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Most existing computational methods for inverting material properties of 

multilayer systems have focused primarily on elastic properties of materials or a static 

approach. Typically, they are based on a two-stage approach: (I) modeling structural 

responses with a computer program, and (II) estimating layer properties mathematically 

using the response outputs determined in stage I without interactions with the governing 

state partial-differential-equation (PDE) of stage I. This two-stage approach may not be 

accurate and efficient enough for inverting larger scale model parameters. The objective 

of this research was to develop a computational method to invert dynamic moduli of 

multilayer systems with applications to flexible pavements under falling weight 

deflectometer (FWD) tests, thereby advancing existing methods and fostering 

understanding of material behaviors. This research first developed a finite-element and 

Newton-Raphson method to invert layer elastic moduli using FWD data. The model 

improved the moduli seeds estimation and achieved a satisfactory accuracy based on 

Monte Carlo simulations, addressing the common back-calculation issue of no unique 

solutions. Consequently, a time-domain finite-element method was developed to simulate 

dynamic-viscoelastic responses of the multilayer systems under loading pulses. 
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Simulation results demonstrated that the dynamic-viscoelastic-damping-coupled model 

could emulate structural responses more accurately, thereby advancing existing 

simulation approaches. By using the dynamic-viscoelastic-response model as one 

computation module, this research led to the development of a PDE-constrained 

Lagrangian optimization method to invert dynamic moduli and viscoelastic properties of 

multilayer systems. The Lagrangian function was used as an objective function, with a 

regularization term and governing-state PDE constraint. Both the first-order (gradient) 

and second-order variation (Hessian matrix) of the Lagrangian were computed to satisfy 

necessary and sufficient optimality conditions, and Armijo rule was modified to 

determine a stable step length. The developed method improved computation speed 

significantly, and it is superior for large-scale inverse problems. The model was 

implemented for evaluating flexible pavements under FWD tests and for inverting the 

master curve of dynamic moduli of the asphalt layer. Independent computer coding was 

developed for all numerical methods. The computational methods developed may also be 

applied to other multilayer systems, such as tissues and sandwich structures at different 

time and length scales. 
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𝑗 +
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𝜕𝑥1
+
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𝜕𝑥2
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∂f3

𝜕𝑥3
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𝜕𝑥1
+

∂𝐅i2

𝜕𝑥2
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𝜕𝑥1
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𝜕𝑥2
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∂2f3
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Chapter 1: Introduction 

This chapter presents the following contents: 1) background and literature review; 

2) research problems; 3) research objectives; and 4) scope of the dissertation. 

 Background and Literature Review 

1.1.1 Material Viscoelasticity and Models of Solids 

Two types of models are primarily used to capture the linear viscoelastic behavior 

of materials: 1) mechanical models; and 2) mathematical models. To understand the 

mechanical models, a few modulus concepts and related terms are reviewed: 1) the 

relaxation modulus, 𝐸 𝑡 ; 2) the creep compliance, 𝐷 𝑡 , and 3) the dynamic or complex 

modulus, 𝐸∗.  

The relaxation modulus describes stress relaxation over time under constant strain 

as shown in Figure 1a.  At loading time zero or infinite loading frequency, this 

corresponds to the instantaneous modulus. The creep compliance describes the 

displacement and strain increase over time under a constant stress, as illustrated in Figure 

1b. 

a)               b)  

Figure 1. Relaxation modulus and creep compliance. 

The relaxation modulus and creep compliance has a constitutive relationship as 

follows (Park and Schapery 1999): 

∫ 𝐸 𝑡 𝐷 𝑡 = 1 (1-1) 

t

Constant strain

): instantaneous modulus

Constant stress

𝐸 𝑡  𝐷 𝑡  
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The dynamic or complex modulus is equal to stress over strain under the vibratory 

conditions as follows (Huang 2003): 

𝐸∗ =
𝜎0𝑒𝑖𝜔𝑡

𝜖0𝑒𝑖 𝜔𝑡−𝜙  (1-2) 

where σ0 is the peak stress; 휀0  is peak strain;  𝜙  is phase angle (radians);  𝜔  is angular 

velocity (radians/sec); and 𝑡  is  time (seconds). 

As defined by equation (1-2), the complex modulus is time-dependent for a given 

temperature.  The absolute value of dynamic modulus |𝐸∗| is defined as follows. Note 

that |𝐸∗| is often called “dynamic modulus” in the pavement engineering community, 

while 𝐸∗ is called complex modulus: 

|𝐸∗| =
𝜎0

0
  (1- 3) 

The dynamic modulus is a characterization of material viscoelasticity. 𝐸∗ can be 

decomposed to 𝐸′ + 𝑖𝐸′′, where 𝐸′ is the storage modulus (elastic portion) and 𝐸′′ is the 

loss modulus (viscous portion). Several mechanical models have been proposed to 

describe the material viscoelastic behavior and dynamic modulus, including:  

I. Maxwell model  

This model consists of one spring and one dashpot in series (see Figure 2a). The 

spring is used to represent the elastic modulus of a material. The dashpot is used to 

represent the viscosity of a material as strain-rate dependent as presented by Christen 

(2009): 

𝜎 = 𝜂
𝑑

𝑑𝑡
 (1- 4) 

where 𝜎 is stress, Pa; 𝜂 is viscosity, Pa.s, and 휀 is strain. 

The Maxwell model expresses the relaxation modulus of material as follows: 

𝐸 𝑡 = 𝐸1𝑒
−

𝐸1
𝜂1

𝑡
 (1- 5) 

II. Kelvin model 
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This model consists of one spring and one dashpot in a parallel arrangement, plus 

one spring to express the creep compliance of material (see Figure 2b). 

III. Burgers model 

This is a combination of the Maxwell and Kelvin models in series (see Figure 2c). 

IV. Generalized Maxwell model 

This is a combination of multiple terms of the Maxwell model in parallel (see 

Figure 2d). The expression of relaxation modulus will be detailed in Chapter 3. 

V. Generalized Kelvin model 

This model is a combination of multiple terms of the Kelvin model in series (see 

Figure 2e).  

VI.  Huet-Sayegh model 

When compared to the generalized Maxwell, Kelvin, and Burgers models, a 

variable dashpot rather than a linear dashpot is used (Pronk 2001), as shown in the 

following Figure 2f, which also shows all the models mentioned up to this point.  

 

 

 

(a) Maxwell Model 

 

 

(b) Kelvin model 

 

Figure 2. Mechanical viscoelastic models of solids. 
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 (c) Burgers model 

 

 (d) Generalized Maxwell model 

 

 (e) Generalized Kelvin model 

 

(f) Huet-Sayegh model 

Figure 2. Mechanical viscoelastic models of solids (continued). 
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The mathematical models include:  

I. The 3-parameter power-law model for creep compliance 

 𝐷 𝑡 = 𝐷0 + 𝐷1𝑡
𝑛  (1-6) 

where 𝐷0, 𝐷1, 𝑛 are material model parameters, and 𝑡 is time. 

II. The sigmoidal function model 

As a result of the National Cooperative Highway Research Program (NCHRP) 

Project 1-37A development (Glover and Mallela 2009), the mathematical model in a 

sigmoidal function has been proposed to describe the absolute dynamic modulus as 

follows: 

log|𝐸∗| = 𝛿 +
𝛼

1+𝑒𝛽+𝛾log  𝑡𝑟  (1-7) 

where 𝛿  is the minimum dynamic modulus (often termed the “lower shelf”); δ + α is 

maximum dynamic modulus (often termed the “upper shelf”), and  β, γ are parameters 

describing the location and slope of the transition region of the sigmoidal function. 

This model has been widely adopted to represent the laboratory test data of 

asphalt concrete (AC) material in this country and used in the Mechanistic-Empirical 

Pavement Design Guide (MEPDG) for stress-strain response modeling as discussed 

previously. The MEPDG has evolved and it is currently known as the AASHTOWare 

Pavement ME Design. 

The Maxwell model, Kelvin model, and Burgers model would not be able to well 

capture the master curve of complex moduli of AC material at a full-range of reduced 

frequency (Xu and Solaimanian 2008) due to the limited term numbers as shown in 

Figure 3a (e.g., only one parallel spring and dashpot used for the Maxwell model). The 

generalized Maxwell model (Figure 3b), generalized Kelvin model (Figure 3b), Huet-

Sayegh model (Figure 3c), and sigmoidal function (Figure 3c) could capture the master 

curve of dynamic modulus at a wide range of reduced frequency (Xu and Solaimanian 

2008).  
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Figure 3. Master curves of dynamic modulus by mechanical models. 
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Figure 3. Master curves of dynamic modulus by mechanical models (continued). 

However, the generalized Maxwell model and generalized Kelvin model are 

unable to produce very smooth fitted master curves (frequency on the logarithmic scale) 

from laboratory test data (see their “oscillations” in Figure 3b). On the other hand, the 

Huet-Saygh model and sigmoidal function can produce smoother master curves (see 

Figure 3c). The mechanical model provides the physical meaning needed to describe the 

material viscoelastic behavior rather than a mathematical function only, and thus Xu and 

Solaimanian (2008) recommended the Huet-Sayegh model as the standard used to 

describe the master curve of the dynamic modulus. However, the ultimate purpose of the 

material model is to simulate the structural responses for numerical solution. The 

generalized Maxwell model and generalized Kelvin model in the exponential Prony 

series have the advantage of providing numerical integration and the differential needed 

to achieve improved accuracy and computation speed; thus, they have been widely 

adopted in the commercial finite element (FE) software, which includes ANSYS and 

ABAQUS. Currently there are no definitions of inputs for the Huet-Sayegh model in the 

numerical solution including the FE software; however, one method is to convert the 

model into a Prony series for inputs. As is the case in the Huet-Sayegh model, the 

mathematical sigmoidal function is not defined as capable of achieving direct material 

model inputs for numerical solutions. The Mechanistic-Empirical Pavement Design 
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Guide (MEPDG) funded by NCHRP (Project 31A) put together by the Applied Research 

Associates (ARA) along with several other consultants (Glover and Mallela, 2009) uses 

the sigmoidal function to approximate the dynamic and material viscoelastic behaviors as 

discussed previously. Therefore, in this research, the generalized Maxwell model of the 

Prony series representation is adopted to simulate the viscoelastic behavior of materials.  

1.1.2 Damping Models 

Damping consists of: material damping, structural damping, and fluid viscous 

damping for energy dissipation (Puthanpurayil et al. 2011).  Damping models can be both 

frequency dependent and independent or viscous and non-viscous. The Rayleigh damping 

model, one of the frequency-dependent and viscous models to date, is still the most 

popular model employed in structural dynamic analysis (Puthanpurayil et al. 2011): 

 C = 𝑎 M + 𝛽 K   (1-8) 

where [C] is damping matrix, [M] is mass matrix, and [K] is stiffness matrix, and  𝛼 and 

𝛽 are model parameters. 

One of the advantages of this model is that the damping matrix can be directly 

estimated according to material mass and stiffness without performing sophisticated 

material testing. The main issue with this model lies in its strong dependence on the 

frequency of structures such that the model parameters (i.e., 𝛼 and 𝛽) are evaluated as a 

function of the frequency (Puthanpurayil et al. 2011). However, the Rayleigh damping 

model has been often used to represent damping at small strain levels, whereas material 

models are primarily considered linear (Park and Hashash 2004). In this dissertation 

research, the base, subbase and soil materials are considered linear elastic under the FWD 

loading for a very short period. In addition, because no laboratory testing for material 

characterization was conducted in this research, the Rayleigh damping model was 

adopted in this research as presented in Chapter 3 and Chapter 4.  

Saouma et al. modified the Rayleigh damping model to be dependent on stiffness 

matrix only for simulating the radiation damping for soil-structural interaction as follows: 
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C =
𝜉

𝜋𝑓
 K   (1-9) 

where 𝜉 is a damping factor for frequency 𝑓, and  K  is stiffness matrix. 

Very often the symmetric mass and stiffness matrices are used; therefore, the 

Rayleigh model yields a symmetric matrix. However, Kim et al. (2013) estimated a non-

symmetric format of damping matrices for multi-degrees-of-freedom structures. 

Other frequency dependent models besides the Rayleigh damping model have 

also been studied, including those proposed by Bagley and Torvik (1983), Lesieutre and 

Mingori (1990), McTavish and Hughes (1993), and Adhikari and Woodhouse (2001).  

More recent research on other damping models for use in structures and materials 

includes the following examples: Hussein and Frazier (2010) considered both 

proportional damping (stiffness and mass proportional damping) and general damping 

(damping nonzero) for modeling the band structure of phononic crystals. Tileylioglu et al. 

(2011) studied damping models by adjusting to the translational and rotational vibration 

modes for a shallow foundation structure. Gottlieb and Habib (2011) proposed a 

quadratic and cubic nonlinear damping model for governing the dynamics of a chaotic 

spherical pendulum to update the linear model. Labonnote et al. (2013) proposed a 

hysteretic damping model as decomposed to the shear part and bending part as applied to 

the Timoshenko timber beams.  Dvornik et al. (2013) modeled the anisotropic properties 

of damping, where they assumed that the anisotropy of damping is given by an order of 

magnitude reduction of the component along the symmetry axis of the damping matrix as 

applied to the magnetic nanoelements. Pisanò and Jeremić (2014) simulated soil damping 

based on a simple visco-elastic-plastic model. Boumediene et al. (2014) used a 

generalized Maxwell based viscoelastic model to predict the passive damping of a 

sandwich structure. Sun et al. (2014) developed a thermoelastic damping in a symmetric 

trilayered circular plate, and validated for a thin plate structure. 

1.1.3 Multilayer Systems with Viscoelastic Properties 

Viscoelasticity is the characterization of material deformation where the stress is 

dependent on strain rate or time. Under a constant loading, the deformation of materials 

may increase continuously due to creep behavior; while under a constant strain, the stress 
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of materials may reduce continuously due to stress relaxation. Multilayer systems or 

composites that demonstrate viscoelastic properties exist everywhere in life at variable 

scales. Examples include the human skin and tissues, the multilayer molecular structure 

of polymers (Tronto et al. 2013), and multilayer pavement structures, among others. 

Figure 4a shows a multilayer memory foam mattress, in which the viscoelastic properties 

must be designed properly to achieve optimum sleep comfort.  Figure 4b shows the 

multilayer structure of the arterial wall of the human heart (Hossain et al. 2012), where 

the viscoelastic properties affect blood flow and cardiac health. Flexible pavement 

structure is a large-scale multilayer structure, which typically consists of an asphalt 

concrete (AC) top layer, then the base and sub-layers, and finally, the soil foundation. 

The AC is a typical viscoelastic and viscoplastic material (Xu and Solaimanian 2009). 

AC rutting or permanent deformation and fatigue cracking are related to its viscoelastic 

properties. Rutting causes traffic noise, rough road conditions, and hydroplaning that 

results in vehicular accidents. Therefore, it is important to understand the viscoelastic 

properties of multilayer systems.   

 

Figure 4. Multilayer systems: a foam memory mattress (www.sleep-

matters.co.uk), human skin, and heart arterial wall (Hossain et al. 2012). 
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1.1.4 FWD Nondestructive Test 

Nondestructive testing (NDT) has been used extensively as a means for 

evaluating the material properties of the multilayer structure. In particular, the Falling 

weight deflectometer (FWDs) has been widely used for pavement structure evaluation 

over the past 30 years.  Generally, the FWDs are used to measure pavement deflections 

with multiple deflection sensors in response to a dynamic load in stationary mode.  

Examples of deflection sensors include geophones (e.g., used by Dynatest FWDs) and 

seismometers (e.g., used by KUAB FWDs).  Since 1994, most FWDs have been sold 

with 7, 9 or 10 deflection sensors.  Deflection sensor spacings often follow guidance from 

the Federal Highway Administration’s Long Term Pavement Performance (LTPP) 

program (see Figure 5). The FWD dynamic load is meant to emulate traffic loading.  

FWD data are used (usually just the peak values of the deflection and load pulses) to 

evaluate the structural capacity of pavements for research, design, rehabilitation, and 

pavement management purposes. 

 

Figure 5. FWD Load Platen and Sensor Offsets. 

Based on a survey in 2008, there were 82 FWDs (mainly made by Dynatest, 

KUAB, and JILS) owned by 45 State Highway Administrations (SHAs) (Alavi et al. 

2008).  Though not included in this survey, there is a comparable number of FWDs 
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owned by private companies, institutes, and other agencies, as projected from the FWD 

ownership documented in the European COST 336 (European Commission 1998). 

Figure 6 shows examples of FWDs made by KUAB, JILS, and Dynatest.  These 

FWDs have different physical configurations for applying load pulses (weights, static 

preload, drop heights, load platen, etc.) and different technologies of geophones to collect 

deflection measurements.  Commonly used load levels are 6,000, 9,000, 12,000, and 

either 16,000 or 18,000 pounds for highway applications. 

  

Figure 6.  Examples of FWDs from KUAB, JILS, and Dynatest. 

The shapes and amplitudes of FWD deflection pulses are different when applying 

different load times due to the dynamic effects for 0.025 ms and 0.05 ms of each recorded 

data point (Molenaar 2005).  Figure 7 shows one example of the applied FWD loading 

and measured deflection time histories. The FWD pulses contain approximately 120 ms 

(a) KUAB (b) JILS

(c) Dynatest
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of time history data (varies from one vendor to another) with non-zero tails due to drift.  

The drift is largely due to errors in the digital integration of response time history caused 

by the assumption of zero velocity just prior to the rise. 

 

Figure 7.  Time Histories of FWD Load and Deflection. 

Generally, only the maxima or peak values of the load and deflection pulses are 

stored due to the common usage of FWD static backcalculation.  Most FWD static 

analysis tools can be used to backcalculate a single modulus value for each pavement 

layer for use in design. Backcalculated AC layer moduli are often normalized to a 

reference temperature (e.g., 70 °F) with adjustment techniques such the BELLS models 

(Lukanen et al. 2000).  FWD time histories data are not commonly used, and the 

availability and application of FWD dynamic backcalculation methodologies are limited. 

1.1.5 Pavement Design Methods with Moduli Inputs 

Even though the AASHTO (American Association of State Highway and 

Transportation Officials) 1993 pavement analysis and design method was implemented 

more than two decades ago, it is still vastly used for engineering designs in the United 

States. The 1993 AASHTO Guide (AASHTO 1993) is an empirical pavement design 

method. In this method the layer elastic modulus is correlated to the structural number 

(SN) which is a determinant factor for the pavement service life.  

More recently, the 2004 Mechanistic Empirical Pavement Design Guide (MEPDG  

(Glover and Mallela 2009) has been used and is gaining popularity. MEPDG is a 

mechanistic-empirical method, where pavement responses are calculated based on the 
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mechanistic model and then the pavement performance is predicted using statistical 

empirical models.  

Both design methods have been using the FWD backcalculation results of layer 

moduli as material inputs for the pavement overlay design and performance predictions. 

In the following sections the review is based on the MEPDG (the public version 1.100) as 

presented in the September 2009 final report (Glover and Mallela 2009). 

1.1.5.1  Material parameters input 

In the MEPDG methodology Level 1 design (the highest level of accuracy), the 

dynamic modulus master curve is the principal material input for AC layers and the 

resilient modulus is the principal material input for unbound layers. For rehabilitation 

designs, the backcalculated layer moduli can be used as the inputs for the unbound layers. 

However, it is not possible to directly input any backcalculated moduli for existing AC 

layers. 

The MEPDG Level 1 inputs for new AC materials are the laboratory-measured 

dynamic modulus values at several user-defined temperatures and frequencies.  The input 

screen (see Figure 8) permits either direct tabular input of dynamic modulus values or the 

import/export of dynamic modulus values stored in an external tab-delimited text file.  

For Level 2 and 3 inputs, the AC modulus is calculated by a regression equation that uses 

binder properties and mixture volumetric and gradation properties to predict dynamic 

modulus at analysis temperatures and loading frequencies (Witczak 2004). 
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Figure 8.  Master curve input (Level 1) of AC materials in MEPDG with 

import/export facilities 

The inability to input directly any backcalculated modulus (e.g., from static 

backcalculation) for existing AC materials at any input level of the MEPDG severely 

constrains the usage of FWD test data in rehabilitation designs. On the other hand, the 

MEPDG does allow more flexibility for the direct input of layer moduli for unbound 

materials at Level 2. The user may enter either (see Figure 9): (a) a single laboratory-

measured resilient modulus value for the expected in-place stress state at an appropriate 

reference condition (generally optimum moisture and in place compacted density) with 

the Enhanced Integrated Climatic Model (EICM) providing adjustments for climate 

effects (i.e., site equilibrium moisture conditions, freeze/thaw effects, etc.); (b) one single 

representative design value, with no EICM adjustments; or (c) 12 monthly representative 
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design values with no EICM adjustments. The representative design values for the latter 

two options could be based on historical records or they could be backcalculated from 

FWD data with the usual field-to-laboratory correction.  

Level 1 inputs for unbound materials in new construction projects are the three k 

parameters for the stress-dependent resilient modulus model, although Level 1 is not yet 

calibrated. Level 1 input of unbound material stiffness is not available for rehabilitation 

projects.  

 

Figure 9.  Layer Modulus input (level 2) of unbound materials in MEPDG. 

To summarize the material inputs to MEPDG,  

Table 1 lists input options for new AC or existing AC, and unbound materials at 

all three levels for both new construction and rehabilitation. 
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Table 1.  Materials modulus inputs in MEPDG at different levels 

 
1Level 1 input of unbound materials is not available for rehabilitation designs in the current 

MEPDG version. 

2Resilient modulus at Level 2 can also be defined via correlations with other material 

parameters such as California Bearing Ratio (CBR). 

1.1.5.2  Building master curve based on time-temperature superposition 

The Level 1 inputs for AC mixtures in the MEPDG are the laboratory-measured 

dynamic modulus at various temperatures and loading rates (see Figure 8).  The values at 

each temperature fall along distinct lines with low temperatures and shorter loading times 

giving higher |𝐸∗| values and high temperatures with longer loading times giving lower 

values. These individual line segments at each temperature can then be shifted based on 

the time-temperature superposition principle to produce the complete master curve. To 

shift a master curve segment to a reference temperature, a shift factor can be applied for 

each segment corresponding to a given test temperature to obtain the reduced frequency: 

Level New AC Existing AC Unbound materials 

1 Laboratory-measured 

|E*| data at various 

temperatures and loading 

rates. 

Same as Level 3. Three parameter 

model stress-

dependent resilient 

modulus model
1
 

2 Predicted from Witczak 

|E*| equation as a 

function of binder 

viscosity and mixture 

volumetric and gradation 

properties. 

Same as Level 3. (a) A representative 

value at reference 

conditions (with 

adjustment by 

EICM); 

(b) a single 

seasonally averaged 

annual design value 

(no EICM 

adjustment); or  

(c) 12 seasonal 

design values (no 

EICM adjustment)
2 

3 Predicted from Witczak 

|E*| equation as a 

function of binder 

viscosity and mixture 

volumetric and gradation 

properties. 

Predicted from Witczak |E*| 

equation as a function of estimated 

binder viscosity and mixture 

volumetric and gradation properties 

of existing AC, with damage 

reduction an empirical function of 

overall pavement condition. 

Default value as a 

function of soil class. 
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𝛼𝑇 =
𝑓𝑇𝑟

𝑓𝑇
  (1-10) 

where αT is the shift factor as function of temperature; 𝑓𝑇 is frequency at test temperature 

𝑇; and 𝑓𝑇𝑟
 is the reduced frequency at the reference temperature 𝑇𝑟 (e.g., 70 °F). 

𝛼𝑇  could be determined according to the WLF temperature-time superposition 

rule (Williams et al. 1955): 

log10 𝛼𝑇 =
−𝛾1 𝑇−𝑇𝑟 

𝛾2+𝑇−𝑇𝑟
   

where 𝛾1, 𝛾2 are model parameters. 

𝛼𝑇 =
𝑡

𝑡𝑟
  (1-11) 

where αT  is the shift factor as a function of temperature; T  is temperature; Tr  is the 

reference temperature (e.g., 70 °F); t is time of loading; tr is reduced time of loading at 

reference temperature. 

Figure 10 shows an example of the shifting process. Before shifting, each line 

segment consists of dynamic moduli at different loading times for a given temperature. 

Data at temperatures below the reference temperature are shifted to the left while data at 

temperatures above the reference temperature are shifted to the right, yielding the smooth 

master curve shown in the lower part of the Figure. 

The mathematical model of sigmoidal function (log|𝐸∗| = 𝛿 +
𝛼

1+𝑒𝛽+𝛾log  𝑡𝑟 ) has 

often been used to fit the dynamic modulus master curve (Witczak, 2004). 
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a)  

b)  

Figure 10.  Time-temperature superposition of AC master curves: a) laboratory 

tests; b) master curve fit (Xu 2007). 

Note that Figure 10 is for laboratory test results rather than FWD measurements; 

FWD tests usually are not performed over such a wide range of temperatures and 

frequencies in practice. Ideally, if the FWD dynamic backcalculation method can produce 

“unshifted” master curve segments, these segments can then serve as Level 1 inputs of 

new AC materials (i.e., undamaged) and existing AC materials (i.e., damaged master 

curve) to the MEPDG for use in the pavement response computation.  
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1.1.5.3  Response model 

In the current MEPDG, the response simulation of viscoelastic behavior of AC 

material is based on a quasi-static method (dynamic inertia effect is ignored). At a 

reduced frequency based on the traffic speed and temperature, the corresponding dynamic 

modulus value (see Figure 11) is used as input for the linear elastic multilayer analysis 

program to calculate the pavement response. 

 

Figure 11.  Master curve of dynamic modulus. 

