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This dissertation consists of three essays on reputation and repeated games. Rep-

utation models typically assume players have full memory of past events, yet in many

applications this assumption does not hold. In the first chapter, I explore two different

relaxations of the assumption that history is perfectly observed in the context of Ely and

Välimäki’s (2003) mechanic game, where reputation (with full history observation) is clearly

bad for all players. First I consider “limited history,” where short-run players see only the

most recent T periods. For large T , the full history equilibrium behavior always holds due

to an “echo” effect (for high discount factors); for small T , the repeated static equilibrium

exists. Second I consider “fading history,” where short-run players randomly sample past

periods with probabilities that “fade” toward zero for older periods. When fading is faster

than a fairly lax threshold, the long-run player always acts myopically, a result that holds

more generally for reputation games where the long-run player has a strictly dominant stage

game action. This finding suggests that reputational incentives may be too weak to affect

long-run player behavior in some realistic word-of-mouth environments.

The second chapter develops general theoretical tools to study incomplete informa-

tion games where players observe only finitely many recent periods. I derive a recursive

characterization of the set of equilibrium payoffs, which allows analysis of both station-

ary and (previously unexplored) non-stationary equilibria. I also introduce “quasi-Markov
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perfection,” an equilibrium refinement which is a necessary condition of any equilibrium

that is “non-fragile” (purifiable), i.e., robust to small, additively separable and independent

perturbations of payoffs.

These tools are applied to two examples. The first is a product choice game with

1-period memory of the firm’s actions, obtaining a complete characterization of the exact

minimum and maximum purifiable equilibrium payoffs for almost all discount factors and

prior beliefs on an “honest” Stackelberg commitment type, which shows that non-stationary

equilibria expand the equilibrium set. The second is the same game with long memory: in

all stationary and purifiable equilibria, the long-run player obtains exactly the Stackelberg

payoff so long as the memory is longer than a threshold dependent on the prior. These

results show that the presence of the honest type (even for arbitrarily small prior beliefs)

qualitatively changes the equilibrium set for any fixed discount factor above a threshold

independent of the prior, thereby not requiring extreme patience.

The third chapter studies the question of why drug trafficking organizations inflict

violence on each other, and why conflict breaks out under some government crackdowns

and not others, in a repeated games context. Violence between Mexican drug cartels soared

following the government’s anti-cartel offensive starting in 2006, but not under previous

crackdowns. I construct a theoretical explanation for these observations and previous em-

pirical research. I develop a duopoly model where the firms have the capacity to make

costly attacks on each other. The firms use the threat of violence to incentivize inter-cartel

cooperation, and under imperfect monitoring, violence occurs on the equilibrium path of a

high payoff equilibrium. When a “corrupt” government uses the threat of law enforcement

as a punishment for uncooperative behavior, violence is not needed as frequently to achieve

high payoffs. When government cracks down indiscriminately, the firms may return to fre-

quent violence as a way of ensuring cooperation and high payoffs, even if the crackdown

makes drug trafficking otherwise less profitable.
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Chapter 1

Reputation under Limited and Fading History

1.1 Introduction

The reputation literature has shown that even very small uncertainty about a

player’s type can have dramatic effects on equilibrium behavior and payoffs. Building on the

seminal work of Kreps and Wilson (1982) and Milgrom and Roberts (1982), Fudenberg and

Levine (1989; 1992) show that introducing such uncertainty assures the long-run player of a

payoff arbitrarily close to the payoff that would be achievable by a credible commitment to

an action of her choice. Ely and Välimäki (2003) (henceforth EV) construct a model where

reputation has a similarly dramatic but negative effect on payoffs (of all players). These

models typically assume that short-run players see the full history of past signals.

In reality, agents often perceive reputation through only limited excerpts of the

past, raising the question: how robust are these results to relaxing that assumption? The

focus of this chapter is answering this question with regard to EV’s model, considering two

different forms of relaxation: “limited history” (modeling a public list of recent reviews) and

“fading history” (modeling word-of-mouth). I find that the full history equilibrium behavior

is robust to short-run players seeing many (but not all) past periods in both cases. When

short-run players see relatively few past periods, behavior differs between the two models:

limited history yields the repeated one-shot equilibrium, while fading history yields myopic

long-run player behavior but strictly higher ex ante payoffs for the short-run players. The

fading history results also apply to the chain store game (a typical example of the games

considered by Fudenberg and Levine (1989), where reputation is good for the long-run

player).

EV’s model, the mechanic game, has the feature that the long-run player is clearly
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harmed by reputation.1 The rational “good” long-run player, who offers expert services

to short-run players, has payoffs that perfectly coincide with those of short-run players,

and she wants to separate herself from a “bad” type that harms short-run players; this

temptation to separate harms the short-run player, causing the whole market to fail. EV

point out these dynamics could be a concern in a number of asymmetric information settings

involving expert sellers, such as auto mechanics, lawyers, management consultants and

medical doctors. These markets generally involve consumers who are not perfectly informed

about the seller’s past. Consider motorists who solicit information about an auto mechanic

through word-of-mouth, patients who choose to see a dentist after reading the first few

reviews listed on Yelp, or a consultant who provides prospective clients with a list of only

her most recent references on her resumé. The robustness of the EV result in settings where

consumers have a limited view of the past may shed light on both positive questions, such

as when and why experts are hired in real markets with this feature, and normative issues,

such as the optimal design and welfare effects of review websites.

In the mechanic game, the “good” mechanic (rational long-run player) and the mo-

torist (short-run player) have coinciding interests in the stage game: the motorist’s car has

a problem, and both want the problem fixed correctly. Motorists do not know which repairs

their cars need (either a cheap tune-up c or an expensive engine replacement e), but the

mechanic does. The motorist would like to hire the good mechanic instead of an outside

option ∅, if she does the right repair. However, the introduction of even a tiny probability

that the mechanic is a commitment type (the “bad” mechanic, who performs an expensive

engine replacement no matter what problem the car has) impedes the ability of the me-

chanic and motorists to interact when the motorist prefers the outside option to hiring the

bad mechanic.

When motorists can see the entire history of hiring decisions and repairs, a history

with sufficiently many engine replacements and no tune-ups yields a belief that the mechanic

1Short-run players are also harmed, but this aspect is more common in other reputation games, such as
the chain store game.
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is likely enough to be bad that the outside option is necessarily preferable to hiring. All

subsequent motorists avoid the mechanic, “freezing” the “bad belief” and preventing the

mechanic from ever being hired again. At a “critical” history, where the mechanic is just

one engine replacement away from a frozen bad belief, a sufficiently patient good mechanic is

inevitably tempted into performing a tune-up (even when an engine replacement is needed),

signaling that she is good. Such signaling behavior is harmful to the motorist receiving the

unnecessary tune-up, whose best response is to avoid the mechanic. Before the critical

history, the mechanic’s anticipation of the critical motorist’s decision not to hire must lead

to a certain (possibly unnecessary) tune-up even earlier, so this previous motorist also does

not hire, and so on by backward induction, leading to a complete unraveling of the market

and no hiring on the equilibrium path of all renegotiation-proof Nash equilibria.

However, real mechanics likely do not expect that any particular action (or the signal

it generates) is certain to be observed by every subsequent customer. Even if a mechanic

knew with certainty that a customer would immediately report her actions to the world in

a review on Yelp, she knows that many future potential customers may not see the review,

either because they do not check Yelp at all, or because with time, the review is eventually

pushed out of sight on the first page. Word-of-mouth seems particularly unlikely to yield

fully informed customers due to its decentralized, random nature.

Motivated by this observation, I relax the assumption of full history observation

through two different types of limitations on the history seen by short-run players. The first

type is “limited history,” where each motorist sees a fixed number of periods into the past,

but no further. I find that when this “memory” is long enough, exactly the same equilibrium

behavior as the full history model is obtained, because the events in the beginning periods

“echo” forever through the participation decisions of the motorists. If the mechanic signals

she is good early on with a tune-up, all motorists who see that first tune-up hire her, and

the next “generation” of motorists, who do not see that tune-up but see all the hiring that

followed, infer her type and also hire (even if they only see engine replacements), and so

on forever. By contrast, if the mechanic sends bad signals by performing many engine

3



replacements (and no tune-ups) early on, the first generation of motorists eventually stop

hiring, the next generation sees this lack of hiring and follows suit, and so on.

Making this memory too short for an individual motorist to learn much about the

mechanic allows an equilibrium that avoids the bad reputation result, and the stage game

equilibrium is repeatedly played. But in this equilibrium, reputation is also rendered worth-

less: it does not help the long-run or short-run players because it is too uninformative to

have any effect on behavior at all.

The second restriction on history observation I consider is “fading history,” in which

motorists see the last period with probability λ ∈ (0, 1), the second-to-last period with

probability λ2, and so on for all past periods. This can be thought of as modeling the

decentralized randomness of word-of-mouth. Like limited history with high T , fading history

yields the bad reputation result for high λ. When λ is small enough, reputational incentives

are too weak to cause bad reputation, but reputation still sometimes helps the motorists

avoid the bad mechanic; this differs from the low T limited history case, where reputation is

always useless to the motorists. This result seems reasonably realistic: the good mechanic

is not diverted from serving customers by extremely strong reputation incentives, good and

bad mechanics are both sometimes hired, and some of the more discerning customers hire

the good mechanic while avoiding the bad mechanic.

In fact, this result for fading history with low λ applies to a more general class of

reputation games: when the long-run player has a strictly dominant action in the stage

game, it causes the long-run player to behave myopically and always choose that dominant

action (as though reputation did not exist), while the payoffs of short-run players are often

greater than under the static game because they are sometimes well-informed. The upper

bound on λ is not trivially small: for a patient mechanic, it corresponds to a given motorist

talking to an average of 1
2 future potential customers about their experience, high enough to

cover scenarios with significant (but not totally ubiquitous) word-of-mouth communication.2

2Appendix 1.2.2 gives a higher upper bound (for the mechanic game) that allows talking to an average
of 2

3
future motorists, given some reasonable restrictions on equilibria. This upper bound can be even
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The result is also robust to correlation between observations, which allows applications to

more centralized communication like online forums where public messages “fade” over time

(see Remark 1.2.1 for a discussion). This suggests reputation may be too weak to affect

long-run player behavior in many real word-of-mouth situations.

Though fading history is intended as a model of word-of-mouth communication, it

differs importantly from existing work on word-of-mouth (e.g. Ellison and Fudenberg (1995),

Banerjee and Fudenberg (2004)) where players randomly sample some fixed number of past

events. Key differences include that under fading history, the “sample size” is random, and

that players are more likely to observe the recent past than distant past. The fading of past

events is critical for ruling out the never-ending echo that occurs in the limited (but long)

history case.

To better understand the role of these restrictions on history monitoring, I also

consider them in the context of the chain store game of Selten (1978), variants of which

have been widely used to study reputation (for example, Pitchik (1993), Aoyagi (1996) and

Wiseman (2008)). The chain store game is a typical example of a Stackelberg-type game,

where reputation bounds the long-run player’s payoff from below. The (general) result for

fading history with low λ applies directly to the chain store game, and the effect on short-

run player payoffs is actually more dramatic because they need only observe a single past

event to learn the long-run player’s type. The other results do not carry over so simply,

and in fact a “myopic equilibrium” does not exist at all for the limited history chain store

game, even when limited to seeing just one previous period.

Bounded memory repeated games without reputation have been the topic of a

number of papers — for example, Sabourian (1998), Mailath and Olszewski (2011a), and

Bhaskar, Mailath, and Morris (2013a) — but such games with reputation are relatively un-

explored. I use the term “limited history” to distinguish it from the similar “limited records”

studied by Liu and Skrzypacz (2014a), the only difference being that limited records allow

higher (allowing talking to up to but not including an average of 1 future motorist) depending on the
parameterization of the stage game.
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short-run players to see only the long-run player’s actions in each observed period, whereas

limited history lets them see the full outcome of each period.3 This difference can produce

starkly different results because under limited records, the long-run player can unilater-

ally “clean” her history. Liu and Skrzypacz find cyclical equilibrium behavior — “riding of

reputation bubbles” — that is qualitatively different from both the one-shot and complete

history cases. Liu (2011a) also finds cyclical equilibria in an environment where short-run

players incur a cost to observe limited records of past long-run player actions. These pa-

pers show reputation being continually accumulated, exploited and then replenished. By

contrast, this chapter finds non-cyclical behavior under limited history, because reputation

inevitably gets “stuck” in a particular state, despite only viewing the recent past.

Limited records are more realistic in certain settings; Liu and Skrzypacz point to

the example of the Better Business Bureau, which reports complaints on businesses from

the last 36 months, but does not report on the business’s volume or types of transactions.

However, in many cases long-run players need the cooperation of short-run players to es-

tablish a desirable reputation. For example, a consultant must be hired by today’s client

in order to provide a favorable reference tomorrow; she cannot do this unilaterally. In such

environments, limited history is a more appropriate assumption. A more detailed discussion

of the differences between limited history and limited records is given in Subsection 1.2.1.1.

This chapter also relates to other extensions of the mechanic game. EV show that

when the motorist is also a long-run player, an equilibrium exists where the mechanic and

motorist are able to interact. Mailath and Samuelson (2006a) consider the possibility of

random “captive consumers,” who hire no matter the history. Ely, Fudenberg, and Levine

(2008) extend bad reputation to a broader class of games, illustrating the difference between

bad and good reputation. For example, they allow a larger set of commitment types; bad

reputation is robust to the introduction of a sufficiently small probability of a Stackelberg

commitment type (who always performs the correct repair), but if the probability is high

enough relative to the probability of the bad type, reputation is no longer bad. This

3When motorists do not hire, this prevents observation of the long-run player’s action.
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assumption seems reasonable in markets where consumers have faith that experts are more

often non-strategically honest than bad, but is more problematic where consumers are more

suspicious.4 Though my results only consider limited and fading history as applied to the

original EV mechanic game, there is no apparent reason why similar results would not apply

to such generalizations.

The rest of the chapter is organized as follows. Section 1.2 discusses the main results

for the mechanic game, with Subsection 1.2.1 covering limited history and Subsection 1.2.2

covering fading history. Section 1.3 considers applications and implications for the chain

store game. Section 1.4 concludes. The Appendix contains omitted proofs.

1.2 The Mechanic Game

In the mechanic game, reputation leads to a lower payoff for both the long-run and

short-run players than in the static game. A long-lived car mechanic faces a different short-

lived motorist each period. Each motorist’s car is in one of two states, each requiring a

different repair: either a cheap tune-up c or an expensive engine replacement e. The states

are drawn iid each with probability 1
2 . The motorist does not know which repair is needed,

but the mechanic does.

In each period, the motorist first chooses to either hire the mechanic or choose an

outside option ∅ with payoff zero. If hired, the mechanic observes the state of the car,

either θc or θe. The motorist benefits if the mechanic performs the correct repair, receiving

payoffs according to the following table:

θc θe

c u −w
e −w u

∅ 0 0

4Surveys by Gallup (2013) show that such faith varies widely across some of the applications suggested by
EV. Medical doctors are among those most trusted, with 69% of respondents in December 2013 rating their
“honesty and ethical standards” as “high” or “very high.” Auto mechanics are viewed much less favorably
(29%), and lawyers (20%) rank even further down the list.
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Assume w > u > 0. This insures that if the mechanic chooses the repair independent

of the state, the motorist will prefer the outside option.

The mechanic can be one of two types: good (g) and bad (b). The mechanic’s type

is denoted s. The good mechanic has the same stage payoff as the motorist (in the table

above), and wants to maximize her expected discounted average payoff, discounted at rate

δ ∈ (0, 1). The bad mechanic is non-strategic and simply performs engine replacements,

regardless of the state.5 Motorists observe the full history of repair and hiring decisions, but

not the previous motorists’ states (i.e., it is not known whether the repairs were correct),

as public knowledge. Beginning at period 0, the first motorist has prior belief µ0 that the

mechanic is bad, and subsequent motorists update their beliefs about the mechanic’s type

according to Bayes’ rule.

In the one-shot game, the motorist’s expected payoff for hiring is simply 1
2µ(u −

w) + (1 − µ)u where µ is the belief that the mechanic is bad (doing the right repair is

strictly dominant for the good mechanic). She will hire the mechanic only if this expected

payoff is nonnegative, which is clearly false when the belief µ is greater than critical value

p∗ ≡ 2u/(u+ w) since u < w.6

EV prove that the supremum of the mechanic’s Nash equilibrium payoffs must con-

verge to zero for δ close enough to one, so that equilibria where the mechanic is hired must

have the mechanic hired only infrequently. They point out that equilibria with such infre-

quent hiring have an implausible feature: once the mechanic performs a single tune-up, she

reveals herself to be good (with certainty) to all future motorists. After a tune-up, it makes

sense that all subsequent motorists (knowing the mechanic is good) will want to hire, and

5EV also show their result holds for a strategic bad mechanic who receives a discounted sum of period
payoffs that do not depend on the motorists’ states, receiving u for performing an engine replacement , −w
for a tune-up and 0 when not hired.

6p∗ is defined as the belief such that the motorist is indifferent about hiring when the good mechanic
always does the correct repair, i.e.

p∗
u− w

2
+ (1− p∗)u = 0.
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the mechanic will want to perform correct repairs for them. For this reason, EV use the

following renegotiation-proofness assumption to rule out such dubious behavior.

Assumption 1 (Renegotiation-Proofness). The mechanic is hired at any history on the

equilibrium path at which she is known to be good by the motorist.

EV then find the following dramatic result.

Theorem 1.2.1. Let µ0 > 0 be given. When δ is close enough to one, any Nash equilibrium

satisfying Assumption 1 has a unique equilibrium outcome where the mechanic is never hired.

Without going into the proof here, the intuition behind it is that in any equilibrium,

if the mechanic performs some number L engine replacements and no tune-ups, the mo-

torists’ beliefs must rise above p∗ and they do not hire. If a motorist hires at any history,

the mechanic must perform an engine replacement with sufficient probability (otherwise

the motorist’s expected payoff from hiring would be negative), and this means that, with

positive probability, the mechanic performs L consecutive engine replacements on the equi-

librium path. After performing L − 1 engine replacements (and no tune-ups), an engine

replacement gives a continuation payoff of 0, compared with a continuation payoff of u for

a tune-up (since all future motorists hire). When she is sufficiently patient, the mechanic

always performs a tune-up, so she cannot be hired at a “critical” history (i.e., after L − 1

engine replacements without tune-ups); backwards induction leads to the result of no hiring

on the equilibrium path.

1.2.1 Limited History

I relax the full history monitoring assumption by allowing motorists to view finite T

previous periods. First I consider the situation when T is large, obtaining the same behavior

as Theorem 1.2.1.

At the heart of this result is making sure that a critical history can “fit” into the

memory of motorists. I formalize this with the following notation. An infinite history
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h = (h0, h1, ...) is an infinite sequence of events, where hk is the outcome at period k,

either a repair (c or e) or a no-hiring decision (∅). Often it is useful to look at a history

ending just before some period t, which I denote with a superscript: a history ht (at some

period t) is a t-length sequence (ht0, ..., h
t
t−1) where htk is the event at period k < t. Since

many short-run players do not see all of the past history, I sometimes refer to this as the

“full” or “complete history” (to contrast with the “observable subhistory” defined below). I

also sometimes denote the event at period k as ηk. This notation is used when discussing

expectations for future events, given a particular history; for example, the probability that

the mechanic is not hired at period k given history hk is written P (ηk = ∅|hk), instead of

P (hk = ∅|hk), to avoid confusion about what is already part of the history and what is yet

to happen.

For periods 0, ..., T , motorists observe the full history. Given a history ht at any

t ∈ {0, ..., T} where the mechanic is hired, the expected payoff of hiring must be nonnegative

(otherwise the motorist chooses the outside option):

µt(ht)

(
u− w

2

)
+ (1− µt(ht))(βt(ht)u− (1− βt(ht))w) ≥ 0,

where µt(ht) is the posterior belief of motorist t that the mechanic is bad and βt(ht) is the

probability that the good mechanic performs the correct repair at that history. Solving for

βt gives

βt(ht) ≥ 1

u+ w

[
w +

µt(ht)

1− µt(ht)

(
w − u

2

)]
≥ w

u+ w
. (1.2.1)

Let βta(h
t) be the probability that the mechanic does repair a conditional on a being needed,

so that βt(ht) = 1
2β

t
c+ 1

2β
t
e ≤ 1

2 + 1
2β

t
c, which can be substituted into (1.2.1) to get the lower

bound

βtc ≥
w − u
u+ w

≡ β∗ (1.2.2)

on the probability that a mechanic performs a needed tune-up.

Each period’s motorist has a posterior belief, but after period T motorists do not

know the beliefs of previous motorists (because they do not see what those motorists saw),
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which means it is not possible to calculate posteriors by simply updating the previous

motorist’s posterior, one after another. I use the following notation to denote the limited

history that a particular motorist sees.

Definition 1.2.1. Given history ht at any period t, the observable subhistory ĥt at t is the

sequence (htt0 , ..., h
t
t−1), where t0 ≡ max{0, t−T}. The event at some period t′ ∈ {t0, ..., t−1}

is denoted htt′ .

Since the posterior after an observable subhistory is not a simple update on the

previous motorist’s posterior, it will be useful to separate the calculation into steps, period

by period across the observable subhistory.

Definition 1.2.2. For any observable subhistory ĥt at period t, the partial posterior belief

µtt′(ĥ
t) of motorist t is the probability that the mechanic is bad given prior µ0 and the

observed periods t0, ..., t
′ − 1, ignoring periods t′, ..., t − 1. Note that µtt0(ĥt) = µ0 because

it ignores all observations.

For t ≤ T when motorists still observe the complete history, the observable subhis-

tory ĥt and full history ht and are the same, and the partial posterior evolves according

to Bayes’ rule as it does in the full history case. If a tune-up is observed at t′ < t, then

µtt′+1(ĥt) = 0; if a no-hire event is observed, then µtt′+1(ĥt) = µtt′(ĥ
t); if an engine replace-

ment is observed, then

µtt′+1(ĥt) =
µtt′(ĥ

t)

µtt′(ĥ
t) + (1− µtt′(ĥt))[

1
2β

t′
e (ĥt′) + 1

2(1− βt′c (ĥt′))]
.

Define

Υ(µ) ≡ µ

µ+ (1− µ)[1
2 + 1

2(1− β∗)]

so that Υ(µtt′(ĥ
t)) is a lower bound for µtt′+1(ĥt) (for t ≤ T , not t > T ), and inductively

define Υ1(µ) ≡ Υ(µ) and Υk+1(µ) ≡ Υ(Υk(µ)), so that Υk(µ) is a lower bound for the

posterior after observing k engine replacements and no tune-ups at t ≤ T . Finally, define

L(µ0) ≡ min k such that Υk(µ0) > p∗ (1.2.3)
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as an upper bound on the number of engine replacements that can be performed (without

any tune-ups) in the first T + 1 periods before the posterior exceeds p∗.

The result below establishes a lower bound on T sufficient for the bad reputation

result. For T > L(µ0), it is straightforward to see that the mechanic cannot perform

more than L engine replacements without any tune-ups within the first T + 1 periods on

the equilibrium path. Motorists (before period T + 1) who arrive after the Lth engine

replacement will believe the mechanic is so likely to be bad that the payoff of hiring must

be negative, preventing any hiring until at least period T + 1. Performing more than L

engine replacements in the first T + 1 periods is only possible if the mechanic first performs

a tune-up, so if motorist T + 1 observes an engine replacement in every period 1, ..., T ,

the mechanic is known to be good because an unobserved tune-up must have preceded the

observable subhistory, i.e. at period 0 (the result of Lemma 1.1.1). In fact, this “echo”

effect continues for all future periods; if motorists see the mechanic hired every observed

period, these hiring decisions signal that the mechanic must be good, even if only engine

replacements are observed.

Having ruled out equilibria where the mechanic performs more than L engine re-

placements (and no tune-ups) in the first T + 1 periods, one may wonder if there exist

equilibria where the mechanic performs L or fewer engine replacements. Such equilibria

mean there are histories on the equilibrium path where the mechanic is not hired for many

of the first T + 1 periods, reducing her continuation payoff from doing an engine replace-

ment. If T is large enough, the mechanic cannot resist the temptation to perform a tune-up

that ensures she is hired in all of those periods.

This temptation effectively forces beliefs to be either 0 or greater than p∗ by period

T + 1 in any equilibrium where the mechanic is hired with positive probability. Because

motorists in periods T + 1 and beyond know this, they need only look at their observable

subhistories to tell whether the mechanic is definitely good (they see a tune-up or hiring

in every observed period) or likely-enough-to-be-bad (motorists stop hiring at some point

in the first T periods, and never hire again afterwards). Reputation is pinned into one of
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these two extreme states early on and frozen there by the hiring decisions, giving the large

reputational incentive that causes bad reputation.

Theorem 1.2.2. Let µ0 > 0 and L(µ0) be given. If

T >
(

2 +
w

u

)
L− 1, (1.2.4)

then for any sequential equilibrium satisfying Assumption 1 there is a unique equilibrium

outcome where the mechanic is never hired when δ is close enough to one.

What happens when T is small? A “myopic equilibrium” exists where the good

mechanic always performs the correct repair, so that the mechanic always performs an engine

replacement with probability 1
2 . Given prior µ, the motorist’s posterior after observing an

engine replacement is

Ῡ(µ) ≡ µ

µ+ 1
2(1− µ)

=
2µ

1 + µ
,

with Ῡt(µ) defined inductively like Υ(·). Define

L̄(µ0) ≡ min t such that Ῡt(µ0) > p∗.

Note that L̄(µ0) ≤ L(µ0) because L(µ0) is a lower bound that presumes the mechanic

performs engine replacements with maximum probability 1
2 + 1

2(1− β∗) > 1
2 .

Theorem 1.2.3. Let µ0 > 0 and T < L̄(µ0) be given. A sequential equilibrium exists where

the good mechanic always performs the correct repair and the motorists always hire.

Proof. It is easy to show that always hiring is a best response for motorists. At any period

t, the motorists’ posterior is less than or equal to ῩT (µ0) ≤ p∗, so the payoff of hiring is

nonnegative. For the mechanic, the continuation payoff of a tune-up is equal to that of an

engine replacement (she is always hired, no matter her strategy), so performing the correct

repair always yields a greater payoff.

Theorem 1.2.3 avoids the disaster of Theorem 1.2.2, but it does so by preventing

reputation from having any effect. Reputation neither tempts the mechanic into a costly
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tune-up that harms the motorist, nor does it help the motorists sort out a good mechanic

from the bad, and the ex ante payoff for every motorist is equal to that of the one-shot

game. Reputation is only useful to motorists if it gives them a posterior greater than p∗

when the mechanic is bad, so that they can avoid hiring her; the myopic equilibrium avoids

the bad reputation outcome precisely by ruling out that possibility.

Can reputation actually be useful in the limited history environment? Though these

results do not give a complete answer to that question, they do suggest that the answer is

probably “no,” at least for equilibria that do not involve highly unrealistic behavior.

They do not tell us what behavior occurs when T is between the lower bound

of Theorem 1.2.2 and the upper bound of Theorem 1.2.3, but they do show a tension

between helping the motorist avoid the bad mechanic and limiting the reputational benefit

of signaling to the mechanic that suggests any “useful reputation equilibria” are at best

fragile and likely implausible.

Any equilibrium with useful reputation must delicately resolve this tension. Suppose

there is an equilibrium where motorist t has an ex ante payoff higher than the one-shot

or myopic equilibria. This equilibrium must avoid the “echo” effect of Theorem 1.2.2 by

preventing motorist t’s no-hiring decision at high posteriors from triggering further no-

hiring events. One way to “dampen” the echo is by making t’s decision not to hire only an

imperfect signal that his posterior is greater than p∗, which requires that he mixes when the

posterior is less than p∗. Yet if he is mixing, he must be have a payoff of zero at the observable

subhistories where he mixes,7 which is less than the myopic payoff. Adding more “noise” in

the signal requires mixing (and thus decreasing the payoffs) for more observable subhistories,

and it is unclear that the motorist can in fact come out ahead overall. An alternative is to

allow motorist t’s no-hire choice to be a perfect signal that his posterior is greater than p∗,

and dampen the echo by having his successors in periods t+1, ..., t+T mix, but having them

mix requires lowering their payoffs instead. This damping also requires very time-specific

7This would be because the good mechanic is herself mixing between the right and wrong repair, which
requires delicate balancing of her continuation payoffs.
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behavior. If motorists’ beliefs depend simply on the distribution rather than order of events

(i.e. the ratio of engine replacements to no-hire events), then useful reputation equilibria are

impossible. All such equilibria, if they exist, involve rather unrealistic coordination between

the players (they must know which periods are being used to dampen). For these reasons,

the most natural interpretation of the results is that under limited history, reputation is

either bad or useless.

1.2.1.1 Limited History vs Limited Records

The results above relate to interesting work by Liu and Skrzypacz (2014a), who

study a reputation game under “limited records” with very different behavior, which I call

the “reputation bubble game.” Their game also features a long-run player (“the firm”)

facing a sequence of short-run players (“the consumers”), with a stage game which can

be interpreted as the consumer choosing how much to trust the firm (how large an order

to purchase), followed by the firm choosing how much to honor that trust (the quality of

product to deliver). The long-run player is either a strategic type or a commitment type

who always honors the consumer’s trust (delivering a high quality product). There are a

number of differences between their environment and mine,8 but the most interesting one is

that they assume limited records, where short-run players only observe the long-run player’s

recent actions — not those of past short-run players. By contrast, limited history includes

the full outcomes of recent periods, which reveals the short-run player actions (and, in the

mechanic game, hides the mechanic’s actions when not hired).

Their main result is that all equilibria in their environment feature “reputation

bubbles,” where the long-run player “cleans” her history to mimic the commitment type,

and once the observable history is completely clean (i.e. contains only the commitment

type’s action), the long-run player exploits the short-run player. As the long-run player

8In their stage game, the long-run player has a static incentive to exploit the short-run player’s trust
(long-run incentives can prevent exploitation); in the mechanic game, there is a static incentive to honor the
short-run player’s trust (it is the long-run incentives that can lead to exploitation). Also, their consumers
prefer to interact with the commitment type rather than the strategic type; in the mechanic game, it is the
commitment type that they want to avoid.
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cleans a “dirty” history, short-run players grant her trust not because they believe she is the

commitment type (they know she is not because they see past exploitative behavior), but

because the cleaning action itself honors the trust; this is what they call “riding a reputation

bubble.” Such behavior is impossible under full history (or records) because the long-run

player cannot surprise and exploit a short-run player as the history is impossible to clean.

Their results differ from mine qualitatively in the sense that behavior under limited records

is different from both complete records and no records; by contrast, the mechanic game has

the same equilibrium behavior for both small T > 0 and T = 0, and the same behavior for

large T <∞ as T =∞.

The limited records assumption makes the model much more tractable, and Liu

and Skrzypacz point out that the assumption that only the long-run players’ actions are

observable is realistic in applications like the Better Business Bureau, which does not show

how much business a firm gets but does show complaints. In many other settings, however,

the long-run player needs short-run players to cooperate in order to send the signals she

wants. For example, a consultant or lawyer needs clients to hire her in order to provide

references to future clients; she cannot generate an observable “high quality” signal through

sheer effort alone. Instead, future prospective clients will observe that she was not hired,

and they may interpret that as a bad signal, leading to persistent unemployment. This lack

of total control over one’s reputation is critical to the bad reputation effect, giving the result

that reputation has exactly the same impact when memory is long as when it is complete.

To what extent this applies to other limited history reputation games remains an interesting

open question (this is discussed further in Subsection 1.3.1).

1.2.2 Fading History

While the limited history model avoids the bad reputation result when records are

sufficiently limited, it appears to do so at the expense of reputation being useful. The

information structure introduced in this subsection allows reputation to be weakened enough

that the mechanic can play myopically, but it is still sometimes informative enough to
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motorists that they do not hire the mechanic, achieving the “middle ground” that seems to

be lacking under limited history. This is achievable in a similar “myopic equilibrium” that

does not require such complicated strategies, and although it reduces the motorist payoff

conditional on the mechanic being good (because the good mechanic sometimes “looks bad”

and is not hired), it is outweighed by the increase in the motorist payoff conditional on

the mechanic being bad such that the ex ante motorist payoff is greater than the one-shot

payoff.

Under fading history, the motorist observes each previous period with some positive

probability. Let pt
′
t denote the probability that the motorist in period t′ observes the actions

in period t < t′. By comparison, under full history this probability is always one; under

limited history, pt
′
t = 1 for t′ ∈ {t + 1, ..., t + T} and pt

′
t = 0 for t′ > t + T . Under fading

history, this probability is never one nor zero, instead starting relatively high right after

the event and exponentially “fading” toward zero: pt
′
t = λt

′−t for λ ∈ (0, 1). It is assumed

each observation is independent from the others, but some results are robust to correlation

between observations (see Remark 1.2.1).

This can be interpreted as roughly reflecting how word-of-mouth spreads. It is not

certain that customers hear about previous experiences, nor is it certain that they do not,

but it is more likely that they hear about recent history than the distant past.

I first show the existence of a myopic equilibrium (analogous to Theorem 1.2.3) for

fading history when λ is below a threshold. One striking feature is that the upper bound

on λ does not depend on µ0. This is because the proof does not rely on calculating beliefs.

The action at some period t affects the payoff at some later period t′ > t only if either t′

observes t directly or there exists some sequence (t1, ..., tn) such that motorist t1 observes t,

motorist tj observes tj−1 for all j ∈ {2, ..., n}, and motorist t′ observes tn. The proof bounds

the probability of such “observation chains.” Of course, the motorists in these chains would

also have to change their action in response to their observation to affect the payoff at t′

(so the bound is not as high as it could be), but the fact that this technique ignores the

actual beliefs allows using essentially the same technique for fading history in other games.
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This technique is impossible in the limited history environment because such a chain always

connects every period together even for T = 1 (period 1 observes period 0, period 2 observes

period 1, and so on).

This result is given for a more general set of games — those where the long-run player

has a strictly dominant action in the stage game — and is also stronger than Theorem 1.2.3

because it shows that every equilibrium has myopic behavior by the long-run player. Since

the stage games considered are extensive-form, this strict dominance is needed at decision

nodes for the long-run player; I define this notion as “strictly conditionally dominant.”9

Definition 1.2.3. Let an extensive-form game between players 1 and 2 be given with finite

action spaces A1 and A2. The payoff for player i of action profile (a1, a2) ∈ A ≡ A1 ×A2 is

denoted ui(a1, a2). Let the set of player 2 actions which lead to a decision node for player

1 be denoted Ã2 ⊂ A2. An action ad ∈ A1 for player 1 is strictly conditionally dominant if

and only if u1(ad, a2) > u1(a′1, a2) for all a′1 ∈ A1\{ad} and all a2 ∈ Ã2.

Restricting attention to stage games with strictly conditionally dominant actions

gives a positive lower bound for the current period benefit of playing myopically. Even less

restrictive assumptions may well be possible, but the assumptions of Theorem 1.2.4 suffice

for the games considered in this chapter, and many other participation and simultaneous-

move games.10

Theorem 1.2.4. Consider any infinitely repeated reputation game between long-run player

1 and a different short-run player 2 each period, with fading history specified by λ < 1/(2δ).

Player 1 is either a rational type θ0 or one of N ∈ N commitment types θ1, ..., θN , with

each short-run player having prior beliefs µ0(θ) on each of the types. Suppose that rational

9The definition used here is equivalent to a unique strategy that is not “conditionally dominated” under
Definition 4.2 in Fudenberg and Tirole (1991), who consider iterated conditional dominance as a solution
concept for extensive-form games.

10Indeed, the argument behind the proof of Theorem 1.2.4 holds even without the presence of commitment
types. Of course, the absence of commitment types also means the absence of useful reputation (or any
reputation for that matter), which is the motivation for this result.
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player 1 has action ad ∈ A1 which is strictly conditionally dominant in the extensive-form

stage game. Define

z ≡ max
a∈A

u1(a)−min
a∈A

u1(a) and zd ≡ min
(a′1,a2)∈(A1\{ad})×Ã2

{u1(ad, a2)− u1(a′1, a2)}.

If

λ <
zd

δ(z + 2zd)
, (1.2.5)

then any sequential equilibrium has rational player 1 playing ad at every history.

In the case of the mechanic game, z = zd = u+w, so the upper bound (1.2.5) on λ is

1/(3δ); for λ = 1
3 this corresponds to a customer sharing her experience with an average of

1
3 + 1

32
+ · · · = 1

2 future customers. Note that this upper bound does not require Assumption

1. For the mechanic game, Appendix 1.2.2 gives an upper bound between 2/(5δ) and 1/(2δ)

(depending on the ratio w/u), corresponding to a customer talking to an average between 2
3

and 1 future customer (for δ close to one), using Assumption 1 and an intuitive restriction

on equilibria, suggesting (1.2.5) can generally be improved upon in applications to specific

models.

The following example illustrates why the upper bound on λ is sufficient for pre-

cluding an “echo” in the mechanic game like that in Theorem 1.2.2.

Example 1.2.1. Let λ = 1
3 . If the motorist hires at period 0, the difference in stage payoffs

between doing the right repair and the wrong repair is u+w. The probability that motorist

1 observes the repair at period 0 is 1
3 . The probability that motorist 2 observes period 1 is

1
9 , and the probability that motorist 2 observes period 1 and period 1 observes period 0 is

1
9 , so the probability of a “chain” of observations between period 0 and period 2 is bounded

by 2
9 . The probability that period 3 observes period 0 is 1

27 , the probability that 3 observes

1 and 1 observes 0 is 1
9 ·

1
3 = 1

27 , and the probability that 3 observes 2 and that period

0 “reaches” period 2 via an observation chain is less than or equal to 1
3 ·

2
9 = 2

27 , so the

probability that such a chain exists between period 0 and period 3 is bounded by 4
27 . This

pattern continues so that the probability of a chain from period 0 to period t is bounded
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from above by 2t−1/3t. The maximum difference the period 0 repair can make in the stage

payoff at any future period that has a chain of observations back to period 0 is u+w,11 so

the discounted sum over these differences is

∞∑
t=1

δt−1 2t−1

3t
(u+ w) =

u+ w

3
· 1

1− 2δ
3

=
u+ w

3− 2δ
,

which is less than the period 0 benefit of doing the right repair (u + w). Thus, doing the

right repair is the only best response.

Remark 1.2.1. Though this section generally assumes observations are independent, The-

orem 1.2.4 (and Corollary 1.2.1) are robust to correlation between observations. This is

because the proofs rely on Boole’s inequality to bound the probability of the current repair

being “chained” to any particular future period and then use the expected discounted sum

of the effects of these chains at each future period for a bound on the continuation value. So

long as the probabilities of these observations satisfy the “fading” definition, this correlation

does not affect Theorem 1.2.4.

Correlation between observations can be interpreted as certain consumers being

more connected to each other than others (a network of friends may be more likely to offer

advice to each other than to strangers), and it does not have to be interpreted as decentral-

ized communication. For example, consider messages posted on a centralized medium like

an online forum, where it is visible to future customers while on the front page but with

probability λ it disappears from view because other unrelated messages have pushed it off

the front page.12 Others may publish replies underneath the post, sharing their own expe-

riences; when the original post is pushed out of view, so are all these replies. In this case,

if consumer t’s post disappears at the end of period t′ > t, then all consumers t + 1, ..., t′

11Intuitively, one would expect only a difference of only u because that is the maximum decrease in the
stage payoff going from being hired to not being hired (the difference between the maximum payoff and the
minmax payoff). Corollary 1.2.1 shows this intuition holds given some natural restrictions, yielding a higher
upper bound for λ.

12This, of course, ignores the possibility of searching through old posts, so this online forum model is more
appropriate for situations where consumers spend little time researching and casually check a forum to see
what others recommend (or warn against).
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will see his message, but none of the consumers after period t′ do. The ex ante probability

that period t is observed by period t+ k is still λk, which is sufficient for the bounds used

by Theorem 1.2.4 to ensure myopic long-run player behavior.

The type of equilibrium described by Theorem 1.2.4 is similar to that of Theorem

1.2.3 in that the mechanic always does the correct repair, but what differs is that the

mechanic is not always hired, even when good. Equilibrium behavior of the motorists

would be unique except for the possibility that the posterior at some observable subhistory

ĥt makes the motorist indifferent (µt(ĥt) = p∗) and therefore allows mixing at this belief.

Because motorists sometimes receive information that is useful for avoiding the bad

mechanic, the ex ante payoff for all but the first few motorists is strictly greater in this

equilibrium than under Theorem 1.2.3. Motorist t does not hire if µt(ĥt) > p∗ (where the

observable subhistory ĥt is the (random) set of observations from periods that motorist t

sees). Denoting the payoff of motorist t given ĥt as

vtSR(ĥt; s) =

u−w
2 αt(ĥt) s = b

uαt(ĥt) s = g,

where αt(ĥt) is the probability of hiring given ĥt, the ex ante payoff of the motorist is

E[vtSR(ĥt; s)] =
∑

ĥt∈Ĥ t

P (ĥt)E[vtSR(ĥt; s)|ĥt]

=
∑

ĥt∈Ĥ t

P (ĥt)

[
P (s = b|ĥt)u− w

2
+ P (s = g|ĥt)u

]
1{µt(ĥt) ≤ p∗}

where Ĥ t is the space of observable subhistories at period t, and the term in brackets is

the expected payoff of hiring at ĥt, which is negative when µt(ĥt) > p∗ (when µt(ĥt) ≤ p∗,

hiring is always a best response because the mechanic does the right repair). If there exists

any ĥt such that P (ĥt) > 0 and µt(ĥt) > p∗, then

E[vtSR(ĥt)] =
∑

ĥt∈Ĥ t

P (ĥt)

[
µt(ĥt)

u− w
2

+ (1− µt(ĥt))P (s = g|ĥt)u
]

1{µt(ĥt) ≤ p∗}

21



>
∑

ĥt∈Ĥ t

P (ĥt)

[
µt(ĥt)

u− w
2

+ (1− µt(ĥt))P (s = g|ĥt)u
]
, (1.2.6)

where the right hand side of (1.2.6) is the one-shot ex ante payoff. It is easy to see for

every period t > L̄(µ0) that such an ĥt exists (at a minimum, they observe the full history

with only engine replacements with positive probability). Thus, the ex ante payoff for every

motorist t > L̄(µ0) is greater than the one-shot payoff.

When history “fades” too slowly (i.e. λ is high), the bad reputation outcome is

recovered. I first present a result that is weaker than Theorem 1.2.2 because it uses a

different order of taking limits: instead of holding λ fixed and letting δ → 1, it holds δ fixed

and lets λ → 1. A stronger result with the same order of limits as Theorem 1.2.2 is given

at the end of the section, using a mild restriction on equilibria.

Theorem 1.2.5. Let µ0 > 0 and δ > (u+ w)/(2u+ w) be given. Then for λ close enough

to one, for any sequential equilibrium satisfying Assumption 1 there is a unique equilibrium

outcome where the mechanic is never hired.

The proof of Theorem 1.2.5 shows that as λ gets arbitrarily close to one, the mechanic

who performs a tune-up at a critical history is hired with probability arbitrarily close to

one for arbitrarily many periods, while doing an engine replacement yields arbitrarily many

periods of not being hired. At some point, the “memory” of the repair will (at least directly)

fade away, and this “premium” the mechanic receives for a tune-up will eventually go away

(or at least the bounds used cannot rule that out). The proof does not rule out the possibility

that this premium for the tune-up is eventually (at periods far in the future) replaced by

an even greater premium for the engine replacement. Instead, it simply relies on λ being

high enough that any such “reverse premium” is postponed long enough that it is discounted

away.

Establishing a lower bound on λ independent of the discount factor clearly requires

ruling out such a reverse premium, which seems intuitively implausible because it requires

that motorists far into the future are somehow dissuaded from hiring because of a tune-up,
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rather than an engine replacement, that they never observe directly (if they observed it

directly they would hire, of course, because of Assumption 1). By restricting attention to

equilibria where tune-ups do not, in expectation, dissuade future motorists from hiring, a

lower bound on λ independent of δ is obtained that gives the bad reputation result. A word

about notation: I use µt (with a subscript instead of superscript t) to denote motorist t’s

beliefs about the mechanic’s type and the history (as opposed to µt, which is simply the

belief on the type).

Criterion 1. Let a sequential equilibrium be given with strategy σ∗t and beliefs µt for each

motorist t. Let σg be any best response strategy (not necessarily the equilibrium strategy)

for the mechanic, and let σ̃h
t

g be the strategy identical to σg except that the mechanic does

a tune-up with certainty at history ht. The equilibrium satisfies Criterion 1 if and only if

doing a tune-up at ht does not decrease the probability of being hired at any future period k

given the motorists’ strategies and beliefs, i.e.

P (ηk 6= ∅|ht, σg, (σ∗t′ , µt′)t′) ≤ P (ηk 6= ∅|ht, σ̃htg , (σ∗t′ , µt′)t′),

for all k > t, where ηk is the event at period k, for all t, ht and σg.

Criterion 1 is similar in spirit to the D1 Criterion (see, for example, Section 11.2

of Fudenberg and Tirole (1991)), but it is about actions instead of beliefs. The proof of

Theorem 1.2.2 shows that any equilibrium satisfying its assumptions must satisfy Criterion

1, as do the myopic equilibria of Theorems 1.2.3 and 1.2.4.

Theorem 1.2.6. Let µ0 > 0 and L(µ0) be given. There exists λ∗ such that for any λ ∈

(λ∗, 1), for all sequential equilibria satisfying Assumption 1 and Criterion 1, there is a

unique equilibrium outcome where the mechanic is never hired for δ close enough to one.

1.3 The Chain Store Game

Selten’s (1978) chain store game, depicted in Figure 1.3.1, is a typical example of

a Stackelberg-type game that has been widely used to study the effects of reputation. In
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Figure 1.3.1: The chain store stage game, with payoffs at each node for the incumbent on
top and for the competitor on bottom.

light of the results of Section 1.2, this section considers the infinitely repeated chain store

game where there is probability µ0 that the incumbent is a “tough” commitment type that

plays F every time entry occurs and probability 1− µ0 that the incumbent is a normal or

“weak” (rational) type.

The classic result of Fudenberg and Levine (1989) shows that when the full history is

observed, there is a lower bound on long-run player payoffs that approaches the Stackelberg

payoff (which in this game is c) as δ approaches one. Given prior belief µ that the incumbent

is tough, with full history the posterior must increase every time the incumbent fights (so

long as she has not acquiesced in the past) to at least

Υ(µ) ≡ µ

µ+ (1− µ)b
, (1.3.1)

because the weak incumbent must play A with at least probability 1 − b for entry to be

a best response by the competitor. Letting Υ1(µ) ≡ Υ(µ) and Υk(µ) ≡ Υ(Υk−1(µ)) be

defined inductively (similarly to Section 1.2), then there can be at most L(µ0) periods with

entry on the equilibrium path if A is never played, for

L(µ0) ≡ min t such that Υt(µ0) > b.

Let vI(µ
0, δ) be the infimum over the set of the incumbent’s payoff in any Nash equilibrium
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given µ0, δ. Fudenberg and Levine (1989) establish the following lower bound:

vI(µ
0, δ) ≥ δL(µ0)c− (1− δL(µ0)). (1.3.2)

The intuition of their result is that the incumbent can always play a (possibly deviation)

strategy of playing F the first L(µ0) times there is entry, thereby raising the belief above

the critical value p∗, at which the competitor would be indifferent between In and ∅ if the

weak incumbent plays A. This precludes any further entry and gives a payoff that is at

least the right hand side of (1.3.2).

