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Chaos and band structure in a three-dimensional optical lattice
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Classical chaos is known to affect wave propagation because it signifies the presence of broken symmetries.
The effect of chaos has been observed experimentally for matter waves, electromagnetic waves, and acoustic
waves. When these three types of waves propagate through a spatially periodic medium, the allowed propagation
energies form bands. For energies in the band gaps, no wave propagation is possible. We show that optical lattices
provide a well-defined system that allows a study of the effect of chaos on band structure. We have determined
the band structure of a body-centered-cubic optical lattice for all theoretically possible couplings, and we find
that the band structure for those lattices realizable in the laboratory differs significantly from that expected for
the bands in an “empty” body-centered-cubic crystal. However, as coupling is increased, the lattice becomes
increasingly chaotic and it becomes possible to produce band structure that has behavior qualitatively similar to
the “empty” body-centered-cubic band structure, although with fewer degeneracies.
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I. INTRODUCTION

The effect of classical chaos on wave motion can be seen
most directly when considering the behavior of eigenvalues
and eigenfunctions of the Schrodinger equation for a particle
in a potential well [1]. When the particle has two degrees
of freedom, one can directly compare Poincare surfaces of
section (PSS) of the classical motion to quantum surfaces
of section of Husimi functions built from eigenstates of the
Schrodinger equation. The effect of chaos on quantum systems
with more than two degrees of freedom is more difficult to
determine in a systematic way because it is not easy to visualize
either classical or quantum motion in systems with more than
two degrees of freedom. The effects of chaos can also be
seen in other types of wave propagation. Electromagnetic
radiation exhibits the manifestations of chaos and this has been
measured experimentally in microwaves [2,3]. Acoustic waves
exhibit the effects of chaos and this has special importance in
the study of sound wave motion in the ocean [4].

When waves propagate through a potential energy field
that forms a periodic array, the allowed energies or frequencies
form bands of values for which waves are allowed to propagate
and gaps between the allowed energy bands for which no
wave propagation can occur. In crystalline solids, formed from
periodic arrays of atoms or molecules, electron matter waves
can propagate and the detailed structure of electron energy
bands and band gaps determines whether the material is a
conductor, semiconductor, or an insulator of electricity [5].
Photonic crystals can be fabricated and consist of regularly
repeating regions of low and high dielectric constant. Photonic
crystals allow the propagation of electromagnetic waves whose
wavelength is of the order of periodicity of the dielectric
lattice. Electromagnetic waves have a scale invariance so that
electromagnetic waves of any wavelength can propagate in a
photonic crystal, provided the periodicity of the crystal is the
same order as the wavelength of the radiation. Electromagnetic
waves in photonic crystals have bands of allowed wavelengths
that can propagate and band gaps in which no radiation can
propagate [6,7]. Elastic and acoustic waves through materials
with spatially periodic arrays of material, with different elastic
moduli, have bands of allowed wavelengths in which the

acoustic waves can propagate and band gaps in which waves
are not allowed to propagate [8].

One of the most recent additions to this collection of
systems with wave propagation in periodic lattices is the propa-
gation of atomic matter waves (alkali atoms such as rubidium,
cesium, and sodium) in optical lattices. Optical lattices are
formed by superposing multiple pairs of counterpropagating
laser beams in different patterns and have been realized in the
laboratory by several groups [9–13]. Such systems can be used
to explore the quantum-classical correspondence of the atoms
interacting with the optical lattice, as was done in Ref. [14]
for a 2D optical lattice and, by analogy, some properties of
electrons in crystalline solids [15,16].

In subsequent sections, we use a dynamical model that,
for a particular parameter range, describes the interaction of
alkali atoms with a three-dimensional (3D) optical lattice.
However, the model more generally allows us to explore how
the detailed structure of the periodic lattice can affect band
structure. As was shown in Ref. [14], the coupling between
degrees of freedom of the lattice can be varied by varying
the relative orientation of the polarization of the lasers. As a
consequence, the nature of the particle dynamics can be varied
from integrable behavior to almost fully chaotic behavior for
a range of energies. This transition from integrable to chaotic
behavior occurs because resonances between the degrees of
freedom in the coupled system destroy local constants of the
motion [1], thus allowing the particles to access larger regions
of the lattice. In bounded systems, this transition is known to
have a profound effect of the dynamics of quantized system.
Below we show how the transition to chaos can affect the
energy band structure of particles confined to the 3D BCC
optical lattice.