1.1.6 Multilayer Property Backcalculation 

1.1.6.1  General principles of backcalculation- a two-stage approach 

Backcalculation has been extensively researched. Figure 12 shows an example of 

the endpoint of a static backcalculation pavement layer elastic moduli using FWD tests, 

in which the deflections measured from seven FWD geophones are in close agreement 

with the predictions using the converged layer moduli values. 

Frequency (Hz)

D
yn

am
ic

 m
o

d
u

lu
s

Modulus| | 

Linear Elastic Multilayer Program

Deformation, stress, strain

Traffic speed



21 
 

 

Figure 12.  Measured and Predicted FWD Deflection Bowl for Backcalculation. 

Backcalculation of pavement moduli is an iterative process, generally it involves 

two-stages: 1) simulate the pavement responses under the FWD plate loading for a given 

set of layer moduli; 2) adjust the layer moduli using various mathematical algorithms by 

reducing the difference between measured and simulated responses as shown in Figure 

13.   
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Figure 13.  Two-step approach of FWD backcalculation. 

1.1.6.2  Inverse approach for multilayer systems in science & engineering 

The two-stage method has been widely used in different science and engineering 

disciplines for analyzing the multilayer system with some examples listed in the 

following sources: 

 Catheline et al. (2004): visco-elastic (VE) properties of membrane 

 Brigham et al. (2007): fluid properties 

 Szeri (2007), Zhao et al. (2009) : VE properties of biomaterials 

 Araújo et al. (2009): VE properties of sandwich structure 

 Giavazzi et al. (2010) : VE properties of human skin 

 Sims et al. (2010): VE properties of subcutaneous fats, ANSYS forward plus 
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“Update” moduli

Compare

Stage II:
Back-Calculation

Stage I:
Response
Modeling

Measured deflections

FWD Loading, 
geometry

Output moduli

Simulated deflections
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1.1.6.3  Commonly used response models of flexible pavements 

The methodologies and associated computer programs for simulating multilayer 

pavement responses include multi-layer elastic theory (e.g., BISAR and ELSYM5), finite 

element methods (e.g., ILLIPAVE, MICHPAVE), and semi-analytical techniques (Ji et 

al. 2006). General purpose commercial finite element codes (e.g., ABAQUS and 

ANSYS) can also be employed. Most existing programs are based on the assumption of 

static loading and linear elastic material properties (see Table 2), although some 

programs have considered the dynamic response (see Table 3).  The VEROAD program 

developed at the Delft University of Technology (Hopman 1996) treats the AC as a linear 

viscoelastic material.  A more detailed discussion and review will be presented in Chapter 

3. 

Table 2.  Examples of static forward analysis software for flexible pavements 

 

 

Table 3.  Examples of dynamic forward analysis for flexible pavements 

 

Program or Method Author(s) Features Analysis Method

ELSYM 5 UC Berkeley Linear elastic Analytical multilayer analysis

BISAR Shell Global Inc. Linear elastic Analytical multilayer analysis

Everstress Washington DOT Linear elastic Analytical multilayer analysis

ILLIPAVE University of Illinois Elastic+stress-dependent soil Finite element

TTI PAVE Texas Transportation Institute Elastic+Mohr-Columbia model Finite element

MichPAVE Michigan State University Elastic+stress-dependent soil Finite element

SAPSI-M Chatti and Yun Damped elastic Analytical + Finite element

VEROAD Hopman Static viscoelastic Analytical multilayer analysis

CAPA-3D Scarpas Material damages Finite element

Program or Method Author(s) Features Analysis Method

AXIDIN Antunes (1991)
Dynamic elastic

Two-dimensional finite element

method

PUNCH Kausel (1989)
Dynamic elastic

Explicit, closed-form solution

for the Green functions
UTFWIBM Roesset (1987) Dynamic elastic Fourier superposition

SCALPOT Magnuson (1998)
Dynamic elastic

Haskell-Thompson transfer

matrix approach

SAPSI Chen (1987)
Dynamic elastic

Multilayer linear elastic system

with Green's function

ViscoWave Lee (2013)
Dynamic viscoelastic (no

damping)
Analytical multilayer analysis

3D-Move Analysis UNR (2013) Dynamic, damping Continuum-based finite-layer

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic viscoelastic (no

damping)

Viscoelastic, damping

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic viscoelastic (no

damping)

Viscoelastic, damping

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic viscoelastic (no

damping)

Viscoelastic, damping

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic viscoelastic (no

damping)

Viscoelastic, damping

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic viscoelastic (no

damping)

Viscoelastic, damping

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic elastic

Dynamic viscoelastic (no

damping)

Viscoelastic, damping
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1.1.6.4  Commonly used optimization algorithms for multilayer systems  

For the 2nd step of the backcalculation procedure, commonly used optimization 

algorithms include at least the following: 

 Newton-Raphson method (Harichandran et al., 1993), 

 Hooke-Jeeves pattern search ( used in the MODULUS program), 

 System identification method (Wang and Lytton, 1993), 

 Kalman filter method (Choi and Pestana., 2006), 

 Non-linear least square method (Sivaneswaran et al., 1991), 

 Probabilistic method ( Hadidi and Gucunski, 2010), and 

 Neural network models (Meier et al. 1997). 

In these inverse computations, the deflections are simulated using the multilayer 

analysis program. Then backcalculation was performed based on the values of deflection 

outputs to update the material properties. The deflections with the new material 

parameters were simulated again and compared with measurements.  Iterations continue 

until reaching an acceptable small deflection difference between the simulations and 

measurements.  

Figure 14 shows an artificial neural network (ANN) method for backcalculation, 

where a large database of deflections with various structures (e.g., layer thickness) and 

material properties is given, and then the neural network method (with three layers of 

input, hidden, and output ones) is applied for backcalculation (Sharma and Das 2008).  
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Figure 14. Artificial neural network method. 

The inputs for the Kalman filter method include the initial values for the material 

properties and the measured deflections. A weighted error-covariance matrix is computed 

first; then, the Kalman gain is computed to order to iterate and update the property values 

and the error-covariance matrix (Choi and Pestana 2006).  Iterations continue until 

achieving an acceptable error. 

1.1.6.5  Static FWD backcalculation programs 

Most existing backcalculation programs or methodologies are based on the 

assumption of linear elastic material properties and static loading conditions (i.e., peak 

load and deflections). Popular programs include MODULUS, EVERCALC, 

MODCOMP, ELMOD, etc. Table 4 summarizes some static linear elastic 

backcalculation programs. 

  

Large 

database 

of 

responses

Input

Hidden

Output
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Table 4.  Examples of static backcalculation programs for flexible pavements. 

 

1.1.6.6  Dynamic or static viscoelastic FWD backcalculation research 

Some FWD backcalculation programs model the entire dynamic response under the FWD 

loading, and a few treat the AC as a linear viscoelastic material. Table 5 summarizes 

examples of dynamic backcalculation programs. 

Table 5.  Examples of dynamic backcalculation programs for flexible pavements. 

 

Except for the programs listed in Table 5, other research pertaining to  dynamic 

backcalculation as found in the literature includes the following: 

 Uzan (1994) backcalculated the linear dynamic properties of AC layer, using the 

UTFWIBM program for computing pavement response and the least square 

optimization method for backcalculating the elastic moduli. 

 Liang and Zhu (1998) used the dynamic analysis to backcalculate the fatigue 

parameters of the AC mixture. 

 

Software/ 

method 
Authors/Sources Pavement Analysis Optimization Algorithm 

MichPave 
Michigan State 

University 
Linear Multi-layer Newton 

EVERCALC Washington DOT Linear Multi-layer Gauss-Newton algorithm 

MODULUS 
Texas Transportation 

Institute 
Linear Multi-layer 

Database with calculated 

moduli for all moduli 

combination search 

MODTAG 
Cornell University/ 

Virginia DOT 
Linear Multi-layer Newton 

ELMOD 6 Dynatest FEM/Linear Multi-layer Equivalent thickness method 

Software/method Authors/Sources Pavement Analysis Material Property 

FWD-DYN 
Foinquinos, Roesset, 

and Stokoe (1993) 

Fourier 

superposition 
Elastic moduli 

BKGREEN Kang (1998) 
Discrete Green 

functions 
Elastic moduli 

SSSM-BACK Wang (1993) Semi-analytical Elastic moduli 

DYNA-BACK Chatti (2003) SAPSI Program Elastic moduli, damping ratio 

SSSM-SIM Ji, et al (2006) Semi-analytical Elastic moduli, damping ratio 

PDAP 
Magnuson and Lytton 

(1993) 

SCALPOT (transfer 

matrix approach) 
AC creep compliance 
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 Scarpas and Blaauwendraad (2001) used the spectral element method to simulate 

the pavement dynamic response and backcalculate the complex modulus of AC 

materials with the Burgers model. 

 Fernando and Liu (2002) coupled the system identification method into the FWD-

DYN program for determining pavement moduli and damping ratios. 

 Loizos and Scarps (2005) used a linear dynamic finite element program 

(AXIDEN and CAPA 3D) for computing pavement response and a forward 

method for backcalculating pavement elastic moduli. 

 Hadidi and Gucunski (2010) used the ABAQUS software to simulate pavement 

responses and a probabilistic approach to backcalculate elastic moduli. 

 Broutin and Theillout (2010) used the FE software CESAR-LCPC for 

determining the dynamic pavement response with the global Rayleigh damping, 

and the PREDIWARE software with the Gauss Newton algorithm for 

backcalculating the material elastic moduli and damping ratios. 

 Kutay et al. (2011) used the quasi-static approach to emulate the viscoelastic 

behavior and backcalculate the master curve of dynamic modulus |𝐸∗| with the 

mathematical sigmoidal function. It is a static back-calculation approach. 

The differences between predicted and measured deflection time histories will be 

minimized by varying material property values until achieving an acceptable error 

tolerance.  This process is called optimization. During this procedure, the time series data 

will be down sampled to reduce the number of data points to be used in this procedure.  

The error tolerance will be the weighted summation of differences between predicted and 

measured deflection time histories at down sampled data points of all sensors. 

Few of the existing backcalculation methods or programs consider AC materials as 

viscoelastic (e.g., Chatti et al. 2004). Some backcalculation methods produce creep 

compliance of AC materials (e.g., Magnuson et al. 1991; Uzan 1994). Magnuson et al. 

(2001) used a generalized power function to characterize the creep compliance of AC 

materials. This material model (power function) is relatively simple with a few material 

parameters. However, this function is not a physical model, nor can it effectively describe 
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the upper bound and shape of the creep compliance and the master curve of dynamic 

moduli according to laboratory test results (e.g., Schwartz et al. 2002; Liao 2007), as 

shown in Figure 15. The upper bound is the portion of a master curve at low reduced 

frequencies or high reduced times; while the lower bound is that at the high reduced 

frequencies or low reduced times.  

 

Figure 15. Creep compliance by power law. 

Scarpas and Zhu (2001), and Scarpas et al. (2002) used the spectral element method and 

the four-parameter Burger model to inverse the viscoelasticity. However, this method 

with spectral element method has not been validated with sufficient data sets and 

implemented into a practical application. Meanwhile, experimental and modeling results 

indicate that the four-parameter model is unable to fully represent the viscoelastic 

behavior at a wide range of reduced frequency or time such as that of dynamic moduli 

(see Figure 3a).  

E. Kutay of Michigan State University has utilized an FHWA grant, DTFH61-11-

C-00026: “Enhanced Analysis of Falling Weight Deflectometer Data for use with 

Mechanistic‐Empirical Flexible Pavement Design and Analysis and Recommendations 

for Improvements to Falling Weight Deflectometer” to study the backcalculation of 

dynamic modulus of a master curve (Kutay et al. 2011)., Kutay et al. (2011) 

backcalculated the master curve of dynamic moduli |𝐸∗|  (absolute value of complex 

modulus 𝐸∗) using a simplified procedure that modeled the pavement response using a 

linear-elastic analysis program at each time point. The dynamic loading effect has not 

Power law (n=5)

Time t

D(t)

Power law (n=0.5)
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been accounted for; rather the time delay of deflections from loading due to wave 

propagation is shifted manually as shown in Figure 16a. Some discrepancy between true 

values and backcalculated ones appeared, especially for |𝐸∗|  at the lower reduced 

frequency range as seen Figure 16b. More recent results presented a genetic algorithm for 

inverse analysis of viscoelastic properties with the forward response analysis based on a 

viscoelastic multilayer program (Varma et al. 2013) as shown in Figure 16c. 

 

 

(a) Manual time shift to eliminate the dynamic loading effect (Kutay et al. 2011) 

 

Figure 16. Backcalculation of dynamic moduli master curve |𝑬∗|. 
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(b )Backcalculation results of dynamic moduli master curve (Kutay et al. 2011) 

 

(c) Backcalculation results of dynamic moduli master curve using genetic 

algorithm (Varma et al.  2013) 

Figure 16. Backcalculation of dynamic moduli master curve |𝑬∗| (continued). 

 Research Problems 

Based on the literature review above, existing gaps in research may be 

summarized as follows: 

 rte
E

log
1

*log
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 Most existing backcalculation programs and methods for multilayer pavement 

systems produce only the elastic properties of AC material based on either a static 

or dynamic simulation method; in contrast, the national MEPDG (mechanistic 

empirical pavement design guide) Level I design uses the dynamic modulus 

(material viscoelasticity dependent) as the material input for the AC material, and 

thus a more advanced backcalculation method is needed for the current pavement 

analysis and design;  

 Some methods backcalculate the viscoelastic material properties, but are based 

primarily on a static simulation method and the simplified material model (e.g., 

the four parameter Burger model, and 3-parameter power-law based mathematical 

model), which cannot capture the material’s behavior fully; 

 For most existing pavement backcalculation, the analytical multilayer analysis 

programs are used for response modeling, which offers a fast computation speed 

but is unable to account for more complex situations, such as including the 

material nonlinearity, time dependency, and temperature profile to emulate in-

service conditions; therefore, a more advanced forward response model must be 

developed in order to consider the dynamic and viscoelastic properties of 

materials; 

 Most existing inverse methods of the multilayer systems are based on a two-stage 

approach: a forward computation is conducted based on certain programs, and 

then at the second stage, the inverse algorithm is applied using the response 

outputs calculated from the first stage of response modeling without direct 

interactions with the PDEs (partial differential equations) of the first stage. This 

method may not be sufficiently fast and accurate enough for larger scale material 

model parameters inversion. For example, for a viscoelastic material model with 

14 model parameters (seven elastic moduli and another seven viscosity elements), 

the two-stage method requires 14 forward computations in order to determine the 
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gradients 𝑔𝑖  based on the finite difference method in order to achieve a good 

accuracy, as follows:  

gi =
𝜕𝑢

𝜕𝑋i
=

𝑢(𝑋i+Δ𝑋i)−𝑢 Xi 

Δ𝑋i
 for 𝑖 = 1 ,2, 3…14 (1- 12) 

where 𝑢  is deflection; 𝑋  is the material property of the elastic modulus and 

viscosity, and Δ𝑋 is a small variation of 𝑋. 

 When using an artificial neural network or pattern search method, a large database 

of deflections, which vary in structure and material properties, is usually required. 

This becomes impractical when material nonlinearity and time dependency occur; 

furthermore, the computation time for the forward response modeling is 

expensive (e.g., very extensive sensitivity analysis is required to cover numerous 

cases). 

 Research Objective 

The objective of this dissertation research was to develop a computational method 

for inverse computing dynamic moduli of multilayer systems with applications to flexible 

pavements under FWD tests, in order to advance existing backcalculation methods and 

foster understanding of material behaviors and structural responses.  

The methodology developed was based on the Lagrangian function, which integrates the 

two-stage approach into one Lagrangian variation system for larger scale material model 

parameters. A dynamic viscoelastic-damping coupled model was also developed for the 

forward response modeling. 

 Research Scope 

The dissertation covers the following contents, divided into five chapters:  

Chapter 1 includes the background, literature review, and research problems and 

objectives. 

Chapter 2 develops a finite element model for forward response modeling of the 

multilayer structure, plus the Newton-Raphson method for inverse computing layer 
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elastic moduli based on a two-stage approach. The temperature profile of the AC layer 

based on the AASHTO 1993 pavement design method (AASHTO 1993) is considered, 

even though most existing backcalculation methods treat temperature as a constant. The 

inverse method developed in this research also helps to address the common issue of a 

no-unique inverse solution by estimating appropriate moduli seed values. The static 

elastic model also serves as a foundation for more advanced numerical method 

developments as discussed in Chapters 3 and 4. 

Chapter 3 develops a finite element model and numerical solution method for 

modeling the dynamic viscoelastic response of pavement structure under loading pulse. 

Compared to most existing response modeling, typically static or dynamic elastic 

modeling, the method developed here has a dynamic-viscoelastic-damping coupled 

model that has been demonstrated to be an enhanced model for emulating the structural 

response more accurately through FWD test data. The model serves as the forward 

computation module for the inverse computation method developed in Chapter 4. 

Chapter 4 develops a Lagrangian optimization method for inverting the dynamic 

moduli and viscoelastic properties of multilayer systems with implementations to flexible 

pavement structures under FWD tests. Compared to the often used two-stage inverse 

approach, this method has improved computation speed and accuracy. The model was 

also implemented in several FWD field tests to invert the dynamic moduli, where the 

same test section was considered in variable seasons. 

Chapter 5 provides a brief conclusion of the main findings and discusses future 

research. 

Independent computer coding written in FORTRAN was also developed for all of 

the numerical computations discussed in Chapters 2, 3 and 4. Thus, the dissertation 

research products also have a great potential for industry applications.  
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Chapter 2: A Finite-element Model and Newton-Raphson Method for 

Inverting Elastic Moduli1 

This chapter develops a finite element model and a Newton-Raphson based 

numerical method to inverse compute the layer elastic moduli (e.g., |𝐸∗|of asphalt layer 

and elastic moduli of unbound layers) in flexible pavements. Compared to most existing 

back-calculation approaches, the new method can account for temperature profile and 

associated modulus variation. The modulus seed values are estimated based on an 

empirical method, which helps address the common issue of no-unique solutions. The 

model developed will serve as a basic foundation for the dynamic viscoelastic model as 

discussed in Chapter 3. 

A finite element model is developed to simulate the static elastic pavement 

responses. A Newton-Raphson iteration procedure was proposed to inverse compute the 

multilayer moduli. As a two-stage approach, it calculates the pavement responses first 

and then inverse computes layer elastic moduli using response output values. A computer 

code written in FORTRAN was developed for the numerical computation. The empirical 

area method was adopted to estimate the seed values; furthermore, an average 

engineering error of 1.77%, 10.83%, 8.99%, and 1.08% was achieved for the inversed 

moduli of asphalt concrete, base, subbase, and soil, respectively, based on the Monte 

Carlo simulation of 5,000 datasets that were used for validation. This indicates that the 

two-stage approach method was accurate enough for inverse computing the elastic layer 

moduli of pavement structure, dealing with a relatively simple material model with a 

small number of model parameters. The method was also able to inverse compute the 

modulus variation of the top asphalt layer due to temperature profile, with an average 

error of 4.45% attained for three examples in cold, regular and hot weather conditions. 

  

1. Modified from: Q. Xu, and J.A. Prozzi (2014) A finite-element and Newton-Raphson 

method for inverse computing multilayer moduli, Finite Elements in Analysis and Design 

81:57-68. Prozzi’s contribution included reviewing and offering advice. 
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2.1 Background 

The falling weight deflectometer (FWD) method has been widely used for 

highway and airport pavement structure evaluation (Alavi et al. 2008).  Using FWD, a 

dynamic load is applied on a circular plate sitting on the top of pavement structure. The 

displacements on the surface of pavement structure are measured using several 

geophones with certain spacing (Alavi et al. 2008) as shown in Figure 17. For example, 

seven geophones are used to measure displacements at the distances of 0, 8 inches (20.3 

cm), 12 inches (30.5 cm), 24 inches (61.0 cm), 36 inches (91.4 cm), 48 inches (121.9 

cm), and 60 inches (152.4 cm). The FWD data, only peak values of displacements and 

load pulses, are commonly used to evaluate the structural capacity of pavements. 

 

Figure 17.  FWD test and displacement basin. 

As is often the case for rehabilitation design purposes, the FWD loading and 

measured displacement basin of peak values are also used to inverse compute (or 

backcalculate) the material properties, typically the layer elastic moduli (Alavi et al. 

2008). 
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Back-calculating pavement layer elastic moduli primarily involves two stages: I) 

simulate pavement responses of displacements under the FWD loading; and II) compute 

layer elastic moduli using the mathematical inverse algorithm by minimizing the 

displacement difference between simulated results from Step I and FWD measurements 

(also called “observations”). This topic has been extensively studied with popular 

programs including EverCalc developed by the Washington Department of 

Transportation (DOT) (Sivaneswaran et al. 2001), MODULUS developed by the Texas 

Transportation Institute (Michalak and Scullion 1995), MODCOMP 5 originally 

developed by Cornell University with a DOS version and then updated by Virginia DOT 

with a Windows version,  ELMOD developed by Dynatest Consulting Inc. (Dynatest, 

2010),  and MichiBack developed by Michigan State University (Harichandran et al. 

1993). For these programs, Step I for simulating pavement response is based on the 

analytical multilayer elastic program. Other analytical approaches, such as the Vlasov or 

modified Vlasov models (Liang and Zhu1998), are also used for pavement response 

modeling during backcalculation. The well-known multilayer elastic analysis programs 

include ELSYM5, originally developed by the University of California at Berkeley and 

later adapted to microcomputers by Kopperman et al. (1986), BISAR developed by the 

Shell Global (Shell Inc. 1998), and Everstress developed by the University of 

Washington and the Washington DOT (Sivaneswaran et al. 2001), etc. These multilayer 

elastic analysis programs are unable to account for complex and variable boundary and 

loading conditions such as spatial variation of temperatures and nonlinear material 

properties. In comparison, the finite element (FE) models could account for more 

complex boundary and loading conditions, and material properties. For Step II, a variety 

of algorithms have been studied, including the Kalman filter method (Choi and Pestana 

2006), Newton method (Sivanesaran et al. 2001), neural network (Meier et al. 1997; 

Saltan and Sezgin 2007), least square (Sivaneswaran et al. 1991), and system 

identification (Wang and Lytton 1993), data mining (Saltan et al. 2011), co-variance 

matrix adaptation evolution strategy (Gopalakrishnan and Manik 2010), Powell hybrid 

algorithm (Al-Khoury et al. 2001), and the Ritz-vectors based method (Dong et al. 2002), 
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etc.  Poisson’s ratio values of pavement materials are relatively stable and, for typical 

ranges, usually have a very small effect on displacements (Huang 2003); hence, they are 

usually assumed as constants rather than being backcalculated. In this paper, Poission’s 

ratio values are adopted from the literature and not backcalculated. 

Backcalculation of layer moduli, as a mathematical computation procedure, is 

regarded as an “art work” as it may achieve multiple moduli results all with acceptable 

numerical accuracy (modeled responses vs. observations) – the very common non-unique 

solution problem. 

Accordingly, the goal of this research was to develop a numerical methodology 

and solution to inverse compute the elastic moduli of a multilayer pavement structure, 

which could help improve the engineering accuracy (differences between inverted moduli 

and true values) by addressing the non-unique solution problem. Meanwhile, a simple 

temperature profile model also accounted for the AC material. A finite element model 

with infinite elements for the infinite half-spaces of boundaries was developed to 

simulate pavement responses.  Consequently, a Newton-Raphson iteration procedure was 

proposed to inverse compute the layer elastic moduli, where the finite difference method 

was used to compute the gradient tensor. A computer code in FORTRAN language was 

developed for the numerical solution. 

2.2 Finite Element Model Development for Pavement Analysis 

2.2.1 Axisymmetric Model 

FWD vertical loading is applied on a circular plate sitting on the surface of 

pavement. The pavement structure (highway, airport, and parking lot) under the FWD 

circular loading can be assumed as an axisymmetric body on the semi-infinite half-space 

of soil foundation at the bottom, with infinite half-spaces at the outer edges. This 

assumption is rational as: 1) the multilayer structure body is continuous; 2) material 

properties are considered homogeneous; 3) the soil foundation has infinite depth; and 4) 

the dimension size of the multilayer is much larger than the FWD loading area (e.g., the 
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parking lot size compared to the 15 cm-radius of the FWD loading plate). Therefore, it 

has been a common practice to assume the axisymmetric model under the circular FWD 

or vehicle loading for calculating pavement responses by using the multilayer analysis 

programs (Huang 2003).  

2.2.1.1  Stress Equilibrium 

The stress equilibrium for the static solid state can be expressed as follows in a 

constitutive relation: 

𝛁 ∙ 𝛁 𝐂𝒖 + 𝑏 = 0  (2-1) 

where 𝒖 is displacement; b is body force; 𝑪 is elasticity tensor; 𝛁 ∙ 𝛁 is the Laplacian 

operator. 

For a three-dimensional (3-D) solid in a cylindrical coordinate system 𝑟 − 𝜃 − 𝑧, 

the stress-equilibrium equation with components can be decomposed to the following 

(Sadd 2009): 
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where 𝑟 is radius (horizontal);  𝜃 is angle; 𝑧 is depth (vertical); σrris normal stress on 

the r direction; σzzis normal stress on the z direction;  σθθ is normal stress on the θ 

direction;  σzr is shear stress on the z − r plane pointing on r direction; σrθ is shear 

stress on the r − θ plane pointing on θ direction; σθr is shear stress on the r − θ 

plane pointing on r direction, 𝜎𝜃𝑟 = 𝜎𝑟𝜃 ; σzθ  is shear stress on the z − θ plane 

pointingσθz = σzθ on θ direction; σθz is shear stress on the z − θ plane pointing on z 

direction,; br is body force on the r direction, br = 0; bz is body force on the z 

direction; and bθ is body force on the z direction, bθ = 0. 
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According to the axisymmetry, shear stresses of 𝜃𝑧𝜃, 𝜃𝜃𝑧  and 𝜃𝑟𝜃, 𝜃𝜃𝑟  are 

dismissed; the deformation on the 𝜃  direction is dismissed ( 𝑢𝜃𝜃 = 0 ), and 𝜎𝜃𝜃 is 

independent of 𝜃 (
𝜕𝜎𝜃𝜃

𝜕𝜃
= 0). The new stress equilibrium illustration is shown in Figure 

18, and the stress equilibrium equation can be reduced to the following: 
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Figure 18.  Axisymmetric model stress state of solid. 