The results of Section 1.2 suggest that when history is more “transparent” (meaning

short-run players likely see lots of history), equilibrium behavior is similar to that of the

full history case, and when it is more “opaque” (short-run players likely see little history) a

myopic equilibrium exists where the long-run player plays as though reputation did not exist.

I find similar outcomes for the fading history chain store game for both the transparent and

opaque cases. By contrast, the limited history chain store game has crucial differences that

prevent application of the same techniques used in Subsection 1.2.1. I discuss the nature

of these differences and show that a myopic equilibrium for limited history cannot exist, no

matter how short the memory is.

1.3.1 Limited History

As in Subsection 1.2.1, suppose that the short-run players observe only the past T

periods. It may seem that the techniques employed in the mechanic game could be used for

the chain store game to get analogous results, but such a straightforward application is not

possible.

The difficulty is that for large T in the mechanic game, participation is only infor-

mative to the extent that if motorists t > T see hiring in all observable periods, they know

the mechanic is good. If they do not see hiring every period, they know the mechanic is

too likely to be bad to be hired (their posterior is greater than p∗). Thus, hiring cannot

“subtly” signal the mechanic’s type.
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The analogue of Assumption 1, that entry occurs whenever competitors know the

incumbent is weak, would be very useful here, but it cannot be justifiably assumed in

the chain store game, so using the same method for ruling out subtle informativeness of

participation is not reasonable.13 A way of circumventing this problem is only considering

strategies involving pure actions for the competitors, so that given a subhistory, a competitor

will choose either ∅ or In with certainty. This makes the equilibrium path for a tough

incumbent deterministic, allowing the use of Υ(·) as a lower bound on the partial posterior

following an F event and giving a lower bound on incumbent payoffs similar to Fudenberg

and Levine (1989)’s (1.3.2), but it is not clear that allowing mixed actions also gives such

a bound.

Since the arguments of Subsection 1.2.1 do not carry over directly, the dynamics of

the limited history chain store game with reputation remain unclear, and a full analysis is

beyond the scope of this chapter. However, there do appear to be qualitative differences, at

least for small T .

Because of Theorem 1.2.3, one might expect the existence of an equilibrium where

the one-shot equilibrium (A, In) is played every period for small T . Surprisingly, this is not

the case, even if T = 1. To see why, suppose by contradiction such an equilibrium exists.

Consider a deviation by the incumbent of playing F in period 0. Competitor 1 must then

believe the incumbent is tough with probability 1 and must play ∅ as a best response at that

history. This means that competitor 2 also believes the incumbent is tough with probability

1 (even if T = 1) because she observes h1 = ∅ and P (h1 = ∅|Weak) = 0, so she also does

not enter, and so on for every subsequent period. This means that the continuation payoff

for playing F in period 0 is c, while the continuation payoff for playing A is 0. For δ close

enough to one, −(1− δ) + δc > 0, so A is not a best response, a contradiction. Thus, there

13The problem the good mechanic and the motorists face is simply the temptation to signal, which is
why the mechanic game has a unique equilibrium if uncertainty about the mechanic’s type is removed.
Assumption 1 says that if the mechanic’s type is revealed in the middle of a repeated game that began with
uncertainty, play then proceeds as if there had never been such uncertainty because all players are better
off, i.e. renegotiation-proofness. There is no such coincidence of interests in the chain store game.
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is no result for the limited history chain store game equivalent to Theorem 1.2.3, so the

incumbent’s payoff is bounded away from 0 (the one-shot payoff as well as minmax payoff)

due to reputation, even if history is as limited as possible without eliminating the history

observation entirely.

Using their stage game, Liu and Skrzypacz (2014a) point to the existence of an

equilibrium under limited history (not limited records) where the long-run player always

mimics the commitment type on the equilibrium path with a simple grim trigger threat of

Nash reversion. A similarly simple grim trigger equilibrium does not exist for the chain

store game, but a more complicated equilibrium without entry on the equilibrium path

exists in the T = 1 case, constructed in Appendix 1.3.1. This equilibrium requires mixing

off the equilibrium path such that the incumbent always be indifferent between fighting and

acquiescing. By contrast Liu and Skrzypacz’s limited history equilibrium does not require

such indifference by the long-run player (nor do the equilibria of Theorems 1.2.2 and 1.2.3).

This similarity on the equilibrium path and dissimilarity off of it raise interesting questions

about how limited history affects reputation games more generally.

1.3.2 Fading History

This subsection assumes the fading history assumed in Subsection 1.2.2 specified by

λ. Unlike limited history, the intuition of fading history largely carries over to the chain

store game. Theorem 1.2.4 applies directly to the chain store game, and Theorem 1.2.5 uses

arguments that do not rely crucially on the specifics of the mechanic game, so an analogous

result in the chain store game can be found using these techniques. (Theorem 1.2.6 does

rely crucially on the particulars of the mechanic game and also on Assumption 1, for which

there is no justifiable analogue for the chain store game, so I do not attempt a similar result

here.)

For low λ, Theorem 1.2.4 shows that in any equilibrium the weak incumbent always

acquiesces. In this case, z = c−1 and zd = 1, so the upper bound (1.2.5) on λ is 1/[δ(c+1)].

As with the mechanic game, reputation in these equilibria increases the ex ante payoffs of
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Figure 1.3.2: The ratio of the ex ante payoff E[vtSR] for competitor t = 20 to the one-shot
payoff vSR in any chain store game equilibrium with µ0 = 1

5 , b = 1
4 (note that E[vtSR] = vSR

at λ = 0) is plotted for values of λ ∈ [0, 1
3 ], which satisfy (1.2.5) for c = 2 and any δ. These

payoffs do not significantly change for periods past 20 (because ψ(λ, 20) ≈ ψ(λ,∞)).

the short-run players above that of the one-shot game. The increase here is more dramatic

than in the mechanic game because a competitor need only observe one previous period to

know if the incumbent is tough (all periods will be either F or ∅) or weak (all periods are

A). Thus, the ex ante payoff of competitor t is

E[vtSR] = ψ(λ, t)(µ0(b− 1) + (1− µ0)b) + (1− ψ(λ, t))(1− µ0)b,

where ψ(λ, t) ≡
∏t
k=1(1− λk) is the probability of competitor t observing no history at all,

which is strictly greater than the one-shot payoff for all competitors except at period 0.14

This is straightforward to calculate and plotted in Figure 1.3.2 for some example parameters.

Finally I find a lower bound on incumbent payoffs similar to (1.3.2) for high λ.

Theorem 1.3.1. Let µ0 > 0, L(µ0) and any ε > 0 be given. Then there exists λ∗ ∈ (0, 1)

such that for any λ ∈ (λ∗, 1), the infimum vI of the set of incumbent payoffs in any sequential

equilibrium satisfies

vI(µ
0, δ, λ) ≥ δLc− (1− δL)− ε.

14ψ(λ, t) converges absolutely as t→∞ to a value in the set (0, 1) when λ ∈ (0, 1) (Apostol, 1976).
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1.4 Conclusion

For the mechanic game with limited history, reputation is bad when short-run players

have a long enough memory T . This is because early events that tarnish the mechanic’s

reputation“echo”for all following periods through the refusal of subsequent motorists to hire,

which is observed by the following motorists who consequently also refuse to hire, and so

on. When T is small enough, a myopic equilibrium exists, where the good mechanic always

plays her stage game dominant strategy (doing the correct repair). This equilibrium avoids

the bad reputation result at the expense of making reputation irrelevant — motorists never

see enough information to change their hiring decisions. In summary, for limited history,

equilibrium behavior is the same for small T as the one-shot game, and the same for large

T as the full history game. This differs qualitatively from the cyclical behavior for limited

records found by Liu and Skrzypacz (2014a).

Under fading history, when λ is less than a critical value, an equilibrium with myopic

behavior by the mechanic exists, but reputation still has an effect — sometimes motorists

are informed enough that they do not hire. This increases the short-run players’ ex ante

payoffs. The result holds generally for reputation games where the long-run player has a

strictly dominant action in the stage game: when λ is less than a critical value, the long-run

player’s equilibrium strategy is always to play the dominant action. This is because fading

history bounds the probability of an “observation chain” from the current period t to future

period t̂, where t′ > t observes t, t′′ > t′ observes t′, etc., which bounds the reputational

payoffs of any signaling strategy. By contrast, such a chain always exists in limited history,

even when T = 1, because period 1 always observes 0, period 2 always observes 1, etc. For

high λ, the bad reputation result is recovered. The result for fading history with small λ

applies directly to the chain store game, leading to a more dramatic increase in short-run

player payoffs because they need only observe one past period to learn the long-run player’s

type.

Equilibria under limited history seem qualitatively different in the chain store game

versus the mechanic game; in particular, no myopic chain store equilibrium exists like that
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of the mechanic game for small T . The folk theorems of Mailath and Olszewski (2011a) and

the purifiability result of Bhaskar, Mailath, and Morris (2013a) offer intriguing clues for an

investigation. An interesting question is whether limited history equilibria in Stackelberg-

type games (like the chain store game) can exhibit the cyclical behavior under limited records

found by Liu and Skrzypacz or have the non-cyclical behavior of the mechanic game. More

generally, behavior in other limited history reputation games remains largely unknown and

is an interesting topic for future research.
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Chapter 2

Bounded Memory, Reputation, and Impatience

2.1 Introduction

Consider a market where a seller faces a sequence of different buyers. The buyers

choose how much to trust the seller (that is, how large of an order to place), and the

seller chooses whether to honor that trust by incurring a cost to provide a high quality

good, or instead betray it with low quality; the one-shot outcome is low trust and low

quality. Because the seller never faces the same buyer again, any incentive to provide high

quality must come from the threat of punishment by future buyers informed about today’s

action. Hence, markets often maintain records of past performance to counteract the myopic

temptation to exploit.

Most reputation models assume that the full history of past behavior is observable,

yet in many real world settings this glimpse into the past goes only so far. For example,

events on credit histories are deleted after a certain time period in many countries, as are

infractions on driving records; workers typically provide only recent references to prospective

employers when applying for jobs; and many online markets display only recent reviews of

sellers.1 Even when the full list of reviews is available, online markets often make the most

recent ones most prominent on their website (e.g. eBay); it may be safe to assume buyers

simply glance at a few of the latest reviews instead of reading all of them. Recently the

Court of Justice of the European Union ruled in Google v. Costeja that individuals have

a “right to be forgotten” and may demand that search engines remove links to certain old

1A number of these examples are pointed out by Liu and Skrzypacz (2014b), who also study a bounded
memory reputation environment.
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information “in light of the time that has elapsed.” What happens when agents know that

today’s behavior will some day be forgotten?

The first half of this chapter introduces general tools to study such environments.

The primary contribution is a recursive characterization of the set of equilibrium payoffs

for a general class of bounded memory games with incomplete information (multiple player

types), presented in Section 2.3. This dynamic programming method allows analysis of

both stationary and non-stationary equilibria for the first time. Section 2.4 introduces

an equilibrium refinement I call “quasi-Markov perfection” (an extension of the standard

notion of Markov perfection from complete information games), which rules out some fragile

equilibria that are not “purifiable,” meaning they do not survive the addition of small,

independent private shocks to payoffs.

The second half of the chapter (Section 2.5) demonstrates these tools in two appli-

cations. This first is a product choice game (between a firm and a sequence of consumers)

with a Stackelberg (“honest”) commitment type and 1-period memory of the firm’s actions,

where the recursive method yields a complete characterization of the exact minimum and

maximum purifiable equilibrium payoffs for almost all discount factors and prior beliefs

on the commitment type, showing that allowing non-stationary equilibria expands the set

of equilibrium payoffs. The second application looks at the same game with very long

memory, where the dynamic programming state space grows very large and so studying

non-stationary equilibria is difficult. Fortunately, stationary equilibria have a very simple

interpretation in my framework, which is used to show that when memory is sufficiently

long, the firm receives exactly the Stackelberg payoff in all purifiable, stationary equilibria,

given any fixed discount factor (above a threshold dependent on the stage game payoffs) and

a positive prior. Both results show that introducing even very little incomplete information

has a big impact on the equilibrium set; a difference from previous results is showing that

this is true even when the long-run player is not particularly patient.

The recursive characterization builds on the dynamic programming methods of

Abreu, Pearce, and Stacchetti (1990) (hereafter APS) and Doraszelski and Escobar (2012)
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(hereafter DE). For the complete information case (e.g., the seller’s type is known), APS

characterize the equilibrium set for full memory, while DE characterize it for bounded mem-

ory; in both full and bounded memory, the recursive structure of these games allows the

set of equilibrium payoffs to be calculated as the largest fixed point of a “generating (set)

operator” that transforms sets of objects containing payoffs;2 this fixed point is the “largest

self-generating set.” However, the assumption of complete information is restrictive: even a

slight relaxation can dramatically change the equilibria (as shown in the applications).

I extend these techniques to incomplete information (“reputation”) under bounded

memory. More formally, I characterize the set of weak Perfect Bayesian Equilibrium (wPBE)

payoffs of repeated games under imperfect monitoring where a long-run player, who is one

of finitely many commitment types, faces a sequence of short-run players who observe only

the K most recent periods. This presents two main challenges. The first is that in addition

to playing best responses, players must also form beliefs consistent with Bayes’ rule. I

show how these games also have a recursive structure, allowing the construction of an

analogous generating operator that, roughly speaking, transforms sets of objects containing

both payoffs and beliefs. This also yields an algorithm for computing the largest fixed point

by repeatedly applying the generating operator. The second challenge is that the first K

periods (where players still see the full history) are qualitatively different from later periods,

and so the largest fixed point of the generating operator (largest self-generating set) does

not directly give the equilibrium payoffs. Instead, the full game’s equilibrium payoffs are

found by solving for certain equilibria of a set of finitely repeated K-period games, with

payoffs augmented according to this fixed point.

This framework is necessary for studying non-stationary equilibria, where strategies

may depend on the calendar date. Previous papers studying bounded memory reputa-

tion assume stationary strategies, which requires hiding the date from short-run players.3

Though this makes the analysis much simpler, there are a variety of real-world applications

2In APS, the objects are payoffs. This is discussed in greater detail on page 37 and in Section 2.3.
3This is because although the strategies are time-independent, the beliefs and therefore best responses

may not be.
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where short-run players know the time: creditors know the age of borrowers even when

credit histories are bounded, auto insurers know the age of drivers, and buyers can observe

the age of a seller’s account on eBay. The framework enables us to explore the impact of

assuming stationarity (the application to a 1-period memory example shows that assuming

stationarity is restrictive for some priors). Nevertheless, for long memory, this dynamic pro-

gramming method becomes increasingly intractable due to the curse of dimensionality, and

so solving for non-stationary equilibria may not be possible in practice. Stationary equi-

libria have a particularly simple interpretation in this context as “self-generating points”

rather than “self-generating sets;” that is, instead of the more complicated task of find-

ing the largest set of many points that generates itself, computing stationary equilibria

means searching for individual points which generate themselves (I use this method in the

long-memory example).

To simplify application of the recursive framework, I introduce the notion of quasi-

Markov perfection. For complete information dynamic games, attention is often restricted

to Markov perfect equilibria, where players do not condition on payoff-irrelevant histories,

instead conditioning only on the payoff relevant “Markov state.” Quasi-Markov perfection

naturally extends this notion to the incomplete information environment.4 It particularly

simplifies games with one commitment type and perfect monitoring of the long-run player’s

actions. To support the argument that the simplicity of quasi-Markov equilibria does not

come at the expense of realism, I show that all non-quasi-Markov equilibria are “fragile,”

meaning they are not purifiable in the sense of Harsanyi (1973) because there are no nearby

equilibria if we add small, independent (across actions and time) private shocks to the

payoffs. That is, even very tiny private payoff information destroys all non-quasi-Markov

equilibria. This result is an extension of Bhaskar, Mailath, and Morris (2013b) (hereafter

BMM), who show that Markov perfection is a necessary condition for purifiability in a gen-

eral class of complete information, sequential-move games with bounded memory. As BMM

4I use the term “quasi-Markov” instead of “Markov” to distinguish it from the use of beliefs as Markov
states, as is often done in the literature (see Section 18.4.2 of Mailath and Samuelson (2006b) for an example).
Using beliefs as states is too coarse for the results presented here, as discussed in Section 2.4.
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argue, purifiability can be motivated by the notion that games are only approximations of

reality and so real payoffs are generally at least slightly different from the model.

These tools are then applied to a repeated sequential-move product choice game with

a sequence of short-lived consumers, who first choose between either a small or large order,

facing a long-lived firm, choosing between providing low and high quality. The firm is either

a “normal” strategic type (with a myopic incentive to exploit) or an “honest” Stackelberg

commitment type always providing high quality. The K most recent firm’s actions are

observed but those of the consumers are not.5

To put the application results in context, what does the existing literature tell us

about this game? The complete information case (only the strategic type) is well under-

stood. Under full memory, cooperation is simple to achieve via grim trigger strategies. In

fact, all payoffs between the low one-shot equilibrium payoff and the high Stackelberg pay-

off are achievable with full memory (using arguments from Fudenberg, Kreps, and Maskin

(1990)). However, imposing a bound on memory is disastrous. BMM show that any bound

K, no matter how high K is, means all cooperative equilibria are fragile (non-purifiable);

the only purifiable equilibrium is the repeated one-shot equilibrium.

The literature has less to say about the incomplete information case (adding the

honest type). For full memory, the standard reputation result (due to Fudenberg and Levine

(1989; 1992) and improved by Gossner (2011)) is that the firm is guaranteed a payoff close

to the high Stackelberg payoff when very patient (the discount factor δ → 1). The intuition

is that by persistently playing “honestly,” the firm could eventually convince consumers to

expect honest behavior (high quality), thereby guaranteeing a payoff close to the honest

(Stackelberg) payoff when sufficiently patient. Such full memory games are difficult to solve

beyond such bounds. With K-period memory, it is possible to achieve a similar bound via

similar arguments, by making memory long and then making the firm very patient (i.e.,

“limδ→1 limK→∞”). For a similar product choice game, Liu and Skrzypacz (2014b) improve

5This type of monitoring is called “limited records” by Liu and Skrzypacz (2014b).
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on this with a time-independent bound on stationary equilibrium payoffs. However, in both

cases the order of limits is crucial: in reverse order (“limK→∞ limδ→1”), these arguments

provide no meaningful bound. I also know of no papers that bound the payoffs for small

K.6

The first application considered is the 1-period memory case, which is appealing

because it is both the most restrictive limit on memory possible and yields a simple state

space in which to apply the recursive algorithm, yielding a complete characterization of the

minimum and maximum quasi-Markov equilibrium payoffs for all prior beliefs on the honest

type and almost all discount factors.

The analysis yields several insights. First, this technique obtains the actual mini-

mum and maximum payoffs rather than lower and upper bounds because it relies on the

convergence of the recursive algorithm instead of the traditional argument bounding the

payoff of repeatedly playing the commitment action (which may not be an equilibrium

strategy). Second, even a little bit of incomplete information (a small but positive prior

belief on the honest type) resurrects non-fragile cooperation, allowing a purifiable equilib-

rium with the Stackelberg payoff.7 Third, assuming stationary equilibria is restrictive; that

is, allowing non-stationary equilibria expands the set of equilibrium payoffs. For a range of

priors, the minimum payoff is not given by stationary equilibria, but rather by equilibria

where players and beliefs condition on the time in periodic cycles. When consumers have a

sufficiently high prior on the honest type, the maximum payoff (higher than the Stackelberg

payoff) is given by a non-stationary equilibrium where strategies have a two-period cycle.

In even periods (starting with period 0), the firm exploits “naive” cooperative customers; in

odd periods, customers know the firm is not honest, but still cooperate knowing the firm

will provide them high quality in order to exploit the next customer in the following even

6In their version of the product choice game, Liu and Skrzypacz (2014b) show that equilibrium behavior
changes, but do not show how the payoffs change for small K. This appears to be because their continuous
action spaces allow qualitatively different behavior whose corresponding payoffs are more difficult to calculate.

7Although the general result shows only that purifiability implies quasi-Markov perfection (rather than
the converse), I show in Appendix 2.3.2 that these minimum and maximum payoffs correspond to purifiable
equilibria for almost all priors.
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period.

The second application studies the effect of K growing large. For long memory, the

state space for the algorithm becomes intractably large, so I restrict attention to station-

ary equilibria by finding self-generating points instead of self-generating sets. When the

memory is long enough (K exceeds some threshold dependent on the prior), the long-run

player receives exactly the Stackelberg payoff in any stationary, purifiable equilibrium when

the discount factor is above a bound that depends only on the stage game payoffs (not the

prior). Imposing purifiability shows that reputation effects are even stronger than the pre-

vious literature suggests, since the standard “patience lower bound” on equilibrium payoffs

allows the possibility that the complete information game is robust to slightly incomplete

information so long as the long-run player is not extremely patient. In this game, less than

extreme patience is not enough to allow low payoffs — the memory must also be sufficiently

short (or totally unbounded).

This work relates to a variety of papers on repeated games and reputation. As

mentioned above, the recursive characterization is closest to DE, who extend the APS tools

(for full memory in complete information games) to equilibria where players condition only

on summary statistics of the histories — bounded memory is a special case of this.8 To

expand on the previous discussion slightly more formally (detailed discussion is saved for

Section 2.3), for full memory APS show that the equilibrium payoffs are given by the largest

self-generating set of payoff vectors (with a payoff for each long-run player). For bounded

memory, DE show the equilibrium set is given by the largest self-generating set of vector-

valued payoff functions (mapping histories to payoff vectors). The extension to incomplete

information shows that the appropriate notion is self-generating sets of objects I call HBPs,

each containing a History distribution, Belief mapping, and Payoff function. A history

distribution is a vector of probability distributions on the space of (bounded) histories

8The APS framework has been extended to a variety of other settings in the literature; a few examples
are Atkeson (1991) and Phelan and Stacchetti (2001), who study games with dynamic payoff relevant states,
and Ely, Hörner, and Olszewski (2005), who characterize belief-free equilibrium payoffs in games with private
monitoring.
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conditional on each type of long-run player; the belief mapping, which maps beliefs on

those types to each history, is only necessary for histories not in the support of the history

distribution (i.e. off the hypothetical equilibrium path). The payoff function serves the

same purpose as in DE — to keep track of continuation payoffs while breaking dependence

on past play beyond the bounds of the memory.

Other work on bounded memory and complete information under perfect monitor-

ing includes Barlo, Carmona, and Sabourian (2009), who prove a folk theorem for 1-period

memory with rich action sets, and Mailath and Olszewski (2011b), who prove a folk theorem

for bounded memory strategies. It is worth noting that bounded memory with complete

information is effectively a restriction on strategies, while bounded memory with incom-

plete information is a restriction on learning as well. For complete information, all bounded

memory equilibria are also full memory equilibria; for incomplete information, this is not

true. Under incomplete information, Monte (2013) uses the term “bounded memory” in a

different sense, but his result shows how limits on learning can lead to qualitatively different

equilibria.9 Ekmekci (2011) also studies a product choice game under incomplete informa-

tion, constructing a finite rating system that translates the history into a rating observed by

short-run players. Both papers show how restricted learning can result in permanent rep-

utation even under imperfect monitoring, in contrast to the “temporary reputation” result

of Cripps, Mailath, and Samuelson (2004).

The product choice game application of Section 2.5 is closely related to that of Liu

(2011b) and particularly Liu and Skrzypacz (2014b), who both study stationary equilibria

(calendar dates are unobserved) in product choice type games. Liu (2011b) studies behav-

ior (rather than payoffs) in a model where monitoring of past firm actions is endogenous

as a costly action available to consumers; monitoring is limited by the increasing cost of

obtaining older information (instead of a fixed bound), yielding “random auditing” and rep-

utation cycles. Liu and Skrzypacz (2014b), who have a continuous stage game, assume

9Monte models “bounded memory” for a long-run player as a finite set of memory states, where a player’s
strategy is to choose an action for each state and transition rules between the states.
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a fixed bound on monitoring of past firm actions (as in this chapter), showing that all

(stationary) equilibria have consumers “riding reputation bubbles” by helping a firm that

they know is not honest build reputation to exploit future consumers. Their focus is also

on behavior, but also show a time-independent bound on payoffs which has bite for the

“limδ→1 limK→∞” limit discussed above. I focus on characterizing payoffs rather than be-

havior, but the proofs indicate that behavior in the game studied here differs from that in

Liu and Skrzypacz’s model, suggesting that a continuous action space may allow substan-

tially different dynamics.10 Where stationarity is assumed (the long-memory case), I follow

Liu (2011b) in assuming that short-run players have the improper uniform prior on the

calendar date. Liu and Skrzypacz (2014b) provide results more generally for an arbitrary

prior on the date, treating the improper uniform prior as an interesting and particularly

tractable special case.

2.2 Model

I consider a two player sequential-move stage game G, with the infinite repetition

of G denoted G∞, starting at period 0. G∞ is referred to as the full game. In keeping

with (perhaps here counter-intuitive) convention, player 1 is a long-run player (who moves

second) and player 2 is a short-run player who moves first, choosing an action from finite

action space A2. Player 1 observes player 2’s action a2 ∈ A2 and then player 1 chooses

action a1 from finite action space A1. A public signal y from finite set Y is generated

according to probability distribution ρ(y|a2, a1).

The space of action profiles is A ≡ A2 × A1 with typical action profile a. For any

finite set X, let ∆X be the set of probability distributions over X. Denote a mixed action

profile as α ∈ ∆A.

Player 1 observes the full history of actions and signals (formalized in the next

10See Footnote 28 for a more detailed explanation. It is interesting that while reputation bubble behavior
is ruled out for stationary equilibria, the 1-period memory non-stationary maximum payoff equilibrium for
“naive” consumers (with very high priors) has a similar flavor, with odd-period consumers knowingly helping
the non-honest firm exploit even-period consumers.
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Figure 2.2.1: An example stage game with two player 2 actions A2 ≡ {b1, b2}, two player 1
actions A1 ≡ {c1, c2}, and two signals Y ≡ {y1, y2}. The dotted box is used for reference in
Figure 2.3.1, enclosing the part of the game where players move rather than nature.

paragraph). Player 2 observes the K most recent public signals, but receives no other

information about past play. Player i receives ex-post payoff u∗i (a, y), with ex-ante payoffs

given by

ui(a) =
∑
y∈Y

u∗i (a, y)ρ(y|a).

The ex ante payoff given mixed action profile α ∈ ∆A is ui(α). Figure 2.2.1 depicts a simple

example stage game.

The set of full histories at period t is Ht ≡ (A×Y )t; let H ≡
⋃
t H

t. The focus will

primarily not be on full histories (as discussed below), so I do not use the term “history” to

refer to these. The set of full semipublic histories at some period t is Ht ≡ Y t with typical

element ht (superscript t is used to make clear the length of such a history), with the set

of all full semipublic histories H ≡
⋃∞
t=0 H

t. These are called “semipublic” because each

element of the history was public at some point in the past. Denote the concatenation of

full semipublic history ht and some signal y as hty.
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Both players observe the date, thereby allowing non-stationary behavior.11 Player

2 observes only the last K periods, which I call the public history. For period t, the

set of public histories is Y t for t < K and Y K for t ≥ K. Since short-run players are

in information sets containing a public history and the date, such pairs are called date-

histories. Let Ht ≡ {t} × Y min{t,K} be the set of all date-histories at period t, and let

H ≡
⋃∞
t=0H

t denote the set of all date-histories. This chapter is primarily concerned with

the public histories instead of the full histories (due to Lemma 2.2.1), so I often refer to a

public history simply as a “history.”

To reflect the fact that the elements of the public history h have happened in the

past, I index its elements with negative indices: h ≡ (h−K , h−K+1, ..., h−1). For periods

t ≥ K, at the end of each period the oldest element h−K is deleted, every subsequent

element is “pushed back” one space, and the newly generated signal y from the current

period’s play is appended. I denote this as hy ≡ (h−K+1, ..., h−1, y) and say y is pushed on

h.

The long-run player is one of the types in the set Θ ≡ {θ0} ∪ Θ̂, where θ0 is the

“normal type” with payoffs u∗1(a, y) given above, and Θ̂ is a finite set of “commitment types,”

where each θ̂ ∈ Θ̂ is committed to playing a (possibly mixed) action α̂θ ∈ ∆A1 every period.

Each player 2 has prior belief µ0(θ) ∈ [0, 1] for each type θ ∈ Θ, and updates those beliefs

based on the date-history according to Bayes’ rule.

A strategy for player 2 at period t is a mapping σt2 : Ht → ∆A2; that is, it depends

only on the date and public history, which I call a public strategy. For convenience, denote

the vector (σ0
2, σ

1
2, ...) of all player 2 strategies as σ2 : H → ∆A2, so that σ2(t, h) = σt2(h).

In general, a strategy for player 1 is a mapping

σ1 : Θ×

( ∞⋃
t=0

Ht

)
×A2 → ∆A1,

11I discuss stationary equilibria in an alternative specification in Section 2.3.5, where player 2 does not
observe the date and instead has the improper uniform prior on the date where she enters.
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but because of the focus on payoffs I can and will restrict attention to only public strategies

σ1 : Θ×H × A2 → ∆A1 (see Lemma 2.2.1 below). I denote the value of a strategy profile

σ ≡ (σ1, σ2) to player 1 as V (σ).

Definition 2.2.1. (σ∗, µ∗) is a weak Perfect Bayesian Equilibrium (wPBE) if σ∗ are mutual

best responses with beliefs µ∗, and µ∗ is consistent with Bayes’ rule on the equilibrium path.

σ∗ is stationary if strategies at periods t ≥ K are independent of the calendar date.

Denote the set of strategy profiles as Σ, the set of wPBE strategy profiles as Σ∗,

the set of public strategy profiles as Σ̂, and the set of wPBE public strategy profiles as Σ̂∗.

Focus on public strategy profiles is not restrictive with respect to payoffs because of the

following lemma.

Lemma 2.2.1. Let any wPBE with strategy profile σ̃ ∈ Σ∗ be given. There exists public

wPBE strategy profile σ̄ ∈ Σ̂∗ such that V (σ̄) = V (σ̃).

2.3 Recursive Characterization of Equilibrium Payoffs

The literature on bounded memory reputation thus far has restricted attention to

stationary equilibria, where strategies depend on the public history but not the calendar date

(starting at period K). In the model here, this assumption greatly simplifies the analysis

by making the strategy space finite.12 By contrast, allowing non-stationary behavior means

players may also condition on the calendar date, making the strategy space infinite.

Assuming stationary equilibria generally requires hiding the calendar date from the

short-run player, since the equilibrium distribution of play need not be constant through

time (even with stationary strategies), so the beliefs and therefore expected payoffs (for

the short-run player) also depend on time. Hiding the date ensures that beliefs are also

constant through time, so the set of best responses is the same at all periods K,K + 1, ....

12The short-run player chooses an action at each of the
∑K−1
t=0 |H

t| =
∑K−1
t=0 |Y |

t initial histories plus the
|Y |K possible histories at periods t ≥ K, while the long-run player chooses |A2| times as many actions.

42



Such models must assume short-run players arriving on and after period K have a common

prior on the current date, typically the improper uniform prior, as is done in Sections 2.3.5

and 2.5.2.

The problem of finding equilibrium payoffs in an infinite strategy space is resolved by

transforming it into a dynamic programming problem. In full-memory, complete information

repeated games — the environment of APS — the strategy space is also infinite (the space

of histories is itself infinite). The key to their framework is the strategic equivalence of

the full game and the continuation subgame; the strategies starting at any (full) history

constitute a perfect public equilibrium (PPE), and so continuation payoffs must themselves

be equilibrium payoffs.

The framework introduced here is best understood by drawing analogies between its

definitions and those of APS. I start by stating the APS approach with deliberately vague

language (with more concrete descriptions in parentheses) to hint at the intuition of my

approach.

1. Let a set of hypothetical summary statistics of future equilibrium play (continuation

payoffs) be given.

2. Given these hypothetical futures, what sort of current play (action profiles) is possible

today?

3. Combine the possible current play and hypothetical futures into a new set of hypo-

thetical summary statistics of equilibrium play (average the payoffs of the current

action profile and the hypothetical continuation payoffs to get a new set of payoffs).

APS show that if the output of step 3 yields the hypothetical input in step 1, that hypo-

thetical input describes (non-hypothetical) equilibria; this is because full memory, complete

information games have a recursive structure. I show that bounded memory, incomplete

information games also have a recursive structure, and so it is possible to use more com-

plicated “hypothetical summary statistics” and “current play” to find actual equilibrium
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values. To assist in drawing these analogies, I provide brief sketches of APS13 and DE

before discussing the incomplete information framework in Section 2.3.2.

2.3.1 Recap of APS and DE

For simplicity, assume two long-run players 1 and 2 playing a simultaneous-move

stage game with finite action spaces A1, A2, respectively, and restrict to pure strategies,

letting A ≡ A1 × A2. Assume perfect monitoring so the appropriate solution concept is

subgame-perfect equilibrium (SPE). The stage payoff for player i is ui(a). Let E ⊂ R2 be

the set of pure-action SPE payoffs for each player. For any v ∈ E , there exists SPE σv with

payoffs v = V (σ), where V (σ) is the vector of values of σ to players 1 and 2.

Let F † ⊂ R2 denote the set of feasible payoffs, and let W ⊂ F † be some set of

feasible but not necessary equilibrium payoffs. If we can construct a continuation payoff

function γ : A → W on the set of hypothetical (i.e. not necessarily credible) continuation

payoffs W so that action profile a is incentive compatible for both players, the action profile

a is enforced by γ on W .

Definition 2.3.1. Let W ⊂ R2 be given. An action profile a ∈ A is enforced by γ : A→ W

if

(1− δ)ui(a) + δγi(a) ≥ (1− δ)ui(a′i, a−i) + δγi(a
′
i, a−i)

for all i, a′i ∈ Ai. We say that a is enforceable on W if such a function γ exists.

For a given payoff vector v ∈ F †, if there exists an action profile a enforced by some

γ on W such that the discounted average payoffs for a and the continuation payoffs γ(a)

are equal to v, i.e. for both i

vi = (1− δ)ui(a) + δγi(a), (2.3.1)

then v is decomposable on or “generated by” W . APS construct the set operator B so that

13Here I follow the notation of Section 2.5.1 of Mailath and Samuelson (2006b).
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B(W ) is the set of all payoff vectors decomposable on W .

Definition 2.3.2. Let W ⊂ R2 be given. Define

B(W ) ≡ {v ∈ R2 : ∃a ∈ A,∃γ : A→ W such that

a is enforced by γ and vi = (1− δ)ui(a) + δγi(a)}.

Any set W that generates a superset of itself, i.e. W ⊂ B(W ), is a self-generating

set. Every self-generating set is a subset of the equilibrium payoffs, and the set of equilibrium

payoffs is the largest fixed point of B.

Proposition 2.3.1 (Theorems 1 and 2, APS). The following holds:

1. Self-generation: Let any set W ⊂ R2 be given. If W ⊂ B(W ), then W ⊂ E .

2. Factorization: B(E ) = E .

APS also give an algorithm for computing E , showing that repeatedly applying B(·)

to the set of feasible payoffs converges to the set of equilibrium payoffs. This algorithm is

the basis of Judd, Yeltekin, and Conklin (2003), who develop a numerical implementation

of Proposition 2.3.2.

Proposition 2.3.2 (Theorem 5, APS).
⋂∞
m=0 Bm(F †) = E .

DE extend the APS tools to equilibria which condition on summary statistics of

past play, where bounded memory is a special case. They show that the appropriate notion

is self-generating sets of vector-valued (continuation) payoff functions, rather than payoff

vectors. Why?

Consider the example model depicted in Figure 2.2.1 satisfying the specification in

Section 2.2, but leave out reputation by only allowing the normal type θ0. I recycle the

notation above by letting E ⊂ R be the set of player 1 PPE payoffs. For expositional

clarity, this discussion uses the term “decompose” informally for 1-period memory since

Section 2.3.4 (which incorporates reputation) formalizes this as a special case.

45



When dealing with sets of payoffs instead of payoff functions, the APS framework

allows the freedom to choose any equilibrium payoff as a continuation payoff for any action

profile played today. Consider the“Full Game G∞”part of Figure 2.3.1 (for now ignoring the

“Pσ∗(· · · )”notation and“Variant Game”parts). The dotted boxes indicate the player actions

of each stage game, corresponding to the dotted box in Figure 2.2.1. With full memory,

continuation play at the history y1y2 at period 2 can be different from continuation play at

the history y2y2, since players may always condition on the outcome of period 0. Hence the

continuation payoff V (y1y2) can differ from V (y2y2). Define functions γy1 : Y → R, γy2 :

Y → R so that γy(y′) = V (yy′). Thus, the continuation payoffs following period 1 for history

y1, specified by γy1 , may be different from those at history y2, specified by γy2 ; that is, APS

allow γy1 6= γy2 . Instead of keeping track of these continuation payoff functions, APS

keep track of the individual payoffs {γy1(y1), γy1(y2), γy2(y1), γy2(y2)} ⊂ E , constructing

(possibly different) continuation payoff functions at each history for each period. Knowing

that four payoffs W 2 ≡ {ṽ1, ṽ2, ṽ3, ṽ4} ⊂ E is sufficient to know that any two payoffs

W 1 ≡ {v1, v2} decomposable on W 2 are also PPE payoffs starting at period 1, which can

serve as continuation payoffs for play at period 0, decomposing some v as the payoff for the

whole equilibrium.

With 1-period memory, the only time players may condition on the outcome of period

0 is period 1. In Figure 2.3.1, the nodes labeled with“B1”are strategically equivalent to each

other, as are the nodes labeled with “B2.” Thus, 1-period memory imposes the restriction

that V (y1y1) = V (y2y1) and V (y1y2) = V (y2y2). Thus, we are forced to pick a pair of

continuation payoffs at period 1, rather than four, so that the continuation payoff functions

above are equal: γy1 = γy2 . Put another way, we must choose one continuation payoff

function, instead of two. Let E ⊂ R denote the set of 1-period memory PPE payoffs for

player 1, and let E denote the set of continuation payoff functions in all PPEs: that is,

γ ∈ E if and only if there exists some 1-period memory equilibrium σ′ and some period t

such that the continuation payoffs V (σ′|t, y) at period t satisfy V (σ′|t, y) = γ(y) for both

y ∈ {y1, y2}. The fact that four payoffs W 2 ≡ {v1, v2, v3, v4} ⊂ E is insufficient to know

what payoffs can be decomposed with 1-period memory at period 1. But if we know γ2 ∈ E
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— perhaps so that γ2(y1) = v1, γ2(y2) = v2 — then we can decompose another payoff

function γ1 at period 1, so that γ1 gives the continuation payoffs for play following period

0. Finally, a single payoff v (rather than another payoff function) for the whole equilibrium

can be calculated by finding actions for period 0 that are enforced by γ1, giving v as the

discounted average payoff, similarly to (2.3.1).

2.3.2 Overview of the Framework

The dynamic programming methods of APS, DE, and this chapter are all driven by

the recursive aspects of their environments. Summarizing, the key insight used by APS is

that the continuation game at any history is strategically equivalent to the full game; the

key insight used by DE is more cumbersome to state but similar: with K-period memory,

the |Y |K-length vector of continuation games for each public history at period t ≥ K is

strategically equivalent to the analogous vector at any other period t′ ≥ K.14

The central insight used by this chapter’s framework is that with bounded memory

and incomplete information, continuation play is almost strategically equivalent to the full

repeated game. In fact, it is equivalent to a slightly modified version of the full game where

period 0 is endowed with an exogenous, fictitious initial history of length K, randomly

drawn from a distribution dependent on the long-run player type. I show how to rephrase

the DE insight in the following useful way, for now assuming complete information (no

reputation). Construct a modified version of the full game that I call a variant game, where

nature randomly picks a fictitious initial history of length K before play begins. Without

reputation, this initial history is payoff irrelevant, but players may condition on it. Since

nature’s choice is payoff irrelevant, the probabilities with which nature picks each initial

history are also payoff irrelevant. Suppose that the variant game is defined so that nature

picks the initial history according the equilibrium distribution of play at some period t ≥ K

in some equilibrium σ∗ of the full game. More formally, let Pσ∗((t, h
t) = (t, h0)) denote

14These vectors are equivalent to functions mapping public histories to continuation games, hence “self-
generating payoff functions.”
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the probability that the period t public history is h0 under strategy profile σ∗. In the

variant game, nature picks initial history h0 with probability Pσ∗((t, h
t) = (t, h0)). Define

strategy profile σ̃ for the variant game so that for each public history hk in period k,

σ̃|(k,hk) = σ∗|(t+k,ht+k) — that is, σ̃ starting at period 0 is identical to σ∗ starting at period

t. Then the equilibrium distribution of play in σ̃ will be identical to that of σ∗, shifted t

periods earlier.

The equilibrium distribution of play is payoff irrelevant with complete information,

but when the long-run player’s type is unknown, it is critical because it determines beliefs. If

the fictitious initial history is drawn according to a distribution conditional on the type, the

initial history affects beliefs. If these conditional distributions are equal to the conditional

distributions of public histories in some period t ≥ K in an equilibrium σ∗ of the full game,

then the beliefs in the variant game at period 0 are the same as the beliefs specified by

σ∗ at t for histories on the equilibrium path.15 Furthermore, defining a strategy profile σ̃

for the variant game as in the previous paragraph ensures that the conditional equilibrium

distributions are identical, shifted t periods earlier, so beliefs on the equilibrium path are

also identical, shifted t periods earlier. Roughly speaking, an equilibrium of the full game

starting at period t specifies an equilibrium of a variant game, and an equilibrium of a

variant game specifies possible period t continuation play in an equilibrium of the full game

whose probability distribution over public histories at period t matches the initial history

distribution of the variant game.

2.3.3 Preliminaries and Variant Games

The usefulness of APS stems from the fact that given a set of hypothetical payoffs

W , we can prove that these are actually equilibrium payoffs by applying B(·) and check-

ing that W ⊂ B(W ) (i.e. W is self-generating). Similarly, this section constructs objects

that are hypothetical properties of an equilibrium — specifically hypothetical probability

distributions over public histories, hypothetical beliefs on public histories, and hypothet-

15I ignore off-equilibrium beliefs for now, dealing with them later.
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ical continuation payoff functions. I begin by introducing these three main hypothetical

“primitives,” which are subsequently combined.

Definition 2.3.3. A history distribution (HD) φ : Θ→ ∆Y K is a function mapping a type θ

to a conditional probability distribution φ(·|θ) ∈ ∆Y K over public histories, giving a proba-

bility φ(h|θ) for observing history h conditional on type θ ∈ Θ, such that
∑

h∈Y K φ(h|θ) = 1.

The support of φ is suppφ ≡ {h ∈ Y K |∃θ ∈ Θ, φ(h, θ) > 0}. The set of all HDs is Φ.

Let some history distribution φ be given. In a hypothetical equilibrium whose prob-

ability distribution over public histories at period t matches φ, for any h on the equilibrium

path (i.e. h ∈ suppφ) the belief of player 2 that the type is θ upon observing history h is

given by Bayes’ rule, updating from the prior µ0. For off-equilibrium histories, beliefs must

be defined but are not restricted, so I construct an object to store hypothetical beliefs that

are consistent with φ on its support. Note that when φ has full support (suppφ = Y K),

this is redundant.

Definition 2.3.4. Let any history distribution φ ∈ Φ be given. A function µ : Θ× Y K →

[0, 1] is a belief mapping (BM) that is consistent with φ if for each h ∈ suppφ, µ satisfies

µ(θ|h) =
µ0(θ)φ(h|θ)∑
θ′∈Θ µ

0(θ)φ(h|θ)
, ∀θ ∈ Θ.

Denote the set of all belief mappings consistent with φ as Mφ.

Note that I do not construct hypothetical beliefs for the full history (unknown

to short-run players) because such beliefs are payoff irrelevant: the long-run player (who

knows the full history) does not condition on it. Finally, I introduce the third hypothetical

“primitive.”

Definition 2.3.5. A payoff function (PF) is a function γ : Y K → R that maps from a

public history to a payoff. The set of all PFs is denoted Γ.

Since all three pieces of hypothetical “continuation information” are needed to know

what kind of current period behavior can be “enforced,” I combine the three primitives into

the following composite objects.
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Definition 2.3.6. A history distribution and belief mapping (HB) is a pair (φ, µ) where

φ ∈ Φ and µ ∈Mφ. Denote the set of all HBs as M ≡ {(φ, µ) : φ ∈ Φ, µ ∈Mφ}.

Definition 2.3.7. A history distribution, belief mapping and payoff function object (HBP)

is a triplet (φ, µ, γ) containing the HB (φ, µ) ∈ M and a payoff function γ ∈ Γ. The set of

all HBPs is denoted W.

An HBP is the analogue of a payoff vector in APS and the analogue of a payoff

function in DE (indeed, with only one long-run player type the HB part becomes irrelevant,

effectively simplifying to a payoff function). In APS language, characterizing the “largest

self-generating set” of HBPs (defined formally in Section 2.3.4) is the central aim.

For each HB (φ, µ), I construct a modified version of the full game where an exoge-

nous, fictitious history is drawn according to φ.

Definition 2.3.8. Let any HB (φ, µ) ∈ M be given. Define the (φ, µ)-variant game G∞φ,µ

as follows.

1. Starting in period 0, a different short-run player 2 enters each period and plays the

stage game G with long-run player 1 (as in G∞).

2. Just before period 0, nature exogenously sets the public history to some initial history

h0 ∈ Y K with probability φ(h0|θ) conditional on player 1’s type θ ∈ Θ. The first

short-run player (in period 0) observes h0, and the period 0 signal y0 is pushed on

h0, yielding public history h0y0 for the period 1 player, and so on (just as in the full

game G∞ at period K and later).

3. For any wPBE (σ∗, µ∗) of the variant game G∞φ,µ, strategies and beliefs are required

to be defined at all initial histories, even those chosen with probability 0 by nature,

so that µ∗(θ|h0) = µ(θ|h0) for all h0 ∈ Y K .

The third condition is a bit unusual because it is nature’s choice, not player behavior,

that keeps a history h /∈ suppφ off the equilibrium path, yet I still require strategies and

beliefs to be defined there.
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Variant games are “real” games in their own right, but they are of interest because

continuation play in any equilibrium of the full game is strategically equivalent to the

beginning of some variant game. This strategic equivalence is illustrated more precisely in

Figure 2.3.1. Focus first on the left half of the figure. Let some wPBE (σ∗, µ∗) be given

for the full game G∞. At the labels A1, A2, B1, and B2, I list the probability Pσ∗(h|θ) of

reaching the corresponding public history h conditional on type θ under strategy profile σ∗,

along with the belief µ∗(θ|h) on the type θ upon reaching public history h. Note that both

nodes labeled with “B1” have the same beliefs and are strategically equivalent, as are the

two nodes labeled “B2.”

