-faulty processes to the weight of the faulty processes

is at least kj/r0.

Proof. We first show a bound on the expected weight of a non-faulty process

after j iterations. Let the initial weight of a non-faulty process be w0. Let

Mi be the random variable denoting the multiplicative factor at iteration i

for a non-faulty process. Let Wj be the random variable denoting weight of a

non-faulty process after j iterations. It is clear that for ABA(UA) algorithm,

Wj = w0Π
i=j
i=1Mi. The multiplicative factor for any iteration depends on the

environmental feedback and is independent of other iterations. Hence,

E[Wj] = w0Π
i=j
i=1E[Mi]

≥ w0Π
i=j
i=1((1/2 + d) · 1 + (1/2− d) · (1− ε))

= w0(1− ε/2 + dε)j.

55

Similarly, since the probability that a faulty process makes a correct

proposal is at most 1/2 − d, the expected weight of a faulty process after j

iterations of the ABA(UA) algorithm is at most (1−ε/2−dε)j times its original

weight.

We now show that the expected fault ratio decreases exponentially with

the number of iterations. Let p0 and q0 be the initial weights of non-faulty

and faulty processes such that q0/p0 = r0. Let Sj and Tj be the random

variables to denote weights of the non-faulty processes and faulty processes

after j iterations of the ABA(UA) algorithm. Since the expected weight of

each non-faulty process after j iterations is at least (1 − ε/2 + dε)j times its

original weight; by linearity of expectation,

E[Sj] ≥ p0 · (1− ε/2 + dε)j.

Similarly,

E[Tj] ≤ q0 · (1− ε/2− dε)j.

We now bound E[Sj/Tj]. Using independence of Sj and Tj, we get that

E[Sj/Tj] = E[Sj] · E[1/Tj].

We now use the fact that for any non-negative random variable X, E[1/X] ≥

1/E[X] which can be shown using Jensen’s inequality (E[f(X)] ≥ f(E[X])

56

for convex f). Therefore,

E[Sj] · E[1/Tj] ≥ E[Sj] · 1/E[Tj]

≥ p0 · (1− ε/2 + dε)j

q0 · (1− ε/2− dε)j

= 1/r0 ·
(

1 +
2dε

1− ε/2− dε

)j
By defining

k =

(
1 +

2dε

1− ε/2− dε

)
,

we get the desired result. Because 0 < ε < 1 and 0 < d < 1/2, (1− ε/2− dε)

is guaranteed to be positive which ensures k > 1.

Remark: The above theorem can be generalized to the case when non-

faulty processes are accurate with probability at least 1/2 + d1 and faulty

processes are accurate with probability at most 1/2− d2. In this case,

k =

(
1 +

ε(d1 + d2)

1− ε/2− d2ε

)
.

When d1 = d2, we get the original value of k. Also, when d2 = −d1 (faulty

processes are as accurate as non-faulty processes), we get k equals 1.

3.4.3 At-Least-One Accuracy

For this section, we assume that there is at least one process in the

system that is inaccurate only for a small number of iterations of the ABA

algorithm. This assumption is sufficient to guarantee cumulative accuracy, i.e.,

a bound on the total number of mistakes made by the algorithm. Our results

57

are based on the method of weighted majority with multiplicative updates [31].

We first consider ABA(UI) algorithm. In the following theorem, we show that

ABA(UI) guarantees accuracy for a large number of iterations.

Theorem 10. (At-Least-One Accuracy, ABA(UI)) Assume n ≥ 3f + 1. If

there exists at least one process such that is inaccurate at most b out of j

iterations of the ABA(UI) algorithm, then the algorithm is inaccurate at most

2(1 + ε)b+ (2/ε) log n times.

Proof. The proof follows from standard arguments in multiplicative update

method [31]. We initialize the weights of all the processes to 1/n. Let φ(i) be

the sum of all the weights of the processes at the end of iteration i. Suppose

that for any iteration i, the ABA(UI) algorithm is wrong. This means that

the weighted majority of the values in the proposed vector were wrong and

hence a majority of the weights will decrease by (1− ε) of their previous value.

Therefore,

φ(i) ≤ φ(i− 1)/2 + φ(i− 1)/2 · (1− ε) = φ(i− 1)(1− ε/2).

The total weight, at the beginning of the algorithm, φ(0) is equal to one. Sup-

pose that the ABA(UI) algorithm makes m(j) mistakes in the first j iterations.

After j iterations of ABA(UI), we get

φ(j) ≤ φ(0)(1− ε/2)m(j)

= (1− ε/2)m(j).

58

Now, consider a non-faulty process that is inaccurate at most b out of j

iterations. In spite of the presence of Byzantine processes, ABA(UI) algorithm

guarantees that this process is never penalized when it is accurate. After j

iterations, the weight of this process is at least

(1− ε)b · (its initial weight) = (1− ε)b/n.

This weight is less than the total weight. Therefore,

(1− ε)b/n < (1− ε/2)m(j).

Taking log on both sides and shifting n to the right hand side, we get

b log(1− ε) < log n+m(j) log(1− ε/2).

Dividing both sides by log(1 − ε/2) which is a negative quantity and

rearranging gives us

m(j) < b log(1− ε)/ log(1− ε/2)− log n/ log(1− ε/2).

In the following part of the proof, we use two inequalities: − log (1− ε) ≤

ε + ε2 and − log (1− ε/2) ≥ ε/2 that require ε < 0.684. Applying these in-

equalities we get,

m(j) < b · 2 · (ε+ ε2)/ε+ 2 log n/ε.

Therefore,

m(j) < 2(1 + ε)b+ 2/ε log n.

59

Interestingly, the result holds even when we use ABA(UA).

Theorem 11. (At-Least-One Accuracy, ABA(UA)) Assume n ≥ 3f + 1. If

there exists at least one process such that is inaccurate at most b out of j

iterations of the ABA(UA) algorithm, then the algorithm is inaccurate at most

2(1 + ε)b+ (2ε) log n times.

Proof. Note that even when we update weights on all iterations, the following

inequalities hold. The total weight in the system,

φ(j) ≤ φ(0)(1− ε/2)m(j) = (1− ε/2)m(j).

The weight of the process that is wrong b out of j iterations is

(1− ε)b · (its initial weight) = (1− ε)b/n.

Hence, the previous proof applies.

Substituting b = 0 in the above theorem, i.e., when at least one process

is accurate for all j iterations of the algorithm, the ABA algorithm makes a

mistake only O(log n) times. Note that this is independent of the number

of iterations and hence, if the ABA algorithm is run for a large number of

iterations (j >> log n), then it guarantees accuracy in most of them. Or in

other words, the ABA algorithm is approximately as accurate as the most

accurate process in the system.

60

3.5 ABA Algorithm with Weighted Byzantine Agree-
ment

In the ABA algorithm proposed in Figure 5, we have used standard

Byzantine Agreement in Step 2. Since standard Byzantine Agreement as-

sumes n ≥ 3f + 1, the ABA algorithm also made the same assumption. This

assumption is crucial for correctness of the ABA algorithm because agreement

requires that processes have identical V vector after step 2. We now consider

the case when n < 3f + 1, but the initial fault ratio is less than 1/2. Thus,

more than a third of the processes may be faulty but the total weight of the

faulty processes is still less than 1/2 of the weight of the non-faulty processes.

Under this scenario, we propose an alternative to ABA algorithm by replacing

Step 2 of the ABA algorithm by

. Step 2’(Alternative to Step 2) : Agree on V vector

for j = 1 to N do

V [j]←WeightedByzantineAgreement(V [j])

end for

Thus, we use the weight vector even to agree on the value of V [j] (as

used by the algorithms in [25]). We refer to this algorithm as ABAW algorithm.

Since the fault ratio decreases under various accuracy assumptions, the ABAW

algorithm works correctly even when the set of processes that act Byzantine

increases with time so long as the fault ratio stays less than 1/2. The following

theorem can be shown for the ABAW algorithm analogous to that for ABA

algorithm.

61

Theorem 12. Assuming r0 < 1/2, all iterations of the ABAW algorithm

guarantee agreement and termination if the weight update method ensures r <

1/2.

For the deterministic accuracy property, we have the following theorem.

Theorem 13. If the accuracy ratio α > 1/2 + d and if the initial fault ratio

r0 < 2d, for any 0 ≤ d ≤ 1/4, for all iterations, then the ABAW(UI) algorithm

guarantees accuracy.

Note that Theorem 7 does not hold for ABAW(UI) because we re-

quire r0 < 1/2. Theorem 8 holds for ABAW(UA) without the assumption of

n ≥ 3f + 1 (assuming r < 1/2). Theorem 10 does not hold for ABAW(UI)

or ABAW(UA) because the fault ratio may increase beyond 1/2 even if one

process is accurate most of the times.

3.6 Experimental Evaluation of ABA Algorithm

The experimental evaluation compares three different update methods:

“always update”, “update on inaccuracy” and “never update”. The last op-

tion reduces to standard Byzantine agreement. The performance of the three

accuracy models presented in this chapter are considered with each of these

update methods for two different Byzantine fault models. Always update and

never update perform very well under one of the fault models each, while they

both perform very poorly for the other. Update on inaccuracy, the method

followed in this chapter, is always close to the best.

62

3.6.1 Experimental Setup and Parameters

For the experimental evaluation, we focus on faulty processes that will

always try to make the system agree upon an incorrect value. The faulty

processes have complete knowledge of the system including the correct value

for each iteration. Our simulation uses two models for faulty processes. Model

1 uses a process that will always propose the incorrect value. Model 2 uses

a process that looks at the percentage of its own weight to the weight of all

processes and proposes the correct value if its percentage is below a threshold

and the incorrect value otherwise. There are two types of non-faulty processes

used. The first is an accurate non-faulty process that always proposes the

correct value (d = 0.5, β = 1). The second type of non-faulty process chooses

the correct value with probability β = 0.5 + d, where d ∈ [0, 0.5]. The Queen

algorithm [4] is used for step 2 in the ABA algorithm and for all simulations,

n = 41, f = 10 and ε = 0.1.