For the axisymmetric problem, the displacement on the 𝜃 direction is zero, and 

thus the displacement vector is expressed as follows: 

𝒖 = [
𝑢𝑟

𝑢𝑧
]  (2-4) 

where 𝒖 is displacement vector; 𝑢𝑟 is the displacement on the 𝑟 direction; and 𝑢𝑧 is the 

displacement on the 𝑧 direction. 

The strains can be expressed as follows (Sadd 2009): 

/

/ r

/ r
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휀𝑟𝑟 =
𝜕𝑢𝑟

𝜕𝑟
 (2-5)-a 

휀𝑧𝑧 =
𝜕𝑢𝑧

𝜕𝑧
 (2-5)-b 

휀𝜃𝜃 =
𝑢𝑟

𝑟
 (2-5)-c 

𝛾𝑟𝑧 =
𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
 (2-5)-d 

where 휀𝑟𝑟 is normal strain on the r direction; εzz is normal strain on the z direction; εθθ is 

normal strain on the θ direction, and γzr is shear strain on the z − r plane pointing on r 

direction, γzr = γrz. Note that the shear strains of 𝛾𝑧𝜃, 𝛾𝜃𝑧, 𝛾𝑟𝜃, 𝛾𝜃𝑟 are dismissed for the 

axisymmetric problem. 

2.2.1.2  State Equation 

The potential energy or the visual work is the sum of internal strain energy, body 

force work, and external energy produced by the FWD loading as follows: 

Π 𝒖 =
1

2
∫ 𝐂𝜵𝒖:𝛁𝒖𝑑Ω
Ω

+ ∫ 𝑏 ∙ 𝒖𝑑Ω − ∫ 𝑓 ∙ 𝒖𝑑s
∂ΩΩ

 (2-6) 

where Π 𝒖  is energy with respect to u; 𝑏 is body force; 𝐂 is elasticity tensor, and 𝛁 is 

derivative operator. 

For the axisymmetric problem in the finite element formulation, the derivative 

operator ∇ is expressed as a 4 (row) by 2 (column) matrix in the following form: 

∇=

[
 
 
 
 
 
 

𝜕

𝜕𝑟
0

0
𝜕

𝜕𝑧
1

𝑟
0

𝜕

𝜕𝑧

𝜕

𝜕𝑟]
 
 
 
 
 
 

 (2-7) 

For the axisymmetric problem the elasticity tensor 𝑪 can be expressed as follows 

(Saddi 2009): 



41 
 

  
 

1 0

1 0

1 01 1 2

0 0 0 0.5 1 2

E

  

  

   



 
 


 
  
 

 

C

 (2-8) 

where 𝐸 is Young modulus and v is Poisson’s ratio. Using the Ritz method (Cook et al. 

2002), applying the variation with respect to the displacement variable u and zero energy, a 

weak form of the stone equation is obtained as follows: 

∫ 𝐂𝛁𝒖:𝛁𝒖 𝑑Ω
Ω

+ ∫ 𝑏 ∙ 𝒖 𝑑Ω − ∫ 𝑓 ∙ 𝒖 𝑑s
∂Ω4Ω

= 0 (2-9) 

By numerically solving the weak form of the state equation, the displacement 𝒖 

can be determined as will be discussed later. 

2.2.1.3  Boundary Conditions 

Natural boundary condition 

The FWD loading is applied on the boundary of 4  (see Figure 19) with a radius of 15 

cm (5.9 inch). The natural boundary condition for loading is expressed as follows: 

𝛔 ∙ n𝑑𝑠 = 𝑓 on 𝜕Ω4  (2-10) 

where n is the normal direction; s is surface unit, and f is FWD loading pressure on the 

vertical direction.  

Essential boundary condition 

The essential boundary conditions for the constrained displacements on 

boundaries are expressed as follows (see Figure 19): 

𝑢𝑟 = 0  on ∂2Ω1 (2-11)-a 

𝑢𝑟 = 0  on 𝜕Ω2 ∪ 𝜕Ω3 (2-11)-b 

𝑢𝑧 = 0  on 𝜕Ω3 (2-11)-c
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Figure 19.  Axisymmetric FE model under FWD loading. 

2.2.2 Temperature Profile and Modulus Variation 

The mechanical behavior and modulus of the top AC layer is temperature 

dependent (Huang 2003), while the modulus of the unbound materials (base/subbase and 

soil) can be regarded as constants (Huang 2003). In the FE model, the temperature profile 

and associated modulus variation of the AC layer is accounted for. According to the 

AASHTO 1993 design method, the AC modulus is temperature dependent as follows 

(AASHTO 1993): 

𝐸 𝑇 =
𝐸 𝑇𝑟 

10−0.0002175 𝑇𝑟
1.886−𝑇1.886 

  (2-12) 

where, 𝐸 𝑇  = modulus at temperature 𝑇; 𝑇𝑟 = reference temperature, e.g. 70 oF. 

In the FE model, the temperature values are read in at different depths, and then 

the modulus at that depth and element is calibrated according to the above equation. 

2.2.3 Numerical Solution 

The finite element (FE) method is used to solve the PDE controlled state equation 

for determining the displacement variable, u, and then the simplified Newton-Raphson 

z
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inverse procedure is proposed to backcalculate the layer elastic moduli. A computer 

program written in FORTRAN coding was developed for the entire numerical solution of 

FE model and inverse computation. 

2.2.3.1  Finite elements 

The two-dimensional (2-D) finite element model for the axisymmetric problem 

was built as shown in Figure 19. The 8-node isoparametric ring element (Felippa 2011) 

was adopted to simulate the main body of the axisymmetric domain as shown in Figure 

20a. The infinite elements were used to simulate the infinite half-spaces of boundaries on 

the further right side along the radial direction (Figure 20b) and the soil foundation along 

the depth direction (Figure 20c). 

 

Figure 20.  Isoparametric finite and infinite elements at the local coordinates 

(a) finite elements for the domain body; (b) infinite element for the right side; 

and (c) infinite element for the infinite half-space of soil. 

 

(a)

(b) (c)


(-1,1) (1,1)

(1, -1)(-1, -1)

1 2 3

4

6 7

(-1,1) (1,1)

(1, -1)(-1, -1)

1 2 3

Gauss point

5

8
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The two-times polynomial shape function was used for the 8-node ring element as 

follows: 

𝜙1 = −
1

4
 1 − 𝜉  1 − 𝜓  1 + 𝜉 + 𝜓  (2-13)-a 

𝜙2 = −
1

4
 1 + 𝜉  1 − 𝜓  1 − 𝜉 + 𝜓  (2-13)-b 

𝜙3 = −
1

4
 1 + 𝜉  1 + 𝜓  1 − 𝜉 − 𝜓  (2-13)-c 

𝜙4 = −
1

4
 1 − 𝜉  1 + 𝜓  1 + 𝜉 − 𝜓  (2-13)-d 

𝜙5 =
1

2
 1 − 𝜉  1 − 𝜓  1 + 𝜉  (2-13)-e 

𝜙6 =
1

2
 1 + 𝜉  1 − 𝜓  1 − 𝜓  (2-13)-f 

𝜙7 =
1

2
 1 + 𝜉  1 + 𝜓  1 − 𝜉  (2-13)-g 

𝜙8 =
1

2
 1 − 𝜉  1 + 𝜓  1 − 𝜓  (2-13)-h 

where  𝜉, 𝜙  is local coordinates. 

The four Gauss points of each element are taken at 

(
1

√3
,

1

√3
) , (−

1

√3
,

1

√3
) , (

1

√3
, −

1

√3
) , (−

1

√3
, −

1

√3
)  as seen in Figure 20 (a). 

2.2.3.2  Infinite elements 

Bettess’s model (Bettess 1980) was adopted for simulating the infinite half-

spaces, with the shape function expressed as follows: 

𝜙𝑖
𝑖𝑛𝑓

= 𝑓𝑖 𝜉, 𝜓 𝜙𝑖  (2-14) 

where 𝜙𝑖 ( , )   is the shape function of finite elements, and 𝑓𝑖 𝜉, 𝜓  is the decay 

function. 

Here an exponential form for the decay function was used (Bettess 1980): 

At the positive direction (Figure 20b):  
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𝑓𝑖 𝜉, 𝜓 = 𝑒
𝜉𝑖−𝜉

𝐿   (2-15) 

At the negative direction (Figure 20c):  

𝑓𝑖 𝜉, ψ = e
𝜓−𝜓𝑖

𝐿  (2-16) 

where 𝐿 is length to determine the severity of the decay. 

The derivatives of the infinite element shape function for the right side of the 

model can be expressed as follows: 

∂ϕ𝑖
inf

𝜉
=

𝜕𝜙𝑖

𝜕𝜉
𝑓𝑖 + 𝜙𝑖

𝜕𝑓𝑖

𝜕𝜉
  (2-17)-a 

∂ϕ𝑖
inf

𝜓
=

𝜕𝜙𝑖

𝜕𝜓
𝑓𝑖  (2-17)-b 

For the bottom side of the model: 

∂ϕ𝑖
inf

𝜉
=

𝜕𝜙𝑖

𝜕𝜉
𝑓𝑖   (2-18)-a 

∂ϕ𝑖
inf

𝜓
=

𝜕𝜙𝑖

𝜕𝜓
𝑓𝑖 + 𝜙𝑖

𝜕𝑓𝑖

𝜕𝜓
  (2-18)-b 

2.2.3.3  FE solution of displacements 

The displacements u and û  (variation of u) in the state Equation 2-9) are 

discretized as follows:  

𝑢 =  𝜙𝑖𝑢𝑖
𝑛
𝑖=1  (2-19)-a 

�̂� =  𝜙𝑖�̂�𝑖
𝑛
𝑖=1  (2-19)-b 

where 𝑢𝑖 and �̂�𝑖 are the displacements of the 𝑖𝑡ℎ node, i = 1, 2…8;  𝑛 is node number of 

a single element, 𝑛 = 8. 

The strain vector is determined as follows: 

ε = ∇𝑢 =  𝑢𝑖∇𝜙𝑖
𝑛
𝑖=1 = 𝐁𝑢  (2-20) 

where  𝑩 = 𝛻𝜙 , strain-displacement matrix.  
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For an element of axisymmetry domain, applying the derivative operator to the shape 

function matrix 𝝓, the strain-displacement matrix B (4×16) can be determined as follows: 

81 2

81 2

81 2

8 81 1 2 2

0 0 . 0

0 0 0

0 0 0

r r r

z z z
B

r r r

z r z r z r

 

 

 

    

  
   

 
  

   
  
 
 
     
 
        (2-21) 

When substituting the discretized 𝑢 and �̂� into the weak form of state equation 

(Equation 2-9), the following weak form can be obtained: 

∫ 𝑩𝑢 ∙ 𝑩�̂�𝑑𝛺
𝛺

+ ∫ 𝒃 ∙ 𝝓�̂�𝑑𝛺 − ∫ 𝑓 ∙ 𝝓𝚪�̂�𝑑𝑠
𝜕𝛺4𝛺

= 0 (2-22) 

∫ 𝑩𝑻𝑢𝑩�̂�𝑑𝛺
𝛺

+ ∫ 𝝓𝑻𝒃�̂�𝑑𝛺 − ∫ 𝝓𝚪
𝑻𝑓�̂�𝑑𝑠

𝜕𝛺4𝛺
= 0 ∀�̂� (2-23) 

Dismiss the arbitrary term �̂� on both sides 

∫ 𝑩𝑻𝑪𝑩𝑢dΩ = −
𝛺

∫ 𝝓𝑻𝒃𝑑𝛺 + ∫ 𝝓𝑻𝑓𝑑𝑠
𝜕𝛺4𝛺

 (2-24) 

The stiffness matrix is as follows:  

𝐊:= ∫ 𝐁𝐓𝑪𝐁dΩ
Ω

    (2-25) 

Let 𝐊𝐞 be the stiffness matrix for each element. For a numerical solution,. 𝐊𝐞 can be 

discretized with Gauss points as follows: 

𝐊𝑒 =   𝑤𝑘𝑤𝑙
𝑛𝐺
𝑙=1 𝑩𝑻𝑛𝐺

𝑘=1  𝜉𝑘, 𝜓𝑙 𝑪𝑩 𝜉𝑘, 𝜓𝑙 2𝜋𝑟 𝜉𝑘, 𝜓𝑙 𝐽Ω 𝜉𝑘, 𝜓𝑙  (2-26) 

where 𝑤𝑘,𝑤𝑙 are weight function (𝑤𝑘 = 𝑤𝑙 = 1 in this model); 𝑛𝐺  is number of Gauss 

points at each direction, 𝑛𝐺 = 2, and 𝐽Ω 𝜉𝑘, 𝜓𝑙   is the determinant of Jacob’s function 

on the local coordinate of  𝜉𝑘, 𝜓𝑙 . 

The Jacob determinant is presented as follows: 



47 
 

𝐽Ω ξk,𝜓𝑘 = det [
𝜕

𝜕𝜉
,

𝜕

𝜕𝜓
]
𝑇

= det [

𝜕𝑟

𝜕𝜉

𝜕𝑧

𝜕𝜉

𝜕𝑟

𝜕𝜓

𝜕𝑧

𝜕𝜓

] =
𝜕𝑟

𝜕𝜉

𝜕𝑧

𝜕𝜓
−

𝜕𝑧

𝜕𝜉

𝜕𝑟

𝜕𝜓
 (2-27) 

The body-force term ∫ 𝛟𝐓𝐛dΩ
Ω

 is discretized with Gauss points for the numerical 

solution as follows: 

∫ 𝛟𝐓𝐛dΩ =   2𝜋𝑟 𝜉𝑘, 𝜓𝑙 𝑤𝑘𝑤𝑙
𝑛𝐺
𝑙=1 𝜱𝑻𝑛𝐺

𝑘=1  𝜉𝑘 , 𝜓𝑙 𝑏 𝜉𝑘, 𝜓𝑙 𝐽Ω 𝜉𝑘, 𝜓𝑙 Ω
 (2-28) 

The external force term ∫ 𝛟𝐓fds
∂Ω4

 is discretized with Gauss points for the 

numerical solution as follows: 

∫ 𝝓𝑻𝑓𝑑𝑠
∂Ω4

=  2𝜋𝑟 𝜉𝑘, 𝜓𝑙 𝑤𝑘 𝜉𝑘 𝑓 𝜉𝑘 𝐽Γ 𝜉𝑘 
𝑛𝐺
𝑙=1  (2-29) 

The loading vector is formed as follows:  

ℜ:= −∫ 𝝓𝑻𝑏dΩ + ∫ 𝝓𝚪
𝑻𝑓𝑑𝑠

∂Ω4Ω
 (2-30) 

By assembling the stiffness matrix of each element to the global domain, the 

global linear system is achieved as follows: 

𝐊𝑢 = ℜ  (2-31) 

where 𝐊 is the global stiffness matrix; ℜ is the global loading vector. 

The stiffness matrix 𝐊  is positive definite, and the matrix can be banded by 

gathering only the non-zero terms to reduce the data storage space and accelerate the 

computation speed. In order to minimize the bandwidth size, the element numbers and 

nodes were aligned with an increasing order along the radius direction as shown in Figure 

21 for an example of a four-element domain. The K matrix was then decomposed to the 

upper and lower triangular matrixes ( 𝐋  and 𝐔 , respectively) following the 𝐋𝐔 

factorization rule, and thus the linear system of Equation (2-31) can be re-expressed as 

follows: 

𝐋𝐔𝑢 = ℜ (2-32) 
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Consequently, the linear system was solved following two steps in sequence for 

finding y vector and then 𝑢 displacement vector: 

{
𝐋𝑦 = ℜ
𝐔𝑢 = 𝑦

 (2-33) 

 

Figure 21. Sketch example of finite elements and nodes. 

2.3 Newton-Raphson Inverse Algorithm 

An inverse computation procedure based on the Newton-Raphson method is 

proposed as follows. As compared to other existing methods discussed earlier 

(Sivaneswaran et al. 1991, Wang and Lytton 1993, Meier et al. 1997, Al-Khoury et al. 

2001, Dong et al. 2002, Choi et al. 2006, Saltan and Sezgin 2007, Gopalakrishnan and 

Manik 2010, Saltan et al. 2011), the proposed method uses the developed FE model to 

simulate pavement responses, and a Newton-Raphson method with empirically estimated 

moduli as initial seed values for the inversion computation. In addition, the temperature 

profile of AC layer can be accounted for. 

2.3.1 Guess initial moduli seed values 

The initial moduli seed values could be any positive values within a fairly wide 

range. However, as mentioned earlier a variety of inversed moduli results may be 

obtained—all with acceptable numerical accuracies but with different engineering 

accuracy. Therefore, initial seed values that penalize or constrain the initial moduli seed 

value ranges according to engineering judgment are recommended to improve the 
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engineering accuracy of inverse computation. The Long Term Pavement Performance 

program (LTPP) database has provided massive amounts of information for pavement 

structures and material properties including the layer elastic moduli (FHWA 2010). LTPP 

is based on a comprehensive 20-year study of in-service pavements, monitoring more 

than 2,400 asphalt and Portland cement concrete pavement test sections across the U.S. 

and Canada. Table 6 summarizes the moduli value range resulted from the LTPP program 

for a four-layer pavement structure with the AC as the surface layer, crushed stone as the 

base layer, gravel material as the subbase layer, and soil as the subgrade. These moduli 

ranges represent variable properties of pavement materials. The moduli seed values and 

inverted layer moduli are constrained within these ranges in this study. 

Table 6 Layer moduli range (in MPa) from LTPP program  

 

Here the empirical “area method” (Stubstad et al. 2006) is evaluated to estimate 

the initial moduli seed values for the AC layer. The area method is used to roughly 

estimate the layer moduli of a pavement structure according to the FWD measured 

displacement and geophone distances (Stubstad et al. 2006), following the “area concept” 

proposed in the AASHTO 1993 pavement design guide (AASHTO 1993). The “area” is 

used to characterize the displacement basin, and the area method is described as follows. 

The Boussinesq’s analytical solution (Boussinesq 1885) is used to compute 

displacement u on the top of earth or soil foundation─an infinite half-space structure, 

under a circular loading as follows: 

𝑢 =
 1+𝑣 𝑓

𝐸
(1 − 2𝑣 +

2𝑣𝑑

√𝑅𝑎 2+𝑑2  
−

𝑑3

(𝑅𝑎
2+𝑑2)

1.5) (2-34) 

where 𝑣 is Poisson’s ratio of soil; 𝑓 is peak FWD loading pressure; 𝑅𝑎 is FWD loading 

area radius, and d is FWD geophone distance to the loading center. 
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The composite modulus of the multilayer pavement structure can be derived from 

the Boussinesq’s equation where 𝑣=0.5 and 𝑑=0 as follows (AASHTO 1993): 

𝐸𝑐𝑜𝑚 =
1.5𝑅𝑎𝑓

𝑢0
 (2-35) 

Then, according to the area method, the modulus of AC layer can be empirically 

estimated as a function of the composite modulus and “area” factors relating to the 

geophone distances and displacements (Stubstad et al. 2006):  

𝐸𝐴𝐶 =
𝐸𝑐𝑜𝑚𝐴𝐹𝐴𝐶×𝑘3

1
𝐴𝐹𝐴𝐶

𝑘3
2  (2-36)-a 

AFAC =
k2−1

k2−
A12
k1

1.35
 (2-36)-b 

A12 = 2(2 +
3u8

u0
+

u12

u0
) (2-36)-c 

where 𝐴𝐹𝐴𝐶 is an area factor; A12 is the “area” beneath the first 12 inches (305 mm) of 

the displacement basin; k2 is 1.752;  k3 is the ratio of AC layer thickness to loading plate 

diameter; u0 is FWD peak displacements measured on the distance of 0; u8 is FWD peak 

displacements measured on the distance of 8 inches (203 mm); u12 is FWD peak 

displacements measured on the distance of 12 inches (305 mm). 

2.3.2 Inverse computing layer elastic moduli 

With the estimated initial moduli seed values as material parameter inputs, the FE 

simulation was performed to determine pavement displacements as discussed earlier. The 

FE numerical solution is further detailed later. 

The Newton-Raphson method was used to iterate and update the seed moduli until 

the numerical accuracy criterion (the difference between simulated deflections and 

measurements or observations) is satisfied. The iteration goal is to minimize the 

displacement difference between observations (or measurements) and FE modeling 

results. 

The gradient tensor for the inverse computation is defined as follows: 
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 (2-37) 

where 𝑢𝑖 is the deflection at the 𝑖𝑡ℎ geophone location (𝑖 = 1,2,3…m); 𝐸𝑗 is the modulus 

of the 𝑗𝑡ℎ layer (𝑗 = 1,2,3…𝑛).  

Figure 22 shows the schematic relationship between calculated displacement and 

assumed modulus, or deflection curve. The displacements represent the deflections on the 

surface of the pavement structure at those geophone locations (e.g., 7). Each modulus at 

each geophone location corresponds to one deflection curve. Here the gradient of the 𝑖𝑡ℎ 

geophone location and the 𝑗𝑡ℎ layer moduli at the 𝑘𝑡ℎ iteration step is calculated using the 

finite difference method (FDM) as follows (see Figure 22): 

𝑔𝑖,𝑗
𝑘 =

𝑢𝑖
𝑘−𝑢𝑖

𝑘−1

log  𝐸𝑗
𝑘 −log  𝐸𝑗

𝑘−1 
 (2-38) 

where 𝑢𝑖
𝑘 is modeled displacement on the 𝑖𝑡ℎ geophone and the 𝑘𝑡ℎ iteration step; 𝐸𝑗

𝑘 is 

the inversed moduli of the 𝑗𝑡ℎ layer on the 𝑘𝑡ℎ iteration step, and the logarithmic scale is 

applied to moduli for improving numerical stability. 

 

Figure 22. Gradient calculation. 

 

Gradient
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Consequently, the moduli variation vector at the 𝑘𝑡ℎ iteration step can be determined as 

follows according to the Newton-Raphson method: 

�̿�Δ𝐸𝑘 = 𝛼𝑘 𝑢𝑜𝑏𝑠 − 𝑢𝑠𝑖𝑚𝑢.  (2-39) 

If the geophone sensor number is the same as that of the layer moduli number, the 

moduli variation can be determiend as follows: 

Δ𝐸𝑘 = 𝛼𝑘�̿�−1 𝑢𝑜𝑏𝑠 − 𝑢𝑠𝑖𝑚𝑢.  (2-40) 

If the geophone sensor number is unequal to that of the layer moduli number, the 

moduli variation can be determiend as follows: 

�̿�T�̿�Δ𝐸𝑘 = �̿�T𝛼𝑘 𝑢𝑜𝑏𝑠 − 𝑢𝑠𝑖𝑚𝑢.  (2-41) 

Δ𝐸𝑘 = αk(�̿�
T�̿�)

−1
�̿�T 𝑢𝑜𝑏𝑠 − 𝑢𝑠𝑖𝑚𝑢.  (2-42) 

where,𝛼𝑘  is the step length; �̿� is the gradient tensor; 𝑢𝑜𝑏𝑠 is measured deflection vector 

containing all deflection values measured at those geophone locations; 𝑢𝑠𝑖𝑚. is simulated 

deflection vector at the 𝑘𝑡ℎ iteration on those geophone locations. 

Afterwards, the modulus vector at the 𝑘𝑡ℎ iteration step 𝐸𝑘 is determined as follows: 

𝐸𝑘 = 𝐸𝑘−1 + ∆𝐸𝑘 (2-43) 

where  𝐸𝑘−1 is the modulus vector at the  𝑘 − 1 𝑡ℎ iteration step. 

Here an error, the root of mean square (𝑅𝑀𝑆) value, is used to evaluate the 

goodness of fit for the simulated displacements as compared to measurements: 

𝑅𝑀𝑆 = √ (
𝑢𝑖,𝑜𝑏𝑠−𝑢𝑖,𝑠𝑖𝑚𝑢.

𝑢𝑖,𝑜𝑏𝑠
)
2

𝑚
𝑖 /𝑚 (2-44) 

where 𝑢𝑖,𝑜𝑏𝑠 is the measured displacements on the pavement surface of the 𝑖𝑡ℎ geophone; 

𝑢𝑖,𝑠𝑖𝑚𝑢. is the FE modeled displacement on the pavement surface of the 𝑖𝑡ℎ  geophone 

location; 𝑚 is total number of geophones, i.e., 7 in this project. 

The inverse iteration continues until the RMS value is less or equal to the 

numerical target (e.g., 3%). 
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2.3.3 Computer coding for numerical solution 

At each iteration step, pavement displacements are computed, and the Newton-

Raphson inversion is performed to compute the layer elastic moduli. A computer code in 

FORTRAN language was developed for the entire numerical computation. Two main 

FORTRAIN modules were designed for the core computations: 1) the FE modeling; and 

2) the Newton-Raphson inverse computing. Figure 23 presents the flow chart for the 

computation procedure. The inputs include the pavement structure parameters of layer 

thicknesses and material Poisson’s ratio values, the guessed initial moduli seed values, 

and the FWD loading. Typical Poisson’s ratio values were used in this study, i.e. 0.35, 

0.35, 0.40, and 0.45 for AC, base, subbase, and soil, respectively (Huang 2003). FWD 

measured displacement data were added as observations. Consequently, FE modeling was 

performed to compute the pavement responses of displacements, followed by the 

Newton-Raphson inverse computation to determine the layer moduli. This procedure 

repeats, and the moduli values were updated until the numerical error became acceptable 

(e.g. 𝑅𝑀𝑆 < 3%). 