We begin in Sec. II with a description of the Hamiltonian
and dynamics of atoms confined to a 3D optical lattice. In
Sec. III, we describe the classical dynamics of noninteracting
particles on the lattice and discuss properties of invariant
manifolds embedded in the 3D lattice. In Sec. IV, we describe
the quantum dynamics of particles on the lattice and show the
effect of chaos on the energy band structure. Finally, in Sec. V,
we make some concluding remarks.
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II. THREE-DIMENSIONAL OPTICAL LATTICE

We consider a gas of noninteracting particles of mass m

interacting with a body-centered-cubic (BCC) lattice formed
by the superposition of three pairs of mutually perpendicular
laser beams (see Appendix). The laser beams are detuned
from resonance with the atoms, so the interaction dynamics
between the atoms and the optical lattice can be described by
the Hamiltonian [17]

Heff = p2
z

2m
+ p2

y

2m
+ p2

z

2m
− d2

AE2

��
[cos2(kxx) + cos2(kyy)

+ cos2(kzz) + 2acos(kxx)cos(kyy)

+ 2bcos(kxx)cos(kzz) + 2ccos(kyy)cos(kzz)], (1)

where � is Planck’s constant, x,y, and z are the particle
Cartesian coordinates, px , py , and pz are components of the
particle momentum in the x, y, and z directions, respectively,
dA is the atomic dipole moment, E is the laser electric field
strength, kx , ky , and kz are the wave vectors of the laser beams
in the x, y, and z directions, respectively, and � is the detuning
of the laser from resonance with the atoms. The coupling
constants, a, b, and c (with the lasers in phase), are given by
a ≡ ε̂(x)·ε̂(y), b ≡ ε̂(x)·ε̂(z), and c ≡ ε̂(y)·ε̂(z), where ε̂(x), ε̂(y),
and ε̂(z) are the polarization vectors for lasers directed along
the x, y, and z axes, respectively. Thus, the coupling constants
are determined by the physically allowed angles between the
polarization directions of the laser fields.

In Fig. 1, we show a plot of the polarization vectors and
the angles these vectors make with respect to the Cartesian
coordinate frame. The vector ε̂(x) lies in the y-z plane and
makes angle θx with the z axis. Similarly, ε̂(y) (ε̂(z)) lies in
the x-z (x-y) plane and makes angle θy (φz) with the z axis
(x axis). Since ε̂(x) = cos(θx)ẑ + sin(θx)ŷ, ε̂(y) = cos(θy)ẑ +
sin(θy)x̂, and ε̂(z) = cos(φz)x̂ + sin(φz)ŷ, we can write a =
ε̂(x)·ε̂(y) = cos(θx)cos(θy), b = ε̂(x)·ε̂(z) = sin(θx)sin(φz), and
c = ε̂(y)·ε̂(z) = sin(θy)cos(φz).

In subsequent sections, we will consider the case a =
b = c. Zero coupling between the lasers a = b = c = 0
corresponds to angles θx = π

2 , θy = 0, and φz = 0. In this
case, the polarization vectors form 90o angles with respect
to one another. The maximum physically allowed coupling

FIG. 1. The directions of the polarization angles relative to the
Cartesian axes containing the laser beams.

between the laser beams occurs for a = b = c = 1
2 with

angles θx = θy = φz = π
4 . However, from the point of view

of dynamics, the cases 1
2 < a � 1 are also of interest (even

though they cannot be realized in the laboratory by the optical
lattice), because they tell us the type of dynamics the optical
lattice cannot achieve.

We will consider the case where all lasers have the same
wavelength so that kx = ky = kz = kL. The Hamiltonian then
takes the form

Heff = p2
x

2m
+ p2

y

2m
+ p2

z

2m
− d2

AE2

��
[cos2(kLx) + cos2(kLy)

+ cos2(kLz) + 2acos(kLx)cos(kLy)

+ 2acos(kLx)cos(kLz) + 2acos(kLy)cos(kLz)]. (2)

Let us now introduce dimensionless variables. We measure
energy in terms of the recoil energy EL = �

2k2
L

2m
, and let

Heff = H ′EL, px = p′
x(�kL), py = p′

y(�kL), pz = p′
z(�kL),

x ′ = kLx, y ′ = kLy, z′ = kLz, and uEL = − d2
AE2

��
. Then the

Hamiltonian takes the form

H = p2
x + p2

y + p2
z + V (x,y,z) = E, (3)

with

V (x,y,z) = u[cos2(x) + cos2(y) + cos2(z)]

+ 2au[cos(x)cos(y) + cos(x)cos(z)

+ cos(y)cos(z)], (4)

where all quantities are in dimensionless units (d.u.) (we have
dropped the primes). We will consider the dynamics for the
case u = 20 d.u., which is the case considered in Ref. [14] and
is a value attainable in experiment.