3.6.2 Results

Simulation results for deterministic accuracy are shown in Figure 3.1.

For this experiment, we had one accurate process, and the other non-faulty

processes had a value of d = 0.00001. We compare the % of accurate decisions

made by the algorithm for 100 iterations, with increasing values of a0/(p+ q)

i.e. the starting weights of the accurate processes divided by the total weight

of processes in the system. The experiments were performed for the two fault

models 1 and 2. As can be seen, having an update method performs much

63

better than not having one with model 1 and always updating performs poorly

with model 2. Update on error gives a good compromise between the two.

Results for probabilistic accuracy are shown in Figure 3.2. For this ex-

periment, all non-faulty processes had d = 0.02 and all processes start with

uniform weights. We compare the % of accurate decisions with increasing num-

ber of iterations. Notice that, on the whole, update on inaccuracy performs

the best for these graphs. Always updating seems like the natural method to

use; but, in Figure 3.2(b) always update performs the worst.

Simulation results for at-least-one accuracy are shown in Figure 3.3.

For this experiment, we had one non-faulty process which is always accurate

i.e. d = 0.5, and the remaining non-faulty processes had d = 0.00001. The

processes start with uniform weights. We compare the % of accurate decisions

with increasing number of iterations. For model 1 in Figure 3.3(a), updating

weights increases the accuracy over iterations. With model 2 always update

shows the worse performance with update on accurate being the best. Notice

how update on inaccuracy is always close to the best.

3.7 Conclusion and Future Work

We introduce the problem of Accurate Byzantine Agreement with Feed-

back where in addition to agreeing on the same value, the processes in the sys-

tem have to agree on the correct value. The notion of correctness is based on

the environment or any kind of external feedback common to all the processes

in the system. We present an algorithm that solves the problem for various

64

0.0 0.1 0.2 0.3 0.4 0.5
a0/(p+q)

0

20

40

60

80

100
%

 A
cc

ur
at

e
D

ec
is

io
ns

Never update
Update on inaccuracy
Always update

(a) With model 1.

0.0 0.1 0.2 0.3 0.4 0.5
a0/(p+q)

60

65

70

75

80

85

90

95

100

%
 A

cc
ur

at
e

D
ec

is
io

ns

Never update
Update on inaccuracy
Always update

(b) With model 2.

Figure 3.1: Deterministic accuracy: Ratio of Accurate Process Weights vs. %
Accurate Decisions

assumptions on the initial accuracy and weight distribution of the processes.

We show that if the weight of the accurate processes is greater than 3/4 the

weight of the non-faulty processes, then the algorithm always decides on the

correct value. We relax this further and show that if a majority of the non-

faulty processes are accurate, then for certain assumptions on the faulty and

non-faulty processes, the algorithm never makes a mistake. Further, we show

that if the probability of accuracy of the non-faulty process is greater than

1/2, then the algorithm’s accuracy improves exponentially in the number of

mistakes it makes. Finally, we consider the simple assumption that at least

one process always proposes the correct value for all iterations and show that

the algorithm rarely makes mistakes.

We performed simulations comparing the performance of three differ-

ent weight update methods: update on inaccuracy, always update and never

update (just standard Byzantine agreement). The experiments compared the

65

10 20 30 40 50 60 70 80 90 100
Iterations

0

10

20

30

40

50

%
 A

cc
ur

at
e

D
ec

is
io

ns

Never update
Update on inaccuracy
Always update

(a) With model 1.

10 20 30 40 50 60 70 80 90 100
Iterations

60

65

70

75

80

85

90

95

100

%
 A

cc
ur

at
e

D
ec

is
io

ns

Never update
Update on inaccuracy
Always update

(b) With model 2.

Figure 3.2: Probabilistic Accuracy: Iterations vs. % Accurate Decisions, d =
0.02

performance of these solutions under all three accuracy assumptions and the

results indicate that while never update and always update perform very well

for different fault models, update on inaccuracy performs uniformly well for

both fault models.

This problem brings forth further questions. The results in this chapter

mainly present upper bounds for the problem of accurate Byzantine agreement

with feedback. We also need to explore lower bounds for the problem. Also,

our results depend on the multiplicative update rule. We wish to explore

other update rules, such as additive updates and compare their performance,

both theoretically and practically. Designing optimal policies to guarantee

maximum probability of correct decisions is also an interesting problem.

66

10 20 30 40 50 60 70 80 90 100
Iterations

0

10

20

30

40

50

60

70

80

%
 A

cc
ur

at
e

D
ec

is
io

ns Never update
Update on inaccuracy
Always update

(a) With model 1.

10 20 30 40 50 60 70 80 90 100
Iterations

75

80

85

90

95

100

%
 A

cc
ur

at
e

D
ec

is
io

ns
Never update
Update on inaccuracy
Always update

(b) With model 2.

Figure 3.3: At-Least One Accuracy: Iterations vs. % Accurate Decisions, One
accurate process

67

Chapter 4

Vectorized Byzantine Agreement

4.1 Introduction

The Multi-dimensional Approximate Byzantine Agreement (MDABA)

[39,47, 48] problem is approximately agreeing upon a vector where every pro-

cess proposes a vector and up to t processes can be arbitrarily faulty. It is

required that the final vector at all non-faulty processes be within the convex

hull of the proposed vectors of non-faulty processes. Performing approximate

agreement on each dimension separately does not satisfy the convex hull crite-

ria. This can be important to some problems as satisfying convexity means the

output is valid. For example, if the vectors represented empirically measured

probability distributions, then satisfying the convex constraint means that the

output is a convex combination of the non-faulty measurements and is a valid

probability distribution. This chapter presents an equivalence between a piece

of the MDABA and the center point from combinatorial geometry.

Byzantine Agreement (BA) problem was originally proposed by Lam-

port, Shostak and Pease [35,42]. There is extensive literature on the Byzantine

Generals problem and its variations [1,11,13,15,20,24,32]. The basic problem

is for n processes to agree upon a non-trivial output value in the presence of

68

t arbitrarily faulty processes. It has been proven by Fischer, Lynch, and Pa-

terson [21] that exact agreement of this form is impossible in an asynchronous

system with even one fault. Dolev, Lynch, Pinter Stark, Eugene and Weihl [14]

proved that while exact agreement is impossible, approximate agreement is

possible in an asynchronous system. Delev, et al. give an algorithm for ap-

proximately agreeing on a scalar value in asynchronous systems. The next

step is to consider the case of a vector rather than a scalar.

A key result shown by Mendes and Herlihy [39] and Vaidya and Garg

[48] using two related theorems from combinatorial geometry is that for any

algorithm to guarantee that approximate agreement can hold requires n ≥

max{3f + 1, (d+ 1)f + 1}. They both show this result to guarantee that they

can calculate a point inside the convex hull of the points from non-faulty

processes. For example, Mendes and Herlihy [39] perform this by taking all

subsets of size n − f from the input points and intersecting the convex hulls

of these subsets and call this the safe set. Vaidya and Tseng [47] present a

more abstract version of this problem under crash faults. Their extension has

the same input but outputs a convex hull at the end instead. Their version

can be used to solve the Multi-dimensional Approximate Agreement problem

in the presence of crash faults. The results presented here are applicable to

their algorithms as well.

69

4.2 Definitions

The following is a set of definitions that are used in the result of this

chapter.

Definition 2 (hyperplane). For any hyperplane H, a vector h can be found

that fully defines H as follows:

H = ∀x ∈ Rd‖〈h, x〉 = 1.

In R2, a hyperplane is the line h1x1 + h2x2 = 1.

Definition 3 (half-spaces). Let H be a hyperplane of Rd defined by vector h.

The set H+ = {x : x ∈ Rd, 〈h, x〉 ≥ 1} is the positive closed half-space defined

by vector h. H+c is the complement of H+ which is the negative open half-space

defined by vector h.

A positive closed half-space in R2 is the area including and above the

line h1x1 + h2x2 = 1.

Definition 4 (Convex hull). Let P be a set of points in Rd. The convex hull of

P, denoted Conv(P), is the intersection of all closed half-spaces that contain

all points in P.

The following definition is from Mendes and Herlihy [39].

Definition 5 (Restriction). Let X be a set of n points in Rd. A restriction of

set X is a subset X ′ ∈ X containing exactly |X| − t elements. The set of all

possible restrictions is written Restrict t(X).

70

Definition 6 (Safe area). The safe area of set X is defined as:

Safet(X) =
⋂

X′∈Restrictt(X)

Conv(X ′)

Definition 7 (β-center). Let P be a set of n points in Rd. A point x, not

necessarily in P, is called a β-center of P if all open half-space that excludes

x contains less than (1− β)n points of P.

x a β-center if:

∀H, x ∈ H+ =⇒ |H+c ∩ P | < (1− β)n

A β-center where β = 1
d+1

is special and is called a centerpoint. Helly’s

and Radon’s theorems can be used to prove that every set of points has a

1
d+1

-center and that for any β > 1
d+1

a β-center is not guaranteed to exist.

For proofs of this result and further reference, see a book on combinatorial

geometry like Edelsbrunner [17].

Definition 8 (β-center set). Let P be a set of n points in Rd. Let Centβ(P)

be the set such that for all x ∈ Centβ(P), x is a β-center of P.

Centβ(P) = {x : ∀H s.t. |H+c ∩ P | < (1− β)n, x ∈ H+}

4.3 Results

The result of this chapter is the following theorem.