Turn now to the right half of the figure. Define HB (φ1, µ1) ∈M so that φ1(h1|θ) =

Pσ∗(h
1|θ) and µ1(θ|h1) = µ∗(h1|θ) for each h1 ∈ Y and θ ∈ Θ. Similarly define HB

(φ2, µ2) ∈ M so that φ2(h2|θ) = Pσ∗(h
2|θ) and µ2(θ|h2) = µ∗(h2|θ) for each h2 ∈ Y and

θ ∈ Θ. Note that σ∗|y1 (i.e. σ∗ starting at the A1 node in the full game) defines a PBE

for the variant game G∞φ1,µ1 starting at the A1 node. Conversely, given any wPBE (σ̃, µ̃) of

the variant game G∞φ1,µ1 , it can be “plugged into” σ∗ starting at period 1 — replacing the

strategies and beliefs at periods 1 and later — and the newly merged strategy profile will

constitute another wPBE of the full game.16

I now construct the primary set of interest D ⊂ W, which is shown in the next

section to be the “largest self-generating set” in the next section. In APS terms, it is the

analogue to the set E of equilibrium payoffs; in DE terms, it is the analogue to the set E

of equilibrium continuation payoff functions. Let Σφ,µ denote the set of strategy profiles

16This is more precisely stated as follows. Define “merged” wPBE (σ̄, µ̄) so that:

1. At period 0, take the strategies from the original full game strategy profile: σ̄(∅) = σ∗(∅).

2. Period 1 beliefs are taken from the original full game beliefs (which are the same as those specified
for the variant game): µ̄(h1|θ) = µ∗(h1|θ) = µ1(h0|θ).

3. For periods 1, 2, ..., the strategies are taken from the variant game strategy profile, shifted 1 period
back: σ̄t(h) = σ̃t(ht−1) for all t ≥ 1, h ∈ Y .

4. For periods 2, 3, ..., the beliefs are taken from the variant game beliefs, shifted 1 period back:
µ̄(θ|(t, h)) = µ̃(θ|(t− 1, h)) for all t ≥ 2, h ∈ Y .

It is straightforward to see that µ̄ must be consistent with σ̄, and that σ̄1, σ̄2 are mutual best responses.
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for variant game G∞φ,µ, and denote Σ∗φ,µ as the set of wPBE strategy profiles for G∞φ,µ (not

the full game). Let V (σ̃|h0) denote the value of strategy profile σ̃ ∈ Σφ,µ to player 1,

conditional on the realization of h0 as the initial history. For each σ̃ ∈ Σφ,µ, define payoff

function γσ̃φ,µ : Y K → R so that γσ̃φ,µ(h) = V (σ̃|h). Define Γ∗φ,µ ≡ {γσ̃φ,µ : σ̃ ∈ Σ∗φ,µ} as the

set of payoff functions for wPBEs of the (φ, µ)-variant games; note that without reputation,

Γ∗φ,µ would be the same as E from DE (see Section 2.3.1).

Definition 2.3.9. For each HB (φ, µ) ∈M, define Dφ,µ ≡ {(φ, µ, γσ̃φ,µ) ∈W : σ̃ ∈ Σ∗φ,µ;∀y ∈

Y K , γσ̃φ,µ(y) = V (σ|y)} as the set of all HBPs containing HB (φ, µ) and the payoff function

γσ̃φ,µ, where for each h ∈ Y K , the value γσ̃φ,µ(h) gives player 1’s payoff for a wPBE of the

(φ, µ)-variant game, conditional on initial history realization h. Define D ≡
⋃

(φ,µ)∈MDφ,µ

as the set of all such HBPs for all the variant games.

It is worth pausing to clarify the purpose and meaning of the above constructions.

An HBP (φ, µ, γ) is a hypothetical description of the properties of an equilibrium of the

full game G∞ at some period t ≥ K; this is similar to how, in APS, a payoff vector v ∈ R2

is a hypothetical description of an equilibrium at some history in a complete information

repeated game with full memory. Those hypothetical properties are the probability distri-

bution over the public histories conditional on type, the beliefs at each public history, and

the payoffs of the long-run player starting at each of those histories.

Given an HB (φ, µ), the (φ, µ)-variant game is an actual game, but it is useful be-

cause of its strategic equivalence to continuation play at some period t ≥ K of a hypothetical

equilibrium of the full game, whose equilibrium distribution of play and beliefs at t “match”

the hypothetical description given by (φ, µ). The set Dφ,µ is the set of all HBPs contain-

ing HB (φ, µ) and an equilibrium payoff function for the (φ, µ)-variant game, meaning a

function mapping initial histories to the payoffs conditional on that initial history being

realized; this can alternately be stated as Dφ,µ = {(φ, µ)} × Γ∗φ,µ. Finally, D is the union

over all these HBPs.

Any element (φ, µ, γ) ∈ D tells us that in the (φ, µ)-variant game, there exists an

equilibrium where player 1 receives payoff γ(h) if initial history h is realized. It also tells
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us that if there exists an equilibrium of the full game whose equilibrium distribution and

beliefs over the histories at some period t match (φ, µ), then there also exists an equilibrium

that matches (φ, µ) and has payoff γ(h) upon arriving at history h in that period.

2.3.4 Self-Generation

This section defines the notions of enforceability, decomposition and self-generation,

followed by the main results for Section 2.3. Before proceeding, one more hypothetical

primitive must be defined. For full memory, APS use action profiles as a description of

“current play,” but this is insufficient for my purpose: I cannot pick just any action profile for

each full history, since players only condition on the most recent K periods. This is similar

to the reason we must use payoff functions rather than payoffs themselves. For complete

information, DE use functions mapping from the public history to an action profile. I abuse

notation by reusing α, using context to indicate whether it is a mixed action profile versus

an “action profile mapping.”

Definition 2.3.10. An action profile mapping (AM) α : Y K × Θ → ∆A2 × (∆A1)A2 is a

mapping from a public history h and type θ to mixed actions for each player α(·|h, θ) ≡

(α2(·|h), α1(·|ha2, θ)), where α(a|h, θ) denotes the probability of pure action profile a be-

ing played given h and θ. This is often written as α(h, θ) for brevity. For each θ̂ ∈ Θ̂,

α1(ha2, θ̂) = α̂θ̂ for all ha2 ∈ Y K ×A2. The set of all AMs is denoted A.

With full memory, the APS notion of “enforceability” captures the requirement that

hypothetical current behavior (an action profile) is consistent with hypothetical future be-

havior (continuation payoffs). With complete information, the only consistency needed is

incentive compatibility. Reputation adds the additional issue that current behavior deter-

mines future beliefs (and therefore future payoffs), and so requires an additional consistency

requirement besides incentive compatibility.

I call this requirement “inducibility.” Call the current period “today” and the next

“tomorrow.” Let some HBP (φ̃, µ̃, γ̃) be given, serving as a description of hypothetical
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future behavior starting tomorrow, including the hypothetical tomorrow’s distributions over

histories and beliefs (φ̃, µ̃). Today’s hypothetically consistent play must not only be enforced

by the payoffs starting tomorrow; it must also yield a distribution of histories that matches

what tomorrow’s players expect (i.e. φ̃). However, today’s play, described by an action

profile mapping α, is not sufficient to give this consistency since players condition on the

public history observed today, which is itself random (generated by yesterday’s players).

Let the HB (φ, µ) describe the probability distribution for the history observed today (i.e.

the probability distribution of yesterday’s play) and today’s beliefs. Together, (φ, µ) and α

specify the (unique) probability distribution of the histories observed tomorrow. Thus, it

will be useful to combine HBs and AMs in a composite object I call an “HBA,” analogous

to the an action profile in APS.

Definition 2.3.11. A history distribution, belief mapping and action profile mapping ob-

ject (HBA) (φ, µ, α) is a triplet containing an HB (φ, µ) combined with an AM α. The set

of all HBAs is denoted X ≡M×A.

Define τ(h′) ≡ {h ∈ Y K : ∀k ∈ {K, ..., 2}, h−k+1 = h′−k} as the set of public histories

that can “be followed by h′,” i.e. the K − 1 oldest elements of h′ are the same as the K − 1

most recent elements of h.

Definition 2.3.12. The set of new HBs that are inducible by the HBA x ≡ (φ, µ, α) is

denoted by the correspondence Υ : X⇒M. Υ(x) is the set of HBs (φ̃, µ̃) such that for each

θ ∈ Θ,

φ̃(h′y|θ) =
∑

h′∈τ(h)

∑
a2∈A2

∑
y∈Y

φ(h|θ)α2(a2|h)α1(a1|ha2, θ)ρ(y|a2, a1) (2.3.2)

and µ̃ ∈Mφ̃ (i.e. µ̃ is pinned down by Bayes’ rule on the support of φ̃).

This completes the definition of hypothetical description of current play, the HBA

(analogous to an action profile in APS), and Section 2.3.3 constructed the hypothetical

description of future play, the HBP (analogous to a continuation payoff vector in APS). It
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is now possible to define the incomplete information notion of enforceability, which requires

that current and future play be consistent in terms of incentives (as in APS and DE) as

well as in terms of beliefs (captured by inducibility).

Definition 2.3.13. For any W ⊂ W, an HBA x ≡ (φ, µ, α) ∈ X is enforceable on W if

there exists HBP w̃ ≡ (φ̃, µ̃, γ̃) ∈W such that

1. Inducibility: the distribution over histories and beliefs must be consistent: (φ̃, µ̃) ∈

Υ(x) (see Definition 2.3.12).

2. Short-run player incentive compatibility: player 2 has no profitable deviations:

∑
θ∈Θ

u2(α(ha′2, θ))µ(θ|h) ≥
∑
θ∈Θ

u2(α1(ha′2, θ), a
′
2)µ(θ|h) (2.3.3)

for all a′2 ∈ A2.

3. Long-run player incentive compatibility: player 1 has no profitable deviations:

for all h ∈ Y K , a2 ∈ A2, a′1 ∈ A1,

Va2(x, w̃)(h) ≡ (1− δ)u1(a2, α1(ha2, θ0)) (2.3.4)

+δ
∑
a1∈A

∑
y∈Y

α1(a1|ha2, θ0)ρ(y|a1, a2)γ̃(hy)

≥ (1− δ)u1(a′1, a2) + δ
∑
y∈Y

ρ(y|a2, a1)γ̃(hy) (2.3.5)

where Va2(x, w̃) ∈ Γ is a payoff function.

The HBP w̃ enforces the HBA x.

The function Va2(x, w̃)(h) defined in (2.3.4) gives the discounted average player 1

payoff upon arriving at public history h, conditional on player 2 action a2. Define V(x, w̃) ∈

Γ to give the actual expected player 1 payoff upon arriving at h by averaging over player

2’s strategy: V(x, w̃)(h) =
∑

a2∈A2
α2(a2|h)Va2(x, w̃)(h).
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I now define corresponding notion of “decomposability.” Roughly speaking, an HBP

w ≡ (φ, µ, γ) is decomposed or “generated” by another HBP w̃ ≡ (φ̃, µ̃, γ̃) if there exists an

HBA (φ, µ, α) enforced by w̃, so that the payoffs of those in α and γ̃ “average” out to those

in γ.

Definition 2.3.14. An HBP w ≡ (φ, µ, γ) ∈W is decomposable on W ⊂W if there exists

action profile mapping α ∈ A such that

1. x ≡ (φ, µ, α) is enforced by some w̃ ≡ (φ̃, µ̃, γ̃) ∈W , and

2. for all h ∈ Y K , γ(h) = V(x, w̃)(h).

The HBP w is decomposed (or “generated”) by the pair (x, w̃) (on W ).

The following is my version of the APS B(·) operator (from Definition 2.3.2) and

“self-generation.”

Definition 2.3.15. For any W ⊂W, define

B(W ) ≡ {(φ, µ, γ) ∈W : γ = V(x, w̃) for some x ∈ X enforced by some w̃ ∈W}.

Definition 2.3.16. A set of HBPs W ⊂W is self-generating if W ⊂ B(W ).

It is now possible to state the self-generation and factorization results (analogous to

Proposition 2.3.1 from APS), showing that D is the largest self-generating set. Recall from

Section 2.3.3 that the set D is, roughly speaking, the set of all HBPs (φ, µ, γ) such that

for the (φ, µ)-variant game (G∞φ,µ), γ(h) gives the player 1 payoffs in some equilibrium of

G∞φ,µ when the (fictitious) initial history h is realized. These HBPs are of interest because

they describe equilibrium payoffs for the full game G∞ starting at period K (when the

public history gets “full”), conditional on the existence of a hypothetical equilibrium whose

distribution over histories at period K matches the distribution specified by φ.

To summarize, the following proposition characterizes D, which specifies the full

game equilibrium payoffs at period K for all hypothetical equilibrium behavior in the initial
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periods 0, ...,K − 1. Further below I will show how to calculate what we are ultimately

interested in, the set E of equilibrium payoffs (at period 0), from D.

Proposition 2.3.3. The following hold:

1. Self-generation: Suppose that a bounded set W ⊂W is self-generating. Then W ⊂

D.

2. Factorization: D = B(D).

Before presenting the algorithm, I define its initial starting point, the feasible set

of HBPs. Let F † ⊂ R be the set of feasible payoffs for player 1, and let F† ≡ {(φ, µ, γ) ∈

W : ∀h ∈ Y K , γ(h) ∈ F †} denote the set of feasible HBPs (the set of all HBs paired with

all payoff functions with feasible values). Repeatedly applying the B(·) operator to this set

converges to D.

Proposition 2.3.4. For each m ∈ N, Bm+1(F†) ⊂ Bm(F†) and D =
⋂∞
m=0 B

m(F†).

I carry this algorithm out by hand when applying it to the product choice game

in Section 2.5.1. Developing a numerical implementation like that of Judd, Yeltekin, and

Conklin (2003) is a particularly interesting avenue for future research, given the complexity

of these games.

The difficult part of the analysis is behind us, having characterized the possible

equilibrium payoffs at period K, and can now turn to the ultimate objective of calculating

the set E of wPBE payoffs of the full game for player 1. Once the possible equilibrium

payoffs at period K are known, finding E boils down to solving the equilibrium payoffs of

a full-memory, finitely repeated game with periods 0, ...,K − 1, with payoffs augmented

at the end of period K − 1 by the discounted continuation payoffs in γ for some HBP

(φ, µ, γ) ∈ D, with the additional requirement that equilibrium behavior match φ so that

beliefs are consistent.

For each payoff function, construct such a finitely repeated game, calling it an “an-

tegame” since it represents the first K periods of play in the full game.
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Definition 2.3.17. Let any payoff function γ be given. The γ-antegame is defined as

follows. Player 1’s type θ is drawn with probability µ0(θ), and the stage game G is

repeated K times (with first period 0), with all players observing the full history. Let

h ≡ (h0, ..., hK−1) ∈ Y K denote the public history at the end of this game. Each short-run

player 2 in period t receives their (ex-post) stage payoff u∗2(at, y) where at, yt are the action

profile played and signal generated at period t, while player 1 receives payoff

(1− δ)
K−1∑
t=0

δtu∗1(at, yt) + δKγ(h).

Let Σ∗γ denote that set of wPBE strategy profiles for the γ-antegame.

As above, let V (σ̃) denote the value of σ̃ ∈ Σ∗γ to player 1. Let Pσ̃(h|θ) be the

probability of “final history” h ∈ Y K given σ̃ ∈ Σ∗γ and type θ ∈ Θ. For each w ≡ (φ, µ, γ),

define

E(φ,µ,γ) ≡ {V (σ̃) : σ̃ ∈ Σ∗γ ;∀h ∈ Y K , Pσ̃(h|θ) = φ(h|θ)} (2.3.6)

as the set of payoffs of equilibria of the γ-antegame whose conditional probability distribu-

tion of final histories matches φ. The following operator summarizes this process.

Definition 2.3.18. Let a set of HBPs W ∈ W be given. Define V(W ) ≡ {v ∈ Ew : w ∈

W} ⊂ R.

Again, applying the V operator to a set of HBPs means solving the relatively simple

task of finding the wPBE payoffs of finitely K-repeated games with full memory. Finally,

applying the V operator to D yields the equilibrium payoffs of the full game.

Proposition 2.3.5. For any set of HBPs W ⊂ D, V(W ) ⊂ E. Furthermore, V(D) = E.

I conclude by summarizing the full procedure of solving for the equilibrium payoffs.

First, repeatedly apply the B(·) operator to the set F† of feasible HBPs, yielding the set

D (as in Proposition 2.3.4). Second, apply the V(·) operator to D, yielding the set E of

equilibrium payoffs (as in Proposition 2.3.5).
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2.3.5 Stationary Equilibria

Previous analysis of bounded memory reputation environments (e.g. Liu (2011b)

and Liu and Skrzypacz (2014b)) has generally restricted attention to equilibria with sta-

tionary strategies, that is, strategies that do not depend on the calendar date (for periods

t ≥ K). If short-run players observe the calendar date, there may not be a wPBE with such

strategies since beliefs, and therefore incentives, may depend on the calendar date. Let two

public histories ht ∈ Ht, h̃t
′ ∈ Ht′ for t, t′ ≥ K which are identical except for the period

(t 6= t′), i.e. for every k ∈ {K, ..., 1}, ht−k = h̃t
′
−k; denote this equivalence ht w h̃t

′
. There is

no guarantee that short-run player best response in period t at public history ht is a best

response in a different period t′ with h̃t
′
w ht since beliefs and thus expected payoffs may

differ. This is not a problem if the equilibrium distribution of histories at each period is

identical for all periods t ≥ K, but such an assumption may be quite restrictive.

Definition 2.3.19. Let σ ∈ Σ be a strategy profile of the full game. σ is stationary if it

depends only on the public history and is independent of the calendar date; that is, for two

histories ht, h̃t
′
such that ht w h̃t

′
, σ2(ht) = σ2(h̃t

′
) and σ1(hta2) = σ1(h̃t

′
a2).

Instead, assume short-run players do not observe the calendar date, except for peri-

ods 0, ...,K − 1 where the length of the history gives the date away. Thus, the set of public

histories in this specification is H ≡
⋃K
t=0 Y

K . Instead, they have the improper uniform

prior over all periods K,K + 1, ..., and so their beliefs are based on the limit of the average

probability of play:

µ(h|θ) =
µ0(θ) limt→∞

{
1

t−K
∑t

s=K P
t
σ(h|θ)

}
∑

θ′∈Θ µ
0(θ′) limt→∞

{
1

t−K
∑t

s=K P
t
σ(h|θ′)

} (2.3.7)

where P tσ(h|θ) is the probability of history h at period t given strategy profile σ and long-run

player type θ.

It turns out that combining the “time-average” history distribution φ (given by the

limit terms in (2.3.7)) with the corresponding belief mapping µ and payoff function γ, with

60



values are given by the continuation payoffs of σ, yields a self-generating singleton HBP

(φ, µ, γ).

Proposition 2.3.6. For any stationary wPBE (σ∗, µ∗), there exists an HBP w ≡ (φ, µ, γ)

such that w ∈ B({w}), i.e. w is decomposed by some HBA x ≡ (φ, µ, α) ∈ X and itself,

where the following are satisfied: α2(h) = σ∗2(h), α1(ha2, θ) = σ∗1(ha2, θ), µ
∗(θ|h) = µ(θ|h)

and V (h) = γ(h), for all h ∈ Y K , a2 ∈ A2 and θ ∈ Θ.

This gives stationary equilibria in the game with unobserved calendar date a very

simple interpretation within the framework outlined in Section 2.3.4. Characterizing the

set of non-stationary equilibrium payoffs requires characterizing the largest self-generating

set of HBPs, while characterizing the set of stationary equilibrium payoffs only requires

searching the HBP space for self-generating points.

2.4 Purifiability and Quasi-Markov Equilibria

The previous section provides an algorithm (Propositions 2.3.4 and 2.3.5) to cal-

culate the set of wPBE payoffs. Even when the HBP space has few dimensions, carrying

out the algorithm remains a daunting task. To get a sense of this, let an HB (φ, µ) and

an HBP w̃ ≡ (φ̃, µ̃, γ̃) be given. Finding the set of action profile mappings α that make

(φ, µ, α) enforceable by w̃ essentially amounts to finding the set of Bayes Nash equilibria

of a one-shot sequential move game whose outcome probability distributions match φ̃.17

Given even a singleton set of HBPs W̃ ≡ {w̃}, finding the set of decomposed HBPs B(W̃ )

17To clarify, this one-shot game consists of the following four steps:

1. Nature chooses randomly chooses a history h ∈ Y K with probability φ(h|θ), which is not payoff
relevant except that it affects beliefs as it is correlated with player 1’s type.

2. Player 2 chooses an action a2 ∈ A2.

3. Player 1 chooses an action a1 ∈ A1.

4. Nature chooses y ∈ Y according with probability ρ(y|a2, a1).

Then player 2 receives payoff u∗2(a2, a1, y) and player 1 receives (1− δ)u∗1(a2, a1, y) + δγ̃(hy). The task is to
find equilibria of this game such that history h and signal y occur with probability φ̃(hy|θ).

61



means solving the above problem for every possible HB (φ, µ) (of which there are infinitely

many).18

This section introduces an equilibrium refinement, which I call “quasi-Markov per-

fection,” which greatly simplifies the set of strategies (i.e. HBAs) that must be considered

in cases where the long-run player’s actions are perfectly monitored and there is exactly

one commitment type, as is the case with the applications in Section 2.5. In complete

information dynamic games with a stochastic payoff-relevant state variable, applied work

has often restricted attention to Markov perfect equilibria, defined as having strategies that

condition only on the current state. Here, the stage game payoffs are static — there is only

one Markov state in this sense — but the short-run player’s expected payoffs are “dynamic”

because beliefs change depending on the public history (and possibly time). Quasi-Markov

perfection is the natural extension of Markov perfection to this incomplete information

environment.

Besides enhancing tractability, quasi-Markov perfection has another virtue: the equi-

libria that it rules out are all“fragile”because they are not purifiable in the sense of Harsanyi

(1973). Non-purifiable equilibria are not robust to arbitrarily small private, independent

payoff shocks. I show this by extending the results of BMM, who prove that for complete

information dynamic sequential move games with bounded memory, all purifiable equilibria

are Markov perfect. As BMM point out, models cannot hope to describe reality perfectly

and so at least some private payoff information is always present, so it is argued that this

refinement does not come at the expense of realism.

At first glance, it may seem that beliefs are the appropriate extension of Markov

states, as they determine the expected short-run player payoffs. However, such an equiva-

lence class is too coarse for our purposes because two histories with the same beliefs today

may lead to different beliefs tomorrow even if today’s public signal is the same. For ex-

ample, suppose (as will be done in Section 2.5) that the long-run player has two actions

18It means finding the set of Bayes Nash equilibria for every possible probability distribution for nature’s
move in step 1 of Footnote 17.
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A1 ≡ {C,D}, with a single commitment type θ̂ who always plays C, and suppose that the

long-run player’s action (and only her action) is perfectly monitored (formally, Y ≡ {C,D}

and ρ(a1|a2, a1) = 1 for all a2 ∈ A2). Let the memory length be K = 2, and assume the

belief µ(θ̂|h) = 0 for any history h containing the non-commitment action D. Consider the

situation of having history h ≡ DD versus history h′ ≡ DC today. Both histories have

belief 0, yet if C is played today, the belief tomorrow is µ(hC) = µ(DC) = 0 in the former

case versus µ(h′C) = µ(CC) ≥ µ0(θ̂) > 0 in the latter.

Quasi-Markov perfection allows different behavior at histories with the same beliefs

today as long as they lead to different beliefs sometime in the future. A quasi-Markov

state is defined as including all histories h, h′ which have the same beliefs today’s period

t (µt(h) = µt(h′)), will lead to the same beliefs tomorrow following any signal yt+1 today

(µt+1(hyt+1) = µt(h′yt+1)), and the same beliefs the next day following tomorrow’s signal

yt+2 (µt+1(hyt+1yt+2) = µt(h′yt+1yt+2)), and so on forever.

Definition 2.4.1. Let any public wPBE (σ, µ) be given. For any period t, two date-histories

(t, h), (t, h′) ∈ Ht are in the same quasi-Markov state for player 2, denoted (t, h) ∼ (t, h′), if

they have the same beliefs at the current period t and for any given continuation history yk ∈

Y k for any k ≥ 1; that is, µ(θ|(t, hyk)) = µ(θ|(t+k, h′yk)) for all θ ∈ Θ, k ∈ {1, ...}, yk ∈ Y k.

Two player 2 actions a2, a
′
2 ∈ A2 are incentive-equivalent if ρ(y|a2, a1) = ρ(y|a′2, a1) for all

a1 ∈ A1, and

u1(a2, a1)− u1(a2, a
′
1) = u1(a′2, a1)− u1(a′2, a

′
1) ∀a1, a

′
1 ∈ A1.

Two player 1 date-histories (t, ha2), (t, h′a′2) are in the same quasi-Markov state for player

1 if a2 and a′2 are incentive equivalent (a2 ∼ a′2) and (t, h), (t, h′) have the same beliefs for

any continuation history yk ∈ Y k for all k ≥ 1 (but not necessarily at the current history,

i.e. k = 0).

The equilibrium (σ, µ) is quasi-Markov perfect if strategies are the same within a

quasi-Markov state for each player: σ2(t, h) = σ2(t, h′) and σ1(t, ha2) = σ1(t, h′a′2) for all

(t, h), (t, h′) ∈ Ht and a2, a
′
2 ∈ A2 such that (t, h) ∼ (t, h′) and (t, ha2) ∼ (t, h′a′2).

63



To see how quasi-Markov perfection simplifies the strategy space, consider the ex-

ample mentioned earlier. The histories CD and DD are in the same quasi-Markov state

because both give belief 0 today, and no matter what today’s signal yt is (either C or

D), the belief tomorrow (and in fact the whole history) will also be the same (formally,

CDyt = DDyt for both yt ∈ {C,D}). The other two histories DC,CC are each in distinct

quasi-Markov states, so there are three total states for K = 2.

For K = 3, there are four states. The histories DDD,CDD,DCD,CCD are all

in the same state because all have belief 0 in the present period t, belief 0 the next period

t + 1 following signal C, belief 0 in period t + 2 following another signal C, and after a

third signal C all the histories become CCC (after signal D they have belief 0, of course).

The other three states are {DDC,CDC}, {DCC} and {CCC}. Note that in this example,

quasi-Markov perfection means conditioning on when the most recent D event occurred, a

point fleshed out in the application in Section 2.5.

I now construct the (ψ, ε)-perturbed game, largely following the construction given

by BMM. Let Zi be a full-dimensional, closed subset of [0, 1]|Ai| for each player i, and let

Z ≡ Z2×Z1. Let ∆∗(Z) be the set of measures which have support Z generated by strictly

positive densities. At each full history h ∈ H a payoff shock z ≡ (z2, z1) ∈ Z is drawn

according to ψ ∈ ∆∗(Z). The payoff shocks are independent across the two players and the

histories. The complete history with shocks at period t is h̃ ∈ H̃t ≡ (A × Y × Z)t; also

denote the set of player 1 full histories with shocks at period t as H̃t
1 ≡ (A×Y ×Z1)t×A2,

and let H̃1 ≡
⋃∞
t=0 H̃t

1. If player i chooses action ai, then εzaii is added to her stage payoff,

where ε > 0 and zai . Player i’s (ex-post) payoff for action profile a, signal y and shock zi is

ũi(a, y, zi) = u∗i (a, y) + εzaii .

Players privately observe only their own shocks. A strategy for player 2 at period t is

σ̃t2 : Ht × Z2 → ∆A2. A strategy for player 1 is a mapping σ̃1 : Θ× H̃1 → ∆A1.

In any equilibrium of the perturbed game, players have a strict preference for their

strategies for almost all shocks. Strategies with this property are called “essentially sequen-
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tially strict.” The following definition also extends quasi-Markov perfection to the perturbed

game for strategies that behave according to Definition 2.4.1 for almost all shocks.

Definition 2.4.2. A wPBE (σ, µ) is an essentially sequentially strict equilibrium if for all

(t, h) ∈ H and almost all payoff shocks z2 ∈ Z2, the action σ2(t, h, z2) is pure and the unique

maximizer, and similarly for all a2 ∈ A2 and almost all z1 ∈ Z1, σ1(t, ha2, z1) is also pure

and the unique maximizer.

An equilibrium (σ, µ) of the perturbed game is quasi-Markov perfect if for almost all

z2 ∈ Z2 and almost all z1 ∈ Z1, σ2(t, h, z2) = σ2(t, h′, z2) and σ1(t, ha2, z1) = σ1(t, h′a′2, z1)

for all (t, h), (t, h′) ∈ H, a2, a
′
2 ∈ A2 such that h ∼ h′ and a2 ∼ a′2.

The following result (my version of Proposition 1 from BMM) shows that all equi-

libria of the perturbed game are essentially sequentially strict, and every essentially se-

quentially strict equilibrium is quasi-Markov (see Lemma 2.2.2). The intuition is that the

continuity of ψ ensures that a player being indifferent occurs with probability zero.

Proposition 2.4.1. Every wPBE of the perturbed game is quasi-Markov perfect.

The main purifiability result can now be stated. The following condition is what

BMM call “weak purifiability,” which is weaker than the purifiability notion of Harsanyi

(1973).19 A sequence of current shock strategies (σ̃k)k converges in outcomes to a strategy

σ in the unperturbed (full) game if

lim
k→∞

ˆ
σ̃k2 (a2|h, z2) dψk(z2) = σ2(a2|h) and lim

k→∞

ˆ
σ̃k1 (a1|ha′2, z1) dψk(z1) = σ1(a1|ha′2)

(2.4.1)

for each public history h and a′2 ∈ A2.

19In the language of BMM, an equilibrium is “weakly purifiable” if there exists a sequence of perturbed
games converging to the unperturbed game such that a sequence of corresponding wPBEs converge to the
equilibrium. “Harsanyi purifiability” (as BMM call it) requires that for every sequence of perturbed games,
there exists a sequence of corresponding wPBEs converging to the equilibrium. Harsanyi purifiability implies
weak purifiability; see Definitions 6 and 7 of BMM.
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Definition 2.4.3. A wPBE (σ∗, µ∗) of the full game G∞ is purifiable if there exists a

sequence (ψk, εk)k → 0 with ψk ∈ ∆∗(Z) and εk → 0 such that there is a sequence of

strategy profiles (σ̃k)k converging in outcomes to σ∗, with σ̃k a wPBE of the (ψk, εk)-

perturbed game.

The following is the incomplete information version of Proposition 2 from BMM,

showing that quasi-Markov perfection is implied by purifiability.

Proposition 2.4.2. Every purifiable wPBE is quasi-Markov perfect.

One may wonder to what extent the converse holds: are quasi-Markov equilibria

purifiable? Though I do not attempt a general answer, I show that in the application of

Section 2.5, the minimum and maximum quasi-Markov equilibrium payoffs are given by

purifiable equilibria for almost all priors.20

2.5 Applications

With the theoretical machinery of Sections 2.3 and 2.4 in hand, I apply it to the

product choice game depicted in Figure 2.5.1. I assume short-run players have perfect

monitoring of the K most recent long-run player actions but no monitoring of past short-

run player actions. Liu and Skrzypacz (2014b) call this property “limited records.” The

long-run player is either normal type θ0 with payoffs in Figure 2.5.1 or a commitment

type θ̂ who always plays C. Short-run players have prior belief µ0(θ̂) that player 1 is the

commitment type, which are abbreviated as simply µ0 in this section. For concreteness, I

refer to player 1 as the “firm” and player 2 as the “consumer.”

Based on the reasoning of Section 2.4, I restrict attention to quasi-Markov perfect

equilibria, a restriction that omits only non-purifiable equilibria. For any off-equilibrium

20Under complete information, BMM show a partial converse of their proposition for complete information:
for a class of games with generic payoffs, all stationary Markov equilibria are purifiable, relying on a result
from Doraszelski and Escobar (2010). I conjecture this result carries over to this incomplete information
environment, but even if it does, it leaves open the question for non-stationary equilibria and non-generic
payoffs, both of which must be considered in this application.
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Figure 2.5.1: The product choice game, with player 1 (firm) payoffs on top and player 2
(consumer) payoffs on bottom.

date-history (t, h) where D is played at least once, assume that player 2 has belief 0 on the

commitment type; Bayes’ rule obviously implies this holds for all histories on the equilibrium

path.

Assumption 2. For any public history h containing D at any period, player 2 believes that

player 1 is the normal type θ0 with probability one.

This assumption means that quasi-Markov perfection implies that players condition

only on the period of the most recent D in the public history (and the calendar date). For

any public history h ∈ Y K , let

ι(h) ≡ K + min{k : h1−k = D} (2.5.1)

be the number of Cs since the most recent D, called the “index of h.” For each k ∈

{0, ...,K − 1}, define Ik ≡ {h ∈ Y K : ι(h) = k} as the set of histories with index k, and

define singleton set IK ≡ {CK}, where CK is the K-length history containing only “C”.

For convenience, I use notation of the form ak11 ã
k2
1 · · · ā

kn
1 to denote the history containing

k1 instances of (player 1) action a1, followed by k2 instances of ã1, and so on, followed by

ā1 for the kn most recent periods; for example, DCK−3D2 is the history consisting of one

D, followed by K − 3 periods of C, followed by two periods of D.

In their environment, Liu and Skrzypacz (2014b) show that strategies in all sta-
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tionary PBEs, including (possibly) non-purifiable ones, depend on only on the index of a

history, i.e. the time since the last non-commitment action. Proposition 2.4.2 shows that

requiring purifiability also allows such a simplification for all finite stage games with limited

records and a single long-run player commitment type, as well as to non-stationary equi-

libria. For each k, all the histories in Ik are in the same quasi-Markov state by Definition

2.4.1. Furthermore, the fact that the cost of effort is constant across the short-run player’s

actions (formally, u1(c, C)−u1(c,D) = u1(d,C)−u1(d,D) = 1) implies that both short-run

player actions are incentive equivalent; hence, the long-run player does not condition on the

short-run player’s action. I relax this assumption in my analysis of stationary, long-memory

equilibria in Section 2.5.2. I formally add quasi-Markov perfection to Definition 2.3.13 in

the following definition.

Definition 2.5.1. Let an HBA x ≡ (φ, µ, α) enforced by some HBP w ≡ (φ̃, µ̃, γ̃) be given.

x is quasi-Markov enforced by w if α2(h) = α2(h′) and α1(hc) = α1(hd) for any two histories

h, h′ ∈ Ik for any k.

The analogous definitions of quasi-Markov decompose and quasi-Markov self-generat-

ing, as well as the analogues of Propositions 2.3.3 and 2.3.4, are given by inserting “quasi-

Markov” into the appropriate places; the respective proofs are straightforward modifications

and so are omitted.

This partitioning greatly simplifies the analysis of the HBP space. Consider some

HBP (φ, µ, γ) ∈ W. Since play at periods K,K + 1, ... conditions only on the index of

the history, the collapsed payoff function space Γ is (K + 1)-dimensional, one dimension

for each index 0, ...,K. (Indeed, Γ is isomorphic to RK+1.) Similarly partition the history

distribution space Φ by index; for a given history distribution φ, abuse notation by denoting

φ(Ik|θ) ≡
∑

h∈Ik φ(h|θ). Note that φ(IK |θ̂) ≡ φ(CK |θ̂) = 1, so only the history distributions

for the normal type θ0 are non-trivial; abbreviate φ(Ik) ≡ φ(Ik|θ0). All of this means that

Φ is now K dimensional (the requirement that
∑K

k=0 φ(Ik|θ0) = 1 removes the (K + 1)-th

degree of freedom). Since beliefs are pinned down at every history, the belief mapping

µ is redundant. Thus, I omit the belief mapping (“(φ, γ)” instead of “(φ, µ, γ)”) except
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when it is notationally convenient, in which case I abbreviate µ(IK) ≡ µ(θ̂|IK) (since

beliefs at all other histories are simply zero). Summarizing, purifiability (and hence quasi-

Markov perfection) allows us to collapse the 2|Y |K − 1 dimensions of HBP space (|Y |K − 1

dimensions of history distributions and |Y |K dimensions of payoff function space, ignoring

any non-redundant belief mappings) to 2K + 1 dimensions (K for history distributions and

K + 1 for payoff functions).

2.5.1 Product Choice Game with 1-Period Records

Consider the case where K = 1, which is sufficiently tractable to analytically char-

acterize the exact minimum and maximum quasi-Markov equilibrium payoffs for all priors

µ0 ∈ [0, 1] and almost all discount factors δ ∈ [0, 1). There are just two possible histories at

any period t ≥ 1: Y K = {C,D}.

As discussed above, the HBP space W ≡M×Γ has three dimensions: one for history

distributions and belief mappings (M), and two for payoff functions (Γ). The space Φ of

history distributions φ (and HB space M, since beliefs are redundant) is isomorphic to the 1-

simplex, so I further abbreviate φ ≡ φ(C|θ0) (since φ(C|θ0) = 1−φ(D|θ0)). For convenience,

I use the real numbers in [0, 1] interchangeably with history distributions φ ∈ Φ.

Since there are only two player 2 actions A2 ≡ {c, d}, I abbreviate σ2(t, h) ≡

σ2(c|t, h) = 1 − σ2(d|t, h). I do the same when discussing action profile mappings α ∈ A:

α2(h) ≡ α2(c|h). Similar abbreviation is possible for player 1, but it is possible to go fur-

ther because purifiability requires that player 1 condition only on the calendar date, since

either history C or D is immediately erased by the current period’s signal (and so leads to

the same beliefs for any continuation history) and player 2’s actions c and d are incentive-

equivalent. In other words, for a given period t, all player 1 date-histories (t, ha2) are in the

same quasi-Markov state. Hence, abbreviate σ1(t) ≡ σ1(C|t, ha2) for all h ∈ Y ≡ {C,D}

and a2 ∈ A2, and do the same for an action profile mapping: α1 ≡ α1(C|ha2). As with

history distributions, I use real numbers in [0, 1] interchangeably with these mixed actions.

The results are presented first, followed by discussion of the algorithm.
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Figure 2.5.2: On the left, the minimum (black) and maximum (gray) quasi-Markov equi-
librium long-run player payoffs are plotted for δ = 0.9. On the right, the minimum and
maximum payoffs for only stationary equilibria are plotted.

2.5.1.1 Results

The following proposition gives the exact minimum and maximum quasi-Markov

equilibrium payoffs for player 1 for all priors µ0 and all discount factors δ ∈ [0, 1
2) ∪ (1

2 , 1).

The results are more easily understood with the plot in Figure 2.5.2.

Proposition 2.5.1. Let E(δ, µ0) be the set of quasi-Markov equilibrium player 1 payoffs

of the 1-period records product choice game, and let e(δ, µ0) ≡ minE(δ, µ0), ē(δ, µ0) ≡

maxE(δ, µ0) be the minimum and maximum quasi-Markov equilibrium payoffs, respectively.

For δ < 1
2 ,

e(δ, µ0) =

1 µ0 ≤ 1
2

3(1− δ) + δ µ0 > 1
2

ē(δ, µ0) =

1 µ0 < 1
2

3(1− δ) + δ µ0 ≥ 1
2 .

(2.5.2)

For all δ > 1
2 ,

e(δ, µ0) =


1 0 ≤ µ0 ≤ 1

9

λ∗(µ0) 1
9 < µ0 ≤ 1

2

2 1
2 < µ0 ≤ 1

ē(δ, µ0) =


1 µ0 = 0

2 0 < µ0 < 1
2

1−δ
1−δ2 (3 + 2δ) 1

2 ≤ µ
0 ≤ 1,

(2.5.3)
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where λ∗(µ0) is defined as follows. Let L(µ0) = mink q
k(0, µ0) such that qk(0, µ0) ≥ 1

2 ,

where q : R× [0, 1]→ R is defined by21

q(φ, µ0) =

µ0

1−µ0

1− 2φ
. (2.5.4)

Define

λk1 ≡
1

1− δk+1
[(1− δk) + 3δk(1− δ)− δk−1(1− δ)] (2.5.5)

for k ∈ {L− 1, L}. Finally,

λ∗(µ0) =

(1− δ) + δλ
L(µ0)−1
1 qL(µ0)(0, µ0) = 1

2

λ
L(µ0)
1 otherwise.

A natural concern about this characterization is that Proposition 2.4.2 proves that

quasi-Markov perfection is only a necessary, not necessarily sufficient, condition of purifi-

ability – are the equilibria giving these payoffs actually purifiable? I assuage this concern

in Appendix 2.3.2, proving that there is a purifiable equilibrium with the minimum and

maximum payoffs given in Proposition 2.5.1 for almost all priors.22

In the complete information case (µ0 = 0), all histories are in the same quasi-Markov

state. The BMM result applies here and shows that the only purifiable equilibrium outcome

is the repeated static Nash equilibrium with payoff 1.

Going from zero to a slightly positive prior, there is no discontinuity for the min-

imum equilibrium payoff, but there is for the maximum, which immediately jumps to the

Stackelberg payoff of 2. For 0 < µ0 ≤ 1
9 , the minimum payoff is given by stationary equi-

libria where the long-run player plays C with some probability α1 ∈ [0, 1
2).23 The lower α1

is, the more the short-run player prefers d conditional on the normal type θ0; however, a

21Recall that real numbers (in [0, 1]) and history distributions (in Φ) are used interchangeably. I use
q(φ, µ0) only when φ ∈ [0, 1] and q(φ, µ0) ∈ [0, 1], except to show contradictions in the proof where useful.

22The Lebesgue measure zero set of priors ignored in Appendix 2.3.2 correspond to the priors with dis-
continuities in Figure 2.5.2.

23Recall that quasi-Markov perfection means player 1 cannot condition on anything except the calendar
date.
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smaller α1 also implies a higher belief at history C the next period. The minimum payoff

stationary equilibrium has the long-run player mixing such that these countervailing effects

balance and the short-run player is indifferent upon observing history C. Since the short-run

player is indifferent at history C (where she has positive belief on the commitment type),

she strictly prefers d at history D (when the belief is zero and the long-run player still plays

the same mixed action). Since the long-run player is always indifferent, the long-run player’s

payoff can be calculated with the payoff of always playing D (a best response), which yields

flow payoff 1 every period. To keep the long-run player indifferent, the short-run player

plays α2(D) = 0 and mixes with positive probability α2(C) at history C.

The maximum payoff stationary equilibrium is qualitatively similar, with the long-

run player mixing with probability α1 = 1
2 so that the short-run player is indifferent at

history D, while strictly preferring c at history C. At history D, the short-run player mixes

so that the long-run player is indifferent. The best response strategy of always playing C

yields a flow payoff of 2 every period.

For prior µ0 > 1
9 , the payoff 1 stationary equilibria are no longer sustainable. If

player 1 mixes today (period t) with probability α1(t) such that player 2 is indifferent at

history C with belief µ(t, C), the prior is high enough that the belief tomorrow µ(t+1, C) >

µ(t, C) must be higher. Keeping tomorrow’s player 2 indifferent at history C requires player

1 mix at a lower probability α1(t + 1) < α1(t), so the equilibrium cannot be stationary.

Instead, the minimum quasi-Markov equilibrium payoff for 1
9 < µ0 ≤ 1

2 is given by a non-

stationary equilibrium where player 1 mixes in periodic cycles, starting with some high

probability and gradually playing C more rarely. At the end of the cycle, the belief exceeds

1
2 and player 2 strictly prefers c, at which point player 1 plays C with high probability,

yielding a low belief next period and restarting the cycle. As the prior increases, the belief

cycle must become shorter, reaching a high belief more quickly and thus yielding a higher

equilibrium payoff. The discontinuities in the graph are a result of the steps in the cycle

being eliminated by a higher prior. By contrast, the high payoff stationary equilibrium

survives because the short-run player is indifferent at history D, where the belief (zero) is
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unaffected by the prior.

At µ0 > 1
2 , the minimum payoff is the same (in terms of strategies) stationary

equilibrium that gave the maximum payoff for µ0 < 1
2 . There also exists a non-stationary

equilibrium where the short-run player is exploited every other period upon observing his-

tory C. The long-run player always plays D in even periods and C in odd periods. The

odd-period short-run players clearly have c as a strict best response. The even-period

short-run players also have c as a strict best response, because the prior is so high that

c gives a higher payoff despite the long-run player playing D with certainty and the fact

that the history is uninformative (µ(C) = µ0). This equilibrium gives the maximum payoff

(approaching 2.5 for δ close to one) for these high priors.

2.5.1.2 Algorithm

To carry out the algorithm of Proposition 2.3.4, the starting point is the set of

feasible HBPs F†, which is the subset of W where the payoff functions have values in the

set of feasible payoffs F † ≡ [0, 3]. This set is drawn in Figure 2.5.3 as a “cube.”24 The

algorithm involves applying the B(·) operator to all the points in this 3-dimensional set,

and then each subsequent set B(F†),B2(F†), ....

Fortunately, it is possible to ignore almost all of the points in F† because they

generate the empty set. In fact, only the gray points in Figure 2.5.3 generate non-empty

sets. Note the “vertical” (coming out of the page) plane I ≡ {(φ, µ, γ) : γ(C) = γ(D)+ 1−δ
δ },

which I call the indifference plane, consisting of all points where the long-run player is

indifferent between C and D.

To the“northwest”of the indifference plane, player 1 strictly prefers D. This includes

the 45◦ plane (a line in payoff function space) outlined by the diagonal dashed lines in Figure

2.5.3, where there is no intertemporal incentive because the continuation payoffs for both

24Though it is drawn as a cube to make the diagrams easier to read, the φ dimension is not comparable
in any direct way to the payoff function dimensions, so there is no sense in which the cube has the same
“length” in this direction as in the other two.
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Figure 2.5.3: The “cube” is the set F† of feasible HBPs, with the history distribution dimen-
sion pointing out of the page. The gray set is the set of “useful” points F̄, which generate
non-empty sets.
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actions are equal. Consider some HBP w̃ ≡ (φ̃, γ̃) in this northwest set. Since she strictly

prefers D under w̃, any enforceable HBA (φ, α) clearly must have player 1 always playing

D: α1 = 0. Since player 1’s action is the same as the public signal, inducibility requires that

φ̃ = α1 = 0. Hence, if w̃ is not on the “floor” of the northwest (i.e. φ̃ > 0), there does not

exist an HBA enforced by w̃, and so there are no HBPs decomposed by w̃: B({w̃}) = ∅.

This is why I only keep track HBPs in the northwest above the floor as the algorithm is

carried out.

Exactly the opposite occurs in the “southeast” of the indifference plane, where the

long-run player strictly prefers C. Letting w̃ ≡ (φ̃, γ̃) in the southeast be given, any en-

forceable HBA (φ, α) must have player 1 always playing C: α1 = 1. Inducibility requires

φ̃ = α1 = 1, and so unless w̃ is on the “ceiling” of the southeast, there is no HBA enforced

by w̃ and B({w̃}) = ∅. Thus, I only keep track of the ceiling in the southeast.

The indifference plane itself is special because every point (φ̃, γ̃) in it generates non-

empty sets. Inducibility requires φ̃ = α1 for an enforceable HBA (φ, α), but since player 1 is

indifferent, I can always choose α1 to satisfy this without violating incentive compatibility.

To summarize, the set of“useless points”F∅ ≡ {w ∈ F† : B({w}) = ∅}— consisting

of everything above the floor of the northwest and below the ceiling of the southeast — can

be safely ignored. Denote the remainder of the feasible space F̄ ≡ F†\F∅, the gray space in

Figure 2.5.3, called the “useful points.”

I construct analogues of the tools of Section 2.3 that deal only with the useful points.

Define the set D̄ ≡ D∩ F̄, it is easy to show that V(D̄) = V(D) = E because any equilibrium

σ̃ of the γ-antegame for some useless HBP (φ, µ, γ) ∈ F∅ would clearly fail the requirement

that Pσ̃(h|θ) = φ(h|θ) in (2.3.6), so V({(φ, µ, γ)}) = ∅. Define the analogous operator

B̄(W ) ≡ B(W ) ∩ F̄ which ignores the useless points generated by W . It is easy to show

that
⋂
m B̄m(F̄) = D̄, which simplifies executing Proposition 2.3.4’s algorithm.