 

Figure 23. Flow chart for the numerical computation procedure. 

 

RMS < target

Yes

No

In
p
u

ts
R

e
s
p

o
n

s
e
 M

o
d

e
l

In
v
e
rs

e
 C

o
m

p
u

ti
n

g
O

u
tp

u
ts

Pavement structure,

guessed seeds

Simulated 

deflections

FE pavement 

response model

Newton Raphson

iteration model

Compare modeled responses 

and observations

FWD 

loading

Inversed moduli

FWD measured

deflections

Updated moduli

as new seeds



54 
 

2.4 Validation Method 

To validate the proposed method and numerical solution, typical pavement 

structures and layer moduli were designed. A Monte-Carlo simulation approach was also 

empoloyed for validation.  

A typical four-layer pavement structure was used for validation (based on LTPP 

data), named Case I as shown in Table 7. Case II uses half size of the AC layer thickness 

of Case I to study the effects of AC layer thickness.  Case III and Case IV use lower 

moduli for subbase while higher moduli for soil, with the same and half size of AC layer 

thickness of Case I, respectively. Case III and IV are designed to study the effects of the 

moduli of subbase and soil. 

Table 7 Pavement structure layer thickness/moduli values 

 

To validate the accuracy, a Monte-Carlo simulation approach was used and a 

large dataset of moduli for Case I pavement structure was randomly generated for 

validation. These included 5,000 randomly generated moduli values for each of the AC, 

base, subbase, and soil layer. These moduli values were assumed to follow a normal 

distribution, with a coefficent of variance of 30%, as shown in  Figure 24. A very small 

portion of moduli values fell beyond the LTPP program range and were thus filtered out.  

Note that in this study, laboratory testing of pavement materials was not 

performed to validate the inversion results due to following reasons. The laboratory 

testing conditions were very different than the in-situ situations including the loading 

frequency and material confined conditions used in the FE simulation. Meanwhile, the 

sample preparation from field via coring is destructive for highway systems and very 

costly. Therefore, rather than using the laboratory validation, a theoretical validation 

procedure was used. Two validations were conducted as follows: 

 Case I Case II Case III Case IV 

HMA 15cm/2500MPa 7.5cm/2500MPa 15cm/2500MPa 7.5cm/2500MPa 
Base 25cm/350MPa 25cm/350MPa 25cm/350MPa 25cm/350MPa 

Subbase 15cm/150MPa 15cm/150MPa 15cm/75MPa 15cm/75MPa 
Soil 50MPa 50MPa 200MPa 200MPa 
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1) Validation of the FE simulated responses: the well-known ELSYM5 multilayer 

analytical program was used for validation.  

2) Validation of the inversed moduli: first, with the inputs of randomly generated 

true moduli values, the pavement displacements can be calculated as the “observations.” 

Then the true moduli values are completely “forgotten.” Consequently, based on the 

“observations.” the numerical inversion is performed to determine the inversed moduli. 

Finally, the inversed moduli are compared with the true moduli values to verify the 

engineering accuracy.  

 

Figure 24. Probability density of randomly generated moduli in normal-

distribution: (a) AC; (b) Base; (c) Subbase, and (d) Soil. 
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2.5 Results and Analyses 

The FE modeled response results were validated by commercial software, and 

then the inversed moduli results were validated and the results are discussed in the 

following subsections. 

2.5.1 FE Model Validation 

Figure 25a-d present the FE modeled vertical displacements for the pavement 

structures of Case I to IV, respectively. Results show that Case III and IV have lower 

displacement values due to their higher soil moduli as compared to that of Case I and II. 

Case II has the largest displacement value due to its lowest AC thickness and soil moduli.  
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Figure 25. Pavement displacements simulated by the developed FE model and 

computer coding for a) Case I, b) Case II, c) Case III, and d) Case IV. 

a)

b)

c)

d)
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2.5.2 Inversion Results and analyses 

2.5.2.1 Simulated responses compared to true values 

Figure 26 presents the simulated deflections using inverted material moduli vs. 

the true values (modeled values using true material moduli), indicating a very close 

match. 

 

Figure 26. Pavement displacement basin predictions vs. true values. 

2.5.2.2 Comparison with popular commercial software 

The inverted results of layer moduli were compared with that of other 

available commercial software. 

Figure 25 presents backcalculation results of a four-layer pavement structure as 
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the MichBack (by Michigan State), MODULUS (by Texas Transportation Institute), and 
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Figure 27. Comparison with other commercial software. 

2.5.2.3 Effect of iteration steps 

Figure 28 shows the inversed moduli on different iteration steps. It shows that 

inversed moduli will usually gradually approach the true values with the increase of 

iteration steps, though in some cases (e.g., for the AC moduli), and it may also reverse 

the search direction first and then come back to approach the true value. It was also noted 

that the inverted moduli values always show the same sign (will either be lower or higher 

than true values for all iteration steps), indicating a stable convergence using this 

numerical procedure. 
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Figure 28. Inversed moduli with iteration steps. 

2.5.2.4 Effects of initial moduli seed values 

Figure 29a, b, and c represent inverted moduli using random moduli as seed 

values (e.g., low-bounded values of the LTPP program’s range), for the area method 

estimated moduli, and inversed moduli using area-method estimated moduli as seed 

values, respectively. Figure 30 shows the inversed moduli of base, subbase, and soil, 
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between inversed moduli and true values). 
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(difference of percentage) of only 1.77%, apparently lower than 16.69% and 5.55% 

resulting from the area method and the inversion results using random moduli seeds, 

respectively. Results also indicate that the inverted moduli of the unbound materials 

(base, subbase and soil) are much less sensitive to the moduli seed values as compared to 

that of AC layer, which might be due to their smaller variations and less significant 

effects on pavement displacements.  

 

 

(a) inversed moduli using random seed values 

Figure 29. Inversed moduli vs. true values of AC. 
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(b) area-method estimated moduli 

 

(c) inversed moduli using area-method estimated moduli as seeds. 

Figure 29. Inversed moduli vs. true values of AC (continued). 
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(a) base layer 

 

 

 

(b) subbase layer 

 

Figure 30. Inversed moduli vs. true values using random seed values. 
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(c) soil 

Figure 30. Inversed moduli vs. true values using random seed values (continued). 

 

Table 8 Average engineering error of inversed moduli 
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Figure 32 shows the inversed moduli profile of AC as compared to the true 

values. Results indicate that inverted moduli values could match true values with an 

average error of 4.45%. For the cold weather the inversed moduli were a little over-

predicted while for the regular weather they were a little under-predicted at 8:00 PM. 

Figure 33 shows the simulated deflections on the surface of top AC layer. Results 

indicate that deflection at 2:00 PM was lower than that at 8:00 PM primarily at the zero 

or close distances, and this difference decreased with the increase of distance until two 

deflections merged together. This observation could be explained by temperature 

variations at different times, while at far distances deflections were primarily dependent 

on the moduli of underneath layers, which are considered temperature independent. The 

hot weather condition had the highest deflection values and deflection differences 

between 2:00 PM and 8:00 PM, then the regular weather, and cold weather due to their 

temperature values and variations along depths. 
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Figure 31. Temperature profile of AC layer at 2:00 PM and 8:00 PM: a) cold 

weather; b) normal weather; c) hot weather. 

 

Figure 32. Inversed AC moduli profile vs true values: a) cold weather; b) normal 

weather; c) hot weather. 

 

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 20 40 60 80 100 120 140 160

Te
m

p
e

ra
tu

re
 (

o
C

)

Pavement depth (mm)

2:00 PM

8:00 PM

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160

T
e

m
p

e
ra

tu
re

 (
o
C

)

Pavement depth (mm)

2:00 PM

8:00 PM

30

35

40

45

50

55

60

0 20 40 60 80 100 120 140 160

Te
m

p
e

ra
tu

re
 (

o
C

)

Pavement depth (mm)

2:00 PM

8:00 PM

(a) (b)

(c)

0       20       40       60       80      100     120    140    160 0       20      40      60      80     100    120    140    160

0        20      40       60      80      100     120    140    160

0      

-1      

-2

-3

-4

-5

-6

-7

-8

-9

-10

T
em

p
er

at
u
re

 (
o
C

)

Pavement depth (mm)

T
em

p
er

at
u
re

 (
o
C

)

Pavement depth (mm)

T
em

p
er

at
u
re

 (
o
C

)

Pavement depth (mm)

35     

30      

25

20

15

10

60    

55      

50

45

40

35

30

2:00 PM

8:00 PM

2:00 PM

8:00 PM

2:00 PM

8:00 PM

a) b)

c)

(a) (b)

(c)

8.00E+03

8.50E+03

9.00E+03

9.50E+03

1.00E+04

1.05E+04

1.10E+04

0 20 40 60 80 100 120 140 160

M
o

d
u

lu
s 

(M
P

a
)

Pavement depth (cm)

2:00 PM true values

8:00 PM true values

2:00 PM simulated

8:00 PM simulated

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

3.0E+03

3.5E+03

4.0E+03

4.5E+03

0 20 40 60 80 100 120 140 160

M
o

d
u

lu
s 

(M
P

a
)

Pavement depth (cm)

2:00 PM true values

8:00 PM true values

2:00 PM simulated

8:00 PM simulated

0.0E+00

1.0E+02

2.0E+02

3.0E+02

4.0E+02

5.0E+02

6.0E+02

7.0E+02

8.0E+02

0 20 40 60 80 100 120 140 160

M
o

d
u

lu
s 

(M
P

a)

Pavement depth (cm)

2:00 PM true values

8:00 PM true values

2:00 PM simulated

8:00 PM simulated

1.10x104

1.05x104

1.00x104

9.50x103

9.00x103

8.50x103

8.00x103

M
o

d
u
lu

s 
(M

P
a)

0      20      40     60      80    100    120    140   160

Pavement depth (mm) Pavement depth (mm)

0      20      40     60      80    100    120    140   160

Pavement depth (mm)

4.5x103

4.0x103

3.5x103

3.0x103

2.5x103

2.0x103

1.5x103

1.0x103

5.0x102

8.00x103

M
o

d
u
lu

s 
(M

P
a)

0      20      40     60     80    100    120   140   160

8.0x102

7.0x102

6.0x102

5.5x102

5.0x102

4.0x102

3.0x102

1.0x102

0.0x100

M
o

d
u
lu

s 
(M

P
a)

a) b)

c)

2:00 PM True

8:00 PM True

2:00 PM Inverted

8:00 PM Inverted

2:00 PM True

8:00 PM True

2:00 PM Inverted

8:00 PM Inverted

2:00 PM True

8:00 PM True

2:00 PM Inverted

8:00 PM Inverted



67 
 

 

Figure 33. Simulated deflections: a) cold weather;  

b) normal weather; c) hot weather. 

2.5.2.6 Effect of Root Mean Square 

Figure 33 shows the modeled displacement basin as compared to the observations 
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reasonable numerical accuracy. Different 𝑅𝑀𝑆  targets were used for the numerical 

inversion, i.e., 1%, 5%, 9%, and 19%. Figure 34 shows the inversed moduli as compared 
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results in improved engineering accuracy and vice versa.  
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Figure 34. Inversed moduli vs. true values with different RMS targets. 

Figure 35 shows the final iteration steps versus 𝑅𝑀𝑆 targets. As expected the 

iteration steps generally decrease with the increase of 𝑅𝑀𝑆 target value, but the effect of 

𝑅𝑀𝑆 target is less significant when its value gets relatively high (e.g., 7% or higher). 

Based on these results, an 𝑅𝑀𝑆 target of 5% or a lower value would be recommended for 

engineering applications when using this numerical method. 
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Figure 35. Final iteration steps vs. RMS. 

2.6 Summary 

In this research a numerical method and procedure was developed to inverse 

compute the elastic moduli of the multilayer structure. A static elastic FE model with 

infinite-elements for the infinite half-spaces of boundaries was developed to model 

pavement response. Consequently, a Newton-Raphson iteration procedure is proposed to 

inverse compute the layer moduli, where the gradient tensor is calculated using finite 

difference method. The empirical area method was used to estimate the initial moduli 

seed values for the AC layer as a penalization or constraint. The entire numerical 

computation was coded in FORTRAN language for the numerical solution. Monte Carlo 

simulations from 5,000 randomly generated moduli values for each layer of a four-layer 

pavement structure were used as true values for validation purposes. Results indicate that 

the developed numerical approach has a relatively stable convergence. A 5% or lower 

value of 𝑅𝑀𝑆 target is recommended for the engineering application when using this 

method. The moduli seed values seem to have very small effects on the numerical 

accuracy (modeled responses versus observations or measurements). However, the 
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moduli seed values play a critical role in the engineering accuracy (inverted moduli 

versus true values) for the inverted moduli of AC layer. With these 5,000 randomly 

generated moduli values for each layer, an engineering error of 1.77% for the inverted 

moduli of AC layer was achieved. The inverted moduli of unbound materials (base, 

subbase, and soil) were much less sensitive to the initial moduli seed values as compared 

to that of the AC layer. This has helped address the common issue in multilayer system 

backcalculation–no unique solution especially for AC material. Using the random moduli 

seed values, an engineering error of 10.83%, 8.99%, and 1.08% were observed for the 

inverted moduli of base, subbase, and soil, respectively. The computational method could 

also inverse compute the modulus variation of AC layers due to temperature profile with 

an average error of 4.45% attained for three examples. 

The finite element model serves as part of the basic foundations for the proposed 

numerical solution method of the dynamic viscoelastic response modeling as discussed in 

the next chapter. 
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Chapter 3: A Time-domain Finite Element Method for Dynamic 

Viscoelastic Solution of Layered-half-space Responses under Loading 

Pulse 

Analytical solutions and numerical methods have more often been studied to 

compute multilayer structural responses using (dynamic) elastic models. This chapter 

develops a dynamic viscoelastic model and Galerkin-based time-domain finite element 

(FE) method to simulate the layered half-space responses under loading pulses. The 

model and numerical methods serve as one of the core computation modules of the 

inverse computation, as will be discussed in Chapter 4. 

The time-temperature dependent material viscoelasticity is modeled by the 

generalized Maxwell model. A combined Houbolt, central finite difference (FD) and 

forward FD method was proposed in this research for time discretization of acceleration 

and velocity to reduce the time-step length. A computer code written in FORTRAN 

language was developed for the numerical computation and validated using analytical 

solution and numerical modeling. Compared to most existing computer methods, the 

developed approach presents a more comprehensive model: 1) it has captured the coupled 

effects of material viscoelastic behavior, dynamic loading, and system damping; 2) it is 

also able to model two environmentally-associated critical conditions: temperature profile 

and space-dependency of moduli. The model was implemented for a layered flexible 

pavement structure on soil foundation under vehicle and plate loadings, where the top 

asphalt layer is modeled as viscoelastic, and unbound materials are considered damped 

elastic. An experimental plate loading test was designed for evaluation. Results find that 

a dynamic-viscoelastic model that considers damping could more accurately emulate 

structural responses. Temperature variation of a single layer could significantly affect 

response values. Displacement, velocity and acceleration, and stress and strain were also 

analyzed to foster understanding of the structural dynamic response and material 

viscoelastic deformation. The developed method could serve as a potential means to 

enhance structural analysis, which can also be used for other laminate or disk structures 



72 
 

at different length and time scales, thereby fostering understanding of material 

deformation and structural responses.  

3.1. Background 

The soil or earth is a semi-infinite half-space. When a layered structure is built on 

a soil foundation it becomes a layered half-space such as the pavement system used for 

highways, airport runways, and parking lots to sustain vehicle loading. As shown in 

Figure 36, a layered half-space of pavement structure on soil sample usually consists of 

three or four layers: asphalt concrete (AC) or Portland cement concrete as the surface 

course, base layer (e.g., aggregate and stabilized base), subbase layer (e.g., gravel 

material), and soil foundation (semi-infinite half-space). The layered structure with an 

AC surface course is called a flexible pavement system, which is implemented for model 

validation and analysis in this research. The vehicle tire contact area could be 

approximated as a circular for pavement analysis and design (Huang 2003, AASHTO 

1993, and ARA 2004). The plate loading tests were used to evaluate the structural 

capacity. In this test a circular plate is placed on the surface of the soil or layered 

structure and a mass was dropped to hit the plate, which produced a loading pulse within 

a short time period (e.g., 0.1 second or less) (see Figure 36). Among these plate loading 

tests, the falling weight deflectometer (FWD) test is a popular one emulating the vehicle 

loading effect, where several geophones are also placed at various distances to record the 

deflection responses (see Figure 36). 
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Figure 36. A layered half-space of flexible pavement structure on soil under 

circular loading. 

Understanding structural response of the layered half-space under external loading is a 

key for risk assessment (e.g., deformations under seismic loading) and structural design. 

Multiple models and computer methods have been developed or employed to simulate 

responses of deflection, stress, and strain for the (layered) half-space. These models and 

research progress are reviewed and summarized as follows: 

i) Analytical approaches for half-space and layered half-space. Boussinesq’s 

solution (Boussinesq 1885) has been used to calculate responses of an elastic half-space 

(e.g., soil) under a static point loading. Lamb (Lamb 1905) might be the first researcher 

to develop a formulation for the surface motion of homogeneous elastic half-space under 

a point pulse. Extensive research has attempted to solve Lamb’s problem, including the 

most recent publication by Kausel (2012), who derived a complete set of exact explicit 

formulas for the suddenly applied point loads. Miller and Pursey (1954) derived a 

solution for the harmonic uniform circular load applied to the elastic half-space. The 

elastic solution of a layered half-space could also be extended to a viscoelastic hysteretic 

medium using the complex moduli as inputs by Foinquinos (1995). Foinquinos and 
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Roësset (2000) further provided solutions for vertical loading applied to the elastic 

layered half-space (e.g., pavement structure).  

Among analytical approaches, the most widely used methodology is the multilayer 

analysis program. The method is based on linear elasticity theory for an axisymmetric 

multilayer structure with semi-infinite half-space using Hankel transforms. Samples of 

well-known multilayer analysis programs include ELSYM 5, which was originally 

developed by the University of California at Berkeley and later adapted to 

microcomputers by Kopperman et al. (1986); BISAR developed by Shell Global Inc. 

(1998); and  Everstress developed by the University of Washington (2001). However, 

these multilayer analysis programs can account only for the static loading and linear 

elastic material property. Researchers have endeavored to extend this solution for 

applying to more complex conditions. For example, Pan and Han (2005) derived the 

functionally graded elastic multilayered half-space under static loading mode. 

Consequently Pan’s group created the MultiSmart3D program, which can divide a single 

layer into multi sub-layers and assign various elastic modulus values at depth. Levenberg 

(2013) analyzed the pavement responses to subsurface deformations based on layered 

elastic theory with a distorted bottom boundary condition. The AC is a typical 

viscoelastic or viscoplastic material. AC is highly temperature- and time- dependent (Xu 

and Solaimanian 2008, 2009), and thus, the linear elasticity theory may not be accurate 

enough to capture its material behavior under  dynamic loading. Consequently, some 

researchers have extended the multilayer analytical methods by accounting for the 

material’s viscoelastic behavior or dynamic loading effects or both. Hopman (1996) and 

Kim (2011) developed the viscoelastic solutions of the multilayer structure under a static 

loading mode. Most recently Lee (2013) developed a dynamic viscoelastic analysis 

program called ViscoWave based on the Laplace and Hankel transforms, as extended 

from the layered linear elastic approach. However, the damping effect was not taken into 

account (Lee 2013). Figure 37 briefly illustrates these developments of analytical 

approaches for solutions of the half-space and layered half-space. 
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Figure 37.  Analytical solutions of (layered) half space. 

ii) Numerical methods. Different numerical algorithms have been used for 

response modeling of the layered half-space structure including the finite element (FE) 

method, spectral element method (Al-Khoury et al. 2001), and boundary element method 

(Birgisson et al. 1997). In comparison to the multilayer analysis programs, the FE 

modeling could account for more complex conditions including the variable boundary 

and loading conditions, and advanced material models. Dave et al. (2011) developed a 

functionally graded FE model to account for the non-homogeneous viscoelastic material 

property under a static loading pattern. Researchers have also developed FE computer 

programs for pavement response analysis, and samples include MICHPAVE developed 

by Michigan State University (Harichandran and Baladi 2000), ILLI-PAVE developed by 

the University of Illinois at Urbana Champaign in 2001 (Ramirez 2001), and TTI-PAVE 

developed by the Texas Transportation Institute (2009). These FE programs are primarily 

used to simulate the static loading and linear elastic material properties, but some of them 

have accounted for the stress-dependency of soil’s resilient modulus (e.g., ILLI-PAVE, 

MICHPAVE). TTI-PAVE incorporated the Mohr-Coulomb yield criterion to account for 

material plastic failure under super heavy loading. Scarpas et al. (1997) developed the 

CAPA-3D FE software for modeling infrastructure materials, which could also perform 
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pavement analysis. It has accounted for some nonlinear material behaviors as well as 

coupling effects of heat transfer, oxygen diffusion, and moisture interaction. For 

example, Mo et al. (2008) used the CAPA-3D FE software to simulate the tire-pavement 

contact stresses using the viscoelastic material model with a static loading mode.  

Using the commercial FE software packages, extensive existing research has 

modeled the linear, nonlinear, static, and dynamic behaviors of the flexible pavement 

structure. Some examples include the followings: Blab and Harvey (2002) simulated the 

pavement response using the static viscoelastic model; Uddin and Garza (2004) simulated 

the dynamic response of a flexible pavement under FWD loading using the LS-DYNA 

software; Kim (2007) simulated the flexible pavement responses considering the stress-

dependent behavior of soil foundation through ABAQUS; Yoo (2007) built a three-

dimensional (3-D) FE model for the dynamic and vsicoealstic analysis of flexible 

pavement, where two tire-pavement configurations were considered; Al-Qadi et al. 

(2009) modeled the creep behavior of AC material under a static loading history using the 

FE method with ABAQUS; Howard and Warren (2009) simulated the stationary transient 

loading and nonlinear stress dependency of subgrade and crushed stone; Wang and Al-

Qadi (2009) simulated dynamic responses of pavement structure considering the 3-D tire-

pavement contact stress distributions as implemented in ABAQUS; Cao et al. (2013) 

simulated the elastic dynamic response of a pavement structure, considering the vehicle-

pavement coupling effect in ABAQUS. 

iii) Combined and other methods. Chatti and Yun (1996) developed a damped 

elastic model based on the combined analytical and FE algorithm. Ayadi et al. (2012) 

developed a dynamic semi-analytical and FE model to simulate pavement deflections 

under the FWD loading. Kausel and Park (2006) derived dynamic elastic responses of the 

layered half-space in time domain based on the thin layer method. Sun et al. (2013) 

proposed a high-order thin layer method for modeling viscoelastic wave propagation in 

the stratified media. Most recently in 2013, the University of Nevada at Reno developed 

the 3-D Move Analysis Software (2013) based on the finite layer method using Fourier 

transforms for each layer whereby 3-D vehicle contact stress distributions were generated 
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from  moving loading (Siddharthan et al. 1998, 2000, and 2002). The material model 

input for the AC layer is the mathematical sigmoidal function of dynamic modulus, but 

phase angle is a user input option to determine a damming ratio for dynamic analysis. 

Chaillat and Bonnet (2013) proposed a multiple formulation for the solution of elastic 

dynamic half-space of soil using Green’s tensor. 

Analytical and numerical methods for modeling viscoelastic and/or dynamic 

behaviors have also been developed for other uniform solids or composite media. Some 

examples are reviewed as follows. Shaw et al. (1994) solved a quasi-static stress problem 

for a linear viscoelastic solid using the FE method for space-domain discretization and 

semi-discrete estimations. Makris (1995) examined a convolution integral analytical 

solution for time domain analysis of the viscoelastic model of a soil body. Guénette and 

Fortin (1995) proposed a mixed FE method to compute the viscoelastic flow of 

benchmark problems. Shaw and Whiteman (2000) proposed a space-time Galerkin FE 

discretization method for solving the linear quasistatic compressible viscoelasticity 

problem based on the elliptic partial differential equation. Kim and Paulino (2002) 

proposed a framework for a generalized isoparametric formulation using the graded FE 

method, which can possess spatially varying material properties. Qin et al. (2010) 

developed an algorithm to simulate the static viscoelastic response of a single body under 

the moving loading pattern. Timonin (2013) proposed a finite-layer method for the linear 

elastic stress-strain analysis of layered composites, where each particular layer is 

considered a constituent of the entire laminate structure; the nonlinear geometry was also 

considered. 

3.2. Research Motivation and Significance 

First, most existing computer methods and programs of layered half-space, such 

as those mentioned above, have primarily considered limited aspects─either the dynamic 

effect, the elastic or viscoelastic behavior of material, or both, but without considering the 

damping effect, e.g., the analytical solution developed by Lee (2013). Therefore, a more 

comprehensive model and computer method considering the dynamic loading effect, 
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material’s viscoelastic behavior, and the system damping effect may more accurately 

capture the coupled effects of loading and material behavior. As discussed earlier, 

different modeling approaches including static or dynamic, and elastic or viscoelastic 

models were used to simulate the multilayer’s structural responses.  Many of these 

approaches have been validated via laboratory and in-situ tests, according to existing 

research. Qin (2010) used the multilayer linear elastic analysis program to simulate FWD 

peak deflections and validated the simulation results through field measured responses. 