71

Theorem 14. Let n = |P |, then

Safet(P) = Cent t
n
(P)

Proof. Case Safet(P) ⊆ Cent t
n
(P) : Consider the setH of all half planes that

contain all the elements of at least one set in Restrict t(P). By the defini-

tion of H and Restrict t(P), the intersection of any half plane in H with

P will contain at least n − t elements, as every set in Restrict t(P) has

exactly n − t elements. In other words, H is the set of all half-planes

that satisfy:

∀H+ ∈ H, |H+ ∩ P | ≥ n− t.

By contrapositive, the complement of every half plane in H intersected

with P will contain less than n − t elements of P. In other words, H is

the set of all half-planes that satisfy:

∀H+ ∈ H, |H+c ∩ P | < n− t.

Safet(P) is the intersection of convex hulls. Any half plane that contains

one of the convex hulls in the intersection will contain the intersection.

Therefore, every half plane in H contains all points in Safet(P). The

intersection of all half-planes in H can be written as:

{x : ∀H s.t. |H+c ∩ P | < n− t, x ∈ H+}.

This is Cent t
n
(P). Therefore, Safet(P) ⊆ Cent t

n
.

72

Case Cent t
n
⊆ Safet(P) : A convex hull can be completely described by the

intersection of all half-planes that contain it. The intersection of two con-

vex hulls then is the intersection of the half-planes that describe both

convex hulls. Let H be the set of all half-planes that contain a set in

Restrict t(P). Safet(P) is the intersection of all half-planes in H. Because

every half plane in H contains a set in Restrict t(P), every half-plane

contains at least n − t points of P. Cent t
n

is described by the intersec-

tion of all half-planes that contain at least n− t points of P. Therefore,

Cent t
n
⊆ Safet(P).

Now notice that any algorithm from combinatorial geometry that can

be used to compute a β-center set can be used to compute the safe area for

multi-dimensional approximate agreement. For example, a β-center approx-

imation algorithm in polynomial time in d is given by Clarkson, Eppstein,

Miller, Sturtivan, and Teng [10]. Their β-center approximation algorithm

computes β = 1
d2

-centers in polynomial time. Both [39,48] give the bound for

a solution to be guaranteed to be n ≥ max 3f + 1, f(d+ 2) + 1. This bound

changes to n ≥ max 3f + 1, f(d2 + 2) + 1 if that approximation algorithm is

used.

Also, the following observation gives additional insight into the safe

areas structure.

Lemma 12. Projecting the set Cent t
n
(P) onto an arbitrary line l is the same

73

interval as removing the t smallest and t largest values of P projected onto

that line.

Proof. A direct result of the definition of the β-center set is that there will

exist two half-spaces that contain Cent t
n
(P) and are normal to l that both

have exactly n− t points of P.

This result implies that doing multi-dimensional approximate byzantine

agreement has a similar structure as doing the one dimensional problem, but,

in every possible direction.

4.4 Conclusion

This chapter has proven that the safe area needed for Multi-Dimensional

Approximate Byzantine Agreement is the same β-center. This observation can

be used adapt centerpoint algorithms from combinatorial geometry to solve for

a point in the safe area more effectively. Also, there exist approximate center-

point algorithms that can be applied to MDABA.

74

Chapter 5

Error Correction Codes in Repeated

Broadcast Communication

5.1 Introduction

Many distributed algorithms require a step in which every participat-

ing process needs a value from every other process. For example, in a clock

synchronization algorithm, every process may collect the values of clocks of

all other processes. In a sensor network, a group of sensors may collect values

from each other to compute the average value, or some other global function

such as the minimum, the maximum, or the sum of all the values. In a system

that requires a uniform action, the processes may collect proposals from all

other processes to determine an action. This chapter addresses these prob-

lems in the presence of Byzantine failures. Many fault tolerant algorithms

need to have information about what other processes know about other pro-

cesses. This is call second-order information. In order to perform a fault

tolerant broadcast, second-order knowledge is required. The usual method to

acquire second-order information is for every process to broadcast the informa-

The work presented in this chapter is based on the following publication.
John F. Bridgman and Vijay K. Garg. All-to-all gradecast using coding with byzantine

failures. Technical Report TR-PDS-2012-001, Parallel and Distributed Systems Laboratory,
The University of Texas at Austin, 2012.

75

tion that they have; then, every process rebroadcasts what they receive. But,

rebroadcasting the information is inefficient when it is known that the number

of faulty processes is bounded. The technique described in this chapter uses a

forward error correction (FEC) code to minimize the size of the messages that

are rebroadcast. As an example, an application of this technique to grade-

cast is given. [7, 8] Gradecast can be used as a basic building block for many

distributed algorithms that handle Byzantine failures.

The gradecast algorithm, first proposed by Feldman and Micali [19], is

a broadcast algorithm that gives the receivers a confidence level in the value

received. Let valuej[k] be the value that process Pj outputs for process Pk,

confidencej[k] be the confidence value process Pj outputs for process Pk, and vk

be the initial input value to the algorithm for process Pk. The confidence level

returned is from the set {0, 1, 2} and the confidence value gives information

about the state of the other processes. The gradecast algorithm provides three

main properties of the confidence level that allow a process to reason about

the knowledge of other processes.

1. For all non-faulty process Pi, and non-faulty process Pj, and any pro-

cess Pk, if confidencej[k] > 0 and confidence i[k] > 0; then, valuej[k] =

value i[k].

2. For any non-faulty process Pi, and non-faulty process Pj, and any process

Pk, |confidence i[k]− confidencej[k]| ≤ 1.

76

3. If Pk is non-faulty, then for all non-faulty processes Pi, confidence i[k] = 2

and value i[k] = vk.

The original one-to-all gradecast algorithm broadcasts a value from one pro-

cess to all the other processes. Message bit complexity is defined as the total

number of bits sent by all non-faulty processes in one invocation of the al-

gorithm. The one-to-all gradecast algorithm has a message bit complexity of

O(mn2), where m is the length of the message and n is the number of pro-

cesses. The properties of gradecast make it a useful primitive in distributed

systems.

Consider the case where all processes wish to broadcast a value to all

other processes using gradecast. This is referred to as all-to-all gradecast and

it is used in many applications such as Byzantine agreement, approximate

agreement, and multiconsensus [3]. The standard implementation of all-to-all

gradecast, where n instances of the one-to-all gradecast algorithm are used,

has O(mn3) message bit complexity. This chapter shows a method, using

coding, that gives an all-to-all gradecast algorithm with only O(mtn2) message

bit complexity, where t is the specified maximum number of faulty processes.

This is a significant reduction in message bit complexity when t is much smaller

than n, which is usually the case. Furthermore, gradecast requires t < n/3 for

correctness.

The all-to-all gradecast algorithm in this chapter uses error correction

codes [45] to mask Byzantine failures and has wide applicability in distributed

77

systems. For example, by replacing the original gradecast in the byzantine

agreement algorithm proposed by Ben-Or, Dolev and Hoch [3] with O(mtn3)

message bit complexity, a new byzantine agreement algorithm with O(mt2n2)

message bit complexity results. If the number of actual failures is f ≤ t,

then, the algorithm by Ben-Or, Dolev and Hoch will take min(f + 2, t + 1)

rounds. This property is often referred to as early stopping. The bit complex-

ity of approximate agreement algorithm [3, 14, 18] is reduced from O(kn3) to

O(kn2t), where k is the number of rounds used in the approximate algorithm.

Algorithms that have better message bit complexity exist; but, they sacrifice

round complexity or reduce the maximum number of faulty processes toler-

ated. The example byzantine agreement algorithms in this chapter are given

because of the simplicity of their implementation on top of an all-to-all grade-

cast algorithm. There exist algorithms with better message bit complexity.

For example, the algorithm by Coan and Welch [12] has message bit complex-

ity of O(t2 + nt) to agree on a single bit. This algorithm does not posses an

early stopping property.

Error correction codes can be viewed as a projection from a smaller

space to a larger space with good separation. Because the points in the larger

space are separated, small perturbations in the point in the larger space are still

close to the original mapped point and the point in the original smaller space

can be recovered. Generally, the spaces are high dimensional vector spaces over

finite fields and the measure of distance between two elements of the space is

the number of coordinates that have a different value. Systematic codes can be

78

constructed that encode a vector as the original vector concatenated with an

error correction vector. The method presented here relies on the observation

that every process is sending a value to every other process and only the faulty

processes will send conflicting data. So, the vector built at each process will

differ in at most t locations. This can be viewed as transmitting the vector and

each process receiving a corrupted version. Then, only the error correction part

of the encoded vector need be sent between processes to correct these “errors”.

The original vector is not actually transmitted. In a traditional application of

error correction codes, an input block is encoded and then the whole output

codeword is transmitted. The whole codeword is not transmitted. Only a

portion of the codeword is transmitted. A proper selection of the code allows

an error correction vector that can correct t errors to be no longer than 2t+ 1.

This method of using coding is also applicable to other types of broad-

cast algorithms. Srikanth and Toueg [46] give a broadcast algorithm to sim-

ulate authenticated broadcasts that has the important properties of authen-

ticated messages. These are as follows: If a correct process Pi broadcasts a

message; then, all other correct processes receive that message and if a correct

process Pi does not broadcast a message; then, no correct process receives

a message from Pi. The message bit complexity of a consistent broadcast

is O(mn2) and therefore, the message bit complexity of all-to-all consistent

broadcast is O(mn3). By using the method here, the bit complexity of all-to-

all consistent broadcast can be reduced to O(mtn2).

All-to-all gradecast can also be used to implement an interactive con-

79

sistency algorithm. Interactive consistency [29, 42] is the problem in which

each process has a vector with an entry that needs to be filled from every

other process and all vectors should be the same at the end of the algorithm.

Interactive consistency is at least as difficult as Byzantine agreement.