What can the useful points actually generate? Figure 2.5.4 shows the set of generated

points for a number of example HBPs w̃1, ..., w̃10 all located on the indifference plane (and

therefore useful). In the following discussion, I call these the “enforcing points” w̃j ≡
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Figure 2.5.4: Ten example points w̃1, ..., w̃10 on the indifference plane and the sets of points
B({w̃1}), ...,B({w̃10}) they each generate. The useful points B̄({w̃1}), ...,B({w̃10}) gener-
ated by each respectively is bolded. All points at the same elevation generate qualitatively
similar sets, so the examples are purposely selected at distinct elevations.
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(φ̃j , µ̃j , γ̃j), referring to φ̃j as the “enforcing history distribution,” and so on. For an HBA

(φj , µj , αj) enforced by w̃j , I refer to φj as the “current history distribution,” and so on.

First, consider w̃1 ≡ (φ̃, γ̃) on the floor.25 I start by finding all HBAs x ≡ (φ1, µ1, α1)

enforced by w̃. Inducibility requires that player 1 always play D (i.e., α1
1 = 0), so if player

2 knows she faces the normal type, she will strictly prefer d. This is the case at the history

D, so α1
2(D) = 0. She also strictly prefers d at history C so long as the belief µ1(C) is low

enough, which is true so long as the probability φ1 of C for the normal type is high enough.

The proof shows this threshold is µ0

1−µ0 . Below the threshold (φ1 < µ0

1−µ0 ), the belief on

the commitment type is so high that she strictly prefers c. When φ1 = µ0

1−µ0 , player 2 is

indifferent and may choose any action α1
2(C) ∈ [0, 1].

Having found the HBAs x enforced by w̃, I can find the set of HBPs w ≡ (φ1, µ1, γ1)

decomposed by x and w̃. Since α2(D) = 0, it is known that γ1(D) = (1 − δ)u1(d,D) +

δγ̃1(D) = (1− δ) + δγ̃1(D). For φ > µ0

1−µ0 , I have γ1(C) = γ1(D) because player 2 strictly

prefers d at history C, which means w is on the 45◦ plane in the northwest (above the

floor). For φ1 < µ0

1−µ0 , I have γ1(C) = (1− δ)u1(d,C) + δγ̃1(D) = 3(1− δ) + δγ̃1(D), so w

is in the southeast (below the ceiling) because γ1(C) > γ1(D) + 1−δ
δ . For φ1 = µ0

1−µ0 , γ1(C)

can be anywhere in between — including the indifference plane. This is crucial because the

point generated on the indifference plane is the only useful point of B({w̃1}), so it is only

necessary to keep track of this one for the next iteration of the algorithm.

The HBPs w̃2, w̃3, w̃4 have positive but still low enforcing history distributions:

0 < φ̃2 < φ̃3 < φ̃4. Let (φj , µj , αj) be an HBA enforced by one of these enforcing points w̃j

such that the (current) player 2 is indifferent. The set of generated points for each w̃j is

qualitatively similar but “shifted up” because player 1 is playing C with increasing (current)

probability αj , so belief µj at which player 2 is indifferent is lower and hence the current

history distribution φj is higher. Given enforcing distribution φ̃, the proof shows that this

25Figure 2.5.4 shows it on the indifference plane instead of the northwest, but the set of generated points
is the same at points directly to the west, i.e. points with the same γ̃1(D) coordinate. The reason is that
only the continuation payoff for D is all that matters since φ̃ = 0 implies player 1 always plays D.
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shifting up is described by the function φj = q(φ̃j) = µ0/(1−µ0)

1−2φ̃j
(this is described in greater

detail in the discussion of Figure 2.5.5).

Consider w̃5 in Figure 2.5.4. At a high enough enforcing distribution φ̃5 = q−1(1),

player 2 is indifferent at current distribution φ = 1, which is the lowest possible posterior

µ(C) = µ0. Note that because the “lap” of the “wall-sit” figure intersects with the ceiling

of the southeast, there is a line segment of multiple useful points in the decomposed set,

bolded in the figure. For all enforcing distributions strictly between φ̃5 and 1
2 , the set of

generated points is simply a vertical line in the southeast, for example w̃6 and B({w̃6}).

Since the generated points all lie in the southeast, the only useful one is on the ceiling.

The w̃7 = (φ̃7, γ̃7) enforcing HBP has φ̃7 = 1
2 , which means that player 2 is indif-

ferent at history D when she knows she is facing the normal type and strictly prefers c

when she has positive belief on the commitment type (at history C). Thus, α7
2(C) = 1 so

γ7(C) = 3(1 − δ) + δγ̃7(D). On the other hand, I can choose any action α7
2(D) ∈ [0, 1]

and so can decompose any γ7(D) ∈ [(1 − δ) + δγ̃7(D), γ7(D)]. This yields the rectangle

depicted in Figure 2.5.4, whose intersection with F̄ is bolded. For enforcing distributions

strictly greater than 1
2 (e.g. w̃8, w̃9, w̃10), player 2 strictly prefers c at both histories, so for

example γ8(C) = γ8(D) = 3(1− δ) + δγ̃8(D), generating a vertical line on the 45◦plane in

the northwest.26

I summarize the set of useful points generated by different HBPs with Figure 2.5.5.

Roughly speaking, Figure 2.5.5 “collapses” the 3-dimensional Figure 2.5.4 into two dimen-

sions to convey the mapping from the elevation of an enforcing point to that of the useful

generated points. Given an enforcing HBP (φ̃, µ̃, γ̃), the correspondence R(φ̃, µ̃, γ̃) ≡ {φ :

(φ, µ, γ) ∈ B̄({(φ̃, µ̃, γ̃)})} gives the set of history distributions φ for which a useful point

generated. In other words, the horizontal axis is the “elevation” of the enforcing point in

Figure 2.5.4, and the vertical axis is the elevation of the generated useful point. The cor-

respondence is labeled by line style to indicate the payoffs that are decomposed at each

26For w̃10, the analogue of Footnote 25 holds. Though w̃10 is on the indifference plane, any points directly
south (with the same γ̃10(C) coordinate) generate exactly the same set.
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Figure 2.5.5: Given an enforcing HBP (φ̃, γ̃) with history distribution φ̃ (horizontal axis),
I plot the set of history distributions φ (vertical axis) for which a point (φ, γ) is generated
by w̃. The black line is the 45◦ line. The different line styles describe the generated payoff
function γ.

elevation. Note that R crosses the 45◦ line at three points: φ̂1, φ̂2 and 1
2 . These indicate the

three stationary equilibria, since stationary equilibria correspond to self-generating HBPs

(recall Proposition 2.3.6). There are two “low” payoff and one “high” payoff stationary

equilibria.

Figure 2.5.6 shows the effect of the prior increasing to 1
9 and just above. Note

that when the prior is 1
9 , the two stationary low payoff equilibria seen in Figure 2.5.5 have

“merged” into one. When the prior increases above 1
9 , the stationary equilibrium disappears.

Instead, the lowest payoff equilibrium is non-stationary, given by a “cycle” of self-generating

HBPs depicted by the arrows. Note that generation “goes backwards in time,” so the belief

at history C follows a 5 period cycle, starting from a low value, gradually increasing until

the belief is 1, and then starting over again at the low value.

As the prior increases, the number of low payoff steps in the cycle necessarily de-

creases as the solid gray curve rises, as depicted in 2.5.7. When µ0 = 1
2 , the solid gray curve

has been reduced to a single point at the upper right corner, because q(0) = 1. This allows
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Figure 2.5.6: Left, R(φ̃, µ̃, γ̃) is plotted for µ0 = 1
9 , where there is just a single low payoff

stationary equilibrium. Right, R(φ̃, µ̃, γ̃) is plotted for µ0 = 0.15, where the minimum
equilibrium payoff is given by a non-stationary equilibrium traced out.

Figure 2.5.7: Left, the graph of R for µ0 = 0.45, with the minimum payoff non-stationary
equilibrium traced out. Right, the graph of R for µ0 = 0.55, with the maximum payoff non-
stationary equilibrium traced out. In both cases, the stationary equilibrium with payoff
2 is depicted, which corresponds to the maximum equilibrium payoff on the left and the
minimum on the right.
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just a two period cycle, alternating between the low payoff and the very high payoff. For

µ0 > 1
2 , the solid gray curve disappears completely. This allows a higher equilibrium payoff

than 2: a cycle alternating between a high payoff of 2 (playing C after player 2 plays c)

and very high payoff of 3 (playing D after player 2 plays c). In this case, the lowest payoff

equilibrium is the “high” payoff stationary one.

2.5.1.3 Non-Quasi-Markov Equilibria

How restrictive is the assumption of quasi-Markov perfection, and what are equi-

libria failing this refinement like? Though I do not attempt a general answer because (as

discussed at the beginning of Section 2.4) solving for the full set of equilibrium payoffs is

very complicated, I construct a class of non-quasi-Markov equilibria that expand the set of

equilibrium payoffs for low priors. For all µ0 ∈ [0, 1
3 ], there exist stationary equilibria that

give every payoff in the interval [1, 2]. In the complete information case (µ0 = 0), there are

such equilibria giving player 1 the “high” payoff of 2 where BMM show the only purifiable

payoff is 1. For priors µ0 ∈ (1
9 ,

1
3 ], there are equilibria with payoff 1 that survive at higher

priors.

I now construct these equilibria. For brevity, define φ∗ ≡ µ0

1−µ0 . Define player 1’s

strategy as σ1(∅a2) = 1
2(1− φ∗), σ1(Da2) = 1

2 and

σ1(Ca2) =
1− 3φ∗

2(1− φ∗)

for both a2 ∈ {c, d}. It can be checked that this strategy makes player 2 indifferent

at all histories ∅, C,D (at all periods). To keep player 1 indifferent, it must be that

σt2(C) = σt2(D) + 1
2δ , but otherwise can choose any σt2(C) =

[
1
2δ , 1

]
. I am free to choose any

σ0
2(∅) without affecting player 1’s incentives. The equilibrium payoff can be calculated by

evaluating the strategy of playing D every period (a best response):

(1− δ)

[
σ2(∅)u1(c, C) + (1− σ2(∅))u1(d,C)
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+

∞∑
t=1

δt[σ2(C)u1(c, C) + (1− σ2(C))u1(d,C)]

]

= (1− δ)

[
2σ2(∅) +

∞∑
t=1

2δtσ2(C)

]
= 2(1− δ)σ2(∅) + 2δσ2(C).

I can then choose any σ2(∅) ∈ [0, 1], σ2(C) ∈
[

1
2δ , 1

]
to get an equilibrium with a payoff

between 1 and 2.

These equilibria feature relatively complicated and arbitrary mixing by both players

in order to keep each other indifferent. At µ0 = 0, BMM show that the intuition that

such behavior is unrealistic is confirmed by the fact that these equilibria are not purifiable,

and that the only purifiable equilibrium is the repeated one-shot equilibrium. Requiring

quasi-Markov perfection rules out similarly unrealistic equilibria at positive priors.

2.5.2 Product Choice Game with Long Records (Stationary)

The analysis of the Section 2.5.1 shows that with 1-period memory, a focus on sta-

tionary equilibria is restrictive. Nevertheless, as K increases, so do the dimensions of the

HBP space. Given the complexity of just 1-period memory, studying non-stationary equi-

libria for long memory may require numerical methods similar to the techniques developed

by Judd, Yeltekin, and Conklin (2003) for the APS environment.

With that in mind, this section studies stationary, purifiable equilibrium payoffs

for long records in the product choice game. Taking advantage of the simplicity of the

stationary environment, I also relax the assumption of constant cost of effort by player 1

with respect to player 2’s action, using the more general stage game in Figure 2.5.8.

I first start with a relatively straightforward result that the continuation payoff

at the clean history is the Stackelberg payoff (2) for long memory, similar to the bound

of Theorem 2 in Liu and Skrzypacz (2014b).27 Recall that Proposition 2.3.6 shows any

27Liu and Skrzypacz’s result for their continuous product choice game also applies to arbitrary priors on
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Figure 2.5.8: The product choice game, with player 1 payoffs on top and player 2 payoffs
on bottom, where λ > 0.

stationary equilibrium corresponds to a self-generating HBP (φ, µ, γ). The intuition is as

follows. A continuation payoff γ(IK) < 2 requires that player 2 sometimes plays d at the

clean history. This requires both that the belief µ(CK) at the clean history be low (so φ(IK)

must be sufficiently high), and that player 1’s strategy at the clean history CK must play

D sufficiently frequently (so φ(I0) must be also be sufficiently large). Playing D frequently

at the clean history IK means the “yesterday-dirty” histories I0 must be reached sufficiently

frequently. Thus, the probability mass at φ(IK) must be high at the same time that enough

mass is“flowing out to I0”to make player 2 willing to play d at IK . To keep the clean history

probability φ(IK) sufficiently high requires that enough mass is flowing in from IK−1 (the

history one period away from being clean), which also requires enough from IK−2, and so on.

When K is large, this “stretches” the probability distribution φ(·|θ0) over all the histories

I0, I1, ..., IK−1, until there is a contradiction because the sum of the probabilities must be

greater than 1.

Proposition 2.5.2. Suppose µ0 > 0. There exists K∗(µ0) such that for all K > K∗,

V (CK) ≥ 2.

Let e denote the minimum equilibrium payoff. This result shows that for large K,

player 1 gets close to the Stackelberg payoff when sufficiently patient, i.e. e is bounded by

the calendar date in their model, while I assume the improper uniform prior.
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(1 − δ) · 0 + δKV (CK), following the standard Fudenberg and Levine (1989) argument of

bounding the payoff of deviating to the commitment action C. Thus, limδ→1 limK→∞ e ≥ 2.

However, the order of limits is critical; reversing them gives this lower bound no bite:

limK→∞ limδ→1 e ≥ 0. This makes the welfare impact (on player 1) of increasing memory

unclear. Longer memory ensures that the payoff of the clean history is high, but it also

makes it harder to clean the history.

The following result shows that under purifiability, there is no tradeoff: as long as

the discount factor is above a threshold dependent only on the stage game payoffs (not the

prior), player 1 gets exactly the Stackelberg payoff when memory is sufficiently long.

Proposition 2.5.3. Suppose µ0 > 0 and δ > max{λ,1}
1+max{λ,1} . There exists K∗(µ0) such that

for all K > K∗, the player 1 payoff is exactly 2 for any stationary, purifiable PBE.

Note that if δ < max{λ,1}
1+max{λ,1} , then after player 2 plays c, player 1’s impatience makes

it infeasible for future incentives to outweigh the myopic incentive of playing D. For such

low δ, for all priors below a threshold (dependent only on stage payoffs) the only equilibrium

outcome is the repeated static Nash (even without purifiability), as was the case in (2.5.2).

I discuss the intuition of the proof for λ = 1, referring the interested reader to the

proof for the more complicated general case.28 This is simpler because λ = 1 means c and

d are incentive-equivalent for player 1, so player 1 does not condition on player 2’s action.

First, it must be that C is a best response at every history or the continuation payoff of I0

(where D has just been played) is 1. To see why, if D is a strict best response at some Ik,

then player 2 will always play d at history Ik, which will be followed by the continuation

payoff V (I0) because player 1 plays D. This continuation payoff V (Ik) = (1− δ) + δV (I0)

cannot be better than V (I0), so there is no intertemporal incentive to play C at history

Ik−1. By backward induction, D is a best response at I0 and so V (I0) = 1 (the minmax).

28λ > 1 means the short-run incentive to exploit is greater when the short-run player is more trusting. Liu
and Skrzypacz (2014b) make the analogous assumption in their continuous stage game to find reputation
bubble behavior, but the proof of Proposition 2.5.3 indicates this behavior does not exist in the game studied
here; specifically, the strict preference to “prick” the bubble at the clean history is ruled out — contrast Case
2 on page 177 with Lemma 6 and Corollary 1 of Liu and Skrzypacz.
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The next result is that for high enough K, the continuation payoff for the clean

history is exactly V (IK) = 2. If V (IK) < 2, then player 2 would have to play d with positive

probability at the clean history (α2(IK) < 1), which means player 1 would sometimes have

to play D with at least probability 1
2 . Recall from Proposition 2.3.6 there exists a self-

generating HBP w ≡ (φ, µ, γ). The fact that d is a best response at IK implies that

µ(IK) ≤ 1
2 , which requires the normal player spend sufficient time at IK , i.e. φ(IK |θ0) ≥

1−µ0
µ0

. However, playing D with at least probability 1
2 means player 1 is also spending

time at the freshly dirty history I0. The long-run player must also spend time at history

classes I1, ..., IK−1 “cleaning” the history to arrive at IK frequently enough. When memory

is long, satisfying all these requirements becomes impossible as the history distribution gets

“stretched out,” giving a contradiction.

If player 1 strictly prefers C at the clean history CK , then she also prefers it at

initial history CK−1, so player 2 plays c at CK−1 and by backward induction the equilibrium

payoff is 2. If player 1 strictly preferred D at the clean history, she would also prefer it at

IK−1, and so by the backward induction argument given above, the freshly dirty history

continuation payoff is V (I0) = 1, which would make the long-run player strictly prefer d at

CK , a contradiction.

Supposing that player 1 is indifferent at CK , it must be that for each k ∈ {1, ...,K−

1}, the continuation payoffs satisfy V (Ik) ≥ V (I0) + 1−δ
δ = V (IK) = 2 because C must be a

best response. This similarly implies that V (Ck) ≥ 2 for each k ∈ {1, ...,K−1}. Because the

incentive to play C cannot be less, purifiability requires that the long-run player play C at

least as much in the initial histories ∅, C1, ..., CK−1 as in the dirty histories I0, I1, ..., IK−1.

The short-run player must therefore play c at least as much as well. However, because the

belief at a clean initial history is strictly positive (at least µ0), the incentive to play c is

actually strictly greater. Then if player 2 is indifferent at dirty history Ik, they must always

play c at clean history Ck. It must be that player 2 mixes at the freshly dirty history I0;

always playing c at I0 would make player 1 strictly prefer D at the clean history CK , and

always playing d would make player 1 strictly prefer C at the clean history — either is a

85



contradiction. Since player 2 mixes at I0, she must strictly prefer c at the initial history

∅. Thus, the equilibrium payoff is V (∅) = (1− δ)u1(c, C) + δV (I1) ≥ 2, which holds with

equality since a stationary equilibrium with payoff greater than 2 is impossible.

2.6 Conclusion

This chapter lays out two theoretical tools for the study of bounded memory rep-

utation games with sequential-move stage games where the short-run player moves first.

Extending the self-generation methods of APS to bounded memory reputation, I derive

a recursive characterization of the set of equilibrium payoffs, which allows study of non-

stationary equilibria and gives a simple interpretation for stationary equilibria as self-

generating “points.” I also define a simplifying equilibrium refinement, quasi-Markov perfec-

tion, and extend the results of BMM to show that this is a necessary condition of purifiable

equilibria.

These tools are applied to a product choice game example with a “honest” Stackel-

berg commitment type, where only the most recent long-run player actions are observed.

In the 1-memory case, I obtain a complete characterization of the minimum and maximum

quasi-Markov equilibrium payoffs for all priors and almost all discount factors, giving insight

into how restrictive the assumption of stationarity is. I also show that for long memory,

even when not especially patient, the long-run player obtains exactly the Stackelberg payoff

in all purifiable stationary equilibria even for very low priors. Thus, for bounded memory in

this environment, long memory is important for guaranteeing payoffs, rather than patience.

Although the recursive framework is specified for the applications examined in this

chapter, it is worth noting that it is straightforward to extend it to simultaneous move stage

games, imperfect monitoring of player 2’s action by player 1, and even multiple long-run

players who have bounded memory (with beliefs on each other’s types). An application of

the latter case might be firms whose employees and managers turn over at regular intervals,

giving them bounded institutional memory. An interesting direction for future research is

the development of a computational implementation of the algorithm presented here — as

86



was done by Judd, Yeltekin, and Conklin (2003) for the original complete information, full

memory APS algorithm — which would allow study of games too complicated for analytical

solutions.
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Chapter 3

Drug Wars and Government Policy

3.1 Introduction

On December 1, 2006, Felipe Calderon took office as president of Mexico. Within

two weeks, he deployed 6500 federal troops to combat drug trafficking organizations (DTOs)

in his home state of Michoacán, which had experienced a wave of execution style killings

(Grillo, 2006). This marked the beginning of the massive crackdown on DTOs that would

become a hallmark of his administration, involving 45,000 troops by the time he left office

in 2012 (Dell, 2011). Before Calderon’s presidency, the Mexican National Human Rights

Commission (Comisión Nacional de los Derechos Humanos) reports a total of 8901 drug-

related homicides from 2001 to 2006, an average of 1484 per year . As the government

ramped up its war on the cartels over subsequent years, drug war violence exploded, reaching

over 10,000 per year by 2010. By the end of Calderon’s presidency in 2012, at least 60,000

people were killed, though some reports suggest the number is much higher (Molzahn,

Rodriguez, and Shirk, 2013).

Although it is fairly straightforward to see why government-vs-cartel violence would

increase following a crackdown — a crackdown by definition increases government interac-

tion with DTOs — it is less obvious why government intervention would increase violence

between the cartels. In fact, the vast majority of drug-related homicides are due to violence

between the cartels. The most reliable data on drug-related homicides come from Mexico’s

National Security Council (Consejo de Seguridad Nacional, CSN), who publicly reported

drug-related homicides in Mexico from December 2006 (when the crackdown began) un-

til September 2011. In CSN’s data, 89.3% of casualties are “targeted executions linked to

drug-trafficking operations” (Rios, 2013).
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This chapter develops a model that offers a theoretical explanation for why DTOs

engage in violence with each other, and why violence increased during the Calderon’s crack-

down between 2006 to 2012 but not during previous law enforcement operations against

DTOs. In the model, the threat of violence is used to enforce collusion between the drug

cartels in order to increase profits. Since cartels are not able to observe defection, but

instead only observe a noisy signal of actions, punishments and therefore violence occur in

equilibrium. The government has the power to arrest traffickers, which makes drug traffick-

ing more expensive. If the government arrests traffickers only when cartels are punishing

each other, punishments become harsher and therefore allow more collusive behavior with

less frequent violence. One can think of this policy as “corrupt” because it effectively helps

traffickers cooperate and maximizes profits, which could be desirable if the government takes

some fixed percentage of profits as a bribe. This policy also minimizes violence. If instead

the government cracks down indiscriminately, always arresting traffickers, this cooperative

incentive goes away, and so long as the government’s crackdown is sufficiently bounded

(by its capacity to arrest), violence increases even though drug trafficking has become less

profitable.

The model is based on the Green and Porter (1984) model of collusion under imper-

fect monitoring. Two firms play a repeated modified Cournot duopoly game, where they

choose both a quantity of drug traffickers to hire and whether or not to attack each other,

thereby killing some of the other firm’s traffickers. Cartels find it profitable to attack in

the short-run because killing opposing traffickers reduces the quantity of competing drugs

delivered to market, thereby raising the price and the firm’s profits. It is possible to achieve

higher payoffs by enforcing collusive behavior through the threat of punishments, which

include violence. However, since quantities are only imperfectly monitored, punishments

and violence occur on the equilibrium path. The firms play the optimal equilibrium among

a class of equilibria similar to those constructed by Green and Porter. If the government

arrests traffickers (which is modeled as having the same effect on profits as killing them,

except that cartels do not have to hire assassins) during punishments, then punishments

become harsher and are able to enforce smaller quantities and higher profits. This allows
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punishments to be triggered less frequently, resulting in less violence. By contrast, if the

government arrests every period no matter the state, the incentive to cooperate is reduced

and so punishments are triggered more frequently.

The most technically difficult task here is characterizing the optimal equilibrium. I

restrict attention to a class of equilibria I call “Green-Porter equilibria” (GPE) because of

their similarity to the equilibria constructed in Green and Porter (1984). A GPE is in one of

two states: the reward state or the punishment state. The reward state has firms producing

smaller quantities than the static equilibrium, and transitions to the punishment state upon

observation of either killing (which is perfectly monitored) or low prices. In the punishment

state, firms play the static Nash equilibrium, which involves killing and Cournot quantities.1

The firms observe a public correlation device and randomly choose to return to the reward

state after some given realizations of the device, rather than the price, such that there are

no intertemporal incentives and the static Nash equilibrium is incentive compatible. I use a

simplified version of Judd, Yeltekin, and Conklin’s (2003) implementation of the recursive

Abreu, Pearce, and Stacchetti (1990) method to numerically characterize these optimal

equilibria.

The fact that an explosion in violence occurred just after Calderon’s announcement

and grew worse as he pursued this policy raises the question of whether the crackdown

caused the increase in violence, or if the crackdown simply pre-empted an inflammation

of an existing conflict between cartels. Indeed, the latter case suggests that the violence

might have been even worse in the absence of this policy. However, empirical evidence

indicates that the Calderon crackdown did actually cause increases in violence. Looking at

municipalities holding mayoral elections in 2007 and 2008 where the margin of victory was

within 5%, Dell (2011) finds that municipalities which elected a candidate from Calderon’s

conservative PAN party were more likely to subsequently experience drug violence than

those electing non-PAN candidates. Since the margin of victory is so close, Dell argues the

1To clarify, these are Cournot quantities of drugs delivered to market, equal to the number of traffickers
who survive both attacks from the other cartel and arrests from the government. This requires firms to hire
a larger number of traffickers than in the Cournot game without attacks or arrests.
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outcomes of these elections provide exogenous variation in law enforcement activity, since

PAN mayors were politically aligned with PAN President Calderon.

One may be tempted to think that crackdowns would always spark conflict through

the “hydra effect” — that removing the head of a cartel opens up competition between his

lieutenants — yet this does not always appear to be the case. Rios (2014) points to law

enforcement operations against DTOs before 2000, when Mexico was a one-party state ruled

by the liberal PRI party, “which resulted not in violent confrontations, but in the main-

tenance of a highly disciplined group of oligopolistic criminal organizations that operated

without fighting each other.” When the leader of the then most-powerful Guadalajara car-

tel, Felix Gallardo, was arrested in 1989 following the capture, torture, and murder of DEA

agent Enrique Camarena, his cartel split peacefully into some of the forerunners of today’s

major cartels, dividing territories as reportedly agreed upon at a conference in Acapulco

(Rios, 2014). Rios particularly points to the end of one-party-rule in 2000 as preventing

the government from coordinating in a way that could enforce cooperation between car-

tels, as PAN and PRI controlled different parts of the Mexican government. By contrast,

PRI-controlled Mexico featured explicit corruption agreements between the government and

cartels, requiring that cartels only traffic within their territories, not kill each other on the

streets, and that they not sell drugs to Mexicans (instead only transporting them to the

US). Rios shows that as PRI lost its grip on the Mexican government, markets for con-

sumer cocaine within Mexico began to open up, suggesting a collapse of these agreements.

Although the model presented here cannot, at least in its present simple form, capture all

of these rich dynamics, it provides a starting point for analyzing how some government

enforcement operations can make violence less prevalent, while others can lead to more war.

3.2 Model

My model of the drug market is based on the repeated Cournot game with imperfect

monitoring of Green and Porter (1984). The stage game is modified by giving firms the

option to attack each other at a cost, thereby removing competing drugs from the market.
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These attacks are what I refer to as “violence.”2 This is individually profitable for the firm

because it raises the price and therefore the firm’s own revenue. I also allow an exogenous

government to arrest traffickers, which similarly removes drugs from the market.

3.2.1 Stage Game

There are two firms, 1 and 2. The stage game is as follows. Each firm i simulta-

neously chooses to hire some quantity qi ∈ Q of traffickers, where Q is a fine grid on an

interval [0, Q], and whether to attack si ∈ {0, 1}, where si = 1 indicates attacking and

si = 0 indicates not. I assume that Q > 1
3(r− c) so that this upper bound is never binding.

Let Ai ≡ Q×{0, 1} denote the action space of firm i, A ≡ A1×A2 the set of action profiles,

and ∆X the set of probability distributions over X. The exogenous government chooses to

arrest some number g ∈ G traffickers of each cartel, where G is a fine grid on an interval

[0, G].

Firm i pays some constant marginal cost c to hire each unit of traffickers, who each

carry 1 unit of drugs. If firm i attacks (i.e., si = 1), then κ traffickers from firm −i are killed

and do not deliver their drugs to market, and firm i pays some cost η to hire the assassins.

If the government arrests g traffickers, those traffickers also do not deliver their drugs. Let

q̂i = max{qi − κs−i − g, 0} be the quantity of drugs firm i delivers to market. The firms

face a demand curve

p(a) = r − (q̂1(a) + q̂2(a))

where a ≡ ((qi, q−i), (si, s−i)) is a strategy profile and r > 0 is some constant. Firms receive

expected profit3

ui(a) = p(a)q̂i(a)− cqi − ηsi.

The stage game profits are the revenues from drugs delivered minus the cost of hiring all

2Violence is defined formally in (3.4.2).
3I use the term expected profit because I later introduce imperfect monitoring of the choice of quantities

qi, q−i by making the publicly observable price p subject to some mean-preserving shocks. Since firms are
risk neutral, this has no effect on the one-shot game.
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traffickers (including those arrested or killed) and the cost of assassinations:

ui(a) = p(a)q̂i(a)− cqi − ηsi

It is straightforward to show that the maximum feasible payoff is obtained by the firms not

attacking (si = 0) and each choosing quantity qi ≡ qm = 1
4(r − c), which I refer to the

“monopoly quantity.”4 For simplicity, I assume that the cost η of attacking is sufficiently

small such that attacking is a best response so long as firm i delivers at least the monopoly

quantity:

η < κqm. (3.2.1)

I also assume that feasible killings are bounded by

κ < 1
2(r − c), (3.2.2)

since otherwise a profitable one-shot equilibrium with violence is impossible.

3.2.2 Repeated Game

I assume that the firms play the infinitely repeated stage game, maximizing their

discounted average payoffs given discount factor δ ∈ (0, 1). Attacks (s1, s2) are publicly

observed, but the quantities (q1, q2) are not. Instead they observe the price p(θ, a) = θp(a)

subject to some shock θ distributed log-normally, with mean one and variance exp(ζ2)− 1,

according to cdf

F (θ) = Φ

(
log θ + 1

2ζ
2

ζ

)
and pdf

f(θ) =
1

θζ
√

2π
exp

(
−

(log θ + 1
2ζ

2)2

2ζ2

)
=

1

ζθ
φ

(
log θ + 1

2ζ
2

ζ

)
,

4This is, of course, obtainable by any action profile yielding total output 1
2
(r − c), but it will be more

natural to use per-firm values since I focus on symmetric equilibria.
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where Φ, φ are the cdf and pdf, respectively, of the standard normal distribution. Since

E[θ] = 1, it does not affect expected stage game payoffs. Players also observe a public

correlation device ω, which is uniformly distributed on [0, 1].

I restrict attention to a class of equilibria that I call Green-Porter equilibria (GPE),

based on the equilibria described in Green and Porter (1984). These are equilibria which

are either in a “reward” state or a “punishment” state. The government chooses a policy

(ḡ, g̃) ∈ G2, where ḡ is the number of arrests in the reward state and g̃ is the number of

arrests in the punishment state. A GPE begins in the reward state and remains there until

either a price below some threshold p̄ or an attack are observed. In the reward state, the

firms play an action profile ā, and the government plays ḡ. In the punishment state, the

firms play the static Nash equilibrium ã given the government’s policy g̃. The punishment

state ends when the public correlation device is realized below some threshold ω̃.

A GPE where punishment state has mean duration T = 1
ω̃ will be referred to as a T -

GPE. The arguments in Porter (1983) show that choosing T =∞ (permanent punishment)

yields the maximum possible payoff. Since never-ending war between drug traffickers may

not be realistic, perhaps due to renegotiation, I let T ∈ [1,∞] be exogenous and pick

T = 20 for the example presented in Section 3.4.5 I assume the firms play the optimal such

equilibrium.

Assumption 3. Given T ∈ [1,∞] and policy (ḡ, g̃), the firms play the T -GPE yielding the

maximum payoff.

3.3 Numerical Solution

This section presents a numerical method for characterizing the optimal T -GPE

when the grid of quantities Q is “sufficiently fine,” meaning that the results are not changed

by adding points to the grid. I define this formally as follows: a statement X is true when

5Choosing T =∞ does not qualitatively change the results presented in Section 3.4.
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Q is a sufficiently fine grid on [0, Q] if and only if there exists a finite subset F ⊂ [0, Q] such

that F ⊂ Q implies that X is true.

I first characterize the symmetric static Nash equilibria for all government policies

g ∈ G.

Lemma 3.3.1. Define q(λ) ≡ 1
2(r − c− λ), and implicitly define function Ľ(g, š) by

Ľ(g, š) = r − c− 2

√(
cκ

Ľ(g, š)

q(Ľ(g, š))
+ η

)
š+ cg. (3.3.1)

Ľ(g, š) is strictly decreasing in š.

Proposition 3.3.1. For a policy g ∈ G, let a symmetric Nash equilibrium of the one-shot

game be given. Let E[q∗i ], E[s∗i ] denote the expected actions in the equilibrium. When Q is

a sufficiently fine grid on [0, Q],

E[q∗i ] =

1
3(r − c) + ηs∗i + g g ≤ 1

c

[
1
9(r − c)2 + η − cκ

]
r − c− 2

√
(cκ+ η)E[s∗i ] + cg + ηE[s∗i ] + g otherwise

(3.3.2)

E[s∗i ] =



1 g ≤ 1
c

[
1
9(r − c)2 + η − cκ

]
ξ(g) 1

c

[
1
9(r − c)2 + η − cκ

]
< g ≤ 1

c

(
1
4

[
(r − c)− η

κ

]2 − (cκ+ η)
)

χ(g) 1
c

(
1
4

[
(r − c)− η

κ

]2 − (cκ+ η)
)
< g < 1

4c

[
(r − c)− η

κ

]2
0 otherwise,

(3.3.3)

where ξ(g) is the (unique) nonnegative solution to the cubic equation

0 = cκξ3 + 4(cκ+ η + cg)ξ2 + 4(cκ+ η + cg)ξ + 4(η + cg)− (r − c)2, (3.3.4)

and

χ(g) =


ξ(g) Ľ(g, 1) > B0

0 Ľ(g, 0) < B0

Ľ(g,š∗)

q(Ľ(g,š∗))
š∗ otherwise,

(3.3.5)

where B0 ≡ 1
2

[
(r − c−

√
(r − c)2 − 8η

]
and š∗ solves Ľ(g, š∗) = B0.
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Note that the symmetric equilibrium outcomes are unique (when Q is sufficiently

fine).

Remark 3.3.1. For g ≤ 1
c

[
1
9(r − c)2 + η − cκ

]
, the one-shot equilibrium is pure (when Q

is sufficiently fine). For g above this threshold, the one-shot equilibrium involves mixing

between“shutting down”(qi = 0, si = 0) and an action with generally positive values (q̆i, s̆i).

These mixing equilibria have value zero, since shutting down is a best response, even though

drugs and violence happen in equilibrium (in expectation).

Remark 3.3.2. Proposition 3.3.1 gives simple closed form solutions for the equilibrium out-

comes except for a range of policies g ∈
(

1
c

[
1
9(r − c)2 + η − cκ

]
, 1

4c

[
(r − c)− η

κ

]2)
, which

are defined implicitly. For these policies, I calculate E[s∗i ] numerically. Note that, although

ξ(g) has a closed form solution, I use the faster and simpler approach of using Newton’s

method. For χ(g), it is possible solve Ľ(g, š∗) = B0 through bisection, evaluating Ľ(g, š) at

each iteration by solving (3.3.1) via Newton’s method.

For the purposes of solving the optimal T -GPE and make use of existing results, it

will be useful to introduce a slightly more general equilibrium definition, the non-stationary

Green-Porter equilibrium (NGPE) (a T -NGPE is analogously defined). An T -NGPE is the

same as a T -GPE, except that the firms (but not the government) may condition on the

calendar date t during the reward state. Thus, the T -GPEs are a subset of the T -NGPEs.

I will show how to solve for the optimal T -NGPE payoff, which turns out to be a T -GPE

payoff as well (in Corollary 3.3.2).

Let E ⊂ R denote the set of T -NGPE equilibrium payoffs (NGPEs are symmetric

so the set of equilibrium payoffs is one dimensional), and let Ē ≡ max E be the payoff

of the optimal T -NGPE. I characterize Ē through a simplified version of the method of

Abreu, Pearce, and Stacchetti (1986; 1990) (borrowing notation from Mailath and Samuel-

son (2006b)) and the numerical implementation developed by Judd, Yeltekin, and Conklin

(2003).

Definition 3.3.1. Let some set W ⊂ R be given. A mixed action profile α is enforceable
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on W if there exists p̄ and V ∈W such that

V(α, p̄, V )

≡ (1− δ)ui(α) + δ

[(
1− F

(
p̄

p(α)

))
V + F

(
p̄

p(α)

)
((1− δT )uN + δTV )

]
(3.3.6)

≥ (1− δ)ui(α′i, α−i)

+δ

[(
1− F

(
p̄

p(α′i, α−i)

))
V + F

(
p̄

p(α′i, α−i)

)
((1− δT )uN + δTV )

]
(3.3.7)

for all αi ∈ ∆Ai. The price p̄ and reward payoff V enforce α (on W ).

Similarly I adapt the notion of decomposition and the “generating operator” B(·).

Definition 3.3.2. A payoff V ∈ R is decomposable on W ⊂ R if there exists action profile

α enforced by some price p̄ and V ′ ∈ W such that V = V(α, p̄, V ′). V is decomposed by

α, p̄, V ′ (on W ). Define

B(W ) ≡ {V ∈ R : V = V(α, p̄, V ′) for some α enforced by p̄ and V ′ ∈W}.

A straightforward, much simpler version of the arguments in Abreu, Pearce, and

Stacchetti (1990) show the following. (Since the arguments are nearly identical to those in

Appendices 2.1.2 and 2.1.3, replacing terms with their NGPE analogues, I omit them.)

Proposition 3.3.2. The following hold:

1. If W ⊂ B(W ), i.e. W is a “self-generating set,” then W is the payoff of a T -NGPE.

2. B(E ) = E .

3. Let F † denote the set of feasible payoffs. Then limm→∞
⋂
m Bm(F †) = E .

I now characterize Q,U in order to compute B̄(·). The following proposition char-

acterizes the interior solution, if it exists.
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Proposition 3.3.3. Let some payoff V̄ be given. Let Ṽ = (1−δT )uN (g̃)+δT V̄ be the value

of the punishment phase, and define ∆V ≡ V̄ − Ṽ . Define ᾱ ≡ (q̄, s̄) and p̄ which solve

max
α,p̆

V(α, p̆)

such that α is enforced by p̆ and V̄ .

Define θ̄ ≡ p̄/p(ᾱ) and

ψ(θ̄) ≡ C0 −
√
C1 + γ(θ̄)∆V (3.3.8)

where C0 ≡ 1
12(5r − 2c), C1 ≡ 1

144(r + 2c)2, γ(θ̄) ≡ 1
6

δ
1−δf(θ̄)θ̄. Define β̄ ≡ κs̄i + ḡ.

Suppose that the solution is interior, i.e., θ̄ ∈ (0,∞). Then when Q is sufficiently

fine,

q̄i = ψ(θ̄) + β̄, (3.3.9)

0 =
(
4ψ(θ̄)− (r − c)

) −(log θ̄ + 1
2ζ

2)

12ζ2
√
C1 + γ(θ̄)∆V

− 1, (3.3.10)

which has a unique solution such that θ̄ ≤ exp(−1
2ζ

2). Also, s̄i = 0 if and only if 0 ≥

(1− δ)[κψ(θ̄)− η]− δ∆V .

Although the equation (3.3.10) does not appear analytically tractable, the fact that

the solution is unique and known to be within the interval (0, exp(−1
2ζ

2)] allows the use

of a root-finding algorithm like Newton’s method. The following corollary gives a test for

whether the interior solution above is in fact optimal, and if it is not, gives the corner

solution that is optimal.

Corollary 3.3.1. Let v̄N be the static Nash equilibrium payoff given government arrests ḡ.

If

(1− δ)ui(q̄i, s̄i) + δ[(1− F (θ̄))V̄ + F (θ̄)Ṽ ] < (1− δ)v̄N + δmax{V̄ , Ṽ }, (3.3.11)
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then

θ̄ =

0 V̄ ≥ Ṽ

∞ V̄ < Ṽ .

and E[(q̄, s̄)] is characterized by the one-shot equilibrium in Proposition 3.3.1. Otherwise,

the globally optimum θ̄ is the interior solution characterized by Proposition 3.3.3.

The proof is straightforward. First, if Ṽ > V̄ , an interior solution can only enforce

quantities higher than the static equilibrium (see (3.3.8)), yielding a lower current period

payoff, when the static equilibrium always followed by continuation payoff Ṽ is enforceable

and decomposes a higher payoff. A corner solution θ̄ ∈ {0,∞} can only enforce the one-shot

equilibrium, so the decomposed payoff must be the right hand side of (3.3.11). If the best

interior θ̄ decomposes a higher payoff, the solution is interior. Otherwise, it is best to simply

always choose the highest continuation payoff.

Since we are interested only in the maximum payoff Ē , I show that further simplifi-

cation is possible by focusing on the maximum payoff at each iteration of the algorithm in

part (3) of Proposition 3.3.2.

Definition 3.3.3. Define

B̄(W ) ≡ max B(W ), (3.3.12)

and define the pair Q(V ) = α,U(V ) = p̄ as an action profile α and price p̄ which, with some

V ∈W , decompose B̄(W ).

Lemma 3.3.2. Let closed set W ⊂ R be given, and define W̄ = maxW . Then B̄(W ) is

decomposable on the singleton {W̄}, i.e. B̄(W ) ∈ B({W̄}), and Q(V̄ ) = ᾱ,U(V̄ ) = p̄ where

ᾱ and p̄ = θ̄p(ᾱ) are characterized by Proposition 3.3.3 and Corollary 3.3.1.

This immediately gives the following algorithm for computing a tight upper bound

on Ē , and also shows that Ē is the optimal T -GPE (not just T -NGPE) payoff.

Corollary 3.3.2. Let F̄ ≡ max F † denote the maximum feasible payoff. Then

lim
m→∞

B̄m(F̄ ) = Ē , (3.3.13)
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and Ē is the payoff of a T -GPE.

Thus, repeated application of B̄(·) to the payoff yielded by the monopoly quantity

converges to the optimal T -GPE payoff Ē . The sequence {B̄m(F̄ )}m yields a decreasing

sequence of upper bounds on Ē . To prove that B̄m(F̄ ) is within some precision ε > 0 of

Ē , I use the following result.

Lemma 3.3.3. Let some V ≥ uN be given. If B̄({V }) ≥ V , then V ≤ Ē .

Following the example of the inner-bound method of Judd, Yeltekin, and Conklin

(2003), I use Lemma 3.3.3 to establish a lower bound for Ē . For any m, if (1− ε)B̄m(F̄ ) ≤

B̄((1− ε)B̄m(F̄ )), then (1− ε)B̄m(F̄ ) is a lower bound on Ē . Thus, this test establishes

that

(1− ε)B̄m(F̄ ) ≤ Ē ≤ B̄m(F̄ ).

Once Ē is established with sufficient precision, I can back out the strategy from Q(·),U(·).

I conclude this section by summarizing the algorithm. The upper-bound algorithm

is given by Steps 1 - 4, and Steps 5 - 6 establish the lower bound.

1. Set V̄ ← um, the maximum feasible payoff um (the monopoly payoff).

2. Use Proposition 3.3.3 and Corollary 3.3.1 to compute Q(V̄ ),U(V̄ ).

(a) Compute interior solution θ̄ for (3.3.10) using Newton’s method. Check for corner

solution using (3.3.11).

(b) If solution is interior, set Q(V̄ ) ← ᾱ,U(V̄ ) = θ̄p(q̄, s̄) according to Proposition

3.3.3. Otherwise, set Q(V̄ ) to the static Nash equilibrium according to Propo-

sition 3.3.1, computed numerically when necessary according to Remark 3.3.2,

and

U(V̄ )←

0 V̄ ≥ Ṽ

∞ V̄ < Ṽ .

3. Set V̄ ′ ← B̄(V̄ ) = V(Q(V̄ ),U(V̄ ), V̄ ). Set ∆V̄ ← |V̄ ′ − V̄ |. Set V̄ ← V̄ ′.
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4. If |∆V̄ | ≥ ε, go to Step 2. Otherwise set V̄ U ← V̄ .

5. Set V̄ L ← (1− ε)V̄ U . Use the method in Step 2 to compute Q(V̄ L),U(V̄ L).

6. If B̄(V̄ L) = V(Q(V̄ L),U(V̄ L), V̄ L) < V̄ L, go to Step 2. Otherwise, stop.

Upon a successful conclusion at the end of Step 6, Ē is guaranteed to satisfy V̄ U ≥ Ē ≥

V̄ L = (1 − ε)V̄ U , thereby establishing the optimal T -GPE equilibrium payoff within a

precision specified by ε.

3.4 Results

I use the computational method described in Section 3.3 to find the outcomes under

different government policies. Of particular interest are violence, drug consumption, and

profit of the firms. Define the discounted average drug consumption as the following sum

over the drugs delivered each period:

D = E

[
(1− δ)

∞∑
t=0

δt(q̂t1 + q̂t2)

]
. (3.4.1)

Discounted average violence is similarly defined as

M = E

[
(1− δ)

∞∑
t=0

δt(st1 + st2)

]
. (3.4.2)

The parameters used in the example are as follows: r = 10, c = 1, κ = 0.3, η = 0.02,

ζ = 0.1, δ = 0.95, and ω̃ = 0.05 (so T = 20). I apply the method on a grid G over [0, 22]2

for different parameters of (ḡ, g̃).

The per-firm profit Ē (ḡ, g̃) is plotted in Figure 3.4.1. The plot shows that equilibrium

payoffs are always decreasing in ḡ: arresting during the reward phase always reduces profits.

There are also clearly regions where increasing Ē is decreasing in g̃. For example, at

ḡ = 10, g̃ = 0, the government arrests so much during the reward phase that the optimal

equilibrium immediately switches to the punishment phase (p̄ = ∞), which actually has a
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Figure 3.4.1: Discounted average payoffs Ē over different policies (ḡ, g̃).

higher value. Increasing g̃ simply reduces the value of the punishment phase and thus the

entire equilibrium.

What is more subtle (and not very visible in Figure 3.4.1) is that profits are actually

increasing in g̃ for the region g̃ ≥ ḡ, ḡ < 8.71. For example, at ḡ = g̃ = 0, profit is

Ē ≈ 9.68, while at ḡ = 0, g̃ = 22, profit is Ē ≈ 9.78. Making punishments harsher

allows the enforcement of more collusive behavior without needing to trigger punishments

as frequently, yielding higher profits.

Suppose that the government is “corrupt” and receives some fraction of the firm

profits as a bribe. If the government seeks to maximize the bribe and therefore profit, the

optimal policy is ḡ = 0, g̃ = G. By increasing g̃ and making punishments harsher, more

collusive behavior is enforceable during the reward phase and punishments need are not

triggered as frequently, so profits actually increase. Thus, a corrupt government will always

choose the “leftmost” point in Figure 3.4.1 (this point will be the “frontmost” point, pointing

out of the page, in Figures 3.4.1 and 3.4.3).