Al-Qadi (2009) simulated the static viscoelastic responses of a flexible pavement under 

vehicle loading, and validated it using in-situ measurements at the loading position. Cao 

et al. (2013) performed an elastic dynamic finite element modeling and validated it 

through experimental data. However, the laboratory and field validations could produce 

biased results since the laboratory testing conditions on small specimens could be very 

different from those in field conditions. For example, the indirect tensile test on a 10-cm-

diameter specimen is used to determine the resilient modulus (ASTM D7369 -11), which 

may not exactly represent the in-situ stress-strain state of a solid confined in a large 

pavement structure under vehicle loading. Meanwhile, validations of linear elastic 

modeling are based only on the peak response values without considering time history 

(Qin 2010), arguing that the time history effect could be ignored within such a short 

loading period. In addition, field validations with stress-strain gauge instruments are 

usually applied to a single location often at the loading position, which doesn’t account 

for the geometry effect at multiple distances to loading. Therefore, considering this single 

location vs. multiple locations for loading dilemma, the question arises: which modeling 

approach is indeed more accurate for simulating structural responses under a short-time 

periodic loading?  

Secondly, the in-service situations of the layered half-space are indeed more 

complex than theoretical assumptions often used in existing modeling studies, such as 

uniform temperature and moisture distributions along the layer depth. Temperatures of 

AC material and moisture contents of soil foundation are well known as two critical 

factors affecting material properties and associated structural responses. A higher 
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temperature induces more stress relaxation or higher creep deformation (Xu 2007). 

Variable moisture contents cause variable material properties at different depths of the 

soil foundation (Nazarian et al. 1987, Aouad 1993). Analytical approaches, including 

multilayer analysis programs, have difficulty capturing these variable conditions. The 

powerful FE software such as ANSYS does not provide a user input for space 

dependency of elastic moduli (e.g., users may need to build a large number of model 

bodies in order to assign variable modulus values as space dependent and then “glue” all 

of them). Therefore, a numerical method such as an FE solution considering space 

dependency would be a promising option for simulating these environmentally associated 

effects on structural responses. 

Lastly, an enhanced model is essential for improving structural analysis and 

design methods. For example, the current national Mechanistic-Empirical Pavement 

Design Guide (MEPDG) funded by the National Cooperative Highway Research 

Program (NCHRP) and carried out by the Applied Research Associates (ARA) along 

with several consultants used the dynamic modulus as a material parameter input of AC 

for Level 1 (the highest) structural design, which was verified in the final report (Glover 

and Mallela 2009). It accounts for the frequency and temperature effects on material’s 

viscoelastic behavior. However, in the response analysis, a modulus value corresponding 

to the frequency was attained and then used as a material parameter input for the static-

elastic multilayer analysis program (Glover and Mallela 2009). Therefore, this 

approximation method is still based on a static elastic analysis in nature, and it may 

under- or over- estimate response values. 

 The enhanced model and computer method could also be used for other laminate 

or disk structures at different length and time scales for response analysis considering the 

elastic or viscoelastic, static or dynamic properties. 

Accordingly, the objective of this chapter is to develop a time-domain FE model 

and computer method for dynamic viscoelastic solution of layered-half-space responses 

under the loading pulses. The damping effect temperature profile, and space dependency 

of moduli were also taken into account. A computer program written in FORTRAN was 
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developed for the numerical computation. The computer code and FE simulation results 

were validated by analytical solution for the linear elastic model and by numerical 

modeling for the dynamic and viscoelastic models. The model is implemented to a 

flexible pavement structure on soil foundation under both FWD and vehicle loadings. 

Structural responses of deflections, velocity and acceleration, and stress and strain were 

analyzed to foster understanding of structural dynamic responses and material 

viscoelastic deformation. The model developed in this research can serve as a potential 

means to advance current pavement analysis methods. The developed model and 

computer method could also be used for other laminate and disk structures at different 

length and time scales. The developed model presented in this chapter will serve as one 

module of the inverse method developed in the next chapter. 

3.3. Model Development 

3.3.1 Model domain and governing state equation 

The half-space and layered half-space under circular loading can be treated as a 

semi-infinite axisymmetric body (see Figure 38) because: 1) the structure is continuous 

with isotropic material property assumed; 2) the soil foundation (earth) has infinite depth; 

and 3) the dimension size of the loading area (e.g., a 15-cm radius of the FWD loading 

plate) is much smaller compared to the model size (e.g., a parking lot of 2,000 m2). It has 

been a common practice to regard the layered half-space under vehicle and FWD loading 

as an axisymmetric model for analysis and design (Huang 2003, AASHTO 1993, ARA 

2004). The multilayer elastic analysis programs discussed earlier are also based on this 

assumption (Kopperman et al. 1986, Shell 1989, Sivaneswaran et al. 2001). 
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Figure 38. Dynamic stress state of the axisymmetric model 

in the 𝒓 − 𝒛 − 𝜽 coordinate. 

Figure 39 presents the FE model domain and boundary conditions for a layered 

structure under a dynamic loading pulse. A finite but relatively large model size is used to 

simulate the semi-infinite half-space. The layer interfaces are considered fully bonded, as 

commonly found in flexible pavement structures (Huang 2003).  

The strong form of the governing state equation is formed as follows: 

𝛁 ∙ 𝝈 + 𝑏 = 𝑐
𝜕𝒖 𝑡 
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where equation (a) is the stress equilibrium considering dynamic inertia and damping in a 

continuum form,  𝝈 is  stress tensor, 𝒖  is displacement, 𝑏  is body force, 𝜌  is material 

density, 𝑐 is damping, and 𝑡 is time variable, Ω ∈ ℝ3 is a 3-D space domain,  0, 𝑡𝑑  is a 

time domain with a period of 𝑡𝑑; equation (b) is the natural boundary condition, 𝑓 𝑡  is 

dynamic loading time history at the vertical direction, 𝑛 is the normal direction unit to the 

surface 𝑠, and Ω4 is the loading area; equation (c) is the essential boundary condition 

applied to the axisymmetric line ∂2Ω1; equation (d) is the essential boundary condition 

applied on the far field, the outside area ∂Ω2; and equation (e) is the essential boundary 

condition at the bottom area of soil foundation 𝜕Ω3.  

 

Figure 39. Finite element model and boundary conditions on the 𝒓 − 𝒛 plane (𝛀 

are ℝ𝟑 space domains of the layered-half-space). 

According to the axisymmetry of a cylindrical coordinate system 𝑟 − 𝑧 − 𝜃 (see 

Figure 38), the shear stresses and displacements at the angular direction are dismissed, 

and normal stress at the angular direction is independent of angle 𝜃 such that  
𝜕𝜎𝜃𝜃

𝜕𝜃
= 0. 

Thus, the stress-equilibrium can be decomposed to the 𝑟 and 𝑧 directions in a reduced 

form as follows (Slaughter 2002): 
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𝜕𝜎𝑟𝑧

𝜕𝑟
+

𝜕𝜎𝑧𝑧

𝜕𝑧
+

1

𝑟
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𝜕𝑡
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2

𝜕𝑡2
  (3-2)-b 

where 𝑟, 𝑧, 𝜃  are radius, depth, and angle, respectively;  𝜎𝑟𝑟 , 𝜎𝑧𝑧 , and  𝜎𝜃𝜃  are normal 

stress at the 𝑟, z, and 𝜃 direction, respectively; 𝜎𝑟𝑧 and  𝜎𝑧𝑟 are shear stresses on the 𝑧 −

𝑟  plane,  𝜎𝑟𝑧 = 𝜎𝑧𝑟 ; 𝑏𝑟 and 𝑏𝑧  are body forces at the 𝑟  and 𝑧  direction,  𝑏𝑟 = 0 ; and 

𝑢𝑟 and 𝑢𝑧 are displacements at 𝑟 and 𝑧 direction, respectively. 

3.3.2 Material model 

No material damages occur as assumed for modeling the responses of the layered 

half-space under a relatively small loading within a short period. If material damages 

such as permanent deformation and cracking occur, the viscoplastic or fracture models 

will be needed which is not studied in this dissertation. The material viscoelasticity was 

modeled by the generalized Maxwell model. The base/subbase and soil layer were 

considered elastic, and the space dependency of the elastic moduli were accounted for 

(see Figure 40). Damping was also considered for elastic materials. Figure 40 shows the 

material model of a pavement structure in a one-dimensional (1-D) mode.  

The relaxation modulus 𝐸 𝑡  in the Prony series for the generalized Maxwell model can 

be expressed as a function of reduced time 𝑡 as follows: 

𝐸 𝑡 = 𝐸∞ +  𝐸𝑖𝑒
− 

𝐸𝑖
𝜂𝑖

 𝑡𝑁
𝑖=1 = 𝐸∞ +  𝐸𝑖𝑒

− 
𝑡

  𝜏𝑖𝑁
𝑖=1  (3-3) 

where 𝐸∞ is Young’s modulus at infinite time (𝑡 = ∞); 𝐸𝑖 is  Young’s modulus of the 𝑖𝑡ℎ 

spring element for 𝑖 = 1, 2…𝑁; 𝜂i is viscosity of the 𝑖𝑡ℎ dashpot element for 𝑖 =

1, 2…𝑁; 𝑁 is the spring-dashpot parallel term number in series, and 𝜏𝑖 is the retarded 

time, 𝜏𝑖 =
𝜂𝑖

𝐸𝑖
 . 
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Figure 40. Material models of the multilayer structure in a 1-D mode (𝑬 is elastic 

modulus, 𝜼 is viscosity, and 𝒄 is damping). 

The temperature effect of viscoelastic material could be converted to a reduced 

time using the temperature-time superposition rule (Christensen 1982). Pellinen (2001) 

developed a technique to shift temperature effect to the reduced time, where the shift 

factor 𝛼𝑇 can be fitted to a two times polynomial function of temperature. More generally 

𝛼𝑇  could be determined according to the WLF temperature-time superposition rule 

(Williams et al. 1955): 

log10 𝛼𝑇 =
−𝛾1 𝑇−𝑇0 

𝛾2+𝑇−𝑇0
  (3-4) 

where 𝛾1, 𝛾2 are model parameters; 𝑇 is temperature, and 𝑇0 is the reference temperature, 

e.g., 25 oC. 

In this research Equation (3-3) was modified as follows to consider temperature 

effect: 

𝐸 𝑡, 𝑇, 𝑇0 = 𝐸∞ +  𝐸𝑖𝑒
− 

𝐸𝑖
𝜂𝑖

 𝛼𝑇𝑡𝑁
𝑖=1  (3-5) 

Likewise, the shear and bulk relaxation moduli in the Prony series can be 

expressed as follows: 

𝐺 𝑡 = 𝐺∞ +  𝐺𝑖e
−

𝐺𝑖
𝜂𝑔𝑖

𝛼𝑇𝑡
𝑁
𝑖=1   (3-6)-a 

E1

r

z
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𝐾 𝑡 = 𝐾∞ +  𝐾𝑖𝑒
−

𝐾𝑖
𝜂𝑘𝑖

𝛼𝑇𝑡𝑁
𝑖=1   (3-6)-b 

where 𝐺∞ is shear modulus at infinite time (t=∞); 𝐺𝑖 is shear modulus of the 𝑖𝑡ℎ spring 

element for 𝑖 = 1, 2…𝑁 ;  𝜂𝐺𝑖  is shear viscosity of the 𝑖𝑡ℎ dashpot element for 𝑖 =

1, 2…𝑁; 𝐾∞ is bulk modulus at infinite time (t=∞);  𝐾𝑖 is bulk modulus of the 𝑖𝑡ℎ spring 

element for 𝑖 = 1, 2…𝑁 ; 𝜂𝐾𝑖  is bulk viscosity of the 𝑖𝑡ℎ  dashpot element for 𝑖 =

1, 2…𝑁. 

Multiple damping models exist as discussed in section 1.1.2 with details. Among 

these models, the Rayleigh damping model is still the most popular one to date for 

simulating structural dynamic response. One of the advantages of this model is that the 

damping matrix can be directly estimated as a function of material mass and stiffness 

without performing sophisticated material testing (Chopra  2001, Cook et al. 2002): 

𝐂 = 𝛼𝐌 + 𝛽𝐊    (3-7) 

where 𝐂 is the damping matrix; 𝛼, 𝛽 are Rayleigh coefficients; 𝐌 is mass matrix, and 𝐊 is 

the stiffness matrix. 

The Rayleigh coefficient 𝛼 and 𝛽 can be determined as follows (Chopra  2001, Cook et 

al. 2002): 

𝛼 =
2𝜉𝜔1𝜔2

𝜔1+𝜔2
 (3-8)-a 

𝛽 =
2𝜉

𝜔1+𝜔2
 (3-8)-b 

where 𝜔1 and 𝜔2 are frequency interests of the range; 𝜉 is damping ratio. 

One main issue of this model is its strong dependence on the frequency (Puthanpurayil et 

al. 2011). However, the Rayleigh damping model has been often used to represent 

damping at small strain levels, whereas material models are primarily considered linear 

(Park and Hashash 2004). Without material characterization, the Rayleigh damping 

model was therefore adopted for modeling the base/subbase and soils in this research. 
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3.3.3 Stress-strain constitutive relations 

For the three-dimensioanl (3-D) model domain, the stress tensor 𝛔 is a sum of two terms 

─ deviatoric stress and hydrostatic stress ─ as  follows (Sadd 2005): 

𝛔 = 𝐒 +
1

3
𝐭𝐫 𝛔 𝐈 = 𝐒 + σh𝐈  (3-9) 

where 𝐒  is the deviatoric stress tensor; 𝐭𝐫 ∙  is the trace; 𝜎ℎ  is the hydrostatic stress 

scalar; and I is an identity matrix.  

Likewsie the strain tensor 𝜺 in the 3-D space domain is a sum of deviatoric strain and 

hydrostatic strain as follows (Sadd 2005): 

𝜺 = 𝐞 +
1

3
𝐭𝐫 𝜺 𝐈 = 𝐞 + 휀ℎ𝐈 =

1

2
 𝛁𝒖 + 𝛁𝒖𝐓 +

1

3
𝛁 ∙ 𝒖 (3-10) 

where 𝜺 is the total strain tensor (𝜺 =
1

2
 𝛁𝒖 + 𝛁𝒖𝐓 ), 𝐞 is the deviatoric strain tensor; and 

휀ℎ is the hydrostatic strain scalar (휀ℎ =
1

3
𝛁 ∙ 𝒖).  

The deviatoric strain tensor can be attained by subtracting the hydrostatic strain 

term from the total strain tensor as follows: 

𝐞 =
1

2
 𝛁𝒖 + 𝛁𝒖𝑻 −

𝐈

3
𝛁 ∙ 𝒖  (3-11) 

For the linear elastic materials, the stress-strain constitutive relationship in a 3-D 

space domain is expressed as follows (Sadd 2005): 

𝛔 = 2μ𝛆 + λtr 𝛆 I   (3-12) 

where μ is the 1st Lamé’s parameter, μ = 𝐺; G is shear modulus; λ is the 2nd Lamé’s 

parameter, λ = 𝐾 −
2

3
𝐺, and 𝐾 is bulk modulus. 

Substituting Equations (3-10) and (3-11) into Equation (3-12), the following 

stress-displacement relationship for the 3-D space domain of the elastic unbound 

materials are attained as follows: 

𝛔 = 2𝐺 (
1

2
 𝛁𝒖 + 𝛁𝒖𝑻 −

𝐈

3
𝛁 ∙ 𝒖) + 3𝐾 

𝐈

3
𝛁 ∙ 𝒖  (3-13) 
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In Equation (3-13) replace 𝐺  with 𝐺 𝑡 − 𝜏  and 𝑘  with 𝐾 𝑡 − 𝜏  and then 

integrate with the time domain of  0, 𝑡𝑑    to arrive at the the stress-displacement 

constitutive relationship for the viscoelastic material in a 3-D space domain as follows: 

𝝈 𝑡 = 2∫ 𝐺 𝑡 − 𝜏 
𝑡

0

𝜕(
1

2
[𝛁𝒖 𝜏 +𝛁𝒖 𝜏 𝑻]−

1

3
𝛁∙𝒖 𝜏 )

𝜕𝜏
𝑑𝜏 + 3𝐈 ∫ 𝐾 𝑡 − 𝜏 

𝜕(
1

3
𝛁∙𝒖 𝜏 )

𝜕𝜏
𝑑𝜏

𝑡

0
 (3-14) 

where the time-dependent stress tensor 𝝈 𝑡  is decomopsed to two components, 

deviatoric stress tensor 𝐒 t  and hydrostatic stress scalar 𝜎ℎ 𝑡 , and will be used for the 

numerical solution later: 

𝐒 𝑡 = 2∫ 𝐺 𝑡 − 𝜏 
t

0

∂(
1

2
[𝛁𝒖 𝜏 +𝛁𝒖 𝜏 𝑇]−

1

3
𝛁∙𝒖 𝜏 )

∂𝜏
𝑑𝜏 (3-15) 

𝜎ℎ 𝑡 = 3∫ 𝐾 𝑡 − 𝜏 
∂(

1

3
𝛁∙𝒖 𝜏 )

∂𝜏
𝑑𝜏

t

0
 (3-16) 

3.3.4 Weak form of state equation 

Based on the Galerkin method (Ern and Guermond 2004), applying a test function 

𝒑 𝑡  on both sides of the strong form (Equation (3-1)-a), and then integrating with the 

space and time domains will result in a weak form as follows:  

∫ ∫  𝛁 ∙ 𝝈 ∙ 𝒑 𝑡 𝑑𝛺𝑑𝑡
𝛺

𝑡𝑑
0

+ ∫ ∫ 𝑏 ∙ 𝒑 𝑡 𝑑𝛺𝑑𝑡 − ∫ ∫ 𝑐
∂𝒖 𝑡 

𝜕t
∙ 𝒑 𝑡 𝑑𝛺

𝛺

𝑡𝑑
0

𝑑𝑡 −
𝛺

𝑡𝑑
0

∫ ∫ 𝜌
𝜕2𝒖 𝑡 

𝜕𝑡2 ∙ 𝒑 𝑡 𝑑𝛺𝑑𝑡
𝛺

𝑡𝑑
0

= 0  ∈ 𝛺 ×  0, 𝑡𝑑  (3-17) 

According to Greeen’s function ( 𝛁 ∙ 𝝈 ∙ 𝒑 𝑡 𝑑𝛺 =   𝛔 ∙ 𝑛𝑑𝑠 ∙ 𝒑 𝑡 − 𝝈: 𝛁𝒑 𝑡 )  and 

the natural boundary condition  𝛔 ∙ 𝑛𝑑𝑠 = 𝑓 𝑡  , the weak form can be re-expressed as 

follows: 

∫ ∫ 𝝈 ∶ 𝛁𝒑 𝑡 𝑑𝛺𝑑𝑡
𝛺

𝑡𝑑
0

− ∫ ∫ 𝑏 ∙ 𝒑 𝒕 𝑑𝛺𝑑𝑡 + ∫ ∫ 𝑐
∂𝒖 𝑡 

𝜕t
∙ 𝒑 𝑡 𝑑𝛺

𝛺

𝑡𝑑
0

𝑑𝑡 +
𝛺

𝑡𝑑
0

∫ ∫ 𝜌
𝜕2𝒖 𝑡 

𝜕𝑡2 ∙ 𝒑 𝑡 𝑑𝛺𝑑𝑡
𝛺

𝑡𝑑
0

− ∫ ∫ 𝑓 𝑡 ∙ 𝒑 𝑡 𝑑𝑠𝑑𝑡
𝜕𝛺4

𝑡𝑑
0

= 0  ∈ 𝛺 ×  0, 𝑡𝑑  (3-18) 

Subsituting Equation (3-14) into Equation (3-17) the final weak form can be shown as: 
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∫ ∫ [2 ∫ 𝐺 𝑡 − 𝜏 
𝑡

0

𝜕(
1

2
[𝜵𝒖 𝑡 +𝜵𝒖 𝑡 𝑻]−

1

3
𝜵∙𝒖 𝑡 )

𝜕𝜏
𝑑𝜏 + 3𝐈 ∫ 𝐾 𝑡 −

𝑡

0𝛺

𝑡𝑑
0

𝜏 
𝜕(

1

3
𝜵∙𝒖 𝑡 )

𝜕𝜏
𝑑𝜏] : 𝜵𝒑 𝑡 𝑑𝛺𝑑𝑡 + [∫ ∫ 𝑐

𝜕𝒖 𝑡 

𝜕𝑡
∙ 𝒑 𝑡 𝑑𝛺

𝛺

𝑡𝑑
0

𝑑𝑡 + ∫ ∫ 𝜌
𝜕2𝒖 𝑡 

𝜕𝑡2 ∙
𝛺

𝑡𝑑
0

𝒑 𝑡 𝑑𝛺 𝑑𝑡] = [∫ ∫ 𝑓 𝑡 ∙ 𝒑 𝑡 𝑑𝑠
𝜕𝛺4

𝑡𝑑
0

𝑑𝑡 + ∫ ∫ 𝑏 ∙ 𝒑 𝑡 𝑑𝛺
𝛺

𝑡𝑑
0

𝑑𝑡] ∈ Ω ×  0, 𝑡𝑑  (3-19) 

3.4. Numerical Solution Method 

3.4.1 Finite element and shape function 

The eight-node isoparametric “ring” element was used for the axisymmetric FE 

model domain as shown in Figure 41. The ring element is a two-dimensional quadratic 

element physically, but it integrates for a 3-D space domain of the volume, and the hoop 

stress and hoop strain in the 𝜃 direction are also computed (see Figure 38). Four Gauss 

points within one element were set at the local coordinates of:  𝜉, 𝜓 =

(
1

√3
,

1

√3
) , (−

1

√3
,

1

√3
) , (

1

√3
, −

1

√3
) , (−

1

√3
, −

1

√3
) as seen in Figure Figure 41a. 

 

(a)  (b)  

Figure 41.  Eight-node isoparametric ring element: (a) on the global 𝒓 − 𝒛 plane 

and local 𝝍 − 𝝃 plane with undeformed and deformed shapes; (b) on the global 

𝒓 − 𝜽 plane. 

Displacement and test function are formulated as a function of those values at eight FE 

nodes for a single element via the shape function 𝜱 as: 

𝒖 = 𝜱𝑢 (3-20)-a 

𝒑 = 𝜱𝑝 (3-20)-b 

(1,-1)(-1,-1)

Gauss point
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where 𝑢, 𝑝 are displacement and test function vectors (dimension of 16, for eight FE 

nodes of an element and two directions for each node),𝑢𝑒 =  𝑢1
𝑟 , 𝑢1

𝑧, 𝑢2
𝑟 , 𝑢2

𝑧 ……𝑢8
𝑟 , 𝑢8

𝑧 𝑇, 

and 𝑝𝑒 =  𝑝1
𝑟 , 𝑝1

𝑧 , 𝑝2
𝑟 , 𝑝2

𝑧 ……𝑝8
𝑟 , 𝑝8

𝑧 𝑇;while  𝜱  is a 2-by-16 matrix of shape function. 

The two-times polynomial function is used, which can achieve fairly high 

accuracy for an eight-node quadratic element (Cooke et al. 2001). The shape function 

matrix for an element is expressed as: 

𝜱 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T
       

       

 
  
 

 (3-21) 

where  

𝜙1=−
1

4
 1−𝜉  1−𝜓  1+𝜉+𝜓 

𝜙2=−
1

4
 1+𝜉  1−𝜓  1−𝜉+𝜓 

𝜙3=−
1

4
 1+𝜉  1+𝜓  1−𝜉−𝜓  

𝜙4=−
1

4
 1−𝜉  1+𝜓  1+𝜉−𝜓 

𝜙5=
1

2
 1−𝜉  1−𝜓  1+𝜉            

𝜙6=
1

2
 1+𝜉  1−𝜓  1−𝜓           

𝜙7=
1

2
 1+𝜉  1+𝜓  1−𝜉            

𝜙8=
1

2
 1−𝜉  1+𝜓  1−𝜓           

  (3-22) 

3.4.2 FE formulation 

First, the displacement 𝒖 𝑡  and test function 𝒑 𝑡  are replaced by the column 

vectors of 𝑢 𝑡  and 𝑝 𝑡  at FE nodes for each time 𝑡. The stress and strain tensors 𝝈 and 

𝜺 (3-by-3 matrices) are manipulated to be 4-by-1 vectors with the non-zero terms: σ =

 𝜎𝑟𝑟 , 𝜎𝑧𝑧, 𝜎𝜃𝜃, 𝜎𝑟𝑧 
𝑇 and 휀 = ∇𝑢 =  휀𝑟𝑟 휀𝑧𝑧 휀𝜃𝜃 𝛾𝑟𝑧 𝑇. 