There are earlier works that use error correcting codes for Byzantine

broadcast algorithms. Liang and Vaidya [37] give an algorithm that achieves

communication complexity of O(mn) bits for broadcast with Byzantine failures

if m = Ω(n6). This is quite useful in situations where the message being

broadcast is a very long stream of bits. An example of such messages is

all the samples from a sensor in a long running system. However, for small

message size, m, the communication complexity is O(nm+n4m1/2 +n6). This

work is most useful when every process is doing a broadcast and the message

size may not be large. Friedman, Mostéfaoui, Rajsbaum and Raynal [23]

show a mapping from a distributed agreement problem to a coding problem.

This approach is to use coding to reduce the size of the messages being sent.

The work by Krol [33] gives a set of algorithms that use coding to perform

Byzantine consensus. Essentially, Krol [33] replaces broadcast with encoding,

and decision making with decoding. These algorithms are based on the original

algorithm by Pease, Shostak and Lamport [35] and have exponential message

complexity.

The remainder of this chapter is organized in the following manner.

First, an overview of the original algorithm is given in section 5.2. The algo-

rithm is described in section 5.3. Next, proofs of its correctness are in section

80

5.5. Then, in section 5.6, applications of an all-to-all gradecast algorithm are

discussed. Concluding remarks are in section 5.7.

Table 5.1: Notation in Chapter 5

n number of processes
t maximum number of faulty processes
i, j, k process IDs
u, v, w, x, y, z scalar values
U, V,W,X, Y, Z non-scalar values
confidence i[j] confidence value Pi has in Pj’s value
value i[j] value process Pi received from process Pj
G set of all non-faulty processes

5.2 One-to-All Gradecast

This section gives a quick overview of the original algorithm presented

by Feldman and Micali [19]. This algorithm broadcasts a value from one pro-

cess to all other processes. This can be modified to an all-to-all gradecast

algorithm by vectorizing. Pseudo-code for the algorithm is in Figure 6. It as-

sumes that the values n, t, and h are common knowledge to all processes, where

n is the number of processes, t is the maximum number of faulty processes,

and h is the broadcasting process. The algorithm proceeds in four steps. In

the first step, the broadcaster h sends out its value to all processes. After this

step, the algorithm is symmetric. In the second step, all process rebroadcast

the value received from h to all other processes. Then, in the third step, each

process looks at the values received from Step 2. If there is a common value

that has been received at least n − t times; then, it broadcasts that value.

81

Otherwise, the process broadcasts no value. Finally, in Step 4, the received

values from Step 3 are examined. Let x be the value that appears the most in

Zi. If there is a tie between two values, some common agreed upon tie breaking

strategy must be performed. For example, if values are real numbers, one can

always take the minimum. If x appears at least 2t+ 1 times; then, Pi outputs

x with confidence 2. If x appears less than 2t+ 1 and more than t times; then,

Pi outputs x with confidence 1. Otherwise, Pi outputs ⊥ with confidence 0.

This algorithm has message bit complexityO(mn2) and when replicated

to perform all-to-all gradecast, will have O(mn3) message bit complexity. The

next section a vectorized modification to this algorithm is shown that reduces

the all-to-all gradecast message bit complexity to O(mtn2).

5.3 Algorithm for All-To-All Gradecast

This section gives the all-to-all gradecast algorithm that has O(mtn2)

message bit complexity. This algorithm is based on vectorizing the grade-

cast algorithm presented by Feldman and Micali [19]. As before, each process

Pi has an input value vi and the algorithm produces two vectors value i and

confidence i which are the received values and the confidence level respectively.

The algorithm assumes that the set of all messages can be encoded as mem-

bers of a finite field, with one field member reserved to represent “no message”

which will be denoted as ⊥ . This assumption only requires that there exists

a mapping between the messages and the field elements such that every mes-

sage has a unique field element assigned to it with at least one field element

82

Algorithm 6 Original One-to-all Gradecast Algorithm
. Inputs to Ph

1: vh ← input value for broadcaster
. Variables

2: ui ← value process Pi receives in Step 2
3: Xi[1..n]← vector of values received in Step 3
4: Zi[1..n]← vector of values received in Step 4

. Step 1
5: if i = h then
6: broadcast(vh)
7: end if

. Step 2
8: ui ← receive(Ph)
9: broadcast(ui)

. Step 3
10: for j = 1 to n do
11: Xi[j]← receive(Pj)
12: end for
13: if ∃x such that |{k : Xi[k] = x}| ≥ n− t then
14: broadcast(x)
15: end if

. Step 4
16: for j = 1 to n do
17: if Pj sent a message to Pi then
18: Zi[j]← receive(Pj)
19: else
20: Zi[j]←⊥
21: end if
22: end for
23: if maxx |{k : Zi[k] = x}| ≥ 2t+ 1 then
24: return arg maxx |{k : Zi[k] = x}| with confidence 2
25: else if maxx |{k : Zi[k] = x}| > t then
26: return arg maxx |{k : Zi[k] = x}| with confidence 1
27: else
28: return ⊥ with confidence 0
29: end if

83

unassigned.

There is a standard technique, called interleaving, to apply a small code

to larger blocks without increasing the code length. The tool Parity Archive

Volume Set [40] uses this technique. The usage of this technique relies on the

fact that only t blocks may be corrupt. It is very similar to breaking up the

message to be transmitted into blocks and running each block through the

code, except it is broken into interleaved blocks. What this means for the

problem here, is that, if a code that uses octets as the basic unit and one

message is ten octets; then, the first block will be the first octet from each

message in the vector of messages, the second block will be the second octet

from each message, and so on. Note, for the purposes here, the blocks are

only interleaved in this manner for the encoding and decoding process. For

example, if the vector to encode is [[a, b], [c, d], [e, f]]; then, [a, c, e] would be run

through the encoder to produce [a, c, e, g, h] and [b, d, f] to produce [b, d, f, i, j]

and the final output of the encoder is then [[a, b], [c, d], [e, f], [g, i], [h, j]], which

is then used in the algorithm. With this method, messages longer than the

field size can be used.

Pseudo-code for the algorithm is provided in Figure 7 and Figure 8.

This algorithm proceeds in four steps. The following description is from the

point of view of process Pi, because the algorithm is symmetric. First, in Step

1, Pi broadcasts its value to every other process. Step 2 starts to differ from the

original gradecast algorithm. The original algorithm rebroadcasts the values

received from Step 1. Because of the messaging system reliability, the property

84

∀Pi, Pj, Pk ∈ G : Vi[k] = Vj[k], where G is the set of all non-faulty processes

is guaranteed. This implies that ∀Pi, Pj ∈ G : |{k : Vi[k] 6= Vj[k]}| ≤ t. This

means that at least n − t values between non-faulty processes are identical;

so, sending the whole vector, Vi, is inefficient. Therefore, the algorithm here

uses coding techniques to send at most 2t + 1 values, which can be used in

conjunction with the knowledge that the receiving process possesses to recover

everything the sender knows. To finish Step 2, Pi sends the error correction

vector of Vi.

In Step 3, Pi receives the encoded message from all other processes

and uses its current knowledge to construct matrix Xi of all the values that

every process claims that every other process possesses as their input value.

The value Xi[j][k] is the value that j claims k sent to it. The reliability of

the messaging system and how the coding process works implies that ∀Pi, Pj ∈

G,∀k : Xi[j][k] = Vj[k]. Now an array Yi is constructed fromXi in the following

manner. For each Pj, if there is a value that appears at least n− t times in the

column Xi[·][j]; then, set Yi[j] to that value, otherwise, set Yi[j] to ⊥ . Then,

an encoding of Yi is sent to all processes.

Finally, in Step 4, Zi is constructed in the same manner as Xi in Step

3. Pi uses its knowledge of Yi and the encoded value sent to it from each other

process j to recover Yj and then places that value in the row Zi[j][·]. That gives

the property ∀Pi, Pj ∈ G,∀k : Zi[j][k] = Yj[k]. Then, Pi looks at columns of

Zi[·][j] for each Pj to decide its output. If maxx |{k : Zi[k][j] = x}| ≥ 2t + 1;

then, Pi sets value i[j] = x and confidence i[j] = 2. If 2t + 1 > maxx |{k :

85

Zi[k][j] = x}| > t; then, Pi sets value i[j] = x and confidence i[j] = 1. Other-

wise, Pi sets value i[j] =⊥ and confidence i[j] = 0. Notice that the reduction in

message bit complexity comes from taking advantage of the knowledge that is

known to be common across processes, because of the constraint that at most

t processes can be faulty. The processes also do not know which of the t values

are not common. This is why they must exchange information in Step 2 and

3. But, coding is used to ensure that the amount of information exchanged is

small.

Algorithm 7 All-to-all Gradecast Algorithm Declarations
. Inputs

1: vi ← Input value for Pi
. Variables

2: Vi[1..n]←Vector received in Step 2, initially ⊥
3: Vecci[1..2t+ 1]←error correction vector for Vi
4: Xi[1..n][1..n]←Matrix of decoded values in Step 3
5: Yi[1..n]←Vector of values computed in Step 3, initially ⊥
6: Yecci[1..2t+ 1]←Error correction vector for Yi
7: Zi[1..n][1..n]←Matrix of decoded values in Step 4
8: value i[1..n]←Vector of output values, initially ⊥
9: confidence i[1..n]←Vector of confidence levels, initially 0

5.4 Example

The following example shows how the algorithm works. For this exam-

ple, n = 4 and t = 1. The possible messages are the non-zero values over the

finite field GF (28) and the zero value is reserved to represent no message. Let

P4 be the faulty process and let the initial value for the non-faulty processes

be {241, 86, 35}. For the encoder, this example will use a Reed Solomon [44]

86

Algorithm 8 All-to-all Gradecast Algorithm
. Step 1

10: broadcast(vi)
. Step 2

11: Vi ← receive-from-all
12: Vecci ← encode(Vi)
13: broadcast(Vecci)

. Step 3
14: for j = 1 to n do
15: Veccj ← receive(Pj)
16: Xi[j]← decode(Vi, Veccj)
17: end for
18: for j = 1 to n do
19: if ∃x such that |{k : Xi[k][j] = x}| ≥ n− t then
20: Yi[j]← x
21: end if
22: end for
23: Yecci ← encode(Yi)
24: broadcast(Yecci)

. Step 4
25: for j = 1 to n do
26: Yeccj ← receive(Pj)
27: Zi[j]← decode(Yi, Yeccj)
28: end for
29: for j = 1 to n do
30: count ← maxx |{k : Zi[k][j] = x}|
31: value ← arg maxx |{k : Zi[k][j] = x}|
32: if count ≥ 2t+ 1 then
33: value i[j], confidence i[j]← value, 2
34: else if count > t then
35: value i[j], confidence i[j]← value, 1
36: end if
37: end for
38: return value i and confidence i

87

code with a code length of 28 that can correct one error. The error correc-

tion terms are calculated by taking the remainder of the values to encode

as a polynomial with the generator polynomial 102 + 164x + x2 over the fi-

nite field GF (28). For example, [241, 86, 35, 35] is encoded as the polynomial

35x251 + 35x252 + 86x253 + 241x254. The remainder is taken, which gives us the

polynomial 78+39x, which corresponds to the values [39, 78]. Note that all the

arithmetic operations are done over the finite field GF (28). Decoding is much

more involved and it is recommend for the reader to consult the literature on

the subject [44,45]. The Schifra [41] library was used to compute these values.