Note that for region ḡ > 8.72, g̃ > 8.72, profits are reduced to zero. For these
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Figure 3.4.2: Discounted average violence M over different policies (ḡ, g̃).

policies, the government arrests so frequently that only mixing equilibria exist, where firms

mix between delivering a positive quantity and zero drugs to market. Since shutting down

and delivering zero drugs is always a best response, the equilibrium payoff is zero. Note,

however, that firms still generally deliver positive quantities of drugs in expectation (as seen

in Figure 3.4.3).

Violence M is plotted in Figure 3.4.2 (note that the policy grid is rotated approx-

imately 90◦ counter-clockwise relative to Figure 3.4.1). When g̃ < 19.76, starting from

ḡ = 0, violence is strictly increasing in ḡ until collusion completely breaks down. Arresting

during the reward state reduces the difference between the values of the reward and punish-

ment states, so punishments are less harsh relative to the reward state. Enforcing collusive

behavior requires that the punishment state be triggered more frequently, and so violence is

higher. Eventually collusion is no longer possible, resulting in static Nash behavior in both

states and so the firms continuously attack. When arrests in the reward state are sufficiently

severe (ḡ > 8.72), the cartels play the mixed static Nash equilibrium, and increases in ḡ

lead to producing drugs and violence with lower probability, leading to the slight downward

slope seen.
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Figure 3.4.3: Discounted average drugs delivered D over different policies (ḡ, g̃).

By contrast, M is always weakly decreasing in g̃, and strictly so for the region

g̃ ∈ [ḡ, 19.76), ḡ < 8.71. In this region, increasing g̃ reduces the necessary frequency of

punishments to sustain collusion, so violence happens less frequently as punishments become

harsher. Eventually, as in the case of ḡ discussed above, arrests become so great that attacks

are not part of the static Nash equilibrium, resulting in zero violence altogether.

Figure 3.4.3 plots the average discounted quantity of drugs D delivered to consumers

(the policy grid is oriented identically to Figure 3.4.2 and rotated approximately 90◦ counter-

clockwise relative to Figure 3.4.1). D is always weakly (and usually strictly) decreasing in

g̃. This is because arrests during the punishment state either incentivize collusion in the

reward state, which reduces the quantity in the reward state, or reduce drugs delivered in

the punishment state — both of which affect D negatively.

The effect of ḡ is more complicated. For the region g̃ ∈ [ḡ, 8.71), ḡ < 8.71, drugs are

increasing in ḡ. In this region, arrests in the reward state inhibit collusion, increasing drugs

delivered in the reward state, while the punishment static equilibrium quantity is unchanged.

For the region g̃ > 8.72, ḡ < 8.71, collusion is also inhibited by reward state arrests, but this
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is dominated by the negative effect on drugs delivered during the punishment state, which

is also triggered more frequently in order to sustain collusion. For ḡ > 8.72, collusion is

unsustainable and reward state arrests reduce the equilibrium quantities. In the rightmost

corner (g̃ ≥ 20.5, ḡ ≥ 20.5), arrests are sufficiently high in both states that the market

effectively shuts down: firms repeatedly choose to hire zero traffickers and not attack.

3.5 Discussion and Conclusion

Depending on the government’s objectives, the results above have differing policy

implications. If the government wishes to maximize cartel profits, perhaps because of cor-

ruption, the optimal policy is clear: never arrest during the reward state (ḡ = 0) and arrest

as much as possible in the punishment state (g̃ = G). Interestingly, Figure 3.4.2 shows that

this policy also minimizes violence, uniquely so if the government’s power is sufficiently

limited.

However, governments that outlaw drugs presumably also wish to reduce drug con-

sumption. Figure 3.4.3 shows that for a very powerful government (G ≥ 20.5), it is possible

to reduce both drugs and violence to zero through a total crackdown. This works because

the government arrests so many traffickers that shutting down is a dominant strategy.

This changes as the government becomes more constrained. A government with

capacity 8.72 < G < 19.76 faces a tradeoff between reducing violence and reducing drugs.

Arrests during the punishment state serve both goals because arrests are sufficiently harsh to

reduce quantities delivered. Arrests during the reward state reduce cooperative incentives,

resulting in punishments being triggered more frequently, which reduces drug quantities but

increases violence.

An even more constrained government (G < 8.71) faces no tradeoff: the corrupt

policy minimizes drugs, minimizes violence, and maximizes firm profits (because prices are

high). As above, arrests in the punishment state allow greater collusion, which reduces

both drugs and violence. However, punishment quantities are greater than the reward

105



quantities. By triggering more frequent punishments, arresting during the reward state

actually increases equilibrium drug quantities.

The results show that switching from a corrupt policy to a crackdown policy of

always arresting as much as possible can trigger a spike in violence so long as the govern-

ment’s power is limited. Since it may be quite difficult to assess a government’s capacity

to arrest traffickers (at least ex-ante), a policymaker facing such uncertainty over G who

cracks down, aiming to reduce drug consumption but also wanting to prevent violence, may

be unpleasantly surprised by the outcome. This is one way of thinking about Calderon’s

crackdown, which often involved replacing entire local police forces accused of corruption.

By contrast, for a corrupt government or one that simply aims to minimize violence without

regard to drug consumption (some combination of which may be thought of as similar to the

PRI government before 2000), the decision problem is easy: never arrest during the reward

state and always arrest during punishments, no matter what G is. Thus, law enforcement

operations can actually prevent inter-cartel competition, so long as they are used to punish

signals of defection.

There are a number of interesting avenues for future research. A natural extension

is to more than two firms, resulting in a more competitive market. I currently restrict

the government to policies conditioning only on the reward/punishment state, which is

necessary given my current numerical method. If the government chooses arbitrary policies

based on the history, this effectively transforms the model into a dynamic game. Studying

policies like “never arrest until violence is observed, and always arrest thereafter” may be

possible through Yeltekin, Cai, and Judd’s (2015) numerical implementation of the Abreu,

Pearce, and Stacchetti (1990) framework for dynamic games. Studying asymmetric policies

and strategies would also be of interest to evaluate the effects of favoring one cartel over

another. Also, a generalization to include multiple governments may shed greater light on

the effects of political decentralization, highlighted by Rios (2014) as being a key driver of

increased competition between cartels.
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Appendix 1

Proofs for Chapter 1

1.1 Proof of Theorem 1.2.2

Suppose by contradiction that for any δ∗ ∈ (0, 1), there always exists δ ∈ (δ∗, 1) such

that a sequential equilibrium exists with positive probability of hiring on the equilibrium

path. Let such an equilibrium be given. I begin by showing that if the mechanic performs

a tune-up, then she is known to be good by all future motorists (even those who do not

observe a tune-up).

Lemma 1.1.1. If the mechanic performs a tune-up at any history at period t′ on the equi-

librium path, then motorists at any future period t′′ > t′ will know that the mechanic is good

(regardless of the subsequent actions played by the mechanic) on the equilibrium path.

Proof. For convenience I use a subscript zero on any period t̃ to denote the earliest period

t̃0 ≡ max{0, t̃− T} observed by motorist t̃ (as given in Definition 1.2.1). Let any history ht̃

at period t̃ on the equilibrium path be given, and let ĥt̃
t̃0,t
≡ (ht̃

t̃0
, ..., ht̃t−1) denote the partial

observable subhistory at t̃ up to t ∈ {t̃0, ..., t̃}, which contains the events of the periods

before (but not including) t that are observed by motorist t̃. Let C(ĥt̃) be an indicator

function equal to 1 if ĥt̃ has a tune-up or, for t̃ > T , has the mechanic hired every period,

and equal to 0 otherwise:

C(ĥt̃) ≡


1 ∃t ∈ {t̃0, ..., t̃− 1} such that ĥt̃t = c

1 t̃ > T and ∀t ∈ {t̃0, ..., t̃− 1}, ĥt̃t 6= ∅

0 otherwise.

I prove by induction the following claims to be true:
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Claim 1.1.1. The full history ht̃ contains a tune-up if and only if observable subhistory ĥt̃

contains a tune-up or, for t̃ > T , has the mechanic hired in every observed period t̃0, ..., t̃−1

(i.e. C(ĥt̃) = 1).

Claim 1.1.2. If ht̃ does not contain a tune-up, then the observable subhistory ĥt̃ has the

mechanic being hired at most L times.

Claim 1.1.3. Suppose that for observable subhistory ĥt̃, C(ĥt̃) = 0. For any t ∈ {t̃0, ..., t̃−1},

the probability that the mechanic is hired at period t conditional on the partial observable

subhistory ĥt̃
t̃0,t
≡ (ht̃

t̃0
, ..., ht̃t−1) and C(ĥt̃) = 0 is independent of the mechanic’s type

s ∈ {b, g}; that is,

P (ηt 6= ∅|s = g, ĥt̃
t̃0,t
, C(ĥt̃) = 0) = P (ηt 6= ∅|s = b, ĥt̃

t̃0,t
, C(ĥt̃) = 0).

Remark 1.1.1. For any history ht̃ on the equilibrium path, if Claim 1.1.1 is true, then Claim

1.1.3 is true. By Claim 1.1.1, if motorist t̃ has an observable subhistory such that C(ĥt̃) = 0,

then he knows that the full history ht̃ has no tune-ups and therefore the mechanic has played

indistinguishably from the bad type thus far, so conditioning on the mechanic’s true state

cannot change the probability that motorist t ∈ {t̃0, ..., t̃− 1} hires, so Claim 1.1.3 is true.

First, suppose that t̃ ≤ T . Since motorist t̃ observes the full history ht̃, Claim 1.1.1

is clearly true. If the mechanic performed more than L engine replacements without any

tune-ups in ht̃, then the (L + 1)th hiring motorist would have a posterior greater than or

equal to ΥL(µ0) > p∗, so hiring could not be a best response. Thus, Claim 1.1.2 is true.

Claim 1.1.3 is implied by Claim 1.1.1 as stated in Remark 1.1.1.

Now suppose that for some t̃ ≥ T , Claims 1.1.1, 1.1.2 and 1.1.3 are true for any

history ht at any t ≤ t̃ on the equilibrium path. I show that this implies they must also hold

at any following history ht̃+1 on the equilibrium path. First, suppose that ht̃ contains a

tune-up. By Claim 1.1.1, observable subhistory ĥt̃ satisfies C(ĥt̃) = 1, and motorist t̃ knows

the mechanic is good. If ĥt̃ has a tune-up at some period t ∈ {t̃0 +1, ..., t̃−1}, then the next

motorist will see the same tune-up in his observable subhistory ĥt̃+1 and thus C(ĥt̃+1) = 1.
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If the tune-up is at period t̃0, then by Assumption 1 motorists in all periods t̃0 + 1, ..., t̃− 1

hired, and motorist t̃ also hires, giving an observable subhistory ĥt̃+1 next period with the

mechanic hired every period, so C(ĥt̃+1) = 1.

The previous paragraph shows that if ht̃+1 contains a tune-up, then C(ĥt̃+1) = 1,

but proving Claim 1.1.1 still requires the converse to be true, whose contrapositive is proven

in this paragraph. Suppose ht̃+1 does not contain a tune-up. Since Claim 1.1.2 holds at

ht̃, then ĥt̃ has the mechanic hired at most L times. If ĥt̃ has the mechanic hired strictly

less than L times, then Claim 1.1.1 clearly holds because even if motorist t̃ hires, ĥt̃+1 will

have at most L < T hirings. Suppose ĥt̃ has exactly L hirings. Because P (ηt 6= ∅|s =

g, ĥt̃
t̃0,t
, C(ĥt̃) = 0) = P (ηt 6= ∅|s = b, ĥt̃

t̃0,t
, C(ĥt̃) = 0) for all t ∈ {t̃0, ..., t̃−1} (due to Claim

1.1.3 holds at ht̃), I can give a lower bound for the posterior belief at t̃. Suppose that an

observable period t has the mechanic not being hired (ĥt̃t = ∅); then the partial posterior

at t + 1 is unchanged from period t: µt̃t+1(ĥt̃) = µt̃t(ĥ
t̃). Suppose that it instead has the

mechanic doing an engine replacement (ĥt̃t = e); then Υ(·) bounds the partial posterior from

below: µt̃t+1(ĥt̃) ≥ Υ(µt̃t(ĥ
t̃)). Since ĥt̃ contains L engine replacements and T − L no-hire

events, motorist t̃ has a posterior µt̃(ĥt̃) ≥ ΥL(µ0) > p∗, so he does not hire, giving L < T

engine replacements in ĥt̃+1. Thus, if ht̃+1 does not have a tune-up, then the observable

subhistory ĥt̃+1 has the mechanic hired at most L < T times and C(ĥt̃+1) = 0, so both

Claims 1.1.1 and 1.1.2 are proven true. Finally, Remark 1.1.1 shows that Claim 1.1.1 implies

Claim 1.1.3.

Having proven Claims 1.1.1, 1.1.2 and 1.1.3 for all histories on the equilibrium

path, Claim 1.1.1 implies Lemma 1.1.1 because the set of observable subhistories possible

at histories on the equilibrium path where a tune-up has ever occurred (which can only

happen if the mechanic is good) is disjoint from the set of observable subhistories possible

on the equilibrium path when a tune-up has not ever occurred.

The arguments in the proof of Lemma 1.1.1 show that more than L engine-replace-

ments cannot occur within the first T periods unless a tune-up is performed.
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Corollary 1.1.1. Let any sequential equilibrium be given, and let hT be a history at T on

the equilibrium path. If no tune-ups occurred in hT , then hT contains at most L engine

replacements.

Proof. Claim 1.1.2 is shown in the proof of Lemma 1.1.1 to be true at all histories on the

equilibrium path.

Without loss of generality, let period 0 be the first period at which the mechanic is

hired with positive probability. Lemma 1.1.1 implies that the continuation payoff of doing

a tune-up at any period is u (the mechanic is hired forever after) given Assumption 1. Let

l ≤ L be the maximum number of engine replacements without any tune-ups in any history

at period T on the equilibrium path, and let hT be such a history with l engine replacements.

Let tj denote the jth period in hT containing an engine replacement.

I show that the last engine replacement (within the first T + 1 periods) at tl must

occur sufficiently late. If the mechanic does an engine replacement at period tl, then she is

certainly not hired for periods tl + 1, ..., T , so the continuation payoff of an engine replace-

ment is bounded from above by δT−tlu. Since the mechanic is hired she must be willing

to perform an engine replacement when needed with positive probability, so a necessary

condition is

(1− δ)u+ δT+1−tlu ≥ −(1− δ)w + δu

δT+1−tl ≥ −(1− δ)(1 + w/u) + δ

(T + 1− tl) ln δ ≥ ln(δ − (1− δ)(1 + w/u))

tl ≥ T + 1− ln(δ − (1− δ)(1 + w/u))/ ln δ.

By l’Hôpital’s rule,

lim
δ→1

ln(δ − (1− δ)(1 + w/u))

ln δ
= lim

δ→1

1+(1+w/u)
δ−(1−δ)(1+w/u)

1
δ

= 2 + w/u. (1.1.1)

111



Let any ε > 0 be given. Then

tl ≥ T − 1− w/u− ε

for δ close enough to one. Define tl ≡ T − 1− w/u− ε as a lower bound for tl.

I define tj for all j ∈ {1, ..., l} by (backward) induction. Consider period tj for some

j < l, where tj′ is defined for all j′ ∈ {j + 1, ..., l}. The continuation payoff of doing an

engine replacement is less than or equal to δtj+1−tj−1u (because tj+1 is a lower bound for the

(j + 1)th period with an engine replacement). Incentive compatibility gives the necessary

condition

(1− δ)u+ δtj+1−tju ≥ −(1− δ)w + δu

δtj+1−tj ≥ δ − (1− δ)(1 + w/u)

(tj+1 − tj) ln δ ≥ ln (δ − (1− δ)(1 + w/u))

tj ≥ tj+1 −
ln (δ − (1− δ)(1 + w/u))

ln δ
. (1.1.2)

The limit as δ → 1 of the second term on the right hand side of (1.1.2) is given by (1.1.1).

For δ close enough to one, substituting into (1.1.2) gives

tj ≥ tj+1 − 2− w/u− ε ≡ tj .

Therefore

t1 = −2− w

u
− ε+ t2 = −2

(
2 +

w

u
+ ε
)

+ t3 = · · · = T + 1−
(

2 +
w

u
+ ε
)
l

≥ T + 1−
(

2 +
w

u
+ ε
)
L.

Since the choice of ε > 0 is arbitrary, suppose we pick some ε < (T+1)/L−(2+w/u). Then

t1 > 0 for δ close enough to one due to the lower bound (1.2.4) on T . Since the first period

in which the mechanic is hired with positive probability is period 0, this is a contradiction.

112



1.2 Proofs of Fading History Results

1.2.1 Proof of Theorem 1.2.4

Let any sequential equilibrium and history ht be given at which player 1 faces a

decision node. Let Va1,a2(ht) denote player 1’s continuation payoff from the action profile

(a1, a2). Player 1 plays ad with certainty if

Ea2 [(1− δ)u1(ad, a2) + δVad,a2(ht)] > Ea2 [(1− δ)u1(a′1, a2) + δVa′1,a2(ht)] (1.2.1)

for all a′1 ∈ A1\{ad}, where Ea2 [·] is the expectation over player 2’s actions a2 ∈ Ã2 given

player 1’s beliefs (in the mechanic game, of course, player 1 knows a2 (hiring) because Ã2

is a singleton). (1.2.1) can be rearranged as

Ea2 [Vad,a2(ht)− Va′1,a2(ht)] <
1− δ
δ

Ea2 [u1(ad, a2)− u1(a′1, a2)]. (1.2.2)

The left hand side of (1.2.2) is equal to the discounted sum of the expected differences

in stage payoffs at every future period. Denoting player 1’s stage payoff at some period t̂ > t

as v(t̂), let v̄a1,a2(ht, t̂) ≡ E[v(t̂)|ht, a1, a2] be the expected stage payoff at t̂ conditional on

ht and action profile (a1, a2) at ht. The maximum change in the expected stage payoff at t̂

due to choosing an action different from ad at period t is

∆v̄(ht, t̂) = max
(a′1,a2)∈A1×Ã2

{v̄a′1,a2(ht, t̂)− v̄ad,a2(ht, t̂)} ≤ z.

The action at t can only affect player 1’s payoff at t̂ if period t̂ observes t directly, or observes

some period t′ ∈ {t+ 1, ..., t̂− 1} that observes t, etc.; otherwise, player 2’s action at period

t̂ is necessarily independent of the events of period t. This notion of an “observation chain”

is formalized as “t reaches t̂” in the following definition.

Definition 1.2.1. Let two periods t′ and t′′ > t′ be given. Inductively define the relation

“t′ k-reaches t′′” as follows. If period t′′ observes period t′, then t′ is said to 0-reach t′′. If

period t′′ observes some period t̃ ∈ {t′ + 1, ..., t′′ − 1} and t̃ k-reaches t′, then t′ is said to
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(k + 1)-reach t′′. More simply, if (and only if) period t′ k-reaches t′′ for some k ∈ {0, 1, ...},

then t′ is said to reach t′′.

Let φ(t, t̂) denote the probability that t reaches t̂, which gives the upper bound

∆v̄(ht, t̂) ≤ φ(t, t̂)z. The following lemma gives an upper bound for φ(t, t̂).

Lemma 1.2.1. For any two periods t and t̂ > t, φ(t, t̂) ≤ 2t̂−t−1λt̂−t.

Proof. The proof is by induction. For t̂ = t+1, φ(t, t̂) = λ is trivially true. Now suppose that

for some t̂ > t, φ(t, t′) ≤ 2t
′−t−1λt

′−t for all t′ ∈ {t+ 1, ..., t̂}. The probability that t reaches

t̂+1 is the probability that motorist t̂+1 observes either t or some period t′ ∈ {t+1, ..., t̂−1}

such that t reaches t′. Then Boole’s inequality gives

φ(t, t̂+ 1) ≤ λt̂+1−t +

t̂∑
t′=t+1

λt̂+1−t′φ(t, t′)

≤ λt̂+1−t +
t̂∑

t′=t+1

λt̂+1−t′(2t
′−t−1λt

′−t)

= λt̂+1−t

1 +

t̂−t−1∑
k=0

2k


= λt̂+1−t

(
1 +

1− 2t̂−t

1− 2

)
= 2t̂−tλt̂+1−t.

I can now write an upper bound for the left hand side of (1.2.2):

Ea2 [Vad,a2(ht)− Va′1,a2(ht)] ≤ (1− δ)
∞∑
k=1

δk−1∆v̄(ht, t+ k)

≤ (1− δ)
∞∑
k=1

δk−1φ(t, t+ k)z

≤ (1− δ)z
∞∑
k=1

δk−1(2k−1λk).
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Since δλ < 1
2 ,

Ea2 [Vad,a2(ht)− Va′1,a2(ht)] ≤ (1− δ)λz
∞∑
k=0

(2δλ)k

=
(1− δ)λz
1− 2δλ

. (1.2.3)

The right hand side of (1.2.3) is a strictly increasing function of λ for λ ∈ (0, 1/(2δ)).

Substituting (1.2.5) into λ gives

Ea2 [Vad,a2(ht)− Va′1,a2(ht)] <
(1− δ)z

(
zd

δ(z+2zd)

)
1− 2δ

(
zd

δ(z+2zd)

)
=

(1− δ)
δ

zd

≤ 1− δ
δ

Ea2 [u1(ad, a2)− u1(a′1, a2)]

for any a′1 ∈ A1, a2 ∈ Ã2, so (1.2.1) is true.

1.2.2 A Higher Upper Bound for λ for Myopic Equilibria in the Mechanic

Game

Theorem 1.2.4 assumes that the “worst case” when an “observation chain” reaches

a future period is the stage payoff decreasing by the maximum feasible amount z; in the

mechanic game, this difference is u+w. A tighter bound that seems natural is the difference

between the highest feasible payoff and the minmax payoff (u). The following corollary

uses that bound on the stage payoff difference to give a higher upper bound on λ, using

Assumption 1 and Criterion 1. For δ close to one, as w/u approaches 1 the bound (1.2.4)

approaches 2
5 (corresponding to motorists talking to an average of 2

3 future motorists) and as

w/u approaches∞, (1.2.4) approaches 1
2 (corresponding to an average of 1 future motorist).

Corollary 1.2.1. Consider the fading history mechanic game with

λ <
1

δ
(

2 + u
u+w

) . (1.2.4)
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Then the action outcome of any sequential equilibrium satisfying Assumption 1 and Crite-

rion 1 has the good mechanic doing the correct repair when hired.

Proof. Let σ∗g denote the equilibrium strategy of the good mechanic, and let σ̄g be the

strategy identical to σ∗g except that at any history containing a tune-up, the mechanic does

the right repair with certainty (it may be that σ∗g = σ̄g). The following result allows a

simplification of the continuation payoffs for a tune-up. Note that µt (with a subscript

instead of superscript t) denotes motorist t’s beliefs about the mechanic’s type and the

history (as opposed to µt, which is simply the belief on the type).

Lemma 1.2.2. Let a sequential equilibrium (σ∗g , (σ
∗
t )t, (µt)t) under fading history given λ

satisfying Assumption 1 and Criterion 1 be given. At any history ht on the equilibrium path

containing a tune-up, it is a best response for the mechanic to perform the correct repair.

Proof. Any motorist observing the entire history (which occurs with positive probability

at every history) must hire due to Assumption 1. This is only possible if the mechanic

performs the correct repair with at least positive probability β∗ no matter the car’s state,

so it must be a best response.

Thus, deviating to σ̄g must be a best response at any history containing a tune-up.

Calculation of the expected stage payoffs following a tune-up (simply the probability of

being hired times u) is simpler for σ̄g and allows them to be used as upper bounds on the

expected stage payoffs following an engine replacement because of Criterion 1.

For the remainder of the proof, suppose that the mechanic deviates to σ̄g, which

has the same continuation payoffs as σ∗g at every history, an implication of Lemma 1.2.2.

Let the notation and arguments in the proof of Theorem 1.2.4 (Appendix 1.2.1) up to and

including Lemma 1.2.1 be given, except that all notation is with respect to the strategy σ̄g

(not σ∗g) and a2 is omitted from subscripts (because in the mechanic game, at a mechanic’s

decision node, a2 is known to be “hire”). At any history ht, let ρt̂a(h
t) be the probability

that the mechanic is hired at period t̂ > t conditional on repair a at ht.
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Criterion 1 implies that the continuation payoff for a tune-up is greater than or

equal to that of an engine replacement because v̄c(h
t, t̂) = ρt̂c(h

t)u ≥ ρt̂e(h
t)u ≥ v̄e(h

t, t̂).

Therefore, when the motorist at ht needs a tune-up, performing a tune-up strictly dominates

an engine replacement.

What remains to be shown is that performing a needed engine replacement strictly

dominates doing an incorrect tune-up. Let σ̆g be the strategy identical to σ̄g, except that any

history following (ht, e) (i.e. any history that begins with ht followed by e at period t) the

mechanic always does the right repair. Let V̆a, ρ̆
t̂
a, v̆a be the analogues of Va, ρ

t̂
a, v̄a (which are

defined for σ̄g) for a deviation to σ̆g. Note that v̆e(h
t, t̂) = ρ̆t̂e(h

t)u, ρ̆t̂c(h
t) = ρt̂c(h

t), V̆c(h
t) =

Vc(h
t), and V̆e(h

t) ≤ Ve(ht). The fact that v̆c(h
t, t̂)− v̆e(ht, t̂) = (ρ̆t̂c(h

t)− ρ̆t̂e(ht))u ≤ φ(t, t̂)u

yields

Vc(h
t)− Ve(ht) ≤ V̆c(h

t)− V̆e(ht)

= (1− δ)
∞∑
k=1

δk−1(v̆c(h
t, t̂)− v̆e(ht, t̂))

≤ (1− δ)
∞∑
k=1

δk−1φ(t, t+ k)u.

By Lemma 1.2.1,

Vc(h
t)− Ve(ht) ≤ (1− δ)u

∞∑
k=1

δk−1(2k−1λk)

=
(1− δ)λu
1− 2δλ

.

Then substituting (1.2.4) into λ gives

Vc(h
t)− Ve(ht) <

(1− δ)u
(

1
δ(2+u/(u+w))

)
1− 2δ

(
1

δ(2+u/(u+w))

)
=

(1− δ)u
δ (2 + u/(u+ w))− 2δ

=
1− δ
δ

(u+ w).
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Therefore, doing an incorrect tune-up is not a best response.

1.2.3 Proof of Theorem 1.2.5

Suppose by contradiction that for any λ∗ ∈ (0, 1), there always exists λ ∈ (λ∗, 1) such

that a sequential equilibrium exists with positive probability of hiring on the equilibrium

path. Let such an equilibrium be given. Without loss of generality, let period zero be the

first period at which the mechanic is hired with positive probability. The following lemma

establishes that if the mechanic is hired at some history in equilibrium, she must be hired

again sufficiently soon (or else the temptation to do a tune-up will be too great).

Lemma 1.2.3. Suppose the mechanic is hired at some history ht on the equilibrium path

at period t with positive probability, such that

• t = 0, or

• the mechanic is hired with probability greater than λt(t+1)/2.

Suppose the mechanic chooses e at ht, and let t′ > t be the earliest future period at which

the mechanic is again hired with probability greater than λt
′(t′+1)/2. Define

K(δ, u, w) ≡ ln(δ − (1− δ)(1 + w/u))

ln δ
.

Then t′ ≤ t+K(δ, u, w) for λ close enough to one.

Proof. For any period t, if the mechanic is hired at period 0 or at ht with probability greater

than λt(t+1)/2, then the mechanic must perform a needed engine replacement with positive

probability; otherwise, the motorist who sees the full history ht would not hire, since the

probability that the full history is observed is
∏t
k=1 λ

k = λt(t+1)/2. Incentive compatibility

gives

(1− δ)u+ δVe(h
t) ≥ −(1− δ)w + δVc(h

t) (1.2.5)
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where Va(h
t) is the continuation payoff of action a. By definition, t′ is the earliest period

such that the mechanic is hired with probability greater than λt
′(t′+1)/2 if she chooses e at

period t, so an upper bound on her continuation payoff for e is

Ve(h
t) ≤ (1− δ)

[
t′−1∑
k=t+1

δk−t−1(1− λk(k+1)/2)u+
∞∑
k=t′

δk−t−1u

]

= (1− δ)
t′−1∑
k=t+1

δk−t−1(1− λk(k+1)/2)u+ δt
′−t−1u.

Assumption 1 gives the following lower bound for the continuation payoff of c:

Vc(h
t) ≥ (1− δ)

∞∑
k=0

δkλk+1u

=
(1− δ)λu

1− δλ
.

Substituting these bounds into (1.2.5) gives

(1− δ)u+ (1− δ)
t′−1∑
k=t+1

δk−t(1− λk(k+1)/2)u+ δt
′−tu ≥ −(1− δ)w + δ

(1− δ)λu
1− δλ

δt
′−t ≥ (1− δ)

[
δλ

1− δλ
− (1 + w/u)−

t′−1∑
k=t+1

δk−t(1− λk(k+1)/2)

]
. (1.2.6)

Let any ε > 0 be given. Taking the limit of the right hand side of (1.2.6) as λ → 1, there

exists λ∗ such that for all λ ∈ (λ∗, 1),

δt
′−t ≥ δ − (1− δ)(1 + w/u)

exp (ε/(− ln δ))

since exp(ε/(− ln δ)) > 1. Solving for t′ gives

(t′ − t) ln δ ≥ ln(δ − (1− δ)(1 + w/u))− ε

− ln δ

t′ ≤ t+
ln(δ − (1− δ)(1 + w/u))

ln δ
+ ε.

Since ε > 0 is arbitrary, we can pick ε < max{1, dK(δ, u, w)e −K(δ, u, w)}. In that case,
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because t′ is an integer, it must be that t′ ≤ t+K(δ, u, w) for λ close enough to one.

Lemma 1.2.3 implies that for λ close enough to one, if the mechanic is hired at period

0, with positive probability she must be hired in at least L + 1 periods (with greater than

probability λt
′(t′+1)/2 at each such period t′) in the first KL+ 1 periods on the equilibrium

path, which means there must exist history ht̃ at t̃ ≤ KL + 1 on the equilibrium path

that includes L + 1 engine replacements and no tune-ups. This also implies that at each

of these hirings, the mechanic must have performed a tune-up with at least probability β∗

(see (1.2.2)). Yet this implies that the posterior of the motorist receiving the (L + 1)th

engine replacement at period tL+1 if he observes the full history must have been at least

ΥL(µ0) > p∗. Thus, hiring was not a best response for that motorist with at least probability

λtL+1(tL+1+1)/2, a contradiction.

1.2.4 Proof of Theorem 1.2.6

I begin by characterizing λ∗. For t ∈ {0, 1, ...}, n ∈ {2, 3, ...}, and λ ∈ (0, 1), define

f(t, n;λ) ≡
t+n−1∑
k=t+1

[λk−t − (1− λk(k+1)/2)].

Note the following useful properties about the function f .

Fact 1.2.1. f(t, n;λ) is strictly decreasing in t, and strictly increasing in λ.

Fact 1.2.2. Let any ε > 0 be given. For any t ∈ {0, 1, ...}, n ∈ {2, 3, ...}, there exists

λ′ ∈ (0, 1) such that for any λ ∈ (λ′, 1), f(t, n;λ) > n− 1− ε.

Let n∗ be an integer strictly greater than 1 + w/u. Pick λ∗ ∈ (0, 1) such that

f(Ln∗, n∗ + 1;λ∗) ≥ 1 + w/u. (1.2.7)

Let λ ∈ (λ∗, 1) be given. Suppose by contradiction that for any δ∗ ∈ (0, 1), there

always exists δ ∈ (δ∗, 1) such that there exists a sequential equilibrium (σ∗g , (σ
∗
t )t, (µt)t)
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(note that µt (with a subscript instead of superscript t) denotes motorist t’s beliefs about

the mechanic’s type and the history, instead of µt, which is simply the belief on the type),

where the mechanic is hired with positive probability on the equilibrium path. Without

loss of generality, let the first such period be 0.

Let σ̄g be the strategy identical to σ∗g except that at any history containing a tune-

up, the mechanic does the right repair with certainty (it may be that σ∗g = σ̄g). Lemma

1.2.2, reproduced here as Lemma 1.2.4 for convenience, shows that deviating to σ̄g is a best

response at any history (the only histories at which σ̄g may differ from σ∗g are those with

tune-ups, and for those histories doing the right repair is always a best response).

Lemma 1.2.4. Let a sequential equilibrium (σ∗g , (σ
∗
t )t, (µt)t) satisfying Assumption 1 and

Criterion 1 be given. At any history ht containing a tune-up, it is a best response for the

mechanic to perform the correct repair.

I use a technique here similar to the proof of Corollary 1.2.1 to simplify calculation

of continuation payoffs. For σ̄g, calculation of the expected stage payoffs following a tune-

up is simple (due to Lemma 1.2.4, it is the probability of being hired times u) and due to

Criterion 1, they can be used as upper bounds on the expected stage payoffs following an

engine replacement (shown below).

For the remainder of the proof, suppose that the mechanic deviates to σ̄g; since by

Lemma 1.2.4 such a deviation is a best response at any history, the continuation payoffs

are identical at all histories. At any history ht, let ρka(h
t) be the probability that the

mechanic is hired at period k > t conditional on doing repair a ∈ {c, e} at ht, and let

v̄ka(ht) denote the expected stage payoff at period k conditional on a. Criterion 1 requires

that ρkc (h
t) ≥ ρke(h

t). Since the mechanic performs all correct repairs following a tune-up,

v̄kc (ht) = ρkc (h
t)u ≥ ρke(ht)u ≥ v̄ke (ht).

Lemma 1.2.5. Let the assumptions of Theorem 1.2.6 and λ ∈ (λ∗, 1) be given. For δ

close enough to one, if there exists a sequential equilibrium where the mechanic is hired with

positive probability at period 0, then there exists a history ht̃ on the equilibrium path at some
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period t̃ ≤ Ln∗ where the mechanic is hired with probability greater than 1 − λt̃(t̃+1)/2 and

ht̃ contains L engine replacements and no tune-ups such that the posterior after observing

the full history is µt̃(ht̃) ≥ ΥL(µ0).

Proof. The proof is by induction. Let t1 > 0 be the first period after 0 at which the mechanic

is hired with greater than probability 1− λt1(t1+1)/2, conditional on the mechanic doing an

engine replacement in period 0.

I now show that t1 ≤ n∗ for δ close enough to one. The continuation payoff of a

tune-up at 0 has a lower bound due to Assumption 1 given by

δ

(1− δ)
Vc(h

0) =
∞∑
k=1

δkv̄kc (h0) ≥
t1−1∑
k=1

δkλku+
∞∑
k=t1

δkv̄ke (h0)

where h0 is the empty history at period 0. Since the mechanic is hired, the incentive

constraint

−(1− δ)w + δVc(h
0) ≤ (1− δ)u+ δVe(h

0)

must hold (when an engine replacement is needed). A necessary condition for this incentive

constraint is

− w +

n−1∑
k=1

δkλku+

∞∑
k=n

δkv̄ke (h0) ≤ u+

n−1∑
k=1

δk(1− λk(k+1)/2)u+

∞∑
k=n

δkv̄ke (h0) (1.2.8)

for any n ≤ t1. Suppose by contradiction that t1 > n∗. After some rearrangement of (1.2.8),

picking n = n∗ + 1 gives

n∗∑
k=1

δk[λk − (1− λk(k+1)/2)]u ≤ u+ w. (1.2.9)

Dividing by u and taking the limit of δ gives

lim
δ→1

n∗∑
k=1

δk[λk − (1− λk(k+1)/2)] = f(0, n∗ + 1) < 1 + w/u,

so (1.2.9) contradicts (1.2.7) for λ > λ∗ and δ close enough to one. Thus, the mechanic
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must be hired at period t1 with probability greater than 1 − λt1(t1+1)/2 and t1 ≤ n∗ at a

history ht1 with one engine replacement and no tune-ups.

Now for some j ≥ 1, let htj be a history at tj ≤ jn∗ on the equilibrium path where

the mechanic is hired with probability greater than 1−λtj(tj+1)/2, such that htj has j engine

replacements and no tune-ups. I show that there exists period tj+1 ≤ tj + n∗ such that

the mechanic is hired with probability greater than 1− λtj+1(tj+1+1)/2. Since the mechanic

is hired at htj with greater than probability 1− λtj(tj+1)/2, the mechanic must perform an

engine replacement with positive probability when it is needed (by the same argument as

above), and incentive compatibility gives the necessary condition

−w +

tj+n−1∑
k=tj+1

δk−tjλk−tju+
∞∑

k=tj+n

δk−tj v̄ke (htj )

≤ u+

tj+n−1∑
k=tj+1

δk−tj (1− λk(k+1)/2)u+

∞∑
k=tj+n

δk−tj v̄ke (htj )

for n ≤ tj+1 − tj . Suppose by contradiction that tj+1 > tj + n∗. Picking n = n∗ + 1 gives

tj+n
∗∑

k=tj+1

δk−tj [λk−tj − (1− λk(k+1)/2)]u ≤ u+ w. (1.2.10)

Dividing by u and taking the limit of δ gives

lim
δ→1

tj+n
∗∑

k=tj+1

δk−tj [λk−tj − (1− λk(k+1)/2)] = f(tj , n
∗ + 1) < 1 + w/u,

so (1.2.10) contradicts (1.2.7) for λ > λ∗ and δ close enough to one. Then there exists a

history htj+1 following htj on the equilibrium path for some tj+1 ≤ tj + n∗ ≤ n∗(j + 1)

where the mechanic is hired with probability greater than 1 − λtj+1(tj+1+1)/2 with j + 1

engine replacements (where the good mechanic must have performed a tune-up with at

least probability β∗) and no tune-ups. For δ close enough to one, this induction proves

the existence of such a history on the equilibrium path containing any number of engine

replacements j ≤ L such the posterior upon observing the full history is at least Υj(µ0), if
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motorist 0 hires with positive probability.

Lemma 1.2.5 shows the existence of some history ht̃ at some t̃ ≤ Ln∗ on the equilib-

rium path whose full observation yields posterior µt̃(ht̃) ≥ ΥL(µ0) > p∗ and the mechanic

is hired with probability greater than 1 − λt̃(t̃+1)/2, which requires that the motorist hire

even if he observes the full history. Yet if he observes the full history, hiring cannot be a

best response, a contradiction.

1.3 Proofs of Chain Store Game Results

1.3.1 An Equilibrium for the Limited History Chain Store Game with T = 1

I construct a sequential equilibrium (σ∗, µ∗). Let any history ht be given. The

strategies are as follows. The incumbent always fights when htt−1 ∈ {∅, h0} (where h0 is

the empty history at period 0), always acquiesces when htt−1 = A, and acquiesces with

probability βF ≡ (1 − b)/(1 − µ0) when htt−1 = F . For any t, competitor t never enters

when ĥtt−1 ∈ {∅, h0}, always enters when ĥtt−1 = A, and enters with probability αF ≡

1 − (1 − δ)/(δc) when ĥtt−1 = F . Competitor t has belief µ0 that the incumbent is tough

when ĥt ∈ {h0,∅, F}, and of course knows that the incumbent is weak when ĥt = A.

The competitor’s strategy is clearly a best response at ĥt ∈ {h0,∅, A}. When

ĥt = F , the competitor’s payoff for entering is

µ0(b− 1) + (1− µ0)(βF b+ (1− βF )(b− 1))

= µ0(b− 1) + (1− µ0)

(
1− b

1− µ0
b+

1− µ0 − (1− b)
1− µ0

(b− 1)

)
= µ0(b− 1) + (1− b)(b− (b− µ0))

= 0,

so both In and ∅ are best responses.

Since strategies and beliefs only depend on the last period, continuation payoffs also

depend only on the last period. For the incumbent, let VIn be the continuation payoff at
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some period after the competitor enters, and let Va be the continuation payoff following

action A by the incumbent. Since VIn must simply be the value of the best action,

VIn = max {δVA,−(1− δ) + δVF }

= max {δVIn ,−(1− δ) + δ (αFVIn + (1− αF )c)}

= max

{
δVIn ,−(1− δ) + δ

((
1− 1− δ

δc

)
VIn +

1− δ
δc

c

)}
= max

{
δVIn , δ

(
1− 1− δ

δc

)
VIn

}
(1.3.1)

= δVIn .

Since δ ∈ (0, 1), it must be that VIn = 0. This means that the payoffs for playing A and F

are equal to 0 (see (1.3.1)), so any strategy by the incumbent is a best response.

The beliefs at ĥt ∈ {A,F} are off the equilibrium path, so it remains to checked

that they are consistent with small perturbations. Let some ε ∈ (0, 1) be given. Let (σk)k

be a sequence of strategy profiles,1 where under σk, competitor t plays In with probability

εk when ĥt ∈ {∅, h0} and plays ∅ with probability εk when ĥt = A, and the incumbent

plays A with probability εk when ĥt = ∅ and plays F with probability εk when ĥk = A.

Otherwise σk is the same as σ∗, and beliefs µk are entirely determined by Bayes’ rule. Then

limk→∞(σk, µk) = (σ∗, µ∗).

1.3.2 Proof of Theorem 1.3.1

Let any sequential equilibrium be given. I bound the payoff for the following (possi-

bly deviation) incumbent strategy: for some K, fight for every period 0, ...,K, then acquiesce

for every period thereafter. The probability that every competitor 1, ...,K sees their full

history is
∏K
k=1

∏k
k′=1 λ

k′ = λζ̃(K) (note that competitor 0’s history is always empty, so

1This is not to be confused with the sequence of competitor strategies for all periods in a single strategy
profile.
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there is nothing to see) where

ζ̃(K) ≡
K∑
k=1

1
2k(k + 1).

Suppose by contradiction that conditional on all competitors 1, ...,K seeing their

full history, there are greater than L periods with entry with positive probability on the

equilibrium path. That means the incumbent’s equilibrium strategy has her acquiescing

with at least probability b at each of those histories (otherwise the competitors would not

enter when they observe those full histories). The (L+1)th competitor entering observes the

full history and must have a posterior greater than or equal to ΥL(µ0) > p∗ and therefore

will not enter, a contradiction.

Thus, conditional on all competitors 1, ...,K seeing their full history, the average

discounted payoff for periods 0, ...,K for playing this strategy is greater than or equal to

(1− δ)

[
λζ̃(K)

(
L−1∑
k=0

δk(−1) +
K∑
k=L

δkc

)
+ (1− λζ̃(K))

K∑
k=0

δk(−1)

]

= (1− δ)
[
λζ̃(K)

(
δL(1− δK+1)

1− δ
c

)
− 1− δL

1− δ
− (1− λζ̃(K))

δL(1− δK+1)

1− δ

]
= [λζ̃(K)c− (1− λζ̃(K))]δL(1− δK+1)− (1− δL)

= [λζ̃(K)δL(1− δK+1)c− (1− λζ̃(K))δL(1− δK+1)]− (1− δL). (1.3.2)

The incumbent receives at least 0 for acquiescing in periods beyond K, so (1.3.2) is a lower

bound for the average discounted payoff for all periods, and therefore also vI(µ
0, δ, λ). Let

any ε′ ∈ (0, 1) and any ε′′ > 0 be given. There exists K∗ such that for all K > K∗,

δL+K+1c < ε′′. Since limλ→1 λ
ζ̃(K) = 1, there exists λ∗ ∈ (0, 1) such that for all K > K∗

and λ ∈ (λ∗, 1),

vI(µ
0, δ, λ) ≥ [(1− ε′)δL(1− δK+1)c− ε′]− (1− δL)

= [δLc− δL+K+1c− ε′δL(1− δK+1)c− ε′]− (1− δL).

> [δLc− ε′′ − ε′δL(1− δK+1)c− ε′]− (1− δL).
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Pick ε′, ε′′ such that ε′ + ε′δL(1− δK+1)c+ ε′′ = ε. Then for λ ∈ (λ∗, 1),

vI(µ
0, δ, λ) ≥ δLc− (1− δL)− ε.
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Appendix 2

Proofs for Chapter 2

2.1 Proofs for Sections 2.2 and 2.3

2.1.1 Proof of Lemma 2.2.1

Given that the short-run players are playing public strategies given by vector σ̃2,

player 1’s payoffs of playing any particular action does not depend on player 1’s full (private)

history. Let

Va1(σ̃|ha2) ≡ (1− δ)u1(a2, a1) + δ
∑
y∈Y

ρ(y|a2, a1) max
σ1∈Σ1

V (σ1, σ̃2|ha2a1y)

denote the value of choosing a1 at full history ha2 and then choosing a best response at

all subsequent histories, where V (σ1, σ̃2|ha2a1y) is the value of playing strategy σ1 given

player 2 strategies σ̃2 at full history ha2a1y. Define H̄t : Ht → 2H
t

so that H̄t(ht) is the set

of full histories at period t whose public component (those visible to player 2 at period t) is

equal to ht. Consider any two histories h, ȟ ∈ H̄t(ht) for some public history ht. Because

future player 2s cannot condition on the events of period t−K or earlier,

Va1(σ̃2|ha2)

= (1− δ)u1(a2, a1) + δ
∑
y∈Y

ρ(y|a2, a1) max
σ1∈Σ1

V (σ1, σ̃2|ha2a1y) (2.1.1)

= (1− δ)u1(a2, a1) + δ
∑
y∈Y

ρ(y|a2, a1) max
σ1∈Σ1

V (σ1, σ̃2|ht)

= (1− δ)u1(a2, a1) + δ
∑
y∈Y

ρ(y|a2, a1) max
σ1∈Σ1

V (σ1, σ̃2|ȟa2a1y) = Va1(σ̃2|ȟa2)(2.1.2)

for all a1 ∈ A1.

Define public strategy profile σ̄1(a1|hta2) ≡
∑

h∈H̄t(ht) Pσ̃(ha2)σ̃1(a1|ha2) where
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Pσ̃(ha2) is the probability of ha2 being realized in equilibrium given σ̃. By (2.1.2), σ̄1 is a

best response to σ̃2. Because the equilibrium conditional probability of each public history

is the same between (σ̄1, σ̃2) and σ̃, i.e. Pσ̄1,σ̃2(ht|θ) = Pσ̃(ht|θ) for each ht ∈ H, θ ∈ Θ,

player 2 has the beliefs µ̃ are also consistent with (σ̄1, σ̃2). Furthermore, the expected (from

the perspective of player 2) play by player 1 is also identical. Thus, σ̃2 is a best response

to σ̄1.

2.1.2 Proof of Proposition 2.3.3

Proof of Part 1

The proof is constructive, following the example of Proposition 7.3.1 in Mailath

and Samuelson (2006b) where possible. Let any w ≡ (φ, µ, γ) ∈ B(W ) ⊂ W be given.

I construct a wPBE strategy profile σ for the variant game G∞φ,µ. Define functions Q :

B(W )→ A,U : B(W )→W so that (φ, µ,Q(w)) is enforced by U(w).

Specify the wPBE strategy profile σ as follows. Recursively define Ut(w) ∈ W as

follows: U0(w) = w, Ut(w) = U(Ut−1(w)). Let any full semipublic history ht ∈ Y K+t be

given — note that ht contains the initial history h0 ∈ Y K . Denote (φt, µt, γt) = Ut(w)

and Qt(w) = Q(Ut(w)) = αt for all t. Define the strategy profile σ2(ht) = αt2(ht) and

σ1(hta2) = αt1(hta2) for each t, ht ∈ Ht, a2 ∈ A2.