The strain-displacement operator ∇ (a 4-by-2 matrix) for the axisymmetric model 

in the FE formulation is expressed as follows: 

∇=

[
 
 
 
 
 
 

𝜕

𝜕𝑟
0

0
𝜕

𝜕𝑧
1

𝑟
0

𝜕

𝜕𝑧

𝜕

𝜕𝑟]
 
 
 
 
 
 

 (3-23) 
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The hydrostatic strain is also manipulated as a 4-by-1 vector with the fourth zero-

term added, and defined as:  

휀ℎ = ∇h𝑢 =
1

3
 휀𝑟𝑟+휀𝑧𝑧+휀𝜃𝜃 휀𝑟𝑟+휀𝑧𝑧+휀𝜃𝜃 휀𝑟𝑟+휀𝑧𝑧+휀𝜃𝜃 0 𝑇 (3-24) 

where 𝛻ℎ  is the hydrostatic strain-displacement operator (4-by-2 matrix) in the FE 

formulation, defined as follows: 

𝛻ℎ =
1

3

[
 
 
 
 
 

𝜕

𝜕𝑟
+

1

𝑟

𝜕

𝜕𝑧
𝜕

𝜕𝑟
+

1

𝑟

𝜕

𝜕𝑧
𝜕

𝜕𝑟
+

1

𝑟

𝜕

𝜕𝑧

0 0 ]
 
 
 
 
 

 (3-25) 

Now one starts the FE solution. Substitute Equation (3-20) into Equations (3-15) 

and (3-16) to form the FE formulations of the deviatoric and hydrostatic stress terms (in 

4-by-1 vector forms):  

S 𝑡 = 2∫ 𝐺 𝑡 − 𝜏 
𝑡

0

𝜕(∇𝜱𝑢 𝜏 −∇ℎ𝜱𝑢 𝜏 )

𝜕𝜏
𝑑𝜏 = 2∫  ∇𝜱 − ∇h𝜱 

t

0
𝐺 𝑡 − 𝜏 

∂𝑢 𝜏 

∂𝜏
𝑑𝜏 (3-26) 

𝜎ℎ 𝑡 = 3∫ 𝐾 𝑡 − 𝜏 
∂(∇h𝜱𝑢 𝜏 )

∂𝜏
𝑑𝜏

t

0
= 3∫ 𝐾 𝑡 − 𝜏 ∇h𝜱

∂(𝑢 𝜏 )

∂𝜏
𝑑𝜏

t

0
 (3-27) 

Substitute Equation (3-20) into Equation (3-19) to form the weak form of the 

governing state equation in the FE formulation: 

[∫ ∫ ∫ 2𝐺 𝑡 − 𝜏  ∇𝜱 − ∇ℎ𝜱 
𝜕𝑢 𝜏 

𝜕𝜏
𝑑𝜏 ∙  ∇𝜱 𝑝 𝑡 𝑑𝛺

𝑡

0𝛺
𝑑𝑡

𝑡𝑑
0

+ 3∫ 𝐾 𝑡 −
𝑡

0

𝜏 ∇ℎ𝜱
𝜕(𝑢 𝜏 )

𝜕𝜏
𝑑𝜏 ∙  ∇𝜱 𝑝 𝑡 𝑑𝛺𝑑𝑡] + [∫ ∫ 𝑐𝜱

∂𝑢 𝑡 

𝜕t
∙ 𝜱𝑝 𝑡 𝑑𝛺

𝛺

𝑡𝑑
0

𝑑𝑡 + ∫ ∫ 𝜌𝜱
𝜕2𝑢 𝜏 

𝜕𝑡2 ∙
𝛺

𝑡𝑑
0

𝜱𝑝 𝑡 𝑑𝛺 𝑑𝑡] = [∫ ∫ 𝑓 𝑡 ∙ 𝜱𝑝 𝑡 𝑑𝑠
𝜕𝛺4

𝑡𝑑
0

𝑑𝑡 + ∫ ∫ 𝑏 ∙ 𝜱𝑝 𝑡 𝑑𝛺
𝛺

𝑡𝑑
0

𝑑𝑡]  

 (3-28) 

It can be rearranged as follows: 

[2 ∫ ∫ ∫ 𝑩𝑻𝐺 𝑡 − 𝜏  𝑩 − 𝑩ℎ 
𝜕𝑢 𝜏 

𝜕𝜏
𝑑𝜏

𝑡

0
𝑝 𝑡 𝑑𝛺

𝛺
𝑑𝑡

𝑡𝑑
0

+ 3∫ ∫ ∫ 𝑩𝑻𝐾 𝑡 −
𝑡

0𝛺

𝑡𝑑
0

𝜏 𝑩𝒉
𝜕(𝑢 𝜏 )

𝜕𝜏
𝑑𝜏 𝑝 𝑡 𝑑𝛺𝑑𝑡] + [∫ ∫ 𝜱𝑻𝑐𝜱

∂𝑢 𝑡 

𝜕𝑡
𝑝 𝑡 𝑑𝛺

𝛺

𝑡𝑑
0

𝑑𝑡 +

∫ ∫ 𝜱𝑻𝜌𝜱
𝜕2𝑢 𝑡 

𝜕𝑡2 𝑝 𝑡 𝑑𝛺
𝛺

𝑡𝑑
0

𝑑𝑡] = [∫ ∫ 𝜱𝜞
𝑻𝑓 𝑡 𝑝 𝑡 𝑑𝑠

𝜕𝛺4

𝑡𝑑
0

𝑑𝑡 + ∫ ∫ 𝜱𝑻𝑏𝑝 𝑡 𝑑𝛺
𝛺

𝑡𝑑
0

𝑑𝑡](3-29) 
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where 𝑩 =
1

2
 ∇𝜱 + ∇𝜱𝑻 = ∇𝜱, is the strain-displacement matrix (a 4-by-16 matrix for 

one element); 𝑩𝒉 = ∇h𝜱, is defined as the hydrostatic strain-displacement matrix (a 4-

by-16 matrix for one element);  𝜱𝜞
𝑻  is the transposed shape function to be used for 

discretization of loading on the surface area. 

Equation (3-29) is subjected to ∀𝑝 𝑡 ∈ Ω ×  0, 𝑡𝑑 , and thus, the 𝑝 𝑡  can be 

dismissed on both sides of the equation ∀𝑡 ∈  0, 𝑡𝑑 . The following weak form of the 

governing state equation satisfies: 

[2 ∫ ∫ 𝑩𝑻𝐺 𝑡 − 𝜏  𝑩 − 𝑩𝒉 
𝜕𝑢 𝜏 

𝜕𝜏
𝑑𝜏

𝑡

0
𝑑𝛺

𝛺
+ 3∫ ∫ 𝑩𝑻𝐾 𝑡 − 𝜏 𝑩𝒉

𝜕(𝑢 𝜏 )

𝜕𝜏
𝑑𝜏

𝑡

0
𝑑𝛺

𝛺
] +

[(∫ 𝜱𝑻𝑐𝜱𝑑𝛺
𝛺

)
∂𝑢 𝑡 

𝜕t
+ (∫ 𝜱𝑻𝜌𝜱𝑑𝛺

𝛺
)

𝜕2𝑢 𝑡 

𝜕𝑡2 ] = [∫ 𝜱𝜞
𝑻𝑓 𝑡 𝑑𝑠

𝜕𝛺4
+ ∫ 𝜱𝑻𝑏𝑑𝛺

𝛺
]  ∀𝑡 ∈

 𝑜, 𝑡𝑑  (3-30) 

Here the relaxation modulus term is defined as follows: 

𝑹 𝑡 − 𝜏 = 2𝑩𝑻𝐺 𝑡 − 𝜏  𝑩 − 𝑩ℎ + 3𝑩𝑻𝐾 𝑡 − 𝜏 𝑩𝒉 (3-31) 

Thus, Equation (3-30) can be reduced to a simplified format as a final weak form 

of the governing state equation, which can be used for the numerical solution as 

discussed later: 

∫ ∫ 𝑹 𝑡 − 𝜏 
𝜕(𝑢 𝜏 )

𝜕𝜏
𝑑𝜏

𝑡

0
𝑑𝛺

𝛺
+ 𝐂

∂𝑢 𝑡 

𝜕t
+ 𝐌

𝜕2𝑢 𝑡 

𝜕𝑡2 = ℜ (3-32) 

where 𝐌 is mass matrix that 𝐌 = ∫ 𝜱𝑻𝜌𝜱dΩ
Ω

; 𝐂 = ∫ 𝜱𝑻𝑐𝜱dΩ
Ω

 is damping matrix to 

be determined from Equation (3-7); and ℜ is load vector that ℜ = ∫ 𝜱𝜞
𝑻𝑓 𝑡 𝑑𝑠

∂Ω4
+

∫ 𝜱𝑻𝑏dΩ
Ω

. 

3.4.3 Time discretization 

The integration with time 𝑡 ∈  0, 𝑡𝑑  is discretized to finite time steps as 

illustrated in Figure 42. The forward computation starts at zero and ends at 𝑡𝑑 with a total 

𝑛 time steps. The response calculated at the current time step 𝑘 is dependent on those 

determined at previous time steps for 𝑘 = 1,2,3……𝑘 − 1  to consider the “memory” 

effect of material viscoelasticity. 
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Different algorithms have been developed for the discretization of time steps, 

which include the forward Finite Difference Method (FDM), backward FDM, central 

FDM, the Houbolt method, the Wilson 𝜃 method, and the Newmark method, etc. The 

Houbolt method has the advantage that computation results are less dependent on time 

step length (Bathe 1996), and thus is chosen herein in order to save computation time. As 

results, a relatively great step length (i.e., 0.001 second) could achieve accurate results. 

The acceleration and velocity at the time step 𝑘 can be written as follows following the 

Houbolt method: 

�̈� 𝑘 =
2𝑢 𝑘+1 −5𝑢 𝑘 +4𝑢 𝑘−1 −𝑢 𝑘−2 

𝛥𝑡2  (3-33)-a 

�̇� 𝑘 =
11𝑢 𝑘+1 −18𝑢 𝑘 +9𝑢 𝑘−1 −2𝑢 𝑘−2 

6𝛥𝑡
  (3-33)-b 

where 𝑢 𝑖  is displacement at the 𝑖𝑡ℎ time step for 𝑖 = 𝑘 − 2, 𝑘 − 1, 𝑘 and 𝑘 + 1. 

The first order differential or gradient 
𝜕𝑢 𝜏 

𝜕𝜏
 term at the sub-time of 𝜏 ∈  0, 𝑡  in 

Equation (3-32) for the viscoelastic solution is discretized rather using the forward FDM 

method, since it could accurately estimate the gradient value in a more simplified form 

than the Houbolt method (see Figure 42): 

𝜕(𝑢 𝜏 )

𝜕𝜏
= 𝑙𝑖𝑚

𝛥𝜏→0

𝑢 𝜏+𝛥𝜏 −𝑢 𝜏 

𝛥𝜏
≈

𝑢 𝑗+1 −𝑢 𝑗 

𝑡𝑗+1−𝑡𝑗
   (3-34) 

where 𝑢 𝜏  is displacement at the sub-time 𝜏 ∈  𝑡𝑗 , 𝑡𝑗+1  for 𝑗 = 1,2…𝑘. 

With time discretization, substitute Equation (3-33) and Equation (3-34) into 

Equation (3-32), to form the time-discretized weak form, for an explicit solution at the 

current time step 𝑘: 

∫  ∫ 𝑅 𝑡 − 𝜏 𝑑𝜏
𝑡𝑗
tj−1

𝑘
𝑗=1 𝑑𝛺

𝛺

𝑢 𝑗+1 −𝑢 𝑗 

Δ𝑡
+ 𝐂

11𝑢 𝑘+1 −18𝑢 𝑘 + 9𝑢 𝑘−1 −2𝑢 𝑘−2 

6Δ𝑡
+

𝐌
2𝑢 𝑘+1 −5𝑢 𝑘 +4𝑢 𝑘−1 −𝑢 𝑘−2 

Δ𝑡2
= ℜ (3-35) 
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Figure 42. Time discretization. 

3.4.4 Viscoelastic stiffness matrix 

Here the “viscoelastic stiffness matrix” of AC material at the sub-time step 𝑗 =

1,2,3… . . 𝑘 is defined as follows for numerical computation use: 

𝑱 𝑗 = ∫ ∫ 𝑅 𝑡 − 𝜏 𝑑𝜏
𝑡𝑗
tj−1

𝑑Ω
ΩAC

 (3-36) 

The derivation of viscoelastic stiffness matrix is detailed in the following. 

Substitute Equation (3-31) into Equation (3-36) to re-express 𝑱 𝑗  as follows: 

𝑱 𝑗 = 2∫ ∫ 𝑩𝑻𝐺 𝑡 − 𝜏  𝑩 − 𝑩𝒉 𝑑𝜏
𝑡𝑗
𝑡𝑗−1

𝑑𝛺
ΩAC

+ 3∫ ∫ 𝑩𝑻𝐾 𝑡 − 𝜏 𝑩𝒉𝑑𝜏
𝑡𝑗
𝑡𝑗−1

𝑑𝛺
ΩAC

(3-37) 

where 𝑱 𝑗  consists of two components, named deviatoric viscoelastic stiffness matrix  

𝑱𝒅 𝑗  and hydrostatic viscoelastic stiffness matrix 𝑱𝒉 𝑗 , respectively:  

𝑱𝒅 𝑗 = 2∫ ∫ 𝑩𝑻𝐺 𝑡 − 𝜏  𝐵 − 𝑩𝒉 𝑑𝜏
𝑡𝑗
𝑡𝑗−1

dΩ
ΩAC

 (3-38) 

𝑱𝒉 𝑗 = 3∫ ∫ 𝑩𝑻𝐾 𝑡 − 𝜏 𝑩𝒉𝑑𝜏
𝑡𝑗
𝑡𝑗−1

𝑑Ω
ΩAC

 (3-39) 

Substitute the relaxation modulus forms of Equation (3-6) into Equation (3-38) to 

derive the deviatoric viscoelastic stiffness matrix as follows: 

𝑱𝒅 𝑗 = 2∫ ∫ 𝑩𝑇 [𝐺0 +  𝐺𝑖𝑒
−

𝐺𝑖
𝜂𝑖

 𝑡−𝜏 𝑁
𝑖 ]

𝑡𝑗
𝑡𝑗−1ΩAC

 𝑩 − 𝑩𝒉 𝑑𝜏𝑑𝛺 (3-40) 

After the integration of sub-time step  𝑡𝑗−1, 𝑡𝑗 ,  𝑱𝒅 𝑗  can be re-derived and re-

arranged as follows: 

……

Start

……

End
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𝑱𝒅 𝑗 = 2∫ ∫ 𝑩𝑻𝐺0
𝑡𝑗
𝑡𝑗−1

 𝑩 − 𝑩𝒉 𝑑𝑡
ΩAC

𝑑Ω + 2∫ ∫ 𝑩𝑻  𝜂𝐺𝑖
𝑁
𝑖

𝑡𝑗
𝑡𝑗−1

 𝑩 −
ΩAC

𝑩𝒉 𝑑𝑒
−

𝐺𝑖
𝜂𝐺𝑖

 𝑡−𝜏 
𝑑Ω = 2∫ 𝑩𝑻 [𝐺0Δ𝑡 +  𝜂𝐺𝑖 (𝑒

−
𝐺𝑖
𝜂𝐺𝑖

(𝑡−𝑡𝑗)
− 𝑒

−
𝐺𝑖
𝜂𝐺𝑖

(𝑡−𝑡𝑗−1)
)𝑁

𝑖 ]
ΩAC

 𝑩 −

𝑩𝒉 
𝑇𝑑Ω(3-41) 

Substitute Equation (3-6)-b into Equation (3-39) for deriving the hydrostatic 

viscoelastic stiffness matrix at the sub-time step 𝑗 as follows: 

𝑱𝒉 𝑗 = 3∫ ∫ 𝑩𝑻 [𝐾0 +  𝐾𝑖𝑒
−

𝐾𝑖
𝜂𝑖

 𝑡−𝜏 𝑁
𝑖 ]𝑩𝒉𝑑𝜏𝑑𝛺

𝑡𝑘
𝑡𝑘−1𝛺𝐴𝐶

 (3-42) 

𝑱𝒉 𝑗  can be re-derived and rearranged as follows after the integration of the sub-

time step  𝑡𝑗−1, 𝑡𝑗 : 

𝑱𝒉 𝑗 = 3∫ 𝑩𝑻𝐾0𝑩𝒉Δ𝑡
ΩAC

𝑑Ω + 3∫ 𝑩𝑻  𝜂𝐾𝑖 [𝑒
−

𝐾𝑖
𝜂𝐾𝑖

(𝑡−𝑡𝑗)
− 𝑒

−
𝐾𝑖
𝜂𝐾𝑖

(𝑡−𝑡𝑗−1)
]𝑁

𝑖 𝑩𝒉𝑑Ω
Ωac

=

3∫ 𝑩𝑻 [𝐾0Δ𝑡 +  𝜂𝐾𝑖 (𝑒
−

𝐾𝑖
𝜂𝐾𝑖

(𝑡−𝑡𝑗)
− 𝑒

−
𝐾𝑖
𝜂𝐾𝑖

(𝑡−𝑡𝑗−1)
)𝑁

𝑖 ]𝑩𝒉𝑑Ω
ΩAC

 (3-43) 

3.4.5 Formulation of global linear system 

Substitute the viscoelastic stiffness matrix of Equation (3-36) into Equation (3-35) 

to reach the final time-discretized weak form as follows: 

 𝑱 𝑗 𝑘
𝑗=1

𝑢 𝑗+1 −𝑢 𝑗 

Δ𝑡
+ 𝐂

11u k+1 −18𝑢 𝑘 + 9𝑢 𝑘−1 −2𝑢 𝑘−2 

62𝑡
+

𝐌
2𝑢 𝑘+1 −5𝑢 𝑘 +4𝑢 𝑘−1 −𝑢 𝑘−2 

Δ𝑡2 = ℜ (3-44) 

where 𝑢 𝑘  is displacement at the 𝑘𝑡ℎ time step for 𝑘 = 1,2,3…𝑛; 𝑢 𝑗  is displacement 

at the 𝑗𝑡ℎ sub-time step or time 𝑡𝑗 for 𝑗 = 1,2,3…𝑘. 

Equation (3-44) can then be rearranged as follows: 

[
𝑱 𝑘+1 

Δ𝑡
+

11𝐂

6𝑡
+

2𝐌

Δ𝑡2
] 𝑢 𝑘 + 1 = ℜ + 𝑱 𝑘 

u 𝑘 

Δ𝑡
−  𝑱 𝑘 

𝑢(𝑡𝑗+1)−𝑢(𝑡𝑗)

Δ𝑡
 𝑘−1

𝑗=1 +

𝐂
18𝑢 𝑘 −9𝑢 𝑘−1 +2𝑢 𝑘−2 

6Δ𝑡
+ 𝐌

5𝑢 𝑘 −4𝑢 𝑘−1 +𝑢 𝑘−2 

Δ𝑡2  (3-45) 

Thus, the linear system for the solution of dynamic viscoelastic displacements at 

the time step  𝑘 + 1  is formed: 

𝐊𝐝𝐯𝐞𝑢 𝑘 + 1 = ℜdve (3-46) 
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where 𝐊𝐝𝐯𝐞 is the dynamic viscoelastic stiffness matrix, a 2𝑛-by-2𝑛 matrix with 𝑛 as the 

total node number of the pavement structure (two directions for each node), and for the 

zones of unbound materials, the elements of 𝐊𝐝𝐯𝐞  are zeroed; ℜdve  is the dynamic 

viscoelastic load vector, a 2𝑛-by-1 vector. 

𝐊𝐝𝐯𝐞 =
𝑱 𝑘+1 

Δ𝑡
+

11𝐂

6𝑡
+

2𝐌

Δ𝑡2  (3-47) 

ℜdve = ℜ + 𝑱 𝑘 
𝑢 𝑘 

Δ𝑡
−  𝑱 𝑗 

𝑢 j+1 −𝑢 j 

Δ𝑡
 𝑘−1

𝑗=1 + 𝐂
18𝑢 𝑘 −9𝑢 𝑘−1 +2𝑢 𝑘−2 

6Δ𝑡
+

𝐌
5𝑢 𝑘 −4𝑢 𝑘−1 +𝑢 𝑘−2 

Δ𝑡2
 (3-48) 

Combining the formulations of dynamic viscoelastic and dynamic elastic with 

damping models, the global dynamic viscoelastic linear system of the entire pavement 

structure can be formed as follows: 

𝐊𝑢 𝑡 = ℜdve (3-49) 

where 𝐊 is the global stiffness matrix, which can be expressed as follows: 

𝐊 = 𝐊𝐄 + [
𝑱 𝑘+1 

Δ𝑡
+

𝟏𝟏𝐂

6Δ𝑡
+

2𝐌

Δ𝑡2] (3-50) 

𝐊𝐄 is the global elastic stiffness matrix of the elastic layers, a 2𝑛-by-2𝑛 matrix. 

The global elastic stiffness matrix is calculated by integration as 𝐊𝐄 = ∫ 𝑩𝑻𝐶𝑩𝑑Ω 

(Cook et al. 2001). 𝐶  is the fourth-order elasticity tensor of the axisymmetric model 

(Sadd 2005) as follows: 

  
 

1 0

1 0

1 01 1 2

0 0 0 0

 

.5 1 2

E
C

 

  

  







 
 


 
  
 

 

 (3-51) 

where 𝐸 is Young’s modulus; 𝑣 is Poisson’s ratio.  

3.4.6 Space discretization 

The volume differential of an element is calculated as follows: 

𝑑Ω = 2𝜋𝑟 𝜉𝑘, 𝜓𝑙 𝑑𝑟𝑑𝑧 = 2𝜋𝑟 𝜉𝑘, 𝜓𝑙 𝐽Ω 𝜉𝑘, 𝜓𝑙  (3-52) 
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where 𝑟 𝜉𝑘, 𝜓𝑙  is global radial coordinate of the Gauss point at the local coordinate of 

 𝜉𝑘, 𝜓𝑙  for that element, and 𝑘 = 1,2 and 𝑙 = 1,2 for two Gauss points at each direction;  

𝐽Ω 𝜉𝑘, 𝜓𝑙  is determinant of Jacob’s function, 𝐽Ω ξk,𝜓𝑘 = det [

𝜕𝑟

𝜕𝜉

𝜕𝑧

𝜕𝜉

𝜕𝑟

𝜕𝜓

𝜕𝑧

𝜕𝜓

] (equivalent to the 

area of that element). 

The elastic stiffness matrix of an element, 𝐤𝐄
𝒆  can be discretized to four Gauss 

points as follows: 

𝐊𝐄
𝐞 =   𝑤𝑚𝑤𝑙

𝑛𝐺
𝑙=1 𝑩𝑻𝑛𝐺

𝑘=1  𝜉𝑚, 𝜓𝑙 𝐶𝑩 𝜉𝑚, 𝜓𝑙 2𝜋𝑟 𝜉𝑚, 𝜓𝑙 𝐽Ω 𝜉𝑚, 𝜓𝑙  (3-53) 

where 𝑩 is the strain-displacement matrix, a 4-by-16 matrix for one element; 𝐶 is the 

fourth order elasticity tensor; 𝑤𝑚 is a weight function at the radial direction and is set as 

1 in this model; 𝑤𝑙 is a weight function at the depth direction and is set as 1; 𝑛𝐺  is the 

number of Gauss points at each direction of 𝑟 and 𝑧, 𝑛𝐺 = 2. 

The deviatoric viscoelastic stiffness matrix 𝑱𝒅
𝒆 𝑘 , a 16-by-16 matrix for one 

element, can be discretized to the four Gauss points as follows: 

𝑱𝒅
𝒆 𝑗 =   𝑤𝒌𝑤𝑙

𝑛𝐺
𝑙=1 𝛥𝑡2𝜋𝑟 𝜉𝑘, 𝜓𝑙 𝐽𝛺 𝜉𝑘, 𝜓𝑙 𝑩

𝑻 𝜉𝑘, 𝜓𝑙 𝐺0 𝑩 𝜉𝑘, 𝜓𝑙 −
𝑛𝐺
𝑘=1

𝑩ℎ 𝜉𝑘, 𝜓𝑙  +    𝑤𝒌𝑤𝑙2𝜋𝑟 𝜉𝑘, 𝜓𝑙 𝐽𝛺 𝜉𝑘, 𝜓𝑙 𝑩 𝜉𝑘, 𝜓𝑙 
𝑻𝜂𝐺𝑖 [𝑒

−
G

𝜂𝐺𝑖
(𝑡−𝑡𝑗)

−N
𝑖

𝑛𝐺
𝒍=1

𝑛𝐺
𝑘=1

𝑒
−

Gi
𝜂𝐺𝑖

(𝑡−𝑡𝑗−1)
]  𝑩 𝜉𝑘, 𝜓𝑙 − 𝑩ℎ 𝜉𝑘, 𝜓𝑙   (3-54) 

Likewise, the hydrastatic viscoelastic stiffness matrix  𝑱𝒉
𝒆 𝑘 , a 16-by-16 

matrix for one element, can be discretized to the four Gauss points as follows: 

𝑱𝒉
𝒆 𝑗 =   𝑤𝒌𝑤𝑙

𝑛𝐺
𝑙=1 𝛥𝑡𝑩𝑇 𝜉𝑘, 𝜓𝑙 𝐾0𝑩𝒉 𝜉𝑘, 𝜓𝑙 2𝜋𝑟 𝜉𝑘, 𝜓𝑙 𝐽𝛺 𝜉𝑘, 𝜓𝑙 

𝑛𝐺
𝑘=1 +

   𝑤𝒌𝑤𝑙𝑩
𝑻 𝜉𝑘, 𝜓𝑙 𝜂𝐾𝑖

N
𝑖 [𝑒

−
Ki
ηKi

(𝑡−tj)
−

𝑛𝐺
𝑙=1

𝑛𝐺
𝑘=1

𝑒
−

Ki
ηKi

(𝑡−𝑡𝑗−1)
]𝑩𝒉 𝜉𝑘, 𝜓𝑙 2𝜋𝑟 𝜉𝑘, 𝜓𝑙 𝐽𝛺 𝜉𝑘, 𝜓𝑙  (3-55) 

The mass matrix of each element can be discretized to the four Gauss points as 

follows: 
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𝐌𝐞 =   𝑤𝑘𝑤𝑙𝜱
𝑻 𝜉𝑘, 𝜓𝑙 𝜌 𝜉𝑘, 𝜓𝑙 𝜱 𝜉𝑘, 𝜓𝑙 2𝜋𝑟 𝜉𝑘, 𝜓𝑙 𝐽Ω 𝜉𝑘, 𝜓𝑙 

𝑛𝐺
𝑙=1

𝑛𝐺
𝑘=1  (3-56) 

The damping matrix of each element can be discretized to the four Gauss points 

following the Rayleigh damping model as follows: 

𝐂𝐞 = α  𝑤𝑘𝑤𝑙2𝜋𝑟 𝜉𝑘, 𝜓𝑙 𝜱
𝑻 𝜉𝑘, 𝜓𝑙 𝜌 𝜉𝑘, 𝜓𝑙 𝜱 𝜉𝑘, 𝜓𝑙 𝐽Ω 𝜉𝑘, 𝜓𝑙 

𝑛𝐺
𝑙=1

𝑛𝐺
𝑘=1 +

β  𝑤𝑚𝑤𝑙
𝑛𝐺
𝑙=1 2𝜋𝑟 𝜉𝑚, 𝜓𝑙 𝑩

𝑻𝑛𝐺
𝑘=1  𝜉𝑚, 𝜓𝑙 𝐶𝑩 𝜉𝑚, 𝜓𝑙 𝐽Ω 𝜉𝑚, 𝜓𝑙  (3-57) 

The load vector ℜ for one element can be discretized to the two Gauss points for 

external loading (only at the depth direction) and the four Gauss points for the body force 

term as follows: 

ℜe =  𝑤𝑘𝜱𝜞
𝑻 𝜉𝑘 𝑓 𝜉𝑘 𝐽∂Ω4

 𝜉𝑘 
𝑛𝐺
𝑘=1 +

  2𝜋𝑤𝑘𝑤𝑙𝚽
𝑻 𝜉𝑘, , 𝜓𝑙 𝑏 𝜉𝑘, 𝜓𝑙 𝑟 𝜉𝑘, 𝜓𝑙 𝐽Ω 𝜉𝑘, 𝜓𝑙 

𝑛𝐺
𝑙=𝑘

𝑛𝐺
𝑘=1  (3-58) 

where 𝐽∂Ω4
 𝜉𝑘  is the determinant of the Jacobin function for the loading area ∂Ω4.  