For Step 1, all processes send their values to all other processes. For

this example, the received values for each process are:

V1 = [241, 86, 35, 35]
V2 = [241, 86, 35, 35]
V3 = [241, 86, 35, 40]

(5.1)

Encoding these gives:

[V1,Vecc1] = [241, 86, 35, 35, 39, 78]
[V2,Vecc2] = [241, 86, 35, 35, 39, 78]
[V3,Vecc3] = [241, 86, 35, 40, 82, 30]

(5.2)

Then, each process sends the Vecci values which are of length two.

Next, for Step 3, all processes receive the values sent in Step 2. Since

P4 is faulty, it will send [22, 77] to P1, [0, 136] to P2 and [121, 159] to P3. For

this example, the processes then receive:

P1.receive(P1) = [39, 78]
P1.receive(P2) = [39, 78]
P1.receive(P3) = [82, 30]
P1.receive(P4) = [22, 77]

(5.3)

88

P2.receive(P1) = [39, 78]
P2.receive(P2) = [39, 78]
P2.receive(P3) = [82, 30]
P2.receive(P4) = [0, 136]

(5.4)

P3.receive(P1) = [39, 78]
P3.receive(P2) = [39, 78]
P3.receive(P3) = [82, 30]
P3.receive(P4) = [121, 159]

(5.5)

Each process concatenates the received value to the end of its Vi vector and

runs this through the decoder to get:

X1 =


241, 86, 35, 35
241, 86, 35, 35
241, 86, 35, 40
241, 49, 35, 35

 (5.6)

X2 =


241, 86, 35, 35
241, 86, 35, 35
241, 86, 35, 40
241, 86, 129, 35

 (5.7)

X3 =


241, 86, 35, 35
241, 86, 35, 35
241, 86, 35, 40
157, 86, 35, 40

 (5.8)

Following the instructions for building Yi in Step 3 gives:

Y1 = [241, 86, 35, 35]
Y2 = [241, 86, 35, 35]
Y3 = [241, 86, 35, 0]

(5.9)

Then building Y ecci gets:

[Y1,Yecc1] = [241, 86, 35, 35, 39, 78]
[Y2,Yecc2] = [241, 86, 35, 35, 39, 78]
[Y3,Yecc3] = [241, 86, 35, 0, 8, 182]

(5.10)

89

Each process i then sends its Yecci. Let P4 send [87, 77] to process 1 and 2 and

[123, 149] to process 3.

Finally, in Step 4, each process constructs the Zi matrix in the same

way it constructed the Xi matrix. Which gives the result:

Z1 = Z2 =


241, 86, 35, 35
241, 86, 35, 35
241, 86, 35, 0
241, 86, 0, 35

 (5.11)

Z3 =


241, 86, 35, 35
241, 86, 35, 35
241, 86, 35, 0
241, 86, 35, 82

 (5.12)

Finally, the algorithm will output for each process:

value1 = [241, 86, 35, 35]
confidence1 = [2, 2, 2, 2]
value2 = [241, 86, 35, 35]
confidence2 = [2, 2, 2, 2]
value3 = [241, 86, 35, 35]
confidence3 = [2, 2, 2, 1]

(5.13)

5.5 Proof of Correctness

In this section, the correctness of the algorithm in this chapter is shown.

The first lemma shows a crucial property of Y in Step 3 of Figure 8.

Lemma 13. Assume Pi and Pj are non-faulty processes. In Step 3 of Figure 8,

if Pi sets Yi[k] to x 6=⊥ and Pj sets Yj[k] to y 6=⊥; then, x = y. Formally,

∀Pi, Pj ∈ G,∀k : Yi[k] 6=⊥ ∧Yj[k] 6=⊥ =⇒ Yi[k] = Yj[k].

90

Proof. If Pi sets x 6=⊥ to Yi[k], then the kth column of Xi contained at least

n − t copies of x. Only t rows can correspond to faulty processes, so at least

n− 2t of the rows that contain x in column k come from non-faulty processes.

This means that those n−2t non-faulty processes also sent vectors to Pj which

set x to the kth column for those processes. Suppose y 6= x and y 6=⊥ . This

means that there must be n− 2t values which are ⊥ in the kth column of Xj

at process Pj. But, n− 2t > t so Pj will set Yj[k] to ⊥, which contradicts that

y 6=⊥ and y 6= x.

Theorem 15 (Property (1)). All non-faulty processes with positive confidence

about process k have identical value[k]. Formally,

∀Pi, Pj ∈ G,∀k : confidence i[k] > 0 ∧ confidencej[k] > 0

implies

value i[k] = valuej[k].

Proof. First note that the Zi matrix will contain the Yj vectors from Step 3

of Figure 8 for all Pj. By Lemma 13, if there is a majority of a value that

is not ⊥ in the kth column of Zi; then, all values in that column that are

not the majority and not ⊥ are from a faulty process. This implies that if

any non-faulty process Pj sets confidence i[k] ≥ 1; then, all other non-faulty

processes Pj that set confidencej[k] ≥ 1 also set valuej[k] = value i[k].

Theorem 16 (Property (2)). For any two non-faulty processes, the difference

in their confidence levels for any process Pk can differ by at most 1. Formally,

∀Pi, Pj ∈ G,∀k :
∣∣confidence i[k]− confidencej[k]

∣∣ ≤ 1.

91

Proof. Assume some non-faulty process Pi sets confidence i[k] = δ and value i[k] =

x. Process Pi setting confidence i[k] = δ implies that a set R of processes sent

x to Pi in Step 3 of Figure 8. Let Re ⊆ R be the faulty processes that sent x

to Pi. By problem setup, |Re| ≤ t. This means that the number of processes

that also sent x to any other process can differ by at most t. Let Pj be the

process that receive the most messages in support of x. Then, all other pro-

cesses receive at least |R|− t messages in support of x. Step 4 of the algorithm

in Figure 8 compares the support of x to 2t+ 1 and t to select the confidence

level. By the above reasoning, the support of x differs by at most t between

any non-faulty process. Therefore, the difference in confidence level between

any non-faulty processes is at most 1.

Theorem 17 (Property (3)). If Pk is non-faulty, then, all non-faulty processes

Pi have the value sent by process Pk and their confidence level on this value is

2. Formally,

∀Pi, Pk ∈ G : (confidence i[k] = 2) ∧ (value i[k] = vk) .

Proof. If Pi is a non-faulty process, then, all processes will receive vi from Pi

in Step 2 of Figure 8. Next, all non-faulty processes will also claim that Pi sent

vi for Step 3. Let G be the set of all non-faulty processes, by the assumptions

of the problem |G| ≥ n − t and all non-faulty processes will distribute error

correction vectors with vi in the ith entry in Step 3. So, every non-faulty

process Pj will set confidencej[i] = 2 and valuej[i] = vi in Step 4.

92

Theorem 18. The algorithms in Figure 8 has bit message complexity of

O(mtn2).

Proof. In Step 1, every process sends its value to every other process taking

mn2 message bits. In Step 2, each process computes Vecci which contains at

most 2t + 1 values of length m bits. Every process then sends its Vecci to

every other process resulting in at most m(2t+ 1)n2 message bits. In Step 3,

the same number of message bits are sent as Step 2. This results in a total of

at most mn2 + 2m(2t + 1)n2 message bits being sent by this algorithm. This

is O(mtn2).

5.6 Application

The all-to-all gradecast algorithm can be used to create an exceptionally

simple byzantine agreement algorithm. Ben-Or, Dolev and Hoch [3] give a

simple algorithm for Byzantine agreement and approximate agreement based

on the gradecast algorithm. A modification to the gradecast algorithm is

needed for their Byzantine agreement algorithm. The modification is to make

the algorithm take a set of known faulty processes that the algorithm will

ignore and set all values for processes in the faulty set to ⊥ . This has the effect

of making that process in the faulty set disappear as if they had crashed. The

Byzantine consensus algorithm is symmetric, can agree upon an arbitrary value

(as long as there is some method of resolving a tie), and has an early stopping

property. They define early stopping to mean if there are f ≤ t actual failures;

93

then, the algorithm terminates in min(f + 2, t + 1) rounds. The message bit

complexity with the all-to-all gradecast algorithm is O(mt2n2).