In subsequent sections, we will focus on three represen-
tative values of the coupling constant, a = 0.1, a = 0.5, and
a = 1.0. For all three values of the coupling constant, the
optical lattice forms a body-centered cubic (BCC) structure
and the minimum value of the potential energy is V (x,y,z) = 0
for x, y, and z each taking all possible values (2m + 1)π/2
(integer m can have values −∞� m � ∞). For all three cases,
the maximum value of the potential energy V (x,y,z) = Vmx(a)
is located at values of x, y, and z each taking values mπ ,
where integer m can have values −∞� m � ∞. However, the
values of Vmx(a) are different: Vmx(0.1) = 72 d.u., Vmx(0.5) =
120 d.u., and Vmx(1.0) = 180 d.u. Also, the detail structure of
the potential energy surfaces is very different in the three cases.
In Fig. 2, we show the structure of the potential energy surface
for both low energy and high energy (up to the maximum
value of the potential energy). At low energy, the lattices
for a = 0.1 and a = 0.5 have very similar structure, and
trajectories are confined within the unit cells (the low-energy
values are determined by invariant manifolds that separate
unit cells as discussed below). This low-energy structure is
particularly significant because, at low temperature, this is the
energy region occupied by ultracold gases. At low energy, the
lattice for a = 1.0 is open and trajectories have the ability
to move between unit cells. For high energy, the lattices for
a = 0.5 and a = 1.0 have very similar open structure, while
the lattice for a = 0.1 is much more cluttered with potential
energy surfaces.
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FIG. 2. The 3D potential energy surface for one unit cell of
the 3D lattice for different energy intervals: (a) a = 0.1 and
V (x,y,z) < 21.64 d.u.; (b) a = 0.1 and 48 < V (x,y,z) < 72 d.u.;
(c) a = 0.5 and V (x,y,z) < 15.33 d.u.; (d) a = 0.5 and 80 <

V (x,y,z) < 120 d.u.; (e) a = 1.0 and V (x,y,z) < 3.0 d.u.; (f) a =
1.0 and 120 < V (x,y,z) < 180 d.u..

In subsequent sections, we consider the classical and
quantum dynamics of noninteracting particles confined to this
3D optical lattice.

III. CLASSICAL DYNAMICS ON THE
THREE-DIMENSIONAL LATTICE

The first step in describing the classical dynamics of
particles on this optical lattice is to write Hamilton’s equations
of motion for the particles. They take the form

ṗx = [2ucos(x) + 2aucos(y) + 2aucos(z)]sin(x),

ṗy = [2ucos(y) + 2aucos(x) + 2aucos(z)]sin(y),
(5)

ṗz = [2ucos(z) + 2aucos(x) + 2aucos(y)]sin(z),

ẋ = 2px, ẏ = 2py, ż = 2pz.

From these equations, we see that the phase space con-
tains three sets invariant manifolds. If we choose initial

conditions (px = 0,x = 2mπ ) (for integers −∞� m � ∞),
then subsequent trajectories will always remain on the two-
dimensional (2D) invariant manifold (InM) consisting of
variables {py,pz,y,z}. Similarly, if we choose (py = 0,y =
2mπ ) [(pz = 0,z = 2mπ )] the subsequent motion will remain
in the InM {px,pz,x,z} ({px,py,x,y}). The dynamics on these
three InMs will be identical functions of the coupling constant
a (for the case a = b = c considered here). The InMs play a
critical role in the dynamics of the 3D lattice. They form the
boundaries between different unit cells and determine the flow
of trajectories between different unit cells of the 3D lattice.

Because the dynamics on the InMs evolves in a 2D phase
space, it is possible to visualize the dynamics on the InMs using
Poincare surfaces of section (PSS). This provides valuable
information about the character of the dynamics on the lattice
that is not readily accessible in the 3D lattice. In the sections
below, we first analyze the dynamics on the InMs and then
consider the full 3D dynamics of the system.

A. Invariant manifolds

The dynamics on the three sets of InMs are identical
functions of the coupling constant a, so we will focus on
the InM generated by setting px = 0,x = 0. The Hamiltonian
that describes the dynamics of the InM is

HIM = p2
y + p2

z + VIM(y,z) = EIM, (6)

where

VIM(y,z) = u + u[cos2(y) + cos2(z)]

+ 2au[cos(y) + cos(z) + cos(y)cos(z)]. (7)

In Figs. 3(a), 3(b), and 3(c), we show plots of one unit cell of
the potential energy surface on the InM for a = 0.1,0.5,1.0,
respectively.

The potential energy surface on the InM undergoes a
significant change in its structure as we increase the coupling
constant. For a < 1.0, the InM always has its potential en-
ergy maxima Vmax(a) at positions y = 2πm,z = 2πn, where
(m,n = 0,±1,...), and it has potential energy local maxima
Vlmx(a) < Vmax(a) at points y = cyπ + 2πm,z = czπ + 2πn,
where (cy,cz) = (1,1),(1,0), and (0,1). There are two types of
saddle point on the InM. There is a high saddle, with potential
energy Vhsd(a), at y = π

2 dy + 2πm,z = π
2 dz + 2πn, where

(dy,dz) = (0,1) and (1,0). There is a low saddle, with potential
energy Vlsd(a) < Vhsd(a), at y = π

2 fy + mπ, z = π
2 fz + nπ ,

where (fy,fz) = (2,1) and (1,2). The minimum value of the
potential energy Vmin(a) occurs at y = z = cos−1[ −a

(1+a) ].
The structure of the InM is different for a = 1. The

potential energy maximum and local maximum are Vmax =
180 d.u. and Vlmx = 20 d.u., respectively. There is a high
saddle Vhsd = 80 d.u., but the low saddle merges with the
potential energy minimum so that Vled = Vmin = 0. Values of
Vmax(a),Vlmx(a),Vmin(a),Vhad(a),Vlsd(a) are given in Table I
for a = 0.1, 0.5, 1.0.