Finally, the global stiffness matrix and load vector are formed by assembling that of each 

element (just add up all values at the same node number). 

3.4.7 Solution of global linear system 

The stiffness matrix 𝐊 ≻ 0 (positive definite), and thus 𝐊 can be banded in order 

to reduce the storage space and to improve computation speed. To minimize the 

bandwidth of the a stiffness matrix, the nodes are assigned in an incremental order along 

the radial direction (from left to right) and then the depth direction (from top to bottom) 

as shown in Figure 43a. This method results in the smallest bandwidth. Figure 43b 

presents the FE mesh produced by the ANSYS-14.5 software, where the node number 

seems randomly assigned. 

There are total 𝑛𝑟 rows of elements and total 𝑛 FE nodes. The band matrix has a 

significantly reduced dimension size of 𝑛𝑏-by-2𝑛 (𝑛𝑏 is the band width). The bandwidth 

is dependent on the element numbers in both directions as follows: 

𝑛𝑏 = 𝑛𝑑 𝑛𝑚 + 1  (3-59) 

where 𝑛𝑑  is degrees of freedom, 𝑛𝑑 = 2; 𝑛𝑚  is the maximum node number difference 

within one element that 𝑛𝑚 = 𝑛1 + 𝑛2 + 2; 𝑛1 is the total node number of one “row” 
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along  the 𝑟 direction on the top or bottom of elements (see Figure 43); 𝑛2 is the total 

node number of one “row” along the 𝑟 direction at the center of elements (see Figure 43). 

For example, a model with total of 1,583 nodes has a full stiffness-matrix size of 3,166-

by-3,166, and banded-matrix size of 310-by-3,166.  

a)  

b)  

Figure 43. Finite element diagram: a) Method in this research (arrows show the 

element and node number assignment direction as from left to right and from 

top to bottom); b) FE mesh produced by ANSYS-14.5 software. 
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The factorization method with banded matrix is used for solving the global linear 

system. The banded stiffness matrix, 𝐊𝐝𝐯𝐞 , is decomposed to the upper and lower 

triangular matrices following the factorization method as follows (see Figure 44): 

𝐤 = 𝐋𝐔 (3-60) 

where 𝐔 is the upper triangular matrix; and 𝐋 is the lower triangular matrix. 

 

Figure 44. Linear system in the matrix-vector format. 

Then the global linear system can be rearranged as follows: 

𝐋𝐔𝑢 = ℜdve (3-61) 

Following the factorization method (Hardy et al. 1980), the linear system is 

solved following two steps in sequence for finding first the y vector and then the u 

displacement vector: 

𝐋y = ℜdve  (3-62)-a 

𝐔𝑢 = y  (3-62)-b 

As the 𝐊 matrix is symmetric positive definite, the 𝐔 matrix is equivalent to the 

conjugate transpose matrix of 𝐋 as 𝐋∗. 

Given the initial deflection as zero at time 𝑡0  and the loading function, the 

displacement vector 𝑢 𝑡  at each time step can be determined by one solution of this 

linear system. The 𝑛 total time steps require total 𝑛 solutions of the linear system. 

At time zero, there are no external force and associated acceleration and displacement. 

Therefore, Equation (3-49) is subjected to the initial conditions of: 

Factorization

Bandwidth
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𝑓 0 = 0 (3-63)-a 

𝑢 0 = 0 (3-63)-b 

�̈� 0 = 0 (3-63)-c 

Calculating 𝑢 1  requires 𝑢 −2  and 𝑢 −1  as inputs which are unknown 

according to Equation (3-49) using the Houbolt method. Therefore, the central FDM 

method is proposed here to solve these unknown inputs. According to Central FDM and 

the initial conditions, the following equations satisfy to calculate �̇� 0 , 𝑢 −1  and 𝑢 1 : 

0 =
1

Δt2
 𝑢 −1 + 𝑢 1    (3-64) 

�̇� 0 =
1

20𝑡
 𝑢 1 − 𝑢 −1    (3-65) 

[ 𝐊𝐄 − 𝐊𝐯𝐞 +
𝑱 1 

Δ𝑡
+

𝐌

Δt2
+

𝐂

2Δ𝑡
] 𝑢 1 = ℜ 0 − (

𝐌

Δt2
−

𝐂

2Δ𝑡
) 𝑢 −1  (3-66) 

Since the second time step (𝑘 = 2 , the Houbolt method is resumed for solving 

𝑢 𝑘  at 𝑘 = 2, 3, 4… . . 𝑛 following Equation (3-49).  

After calculations of displacements of all nodes, the strain and then stress 

responses can be solved following Equation (3-10) and then Equation (3-13). 

3.4.8 Computer code development 

A computer code written in the FORTRAN computer language was developed to 

implement the numerical computation procedure detailed above. Figure 45 shows the 

flow chart for the computer coding. 

The inputs contain the material model parameters, the loading time history, and 

pavement structure geometry. The model geometry is meshed accordingly with model 

and element size defined by users following Figure 43. The elastic stiffness matrices of 

𝐊𝐄 and 𝐊𝐯𝐞 are formed. Consequently, the FE computation starts at the initial time step 

𝑘 = 1 (𝑢 0 = 0 is given). At each time step the viscoelastic stiffness matrix and the 

global stiffness matrix are formed. Then boundary conditions are applied, and the load 

vector is built. The global linear system is formed and the response is solved. This 

computation continues until the time step reaches the last one. 
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Figure 45. Flowchart of the developed computer coding for  

the dynamic viscoelastic FE solution. 

3.5. Experimental Design 

The model and computer method discussed above is implemented to a flexible 

pavement structure on soil foundation. A field plate loading test using FWD was 

designed and performed in the State of Florida for  new construction projects. The fresh 

pavement was selected in order to avoid the influence of material damages such as 

fatigue cracking. The test was performed shortly after finishing compaction at the 

pavement temperature of 104oF (40oC). The state report provided the layer thicknesses. 

The pavement structure consists of an AC layer (11.18 cm), a granular base (17.78 cm), 

and a subbase course (30.48 cm) on the subgrade. A peak loading value of 9,000 pounds 

(40,034 N) was set as half of a standard single axle loading of a vehicle (AASHTO 1993, 

ARA 2004). The circular loading plate has a radius of 5.9 inches (15 cm). Seven 

geophones were used to collect deflection pulses at  distances of 0, 8, 12, 18, 24, 36, and 

60 inches (0, 20.32, 30.48, 45.72, 60.96, 91.44, and 152.40 cm). Figure 46a plots the 

Inputs: geometry, 
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measured FWD loading and deflection time histories, which start from zero and rise to 

peaks, and then drop to zero. As seen in Figure 46a, the loading-time path has some 

“noises” at the beginning stage and a rest time after the major loading curve, but its major 

curve is fairly smooth. 

The time-domain loading 𝑓 𝑡  is converted to frequency domain ( 𝐹 𝑠 =

∫ 𝑓 𝑡 𝑒−𝑠𝑡𝑑𝑡
∞

0
). Figure 46 (b) plots the Fast Fourier Transformed (FFT) results in 

decibels (𝑑𝐵 = 20 log10
|𝐹 𝑠 |

|𝐹0|
, |𝐹0| 𝑖𝑠 the peak |𝐹 𝑠 |) . Results indicate that the vast 

majority of energy occurs before a frequency of 78.3 Hz as seen from the small-scaled 

|𝐹 𝑠 |  vs. frequency curve, and at frequencies greater than 200 Hz, the energy is 

relatively negligible. No obvious pitches of frequency domain were observed, which may 

be explained by the following: 1) for this input signal of loading pulse, an un-symmetric 

output pulse can be expected (Ayre 1976), and 2) insufficient resonances are found, 

which relate to the layer depth, material stiffness, input signal, and damping property 

(Oppenheim et al. 1975). A softer material with higher damping suppresses resonance 

when waves rebound back at the interface. For example, the first deflection peak occurs 

0.0056 seconds behind the peak loading with a resonance frequency estimated at 178.57 

Hz (1/0.0056). However, at that frequency there is insufficient energy to “excite” the 

resonance (see Figure 46b). 
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(a)  

(b)  

Figure 46. (a) Time-domain FWD loading and deflection histories; (b) FFT 

transformed frequency-domain spectrum of loading pulse. 

3.6. Results and Analysis 

3.6.1 Model validations 

3.6.1.1  Pavement structure and material properties 

The same pavement structure for the FWD testing is used for model validation. 

The top AC layer is considered viscoelastic. The MEPDG software (ARA 2004) Level 1 

design proposed the stress-dependent elastic moduli model ─  3 − 𝑘  model ─  for 
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unbound materials, but this model has not yet been validated for user application in the 

software. Other research has considered the stress dependency of unbound material 

moduli (Kim 2007). According to common pavement analyses and design methods 

(Huang 2003, AASHTO 1993, ARA 2004), the unbound materials could be considered 

linear elastic for response modeling. In this research, the stress dependency of moduli for 

a short-period of loading time is not taken into account. Rather, two improvements are 

proposed: 1) the frequency-dependent viscous damping is added (in contrast to the 

dynamic viscoelastic analytical model developed by Lee 2013), and its effect will be 

discussed later; 2) the space dependency of moduli at depth (caused by moisture 

variation) is incorporated. The depth-dependent elastic moduli and damping are assigned 

to the base, subbase, and soil, and named 𝐸𝑏 𝑧 , 𝐸𝑠𝑏 𝑧 , 𝐸𝑠𝑜𝑖𝑙 𝑧  and 𝑐𝑏 , 𝑐𝑠𝑏 , 𝑐𝑠𝑜𝑖𝑙 , 

respectively (see Figure 40). 

Figure 47 presents the model parameters including the given layer thickness, 

material density and Young’s moduli, which are default values falling within the regular 

range of the national Long-Term Pavement Performance (LTPP) database (FHWA 2012). 

The relaxation modulus of AC material is attained from a laboratory test on one 

SuperPave mixture. Note that these properties may not represent the true values, but they 

do not jeopardize the theoretical validation as discussed in the following. 

 

Figure 47. Pavement structure and material properties – trial values. 
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The Poisson’s ratio of AC material can be temperature-dependent. Lee (1976) 

attained the Poisson’s ratios of 0.24 at 10 oC and 0.46 at 42 oC based on laboratory tests 

on a few samples. Kassem et al. (2013) showed that AC’s Poisson’s ratio increases with 

time under the direct tensile testing,  with slight changes only at the beginning and then 

remains constant under  compressive relaxation testing. Within a very short period of 

loading time, temperature variation is negligible, and therefore, constant Poisson’s ratios 

of 0.35, 0.40, 0.45, and 0.45 are used for AC, base, subbase, and soil, respectively 

(Huang 2003). This assumption has also been made by many other pavement modeling 

(Al-Qadi et al. 2009).  

The shear and bulk relaxation moduli are not measured at the laboratory and 

actually no protocol is available to specify this testing on AC material. Therefore, the 

shear and bulk relaxation moduli could be determined as follows (Christensen 1982): 

𝐺 𝑠 =
E s 

2(1+𝑣 𝑠 )
  (3-67)-a 

K s =
E s 

3 1−2𝑣 𝑠  
 (3-67)-b 

where 𝑣 𝑠  is Poisson’s ratio and 𝑠 is the Laplace transform term. As 𝑣 𝑠  is regarded 

constant in this model, 𝐺 𝑡  and 𝐾 𝑡  could be calculated using the same equation by 

replacing 𝑠 term with time term 𝑡 (Christensen 1982). 

3.6.1.2  FE model 

To determine the finite model and element sizes, first the FE linear elastic 

simulation results were compared with those calculated by the well-known multilayer 

analysis program ─ ELSYM5 (Kopperman et al. 1986), until achieving almost identical 

results at multiple locations with multiple modulus and geometry inputs. Consequently, a 

sensitivity analysis was conducted: 1) the simulated deflections showed minimum 

changes when increasing the element and model size for the dynamic viscoelastic 

modeling; and 2) the stress wave propagation did not “hit” the boundaries at the end of 

the loading time (e.g., the compressive wave propagated 52.5 meters in the AC material 

for a loading period of 0.05 seconds at an estimated speed of 1,050 m/s [V = √𝐸/𝜌 ]).  
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The sensitivity analysis of element size was also performed by using variable 

element size. As a result, an element size of 5.58 cm and node distance of 2.79 cm for an 

8-node element at the loading zone and geophone positions resulted in almost identical 

deflection results as that of an element size of 1 cm and node distance of 5 mm. 

Therefore, a node distance of 2.79 cm was used for those critical regions. Graded meshes 

are used, and at far fields the mesh size is coarse. The model has a dimension size of 

168.64 m (radius) × 147.71 m (depth). It consists of a total eight-node element number of 

492 and node number of 1,583 with a half-bandwidth of 255. Existing research studies 

typically used a smaller model size for pavement structure (e.g., 3.05 m by 4.57 m as 

used by Howard and Warren (2009) for higher computing efficiency purpose). However, 

this study illustrates that a larger model size is essential for greater numerical accuracy in 

modeling the dynamic problem in order to avoid the “rebound” of stress waves at 

boundaries. Komvopoulos and Yang’s (2006) research also indicated that it is necessary 

to avoid the effects of dilatational waves after they have been detected from the 

artificially meshed boundaries.  

A verification of time step length was also conducted. A time step length of 0.001 

second (total 59 time steps) was reduced to 0.00005 second (total 1180 time steps, the 

smallest time step length from most FWD test data). Results indicate that the peak 

deflection was reduced 2.3% for the first sensor location on the surface of pavement 

while deflections at other sensor locations are almost identical, but computation time was 

increased 19 times.  To consider the computation efficiency, a time step length of 0.001 

second was adopted, which will also be used in the inverse computation module as 

discussed in Chapter 4.    

3.6.1.3  Validation results 

Figure 48 presents simulated peak deflections at those seven geophones (various 

distances) as compared to the ELSYSM 5 analytical solutions for the linear elastic model. 

The results show an almost identical match. Various Young’s modulus values, geometry 

sizes, and loading magnitudes were used and all achieved very close matches to the 
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ELSYM 5 calculation results. The initial model and element sizes were  determined from 

this validation. 

 

Figure 48. FE simulated peak deflections vs. ELSYM 5  

calculations of a static elastic model. 

Consequently, the commercial ANSYS software Version 14.5 (2013) was used 

for validation, employing exactly the same model as that of the developed FE method 

(i.e., exactly the same mesh and model sizes, node number and coordinate, loading 

pattern and time steps, material models, and boundary conditions). Figure 49 plots the 

coding of modeled results and ANSYS simulations together for the dynamic elastic, static 

viscoelastic, and dynamic viscoelastic models at  FE node distances of 0.00, 22.11 cm, 

43.42 cm, 57.63 cm, 78.95 cm, 100.26 cm, and 121.58 cm, respectively. From these 

graphs, it is difficult to visually identify any obvious differences. However, some minor 

gaps exist at or before the peaks (i.e., gaps at the peak of distance zero of the dynamic 

viscoelastic model, see Figure 49c). The minor difference may be explained by the 

different algorithms used for each specific aspect. For example, the space discretization 

of Gaussian point locations used in ANSYS are unknown to users, and ANSYS uses the 

Newmark algorithm for time step discretization rather than the Houbolt method adopted 

in this research. 
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(a) dynamic elastic model 

 

 

 

(b) static viscoelastic model 

Figure 49. Coding modeled results vs. ANSYS simulations. 

(Note: “Coding di” is the coding modeled deflection at the 𝒊𝒕𝒉 distance, “ANSYS di” is 

ANSYS simulated defection at the 𝒊𝒕𝒉  distance) 
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(c) dynamic viscoelastic model 

Figure 49. Coding modeled results vs. ANSYS simulations (continued) 

3.6.2 Simulations of FWD testing 

3.6.2.1  Deflections 

Since material parameters such as elastic moduli are unknown, different material 

model values within reasonable ranges based on the LTPP database (FHWA 2012) were 

tried in order to achieve simulation results closer to the measurements. Damping ratios of 

pavement materials are usually less than 10% as indicated by Seed (1984). According to 

the literature review (by Seed et al. 1984; Zhong et al. 2002), it  is reasonable to assume 

damping ratio values between 0 and 10% for regular pavement materials. Using a 

frequency range determined from the FWD loading spectrum analysis and following 

Equation (3-7), the Rayleigh damping model parameters were determined. Table 9 

presents the final material model parameters. Some other researchers reported Rayleigh 

damping coefficients.  Ju and Ni (2007) used the Rayleigh coefficients of 𝛽 ∈  3.17 ×

10−4, 1.54 × 10−3  for soil. It was found that simulation results are very sensitive to 𝛽 

but not senstitive to 𝛼, as the determinant of stiffness matrix (for  𝛽𝐊) is far larger than 

that of the mass matrix (for α𝐌). 

Simulation results indicate that only the dynamic viscoelastic model considering 

damping could achieve very close match for measurements at all seven geophones.  
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Table 9. Material model parameters 

(a) AC - generalized Maxwell model parameters 

 

 

(b) Unbound materials model parameters 

 

 

(c) Density and Poisson’s ratio 

 

Figure 50 presents simulated results of deflections for the static elastic model vs. 

static viscoelastic model: both nullify the dynamic inertia and Rayleigh damping. Figure 

51 presents dynamic elastic model with damping vs. dynamic elastic model without 

damping: both nullify all dashpots and leave only the elastic springs in the generalized 

Maxwell model (see Figure 40).  

Figure 50 clearly shows that the static elastic model has significantly lower 

deflection values than the static viscoelastic model, primarily at the loading position. 

However, one should note that for the static elastic model all dashpots are annulled and 

the material elastic modulus equals to the sum of those for springs. Results also show that 

compared to the dynamic elastic model (Figure 50b vs. Figure 51), the static viscoelastic 

model produces higher deflections, which also remain positive during the “rest” time 

after the major loading curve. This clearly indicates the contribution of material’s creep 

behavior of viscosity. However, at far fields (e.g., 60 inches or 152.4 cm) their 

differences are minor because deflections at that distance are vastly dependent on the 

moduli of unbound layers such as soil foundation (Huang 2003). Figure 51 indicates that 

without considering damping, a time offset exists when compared to results where 

damping is factored in. Compared to the static elastic model, the dynamic elastic model’s 

deflection value is slightly lower due to lost kinetic energy (Figure 50a vs. Figure 51). 

Moduli (MPa) 2.56E+03 1.76E+03 3.04E+03 3.63E+03 3.28E+03 6.19E-06 4.14E-03

h (MPa.s) 1.53E+00 1.62E-05 2.27E-09 1.91E-01 3.06E-03 7.68E-10 1.91E-08

Layer Base Subbase Soil

Moduli (MPa) 300 230 175

Rayleigh damping  (1/s) 3.20E-04 6.19E-04 1.52E-03

Rayleigh damping  (s) 5.14 7.02 6.03

Layer HMA Base Subbase Soil

Density (kg/m3) 2400 1900 1800 1600

Poisson's ratio 0.35 0.35 0.35 0.40
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(a) Static elastic 

 

(b) static viscoelastic modeled deflections 

Figure 50. Static modeled deflections. 

Note: Simu-0′′: simulated deflection at 0-inch distance, and so on; Mea–0′′: FWD measured 

deflection at 0-inch distance, and so on. 
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Figure 51. Dynamic elastic modeled deflections with and without damping. 

 

Figure 52 presents the dynamic viscoelastic simulations as compared to the FWD 

measured deflections without and with considering damping, respectively. Again, without 

considering the damping effect of materials, it clearly shows that simulations always have 

a time offset (i.e., 0.003 seconds behind for the peaking deflection) and gapping as 

compared to measurements (see Figure 52a). Ayadi et al. (2012) also confirmed the 

damping effect on each pavement layer. Figure 52b indicates a fairly good match of 

simulation results to measurements, indicating that both structural dynamic response and 

material viscoelastic behavior contribute to material deformations. 
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(a)  

(b)  

Figure 52. Dynamic viscoelastic model simulation results vs. measurements: (a) 

without considering damping; (b) with consideration of damping. 

Figure 53 presents the contour of displacement at the depth or 𝑧 direction at 0.023 

seconds. Results indicate that the largest deflection (negative to the 𝑧 direction) always 

appears on the surface under loading.  A small “up” deflection (positive to the 𝑧 direction 

and opposite to the vertical loading direction) appears on or close to the surface area and 
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quickly propagates to far fields with time indicating a small resonance of waves 

rebounded from the layer interfaces.  

 
Figure 53. Vertical displacement (𝒕 = 𝟎. 𝟎𝟐𝟑 second). 

3.6.2.2  Velocity and acceleration 

Figure 54 and Figure 55 plot the velocity and acceleration contours at the last time 

step (𝑡 = 0.059 𝑠), respectively. Figure 56 plots the vertical velocity and acceleration on 

the top of AC at a distance of 0 and 15 meters. Results show that the velocity (absolute 

value) follows the tangent of the displacement pattern. First it increases and then 

decreases to zero at the peak-displacement time, and then repeats this pattern in a 

reversed direction. Meanwhile the acceleration follows the tangent of velocity:, The peak 

velocity at 0.013 seconds corresponds to the zero acceleration. Apparently at a further 

distance (e.g., 15 m, Figure 56) the acceleration and velocity drop significantly when 

displacement magnitude starts becoming “flatter.” 
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Figure 54. Velocity (m/s) of depth direction 

at the end of time period (0.059 second). 

 

 

Figure 55. Acceleration (m/s2) of depth direction 

at the end of time period (0.059 second)
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Figure 56. Simulations of velocity and acceleration on the top of AC of depth 

direction for distances of 0 m and 1.5 m from loading. 

3.6.2.3  First principal stress 

In pavement design, the tensile stress of the AC layer and associated cracking is 

one of the major concerns. Figure 57 presents the contour of the first principal stress of 

the AC layer at time length. It shows that the maximum tensile stress mostly appears at 

the bottom of the AC layer at the loading center during the major loading time, and 

vanishes after the loading is dropped when stress waves are propagated to far fields.  
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Figure 57. First principal stress of AC layer at time length (MPa). 

3.6.3 Simulations of vehicle loading 

3.6.3.1  Deflections 

FWD loading pattern could be very similar to or somehow different from the 

vehicle loading pattern depending on the pavement structure and vehicles. Huang (2003) 

suggested simulating the vehicle loading pulse using a sin-based function(i. e. , 𝑓 𝑡 =

𝐴0 sin2 (
𝜋𝑡

𝑡𝑑
)). Figure 58 presents one vehicle loading pulse emulated from Huhtala’s 

measurement (1986), and simulated deflection responses as applied to the same pavement 

structure with the same material properties presented above. The vehicle loading has 
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amplitude of 40 kN, half of a standard vehicle single axle loading (80 kN), the same as 

that of the FWD loading. As compared to the FWD loading pulse, it produces higher 

peak deflections (i.e., 15.6% higher at the loading position), but shorter time offsets of 

deflections to loading. This phenomenon could be explained by the loading patterns since 

FWD loading takes about 0.01 second to rise from zero to the peak value, while vehicle 

loading takes about 0.02 seconds. The fast ramping of loading consumes more kinetic 

energy due to dynamic inertia and damping effect, while a slower ramping of loading or a 

longer loading time produces higher deflections due to the AC material’s creep behavior. 

As with the FWD modeling results, deflections primarily at the loading position remain 

positive when loading is dropping to zero, and will slowly drop to zero if given sufficient 

“rest” time.  

 

Figure 58. Vehicle loading pulse and simulated dynamic viscoelastic deflections. 

3.6.3.2  Stress and strain 

Figure 59 presents the radial stress of pavement structure profile under the loading 

center at a few time steps. Results clearly show that the vast majority of radial stresses 

occur within the AC layer primarily due to its much higher material modulus than those 

of other layers. Max values appear at the bottom and on the top of the AC layer from 
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opposite directions, and they change from tension/compression (bottom/top) to 

compression/tension (bottom/top) with time increase.  