The algorithm starts off with a faulty set which is initially empty. Then,

for each round r up to t + 1 rounds the algorithm performs as follows: The

algorithm performs an all-to-all gradecast of the current value ignoring all

processes in the faulty set. The algorithm then adds up how often each value

was received which had a confidence greater than or equal to one. Next, it

sets the current value to the value that has the largest count. If there is

more than one with the same count; then, use some tie breaking scheme, such

as always choosing the smaller value. The algorithm adds all processes that

have confidence one or less to the faulty set. Next, the algorithm counts the

number of processes that sent the current value with confidence 2. If this

count is greater than n− t, the algorithm performs one more iteration of the

loop and then exits the loop prematurely. To finish, the algorithm returns the

current value.

The approximate agreement algorithm presented by Ben-Or, Dolev and

Hoch is very similar to the byzantine agreement algorithm described above.

The all-to-all gradecast algorithm described here can be plugged into their

algorithm without changing any of the properties of the original algorithm.

5.7 Conclusion

Many algorithms have a step where every process broadcasts a value.

Gradecast is a broadcast algorithm that gives a confidence level to each receiv-

94

ing process. This confidence level gives information about the state of other

processes. An all-to-all gradecast with message bit complexity O(mtn2) is pre-

sented. The original gradecast algorithm presented by Feldman and Micali [19]

is a one to all broadcast protocol. Using the original gradecast algorithm to

produce all-to-all gives O(mn3) message bit complexity. This algorithm can

be used in place of the original gradecast algorithm when an all-to-all broad-

casts is used. The algorithm presented uses coding to reduce the amount of

redundant information being transmitted. Proofs that the modified algorithm

maintains the important properties of the original gradecast are given. Hav-

ing an all-to-all gradecast algorithm that is efficient in message bit complexity

admits a simple symmetric arbitrary valued Byzantine agreement with early

stopping property that only takes O(mt2n2) message bit complexity. Other

algorithms may also benefit from using coding in the fashion presented here.

95

Chapter 6

Error Correction Codes for Data Structure

Synchronization

6.1 Introduction

In any sort of distributed or concurrent application, synchronization

between actions is imperative to correct results. This synchronization can

come in many different forms ranging from atomic memory operations to lock-

ing of data structures. Every concurrent algorithm has certain requirements

on order. There are some algorithms that only require basic atomic memory

operations and synchronize by letting processes step on each other and du-

plicate work. For example, I high dimensional convex optimization problem

could have multiple threads each computing random partial differentials and

then adding their result to the current vector. Other algorithms create a total

order of actions on a given memory region, forcing some threads to wait to en-

force this total order. For example, using a mutex to protect a data structure

from concurrent access. In the middle of this is the class of algorithms that

are called lock free. They synchronize by using atomic memory operations

with a failure path to retry the operation. This chapter presents a method of

synchronization using error correction codes to allow processes to recover from

processes stepping on each other.

96

In this chapter, a method using coding to construct a block of memory

that appears to be atomically updated to the readers of the block. The basic

unit is a buffer that can be read and updated atomically. Combinations of

these buffers can then be used to implement more advanced algorithms. An

equivalent locking algorithm is a buffer where all access is guarded by a mutex.

A read-write lock that allows concurrent readers gives a small performance

improvement in some cases. A simple lock-free implementation of such a buffer

is copy-on-write. The writer copies the contents of the buffer into a new buffer,

makes the changes; then, does an atomic compare and swap to commit the

changes. These are the common ways of solving this problem.

This chapter presents an alternative approach where the buffer is simply

read by the readers and the writer just writes directly into the buffer. An

error correction code checksum of the buffer is kept. The readers then use

this checksum to recover a consistent view of the buffer, regardless of the

modifications the writer has made concurrently. Only when the writer is done,

does the writer write the checksum. Only single writer and multiple readers

will be considered. This is sometimes called single writer concurrency. Single

writer concurrency has been considered in the literature [2].

6.2 Approach

The coded buffer gets atomic write for one thread, and atomic read for

any number of threads. A simple explanation of how this works is as follows.

Consider a code word as a point in a high dimensional space [44, 45]. The

97

property that makes an error correction code able to correct errors is that

the points in this high dimensional space are far apart. Modifying the code,

moves the point from the original spot towards other codes. There is always a

closest code word. The maximum number of writings in an atomic operation

is the number of edits to the message that keeps the original code point as

the closest code. This means that at any time during the write, the reader

can always perform a decode to get the message before the writer started

modifying. Then, if the writer wishes to rollback the changes it has made, it

simply performs a decode and writes the result. If the writer wishes to commit

its changes, the writer calculates the checksum and writes the checksum.

For the following examples, model the system as having some memory

that is nibble (4 bits) addressable, and writes to a nibble are atomic. Only

one thread writes, and multiple threads read. An example of this might be a

collection of devices all connected to a single memory chip that has one write

port and many read ports. The writer wishes to be able to update a vector of

values atomically from the perspective of the readers.

There is also another property of the code in question that is required.

The requirement is during the write of the checksum, no code but the previous

and the resulting code are ever closest. How the code is decoded matters

to satisfy this requirement. An example of a code that does not satisfy this

property is the repetition code with the decode step of taking the majority vote

for each symbol from each repetition. On the other hand, an example that

does work is taking the majority of the whole message with some tiebreaker

98

strategy. One downside to this method is that the number of writes that a

writer can perform is bounded by error correction code distance.

The following is an example of a majority decode repetition code that

does not work. Let us say that the message is 0xABC, and we will use a 3x rep-

etition. So the coded message is 0xABC, 0xABC, 0xABC. The writer modi-

fies the value to be: 0x12C, 0xABC, 0xABC. When the writer wants to com-

mit, the writer starts writing the checksum. Next, is 0x12C, 0x1BC, 0xABC,

and here we have the problem. Now, if a reader reads the state at this point,

the reader will see the first nibble with a majority for 1, the second nibble with

majority for B, and the third majority for C. The reader then sees 0x1BC, a

value that the writer never intended for the reader to ever see.

On the other hand, a method with repetition coding that does work is

whole value majority decoding. That is to say, for this example, take all 3 nib-

bles as a single value, and prefer first value for tie-breaking. The writer mod-

ifies the value to be: 0x12C, 0xABC, 0xABC. Next is 0x12C, 0x1BC, 0xABC.

Here the reader sees no majority so prefers the first value. Next is 0x12c, 0x12C, 0xABC,

and now the reader sees a majority. The writer then finishes updates.

6.3 Repetition Code Concurrent Buffer Algorithm

For simplicity, the algorithm here uses a simple repetition code. The

concepts presented also work with other codes such as Reed-Solomon [44]. This

algorithm has an advantage of being relatively simple in both implementation

and conceptualization. The algorithm needs a logical clock to deal with the

99

possibility of more than one write in-between a reader’s read. Only the writer

is going to update the logical clock. So, depending on hardware specifics, the

maximum amount of synchronization support needed is a memory barrier to

ensure the writers updates become visible to the readers. This is to say, no

compare and swap, or other atomic operation support is needed. Since this

implementation is relatively simple, it could easily be performed in hardware.

For example, consider an FPGA connected to a memory bank on a shared bus.

The FPGA wishes to perform a mutation operation involving multiple write

operations on a buffer in the memory and the operation should appear atomic

to all those reading. This algorithm is simple to implement in this sort of

situation. The algorithm keeps two logical clocks, start clock and end clock .

The code word is stored in data where data[i] is the ith repetition. This

algorithm makes the assumption that the logical clocks are updated atomically.

Algorithm 9 Repetition Code Write Algorithm

1: function BeginWrite
2: start clock ← start clock + 1;
3: end function
4: function Write(index , value)
5: data[0][index]← value;
6: end function
7: function EndWrite
8: for i = 1 to num repetitions do
9: data[i]← data[0];

10: end for
11: end clock ← begin clock ;
12: end function

The write algorithm is shown in Algorithm 9. To start a write session,

100

Algorithm 10 Repetition Code Read Algorithm

1: function Read
2: start ← end clock ;
3: result ← data[0];
4: if start = start clock then return result ;
5: end if
6: repeat
7: start ← end clock ;
8: votes ← data;
9: until start + 1 ≥ start clock

10: if votes [0] = votes [2] or votes [1] = votes [2]; then
11: return votes [2];
12: else
13: return votes [0];
14: end if
15: end function

the writer calls BeginWrite which increments the start clock . Then the

writer performs the writes on the first repetition. Finally, when the writer

is ready to commit, the writer calls EndWrite. The EndWrite function

first copies the first repetition to the second then copies the first to the third.

This order of update must be consistent and known to the readers. Now all

repetitions are equal, copy the logical clock value from begin clock to end clock .

The read function for the repetition code concurrent buffer is shown in

Algorithm 10. The reader first reads the end clock and then reads the first

repetition. After the read of the repetition is complete, read the start clock

and compare it to the previously read value of the end clock . If the values are

equal, return what was read. Otherwise, reread the end clock then read the

whole code word until the read end clock is either equal to the start clock or

101

one less than the start clock . Then, check to see if the last repetition is equal

to one of the other two repetitions. If so, return the last repetition, otherwise,

return the first repetition.

Lemma 14. Given only one writer at a time that follows the update procedure

in Algorithm 9, Algorithm 10 will always return either the value before a write

has started or after a write has finished.

Proof. If the read returns on line 4 then there is no ongoing write and the read

was a correct value. Once the condition on line 9 is satisfied, this means at

most one write is currently ongoing. Because the writer updates the repetitions

in order, there are four possible states for the values in votes . The first possible

state is that all repetitions are the same, an ongoing write caused the algorithm

to take the second path but already finished. The second state is the first

repetition is modified. In this case, the second and third repetition will be

equal so the algorithm returns the third repetition. The third state is the first

repetition has the next value that the writer is committing and the second

repetition is partially modified. The last repetition is not equal to either the

second nor the first; so, return the first repetition as the writer has finished

modifying the first repetition. The forth possible case is the third repetition is

partially modified. In this case, the first and second repetitions will be equal,

so return the first repetition.