Trajectories on the InM are confined to the InM unit cell as
long as their energy lies below the energy of the high saddle
point, or the local potential maximum, whichever has lowest
energy. For a = 0.1, trajectories can escape from the InM unit
cell, and traverse the entire InM, by passing over the high
saddle point when their energy is greater than E = 44 d.u..
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FIG. 3. The potential energy surface VIM(y,z) for one unit cell the
invariant manifold (x = 0,px = 0) for coupling constants (a) a = 0.1,
(b) a = 0.5, and (c) a = 1.0. The energy scale of the shadings is
shown in dimensionless units.

TABLE I. Key potential energy values on the InM (in d.u.).

Vmax Vlmax Vhisd Vlwsd Vmin cos−1
( −a

1+a

)
α = 0.1 72 56 44 36 19.6364 1.6618
α = 0.5 120 40 60 20 13.3333 1.9106
α = 1.0 180 20 80 0 0 2.0944

For a = 0.5, trajectories can escape the InM unit cell by
passing over the local potential maximum when their energy is
greater than E = 40 d.u.. For a = 1.0, trajectories can escape
the unit cell and move throughout the InM by passing over
the local potential maximum when their energy is greater than
E = 20 d.u..

We can visualize the nature of the dynamics on the InM
using Poincare surfaces of section (PSS). In Fig. 4 we show a
PSS of pz versus z, plotted every time y = yf = cos−1( −a

1+a
).

We use periodic boundary conditions so a trajectory that
is able to leave the unit cell enters on the opposite side.
Figures 4(a)–4(c) show surfaces of section for a = 0.1 and
a range of energies. In Fig. 4(a), the energy is E = 31 d.u.,
which is just below Vlsd(0.1) = 36 d.u. We see the same
bifurcation that occurred in Ref. [14]. With increasing energy,
this bifurcation gives rise to a growing chaotic sea in its
neighborhood. In Fig. 4(b), the energy is E = 41 d.u., which
is below the high saddle Vhsd(0.1) = 44 d.u. but above the low
saddle Vlsd(0.1) = 36 d.u. The trajectory is able to cross the
low saddle but is still confined inside the unit cell. In this
figure the chaos associated with the saddle is evident. Indeed,
the saddle chaos has mixed with chaotic orbits due to the
bifurcation, in a manner similar to that seen in Ref. [14]. In
Fig. 4(c), the energy is E = 51 d.u., which is just above the
high saddle Vhsd(0.1) = 44 d.u., but still below the potential
energy maximum Vmax(0.1) = 72 d.u.. The trajectory can now
escape the unit cell.

In Figs. 4(d)–4(f), we show PSSs for a = 0.5, which is the
maximum value of a that can be achieved in the laboratory
for the optical lattice we consider here. In Fig. 4(d), the
energy is E = 18 d.u., which is just below the low saddle
Vlsd(0.5) = 20 d.u.. The structure is quite different from that
seen in Ref. [14], because the InM is a cubic lattice and
the 2D lattice in Ref. [14] is a body-centered cubic. This
figure shows a bifurcation in the upper KAM island. In
Fig. 4(e), the energy is E = 24 d.u., which is below the high
saddle Vhsd(0.5) = 60 d.u. but above the low saddle Vlsd(0.5) =
20 d.u.. The trajectory is able to cross the low saddle but is
still confined inside the unit cell. Finally, in Fig. 4(f), the
energy is E = 64 d.u., which is just above the high saddle
Vhsd(0.5) = 64 d.u., but still well below the potential energy
maximum Vmax(0.5) = 120 d.u. The phase space appears to be
fully chaotic and trajectories can leave the unit cell and travel
through out the InM.

In Figs. 4(g)–4(i), we show PSSs for a = 1.0. In Fig. 4(g),
the energy is E = 1 d.u., which is just above the minimum
potential energy Vmin(1.0) = 0. At this very low energy there
is still a stable periodic orbit corresponding to flow in the poten-
tial energy minimum Vmin = 0 that forms a circular trough in
the InM. In Fig. 4(h), the energy is E = 44 d.u., which is above
the local potential energy maximum Vlmx(1.0) = 20 d.u., but
below the high saddle point energy Vhad(1.0) = 80 d.u. The
motion appears to be fully chaotic but is still confined to the
unit cell. Finally, in Fig. 4(i), the energy is E = 84 d.u., which
is just above the high saddle energy Vhad(1.0) = 80 d.u. The
trajectories can now leave the unit cell and appear to be fully
chaotic, except for a KAM island structure in the neighborhood
of the high saddle. As discussed in [14], dynamics on the
lattice for a = 1.0 for 0 < E < 180 d.u. has features similar
to a K-flow.
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FIG. 4. Poincare surfaces of section of pz versus z for intersections condition y = cos−1( −a

1+a
) on the invariant manifold px = 0,x = 0:

(a) a = 0.1, E = 31 d.u.; (b) a = 0.1, E = 41 d.u.; (c) a = 0.1, E = 51 d.u.; (d) a = 0.5, E = 18 d.u.; (e) a = 0.5, E = 24 d.u.; (f) a = 0.5,
E = 64 d.u.; (g) a = 1.0, E = 1.0 d.u.; (h) a = 1.0, E = 44 d.u.; (i) a = 1.0, E = 84 d.u..