First I show that V (σ|h0) = γ(h0) for initial history h0. Then

γ(h0) = V((φ, µ,Q(w)),U(w))(h0) = V((φ, µ,Q0(w)),U1(w))(h0) (2.1.3)

= (1− δ)u1(α0(h0, θ0)) + δ
∑
a∈A

∑
y0∈Y

α0(a|h0, θ0)ρ(y0|a)γ1(h0y0) (2.1.4)

= (1− δ)u1(σ(h0, θ0)) + δ
∑
a∈A

∑
y0∈Y

α0(a|h0, θ0)ρ(y0|a) (2.1.5)

·V((φ1, µ1, α1),U2(w))(h0y0) (2.1.6)

= (1− δ)u1(σ(h0, θ0)) + δ
∑
a∈A

∑
y0∈Y

α0(a|h0, θ0)ρ(y0|a) (2.1.7)

·

[
(1− δ)u1(α1(h0y0, θ0)) (2.1.8)
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+δ
∑
a∈A

∑
y1∈Y

α1(a|h0y0, θ0)ρ(y1|a)γ2(h0y0y1)

]
(2.1.9)

= (1− δ)
t−1∑
s=0

δs
∑

hs∈Y s
Pσ(h0hs|h0)u1(σ(hs, θ0)) (2.1.10)

+δt
∑
ht∈Y t

Pσ(h0ht|h0, θ0)γt(htt−K , ..., h
t
t−1)), (2.1.11)

where Pσ(hs|h0, θ0) is the probability of history hs occurring under strategy profile σ in

game Gφ,µ conditional on initial history h0 and the normal type θ0. Taking the limit t→∞

gives

v = (1− δ)
∞∑
s=0

δs
∑
hs∈Y s

Pσ(h0hs|h0, θ0)u1(σ(h0hs, θ0)) = V (σ|h0, θ0). (2.1.12)

To show that σ is a wPBE strategy profile, beliefs must be consistent with σ. Short-

run players do not know the full history nor do they know player 1’s type; thus, beliefs map

from public histories to probability distributions over elements of the set Θ×H. However,

since player 1 is playing a public strategy, beliefs on the full history do not affect player

2’s payoffs, so they can be ignored aside from knowing the public history; the only belief

that matters is the belief on the type θ. Together, a belief on θ and the public history

ht characterize player 2’s maximization problem. I show that beliefs (µt)∞t=0 on the type

are consistent with σ. The conditional probability Pσ(h0|θ) of initial history h0 at period

0 is given by φ(h0|θ). Suppose that for some t the conditional (given θ) probability of

public history ht satisfies Pσ(ht|θ) = φt(ht|θ). Then the conditional probability of history

ht+1 = hty at period t+ 1 is

Pσ(ht+1|θ) =
∑

ht∈τ(ht+1)

Pσ(ht|θ)
∑
a∈A

σ(a|ht, θ)ρ(y|a)

=
∑

ht∈τ(ht+1)

φt(ht|θ)
∑
a∈A

αt(a|ht, θ)ρ(y|a) = φt+1(ht+1|θ),

where τ(ht+1) ≡ {ht ∈ Ht : ∀k ∈ {K−1, ..., 1}, ht+1
−k−1 = ht−k} is the set of period t histories

that match the oldest K − 1 periods of ht+1. Then by induction Pσ(ht|θ) = φt(ht|θ) for all
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t. The definition of wPBE requires that the belief of player 2 at t for histories ht on the

equilibrium path is

µ(θ|ht) =
Pσ(ht|θ)µ̇0(θ)∑

θ′∈Θ P (ht|θ′)µ̇0(θ′)
=

φt(ht|θ)µ̇0(θ)∑
θ′∈Θ φ

t(ht|θ′)µ̇0(θ′)
= µt(θ|ht), (2.1.13)

so the consistency requirement is satisfied. For histories not on the equilibrium path, wPBE

does not impose any requirement beyond that a belief is defined, which is provided by µt.

Finally, I show that there are no profitable one-shot deviations. For short-run players

this follows from (2.3.3) in Definition 2.3.13. For all ht, play at period t is given by σt(ht, θ) =

αt(ht, θ) and beliefs by µt; substituting αt for α and µt for µ, (2.3.3) immediately implies

there is no profitable deviation for the short-run player. The long-run player also has no

profitable one-shot deviations due (2.3.5) in Definition 2.3.13, as is now shown. For any

period t, (φt, µt, αt) is enforced by (φt+1, µt+1, γt+1). Then for all ht ∈ Ht and at2 ∈ A2,

(1− δ)u1(at2, α1(htat2, θ0)) + δ
∑
a1∈A

∑
yt∈Y

α1(a1|htat2, θ0)ρ(yt|at2, a1)γ̃(htyt)

≥ (1− δ)u1(a2, a
′
1) + δ

∑
yt∈Y

ρ(yt|at2, a′1)γt+1(htyt)

for all a′1 ∈ A1. By the same argument as (2.1.3) through (2.1.12), it can be shown that

γt+1(a) is the continuation payoff of action profile a being played in period t. Thus, there

are no profitable one-shot deviations for player 1.

For all w ≡ (φ, µ, γ) ∈ W , I have shown that γ(h0) is the value (to player 1) of

a wPBE strategy profile for variant game G∞φ,µ conditional on initial history h0. Thus,

w ∈ Dφ,µ ⊂ D, and so B(W ) ⊂ D.

Proof of Part 2

I prove that D ⊂ B(D) because Part 1 implies that if D is self-generating, B(D) ⊂ D

and so B(D) = D.

Let any w0 ≡ (φ0, µ0, γ0) ∈ D be given. Then by Definition 2.3.9 and Lemma 2.2.1,
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there exists a public wPBE (σ, µ) for variant game G∞φ0,µ0 such that V (σ|h0) = γ(h0) for

initial history h0. Define history distribution φt so that φt(ht|θ) = Pσ(ht|θ). Because this is

a wPBE, for any ht ∈ Ht on the equilibrium path, player 2 beliefs are given by Bayes’ rule:

µ(θ|ht) =
µ0(θ)Pσ(ht|θ)∑

θ′∈Θ µ
0(θ′)Pσ(ht|θ′)

=
µ0(θ)φt(ht|θ)∑

θ′∈Θ µ
0(θ′)φt(ht|θ′)

. (2.1.14)

Define belief mapping µt such that µt(θ|ht) = µ(θ|ht); (2.1.14) shows that µt is consistent

with φt. Because σ is public, I can define action mapping αt such that αt2(ht) = σ2(ht)

and αt1(hta2, θ) = σ(hta2, θ) for each ht ∈ Ht, a2 ∈ A2, θ ∈ Θ. Also define payoff functions

γt(ht) ≡ V (σ|ht).

I now show that xt ≡ (φt, µt, αt) is enforced by wt+1 ≡ (φt+1, µt+1, γt+1). First,

φt+1(ht+1|θ) = Pσ(ht+1|θ)

=
∑

ht∈τ(ht+1)

∑
a2∈A2

∑
y∈Y

Pσ(ht|θ)σ2(a2|ht)σ1(a1|hta2, θ)ρ(y|a2, a1)

=
∑

ht∈τ(ht+1)

∑
a2∈A2

∑
y∈Y

φt(ht|θ)α2(a2|ht)α1(a1|hta2, θ)ρ(y|a2, a1),

so inducibility is satisfied: (φt+1, µt+1) ∈ Υ(φt, µt, αt). Incentive compatibility for the long-

run and short-run players is a straightforward implication of σ not having profitable one-shot

deviations. Thus, xt ≡ (φt, µt, αt) is enforced by wt+1 ≡ (φt+1, µt+1, γt+1). Furthermore,

γ(ht) = V (σ|ht)

=
∑
a2∈A2

α2(a2|ht)
∑
a1∈A1

α1(a1|ht, θ0)

(1− δ)u1(a2, a1) +
∑
y∈Y

ρ(y|a2, a1)V (σ|hty)


=

∑
a2∈A2

α2(a2|ht)
∑
a1∈A1

α1(a1|ht, θ0)

(1− δ)u1(a2, a1) +
∑
y∈Y

ρ(y|a2, a1)γ(hty)


=

∑
a2∈A2

α2(a2|ht)Va2(xt, wt+1)(ht),

so (φt, µt, γt) is decomposed by xt and wt+1 (see Definition 2.3.14). Since the period t+ 1

continuation game is strategically equivalent to the G∞φt+1,µt+1 variant game, wt+1 ∈ D.
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Thus, since w1 ∈ D and w0 is generated by w1, w0 ∈ B(D) so D ⊂ B(D).

2.1.3 Proof of Proposition 2.3.4

I start with a useful lemma that establishes B is additive in the sense of set unions,

and therefore monotonic in the sense of set inclusion.

Lemma 2.1.1. Let any two sets W,W ′ of HBPs be given. Then B(W ∪W ′) = B(W ) ∪

B(W ′).

Proof. I first show that B(W ∪ W ′) ⊂ (B(W ) ∪ B(W ′)). Let any w ∈ B(W ∪ W ′) be

given. Then there exist HBA x and HBP w̃ ∈ (W ∪W ′) which decompose w. Without

loss of generality, suppose w̃ ⊂ W . Since w is decomposed by x and w̃, then w ∈ B(W ) ⊂

(B(W ) ∪B(W ′)). Thus B(W ∪W ′) ⊂ (B(W ) ∪B(W ′)).

Now let w ∈ (B(W ) ∪ B(W ′)) be given. Without loss of generality, suppose w ∈

B(W ), so then there exist HBA x and HBP w̃ ∈W which decompose w. Since w̃ ∈ (W∪W ′),

it is also true that w ∈ B(W ∪W ′), so (B(W ) ∪B(W ′)) ⊂ B(W ∪W ′).

The following lemma is a virtually identical adaptation from the APS version, so

the proof is omitted (see Lemma 7.3.2 of Mailath and Samuelson (2006b)).

Lemma 2.1.2. If W is compact, B(W ) is closed.

F† is compact and the set of HBPs decomposable on F† is also feasible: B(F†) ⊂ F†.

Proposition 2.3.3 and Lemma 2.1.1 imply that, for any m, D(δ) ⊂ Bm(F†) ⊂ F†. Repeatedly

applying B therefore gives a decreasing sequence {Bm(F†)}∞m=0. Then

D ⊂ F†∞ ≡
∞⋂
m=0

Bm(F†).

I adapt the proof of Proposition 7.3.3 of Mailath and Samuelson (2006b) to my

setting, showing that F
†
∞ ⊂ B(F†∞), which by Proposition 2.3.3 proves the result. For any
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w ≡ (φ, µ, γ) ∈ F
†
∞, w ∈ Bm(F†) for all m ∈ {1, 2, ...}, and there exists (xm, w̃m) such that

xm ≡ (φ, µ, αm) ∈ X, w̃m ∈ Bm−1(F†), and w is decomposed by xm and w̃m.

Because the sequence (xm, w̃m)∞m=0 is bounded, without loss of generality assume

that it converges to a limit (x∗, w̃∗) ≡ ((φ, µ, α∗), (φ̃∗, µ̃∗, γ̃∗)), using a convergent subse-

quence if necessary by the Bolzano-Weierstrass theorem. I show that w̃∗ ∈ F
†
∞, that x∗ is

enforced by w̃∗ and that w is decomposed by x∗ and w̃∗.

Suppose by contradiction that w̃∗ /∈ F
†
∞. By Lemma 2.1.2, F†∞ is closed, so there

exists ε > 0 such that B̄ε(w̃
∗) ∩ F

†
∞ = ∅, where B̄ε(w̃) is defined as follows:1

B̄ε((φ̃, µ̃, γ̃)) ≡ {(φ′, µ′, γ′) : ∀h ∈ Y K ,∀θ ∈ Θ, φ′(h|θ) ∈ [φ̃(h|θ)− ε, φ̃(h|θ) + ε],

µ′ ∈Mφ′ , µ
′(θ|h) ∈ [µ̃(θ|h)− ε, µ̃(θ|h) + ε], γ′ ∈ B̄Γ

ε (γ̃)}

where B̄Γ
ε (γ̃) is the closed ball in Γ (which is a |Y |K-dimensional Euclidean space) of radius

ε with center γ̃. There exists m′ such that for all m > m′, w̃m ∈ B̄ε(w̃
∗) and because

{Bm(F†)}∞m=0 is a decreasing sequence, for any m′′ > m′,

B̄ε(w̃
∗) ∩

 ⋂
m≤m′′

Bm(F†)

 6= ∅.

The collection {B̄ε(w̃∗)}
⋃∞
m=1{Bm(F†)} has the finite intersection property and B̄ε(w̃

∗)∪F†

is compact, so the aforementioned collection has a non-empty intersection (by Theorem

4.7.15 of Corbae, Stinchcombe, and Zeman (2009)): B̄ε(w̃
∗) ∩ F

†
∞ 6= ∅, a contradiction.

It is easy to see that x∗ ∈ X because X is closed and all xm ∈ X. Since xm is

enforced by w̃m for all m, taking the limit it is straightforward to show that x∗ is enforced

by w̃∗. Similarly it is clear that limm→∞ V(xm, w̃m) = γ = V(x∗, w̃∗), w is decomposed by

x∗ and w̃∗. Thus, F†∞ is self generating and bounded, so F
†
∞ ⊂ D, and by Proposition 2.3.3,

F
†
∞ = D.

1The “closed ball with center w̃ and radius ε” is not well defined in the space W ≡ M × Γ because M is
not a Euclidean space.
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2.1.4 Proof of Proposition 2.3.5

I prove that each element of V(W ) is a wPBE player 1 payoff for the full game G∞.

Let any v ∈ V(W ) be given. By Definition 2.3.18, there exists HBP (φ, µ, γ) ∈ D such that

v ∈ E(φ,µ,γ). This means there exists a strategy profile σ̌ ∈ Σ∗γ of the γ-antegame such that

the distribution of outcomes matches φ, i.e. Pσ̌(h|θ) = φ(h|θ) for each h ∈ Y K (where Pσ̌(·)

is defined as it was just after (2.1.10)), and with value V (σ̌) = v. Let µ̌ be the associated

beliefs of the equilibrium with strategy profile σ̌.

As in the proof of part 1 of Proposition 2.3.1, define functions Q : D→ A,U : D→ D

so that (φ, µ,Q(w)) is enforced by U(w). Recursively define Ut(w) ∈W for t ∈ {K,K+1, ...}

as follows: UK(w) = w, Ut+1(w) = U(Ut(w)). Denote (φt, µt, γt) = Ut(w) and Qt(w) =

Q(Ut(w)) = αt for all t.

For the full game G∞, define public strategy profile σ ∈ Σ̂ such that σt2(h) = σ̌t2(h)

and σ1(t, ha2) for each date-history (t, h) ∈ H and each a2 ∈ A2. For periods t ≥ K, define

σ2(t+K,h) = αt+K2 (h) and σ1(t+K,ha2) = α1(t+K,ha2, θ0) for each (t+K,h) ∈ H, a2 ∈

A2. Define (φt+K , µt+K , γt+K) = Ut(w). Define beliefs µ∗ such that µ∗(θ|t, h) = µt(θ|h) for

all t ≥ K.

Note that Pσ̌(h|θ) = Pσ((K,h)|θ) = φK(h|θ). Suppose that for some some t ≥ K,

Pσ((t, h)|θ) = φt(h|θ). Since (φt+1, µt+1, γt+1) = U((φt, µt, γt)) ∈ B({(φt, µt, γt)}), the HB

(φt+1, µt+1) is induced by (φt, µt, αt). Then for all h′ ∈ Y K , y ∈ Y ,

φt+1(h′y|θ) =
∑

h∈τ(h′y)

∑
a2∈A2

∑
y∈Y

φt(h|θ)αt2(a2|h)αt1(a1|ha2, θ)ρ(y|a2, a1)

=
∑

h∈τ(h′y)

∑
a2∈A2

∑
y∈Y

Pσ((t, h)|θ)σ2(a2|t, h)σ1(a1|t, ha2, θ)ρ(y|a2, a1)

= Pσ((t+ 1, h′y)|θ).

Then by induction, Pσ((t, h)|θ) = φt(h|θ) holds true at all t ≥ K. The direct analogue

of (2.1.13) shows that µ∗(θ|h) is consistent at t ≥ K, and the analogous steps of (2.1.3)

through (2.1.12) show that V (σ|t, h) = γt(h). The incentive compatibility requirements of
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Definition 2.3.13 directly imply the absence of profitable one-shot deviations in (σ, µ∗) for

t ≥ K.

The arguments above also show that continuation payoffs V (σ|t, hK) for play be-

ginning at period K with public history h is given by γ(hK). The fact that σ̌ is a wPBE of

the γ-antegame means that by incentive compatibility at for player 1 at period K − 1 with

history hK−1,

(1− δ)u1(a2, σ̌1(hK−1a2)) + δ
∑
a1∈A1

∑
yK−1∈Y

σ̌1(a1|hK−1a2)ρ(y|a2, a1)γ(hK−1yK−1)

≥ (1− δ)u1(a2, a
′
1) + δ

∑
yK−1∈Y

ρ(y|a2, a
′
1)γ(hK−1yK−1)

for each a′1 ∈ A1, so substituting σ1(hK−1a2) for σ̌1(hK−1a2) and V (σ|hK−1yK−1) for

γ(hK−1yK−1) proves that σ is incentive compatible for player 1 at period K − 1. By

backward induction, it is straightforward to show that σ̌ being a wPBE of the γ-antegame

implies incentive compatibility for σ in the full game and V (σ̌|ht) = V (σ|ht) for each

t ∈ {0, ...,K − 1} and ht ∈ Ht. Because player 2 observes the full history for periods

0, . . . ,K − 1, beliefs carry over from the antegame to the full game without modification

(µ̌(θ|h) = µ∗(θ|h) for all t ∈ {0, ...,K − 1}, h ∈ Ht, θ ∈ Θ). Thus, σ is a wPBE of the full

game and v = V (σ̌|∅) = V (σ|∅), so v ∈ E.

I now prove V(D) = E, and since the above arguments have shown V(D) ⊂ E, I show

E ⊂ V(D). Let v ∈ E and the associated public wPBE (σ, µ∗) of the full game G∞ be given

(so that v = V (σ)). At period K, the equilibrium distribution of histories conditional on

type θ is Pσ((K,hK)|θ). Define history distribution φK so that φK(hK |θ) = Pσ((K,hK)|θ),

define belief mapping µK so that µK(θ|hK) = µ∗(θ|(K,hK)), and payoff function γK(hK) =

V (σ|(K,hK)).

I show that w ≡ (φK , µK , γK) ∈ DφK ,µK . Define strategy profile σ̃ ∈ Σ∗
φK ,µK

of the

(φK , µK)-variant game as follows. Set σ̃2(t, h) = σ2(t+K,h) and σ̃1(t, ha2) = σ1(t+K,ha2)

for all h ∈ Y K , a2 ∈ A2. Define beliefs µ̃∗(t, h) = µ(t + K,h). Since beliefs and strategies

are the same (shifted by K periods), the lack of profitable deviations in (σ, µ) for periods
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K,K + 1, ... implies a lack of profitable deviations for (σ̃, µ̃∗) for periods 0, 1, .... Thus,

(σ̃, µ̃∗) is a wPBE of the (φK , µK)-variant game. Since σ|(K,h) = σ̃|(0,h), V (σ̃|(0, h)) =

V (σ|(t, h)) = γK(h). Then by Definition 2.3.9, w ∈ DφK ,µK ⊂ D.

For the γK-antegame, define strategy profile σ̌ ∈ ΣγK so that σ̌(ht) = σ(ht). For

the antegame, define beliefs µ̌∗ so that µ̌∗(h) = µ∗(h) for all t ∈ {0, ...,K − 1}, h ∈ Ht.

Since the short-run players in periods 0, ...,K − 1 observe the full history in the full game

G∞, the beliefs µ̌ in the γK-antegame are consistent with σ̌. Since there are no profitable

deviations in (σ, µ) and the maximization problems are identical in the antegame at every

history t ∈ {0, ...,K − 1}, h ∈ Ht, there are also no profitable one-shot deviations in σ̌,

so (σ̌, µ) is a wPBE of the γ-antegame with distribution of period K histories φK . Thus,

v ∈ E(φK ,µK ,γK), and so v ∈ V(D).

2.1.5 Proof of Proposition 2.3.6

Let any stationary wPBE (σ∗, µ∗) be given. Note that this is a Markov chain on

the state space of histories.

Lemma 2.1.3. Let some finite state space Ω ≡ {ω1, . . . , ωn} and a Markov chain {Xt} on

that state space with transition matrix Q be given. Let some initial probability distribution

on the states π0 ≡ (π0
1, . . . , π

0
n) be given, and let π∞ be the time average distribution of Xt,

i.e. for each i ∈ {1, . . . , n}

π∞ ≡ lim
t→∞

1

t

t−1∑
s=0

π0Qs. (2.1.15)

Then π∞ is stationary, i.e. π∞ = π∞Q.

Proof. Every Markov chain on a finite state space has at least one stationary distribution

(Furman, 2011). For aperiodic states, the limit (2.1.15) exists (see Property 2.17 of Gallager

(2012)); for periodic states, the limit also clearly exists. Finally,2 letting rt ≡ 1
t

∑t−1
s=0 π

0Qs,

2The conclusion of this proof is based on an answer at Mathematics Stack Exchange:
http://math.stackexchange.com/questions/897667/for-finite-markov-chain-time-average-

distribution-is-always-a-stationary-distri.
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I have

rtQ =
1

t

t−1∑
s=0

π0Qs+1 =
1

t

(
t−1∑
s=0

π0Qs + π0Qt − π0

)
,

so taking the limit gives

π∞Q =
(

lim
t→∞

rt
)
Q = lim

t→∞
rtQ = lim

t→∞

1

t

(
t−1∑
s=0

π0Qs + π0Qt − π0

)

= lim
t→∞

1

t

t−1∑
s=0

π0Qs = π∞,

proving the lemma.

Define

π∞(h|θ) ≡ lim
t→∞

1

t−K

∞∑
t=K

P tσ(h|θ)

as the time average probability of history h ∈ Y K generated by the Markov chain specified

by σ∗ conditional on type θ as given in (2.1.15); note that the initial distribution of this

Markov chain is π0(h|θ) = PKσ (h|θ). Define φ so that φ(h|θ) ≡ π∞(h|θ), and define belief

mapping µ so that µ(θ|h) ≡ µ∗(θ|h). Note that µ ∈ Mφ because µ∗ satisfies Bayes’ rule

on the equilibrium path. Define action mapping α so that α2(h) ≡ σ∗2(h) and α1(ha2, θ) ≡

σ∗1(ha2, θ). I show that x ≡ (φ, µ, α) is enforced by w ≡ (φ, µ, γ). Lemma 2.1.3 shows that

π∞(·|θ) is stationary, so for any history h′y ∈ Y K ,

φ(h′y|θ) = π∞(h|θ)

=
∑

h∈τ(h′y)

∑
a2∈A2

∑
a1∈A1

π∞(h|θ)σ2(a2|h)σ1(a1|h, θ)ρ(y|a2, a1)

=
∑

h∈τ(h′y)

∑
a2∈A2

∑
a1∈A1

φ(h|θ)α2(a2|h)α1(a1|h, θ)ρ(y|a2, a1),

so inducibility is satisfied: (φ, µ) ∈ Υ(φ, µ, α). Defining payoff function γ so that γ(h) ≡

V (h), the lack of profitable one-shot deviations in σ∗ immediately implies incentive com-

patibility for both players, so x is enforced by w. Finally,

γ(h) = V (h)
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=
∑
a2∈A2

∑
a1∈A1

σ2(a2|h)σ1(a1|h)

(1− δ)u1(a2, a1) + δ
∑
y∈Y

ρ(y|a2, a1)V (hy)


= V(x,w),

so w is decomposed by x and itself.

2.2 Proofs for Section 2.4

2.2.1 Proof of Proposition 2.4.1

Although player 1 observes all her past shocks, all of them except the current shock

can be ignored in equilibrium. The following definition and lemma (essentially the same as

Definition 4 and Lemma 2 in BMM) show this formally.

Definition 2.2.1. A strategy σ̃1 is a current shock strategy if for all h̃ ∈ H̃1, containing

non-shock history ha2 ∈ H×A2 and shocks z0
1 , . . . , z

t
1,

σ1(ha2, z
0
1 , ..., z

t−1
1 , zt1) = σ1(ha2, z̄

t−K
1 , ..., z̄t−1

1 , zt1)

for almost all zt1 ∈ Z1 and any z̄0
1 , . . . , z̄

t−1
1 ∈ Z1.

Lemma 2.2.1. If σ̃1 is a best response to σ̃2, then σ̃1 is a current shock strategy.

Proof. Let a player 1 history h̃ ∈ H̃t
1, containing non-shock history ha2 ∈ Ht×A2 and shocks

z0
1 , . . . , z

t
1, be given. Denote the public history at period t as h. Let V t+1(σ1, σ̃2|hyat+1

2 zt+1
1 )

be the value of playing the strategy σ1 starting at period t+ 1, following the realizations of

at+1
2 and zt+1

1 , and let σ̂1 ≡ arg maxσ1 V
t+1(σ1, σ̃2|hyat+1

2 , zt+1
1 ) be the best response. The

payoff (at period t) of playing action a1 after player 2 action at2 is

Ṽ ∗(a1, σ̃2|ha2, z
t
1)

≡
∑
y∈Y

ρ(y|a2, a1)

[
(1− δ)(u1(a2, a1) + εzt,a11 )

+δ

ˆ ˆ ∑
a2

σ̃t+1
2 (at+1

2 |hyzt+1
2 )V t+1(σ̂1, σ̃2|hyat+1

2 , zt+1
1 )
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dψ(zt+1
1 ) dψ(zt+1

2 )

]
. (2.2.1)

Note that the decision problem is independent of all shocks before period t. For any two

actions a1, a
′
1 ∈ A1, player 1 can only be indifferent between the two actions if zt,a11 −zt,a

′
1

1 = ζ

for some constant ζ. Thus, for almost all realizations of zt1, player 1 has a unique best

response and thus σ̃1 does not condition on z0
1 , . . . , z

t−1
1 .

The following result is an extension of Lemma 1 of BMM.

Lemma 2.2.2. Every essentially sequentially strict wPBE is quasi-Markov perfect.

Proof. Let any two full semipublic histories ht, h̄t which lead to the same quasi-Markov state

for player 2 be given. I will show that sequential strictness implies the same behavior at

the two histories.

Let some k ≥ K and k-length sequence yk ∈ Y k be given. Since players at periods

t+K + 1, t+K + 2, ... cannot observe period t, it is clear that the value function V (htyk)

does not depend on ht.

Now, let a (K − 1)-length sequence yK−1 ∈ Y K−1. For each at+K−1
2 ∈ A2, the

decision problem facing player 1 at htyK−1at+K−1
2 (at period t+K−1) is independent of ht,

and because the equilibrium is essentially sequentially strict, the set of maximizing actions is

the same singleton for almost all shocks zt+K−1
1 ∈ Z1. Then I have σ1(htyK−1a2, z

t+K−1
1 ) =

σ1(h̄tyK−1a2, z
t+K−1
1 ) for almost all zt+K−1

1 . By Definition 2.4.1, player 2 has the same

beliefs µ(htt−1y
K−1) = µ(h̄tt−1y

K−1) at both public histories (the shock zt+K−1
2 does not

affect the belief since it is independently drawn). Since player 1’s subsequent action is

identical at both histories with probability one, player 2’s decision problem is the same

at both histories, giving σ2(htyK−1, zt+K−1
2 ) = σ1(h̄tyK−1, , zt+K−1

2 ) for almost all shocks

zt+K−1
2 ∈ Zt+K−1

2 .

Now suppose that for any k ∈ {0, ...,K − 2}, V (htyk+1) = V (h̄tyk+1), where yk ∈

Y k. Then as above, the decision problem and unique maximizer for player 1 is the same
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at htyka2z
t+k
1 and h̄tyka2z

t+k
1 for almost all zt+k1 ∈ Z1; similarly, player 2 has the same

beliefs at htt−(K−k) · · · h
t
t−1y

k and h̄tt−(K−k) · · · h̄
t
t−1y

k, yielding the same unique maximizing

action at both histories for almost all shocks zt+k2 ∈ Z2, giving V (htt−(K−k) · · · h
t
t−1y

k) =

V (h̄tt−(K−k) · · · h̄
t
t−1y

k). By backwards induction, I have

σ2(htt−K · · · htt−1z
t+k
2 ) = σ2(h̄tt−K · · · h̄tt−1z

t+k
2 ) and σ1(hta2z

t+k
1 ) = σ1(h̄ta2z

t+k
1 )

for almost all zt+k2 ∈ Z2, z
t+k
1 ∈ Z1. Thus, strategies are the same within a quasi-Markov

state for player 2. An almost identical argument shows the same for quasi-Markov states of

player 1, and so the equilibrium is quasi-Markov perfect.

Consider player 1’s decision at some period t. Suppose player 1 is indifferent between

distinct actions a1 and a′1 at public history h ∈ Ht, player 2 action a2 and shock realization

z1; borrowing notation from the proof of Lemma 2.2.1 (specifically (2.2.1)), I can write this

as

Ṽ ∗(a1, σ̃2|ha2, z
t
1) = Ṽ ∗(a′1, σ̃2|ha2, z

t
1). (2.2.2)

Define

V ∗(σ̃2|hy) ≡
ˆ ˆ ∑

a2∈A2

σ̃t+1
2 (at+1

2 |hyzt+1
2 )V t+1(σ̂1, σ̃2|hyat+1

2 , zt+1
1 ) dψ(zt+1

1 ) dψ(zt+1
2 )

as the integral term in (2.2.1). Substituting into (2.2.2) and rearranging yields

ε(za11 − z
a′1
1 ) = (1− δ)[u1(a2, a

′
1)− u1(a2, a1)] + δ

∑
y∈Y

[ρ(y|a2, a1)− ρ(y|a2, a
′
1)]V ∗(σ̃2|hy).

(2.2.3)

This implies that the set of shocks z1 such that (2.2.3) holds is Lebesgue measure zero, so

the profile is essentially sequentially strict. Lemma 2.2.2 shows that every essentially strict

equilibrium is quasi-Markov perfect, so the wPBE is quasi-Markov.
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2.2.2 Proof of Proposition 2.4.2

Proposition 2.4.1 shows that every wPBE in any perturbed game is quasi-Markov.

Thus, for any sequence (ψk, εk)k where limk→∞ ε
k = 0, the limit of any sequence of wPBEs

of the (ψk, εk)-perturbed game must converge to a quasi-Markov equilibrium.

2.3 Proofs for Section 2.5

2.3.1 Proof of Proposition 2.5.1

First, suppose δ < 1
2 and let any quasi-Markov equilibrium be given. For any period

t, let

ât1 =

C (1− δ)u1(c, C) + δV t+1(C) ≥ (1− δ)u1(c,D) + δV t+1(D)

D otherwise

be a best response at period t following player 2 playing c (note that the best response is

independent of the history), where V t+1(·) is the continuation payoff at period t+ 1. Note

that ât1 is also a best response after player 2 plays d. Note that

V t(htc) = (1− δ)u1(c, ât1) + δV t+1(ât1), V t(htd) = (1− δ)u1(d, ât1) + δV t+1(ât1)

so V t(htc) = V t(htd) + (1− δ). Since V t(hta2) is independent of ht,

V t(C)− V t(D) = (σt2(C)− σt2(D))V t(htc) + ((1− σt2(C))− (1− σt2(D)))V t(htd)

= (σt2(C)− σt2(D))V t(htc) + (σt2(D)− σt2(C))V t(htd)

= (σt2(C)− σt2(D))[V t(htc)− V t(htd)]

= (1− δ)(σt2(C)− σt2(D)).

Note that if C is a best response at any period t following player 2 action a2,

(1− δ)u1(a2, C) + δV t+1(C) ≥ (1− δ)u1(a2, D) + δV t+1(D)

δ(V t+1(C)− V t+1(D)) ≥ (1− δ)(u1(a2, D)− u1(a2, C)) = 1− δ
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δ(1− δ) ≥ δ(V t+1(C)− V t+1(D)) ≥ 1− δ,

a contradiction, so player 1’s strict best response is always D. For history D at any period,

the belief on the commitment type is 0 so player 2’s best response is d. Similarly, at period 0,

for µ0 < 1
2 , player 2’s best response is d, so (d,D) is played every period and the equilibrium

payoff is 1. For µ0 > 1
2 , player 2’s best response at period 0 is c, so (c,D) is played in period

0 and then (d,D) every period for every period after that. For µ0 = 1
2 , player 2 is indifferent

at period 0, any mixture for player 2 is possible in period 0, and (d,D) is played after that.

Thus, (2.5.2) has been proven.

I begin by introducing notation and some useful preliminary lemmas. For brevity,

for any history distribution φ, denote φ(C|θ0) simply as φ; for any action mapping α,

denote α2(C|h) as α2(h), and denote α1(C|h, θ0) as α1 (since player 1 does not condition

on history due to quasi-Markov perfection). Define I ≡ {(φ, µ, γ) ∈ F† : γ(C) = γ(D) + η},

where η ≡ 1−δ
δ , as the “indifference plane” (i.e. at each HBP in I, player 1 is indifferent

between C and D). Let F∅ ≡ {w ∈ F† : B({w}) = ∅} be the set of “useless points” in F†,

meaning those which can only generate empty sets. Ignoring those points greatly simplifies

the analysis.

Lemma 2.3.1. Define the set F̄ ≡ F†\F∅. An HBP w̃ ≡ (φ̃, µ̃, γ̃) is in the set F̄ only if

one of the following conditions is true:

1. φ̃ = 0 and γ̃(C)− γ̃(D) ≥ η;

2. w̃ ∈ I; or

3. φ̃ = 1 and γ̃(C)− γ̃(D) ≤ η.

Proof. First, suppose φ̃ = 0, and let some HBA x ≡ (φ, µ, α) enforced by w̃ be given.

Since inducibility requires α1 = φ̃ = 0, D must be a best response for player 1, and

therefore γ̃(C) − γ̃(D) ≥ η; otherwise, I have a contradiction, so B(w̃) = ∅. Second,

suppose φ̃ ∈ (0, 1), again letting some enforced HBA x ≡ (φ, µ, α) be given. Inducibility

requires α1 = φ̃ ∈ (0, 1), so both C and D must be best responses for player 1, and hence
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γ̃(C) − γ̃(D) = η, which means w̃ ∈ I. Third, suppose φ̃ = 1. Inducibility requires that C

be a best response for player 1, so Condition 3 must be satisfied.

Define B̄(W ) ≡ B(W )∩F̄ and D̄ ≡ D∩F̄. It is straightforward to adapt Proposition

2.3.4 to show
⋂
m B̄m(F̄) = D̄ and that V(D̄) = V(D) = E, since the HBPs in F∅ cannot

generate anything.

I present some results characterizing the set of useful HBPs that can be generated

by any particular HBP. For convenience, define g : R2 → Γ so that g(vD, vC) = γ such that

γ(D) = vD, γ(C) = vC ; for further brevity, let gI(vD) ≡ g(vD, vD + η). Since beliefs are

pinned down for each history distribution and hence redundant, I often omit belief mappings

in HBPs and HBAs (i.e. write “(φ, γ)” instead of “(φ, µ, γ)”). Define φ∗ ≡ µ0

1−µ0 . I rewrite

(2.5.4) as q(φ) = φ∗

1−2φ , omitting µ0 since it is taken as given. Define φ̂3 so that q(φ̂3) = 1

(this is well-defined for µ0 ∈ (0, 1
2 ]). Also define r : (0,∞)→ R as the inverse of q(·):

r(φ) ≡ q−1(φ) =
1

2

(
1− φ∗

φ

)
. (2.3.1)

It is straightforward to show that q(·) and r(·) are strictly increasing for φ ∈ [0, 1
2) and

φ ∈ (0,∞), respectively.

Lemma 2.3.2. Suppose µ0 ∈ (0, 1
2 ]. Let any HBP w̃ ≡ (φ̃, γ̃) be given. Then

B̄(w̃) =



{(q(φ̃), gI((1− δ) + δγ̃(D)))} φ̃ ∈ [0, φ̂3)

{(1, γ) : γ(D) = (1 + δ) + δγ̃(D),

γ(C) ∈ [γ(D) + η, 2(1− δ) + δγ̃(C)]} φ̃ = φ̂3

{(1, g((1− δ) + δγ̃(D), 3(1− δ) + δγ̃(D)))} φ̃ ∈ (φ̂3,
1
2)

{(φ, γ) : γ(D) ∈ [(1− δ) + δγ̃(D), 3(1− δ) + δγ̃(D)],

γ(C) = 3(1− δ) + δγ̃(D)} ∩ F̄ φ̃ = 1
2

{(0, γ) : γ(C) = γ(D) = 2(1− δ) + δγ̃(C)} φ̃ ∈ (1
2 , 1].

Proof. I consider each case sequentially. Let some HBA x ≡ (φ, µ, α) enforced by w̃ and

the HBP w ≡ (φ, µ, γ) decomposed by x and w̃ be given.
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First, suppose φ̃ ∈ [0, φ̂3). Inducibility requires that α1 = φ̃ < 1
2 , so player 2’s payoff

for playing c at history D is

u2(c, α1(θ0)) = 3φ̃+ 0 · (1− φ̃) < 2φ̃+ 1 · (1− φ̃) = u2(d, α1(θ0));

thus, d is strict best response, so α2(D) = 0 and γ(D) = (1 − δ) + δγ̃(D). At history C,

player 2 is indifferent if

E[u2(c, α1)|C] = 3µ+(1−µ)[φ̃·3+(1−φ̃)·0] = E[u2(d, α1)|C] = 2µ+(1−µ)[φ̃·2+(1−φ̃)·1]

µ[3− 2] + (1− µ)[3φ̃− 2φ̃− (1− φ̃)] = µ+ (1− µ)[2φ̃− 1)] = 0

µ[2− 2φ̃] = 1− 2φ̃ (2.3.2)

Substituting Bayes’ rule for µ gives

µ0

µ0 + (1− µ0)φ
[2− 2φ̃] = 1− 2φ̃

µ0[2− 2φ̃] = (1− 2φ̃)[µ0 + (1− µ0)φ]

µ0[2− 2φ̃− 1 + 2φ̃] = (1− 2φ̃)(1− µ0)φ

µ0

1− µ0
= (1− 2φ̃)φ

Substituting φ∗ ≡ µ0

1−µ0 gives

φ =

µ0

1−µ0

1− 2φ̃
=

φ∗

1− 2φ̃
= q(φ̃).

Thus, if φ > q(φ̃), player 2 strictly prefers d, and if the inequality is reversed strictly prefers

c. Hence, if φ > q(φ̃), γ(C) = γ(D) = (1− δ) + δγ̃(D) < γ(D) + η, and thus w ∈ F∅ (note

that q(φ̃) > φ̃ ≥ 0). Similarly, if φ < q(φ̃), γ(C) = 2(1−δ)+δγ̃(C) ≥ 2(1−δ)+δ[γ̃(D)+η] =

3(1− δ) + δγ̃(D) > γ(D) + η, so w ∈ F∅ (note that q(φ̃) < 1). Thus, w ∈ F̄ only if φ = q(φ̃)

and γ(C) = γ(D) + η.

Suppose φ̃ = φ̂3. By the same argument as the previous paragraph, γ(D) = (1 −
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δ) + δγ̃(D). q(φ̂3) = 1, so if φ < 1 then γ(C) = 2(1 − δ) + δγ̃(C) > γ(D) + η and again,

w ∈ F∅. If φ = 1, then player 2 is indifferent so any α2(C) ∈ [0, 1] is enforceable, but

if I want w ∈ F̄ I must choose α2(C) sufficiently high such that γ(C) ≥ γ(D) + η; thus,

γ(C) ∈ [γ(D) + η, 2(1− δ) + δγ̃(C)].

Suppose φ̃ ∈ (φ̂3,
1
2). As before γ(D) = (1 − δ) + δγ̃(D). Furthermore, player 2

strictly prefers c at history C, so γ(C) = 2(1 − δ) + δγ̃(C) > γ(D) + η. Hence if w ∈ F̄,

φ = 1.

Suppose φ̃ = 1
2 . Then player 2 strictly prefers c at history C so γ(C) = 2(1 −

δ) + δγ̃(C), but is indifferent at history D. Thus, any α2(D) is enforceable, giving γ(D) ∈

[(1− δ) + δγ̃(D), 3(1− δ) + δγ̃(D)].

Finally, suppose φ̃ ∈ (1
2 , 1]. Player 2 strictly prefers c at either history, so γ(D) =

γ(C) = 2(1− δ) + δγ̃(C), and w ∈ F̄ implies φ = 0.

Define Wφ ≡ {(φ, γ) ∈ F̄} as the set of “useful” HBPs with history distribution φ.

The following corollary restates some of the results of Lemma 2.3.2 in a more directly useful

way.

Corollary 2.3.1. Suppose µ0 ∈ (0, 1
2). Let any HBP w ≡ (φ, γ) ∈ I be given. Suppose

there exists w̃ ≡ (φ̃, γ̃) such that w ∈ B̄({w̃}). Then either φ = q(φ̃) or φ̃ = 1
2 . Conversely,

for any φ′ ∈ q(0), any HBP w̃′ ≡ (r(φ′), γ̃′) ∈Wr(φ′) generates an HBP in Wφ′: (φ′, gI((1−

δ) + δγ̃′(D)) ∈ B(w̃′). Also, for any φ′ ∈ Φ, any HBP w̃′ ≡ (1
2 , γ̃
′) ∈W1

2
generates an HBP

in Wφ′: (φ′, gI(3(1 − δ) + δγ̃(D) − η)) ∈ B(w̃′). For φ′ ∈ (0, 1), the sets B(w̃′) above are

singletons.

Define the minimum and maximum “relevant” payoffs3 at each history distribution

following the mth iteration of the B̄(·) operator (recall that the minima and maxima exist

3By relevant, I mean the following for a given (φ, γ) ∈ F̄. If φ = 0, γ(C) does not affect what can be
generated; if φ = 1, γ(D) does not affect what can be generated; if φ ∈ (0, 1), γ(C) = γ(D) + η so player 1
is indifferent and either γ(C) or γ(D) is “binding.”
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because B̄m(F†) is closed by Lemma 2.1.2):

vmφ ≡

min{γ(D) : (φ, γ) ∈ B̄m(F†)} φ ∈ [0, 1)

min{γ(C) : (1, γ) ∈ B̄m(F†)} φ = 1

v̄mφ ≡

max{γ(D) : (φ, γ) ∈ B̄m(F†)} φ ∈ [0, 1)

max{γ(C) : (1, γ) ∈ B̄m(F†)} φ = 1.

Also, for all φ ∈ Φ, define v∞φ ≡ limm→∞ v
m
φ , v̄

∞
φ ≡ limm→∞ v̄

m
φ . Note that v0

φ̃
= 0, v̄0

φ̃
= 3−η

and v0
1 = η, v̄0

0 = 3 for all φ̃ ∈ (0, 1]. Note that because {B̄m(F̄)}m is a decreasing sequence

(in the sense of set inclusion), {vmφ }m is weakly increasing and bounded, and so it follows

that

v∞φ =

min{γ(D) : (φ, γ) ∈ D̄} φ ∈ [0, 1)

min{γ(D) : (1, γ) ∈ D̄} φ = 1.

The following result characterizes the output of the V(·) operator.

Lemma 2.3.3. Let µ0 ∈ (0, 1
2 ] and w ≡ (φ, γ) ∈ D̄(δ, µ0) be given. Then

V({(φ, γ)}) =


{(1− δ) + δγ(D)} φ < φ̂3

[(1− δ) + δγ(D), 3(1− δ) + δγ(D)] φ = φ̂3

{2(1− δ) + δγ(C)} φ > φ̂3.

If µ0 > 1
2 , then

V({(φ, γ)}) =

3(1− δ) + δγ(D) φ = 0

2(1− δ) + δγ(C) φ > 0.
(2.3.3)

Proof. For any v ∈ V({(φ, γ)}), there exists a PBE (σ∗, µ∗) of the γ-antegame such that

V (σ∗) = v and the distribution of outcomes matches φ: σ∗1(∅) = φ (recall that player 1

does not condition on player 2’s action due to quasi-Markov perfection).

First consider the µ0 ∈ (0, 1
2 ] case. Suppose φ < φ̂3, and suppose by contradiction

that player 2’s expected payoff at the empty history for playing c is weakly greater than the
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payoff for d:

E[u2(c, σ∗(∅))|∅] = 3µ0 + (1− µ0)[3φ+ 0 · (1− φ)]

≥ E[u2(d, σ∗(∅))|∅] = 2µ0 + (1− µ0)[φ · 2 + (1− φ) · 1] (2.3.4)

µ0 + (1− µ0)[3φ] ≥ (1− µ0)[1 + φ] (2.3.5)

µ0 ≥ (1− µ0)[1− 2φ] (2.3.6)

µ0

1− µ0
= φ∗ ≥ 1− 2φ (2.3.7)

φ∗

1− 2φ
= q(φ) ≥ 1, (2.3.8)

which is a contradiction because φ < φ̂3 implies q(φ) < q(φ̂3) = 1, due to the monotonicity

of q(φ′). Thus, player 2 strictly prefers d. Since (φ, γ) ∈ D̄ and φ < 1, γ(D) ≥ γ(C)−η and

so D is a best response at period 0 for player 1. Thus, V (σ∗) = (1− δ)u1(d,D) + δγ(D) =

(1− δ) + δγ(D).

Suppose φ = φ̂3. Then q(φ) = φ∗

1−2φ = 1 so replacing the inequality in (2.3.8) with

“=”and working backwards, doing the same to each equation until (2.3.4), shows that player

2 is indifferent between c and d. For player 1, D is a best response since φ̂3 < 1. Thus,

I can pick any σ∗2(∅) ∈ [0, 1], so V({(φ, γ)}) = {V (σ∗) : σ∗2(∅) ∈ [0, 1], σ∗1(∅) = φ̂3} =

[0 · (1− δ) + δγ(C), 2(1− δ) + δγ(C)].

Suppose φ > φ̂3. Then q(φ) < 1, and performing the analogous steps in the previous

paragraph shows that player 2 strictly prefers c to d. Since σ∗1(∅) = φ > φ̂3 ≥ 0, C is a

best response, so V (σ∗) = (1− δ)u1(c, C) + δγ(C) = 2(1− δ) + δγ(C).

Now I turn to the simpler µ0 > 1
2 case. Player 2 strictly prefers c no matter what

player 1’s strategy is. If φ = 0, then D is a best response, so V (σ∗) = (1 − δ)u1(c,D) +

δγ(D) = 3(1− δ) + δγ(D). If φ > 0, then C is a best response: V (σ∗) = (1− δ)u1(c, C) +

δγ(C) = 2(1− δ) + δγ(C).

Now consider the first case listed in (2.5.3): suppose µ0 ∈ (0, 1
9 ]. The function q has
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two fixed points for µ0 < 1
9 , one fixed point for µ0 = 1

9 , and no fixed points for µ0 > 1
9 (this

turns out to be the reason why µ0 > 1
9 has only one stationary equilibrium instead of two).

Setting φ = q(φ) and substituting into (2.5.4) yields

φ =
φ∗

1− 2φ

which can be rearranged to get

0 = 2φ2 − φ+ φ∗.