102

The following are some reasons why one might choose to use this al-

gorithm. Readers can never delay the writer. At most a memory barrier for

synchronization is needed. Relatively simple implementation. Can perform a

partial read of the buffer.

One downside to this algorithm is that the worst case scenario for read

is that a writer comes along and writes in between every time the reader reads

one of the repetitions. This would cause the reader to restart indefinitely,

making no progress. Worst case number of read operations is not bounded. It

is possible for frequent writes to delay readers indefinitely. Write transactions

require three times as many writes. Several of these reasons are complete deal

breakers under some circumstances. In most modern computational loads, the

main bottleneck is often memory bandwidth. Increasing the number of write

and read operations increases the memory bandwidth used.

6.4 ECC Concurrent Buffer Algorithm

The repetition code is rather inefficient in terms of memory usage.

One of the major downsides as outlined above is that the repetition code

algorithm suffers from an increase in memory bandwidth usage. As such, this

section considers the use of a Reed-Solomon error correction code with this

approach. In the repetition code, the “checksum” is twice the size of the

message. Using an error correction code a “checksum” much smaller can be

used. There are two immediately apparent downsides. Performing the encode

and decode steps are much more expensive. And, partial reads of the buffer

103

cannot be done, the whole buffer must be read. The algorithm assumes that

a systematic code is being used. A systematic code has as the first part of

the code word, the original message, so such a code can be split into two

pieces, the data and the error correction checksum(ecc). There are two logical

clocks, writer clock and commit clock . There are routines specific to the code

chosen. The first, update ecc which updates the error correction checksum

for the given modification to the data. A choice of a linear code makes the

update ecc simply a linear combination of the old value with the new value.

And, decode which performs the decoding of the error correction code. The

decode in the pseudo code updates the code word in place and returns true

on success. The code word is the concatenation of data with ecc. Note that

one wants to choose a code such that the minimum distance of the code is two

times plus one the expected maximum number of edits a writer will perform.

If a writer never updates more than the floor of one half the minimum distance

minus one, then the reader only ever needs to retry if it happened to read while

a writer is currently writing a new ecc value.

The write functions are shown in Algorithm 11. To begin a write, the

writer makes a private copy of the ecc value for it to edit. Then every element

the writer updates, the writer increments the writer clock and updates the

writer ecc. The writer clock is used to let the reader skip decode if the reader

can, and to also know if decode can succeed. It could be that more than one

write operation happens between when the reader starts the read and finishes

the read of the code word. When the writer wishes to commit what it as

104

Algorithm 11 Error Correction Code Write Operations

1: function BeginWrite
2: write ecc ← ecc;
3: end function
4: function Write(index , value)
5: writer clock ← writer clock + 1;
6: data[index]← value;
7: update ecc(write ecc, index , value);
8: end function
9: function EndWrite

10: for i = 0 to ecc length do
11: writer clock ← writer clock + 1;
12: ecc[i]← writer ecc[i];
13: end for
14: commit clock ← writer clock ;
15: end function

written and make it visible to the readers, the writer then copies its updated

writer ecc to ecc updating the writer clock along the way. And finally, the

writer sets the commit clock to the value of writer clock .

The error correction code read function is shown in Algorithm 12. To

perform a read, the reader first reads the commit clock . Then the writer

reads the code word, in this case is the data and ecc pair. When reading the

code is done the reader reads the writer clock . If the two clock values read

are the same, then no concurrent write happened during the read operation,

so just return the data. Otherwise, if the number of mutations to the data

during the read does not exceed max errors then attempt to decode. For

most codes, max errors is the number of errors the error correction code can

reliably detect. If the decode operation did not succeed, for example because

105

Algorithm 12 Error Correction Code Read Operation

1: function Read
2: loop
3: start clock ← commit clock ;
4: read data ← data;
5: read ecc ← ecc;
6: end clock ← writer clock ;
7: if start clock = end clock then return read data;
8: else if end clock − start clock < max errors then
9: if decode(read data, read ecc) then

10: return read data;
11: end if
12: end if
13: end loop
14: end function

there was enough modifications that error correction could not be done but

enough to detect that there where errors, then go back to the beginning.

6.5 Atomic Swap Performance Comparison

This section presents performance comparisons for a simple application

that performed a compare and swap like test. In many applications, a com-

mon operation is to have a struct or buffer that is protected by a mutex and

accessed by multiple threads. This comparison tries to model the situation

where multiple threads want to read a data structure, while one thread per-

forms atomic updates on the data. The readers read the entire contents of

the array and validate that it is consistent. The writes “atomically” swap two

random elements in the array. Algorithm 13 shows pseudo code for the swap

test.

106

Algorithm 13 Swap Test for ECC Comparison

1: function Read Thread
2: for i = 0 to iterations do
3: start performance counter;
4: data ← Read;
5: end performance counter;
6: verify(data);
7: end for
8: end function
9: function Write Thread

10: for i = 0 to iterations do
11: x1 ← rand([0, sizeof (data)]);
12: x2 ← rand([0, sizeof (data)]);
13: start performance counter;
14: BeginWrite();
15: a← data[x1];
16: Write(x1, data[x2]);
17: Write(x2, a);
18: EndWrite();
19: end performance counter;
20: end for
21: end function

107

Three different types of concurrent buffer algorithms where used with

the test. The first is lock based, that is to say, have a mutex that is acquired for

each access. The second is a copy on write buffer that uses compare and swap

atomic routines to swing a pointer for update. The third uses a replication

code buffer. In testing, the relative performance of the algorithms did not

change much for reasonable values for iterations and number of writers.

Violin plots the distribution of the transaction run times for the three

algorithms separated by reader routine and swap routine are in Figure 6.1.

The bar in the middle is the average. As can be seen, the lock based approach

is quiet a bit slower than the other two on average; but, its fastest was almost

the same. It is interesting to note that the distributions appear to be piece wise

exponential. While the read range is much the same for all algorithms, the

write range is noticeably different. The atomic swap based method is an order

of magnitude faster on average than the lock based method. The repetition

code method’s performance is very similar to the lock free; but, has a smaller

range. This indicates that, if it is important that the write algorithm take a

fixed constant amount of time, the best choice would be the repetition code

algorithm.

Some things to note are the relative number of memory accesses and

memory usage between the different algorithms. The base is the lock based

algorithm. The lock based has the minimum number of memory accesses and

usage. The lock free algorithm is done by copy on write and pointer swing

with a compare and swap instruction. So, the number of memory transactions

108

Locking Block Reader
Locking Block Swap

Lockfree Block Reader
Lockfree Block Swap

Repetition Block Reader
Repetition Block Swap

10 5

10 4

10 3

10 2

10 1

lo
g(

ru
nt

im
e)

Figure 6.1: Atomic Swap Comparison

109

is base plus twice the buffer length for the copy and twice the memory usage

of the lock based. The repetition code algorithm performs the base plus two

writes and two reads of the entire buffer and uses three times as much memory

as the base. This could be reduced some, if the writer kept track of the modified

values. The repetition code algorithm takes up to three time as many read

operations for a read as the other two.

6.6 Hash Map Performance Comparison

A simulated hash map was created that used the three memory block

types used above as the hash map buckets. These three block hash maps are

compared to the concurrent hash map from the Intel threading building blocks

library.

The simulation run was to spawn 20 threads and have each thread ran-

domly and independently perform lookups with 99 percent probability, inserts

and deletes with 1 percent probability using a predefined list of keys. The

hash map was instantiated with space to fit all the predefined keys; and, then

pre-filled to 25 percent capacity before the test was run.

The results of the hash map simulation are in Figure 6.2. As can be

seen, the lock based method has the best overall average performance. The

lock free version has the worst performance. The worst case run time is about

the same for all but the lock free algorithm. I would claim from this that

the repetition based algorithm does not perform significantly worse than the

fastest algorithm.

110

Intel TBB read
Intel TBB write

Locked Block read
Locked Block write

Lockfree Block read
Lockfree Block write

Repetition Block read

Repetition Block write
10 7

10 6

10 5

10 4

10 3

lo
g(

ru
nt

im
e)

Figure 6.2: Hash Map Comparison

111

6.7 Conclusion

This chapter has shown how forward error correction codes can be used

for synchronizing memory access. The basic building block shown here can be

used to build things like B-trees and transactional memory systems. It is a

surprising result that the repetition code based algorithm did not perform

significantly worse than the alternatives. Common expectation would be to

see a serious performance decrease with the extra work. This approach is most

useful when the application requires the writer to take a constant number of

instructions and have very tight performance envelope. On the other hand, this

approach suffers from additional memory access overhead making it unsuitable

for some applications.

112

Bibliography

[1] Ittai Abraham, Danny Dolev, Rica Gonen, and Joe Halpern. Distributed

computing meets game theory: robust mechanisms for rational secret

sharing and multiparty computation. In Proc. Annu. ACM symp. on

Principles of Distributed Computing, PODC ’06, pages 53–62, New York,

NY, USA, 2006. ACM.

[2] Naama Ben-David, Guy E. Blelloch, Yihan Sun, and Yuanhao Wei. Ef-

ficient single writer concurrency. CoRR, abs/1803.08617, 2018.

[3] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Simple gradecast

based algorithms, September 2010.

[4] P. Berman, J.A. Garay, and K.J. Perry. Towards optimal distributed

consensus. In Foundations of Computer Science, 1989., 30th Annual

Symposium on, pages 410–415, 30 1989.

[5] Piotr Berman and Juan A. Garay. Asymptotically optimal distributed

consensus (extended abstract). In ICALP ’89: Proceedings of the 16th In-

ternational Colloquium on Automata, Languages and Programming, pages

80–94, London, UK, 1989. Springer-Verlag.

[6] Gabriel Bracha. An O(log n) expected rounds randomized Byzantine

generals protocol. Journal of the ACM, 34(4):910–920, October 1987.