We can determine the stability of these InMs in directions
normal to the InM. Let us consider the InM obtained by setting
(px = 0,x = 0). We can expand the 3D Hamiltonian about
x = 0 and obtain

H⊥ = HIM(py,pz,y,z) + p2
x + 1

2k(x,y)x2 + ..., (8)

where the “force constant” k(y,z) is

k(y,z) = −u[1 + acos(y) + acos(z)]. (9)

The force constant k(y,z) is negative for coupling constant
0 � a � 0.5, and therefore for 0 � a � 0.5, the dynamics
normal to the InM is unstable and the InM forms a saddle
in the normal direction. If the normal stability is greater than
the tangential instability on the InM, then the InM is called
a normally hyperbolic invariant manifold (NHIM) [18]. For
values of the coupling constant a � 0.5 the stability begins
to change in the neighborhood of y = π,z = π and the force
constant becomes positive in a growing region of the InM, in
the neighborhood of y = π, z = π , as a further increases.

B. 3D lattice

The six InMs, located at x = 0,2π , y = 0,2π , and z =
0,2π , form the outer walls of the unit cell of the 3D lattice.
At low energy, they create barriers that trajectories must cross
to escape the unit cell. For all values of the coupling constant,
the minimum value of potential energy inside the 3D unit cell
is V 3D

min(a) = 0. For a � 0.5, the InMs are hyperbolic in the
normal direction. The height of the saddle is equal to Vmin(a)
[Vmin(0.1) = 19.64 d.u., Vmin(0.5) = 13.33 d.u., Vmin(1.0) =
0], the minimum value of the potential energy on the InM.
For E < Vmin(a) trajectories are trapped inside the 3D unit
cell. In Figs. 2(a), 2(c), and 2(e), we show the regions of

potential energy inside the 3D unit cell with potential energy
V 3D(a) < [Vmin(a) + 2] d.u. For a = 0.1 and a = 0.5 there is a
very small passageway between the 3D unit cells. For a = 1.0,
there is large pipe-shaped region of the phase space connecting
them.

The dynamics on the InM gives us an indication of the
nature of the dynamics in the 3D unit cell, and is easy to
visualize using a PSS. In the 3D unit cell, the available
phase space is six-dimensional and the dynamics lives on a
five-dimensional energy surface. It is possible to construct a
PSS, but it is four-dimensional and cannot be visualized easily.
However, we can compute the stability of phase space flow
on both the InM and the 3D lattice by finding the Lyapunov
exponents associated with the flow. Lyapunov exponents give
a measure of the rate of divergence (indicating chaos) or
convergence of neighboring trajectories in phase space.

For bounded systems or unbounded systems [1,19,20], the
dominant Lyapunov exponent can be obtained by computing
the average of a sequence of distances, dj (j = 0,1,...N )
between neighboring phase space trajectories, each computed
for a finite length of time. One starts with two neighboring
points in phase space, whose displacements at t = 0 are
given by X0,0 and Y0,0. Initially, Y0,0 = X0,0 + d0, where
d0 is the initial displacement between the two points. The
two initial points evolve according to Hamilton’s equations.
After time interval τ , the initial points X0,0 and Y0,0 evolve
to X0,τ , and Y0,τ , respectively, where Y0,τ = X0,τ + d1, and
the distance between the two points is d1 = |d1|. After this
first time step τ , we reset the position of our reference
trajectory so that Y1,0 = X1,0 + d0

d1
d1, where X1,0 = X0,τ .

We then evolve the two points X1,0 and Y1,0 for one time
step τ and obtain second set of points X1,τ and Y1,τ , where
Y1,τ = X1,τ + d2. We again reset the reference trajectory
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FIG. 5. The Lyapunov exponents for trajectories on the InM
(stars) and in the 3D unit cell (diamonds) for coupling constants and
energies: (a) a = 0.1 and E = 51 d.u.; (b) a = 0.5 and E = 64 d.u.;
(c) a = 1.0 and E = 84 d.u. All energies are above the high saddle so
trajectories are free to move throughout the optical lattice, regardless
of whether they are on the InM or off of it.

Y2,0 = X2,0 + d0
d2

d2, where X2,0 = X1,τ , and evolve this new
set of points for one time step τ . This process is repeated
N times, generating a sequence of distances dj = |dj |, for
j = 1,...N . The Lyapunov exponent is then defined as

kN = 1

Nτ

N∑
j=1

ln

(
dj

d0

)
. (10)

If τ is chosen small enough, then the Lyapunov exponent
kN will be independent of τ and d0. If X0,0 is in a regular
region of the phase space, then limN→∞kN = 0. If X0,0 is in a
chaotic region of the phase space, then limN→∞kN approaches
a positive value [19,21].