The quadratic formula gives

φ =
1±
√

1− 4 · 2φ∗
4

=
1

4
±
√

1− 8φ∗

4
; (2.3.9)

since φ∗ = 1
8 for µ0 = 1

9 , µ0 ≤ 1
9 is sufficient and necessary for the discriminant to be

non-negative, and therefore for the existence of a fixed point. Define φ̂1, φ̂2 ∈ Φ as the fixed

points of q(·) such that φ̂1 < φ̂2 for µ0 < 1
9 and φ̂1 = φ̂2 for µ0 = 1

9 .

Lemma 2.3.4. Suppose µ0 ∈ (0, 1
9 ]. For any φ ∈ [φ̂1, 1), v∞φ = 1. Furthermore, v∞1 = 1/δ,

and v∞φ′ ≥ 1 for all φ′ ∈ [0, φ̂1). Finally, v̄∞φ = 2 − η for all φ ∈ [φ̂1, 1). Furthermore,

v̄∞1 = 2 and v̄∞φ′ ≤ 2 for all φ′ ∈ [0, φ̂1).

Proof. I begin by recalling that r(·) is strictly increasing and noting that for any φ ∈ [φ̂1, 1),

the following holds:

r(φ)


= φ φ ∈ {φ̂1, φ̂2}

> φ φ ∈ (φ̂1, φ̂2)

< φ φ ∈ (φ̂1, 1).

(2.3.10)

I show that for every φ′ ∈ [φ̂1, 1), r(φ′) ∈ [φ̂1, 1) and hence r(φ′) ≥ q(0), satisfying the

corresponding condition in Corollary 2.3.1 that used below. First, (2.3.10) immediately

shows this to be true for φ ∈ {φ̂1, φ̂2}. Suppose that φ̂1 < φ < φ̂2; the monotonicity of r(·)

and (2.3.10) imply r(φ̂1) = φ̂1 < φ < r(φ) < r(φ̂2) = φ̂2. Finally, suppose that φ̂2 < φ < 1;

again the monotonicity of r(·) and (2.3.10) imply r(φ̂2) = φ̂2 < r(φ) < φ < 1.
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Building on the previous paragraph, Corollary 2.3.1 implies that for every φ ∈ [φ̂1, 1),

vm+1
φ = min{γ(D) : (φ, γ) ∈ B̄m+1(F̄)}

= min{min{γ(D) : (φ, γ) ∈ B̄(B̄m(F̄) ∩Wr(φk))},

min{γ(D) : (φ, γ) ∈ B̄(B̄m(F̄) ∩W1
2
)}}

= min{min{(1− δ) + δγ(D) : (r(φ), γ) ∈ B̄m(F̄))},

min{3(1− δ) + δγ(D)− η : (1
2 , γ) ∈ B̄m(F̄))}}

= min{(1− δ) + δvmr(φ), 3(1− δ) + δvm1
2

− η}.

Note that v0
φ = 0 for all φ ∈ [0, 1). Suppose that for some m and some ζm ∈ R, vmφ = vm1

2

=

ζm for all φ ∈ [φ̂1, 1). Then

vm+1
φ = min{(1− δ) + δvmr(φ), 3(1− δ) + δvm1

2

− η}

= min{(1− δ) + δζm, 3(1− δ) + δζm − η}

= (1− δ) + δζm.

By induction, for each m, there exists ζm+1 = (1 − δ) + δζm such that vmφ = ζm for all

φ ∈ [φ̂1, 1). Hence, v∞φ = limm→∞ ζ
m = 1.

Similarly, note that v̄0
φ = 3− η for all φ ∈ [0, 1). Suppose for some m, v̄mφ = ζ̄m for

all φ ∈ [φ̂1, 1). Then

v̄m+1
φ = max{(1− δ) + δv̄mr(φk), 3(1− δ) + δv̄m1

2

− η}

= max{(1− δ) + δζ̄m, 3(1− δ) + δζ̄m − η}

= 3(1− δ) + δζ̄m − η.

By induction, for each m, there exists ζ̄m+1 = 3(1− δ) + δζ̄m− η such that v̄mφ = ζ̄m for all

φ ∈ [φ̂1, 1). Hence, v̄∞φ = limm→∞ ζ̄
m+1 = 3(1− δ) + δ limm→∞ ζ̄

m − η which can be solved

to get v̄∞φ = limm→∞ ζ̄
m = 3− 1

δ = 2− η.
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Next, Lemma 2.3.2 and the above result give

vm+1
1 = min{γ(C) : (1, γ) ∈ B̄m+1(F̄)}

= min

γ(C) : (1, γ) ∈ B̄

B̄m(F̄) ∩

 ⋃
φ̃∈[φ̂3,

1
2 ]

Wφ̃





= min

min{(1− δ) + δγ̃(D) + η : (φ̂3, γ̃) ∈ B̄m(F̄) ∩Wφ̂3
},

min{3(1− δ) + δγ̃(D) : (φ̃, γ̃) ∈ B̄m(F̄) ∩

 ⋃
φ̃∈(φ̂3,

1
2 ]

Wφ̃




= min{(1− δ) + δζm + η, 3(1− δ) + δζm} = (1− δ) + δζm + η,

so

v∞1 = lim
m→∞

vm+1
1 = (1− δ) +

1− δ
δ

+ δ lim
m→∞

ζm = (1− δ) +
1− δ
δ

+ δ =
1

δ
.

Analogously,

v̄m+1
1 = max{3(1− δ) + δγ̃(D) : (φ̃, γ̃) ∈ B̄m(F̄), φ̃ ∈ [φ̂3,

1
2 ]}

= max{3(1− δ) + δv̄m
φ̃
, φ̃ ∈ [φ̂3,

1
2 ]} = 3(1− δ) + δζ̄m

so v̄∞1 = 3(1− δ) + δ limm→∞ ζ̄
m = 3(1− δ) + δ(2− η) = 2.

Finally, let vm ≡ min{vmφ′ : φ′ ∈ [0, 1)} and v̄m ≡ max{v̄mφ′ : φ′ ∈ [0, φ̂1)}. Lemma

2.3.2 shows that for any (φ, γ) ∈ B̄m+1(F̄),

γ(D) ≥ min{(1− δ) + δγ̃(D) : (φ̃, γ̃) ∈ B̄m(F̄)}

≥ min{(1− δ) + δvm, 2(1− δ) + δvm1 }

so vm+1 ≥ (1− δ) + δvm which gives

lim
m→∞

vm+1 ≥ lim
m→∞

min{(1− δ) + δvm, 2(1− δ) + δvm1 }

= min
{

(1− δ) + δ lim
m→∞

vm, 2(1− δ) + 1
}
,
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so limm→∞ vm ≥ 1, which proves the last part of the lemma.4 Turning to the maxima,

v̄m+1
0 = max{max{3(1− δ) + δv̄mφ : φ ∈ [1

2 , 1)}, 2(1− δ) + δv̄m1 }

v̄m+1
φ ≤ max{(1− δ) + δv̄m, 3(1− δ) + δv̄m1

2

− η} ∀φ ∈ (0, φ̂1)

so

v̄∞0 = max{3(1− δ) + δ(2− η), 2(1− δ) + 2δ} = 2

v̄m+1
φ ≤ max{(1−δ)+δv̄∞, 3(1−δ)+δ(2−η)−η} = max{(1−δ)+δv̄∞, 2−η} ∀φ ∈ (0, φ̂1).

If (1− δ) + δv̄∞ > 2− η, then v̄∞ = max{v̄∞0 ,max{v̄m+1
φ : φ ∈ (0, φ̂1)} = max{2, (1− δ) +

δv̄∞}. If v̄∞ > 2, then v̄∞ = (1−δ)+δv̄∞ =⇒ v̄∞ = 1, a contradiction. Thus, v̄∞ = 2.

Lemmas 2.3.3 and 2.3.4 imply that

minV(D̄) = min{min{(1− δ) + δγ(D) : (φ, γ) ∈ D̄, φ ≤ φ̂3},

min{2(1− δ) + δγ(C) : (φ, γ) ∈ D̄, φ > φ̂3}}

= min{min{(1− δ) + δv∞φ , φ ≤ φ̂3},min{2(1− δ) + δ(v∞φ + η) : φ ∈ (φ̂3, 1)},

2(1− δ) + δ(v∞1 − η)}

= min{(1− δ) + δ · 1, 2(1− δ) + δ(1 + η)} = 1.

Thus, the first minimum listed in (2.5.3) has been proven.

Now, suppose µ0 ∈ (1
9 ,

1
2). This eliminates the fixed points φ̂1, φ̂2 of q(·) (and so it

turns out the only stationary equilibrium is at φ = 1
2). I still define φ̂3 so that q(φ̂3) = 1.

Lemma 2.3.5. Let µ0 ∈ (1
9 ,

1
2). For any φ ∈ [0, φ̂3), there exists finite k̄ such that qk̄(φ) ≥

1
2 .

4This simply confirms the obvious fact that the continuation payoff must be greater than or equal to the
minmax payoff.
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Proof. Let

∆q(φ) ≡ q(φ)− φ =
φ∗

1− 2φ
− φ =

φ∗ − φ(1− 2φ)

1− 2φ
=
φ∗ − φ+ 2φ2

1− 2φ
.

It is clear that for φ ∈ [0, 1
2), because if ∆q(φ) ≤ 0 for some φ, there would exist φ′ ∈ [0, 1

2)

such that

0 = φ∗ − φ+ 2φ2

φ =
1±
√

1− 8φ∗

4
,

but φ∗ > 1
8 because µ0 > 1

9 . The first and second derivatives of ∆q(·) are

∆q′(φ) = 2φ∗(1− 2φ)−2 − 1

∆q′′(φ) = 8φ∗(1− 2φ)−3 > 0

for φ < 1
2 , so ∆q(·) is strictly convex. Furthermore, setting ∆q′(φ) = 0 gives

2φ∗(1− 2φ)−2 − 1 = 0

(1− 2φ)−2 =
1

2φ∗

1− 2φ = ±
√

2φ∗

φ = 1
2(1±

√
2φ∗), (2.3.11)

and for φ∗ ∈ (1
8 ,

1
2), such a solution φ ∈ [0, 1

2) to (2.3.11) exists. Thus, ∆q(φ) ≥ ∆q for some

∆q > 0, so for any k,

qk(φ) = φ+ ∆q(φ) + ∆q(q(φ)) + ∆q(q2(φ)) + · · ·+ ∆q(qk−1(φ)) ≥ φ+ k∆q,

so there exists finite k̄ such that qk̄(φ) ≥ 1
2 .

Having established its finite existence with Lemma 2.3.5, let

L(µ0) ≡ min
k
qk(0) such that qk(0) ≥ 1

2 .
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Define pk ≡ qk(0) for k ∈ {0, ..., L}. Define Sk ≡ (pk, pk+1) for k ∈ {0, ..., L − 1} and

SL ≡ (pL, 1).

Lemma 2.3.6. Suppose µ0 ∈ (1
9 ,

1
2 ]. If pL = 1

2 , then v∞
pL

= λL1 ; otherwise, v∞
pL−1 = λL−1

1 .

Also,

v∞pL =

(1− δ) + δv∞
pL−1 pL < 1

(1− δ) + δv∞
pL−1 + η pL = 1.

Finally, min{v∞φ : φ ∈ [0, φ̂3]} = v∞
pL−1 and

min{v∞φ : φ ∈ (φ̂3, 1)} =

v∞pL pL < 1

v∞
pL−1 pL = 1

v∞1 =

v∞pL + η pL < 1

v∞
pL

pL = 1.

Proof. Note that λk1 above in (2.5.5) is defined so that λk1 = (1− δk)+δk[3(1− δ)+δλk1−η].

Also define λL2 so that λL2 = (1− δL) + δL[3(1− δ) + δλL1 ], which gives

λL2 =
1

1− δL+1
[1− δL + 3δL(1− δ)].

For brevity in this proof, unlike that of Lemma 2.3.4 I skip ahead to the minimum

generating limits, e.g. instead of writing “vm+1
S0

= 3(1 − δ) + δvm1
2

− η,” I take the limit as

m→∞ as shown in (2.3.12) below.

First, by Corollary 2.3.1,

v∞S0 = 3(1− δ) + δv∞1
2

− η; (2.3.12)

to see why, note that Wφ ⊂ I and r(φ) < 0 = p0 = r(p1) for any φ ∈ S0, so there does

not exist φ′ such that q(φ′) = φ. For each k ∈ {1, ..., L}, for any φ ∈ Sk, r(φ) ∈ Sk−1. To

see this, recall that r(·) is monotonic and that pk < φ < pk+1 for k < L (the argument

here is easy to adapt for k = L), so r(pk) = pk−1 < r(φ) < pk = r(pk+1). Corollary 2.3.1

shows that v∞
Sk

= min{(1 − δ) + δv∞
Sk−1 , 3(1 − δ) + δv∞1

2

− η}. Suppose (by contradiction)
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that 3(1− δ) + δv∞1
2

− η < (1− δ) + δv∞
Sk−1 . Then

3(1− δ) + δv∞1
2

− η < (1− δ) + δv∞Sk−1 ≤ (1− δ) + δ[3(1− δ) + δv∞1
2

− η]

= δ[3(1− δ) + δv∞1
2

].

(1− δ)[3(1− δ) + δv∞1
2

] < η =
1− δ
δ

3δ(1− δ) + δ2v∞1
2

< 1 (2.3.13)

For δ > 1
2 , the left hand side of (2.3.13) is less than 3

4 + 1
4v
∞
1
2

< 1 =⇒ vm1
2

< 1, which is

easily shown to be contradicted by Lemma 2.3.2.5 Thus, v∞
Sk

= (1− δ) + δv∞
Sk−1 , and in fact

the argument above shows that for any φk−1 ∈ Sk−1, φk ∈ Sk, I have v∞
φk

= (1− δ) + δv∞
φk−1 .

An almost identical argument shows that v∞
pk

= (1− δ) + δv∞
pk−1 . Note that because v∞p0 ≤

3(1− δ) + δv∞1
2

− η = v∞
S0

, v∞
pk
≤ v∞

Sk
for each k.

Suppose pL < 1. I show that v∞1 = v∞
SL

+ η. Note that pL−1 = r(pL) < r(1) = φ̂3 <

1
2 ≤ p

L, so [φ̂3,
1
2) ⊂ SL−1. By Lemma 2.3.2,

v∞1 = min{(1− δ) + δv∞
φ̂3

+ η,min{3(1− δ) + δv∞φ : φ ∈ (φ̂3,
1
2)}, 3(1− δ) + δv∞1

2

}

= min{(1− δ) + δv∞SL−1 + η, 3(1− δ) + δv∞1
2

} (2.3.14)

If pL > 1
2 , then 1

2 ∈ SL−1 and v∞1
2

= v∞
SL−1 , so

v∞1 = (1− δ) + δv∞SL−1 + η = v∞SL + η. (2.3.15)

The next paragraph proves the result for pL = 1
2 .

Suppose pL = 1
2 . By Lemma 2.3.2,

v∞p0 = min{3(1− δ) + δv∞1
2

− η,min{3(1− δ) + δvφ : φ ∈ (1
2 , 1)}, 2(1− δ) + δv∞1 }(2.3.16)

5Besides the fact that this implies a continuation payoff less than the minmax, this can be seen by simply
letting vm ≡ min{min{vmφ : φ ∈ [0, 1)}, vm1 } and generating the lowest payoff given by Lemma 2.3.2 at any

φ as the new lower bound vm+1 ≥ (1− δ) + δvm, which converges to 1 as m→∞.
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= min{3(1− δ) + δv∞1
2

− η, 2(1− δ) + δv∞1 },

where the last step is because (1
2 , 1) = SL and v∞

SL
≥ v∞

pL
= 1

2 . Suppose by contradiction

that

v∞1 = 3(1− δ) + δv∞1
2

< (1− δ) + δv∞SL−1 + η (2.3.17)

(see (2.3.14)). It is straightforward to show that

2(1− δ) + δv∞1 = 2(1− δ) + δ[3(1− δ) + δv∞1
2

] ≥ 3(1− δ) + δv∞1
2

− η

since v∞1
2

≤ 2− η by Corollary 2.3.1, so v∞p0 = 3(1− δ) + δv∞1
2

− η = v∞
S0

. By induction that

means v∞
Sk

= v∞
pk

for each k, and

v∞1
2

= v∞pL = (1− δL) + δLv∞p0 = (1− δL) + δL[3(1− δ) + δv∞pL − η] = λL1 ,

where the last step is because the above equation matches the characterization for λL1 at

the beginning of the proof. Returning to (2.3.17) I have

3(1− δ) + δv∞1
2

= 3(1− δ) + δv∞pL < (1− δ) + δv∞SL−1 + η = (1− δ) + δv∞pL−1 + η = v∞pL + η

3(1− δ)− η < (1− δ)v∞pL

3− 1

δ
= 2− η < v∞pL ,

which is a contradiction because v∞
pL

= v∞1
2

≤ v̄∞1
2

≤ 2 − η by Corollary 2.3.1. Thus,

to summarize, for pL = 1
2 , I now also have v∞1 = (1 − δ) + δv∞

SL−1 + η = v∞
SL

+ η, and

furthermore v∞
Sk

= v∞
pk

for all k ∈ {0, ..., L} and v∞
pL

= λL1 . It is then straightforward to

check that the lemma has been proven for pL = 1
2 .

For the rest of the proof suppose 1
2 < pL < 1. The pL = 1 case follows almost exactly

the same argument, adding or subtracting “η” as appropriate where “v∞
pL

” is mentioned and

ignoring the consequently empty set SL. By Lemma 2.3.2, the first step of (2.3.16) holds
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here as well. Suppose (by contradiction) that

v∞p0 < 3(1− δ) + δv∞1
2

− η. (2.3.18)

Then by Lemma 2.3.2 and (2.3.15) it must be that v∞p0 = 3(1 − δ) + δv∞
pL

. Since v∞
pL

=

(1 − δL) + δLv∞p0 = (1 − δL) + δL[3(1 − δ) + δv∞
pL

], it then matches the characterization of

λL2 at the beginning of the proof: v∞
pL

= λL2 . Since 1
2 ⊂ Sk−1 as shown near (2.3.14),

v∞1
2

= v∞SL−1 = (1− δL−1) + δL−1v∞S0 = (1− δL−1) + δL−1[3(1− δ) + δv∞SL−1 − η]

due to (2.3.12); therefore v∞1
2

matches the characterization of λL−1
1 above: v∞1

2

= λL−1
1 .

Thus, I can write (2.3.18) as

v∞p0 = 3(1− δ) + δv∞pL = 3(1− δ) + δλL2 < 3(1− δ) + δv∞1
2

− η = 3(1− δ) + δλL−1
1 − η

λL2 < λL−1
1 − 1− δ

δ2
. (2.3.19)

The following lemma proves that (2.3.19) is a contradiction.

Lemma 2.3.7. λL2 ≥ λ
L−1
1 − 1−δ

δ2
.

Proof. Suppose by contradiction the opposite:

δ2

1− δL+1
[1− δL + 3δL(1− δ)] < δ2

1− δL
[(1− δL−1) + 3δL−1(1− δ)− δL−1η]− (1− δ).

I spare the reader the tedious algebra that yields

1− 3δL+1 + 2δL+2 < 0. (2.3.20)

Note that at δ = 1 the left hand side is equal to 0. Taking the derivative of the left hand

side with respect to δ gives

−3(L+ 1)δL + 2(L+ 2)δL+1 = −(3L+ 3)δL + (2L+ 4)δL+1.
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Since 3L+ 3 ≥ 2L+ 4, the derivative is strictly negative for δ ∈ (0, 1), so the left hand side

of (2.3.20) is strictly positive for δ ∈ (0, 1), a contradiction.

Thus, going back to (2.3.16) I have v∞p0 = 3(1 − δ) + δv∞1
2

− η = v∞
S0

. This then

implies that v∞
pk

= v∞
Sk

for each k ∈ {0, ..., L}. Then v∞p0 = 3(1− δ) + δv∞
pL−1 − η, and some

rearrangement gives v∞
pL−1 = λL−1

2 . Since v∞p0 = v∞
S0
> v∞p1 = v∞

S1
> · · · > v∞

pL−1 = v∞
SL−1 ,

min{v∞φ : φ ∈ [0, φ̂3]} = v∞
pL−1 . It is also easy to see that min{v∞φ : φ ∈ (φ̂3, 1)} = v∞

pL
= v∞

SL
.

Since I showed earlier that v∞1 = v∞
pL

+ η, the lemma is proven for pL < 1.

By Lemmas 2.3.3 and 2.3.6, if pL < 1 I have

minV(D̄) = min{min{(1− δ) + δv∞φ : φ ≤ φ̂3},

min{2(1− δ) + δ(v∞φ + η) : φ ∈ (φ̂3, 1)}, 2(1− δ) + δv∞1 } (2.3.21)

= min{(1− δ) + δv∞pL−1 , 2(1− δ) + δ(v∞pL + η), 2(1− δ) + δ(v∞pL + η)}

= min{(1− δ) + δv∞pL−1 , 2(1− δ) + δ((1− δ) + δv∞pL−1 + η)}

= min{(1− δ) + δv∞pL−1 , (1− δ)(3 + δ) + δ2v∞pL−1} (2.3.22)

If pL = 1, I have

minV(D̄) = min{min{(1− δ) + δv∞φ : φ ≤ φ̂3},

min{2(1− δ) + δ(v∞φ + η) : φ ∈ (φ̂3, 1)}, 2(1− δ) + δv∞1 } (2.3.23)

= min{(1− δ) + δv∞pL−1 , 2(1− δ) + δ(v∞pL−1 + η), 2(1− δ) + δv∞pL}

= min{(1− δ) + δv∞pL−1 , 2(1− δ) + δ((1− δ) + δv∞pL−1 + η)}

= min{(1− δ) + δv∞pL−1 , (1− δ)(3 + δ) + δ2v∞pL−1}, (2.3.24)

where (2.3.24) matches (2.3.22). Suppose by contradiction that

(1− δ) + δv∞pL−1 > (1− δ)(3 + δ) + δ2v∞pL−1 ;
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rearrangement yields

δ(1− δ)v∞pL−1 > (1− δ)(2 + δ)

v∞pL−1 >
2 + δ

δ
> 3,

an infeasible payoff, and so a contradiction. Rearranging (1 − δ) + δv∞
pL−1 = v∞

pL
yields

v∞
pL−1 =

v∞
pL

δ − η. Continuing,

minV(D̄) = (1− δ) + δv∞pL−1 =


(1− δ) + δλL−1

1 pL > 1
2

(1− δ) + δ

[
v∞
pL

δ − η
]

pL = 1
2

=

(1− δ) + δλL−1
1 pL > 1

2

(1− δ) + δ
[
λL1
δ − η

]
pL = 1

2

=

(1− δ) + δλL−1
1 pL > 1

2

λL1 pL = 1
2 .

With respect to the maxima v̄∞φ , the conclusions of Lemma 2.3.4 with almost iden-

tical arguments to the proof thereof, giving max{v̄∞φ : φ ∈ [0, φ̂3)} = 2, max{v̄∞φ : φ ∈

[φ̂3, 1)} = 2− η and v̄∞1 = 2. Thus,

maxV(D̄) = max{(1− δ) + δmax{v̄∞φ : φ ∈ [0, φ̂3)}, 3(1− δ) + δmax{v̄∞φ : φ ∈ [φ̂3, 1)},

2(1− δ) + δv̄∞1 }

= max{(1− δ) + 2δ, 3(1− δ) + δ(2− η), 2(1− δ) + 2δ} = 2.

Now consider the µ0 > 1
2 case (the µ0 = 1

2 case is handled at the end of the proof).

I use the following analogue of Lemma 2.3.2.

Lemma 2.3.8. Suppose µ0 ∈ (1
2 , 1]. Let any HBP w̃ ≡ (φ̃, γ̃) be given. Then

B̄(w̃) =



{(1, g((1− δ) + δγ̃(D), 3(1− δ) + δγ̃(D))} φ̃ ∈ [0, 1
2)

{(φ, γ) : γ(D) ∈ [(1− δ) + δγ̃(D), 3(1− δ) + δγ̃(D)],

γ(C) = 3(1− δ) + δγ̃(D)} ∩ F̄ φ̃ = 1
2

{(0, γ) : γ(D) = γ(C), γ(C) = 2(1− δ) + δγ̃(C)} φ̃ ∈ (1
2 , 1].
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Proof. I consider each case sequentially. Let some HBA x ≡ (φ, µ, α) enforced by w̃ and

the HBP w ≡ (φ, µ, γ) decomposed by x and w̃ be given.

Suppose φ̃ ∈ [0, 1
2). Inducibility requires α1 = φ̃ < 1

2 , so player 2 has d as a strict

best response by the same reasoning as in the proof of Lemma 5.2, and D must also be a best

response for player 1. Thus, γ(D) = (1− δ)u1(d,D) + δγ̃(D) = (1− δ) + δγ̃(D). At history

C, player 2 has a belief greater than 1
2 for the commitment type, so arguments in the proof

of Lemma 5.2 show that c is a strict best response. Then γ(C) = (1− δ)u1(c,D) + δγ̃(D) =

3(1− δ) + δγ̃(D).

Suppose φ̃ = 1
2 . Player 2 is now indifferent at historyD, so can choose any α2 ∈ [0, 1],

which yields γ(D) = (1 − δ)[α2u1(c,D) + (1 − α2)u2(d,D)] + δγ̃(D) = (1 − δ)[3α2 + (1 −

α2)] + δγ̃(D). The same reasoning as above gives γ(C) = 3(1− δ) + δγ̃(D).

Suppose φ̃ ∈ (1
2 , 1]. Player 2 strictly prefers c at both histories C and D, while C

is a best response for player 1. Thus γ(D) = γ(C) = (1− δ)u1(c, C) + δγ̃(C) = 2(1− δ) +

δγ̃(C).

Lemma 2.3.8 gives

vm+1
0 = min{min{3(1− δ) + δvmφ − η : φ ∈ [1

2 , 1)}, 2(1− δ) + δvm1 }

vm+1
φ = 3(1− δ) + δvm1

2

− η ∀φ ∈ (0, 1)

vm+1
1 = min{3(1− δ) + δvmφ : φ ∈ [0, 1

2 ]}.

Then v∞1
2

= 3(1− δ) + δv∞1
2

− η, which yields v∞1
2

= 3− 1
δ = 2− η. So for all φ ∈ (0, 1),

v∞φ = 3(1− δ) + δ

(
3− 1

δ

)
− 1− δ

δ
= 3(1− δ) + 3δ − 1− 1− δ

δ
= 2− η.

I can then write

v∞0 = min{3(1− δ) + δ(2− η)− η, 2(1− δ) + δv∞1 }

= min{2− η, 2(1− δ) + δv∞1 }
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v∞1 = min{3(1− δ) + δv∞0 , 3(1− δ) + δ(2− η)}

= min{3(1− δ) + δv∞0 , 2}

Suppose by contradiction v∞1 < 2. Then

v∞0 = min{2− η, 2(1− δ) + δ[3(1− δ) + δv∞0 ]}

= min{2− η, 2(1− δ) + 3δ − 3δ2 + δ2v∞0 }

= min{2− η, 2 + δ − 3δ2 + δ2v∞0 }.

If v∞0 < 2− η, then v∞0 = 2 + δ − 3δ2 + δ2v∞0 which can be solved for

v∞0 =
2 + δ(1− 3δ)

1− δ2
> 2,

a contradiction; thus v∞1 < 2 implies v∞0 = 2 − η. Yet v∞1 = 3(1 − δ) + δv∞0 = 3(1 − δ) +

δ(2 − η) = 2, a contradiction. Thus, v∞1 = 2. Also suppose by contradiction v∞0 < 2 − η;

then v∞0 = 2(1− δ) + δv̄∞1 = 2. Hence, v∞0 = 2− η.

To summarize: v∞φ = 2− η for all φ ∈ [0, 1) and v∞1 = 2. Plugging this into (2.3.3)

in Lemma 2.3.3 shows that minV(D̄) = 2.

Turning to the maxima, Lemma 2.3.8 implies

v̄m+1
0 = max{max{3(1− δ) + δv̄mφ − η : φ ∈ [1

2 , 1)}, 2(1− δ) + δv̄m1 }

v̄m+1
φ = 3(1− δ) + δv̄m1

2

− η ∀φ ∈ (0, 1)

v̄m+1
1 = max{3(1− δ) + δv̄mφ : φ ∈ [0, 1

2 ]}

Then for all φ ∈ (0, 1), v̄m+1
1
2

= v̄m+1
φ = 3(1− δ) + δv̄m1

2

− η, which in the limit gives

v̄∞φ = 3(1− δ) + δv̄∞φ −
1− δ
δ

=⇒ v̄∞φ = 3− 1

δ
= 2− η.

Note that v̄0
0 = v̄0

φ = 3−η and v̄0
1 = 3. Suppose for some m that v̄m1

2

≤ v̄m1 −η and v̄m1
2

≤ v̄m0 .
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Suppose by contradiction that max{3(1− δ) + δv̄mφ − η : φ ∈ [1
2 , 1)} > 2(1− δ) + δv̄m1 . Then

max{3(1− δ) + δv̄mφ − η : φ ∈ [1
2 , 1)} = 3(1− δ) + δv̄m1

2

− η > 2(1− δ) + δv̄m1 (2.3.25)

(1− δ)− η > δ(v̄m1 − v̄m1
2

)

−η > δ(v̄m1 − η − v̄m1
2

),

but since the left hand side is strictly negative and the right hand side is non-negative, I reach

a contradiction. Note that the left hand side of (2.3.25) is equal to v̄m+1
1
2

. Thus by induction,

for all m, v̄m+1
0 = 2(1−δ)+δv̄m1 ≥ v̄

m+1
1
2

. Similarly, v̄m+1
1 = 3(1−δ)+δv̄m0 ≥ 3(1−δ)+δv̄m1

2

.

Taking the limit,

v̄∞0 = 2(1− δ) + δv̄∞1 , v̄∞1 = 3(1− δ) + δv̄∞0 .

Solving these two equations gives

v̄∞0 = 2(1− δ) + δ[3(1− δ) + δv̄∞0 ] = 2(1− δ) + 3δ(1− δ) + δ2v̄∞0

v̄∞0 =
1− δ
1− δ2

(2 + 3δ)

v̄∞1 = 3(1− δ) + δ(1− δ)2 + 3δ

1− δ2
= (1− δ)

[
3 +

2δ + 3δ2

1− δ2

]
=

1− δ
1− δ2

(3 + 2δ).

Finally, by Lemma 2.3.3,

maxV(D̄) = max{3(1− δ) + δv̄∞0 ,

max{2(1− δ) + δ(v̄∞φ + η) : φ ∈ (0, 1)}, 2(1− δ) + δv̄∞1 }

= max

{
3(1− δ) + δ

1− δ
1− δ2

(2 + 3δ), 2(1− δ) + δ(v̄∞1
2

+ η),

2(1− δ) + δ
1− δ
1− δ2

(3 + 2δ)

}

= max

{
3(1− δ) + δ

1− δ
1− δ2

(2 + 3δ), 2, 2(1− δ) + δ
1− δ
1− δ2

(3 + 2δ)

}
.

It is straightforward to show that the first term is strictly greater than the other two for
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δ ∈ (1
2 , 1), so

maxV(D̄) = 3(1− δ) +
1− δ
1− δ2

(2δ + 3δ2) =
1− δ
1− δ2

(3 + 2δ).

Now suppose µ0 = 1
2 . Note that φ∗ = 1, so q(0) = 1

1−2·0 = 1, φ̂3 = 0, L = 1 and

pL = 1. Lemma 2.3.6 shows that

v∞0 = v∞
φ̂3

= v∞pL−1 = λL−1
1 = min{v∞φ : φ ∈ (0, 1)}

and v∞1 = v∞
pL

= (1 − δ) + δλL−1
1 . Using the same arguments as for the µ0 ∈ (1

9 ,
1
2) case

above, I have minV(D̄) = (1− δ) + δλL−1
1 . For the maxima, the same arguments as those

above for µ0 ∈ (1
2 , 1] hold, so maxV(D̄) = 1−δ

1−δ2 (3 + 2δ).

2.3.2 Purifiability of Quasi-Markov Equilibria

This section shows that for almost all priors µ0 and discount factors δ > 1
2 , there

exists a purifiable equilibrium giving the minimum and maximum payoffs given in Proposi-

tion 2.5.1.6 For each case, I construct the unperturbed equilibrium strategy profile σ∗ and

a sequence of perturbed game strategy profiles (σ̃k)k, each corresponding to the (ψ, εk)-

perturbed game where ψ is the uniform distribution on [0, 1]|A| and (εk)k is some sequence

where εk > 0 and εk → 0. I show purifiability (according to Definition 2.4.3) by proving

that for small enough εk, σ̃k is a wPBE of the (ψ, εk)-perturbed game, and that (σ̃k)k con-

verges in outcomes to σ∗. (I omit proofs that the unperturbed strategies σ∗ are wPBEs of

the unperturbed game since the proofs are essentially simpler versions of the proofs for the

perturbed equilibria.)

2.3.2.1 Stationary Equilibrium with Payoff 2 (0 < µ0 ≤ 1)

The equilibrium for the unperturbed game is defined as follows:

6The δ < 1
2

cases are straightforward (with player 1 always playing D) and so I omit them.
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σ∗2(t, h) =


1 h = ∅

1 h = C

1− 1−δ
δ h = D

σ∗1(t) =
1

2
.

Define the sequence (σ̃k)k of equilibria in the sequence of perturbed games:

σ̃k2 (∅, z2) ≡ σ̃k2 (t, C, z2) ≡ 1 σ̃k2 (t,D, z2) ≡

0 ∆z2 ≤ ζk2
1 ∆z2 > ζk2

σ̃k1 (t, z1) ≡

0 ∆z1 ≤ ζk1
1 ∆z1 > ζk1

where I define ζk1 , ζ
k
2 by the system of equations7

ζk2 ≡ −1 +
2(1− δ)

δ
− 2

δ
εkζk1 ζk1 ≡ εkζk2 .

For convenience, define the expected outcomes

α̃k2(h) ≡
ˆ
σ̃k2 (t,D) dψ(z2) =

1 h = C

1
2(1− ζk2 ) h = D

α̃k1 ≡
ˆ
σ̃k1 (t) dψ(z1) = 1

2(1− ζk1 )

for any t ≥ 1. Also define the beliefs at history C at any period t:

µ̃k ≡ µ0

µ0 + (1− µ0)α̃k1
. (2.3.26)

I now show that these strategies are mutual best responses. Define V a2
2 (p, ᾱ1, z2)

as the expected payoff for player 2 of action a2 given posterior belief p, expected player 1

7Though these equations are clearly easy to solve, leaving them in this form makes it simpler to confirm
that the strategies are best responses.
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action ᾱ1, and shock z2:

V c
2 (p, ᾱ1, z2) = 3p+ (1− p)[3ᾱ1] + εkzc2

V d
2 (p, ᾱ1, z2) = 2p+ (1− p)[2ᾱ1 + (1− ᾱ1)] + εkzd2 .

Then define ∆V2 as the benefit of playing c over d:

∆V2(p, ᾱ1, z2) ≡ V c
2 (p, ᾱ1, z2)− V d

2 (p, ᾱ1, z2)

= 3p+ (1− p)[3ᾱ1]− 2p− (1− p)[2ᾱ1 + (1− ᾱ1)] + εk(zc2 − zd2)

= p+ (1− p)[2ᾱ1 − 1] + εk∆z2. (2.3.27)

At history D, the belief is p = 0 so

∆V2(0, α̃k1 , z2) = 2α̃k1 − 1 + εk∆z2 = 2 · 1
2(1− ζk1 )− 1 + εk∆z2 = −εkζk2 + εk∆z2,

which makes it clear that σ̃k2 (t,D, z2) is a best response. At history C, the posterior is

µ̃k ≥ µ0, so for small enough εk, ∆V2(µ̃k, α̃k1 , z2) is positive for all z2 and thus σ̃k2 (t, C, z2)

is a best response. The same is true at the empty history ∅ at period 0.

Define V a1
1 (t, z1) as the payoff to player 1 of playing action a1 at period t:

V C
1 (t, z1) = (1− δ)u1(a2, C) + δV (t+ 1, C) + εkzC1

V D
1 (t, z1) = (1− δ)u1(a2, D) + δV (t+ 1, D) + εkzD1

where V (t+ 1, h) is the continuation payoff for the start of period t+ 1 with history h. The

benefit ∆V1(t, z1) of playing C over D is

∆V1(t, z1) ≡ V C
1 (t, z1)− V D

1 (t, z1)

= −(1− δ) + δ(V (t+ 1, C)− V (t+ 1, D)) + εk(zC1 − zD1 )

= −(1− δ) + δ(ᾱt+1
2 (C)− ᾱt+1

2 (D)) + εk∆z1 (2.3.28)

where ᾱt+1
2 (h) is the strategy of next period’s player 2 at history h. In this equilibrium,
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those strategies are α̃k2(C) = 1, α̃k2(D) = 1
2(1− ζk2 ) so

∆V1(t, z1) = −(1− δ) + δ(α̃k2(C)− α̃k2(D)) + εk∆z1

= −(1− δ) + δ(1− 1
2(1− ζ2)) + εk∆z1

= −(1− δ) + 1
2δ

(
1 +

[
−1 +

2(1− δ)
δ

− 2

δ
εkζ1

])
+ εk∆z1

= −εkζ1 + εk∆z1,

showing player 1’s strategy is a best response.

Finally, I show that (σ̃k)k converges in outcomes to σ∗ as given in (2.4.1). For

σ̃k2 (∅, z2) = σ̃k2 (t, C, z2) = 1 = σ∗2(∅) = σ∗2(t, C), the convergence is trivial. For history D,

I integrate over the shocks:

lim
k→∞

ˆ
σ̃k2 (t,D, z2) dψ(z2) = lim

k→∞
1
2(1− ζk2 )

= lim
k→∞

1

2

(
1−

[
−1 +

2(1− δ)
δ

− 2

δ
εkζk1

])
= 1− 1− δ

δ
= σ∗2(t,D).

For player 1, I have

lim
k→∞

ˆ
σ̃k1 (t, z1) dψ(z1) = 1

2(1− ζk1 ) = 1
2(1− εkζk2 ) = 1

2 = σ∗1(t).

2.3.2.2 Stationary Equilibrium with Payoff 1 (0 < µ0 < 1
9)

For 0 < µ0 < 1
9 , the minimum payoff equilibrium is defined as

σ∗2(t, h) =


0 h = ∅
1−δ
δ h = C

0 h = D

σ∗1(t) =
1

4
± 1

4

√
1− 8µ0

1− µ0
.

Note that σ∗1(t) is a fixed point of r(·) ≡ q−1(·) defined in (2.5.1) and (2.3.1), respectively;

see (2.3.9) for the calculation of the fixed points. Define the sequence (σ̃k)k of equilibria in
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the sequence of perturbed games:

σ̃k2 (t, C, z2) ≡

0 εk∆z2 ≤ ζk2
1 εk∆z2 > ζk2

σ̃k2 (t,D, z2) ≡ 0 σ̃k1 (t, z1) ≡

0 εk∆z1 ≤ ζk1
1 εk∆z1 > ζk1

where I define ζk1 , ζ
k
2 by the system of equations8

ζk2 ≡ 1− 2(1− δ)
δ

+
2

δ
εkζk1 ζk1 ≡

µ̃k + εkζk2
1− µ̃k

(2.3.30)

where µ̃k is defined as in (2.3.26).

I show that the strategies are mutual best responses. Reusing the notation above in

(2.3.27), at history C the belief is p = µ̃k, so

∆V2(µ̃k, α̃k1 , z2) = µ̃k + (1− µ̃k)[2α̃k1 − 1] + εk∆z2

= µ̃k + (1− µ̃k)[2 · 1
2(1− ζk1 )− 1] + εk∆z2

= µ̃k − (1− µ̃k)
[
µ̃k + εkζk2

1− µ̃k

]
+ εk∆z2

= −εkζk2 + εk∆z2,

which makes it clear that σ̃k2 (t, C, z2) is a best response. At the initial history ∅, the belief

is the prior µ0 < µ̃k, so for small enough εk, ∆V2(µ0, α̃k1 , z2) is negative for all z2; similarly,

at history D, the posterior is 0 < µ̃k, giving the same result. Thus σ̃k2 (∅, z2), σ̃k2 (t,D, z2)

8I leave them in this form for the same reason given in footnote 7. To show that a solution exists, I can
write

α̃k1 ≡ 1

2

(
1− ζk1

)
=

1

2

(
1− µ̃k + εkζk,t2

1− µ̃k

)
=

1

2

1−
µ0

µ0+(1−µ0)α̃k
1

+ εkζk,t2

1− µ0

µ0+(1−µ0)α̃k
1


=

1

2

(
1− µ0 + εkζk,t2 (µ0 + (1− µ0)α̃k1)

(1− µ0)α̃k1

)
=

1

2

(
(1− µ0)α̃k1 − µ0 − εkζk,t2 (µ0 + (1− µ0)α̃k1)

(1− µ0)α̃k1

)

=
1

2

1−
µ0

1−µ0

α̃k1
− εkζk,t2 (µ0 + (1− µ0)α̃k1)

(1− µ0)α̃k1

 (2.3.29)

Note that µ0 < 1
9

guarantees two fixed points of r(α̃k1) = 1
2

(
1− µ0/(1−µ0)

α̃k
1

)
(see (2.3.9) for the reasoning),

and that r(·) is strictly concave. Since the limit of the right hand side of (2.3.29) as εk → 0 is r(α̃k1), for
small enough εk a solution to (2.3.30) exists.
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are best responses. Reusing the notation in (2.3.28),

∆V1(t, z1) = −(1− δ) + δ(α̃k2(C)− α̃k2(D)) + εk∆z1

= −(1− δ) + δ(1
2(1− ζk2 )− 0) + εk∆z1

= −(1− δ) + 1
2δ

(
1−

[
1− 2(1− δ)

δ
+

2

δ
εkζk1

])
+ εk∆z1

= −εkζk1 + εk∆z1,

so player 1’s strategy is a best response.

Finally, I show that (σ̃k)k converges in outcomes to σ∗. For

σ̃k2 (∅, z2) = σ̃k2 (t,D, z2) = 0 = σ∗2(∅) = σ∗2(t,D),

the convergence is trivial; at history C,

lim
k→∞

ˆ
σ̃k2 (t, C, z2) dψ(z2) = lim

k→∞
1
2(1− ζk2 )

= lim
k→∞

1

2

(
1−

[
1− 2(1− δ)

δ
+

2

δ
εkζk1

])
=

1− δ
δ

= σ∗2(t, C).

Footnote 8 shows that
´
σ̃k1 (t, z1) dψ(z1) = limk→∞ α̃

k
1 converges to a fixed point of r(·);

since σ∗1(t) is also a fixed point of r(·), I can pick σ̃k that converges to σ∗1(t).

2.3.2.3 Non-Stationary Minimum Payoff Equilibrium (1
9 < µ0 ≤ 1

2)

For 1
9 < µ0 ≤ 1

2 , the minimum payoff equilibrium is defined as follows. Define

L(µ0), q(φ, µ0) as stated in Proposition 2.5.1 (I will usually omit the “µ0” argument in both

for brevity). I restrict attention to priors µ0 such that L(µ0) > 1
2 (the set of priors µ0 ∈ (1

9 ,
1
2 ]

such that this is not true is Lebesgue measure zero). The equilibrium strategies are

σ∗2(t, h) =



0 h = ∅
1−δ
δ (t+ 1) mod L 6= 0, h = C

0 (t+ 1) mod L 6= 0, h = D

1 (t+ 1) mod L = 0

σ∗1(t) = qL−1−[(t+1) mod L](0, µ0).
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Define the sequence (σ̃k)k of equilibria in the sequence of perturbed games:9

σ̃k2 (t, h, z2) ≡

0 εk∆z2 < ζ
k,(t+1) mod L
2 (h)

1 εk∆z2 > ζ
k,(t+1) mod L
2 (h)

σ̃k1 (t, z1) ≡

0 εk∆z1 < ζ
k,(t+1) mod L
1

1 εk∆z1 > ζ
k,(t+1) mod L
1

where I define the thresholds ζk,02 (C), ζk,02 (D), ζk,01 , ..., ζk,L−1
2 (C), ζk,L−1

2 (D), ζk,L−1
1 below;

for the empty history, ζk,12 (∅) ≡ 1. For convenience and clarity, define:

α̃k,l1 ≡
ˆ
σ̃k1 (t, z1) dψ(z1) = 1

2(1− ζk,l1 ) α̃k,l2 (h) ≡
ˆ
σ̃k2 (t, h, z2) dψ(z2) = 1

2(1− ζk,l2 (h))

µ̃k,l ≡ µ0

µ0 + (1− µ0)α̃
k,(l−1) mod L
1

(2.3.31)

for some t such that l = (t + 1) mod L. Define the thresholds as follows. Let ζk,l2 (D) ≡ 1

for all l ≥ 1, and let ζk,L−1
1 ≡ 1. Define ζk,L−2

1 , ζk,L−1
2 (C) as the solutions to the system of

equations10

0 = 2µ̃k,L−1 − 1 + εkζk,L−1
2 (2.3.32)

0 = −(1− δ) + 1
2δ(1− ζ

k,L−1
2 (C)) + εkζk,L−2

1 . (2.3.33)

9For the sake of simpler notation, I can and do ignore the measure zero set of cases where ∆zi =
ζ
k,(t+1) mod L
i ; it is straightforward to fill in best responses for these remaining cases.
10I do this for the same reason given in footnote 7. I omit the tedious algebra that gives the solution

ζk,L−2
1 =

1

4εk(1− µ0)

(
δ(1− 3εk)(1− µ0) + 2εk(1− εk)(1− µ0)

+((δ(1− 3εk)(1− µ0) + 2εk(1− εk)(1− µ0))2 + 8(εk)2(1− µ0)(−2εk(1 + µ0)

+δ(−1 + 3µ0 + 3εk(1 + µ0))))1/2
)
.

Note that for small enough εk, the discriminant is non-negative and thus a real solution exists.
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Then for each l ∈ {1, ..., L− 2}, define (backward inductively) ζk,l−1
1 , ζk,l2 as solutions to the

equations11

0 = µ̃k,l + (1− µ̃k,l)(2α̃k,l1 − 1) + εkζk,l2 (2.3.34)

0 = −(1− δ) + 1
2δ(1− ζ

k,l
2 (C)) + εkζk,l−1

1 (2.3.35)

(note that µ̃k,l is a function of ζk,l−1
1 ). Define ζk,02 (C) ≡ ζk,02 (D) ≡ −1. It is convenient to

rearrange (2.3.34) as

ζk,l1 =
µ̃k,l + εkζk,l2

1− µ̃k,l

and (2.3.35) as

ζk,l2 (C) = 1− 2(1− δ)
δ

+
2

δ
εkζk,l−1

1 .