113

[7] John Bridgman and Vijay K. Garg. Brief announcement: all-to-all

gradecast using coding with byzantine failures. In Darek Kowalski and

Alessandro Panconesi, editors, ACM Symposium on Principles of Dis-

tributed Computing, PODC ’12, Funchal, Madeira, Portugal, July 16-18,

2012, pages 95–96. ACM, 2012.

[8] John F. Bridgman and Vijay K. Garg. All-to-all gradecast using coding

with byzantine failures. Technical Report TR-PDS-2012-001, Parallel

and Distributed Systems Laboratory, The University of Texas at Austin,

2012.

[9] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.

In OSDI, pages 173–186, 1999.

[10] K. L. Clarkson, David Eppstein, Gary L. Miller, Carl Sturtivant, and

Shang-Hua Teng. Approximating center points with iterated radon

points. In Proceedings of the ninth annual symposium on Computational

geometry, SCG ’93, pages 91–98, New York, NY, USA, 1993. ACM.

[11] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and M. Dahlin. Making

byzantine fault tolerant systems tolerate byzantine faults. In Symp. on

Networked Systems Design and Implementation, April 2009.

[12] Brian A. Coan and Jennifer L. Welch. Modular construction of a byzan-

tine agreement protocol with optimal message bit complexity. Informa-

tion and Computation, 97(1):61 – 85, 1992.

114

[13] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and

Liuba Shrira. Hq replication: A hybrid quorum protocol for byzantine

fault tolerance. In Proc. Symp. on Operating Systems Design and Im-

plementations, pages 177–190, Seattle, Washington, November 2006.

[14] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and

William E. Weihl. Reaching approximate agreement in the presence of

faults. J. ACM, 33(3):499–516, May 1986.

[15] Danny Dolev, Ruediger Reischuk, and H. Raymond Strong. Early stop-

ping in byzantine agreement. JACM, 37(4):720–741, October 1990.

[16] Danny Dolev and H. Raymond Strong. Polynomial algorithms for mul-

tiple processor agreement. In Proceedings of the ACM symposium on

Theory of computing, pages 401–407, New York, NY, USA, 1982. ACM.

[17] Herbert Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-

Verlag, 1987.

[18] A D Fekete. Asymptotically optimal algorithms for approximate agree-

ment. In Proceedings of the fifth annual ACM symposium on Principles

of distributed computing, PODC ’86, pages 73–87, New York, NY, USA,

1986. ACM.

[19] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agree-

ment. In Proceedings of the twentieth annual ACM symposium on The-

115

ory of computing, STOC ’88, pages 148–161, New York, NY, USA, 1988.

ACM.

[20] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol

for synchronous byzantine agreement. SIAM Journal on Computing,

26(4):873–933, 1997.

[21] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Im-

possibility of distributed consensus with one faulty process. J. ACM,

32(2):374–382, 1985.

[22] Matthias Fitzi and Ueli M. Maurer. Efficient byzantine agreement secure

against general adversaries. In DISC ’98: Proceedings of the 12th Inter-

national Symposium on Distributed Computing, pages 134–148, London,

UK, 1998. Springer-Verlag.

[23] Roy Friedman, Achour Mostéfaoui, Sergio Rajsbaum, and Michel Ray-

nal. Asynchronous agreement and its relation with error-correcting codes.

IEEE Trans. Computers, 56(7):865–875, 2007.

[24] Juan A. Garay and Yoram Moses. Fully polynomial byzantine agreement

in t + 1 rounds. In Proc. Annu. ACM Symp. on Theory of Computing,

pages 31–41, New York, NY, USA, 1993. ACM.

[25] Vijay K. Garg and John Bridgman. The weighted byzantine agreement

problem. In 25th IEEE International Symposium on Parallel and Dis-

116

tributed Processing, IPDPS 2011, Anchorage, Alaska, USA, 16-20 May,

2011 - Conference Proceedings, pages 524–531. IEEE, 2011.

[26] Vijay K. Garg, John Bridgman, and Bharath Balasubramanian. Accu-

rate byzantine agreement with feedback. In Antonio Fernàndez Anta,

Giuseppe Lipari, and Matthieu Roy, editors, Principles of Distributed

Systems, pages 465–480, Berlin, Heidelberg, 2011. Springer Berlin Hei-

delberg.

[27] Vijay K. Garg, John Bridgman, and Bharath Balasubramanian. Accu-

rate byzantine agreement with feedback. In Cyril Gavoille and Pierre

Fraigniaud, editors, Proceedings of the 30th Annual ACM Symposium on

Principles of Distributed Computing, PODC 2011, San Jose, CA, USA,

June 6-8, 2011, pages 215–216. ACM, 2011.

[28] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowl-

edge in a distributed environment. CoRR, cs.DC/0006009, 2000.

[29] Jean-Michel Hélary, Michel Hurfin, Achour Mostéfaoui, Michel Raynal,

and Frederic Tronel. Computing global functions in asynchronous dis-

tributed systems prone to process crashes. In International Conference

on Distributed Computing Systems, pages 584–591, 2000.

[30] Martin Hirt and Ueli Maurer. Complete characterization of adversaries

tolerable in secure multi-party computation (extended abstract). In

117

PODC ’97: Proceedings of the sixteenth annual ACM symposium on Prin-

ciples of distributed computing, pages 25–34, New York, NY, USA, 1997.

ACM.

[31] Satyen Kale. Efficient algorithms using the multiplicative weights update

method. PhD thesis, Princeton University, Princeton, NJ, USA, 2007.

AAI3286120.

[32] Valerie King and Jared Saia. Breaking the O(n2) bit barrier: scalable

byzantine agreement with an adaptive adversary. In Proc. ACM symp.

on Principles of Distributed Computing, PODC ’10, pages 420–429, New

York, NY, USA, 2010. ACM.

[33] Thijs Krol. Interactive consistency algorithms based on voting and error-

correcting codes. In TwentyFifth International Symposium on Fault-

Tolerant Computing, Digest of Papers, FTCS-25 Silver Jubilee, IEEE

Computer Society Press, Los Alamitos, pages 89–98, 1995.

[34] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Commun. of the ACM, 21(7):558–565, 1978.

[35] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine

generals problem. ACM Trans. Program. Lang. Syst., 4:382–401, July

1982.

[36] Kok-Wah Lee and Hong-Tat Ewe. Performance study of byzantine agree-

ment protocol with artificial neural network. Inf. Sci., 177(21):4785–

118

4798, 2007.

[37] Guanfeng Liang and Nitin H. Vaidya. Error-free multi-valued consensus

with byzantine failures. CoRR, abs/1101.3520, 2011.

[38] Nick Littlestone and Manfred K. Warmuth. The weighted majority algo-

rithm. Inf. Comput., 108:212–261, February 1994.

[39] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate

agreement in byzantine asynchronous systems. In Proceedings of the

Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13,

pages 391–400, New York, NY, USA, 2013. ACM.

[40] Parchive: Parity archive tool. http://parchive.sourceforge.net/.

[41] Arash Partow. Schifra reed-solomon error correcting code library. http:

//www.schifra.com/.

[42] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the

presence of faults. J. ACM, 27:228–234, April 1980.

[43] Michael O. Rabin. Randomized byzantine generals. In Foundations of

Computer Science, pages 403–409, 1983.

[44] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.

Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[45] Ron M. Roth. Introduction to coding theory. Cambridge University

Press, 2006.

119

http://parchive.sourceforge.net/
http://www.schifra.com/
http://www.schifra.com/

[46] T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to

derive simple fault-tolerant algorithms. Distributed Computing, 2:80–94,

1987. 10.1007/BF01667080.

[47] Lewis Tseng and Nitin H. Vaidya. Asynchronous convex consensus in the

presence of crash faults. CoRR, abs/1403.3455, 2014.

[48] Nitin H. Vaidya and Vijay K. Garg. Byzantine vector consensus in com-

plete graphs. In Proceedings of the 2013 ACM Symposium on Principles

of Distributed Computing, PODC ’13, pages 65–73, New York, NY, USA,

2013. ACM.

[49] S. C. Wang and S. H. Kao. A new approach for byzantine agreement. In

Proceedings of the The International Conference on Information Network-

ing, page 518, Washington, DC, USA, 2001. IEEE Computer Society.

120

	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	System Models
	Contributions
	Weighted Byzantine Agreement
	Repeated Byzantine Agreement With Feedback
	Vectorized Byzantine Agreement
	Reducing Communication Complexity in All-to-All Broadcasts
	Error Correction Codes to Synchronize Memory Access

	Overview of Dissertation

	Chapter 2. Byzantine Agreement
	Introduction
	WBA Problem Specification
	Weighted-Queen Algorithm
	Weighted-King Algorithm
	Updating Weights
	Weight Assignment
	Conclusions

	Chapter 3. Accurate Byzantine Agreement with Feedback
	Introduction
	Model and Definitions
	The ABA Algorithm
	Accuracy Guarantees of the ABA Algorithm
	Deterministic Accuracy
	Probabilistic Accuracy
	At-Least-One Accuracy

	ABA Algorithm with Weighted Byzantine Agreement
	Experimental Evaluation of ABA Algorithm
	Experimental Setup and Parameters
	Results

	Conclusion and Future Work

	Chapter 4. Vectorized Byzantine Agreement
	Introduction
	Definitions
	Results
	Conclusion

	Chapter 5. Error Correction Codes in Repeated Broadcast Communication
	Introduction
	One-to-All Gradecast
	Algorithm for All-To-All Gradecast
	Example
	Proof of Correctness
	Application
	Conclusion

	Chapter 6. Error Correction Codes for Data Structure Synchronization
	Introduction
	Approach
	Repetition Code Concurrent Buffer Algorithm
	ECC Concurrent Buffer Algorithm
	Atomic Swap Performance Comparison
	Hash Map Performance Comparison
	Conclusion

	Bibliography