In Fig. 5, we show the values of the dominant Lyapunov
exponent kN for 1�N�105, τ = 2 d.u., and d0 = 5×10−3 d.u.,
for initial conditions taken both on the InM and off the InM.
The energies used to compute the Lyapunov exponents are the
same as those in Figs. 4(c), 4(f), and 4(i). The initial conditions,
for trajectories on and off the InM, are the same except

for trajectories on the InM initially x = 0, px = 0 and for
trajectories off the InM initially x = 10−5 d.u.,px = 10−6 d.u.

In Fig. 5(a), a = 0.1,E = 51 d.u. and the “star” represents
the initial condition is given by (x = 0, y = z = 1.6618, px =
0, py = 2.9, pz = 4.791) in d.u. The “diamond” represents the
initial condition is given by (x = 10−5, y = z = 1.6618, px =
10−6, py = 2.9, pz = 4.791) in d.u.

In Fig. 5(b), a = 0.5, E = 64 d.u. and the “star” represents
the initial condition is given by (x = 0, y = z = 1.9106, px =
0, py = 5.515, pz = 4.5) in d.u. The “diamond” represents the
initial condition is given by (x = 10−5, y = z = 1.9106, px =
10−6, py = 5.515, pz = 4.5) in d.u.

In Fig. 5(c), a = 1, E = 84 d.u. and the “star” represents
the initial condition is given by (x = 0, y = z = 2.0945, px =
0, py = 8.5745, pz = −3.2357) in d.u. The “diamond” rep-
resents the initial condition is given by (x = 10−5, y = z =
2.0945, px = 10−6, py = 8.5745, pz = −3.2357) in d.u. In
all cases, the Lyapunov exponents approach positive values,
indicating that the motion is chaotic. This is confirmed for
the trajectories on the InM by the PSSs in Figs. 4(c), 4(f),
and 4(i). For all three values of the coupling constant the
Lyapunov exponent for the 3D chaotic motion is larger than
for the corresponding 2D motion. Also the Lyapunov exponent
increases in value as the coupling constant a increases.

IV. QUANTUM DYNAMICS ON THE
THREE-DIMENSIONAL LATTICE

The Schrodinger equation, for noninteracting quantum
particles on the optical lattice is

− ∂2ψ(x,y,z)

∂x2
− ∂2ψ(x,y,z)

∂y2
− ∂2ψ(x,y,z)

∂z2

+ u[cos2(x) + cos2(y) + cos2(z)]ψ(x,y,z)

+ 2aucos(x)cos(y)ψ(x,y,z) + 2aucos(x)cos(z)ψ(x,y,z)

+ 2aucos(y)cos(z)ψ(x,y,z) = Eψ(x,y,z). (11)

If we note the identity cos2(2x) = 1
2 [1 + cos(2x)], we can

write the Schrodinger equation in the form

∂2ψ(x,y,z)

∂x2
+ ∂2ψ(x,y,z)

∂y2
+ ∂2ψ(x,y,z)

∂z2
+ εψ(x,y,z)

− 2q[cos(2x) + cos(2y) + cos(2z)]ψ(x,y,z)

− 8aqcos(x)cos(y)ψ(x,y,z)

− 8aqcos(x)cos(z)ψ(x,y,z)

− 8aqcos(y)cos(z)ψ(x,y,z) = 0, (12)

with ε = E − 3u
2 and q = u

4 . For the case a = 0 this reduces
to

∂2ψ(x,y,z)

∂x2
+ ∂2ψ(x,y,z)

∂y2
+ ∂2ψ(x,y,z)

∂z2
+ εψ(x,y,z)

− 2q[cos(2x) + cos(2y) + cos(2z)]

× ψ(x,y,z) = 0, (13)

so the dynamics in the x, y, and z directions decouples and,
for each direction, is governed by a Mathieu equation.
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The Floquet-Bloch theorem states that Eq. (12) has solu-
tions of the form

ψa(x,y,z) = ei(kxx+kyy+kzz)Ua(x,y,z), (14)

where kx , ky , and kz are components of the Bloch momentum,
Ua(x,y,z) is a periodic function with period 2π in the x,
y, and z directions, so that Ua(x + 2π, y + 2π, z + 2π ) =
Ua(x,y,z).