I show that these are mutual best responses. Abusing notation, let “l” mean any

period t ≥ 1 such that (t + 1) mod L = l. For each l ∈ {0, ..., L − 1}, the benefit to player

2 of playing c over that of d is

∆V2(µ̃k,l, α̃k,l1 , z2) = µ̃k,l + (1− µ̃k,l)[2α̃k,l1 − 1] + εk∆z2

= µ̃k,l + (1− µ̃k,l)[2 · 1
2(1− ζk,l1 )− 1] + εk∆z2

= µ̃k,l − (1− µ̃k,l)ζk,l1 + εk∆z2

For l = L− 1 and history C, I have

∆V2(µ̃k,L−1, α̃k,L−1
1 , z2) = µ̃k,L−1 − (1− µ̃k,L−1) + εk∆z2

= 2µ̃k,L−1 − 1 + εk∆z2;

11Again, I omit the steps that yield the solution

ζk,l−1
1 =

1

2

(
(2εk − 3εkδ)(1− µ0) + (εk)2δ(1 + µ0) + δζk,l1 (1− µ0)

+
(

(εk(2(1− µ0) + δ(εk(1 + µ0)− 3(1− µ0))) + δ(1− µ0)ζk,l1 )2

+4(εk)2δ(1− µ0)(2δµ0 + εk(3δ − 2)(1 + µ0)− δ(1− µ0)ζk,l1 )
)1/2)

.

For small enough εk, the discriminant is non-negative.
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solving (2.3.32) for µ̃k,L−1 and substituting gives

∆V2(µ̃k,L−1, α̃k,L−1
1 , z2) = 2

[
1
2(1− εkζk,L−1

2 )
]
− 1 + εk∆z2

= −εkζk,L−1
2 + εk∆z2,

so σ̃k2 (L − 1, C, z2) is a best response. For both the empty history ∅ and history D, the

belief is less than µ̃k,lfor all l ∈ {0, ..., L− 1}, so for small enough εk, ∆V2is negative for all

z2 and so σ̃k2 (∅, z2) = σ̃k2 (l,D, z2) = 0 is a best response. For 1 ≤ l < L− 1 and history C,

I have

∆V2(µ̃k,l, α̃k,l1 , z2) = µ̃k,l − (1− µ̃k,l) µ̃
k,l + εkζk,l2

1− µ̃k,l
+ εk∆z2

= −εkζk,l2 + εk∆z2.

Applying the same algebra given in footnote 8 (replacing ζk1 , µ̃
k with ζk,l1 , µ̃k,l, respectively)

shows

α̃k,l1 = r(α̃k,l−1)− εk ζ
k,l
2 [µ0 + (1− µ0)α̃k,l−1]

2(1− µ0)α̃k,l−1
, (2.3.36)

where r(·) ≡ q−1(·) is defined in (2.3.1). Since qL(L) > 1
2 , for small enough εk, player 1’s

strategy must be to play C with more than probability 1
2 at l = 0:

lim
εk→0

ãk,L−1 = lim
εk→0

rL(ãk,0) =⇒ lim
εk→0

ãk,0 = lim
εk→0

qL(ãk,L−1) = qL(0) > 1
2 .

Then for small enough εk, ∆V2(0, α̃k,01 , z2) = 2α̃k,01 − 1 + εk∆z2 > 0 for all z2. Turning to

player 1, for 0 ≤ l < L− 2, I have

∆V1(l, z1) = −(1− δ) + δ(α̃k,l+1
2 (C)− α̃k,l+1

2 (D)) + εk∆z1

= −(1− δ) + 1
2δ(1− ζ

k,l+1
2 ) + εk∆z1

= −(1− δ) + 1
2δ

(
1−

[
1− 2(1− δ)

δ
+

2

δ
εkζk,l1

])
+ εk∆z1

= −εkζk,l1 + εk∆z1
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so σ̃k1 (l, z1) is a best response. For l = L− 1,

∆V1(t, z1) = −(1− δ) + δ(α̃k,02 (C)− α̃k,02 (D)) + εk∆z1

= −(1− δ) + εk∆z1

which is negative for all z1 for small enough εk.

Finally, I show convergence in outcomes. (I continue to abuse notation by letting

“l” denote any period t such that l = (t + 1) mod L.) For l = 0, ζk,02 (C) = ζk,02 (D) = 1 so´
σ̃k2 (l = 0, h, z2) dψ(z2) = 0 = σ∗2(l = 0, h). For l ≥ 1 at history h ∈ {∅, D}, ζk,l2 (h) = 1

and so ˆ
σ̃k2 (l, h, z2) dψ(z2) = 0 = σ∗2(l, h).

For player 1 and l = L− 1, ζk,L−1
1 = 1 so

ˆ
σ̃k1 (l = L− 1, z1) dψ(z1) = 0 = σ∗1(l = L− 1).

For player 2 and l ≥ 1 at history C,

lim
k→∞

ˆ
σ̃k2 (l, C, z2) dψ(z2) = lim

k→∞
1
2(1− ζk,l2 (C))

= lim
k→∞

1

2

(
1−

[
1− 2(1− δ)

δ
+

2

δ
εkζk,l−1

1

])
=

1− δ
δ

= σ∗2(l, C).

For player 1 and l < L− 1, (2.3.36) shows that limk→∞ α̃
k,l−1
1 = limk→∞ q(α̃

k,l
1 ) and so

lim
k→∞

ˆ
σ̃k1 (l, z1) dψ(z1) = qL−1−l(α̃L−1

1 ) = qL−1−l(0) = σ∗1(l).

2.3.2.4 Non-Stationary Maximum Payoff Equilibrium (1
2 < µ0 ≤ 1)

The maximum payoff equilibrium is defined as follows:

σ∗2(t, h) =


1 even t, h ∈ {C,D}

0 even t, h = D

1 odd t

σ∗1(t) =

0 even t

1 odd t.
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Since σ∗2 is sequentially strict, purifying it is straightforward. Define the strategies the same

way for the perturbed games, ignoring the shocks: σ̃ki (t, h) ≡ σ∗i (t, h) for all i, t, h.

For player 2, the posterior belief at each date-history is given by

p =


µ0 even t, h = C

1 odd t, h = C

0 h = D

so the benefit of playing c over d is given by

∆V2(p, ᾱ1, z2) = p+ (1− p)[2ᾱ1 − 1] + εk∆z2

=



µ0 − (1− µ0) + εk∆z2 even t, h = C

−1 + εk∆z2 even t, h = D

1 + εk∆z2 odd t, h = C

µ0 + (1− µ0) + εk∆z2 odd t, h = D;

so for small enough εk, σ̃k2 is a best response for all z2 at each history (because µ0 > 1
2).

For player 1,

∆V1(t, z1) =

−(1− δ) + εk∆z1 even t

−(1− δ) + δ + εk∆z1 odd t,

so because δ > 1
2 , for small enough εk, σ̃k1 is a best response for all z2 at each period. Since

σ̃k gives identical outcomes to σ∗, convergence in outcomes is trivial.

2.3.3 Proof of Proposition 2.5.2

By Proposition 2.3.6, there exists self-generating HBP (φ, µ, γ) and enforced HBA

(φ, µ, α) such that γ(CK) = V (CK). Suppose by contradiction that γ(IK) < 2 (recall that

IK = {CK}). This implies that α2(IK) < 1, for otherwise player 2 would always play c at

IK , yielding γ(IK) ≥ (1 − δ)u(c, C) + δV (IK) = 2(1− δ) + δγ(IK) which gives γ(IK) ≥ 2,

a contradiction. Thus d is a best reply for player 2 at IK , so the payoff of playing d is

U2(d|IK) = 2µ(IK) + (1− µ(IK))[2α1(IKd) + (1− α1(IKd))] ≥ U2(c|IK)
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= 3µ(IK) + (1− µ(IK)) · 3α1(IKc),

where U2(c|IK) is the payoff of playing c. Solving for α1(IKc) gives

−µ(IK) ≥ (1− µ(IK))[3α1(IKc)− 2α1(IKd)− (1− α1(IKd))]

= (1− µ(IK))[3α1(IKc)− α1(IKd)− 1]

−µ(IK) + (1− µ(IK))[α1(IKd) + 1] ≥ (1− µ(IK))3α1(IKc)

α1(IKc) ≤
1

3

(
α1(IKd) + 1− µ(IK)

1− µ(IK)

)
≤ 1

3

(
2− µ(IK)

1− µ(IK)

)
=

1

3

(
2(1− µ(IK))− µ(IK)

1− µ(IK)

)
=

2− 3µ(IK)

3(1− µ(IK))
. (2.3.37)

I now show that either α1(IKd) = 0 or α2(IK) ≥ 1+η
2+λ . Suppose by contradiction

that α1(IKd) > 0 and α2(IK) < 1+η
2+λ . Since C is a best response at IKd, γ(IK) ≥ γ(I0) + η.

Then I have

γ(IK) = α2(IK) max{(1− δ)u1(c, C) + δγ(IK), (1− δ)u1(c,D) + δγ(I0)}

+(1− α2(IK))[(1− δ)u1(d,C) + δγ(IK)]

≤ α2(IK)[(1− δ)u1(c,D) + δγ(IK)] + (1− α2(IK))[(1− δ)u1(d,C) + δγ(IK)]

= (1− δ)α2(IK)(2 + λ) + δγ(IK)

γ(IK) ≤ α2(IK)(2 + λ) < 1 + η ≤ γ(I0) + η,

where the last step is because 1 is the minmax value, so a contradiction.

Bayes’ rule gives

µ(IK) =
µ0

µ0 + (1− µ0)φ(IK)
,

and substituting this into (2.3.37) yields

α1(IKc) ≤
2− 3 µ0

µ0+(1−µ0)φ(IK)

3
(

1− µ0

µ0+(1−µ0)φ(IK)

) =
2[µ0 + (1− µ0)φ(IK)]− 3µ0

3 (µ0 + (1− µ0)φ(IK)− µ0)
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=
2(1− µ0)φ(IK)− µ0

3(1− µ0)φ(IK)
=

1

3

(
2− µ0/(1− µ0)

φ(IK)

)
. (2.3.38)

Inducibility (see (2.3.2)) requires

φ(IK) = [α2(IK)α1(IKc) + (1− α2(IK))α1(IKd)]φ(IK)

+[α2(IK−1)α1(IK−1c) + (1− α2(IK−1))α1(IK−1d)]φ(IK−1)

≤ [α2(IK)α1(IKc) + (1− α2(IK))α1(IKd)]φ(IK) + φ(IK−1) (2.3.39)

Since α1(IKd) = 0 or α2(IK) ≥ 1+η
2+λ , the term in brackets is bounded from above by

max

{
α2(IK)α1(IKc),

1 + η

2 + λ
α1(IKc) +

(
1− 1 + η

2 + λ

)}
≤ 1 + η

2 + λ
α1(IKc) +

(
1− 1 + η

2 + λ

)
.

(2.3.40)

Rearranging (2.3.39) and substituting (2.3.40) and (2.3.38) gives

φ(IK−1) ≥ (1− [α2(IK)α1(IKc) + (1− α2(IK)α1(IKd)])φ(IK)

≥
[
1− 1 + η

2 + λ
α1(IKc)−

(
1− 1 + η

2 + λ

)]
φ(IK)

=
1 + η

2 + λ
[1− α1(IKc)]φ(IK)

≥ 1 + η

2 + λ

[
1− 1

3

(
2− µ0/(1− µ0)

φ(IK)

)]
φ(IK)

=
1 + η

2 + λ

[
φ(IK)− 1

3

(
2φ(IK)− µ0

1− µ0

)]
≥ 1 + η

3(2 + λ)

µ0

1− µ0
.

Inducibility also requires that 1+η
3(2+λ)

µ0

1−µ0 ≤ φ(IK−1) ≤ φ(IK−2) ≤ · · · ≤ φ(I0). Then I have

K∑
k=0

φ(Ik) ≥
1 + η

3(2 + λ)

µ0

1− µ0
K, (2.3.41)

so picking K∗ ≡
(

1+η
3(2+λ)

µ0

1−µ0

)−1
, for all K > K∗ the right hand side of (2.3.41) is greater

than 1, a violation of Definition 2.3.3 and a contradiction.
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2.3.4 Proof of Proposition 2.5.3

By Proposition 2.3.6, for any stationary public PBE (σ, µ), there exists a self-

generating HBP (φ, µ, γ) and enforced HBA (φ, µ, α) such that σ2(h) = α2(h), σ1(ha2) =

α1(ha2), and V (σ|h) = γ(h) for all h ∈ Y K and a2 ∈ A2. Define η ≡ 1−δ
δ . I start with the

following useful result.

Lemma 2.3.9. γ(I0) = 1 or γ(Ik) ≥ γ(I0) + ηmin{λ, 1} for all k ∈ {1, ...,K}.

Proof. I write this proof for the λ ≤ 1 case; for the λ > 1 case, the arguments are the

same after replacing “λ” with “1.” Suppose by contradiction that γ(I0) > 1 and there exists

k ∈ {1, ...,K} such that γ(Ik) < γ(I0) + λη. Then at histories ha2 for h ∈ Ik−1 and

a2 ∈ {c, d}, C is not a best reply, so α1(Ik−1a2) = 0. At Ik−1 the belief is µ(Ik−1) = 0 since

the history contains D. Denote player 2’s ex-ante payoff of playing a2 at a history in Ik′

as Ua22 (Ik′). Then player 2’s payoff of playing c is U c2(Ik−1) = 0 while the payoff for d is

Ud2 (Ik−1) = 1 > U c2(Ik−1), so d is the strict best response: α2(Ik−1) = 0. Thus,

γ(Ik−1) = (1− δ)u1(d,D) + δV (I0) = (1− δ) + δγ(I0) ≤ γ(I0) < γ(I0) + λη.

By induction γ(Ik′) = (1− δ) + δγ(I0) for each k′ ∈ {0, ..., k − 1}. Thus, γ(I0) = (1− δ) +

δγ(I0) =⇒ γ(I0) = 1, a contradiction.

Proposition 2.5.2 shows that there exists some K̄ such that for all K > K̄, γ(CK) ≥

2. For the rest of the proof, assume K > K̄, and so γ(CK) ≥ 2.

Suppose γ(IK) > γ(I0) + λη. Since player 1’s best response at IKc is C, I have

γ(IK) = (1 − δ)u1(c, C) + δγ(IK) = 2(1 − δ) + δγ(IK), which implies γ(IK) = 2. Then

player 1’s best response at history CK−1c (at period K−1) is C, so player 2’s best response

at CK−1 is c: V (CK−1) = (1−δ)u(c, C)+δγ(IK) = 2. By backwards induction, V (Ck) = 2

for all k ∈ {0, ...,K − 1}, so V (∅) = 2.

Now suppose γ(IK) < γ(I0) + λη. I consider the λ ≤ 1 and λ > 1 cases separately,

reaching contradictions in both for large enough K.
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Case 1. λ ≤ 1: Lemma 2.3.9 implies that γ(I0) = 1. Since δ > max{λ,1}
1+max{λ,1} = 1

2 , I have

γ(I0) > γ(IK)− λ1− δ
δ

= 2− λ1− δ
δ

> 2− λ
1− 1

2
1
2

= 2− λ ≥ 1, (2.3.42)

a contradiction.

Case 2. λ > 1: Since δ > λ
1+λ ,

γ(I0) > γ(IK)− λ1− δ
δ
≥ 2− λ1− δ

δ
> 2− λ

1− λ
1+λ
λ

1+λ

= 2− 1 = 1;

then by Lemma 2.3.9, C is a best response for player 1 at Ikd for each k ∈

{1, ...,K}. SinceD is player 1’s strict best response at IKc, it is also the strict best

response at IK−1c; then player 2’s strict best response at IK−1 is d: α2(IK−1) = 0.

Thus

γ(IK−1) = (1− δ)u1(d,C) + δγ(IK) = δ(IK). (2.3.43)

Since γ(IK−1) < γ(IK) < γ(I0) + λη, α1(IK−2c) = 0 and α2(IK−2) = 0, so by

the same reasoning γ(IK−2) = δγ(IK−1) = δ2γ(IK). Applying this argument

backward yields

γ(I0) = δKγ(IK) > γ(IK)− λ1− δ
δ

.

Rearranging gives

γ(IK) < λ
1− δ

δ(1− δK)
< λ

1− λ
1+λ

λ
1+λ

(
1−

(
λ

1+λ

)K) =
1

1−
(

λ
1+λ

)K .
The limit of the right hand side as K → ∞ is 1, so for large enough K I have

γ(IK) < 2, a contradiction.

For the remainder of the proof suppose that γ(IK) = γ(I0)+λη. I first show that γ(IK) = 2.

Suppose not: γ(IK) > 2 (recall γ(IK) ≥ 2 because K > K̄). Then

γ(IK) ≤ (1− δ)u1(c, C) + δγ(IK) = 2(1− δ) + δγ(IK)
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which gives γ(IK) ≤ 2, a contradiction.

Lemma 2.3.10. Let any j ∈ {0, ...,K − 1} be given. Then the following hold:

1. σ2(Cj) ≥ α2(Ij). If α2(Ij) ∈ (0, 1), then σ2(Cj) = 1.

2. V (Cj) ≥ γ(Ij).

Furthermore, if γ(IK) = 2 and α2(IK−1) > 0, then V (∅) = 2.

Proof. Since (σ, µ) is purifiable, by Proposition 2.4.2 there exists a sequence (ψk, εk)k, such

that ψk ∈ ∆∗(Z) and εk → 0, and a sequence of strategy profiles (σ̃k)k, such that σ̃k is

a PBE of the (ψk, εk)-perturbed game, which converges in outcomes to σ. By Proposition

2.4.1, each σ̃k is essentially sequentially strict and hence quasi-Markov.

Note that the decision problem for player 1 is the same at histories CK−1a2 and

DCK−1a2. Thus, for almost all z1 ∈ Z1, σ̃k1 (CK−1c, z1) = σ̃k1 (DCK−1c, z1). I now show that

this means player 2 must play c at least as much at CK−1 as at DCK−1. Let Ũ2(a2, σ̃
k
1 |h, z2)

denote player 2’s payoff for playing a2, given player 1 strategy σ̃k1 at history h and realized

shock z2. Then

∆Uk2 (h, z2) ≡ Ũ2(c, σ̃k1 |h, z2)− Ũ2(d, σ̃k1 |h, z2)

=

ˆ
[[µk(h) · 3 + (1− µk(h))(3σ̃k1 (hc, z1) + 0 · σ̃k1 (hc, z1)) + zc2]

−[µk(h) · 2 + (1− µk(h))(2σ̃k1 (hd, z1) + (1− σ̃k1 (hd, z1)) + zd2 ]] dψ(z1)

=

ˆ
[µk(h) + (1− µk(h)) · (3σ̃k1 (hc, z1)− σ̃k1 (hd, z1)− 1) + zc2 − zd2 ] dψ(z1)

=

ˆ
[µk(h)(1− (3σ̃k1 (hc, z1)− σ̃k1 (hd, z1)− 1))

+(1− µk(h))(3σ̃k1 (hc, z1)− σ̃k1 (hd, z1)− 1) + zc2 − zd2 ] dψ(z1)ˆ
[µk(h)(2− (3σ̃k1 (hc, z1)− σ̃k1 (hd, z1))) + (3σ̃k1 (hc, z1)− σ̃k1 (hd, z1)− 1)

+zc2 − zd2 ] dψ(z1).
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Define ∆Ûk2 (h) ≡
´

(2− (3σ̃k1 (hc, z1)− σ̃k1 (hd, z1)))µk(h) dψ(z1), ∆Ǔk2 (h) ≡
´

(3σ̃k1 (hc, z1)−

σ̃k1 (hd, z1)− 1) dψ(z1) and ∆z2 = zc2 − zd2 , so that

∆Uk2 (h, z2) = ∆Ûk2 (h) + ∆Ǔk2 (h) + ∆z2.

Note that ∆Ǔk2 (CK−1) = ∆Ǔk2 (DCK−1). Then for any z2 ∈ Z2,

∆Uk2 (CK−1, z2) = ∆Ûk2 (CK−1) + ∆Ǔk2 (CK−1) + ∆z2

= ∆Ûk2 (CK−1) + ∆Ǔk2 (DCK−1) + ∆z2

= ∆Ûk2 (CK−1) + ∆Uk2 (DCK−1, z2), (2.3.44)

where the last step is because µ(DCK−1) = 0 =⇒ ∆Ûk2 (DCK−1) = 0. Since

∆Uk2 (CK−1, z2) ≥ ∆Uk2 (DCK−1, z2)

for every z2, σ̃k2 (CK−1, z2) ≥ σ̃k2 (DCK−1, z2) for almost all z2, and so σ2(CK−1) ≥ α2(IK−1).

Suppose that σ2(DCK−1) ∈ (0, 1), which implies σ1(DCK−1c) ∈ (0, 1) and therefore

limk→∞∆Ûk2 (CK−1) > 0. Define

Ek2(DCK−1) ≡ min
z2∈Z2(εk)

∆Uk2 (DCK−1, z2) ≥ ∆Ǔk2 (DCK−1)− εk

Ēk2 (DCK−1) ≡ max
z2∈Z2(εk)

∆Uk2 (DCK−1, z2) ≤ ∆Ǔk2 (DCK−1) + εk.

There must exist some k∗ such that Ek2(DCK−1) < 0 < Ēk2 (DCK−1) for all k > k∗, and

limk→∞E
k
2(DCK−1) = limk→∞ Ē

k
2 (DCK−1) = 0; otherwise, (σ̃k)k would not converge in

outcomes to σ, where player 2 is mixing at DCK−1. Then (2.3.44) gives

lim
k→∞

Ek2(CK−1) ≥ lim
k→∞
{∆Uk2 (CK−1)− εk} = lim

k→∞
{∆Ûk2 (CK−1) +Ek2(DCK−1)}. (2.3.45)

Note that because σ1(CK−1c) ≥ σ1(CK−1d),

lim
k→∞

∆Ûk2 (CK−1) = lim
k→∞

ˆ
(2− (3σ̃k1 (CK−1c, z1)− σ̃k1 (CK−1d, z1)))µk(CK−1) dψ(z1)
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= (2− (3σ1(CK−1c)− σ1(CK−1d)))µ(CK−1)

≥ (2− 2σ1(CK−1c))µ(CK−1) > 0

since σ1(CK−1c) < 1. Continuing from (2.3.45) I have

lim
k→∞

Ek2(CK−1) = lim
k→∞
{∆Ûk2 (CK−1) + Ek2(DCK−1)} > lim

k→∞
Ek2(DCK−1) = 0,

so there exists κ such that for k > κ, player 2 strictly prefers c for all shocks z2 ∈ Z2. Since

σ̃k → σ, σ(CK−1) = 1.

The above arguments imply that V (σ̃k|CK−1) ≥ V (σ̃k|IK−1). Applying the same

argument inductively backward proves conditions 1 and 2 in the statement of the lemma

for all j ∈ {0, ...,K − 1}.

Finally, I prove the last statement of the lemma. Suppose γ(IK) = 2 and α2(IK−1) >

0. This implies that α1(IK−1c) > 0, i.e. C is a player 1 best response at IK−1c. Furthermore,

the decision problem facing player 1 at history CK−1a2 is identical to the one at IK−1a2,

so σ1(CK−1a2) = α1(IK−1a2). The arguments above prove that σ2(CK−1) = 1. Thus, the

continuation payoff for CK−1 is V (CK−1) = (1− δ)u1(c, C) + δV (CK) = 2(1− δ) + 2δ = 2.

This means that the decision problem facing player 1 at CK−2a2 is identical to that at

CK−1a2, CKa2 and IK−1a2, so σ1(CK−2a2) = α1(IK−1a2). Applying essentially the same

argument as above shows σ2(CK−2) = 1, so V (CK−2) = 2. Continuing backwards shows

that V (∅) = 2.

I now consider the λ ≤ 1 and λ > 1 cases separately, concluding the proof.

Case 1. λ ≤ 1: I now show that α2(I0) ∈ (0, 1) (i.e. player 2 mixes the period after a play

ofD). First, I show that α2(I0) < 1. Otherwise, γ(I0) ≥ (1−δ)u1(c,D)+δγ(I0) =

3(1− δ)+ δγ(I0), which implies γ(I0) = 3 > γ(Ik)−λη, a contradiction. Because

α2(I0) < 1, it must be that player 1 plays D at I0c sometimes (otherwise d

would not be a best response for player 2). If D is a player 1 best response at
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I0c, it is also a best response at I0d; then γ(I0) = (1 − δ)[α2(I0)u1(c,D) + (1 −

α2(I0))u1(d,D)] + δγ(I0) so

γ(I0) = 3α2(I0) + (1− α2(I0)).

It must then be that α2(I0) > 0 for otherwise γ(I0) = 1; but above I have

supposed γ(I0) = γ(IK)− λη = 2− λη > 1, a contradiction. Recall that Lemma

2.3.9 shows C is a player 1 best response at I0c (since γ(I0) > 1). Lemma 2.3.10

implies that because C is a best response at I0c, it is also a best response at ∅c

(in period 0): V (C) ≥ γ(I1) ≥ γ(I0) + λη = 2. Lemma 2.3.10 also shows that

because α2(I0) ∈ (0, 1), σ2(∅) = 1. Thus, the equilibrium payoff for player 1 is

V (∅) = (1− δ)u(c, C) + δV (C) ≥ 2.

Case 2. λ > 1: I prove that α2(IK−1) > 0 for large enough K. Suppose by contradiction

that α2(IK−1) = 0. Since player 1 is indifferent at IK−1c, she strictly prefers C

at IK−1d, so

γ(IK−1) = (1− δ)u1(d,C) + δγ(IK) = δγ(IK) < γ(IK).

Then player 1 must strictly prefer D at IK−2, so

γ(IK−2) = (1− δ)u1(d,C) + δγ(IK−1) = δγ(IK−1) = δ2γ(IK) < γ(IK).

Applying the same argument backward gives γ(I0) = δKγ(IK), so for K large

enough, γ(I0) < 1, a contradiction. Second, suppose by contradiction that

γ(IK) > 2 (recall that Proposition 2.5.2 shows γ(IK) ≥ 2). Then

γ(IK−1) ≤ (1− δ)u1(c, C) + δγ(IK) = 2(1− δ) + δγ(IK) < γ(IK).

By the same argument leading to (2.3.43), D is then a strict best response at

IK−2c, so γ(IK−2) = δγ(IK+1) < γ(IK), so by backward induction γ(I0) =

δK−1γ(IK+1). For large enough K, γ(I0) < 1, a contradiction. Since γ(IK) = 2

181



and α2(IK−1) > 0, Lemma 2.3.10 proves the proposition.
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Appendix 3

Proofs for Chapter 3

3.1 Proof of Lemma 3.3.1

Suppose by contradiction that Ľ(g, š) is nondecreasing in š. Then the term Ľ(g,š)

q(Ľ(g,š))

is nondecreasing in š, so the square root term in (3.3.1) is strictly increasing. But then the

right hand side of (3.3.1) is strictly decreasing, a contradiction.

3.2 Proof of Proposition 3.3.1

First, note that choosing any qi ∈ (0, ηE[s−i] + g) is strictly dominated by choosing

qi. Eliminating these actions, there is a one-to-one mapping between qi and q̂i, so we can

rewrite the profit function in terms of q̂i:

ui(a) = p(a)q̂i − c(q̂i + κs−i + g)− ηsi

= (r − q̂i − q̂−i)q̂i − c(q̂i + κs−i + g)− ηsi,

so long as q̂i > 0. If q̂i = 0, then ui(a) = −ηsi, so if q̂i = 0 is a best response, then si = 0 is

also a best response.

Suppose that when Q is sufficiently fine, there is an interior solution (i.e., q̂i > 0 is

a best response). q̂i must satisfy the first order condition

0 =
∂ui
∂q̂i
− q̂i + (r − q̂i − q̂−i)− c

q̂i = 1
2(r − c− q̂−i).
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Define the function q(q̂−i) ≡ 1
2(r − c− q̂−i). A corner solution (q̂i = 0) is a best response if

0 ≥ ui(q(q̂−i)) = (r − q(q̂−i)− q̂−i)q(q̂−i)− c(q(q̂−i) + κE[s−i] + g)− ηs∗i

where I abuse notation by letting s∗i denote the mixed attack action conditional on delivering

positive quantity. Note that by symmetry, E[s−i] = E[s∗i ] = ρs∗i where ρ is the probability

of delivering positive quantity. Solving for q̂−i yields

0 ≥ (r − 1
2(r − c− q̂−i)− q̂−i) · 1

2(r − c− q̂−i)− c(1
2(r − c− q̂−i) + κE[s∗i ] + g)− ηs∗i .

q̂−i ≥ r − c− 2
√
cκE[s∗i ] + ηs∗i + cg.

Thus, s∗ and g are positive, there exists some threshold for the opposing delivered quantity

q̂i at which choosing q̂i = 0 is a best response. Denote this threshold as L(g) ≡ r − c −

2
√
cκE[s∗i ] + ηs∗i + cg.

Define q̂int as the unique fixed point of q(·), which can be solved for as follows:

q̂int = 1
2(r − c− q̂int)

q̂int = 1
3(r − c).

Define ∆sui as the change in the payoff from choosing si = 1 over si = 0:

∆sui ≡ ui(si = 1, (q, s−i))− ui(si = 0, (q, s−i)).

Because E[q−i] − g ≥ κ in any equilibrium, I can write ∆sui ≡ κq̂i − η,. Due to (3.2.1),

∆sui > 0 for q̂i = q̂int > qm.

A pure strategy equilibrium is possible under two circumstances when Q is suffi-

ciently fine:

1. q̂int
i ≥ L(g): Both firms choose quantity delivered q̂int and to attack, which are

mutual best responses by the arguments above.
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2. L(g) = 0: Both firms choose quantity 0 and to not attack. By the definition of L,

when the opposing firm delivers quantity q̂−i = L, q̂i = 0 is a best response. It is also

clear that ∆sui = −η < 0, so si = 0 is a best response.

The rest of the proof considers the remaining case where 0 < L(g) < q̂int. I start by solving

for the values of g where this holds:

1
3(r − c) > r − c− 2

√
cκE[s∗i ] + ηs∗i + cg.

Since both firms attack when L(g) = q̂int, I can write

√
cκ+ η + cg > 1

3(r − c)

cκ+ η + cg > 1
9(r − c)2

cg > 1
9(r − c)2 − cκ+ η

g >
1

c

[
1
9(r − c)2 + η − cκ

]
. (3.2.1)

For g satisfying (3.2.1) and L(g) > 0, there is no pure strategy equilibrium in terms of quan-

tities, so they must be mixing. Since firm i only has multiple best responses in quantities

when E[q̂−i] = L(g), this must hold in equilibrium. Hence, (3.3.2) is proven.

Suppose that attacking is a best response for the firms (when producing drugs).

Note that

∆sui ≡ ui(si = 1, (q, s−i))− ui(si = 0, (q, s−i))

= (r − q̂i − q̂−i + min{κ, q̂−i})q̂i − c(q̂i + κE[s−i] + g)− η

−[(r − q̂i − q̂−i)q̂i − c(q̂i + κE[s−i] + g)]

= min{κ, q̂−i}q̂i − η.

In equilibrium, q̂−i = L(g), and firm i chooses to attack only when also choosing q̂i =
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q(L(g)). Attacking is a best response if

0 ≤ ∆sui = min{κ, L}q(L)− η.

Consider the following two cases:

Case 1. L(g) ≥ κ: I show that 0 ≤ κq(L)− η. Suppose not. Then

0 > κq(L)− η

= 1
2κ(r − c− L)− η

≥ 1
2κ(r − c− κ)− η

> 1
2κ(r − c− κ)− 1

4κ(r − c)

= 1
4κ(r − c)− 1

2κ
2

= κ(1
4(r − c)− 1

2κ)

so

0 > 1
4(r − c)− 1

2κ

κ > 1
2(r − c),

a contradiction of (3.2.2).

Case 2. L(g) < κ: Then 0 ≤ Lq(L)− η. Rearranging gives

0 ≤ L · 1
2(r − c− L)− η

0 ≤ −L2 + (r − c)L− 2η,

which holds with equality at

L =
−(r − c)±

√
(r − c)2 − 4(−1)(−2η)

−2

= 1
2

[
(r − c)±

√
(r − c)2 − 8η

]
.
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The “+” expression is greater than 1
3(r−c) = q̂int, so that upper bound is clearly

not binding. Focusing on the lower bound, I have

L = r − c− 2
√
cκE[s∗i ] + ηs∗i + cg ≥ 1

2

[
(r − c)−

√
(r − c)2 − 8η

]
(3.2.2)

From (3.2.2) we can see that for all g satisfying

r − c− 2
√
cκ+ η + cg ≥ 1

2

[
(r − c)−

√
(r − c)2 − 8η

]
,

which can be rearranged to get

g ≤ 1

c

(
1

4

[
(r − c)− η

κ

]2
− (cκ+ η)

)
, (3.2.3)

s∗i = 1 (i.e. always attack when producing drugs). Thus,

E[s∗i ] =
L

q(L)
=

r − c− 2
√
cκE[s∗i ] + η + cg

1
2

(
r − c−

(
r − c− 2

√
cκE[s∗i ] + η + cg

))
=

r − c− 2
√
cκE[s∗i ] + η + cg√

cκE[s∗i ] + η + cg

=
r − c√

cκE[s∗i ] + η + cg
− 2

r − c√
cκE[s∗i ] + η + cg

= 2 + E[s∗i ]

(r − c)2

cκE[s∗i ] + η + cg
= 4 + 4E[s∗i ] + E[s∗i ]

2

(r − c)2 = (4 + 4E[s∗i ] + E[s∗i ]
2)(cκE[s∗i ] + η + cg)

= 4cκE[s∗i ] + 4cκE[s∗i ]
2 + cκE[s∗i ]

3

+4(η + cg) + 4(η + cg)E[s∗i ] + (η + cg)E[s∗i ]
2

0 = cκE[s∗i ]
3 + 4(cκ+ η + cg)E[s∗i ]

2 + 4(cκ+ η + cg)E[s∗i ] + 4(η + cg)− (r − c)2,
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so E[s∗i ] = ξ(g). Similar steps to those leading to (3.2.3) imply that for all

g ≥ 1

c

(
1

4

[
(r − c)− η

κ

]2
)
, (3.2.4)

firms strictly prefer to not attack in equilibrium, E[s∗i ] = s∗i = 0.

I finally turn to the case of g in between (3.2.3) and (3.2.4). Note that L = Ľ(g, s∗i ).

Define B0 ≡ 1
2

[
(r − c)−

√
(r − c)2 − 8η

]
as the right hand side of (3.2.2). Then (3.2.2)

implies that attacking is a strict best response when Ľ(g, 1) > B0 and that not attacking

is a strict best response when Ľ(g, 0) < B0. If both are best responses, then Ľ(g, s∗i ) = B0.

Thus, (3.3.3) is proven.

3.3 Proof of Proposition 3.3.3

As noted at the beginning of Proposition 3.3.1, hiring any quantity qi ∈ (0, κE[s̄−i]+

g) is strictly dominated by choosing qi = 0. Thus, I can work simply with delivered quan-

tities q̂i = qi − (κE[s̄−i] + g) without loss of generality. The payoff of firm i is

Vi = (1− δ)ui(q̂, s̄) + δ
[(

1− F (θ̄)
)
V̄ + F (θ̄)Ṽ

]
.

Suppose the best response is an interior solution, i.e. q̂i > 0. Then q̂i satisfies the first order

condition

0 =
∂Vi
∂q̂i

= (1− δ)∂ui
∂q̂i

+ δf(θ̄)
∂θ̄

∂q̂i
∆V.

Writing ui in terms of delivered quantities gives

ui = (r − q̂i − q̂−i)q̂i − cq̂i − c(κE[s̄] + g)− ηE[s̄]

= (r − c− q̂−i)q̂i − q̂2
i − c(κE[s̄] + g)− ηE[s̄]

yielding the derivative

∂ui
∂q̂i

= r − c− q̂−i − 2q̂i. (3.3.1)
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Note that

θ̄ =
p̄

p(q̂)
=

p̄

r − q̂i − q̂−i
,

so its derivative is

∂θ̄

∂q̂i
= − p̄

p(q̂)2

∂θ̄

∂q̂i
=

θ̄

p(q̂)
. (3.3.2)

Substituting (3.3.1) and (3.3.2) gives

0 = (1− δ)(r − c− q̂−i − 2q̂i)− δf(θ̄)
θ̄

r − q̂i − q̂−i
∆V

0 = (r − c− q̂−i − 2q̂i)(r − q̂i − q̂−i)−
δ

1− δ
f(θ̄)θ̄∆V.

The restriction to symmetric strategies means that q̂i = q̂−i, yielding

0 = (r − c− 3q̂i)(r − 2q̂i)−
δ

1− δ
f(θ̄)θ̄∆V,

which can be rearranged to

0 = 6q̄2
i − (5r − 2c)q̂i + r(r − c)− δ

1− δ
f(θ̄)θ̄∆V.

Applying the quadratic formula gives

q̂i =
5r − 2c±

√
(r + 2c)2 + 24 δ

1−δf(θ̄)θ̄∆V

12
.

It is straightforward to verify that the“−” solution yields the one-shot equilibrium in Propo-

sition 3.3.1 for ∆V = 0, and so is correct. Thus, (3.3.8) and (3.3.9) are proven.

θ̄ must solve the following maximization problem:

max
θ̄

(1− δ)ui(q̂(θ̄)) + δ[(1− F (θ̄))V̄ + F (θ̄)Ṽ ] (3.3.3)

where I omit the index i from the delivered quantity q̂(θ̄) given by (3.3.9). If the solution
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is interior (θ̄ ∈ (0,∞)), it satisfies the first order condition

0 = (1− δ)∂ui
∂q̂

∂q̂

∂θ̄
− δf(θ̄)∆V (3.3.4)

Note that if θ̄ is interior, then ∆V > 0 (otherwise a corner solution would be optimal). Since

γ(θ̄) is single peaked at ln θ̄ = −1
2ζ

2, q̂(θ̄) has a single minimum θ̄ = exp(−1
2ζ

2). Thus, for

any θ̄′ > exp(−1
2ζ

2), there exists θ̄′′ ≤ exp(−1
2ζ

2) yielding a higher value for (3.3.3).

Applying symmetric strategies gives

ui(q̂) = (r − 2q̂)q̂ − cq̂ = (r − c− 2q̂)q̂ = −2q̂2 + (r − c)q̂,

which can be differentiated to obtain

∂ui
∂q̂

= −4q̂ + (r − c).

Differentiating the delivered quantity function itself obtains ∂q̂
∂θ̄

= −1
2(C1+γ(θ̄)∆V )−1/2∆V .

Substituting into (3.3.4) gives

0 = −(1− δ) (r − 4q̂ − c)
dγ
dθ̄

∆V

2
√
C1 + γ(θ̄)∆V

− δf(θ̄)∆V. (3.3.5)

Expanding dγ/dθ̄ and simplifying gives

dγ

dθ̄
=

1

6

δ

1− δ
d

dθ̄
[f(θ̄)θ̄] =

1

6

δ

1− δ
d

dθ̄

[
1

ζ
√

2π
exp

(
−

(log θ̄ + 1
2σ

2)2

2ζ2

)]

=
1

6

δ

1− δ
1

ζ
√

2π
exp

(
−

(log θ̄ + 1
2ζ

2)2

2ζ2

)(
−2

log θ̄ + 1
2ζ

2

2ζ2

1

θ̄

)

= −1

6

δ

1− δ
log θ̄ + 1

2ζ
2

ζ2
f(θ̄). (3.3.6)

Substituting (3.3.6) into (3.3.5) yields

0 = δ
(
4q̂(θ̄)− (r − c)

) −(log θ̄ + 1
2ζ

2)f(θ̄)∆V

12ζ2
√
C1 + γ(θ̄)∆V

− δf(θ̄)∆V
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0 =
(
4q̂(θ̄)− (r − c)

) −(log θ̄ + 1
2ζ

2)f(θ̄)∆V

12ζ2
√
C1 + γ(θ̄)∆V

− f(θ̄)∆V

0 =
(
4q̂(θ̄)− (r − c)

) −(log θ̄ + 1
2ζ

2)

12ζ2
√
C1 + γ(θ̄)∆V

− 1, (3.3.7)

thereby proving (3.3.10). Rearranging (3.3.7) gives

−(log θ̄ + 1
2ζ

2) =
12ζ2

√
C1 + γ(θ̄)∆V

4q̂(θ̄)− (r − c)
.

Note that because γ(θ̄) is single peaked at exp(−1
2ζ

2), for all θ̄ < exp(−1
2ζ

2), the numerator

of the right hand side is increasing in θ̄ while the denominator is decreasing, so the entire

right hand side is increasing. The left hand side is clearly strictly decreasing in θ̄, so (3.3.10)

has a unique solution.

3.4 Proof of Lemma 3.3.2

Suppose by contradiction that B̄(W ) /∈ B({W̄}). Let V ′ < W̄ be some element of

W such that B̄(W ) ∈ B({V ′}). Define Ṽ ′ ≡ (1−δT )uN+δTV ′ and W̃ ≡ (1−δT )uN+δT W̄ .

By Definition 3.3.1, there exists ᾱ ∈ ∆A enforced by p̄ and V ′. Denote (q̄, s̄) as the expected

actions of ᾱ.

First, suppose that p̄ ∈ {0,∞} (a corner solution). From Corollary 3.3.1, it is

straightforward to see that (1− δ)v̄N + δmax{W̄ , W̃} is decomposed by ᾱ, p̄, W̄ (since ᾱ is

the static Nash equilibrium given ḡ) and that

(1− δ)v̄N + δmax{W̄ , W̃} > (1− δ)v̄N + δmax{V ′, Ṽ ′} = B̄(W ),

a contradiction.

Second, suppose that p̄ ∈ (0,∞) (an interior solution). From Proposition 3.3.3,

q̄i = C0 −
√
C1 + γ(θ̄)(V ′ − Ṽ ) + κs̄i + ḡ.
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Since W̄ − W̃ > V ′ − Ṽ ′, there exists θ̄W̄ < θ̄ such that

q̄i = C0 −
√
C1 + γ(θ̄W̄ )(W̄ − W̃ ) + κs̄i + ḡ.

Since attacks are observable, s̄ is also enforceable. Thus, ᾱ is enforced by p̄W̄ ≡ θ̄W̄ p(ᾱ)

and W̄ , so they can decompose payoff

(1−δ)ui(ᾱ)+δ[(1−F (θ̄W̄ ))W̄+F (θ̄W̄ )W̃ ] > (1−δ)ui(ᾱ)+δ[(1−F (θ̄))V ′+F (θ̄)Ṽ ′] = B̄(W ),

a contradiction.

3.5 Proof of Corollary 3.3.2

Lemma 3.3.2 and part 3 of Proposition 3.3.2 immediately imply (3.3.13). To see

that Ē is the payoff of a T -GPE, construct the following T -GPE: in the reward state,

always play action profile Q(Ē ), switching to the punishment state for prices below U(Ē ).

By Lemma 3.3.2, Q(Ē ) is enforced by U(Ē ) and Ē . Definition 3.3.1 implies that there are

no profitable one-shot deviations in the reward state, and there are clearly no profitable

one-shot deviations in the punishment state since firms play the static Nash equilibrium

without intertemporal incentives. By the one-shot deviation principle, this T -GPE is an

equilibrium, and since Q(Ē ),U(Ē ), Ē decompose Ē , its payoff is Ē .

3.6 Proof of Lemma 3.3.3

Recursively define the sequence {Vm}m as follows: V0 ≡ V and Vm+1 = B̄({Vm}).

First, suppose there exists m such that Vm+1 ≤ Vm. Pick the lowest such m. If Vm+1 = Vm,

then {Vm} ⊂ B̄({Vm}) is a self-generating set, so Vm ≥ V0 = V is an equilibrium payoff,

and hence Ē ≥ Vm ≥ V . Now suppose that Vm+1 < Vm. Then B̄({V0, ..., Vm}) = Vm,

yet by Lemma 3.3.2, B̄({V0, ..., Vm}) = B̄(max{V0, ..., Vm}) = B̄({Vm}) = Vm+1 < Vm, a

contradiction.

Now suppose that Vm+1 > Vm for all m. It is clear from Definitions 3.3.1 and 3.3.2
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that {Vm}m is bounded (to see why, note that from (3.3.6), Vm+1 is a linear combination of

Vm and some feasible payoff v ≤ F̄ for all m), so there exists some limit V ∗ = limm→∞ Vm.

The following lemma and proof is virtually identical to its analogue in Abreu, Pearce,

and Stacchetti (1990), so its proof is omitted (see Lemma 7.3.2 of Mailath and Samuelson

(2006)).

Lemma 3.6.1. If W is compact, then B(W ) is closed.

Define the set W ≡ {V ∗, V0, V1, ...}. By Definition 3.3.2, {V1, V2, ...} ⊂ B(W ).

Since limm→∞ Vm = V ∗ and W is compact, Lemma 3.6.1 implies V ∗ ∈ B(W ). Since there

exist no α, p̄, Vm that decompose V ∗, there must be α, p̄, V ∗ that decompose V ∗. Hence

{V ∗} ⊂ B({V ∗}) and so V ∗ ∈ E , implying that V < Ē .

193



Bibliography

Abreu, D., D. Pearce, and E. Stacchetti (1986): “Optimal cartel equilibria with

imperfect monitoring,” Journal of Economic Theory, 39(1), 251 – 269.

(1990): “Toward a theory of discounted repeated games with imperfect moni-

toring,” Econometrica, pp. 1041–1063.

Aoyagi, M. (1996): “Reputation and Entry Deterrence under Short-Run Ownership of

a Firm,” Journal of Economic Theory, 69(2), 411 – 430.

Apostol, T. M. (1976): Introduction to Analytic Number Theory. Springer-Verlag, New

York.

Atkeson, A. (1991): “International Lending with Moral Hazard and Risk of Repudia-

tion,” Econometrica, 59(4), 1069–89.

Banerjee, A., and D. Fudenberg (2004): “Word-of-mouth learning,” Games and

Economic Behavior, 46(1), 1 – 22.

Barlo, M., G. Carmona, and H. Sabourian (2009): “Repeated games with one-

memory,” Journal of Economic Theory, 144(1), 312 – 336.

Bhaskar, V., G. J. Mailath, and S. Morris (2013a): “A Foundation for Markov

Equilibria in Sequential Games with Finite Social Memory,” The Review of Economic

Studies, 80(3), 925–948.

(2013b): “A Foundation for Markov Equilibria in Sequential Games with Finite

Social Memory,” The Review of Economic Studies, 80(3), 925–948.

Corbae, D., M. B. Stinchcombe, and J. Zeman (2009): An Introduction to Mathe-

matical Analysis for Economic Theory and Econometrics. Princeton University Press.

194



Cripps, M. W., G. J. Mailath, and L. Samuelson (2004): “Imperfect Monitoring

and Impermanent Reputations,” Econometrica, 72(2), 407–432.

Dell, M. (2011): “Trafficking Networks and the Mexican Drug War,” American Eco-

nomic Review, p. Forthcoming.

Doraszelski, U., and J. F. Escobar (2010): “A theory of regular Markov perfect

equilibria in dynamic stochastic games: Genericity, stability, and purification,” Theoreti-

cal Economics, 5(3), 369–402.

(2012): “Restricted feedback in long term relationships,” Journal of Economic

Theory, 147(1), 142 – 161.

Ekmekci, M. (2011): “Sustainable reputations with rating systems,” Journal of Eco-

nomic Theory, 146(2), 479 – 503.

Ellison, G., and D. Fudenberg (1995): “Word-of-Mouth Communication and Social

Learning,” The Quarterly Journal of Economics, 110(1), 93–125.

Ely, J. C., D. Fudenberg, and D. K. Levine (2008): “When is reputation bad?,”

Games and Economic Behavior, 63, 498–526.

Ely, J. C., J. Hörner, and W. Olszewski (2005): “Belief-Free Equilibria in Repeated

Games,” Econometrica, 73(2), pp. 377–415.
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