For the case a = 0, the lattice has periodicity π in the x, y,
and z directions. The Floquet-Bloch (F-B) solutions to Eq. (13)
(the case a = 0) can be written in the form

ψ0(x,y,z) =
∞∑

nx=−∞

∞∑
ny=−∞

∞∑
nz=−∞

cnx
cny

cnz

× ei(kx+2nx )xei(ky+2ny )yei(kz+2nz)z. (15)

The F-B solution can also be written as the product of even and
odd Mathieu functions, which, for the x direction for example,
take the form

C0[ar,q,x] ≡
∞∑

nx=−∞
A

kx

2ncos[(kx + 2nx)x] and

(16)

S0[br,q,x] ≡
∞∑

nx=−∞
B

kx

2nsin[(kx + 2nx)x],

with ε = ar and ε = br , respectively. For a given choice of
q, the eigenvalues ar and br take on a countably infinite
number of values, and the corresponding Mathieu function
is the eigenstate of the system for that eigenvalue.

For the case a �=0, the lattice has periodicity 2π in the x, y,
and z directions and we can use the Mathieu functions

Ca[ar,q,x] ≡
∞∑

nx=−∞
Akx

n cos[(kx + nx)x] and

(17)

Sa[br,q,x] ≡
∞∑

nx=−∞
Bkx

n sin[(kx + nx)x]

(and similar functions for the y and z directions) to build
the Hamiltonian matrix for the lattice. We then diagonalize
the Hamiltonian matrix to obtain the energy eigenvalues
and eigenfunctions. For the subsequent discussion we only
consider eigenvalues and eigenfunctions of the interacting
system obtained by using the Mathieu functions Ca[ar,q,x],
Ca[ar,q,y], and Ca[ar,q,z] as the basis set. Using only odd
Mathieu functions or combinations of even and odd Mathieu
functions will give additional bands but not qualitatively
different behavior of the bands.

The Brillioun zone for a body-centered cubic crystal is
shown in Fig. 6(a), and the symmetry points �, H , N , and
P are shown. We will consider a lattice containing 20 unit
cells along each spatial direction, and we use period boundary
conditions so the Bloch vector takes values k = nx

20 x̂ + ny

20 ŷ +
nz

20 ẑ, where nx,ny , and nz are integers that can each take values
{0,1,2,...20} and x̂, ŷ, and ẑ are unit vectors. It will be useful
to compare our results for the band structure of the optical
lattice to that of an “empty” BCC lattice, which is obtained by
diagonalizing the Hamiltonian matrix using Mathieu functions
as the basis set and setting a = 0 and u = 0. In Figs. 6(b)

FIG. 6. (a) The Brillioun zone; (b) The �-H lowest six “empty
lattice” energy bands; (c) the �-N lowest six “empty lattice” energy
bands, for a body centered cubic lattice (all in d.u.).

and 6(c), we show the lowest six bands for Bloch momentum
taken along the �-H and �-N directions, respectively. Along
the �-H direction, the Bloch momentum is k�H = n

20 x̂

and along the �-N direction it is k�N = n
40 x̂ + n

40 ŷ, where
n = 0,1,...,20 for both cases. We obtain the usual empty lattice
band structure for the BCC lattice [5].

In Figs. 7(a)–7(c), we show the six bands with lowest energy
for the optical lattice along the �-H direction of the Brillioun
zone for u = 20 d.u. and coupling constants a = 0.1, a = 0.5,
and a = 1.0, respectively. In Figs. 8(a)–8(c), we show the
lowest six bands of the optical lattice along the �-N direction
of the Brillioun zone for u = 20 and coupling constants a =
0.1, a = 0.5, and a = 1.0. We find that, for a < 0.5, the lowest
bands, which would be the ones occupied on a BCC optical
lattice at low temperature, are flat, indicating that the particles
cannot move through the lattice and do not see the crystal
structure. The case a = 1.0 is very different. The particles are
chaotic and are free to move through the lattice. They also
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FIG. 7. (a) The lowest six bands, for the �-H direction of the
Brillioun zone, for an optical lattice with periodicity 40π in each
direction: (a) a = 0.1; (b) a = 0.5; (c) a = 1.0 (all in d.u.).

have band structure more consistent with the band structure of
the “empty” lattice, but with fewer degeneracies.

The Fig. 9, we show the Lyapunov exponents for the
3D optical lattice for energies corresponding to the low-
est bands in Figs. 7 and 8. In Fig. 9(a) we show the
Lyapunov exponents for a = 0.1 and E = 13, with initial
condition given by (x = 1.5, y = 1.66183, z = 1.67, px =
2.8, pz = 0.70914, py = 2.0526) in d.u. In Figs. 7(a) and 8(a),
the lowest bands lie at this energy and are completely flat.
The Lyapunov exponents indicate that there is no chaos
classically in this energy region. In Fig. 9(b), we show
the Lyapunov exponents for the case a = 0.5, E = 12 d.u.,
with the initial condition (x = 1.9, y = 3π/2, z = 1.8, px =
1.2, pz = 2.0, py = 1.4029) in d.u. In Figs. 7(b) and 8(b), the
lowest bands lie at this energy and again are completely flat,

FIG. 8. (a) The lowest six bands, for the �-N direction of the
Brillioun zone, for an optical lattice with periodicity 40π in each
direction: (a) a = 0.1; (b) a = 0.5; (c) a = 1.0 (all in d.u.).

while the Lyapunov exponent indicates, again, that there is no
chaos in this region of the phase space. In both cases, the lowest
energy levels are widely spaced in energy and there are large
direct band gaps. At the lowest energies, the bands are flat.

Now let us consider the case a = 1. In Fig. 9(c) we
show the Lyapunov exponents for energy E = 5 d.u., which
is the energy of the lowest band in Figs. 7(c) and 8(c).
The initial condition is given by x = 1.6, y = 1.65, z =
3π/2, px = 0.8, pz = 1.2, py = 2.048) in d.u. Lyapunov ex-
ponents approach a positive value, indicating that the phase
space dynamics is chaotic in this energy region. The energy
levels are much more closely spaced and there are no indirect
band gaps. The bands are not flat and the particles can move.
The bands look similar to the empty lattice bands, except that
many of the empty lattice degeneracies are removed. For this
case, the particles again can move through the lattice and the
band structure reflects that fact.
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FIG. 9. The Lyapunov exponents for trajectories in the 3D unit
cell (diamonds) for coupling constants and energies: (a) a = 0.1 and
E = 13 d.u.; (b) a = 0.5 and E = 12 d.u.; (c) a = 1.0 and E = 5 d.u.
All energies are above the high saddle so trajectories are free to move
throughout the optical lattice, regardless of whether they are on the
InM or off of it.

V. CONCLUSIONS

We have found evidence, for the case of particle matter
waves propagating through a BCC optical lattice, that the band
structure associated with this wave propagation is sensitive to
the level of classical chaos experienced by the particles. This
could have implications for the ability of particles at low energy
to thermalize, since thermal motion requires ergodicity in the
underlying dynamics.

The lattice we consider here is a body-centered-cubic lattice
because it has discrete translational invariance characteristic
of such lattices. However, the detailed form of the potential,
inside the unit cell, determines the nature of the particle
dynamics locally. For an integrable lattice, there are additional
constants of the motion that constrain the dynamics. As
coupling is turned on, nonlinear resonances between degrees
of freedom of the particles can destroy these local constants of
the motion. The manner in which this happens depends on the
detailed structure of the potential energy inside the unit cell
and will be different for every system with local differences in
the potential energy.

The results we obtain here seem to indicate that the
destruction of local constants of the motion, as signaled by
the transition to chaos, allows the particles to fully explore the
global symmetries of the lattice. It would be interesting to see
if the existence of local constants of the motion inside the unit
cell of real solids could explain as yet unexplained anomalies
in band structure. It would also be interesting to see if similar
effects can be seen in the band structure of electromagnetic
and acoustic waves in periodic lattices.
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APPENDIX

The electric field, due to the three pairs of counterpropa-
gating laser beams, can be written

E(x,y,z,t) = [A(x)(x,t) + A(y)(y,t) + A(z)(z,t)]e−iωLt

+ [A(x)(x,t) + A(y)(y,t) + A(z)(z,t)]∗eiωLt .

(A1)

The particular form of A(r,t) will depend on the lasers. Let
us assume that the total electric field amplitude E(x,y,t) is
superposition of the electric fields due to two counterprop-
agating lasers along the x direction, two counterpropagating
lasers along the y direction, and two counterpropagating lasers
along the z direction. The lasers propagating along the x, y,
and z directions have polarizations ε̂(x) = cos(θx)ẑ + sin(θx)ŷ,
ε̂(y) = cos(θy)ẑ + sin(θy)x̂, and ε̂(z) = cos(θz)x̂ + sin(θz)ŷ, re-
spectively. Assume that the lasers form standing waves along
their respective directions. The standing wave along the x

direction is

A(x)(x,t) = E

2
ε̂(x)exp[+i(kLx + φx)]

+ E

2
ε̂(x)exp[−i(kLx + φx)], (A2)

with similar expressions for A(y)(y,t) and A(z)(z,t). We then
can write

|A(x)(x,t) + A(y)(y,t) + +A(z)(z,t)|2
= E2[cos2(kxx) + cos2(kyy) + cos2(kzz)

+ 2ε̂(x)ε̂(y)cos(kxx)cos(kyy)

+ 2ε̂(x)ε̂(z)cos(kxx)cos(kzz)

+ 2ε̂(y)ε̂(z)cos(kyy)cos(kzz)], (A3)

where we have assumed the lasers are in phase and we set
φx = φy = φz = 0.

The effective Hamiltonian that governs the dynamics of the
alkali atoms in the optical lattice can be written [17]

Heff = p2

2m
− |d·A(r,t)|2

��
, (A4)
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when the lasers are detuned from resonance with the atoms.
The effective Hamiltonian picks up the component of d
along the direction of A. Thus, we write d·A = dAA and the

Hamiltonian takes the from

Heff = p2

2m
− d2

A

|A(r,t)|2
��

. (A5)

[1] L. E. Reichl, The Transition to Chaos, 2nd ed. (Springer-Verlag,
New York, 2004).

[2] S. Sridhar, Phys. Rev. Lett. 67, 785 (1991).
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