 

Figure 59. Radial stress profile of pavement structure (dynamic viscoelastic 

model). 

Figure 60 and Figure 61 plot the radial stress and radial strain of the AC layer at 

time length for the dynamic elastic model and dynamic viscoelastic model, respectively. 

As the radial stress is dependent on both the radial strain and hoop strain (i.e., 𝜎𝑟𝑟 =

𝐸

 1+𝑣  1−2𝑣 
  1 − 𝑣 휀𝑟𝑟 + 𝑣휀𝑧𝑧 + 𝑣휀𝜃𝜃 ), it is not surprising to see that the direction of 

radial stress could be opposite to that of the radial stain, such as those observed at the 

middle position of the AC layer. Results show that the viscoelastic property has 

significantly changed the stress-strain patterns: 1) radial stress reaches the peak and then 

drops to zero, and reaches the second peak on the opposite direction, and then returns 

back to zero again (see Figure 61); 2) the first peak radial stress appears in advance of 

the peak loading, which may be explained by the stress relaxation, and 3) the dynamic 

viscoelastic model produces obviously lower peak radial stress but higher peak radial 
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strain than that of the dynamic elastic model, due to its stress relaxation and creep 

deformation, respectively. This has clearly shown the influence of material viscoelasticity 

on structural responses. 

 

 

 

Figure 60. Simulated radial stress and strain of AC layer  

using dynamic elastic model. 

Note: positive values mean tension, and negative values mean compression. 
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Figure 61. Simulated radial stress and strain of AC layer using dynamic 

viscoelastic model. 

Note: positive values mean tension, and negative values mean compression. 

3.6.4 Temperature and moduli profiles 

Using the same pavement structure, material properties, and loading input 

presented in Section 3.6.2 as the control model, a temperature profile with 𝑇 ∈

 25.5 oC, 55.5 oC  according to the LTPP database (FHWA 2012) is applied to the AC 

layer (see Figure 62). The majority of pavement depths have lower temperature values 
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than the uniform control temperature of 40oC. The WLF model (parameters attained from 

Xu 2007) induces a variable temperature-time superposition shift factor. Simulation 

results indicate that deflections primarily at the positions under loading or nearby have 

decreased (e.g., the peak deflection at the loading position decreases 11.85%). This is 

obviously due to AC material’s temperature-dependency of viscoelasticity. 

(a)  

(b)  

Figure 62. (a) Temperature profile of AC layer and 𝜶𝑻; and (b) simulated 

deflections vs. control ones at the reference temperature of 40 oC. 
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Figure 63 presents a case study for variable moduli profile of soil foundation. The 

soil moduli may increase with depth (Nazarian et al. 1987; Aouad 1993) due to the 

moisture variation at depth or bedrock. As estimated from the Spectrum Analysis of 

Surface Waves (SASW) measured wave velocities at depth (Aouad 1993), the modulus 

of soil in this case is varying from 200 MPa (the control uniform value) to 1,500 MPa 

with a depth of 147.12 meters (see Figure 63a). As results, simulated deflections at all 

seven geophone distances were reduced (see Figure 63b), since the support becomes 

stronger at deeper depth. Note that the contribution of moduli increase has also been 

“compensated” by the influence of deeper depth, thus a lesser reduction of deflections as 

compared to that of moduli values is observed. 
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(a)  

(b)  

Figure 63. (a) Moduli profile of soil foundation and (b) simulated deflections. 

3.7. Summary 

This chapter developed a time-domain finite element (FE) model and Galerkin-
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numerical modeling. It was implemented to a flexible pavement structure on soil 

foundation under both the FWD and vehicle loadings. The AC layer was modeled by the 

generalized Maxwell model, and unbound materials (base, subbase, and soil) were 

considered damped and elastic.  

 As compared to most existing computer methods for the (layered) half-space, the 

developed approach represents a more comprehensive model, accounting for the 

coupled dynamic loading, damping effects, and material’s viscoelastic behavior over 

time. The model was implemented into a flexible pavement structure on soil 

foundation. Results indicated that a dynamic viscoelastic model that includes 

damping could better simulate the measurements than the dynamic elastic or dynamic 

viscoelastic model, which does not include damping, which has often been the 

practice up until now. Dynamic inertia primarily contributes to the time offset, and 

the damping further adds up this effect and “reduces” deflection value. The material 

viscoelastic behavior can also significantly contribute to the deflection magnitudes 

and shapes or patterns. 

 A combined Houbolt central and forward finite differences method is proposed for 

time discretization of velocity and acceleration which reduces the time-step length 

while achieving numerical accuracy. The global layered stiffness matrix considering 

coupled dynamic and damping, and viscoelastic properties was formulated in this 

research and stored in a banded format for solving the global linear system with the 

factorization method, which saves storage space and computer speed. 

 The developed model and computer method is also able to simulate two critical 

environment-associated conditions: 1) the temperature profile at depth; and 2) the 

space dependency of moduli profile at depth. Results have shown that these variable 

properties could significantly affect structural response values. 

 Displacement, velocity and acceleration, and stress and strain are computed and 

analyzed, which fosters understanding of a layered infrastructure and its structural 

dynamic response and material viscoelastic deformation. 
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 The developed model and computer method could serve as a potential means to 

advance structural analysis and design methodology. For example, it may be used as a 

computation module to help improve the MEPDG method for pavement structure 

analysis, which calculates responses based on a static elastic approach to approximate 

the dynamic viscoelastic problem.  

 It could also be used for other laminate and disk structures at different time and 

length scales. 

The developed dynamic viscoelastic solution is used as a module for the inverse 

computation, and it is a primary topic of discussion in the next chapter. 
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Chapter 4: A Lagrangian Optimization Method for Inverting 

Dynamic Moduli of Multilayer Systems 

This chapter developed a Lagrangian optimization and numerical solution method 

to invert the material dynamic moduli of multilayers for application to flexible pavements 

under FWD testing. The developed forward response model in Chapter 3 serves as one 

module of the inverse computation. The Lagrangian function was formed as a cost 

function (objective function plus regularization term) constrained by the partial 

differential equation (PDE) governing state equation. The generalized Maxwell model 

simulates the time-dependent material viscoelasticity under a dynamic loading resource.  

The first- and second-order state, adjoint, and decision equations of the Larangian were 

formed to compute the response (see Chapter 3), test function, gradient vector, and 

Hessian matrix. Given gradient and Hessian inputs, the Armijo rule was modified for 

finding a stable step length for inverting material model parameters. A time-domain finite 

element method was developed for numerical solutions of PDEs, and unique 

mathematical derivations were formulated to solve this specific dynamic viscoelastic 

inverse problem for the multilayer systems. A computer code written in FORTRAN 

language was developed to implement the entire numerical computation. Compared to 

most existing “two-stage” inverse approaches used for multilayer systems, the proposed 

and now developed method successfully integrated inverse computation and forward 

modeling into one Lagrangian function: 1) it improves numerical accuracy and 

computation speed by deriving both the precise gradient and Hessian; and 2) it can more 

reliably invert a larger scale of model parameters. The numerical method was 

implemented to a multilayer pavement structure under the falling weight deflectometer 

test. With measurement inputs of loading pulse and deflection time history, the 

frequency-dependent dynamic moduli master curve and material viscoelastic properties 

were inverted and validated. The method was implemented to a few field tests including 

one site with FWD measurements conducted 10 times for the four seasons throughout the 

same year. 
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4.1. Background 

Dynamic modulus 𝐸∗ is the ratio of stress over strain under vibratory conditions 

(i.e., 𝐸∗ =
𝜎0 sin 𝑡𝜔+𝛿 

0sin  𝑡𝜔 
). 𝐸∗  is a characterization of material viscoelastic (VE) property, 

which can decompose into the storage modulus (the real or elastic part) plus the loss 

modulus (the imaginary or viscous part) as 𝐸∗ = 𝐸′ + 𝑖𝐸′′. For viscoelastic materials, 

stress and deformation rate are dependent on time and temperature (Xu and Solaimanian 

2009; Motamed et al. 2013). Multilayer systems displaying the VE property exist widely 

in the contexts of engineering and human life at different length scales, including  human 

tissues such as the skin (Cobb 2004) and arterial walls (Gu et al. 2013), polymer-based 

high-molecular structures (Tronto et al. 2013), memory foams, multilayer circuits, 

multilayer pavements with polymer-modified asphalt concrete (AC) surface, and airplane 

multilayer bodies with polymer-coated surfaces as shown in Figure 64. 

 The material properties, including the elastic modulus and VE property, play a 

crucial role in a subject’s deformation, response, performance, and risks. For example, 

VE plaques cause blockages of arterial lumen (Hossain et al. 2012). Infrastructure 

pavements with AC typically exhibit rutting or permanent deformation and fatigue 

cracking under repeated loading, which are dependent on the material’s VE property (Xu 

and Solaimanian 2009). Pavement rutting is one of the main causes of hydroplaning-

associated traffic accidents (see Figure 64-e). In order to safely perform material and 

structural design of multilayer systems, a complete understanding of dynamic VE 

properties is important. 
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Figure 64.  Viscoelastic multiplayer systems at variable length scale: a) human 

layered tissues (Cobb 2004); b) a heart’s artery wall (Xiong et al. 2013); c) a 

memory foam mattress (http://thememory-foam-mattress.blogspot.com/); d) a 

layered polymer molecular structure (Tronto et al. 2013); e) polymer-modified-

asphalt pavement (Courtesy of M. M. Minderhoud); f) an airplane with polymer 

modified multilayer coating was landing on a multilayer airport runway 

(Courtesy of Tanner Wugange). 

To monitor health conditions, nondestructive tests have been employed to 

measure responses by applying a loading source. Inverse computations using the response 

data collected from such tests can predict or estimate material properties—including 

dynamic moduli and VE properties—without directly measuring them. More often the 
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inverse computations generally involve two steps: 1) simulating structural responses 

(e.g., deflections on the surface) under a load to emulate nondestructive tests; and then 2) 

minimizing the error function of the differences between response simulations and 

measurements—or observations—using a mathematical optimization algorithm to 

estimate appropriate material properties. Here, this is referred to as a two-stage approach. 

Inverse computations of multilayer systems have been studied in engineering and 

science including biology and the polymer materials sciences. Catheline et al. (2004) 

used the wave-propagation-based experimental data with an inverse method to estimate 

the VE properties of a membrane. Brigham et al. (2007) used the SMARS approach (a 

combination of a classical random search algorithm plus the neural networks-based 

method) to invert the VE material properties of solids immersed in fluids. Lei and Szeri 

(2007) and Zhao et al. (2009) developed a two-stage approach to invert the material 

hyperelastic and VE properties of biomaterials, where the forward responses were 

computed using ABAQUS and the inverse computation was based on the Levenberg-

Marquardt algorithm embedded in MATLAB. Araújo et al. (2009) used a gradient-based 

optimization technique with the Gauss-Newton algorithm (presented by Herskovits et al. 

2004) and a minimizing error function (based on the difference between experimental 

vibration data and finite element (FE) modeling results) to invert the linear VE properties 

of a sandwiched structure. Sims et al. (2010) used an inverse FE method to determine the 

VE properties of subcutaneous fat by combining ANSYS (for forward computations) and 

MATLAB (for the inversion of the nonlinear least square fit rooting algorithm). Giavazzi 

et al. (2010) inverted the VE skin parameters with the FSQP (Feasible Sequential 

Quadratic Programming) algorithm coupling FE modeling for response computations 

(method presented by Yuung-Hwa et al. 2006). Araújo et al. (2010) studied a constrained 

minimization problem, in which gradient-based optimization techniques were employed 

to invert the five-parameter-based VE fractional derivative models.  

Within the multilayer pavements on roads, parking lots, and airports, researchers 

have widely studied inverse computation—or backcalculation—of material properties. 

Often, plate-load tests—such as the falling weight deflectometer (FWD) testing, in which 
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a load is dropped onto the subject’s surface—are performed to collect data of loading 

pulse and deflections. Most of these backcalculation studies have focused on the elastic 

moduli of the layers, which is an essential parameter for structural analysis and design. 

Various optimization algorithms have been developed or implemented, including the 

Newton-Raphson method (Harichandran et al. 1993), the system identification method 

(Wang and Lytton 1993), the Kalman filter method (Choi and Pestana 2006), the non-

linear least square method (Sivaneswaran et al. 1991), the probabilistic method, (Hadidi 

and Gucunski 2010), and neural network model (Meier et al. 1997), among others. Some 

backcalculation programs have accounted for the dynamic loading effects of 

backcalculating materials’ elastic moduli (Foinquinos et al.  1993, Wang 1993, Uzan 

1994, Kang 1998), and some have accounted for the damping property (Fernando and Liu 

2002, Loizos and Scarps 2005, Broutin and Theillout 2010). Magnuson et al. (1991), 

Magnuson and Lytton (1993), and Uzan (1994) backcalculated creep compliance of AC 

material using a mathematical power function with three model parameters. Liang and 

Zhu (1998) used the dynamic analysis to backcalculate the fatigue parameters of the AC 

material. Scarpas and Blaauwendraad (2002) backcalculated the complex modulus of AC 

materials using the four-parameter Burgers model. More recently, Kutay et al. (2011) 

backcalculated the master curve of the “dynamic modulus” (the absolute values only) 

using the five-parameter mathematical sigmoidal function model and a linear elastic 

analysis to approximate dynamic loading effects. Levenberg (2012) used the min-max 

optimum approach for inverse computation of a two-parameter VE model—elastic 

modulus combined with viscosity for the pavement structure. Varma et al. (2013) 

presented a genetic algorithm for inverse analysis of VE properties of asphalt mixture. 

Base on this study’s thorough literature review, the research problems are 

summarized as follows: 

i) Typically, a two-stage approach—response forward modeling and then inverse 

computation—is used for inverse computation of multilayer material properties, 

including those discussed above—the FE modeling and MATLAB inverse combined 

method developed by Zhao et al. (2009) to invert the VE properties of biomaterials. In 
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inverse computation, the gradient of an objective function with respect to inverse 

parameters is often calculated. Xu and Prozzi (2014) developed a two-stage approach to 

invert the temperature-dependent moduli of multilayers, where the responses were 

modeled using the forward FE method, and then the gradient was estimated using the 

modeled responses for each material model parameter, as follows: 

gi =
𝜕𝑢

𝜕𝐸𝑖
=

𝑢 𝐸𝑖+Δ𝐸𝑖 −𝑢 𝐸𝑖 

Δ𝐸𝑖
 (4-1) 

where 𝑢  and �̂�  are simulated and observed deflection responses, and Δ𝐸𝑖  is modulus 

variation. In this method, the tangent 𝑔𝑖 is approximated based on the modeled response 

results, which may reduce the numerical accuracy. Meanwhile, for each material model 

parameter—such as the elastic moduli of each layer material—one forward response 

model is required, which is more computationally expensive than the method developed 

in this research. 

ii) For the inverse computation of layered structures such as pavements, the 

simplified material model is often used, including examples discussed earlier—e.g., the 

mathematical power law and sigmoidal functions and the four-parameter Burgers model. 

The mathematical power law model and sigmoidal function may offer a good fit to the 

experimental data, but it lacks sufficient details to describe the physical behaviors. The 

Burgers model—in a relatively simple format with limited model parameters—is unable 

to represent the full creep compliance and dynamic modulus master curve at a wider 

range of reduced frequency or temperature (Xu and Solaimanian 2009). 

iii) The model conditions might be simplified. For example, although modeling of 

the layered structure under applied loading is a dynamic viscoelastic problem, either the 

material nonlinear behavior or the dynamic loading effects are approximated using the 

linear elastic approaches for some examples discussed above (e.g., Kutay et al. 2011). 

iv) The VE property of a material exhibits more complex time-dependent 

behavior than typical functions with small selections of model parameters (e.g. the four-

parameter Burgers model). Therefore, an advanced physical model is needed to describe 
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the material behavior. With an increased number of model parameters, the process of 

computation becomes more numerically expensive when using conventional two-stage 

approaches. Additionally, the two-stage approach may result in reduced accuracy, as 

numerical approximation is often used to compute the gradient (Xu and Prozzi 2014).  

Accordingly, the objective of this research was to develop a Lagrangian-based 

optimization method and numerical solution to invert the dynamic moduli of materials 

within a layered system. The developed method integrated the forward modeling and 

inverse computation into one Lagrangian function, and mathematical formulations of 

gradient and Hessian on the PDEs were derived. The generalized Maxwell model in 

Prony series was employed to model material VE behavior, and other material 

components are considered elastic with damping. The developed model and numerical 

solution method was implemented to highway pavement structures under the falling 

weight deflectomerter (FWD) tests. The developed method is expected to invert the 

material’s dynamic moduli and VE property with relatively larger model parameters, 

thereby improving numerical accuracy and computation speed compared to the other 

methods discussed above. 

4.2. Inverse Problem and Lagrangian Function 

4.2.1 Model Domain 

The model domain of the multilayer system for the forward and inverse problem 

is presented in Figure 65. On one surface area a loading source was applied for time 𝑡 ∈

 0, 𝑡𝑑  where 𝑡𝑑 is the loading period, and responses in time were measured at variable 

distances (e.g., displacements).  

The VE property was modeled by the generalized Maxwell model made up of a 

parallel spring and dashpot series (see Figure 65), where the stress of the dashpot is 

dependent on strain rate (𝜎 𝑡 = 𝜂
𝜕

𝜕𝑡
). The relaxation modulus and that of the shear and 

bulk ones for VE materials in Prony series are expressed as follows (Christensen 1982): 
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𝐸 𝑡 = 𝐸∞ +  𝐸𝑖𝑒
− 

𝐸𝑖
𝜂𝑖

 𝑡𝑁
𝑖=1   (4-2)-a 

𝐺 𝑡 = 𝐺∞ +  𝐺𝑖𝑒
− 

𝐺𝑖
𝜂𝐺𝑖

 𝑡𝑁
𝑖=1   (4-2)-b 

𝐾 𝑡 = 𝐾∞ +  𝐾𝑖𝑒
− 

𝐾𝑖
𝜂𝐾𝑖

 𝑡𝑁
𝑖=1   (4-2)-c 

where 𝐸∞ 𝐺∞ and  𝐾∞ are Young’s, shear and bulk modulus at the infinite time of 𝑡 =

∞; 𝐸𝑖 , 𝐺𝑖  and 𝐾𝑖  are the Young’s, shear modulus and bulk modulus of the 𝑖𝑡ℎ  spring 

element for 𝑖 = 1, 2…𝑁 where 𝑁 is the total term number of spring-dashpot series; 𝜂𝑖 , 

𝜂𝐺𝑖 and  𝐾𝐺𝑖 are viscosity, shear and bulk viscosity of the 𝑖𝑡ℎ dashpot element. 

For other materials in this multilayer system under dynamic loading, their 

material properties are modeled by the damped elastic model. 

 

Figure 65. Multilayer system forward and inverse computation. 

According to the stress equilibrium, the strong form of the governing state 

equation of the model domain can be formed as follows: 

𝛁 ∙ 𝝈 + 𝑏 = 𝑐
𝜕𝒖 𝑡 

𝜕𝑡
+ 𝜌 

𝜕2𝒖 𝑡 

𝜕𝑡2        𝑢 𝑡 ∈ 𝐻1  Ω in ℝ3 × 𝑡 ∈  0, 𝑡𝑑   (4-3) 

where 𝑏 is the body force, 𝑐 is damping of structural system and materials, 𝜌 is material 

density,𝝈 is stress tensor, 𝒖 𝑡  is displacement response at time 𝑡; 𝐻1 is a Sobolev space, 

Ω ∈ ℝ3 is a three-dimensional (3-D) space domain and 𝑡 ∈  0, 𝑡𝑑  is the time domain.  

E1

Forward modeling

Inverse computation

Output: responses

Input: material model

Output: material model Input: response measurement
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According to the material viscoelasticity, the stress tensile 𝝈 𝑡  can be expressed 

as follows (Christensen 1982): 

𝝈 𝑡 = 2∫ 𝐺 𝑡 − 𝜏 
𝑡

0

𝜕𝐞 𝜏 

𝜕𝜏
𝑑𝜏 + 3𝐈 ∫ 𝐾 𝑡 − 𝜏 

𝜕 ℎ 𝜏 

𝜕𝜏
𝑑𝜏

𝑡

0
 (4-4) 

where 𝒆 𝜏  is the deviatoric strain tensor; 휀ℎ 𝜏  is the hydrostatic strain scalar at time 

vairable 𝜏; and 𝐈 is the identity matrix; 𝐺 𝑡 − 𝜏  is the shear relaxation modulus; and 

𝐾 𝑡 − 𝜏  is the bulk relaxation modulus. The governing state equation is subjected to the 

natural boundary condition or “force” equilibrium at the loading surface as follows (see 

Figure 65): 

𝛔 ∙ 𝑛𝑑𝑠 = 𝑓 𝑡  on 𝜕Ω4 ×  0, 𝑡𝑑  (4-5) 

The essential boundary conditions satisfy the following (see Figure 65): 

𝑢 = ûi t  on ∂Ωi ×  0, 𝑡𝑑   (4-6) 

where ûi t  is the displacement on the 𝑖𝑡ℎ boundary area ∂Ωi. 

The response outputs can be defined as: 

𝑢 = û5 t  on ∂Ω5 ×  0, 𝑡𝑑  (4-7) 

where û t  is the displacement response outputs in the area of ∂Ω5. 

Following the Galerkin method, by applying a test function on both sides of the 

governing state equation and then integrating with time and space domains, the weak 

form of the governing state equation can be formed as follows:  

∫ ∫ 𝝈:𝜵𝒑 𝑡 𝑑𝛺𝑑𝑡
𝛺

𝑡𝑑
0

+ [∫ ∫ 𝑐
𝜕𝒖 𝑡 

𝜕𝑡
∙ 𝒑 𝑡 𝑑𝛺

𝛺

𝑡𝑑
0

𝑑𝑡 + ∫ ∫ 𝜌
𝜕2𝒖 𝑡 

𝜕𝑡2 ∙ 𝒑 𝑡 𝑑𝛺
𝛺

𝑡𝑑
0

𝑑𝑡] −

[∫ ∫ 𝑓 𝑡 ∙ 𝒑 𝑡 𝑑𝑠
𝜕𝛺4

𝑡𝑑
0

𝑑𝑡 + ∫ ∫ 𝑏 ∙ 𝒑 𝑡 𝑑𝛺
𝛺

𝑡𝑑
0

𝑑𝑡] = 0 (4-8) 

4.2.2 Inverse Problem 

The inverse problem is formed as follows: 1) the given information includes the 

observed or measured loading source and response pulses in time; 2) the unknown 

information for inversion are the material model parameters of each layer of the 
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multilayer system; and 3) given the initial estimated material properties as seeds, the 

inverse computation—an iterative procedure—is conducted to estimate material 

properties including the VE properties and the elastic moduli of each layer (see Figure 

65). 

4.2.3 Cost Function 

Inverse computation is an iteration procedure used to determine the optimal 

material model parameters, applied at each iteration step in order to find the material 

properties that minimize the differences between response observations and the modeling 

results. The objective function (a scalar) is defined as follows: 

𝑓 𝑚 ≔
1

2
∫ ∫  𝒖 − 𝒖𝒐𝒃𝒔 

2𝑑s𝑑𝑡
∂Ω5

𝑡𝑑

0
     𝒖 ∈ 𝐻1  Ω ×  0, 𝑡𝑑   (4-9) 

where 𝒖 is a simulated response (e.g., displacement); 𝒖𝒐𝒃𝒔 is observation at the surface 

area of ∂Ω5 (see Figure 65); 𝐻1 is a Sobolev space of functions vanishing on 𝜕Ω with 

square integrable derivatives. Multiple solutions may exist (Xu and Prozzi 2014); thus, 

here a regularization term is proposed to penalize or limit the range of material 

properties. The cost function is formed as a sum of the objective function plus the 

regularization term: 

𝐽 𝑚 ≔
1

2
∫ ∫  𝒖 − 𝒖𝒐𝒃𝒔 

2𝑑s𝑑𝑡
∂Ω5

𝑡𝑑

0
+

𝛾

2
∫  1 − 𝜒 𝑚1

∗ ,𝑚2
∗ 

𝑚   𝑚 − 𝑚∗ 2𝑑Ω
Ω

     𝒖,𝑚 ∈ 𝐻1 Ω ×

 0, 𝑡𝑑   (4-10) 

where γ is a regularization parameter; 𝑚 is the material model parameter function; 𝑚∗ is 

the material model parameter range for penalization, and 𝑚∗ =  𝑚1
∗ , 𝑚2

∗ , which is 

estimated based on engineering practice (see Table 6 presented in Chapter 2); 𝜒 𝑚1
∗ ,𝑚2

∗  
𝑚 is 

an identity function defined as follows: 

 𝜒 𝑚1
∗ ,𝑚2

∗  
𝑚 = {

1     ∀𝑚 ∈  𝑚1
∗ ,𝑚2

∗ 
0              otherwise

 (4-11) 
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4.2.4 Lagrangian Function 

The cost function is subjected to the governing state equation as a PDE constraint. 

According to the Lagrangian theory, the Lagrangian function can be formed as a sum of 

the cost function and governing state equation weak form, which is used to find the 

stationary point for inverse computing material model parameter 𝑚: 

ℒ 𝒖, 𝒑,𝑚 ≔
1

2
∫ ∫  𝒖 − 𝒖𝒐𝒃𝒔 

2𝑑Ω𝑑𝑡
∂Ω5

𝑡𝑑

0
+

𝛾

2
∫  1 − 𝜒 𝑚1

∗ ,𝑚2
∗ 

𝑚   𝑚 − 𝑚∗ 2𝑑Ω
Ω

 +

[∫ ∫ 𝝈:𝜵𝒑 𝑡 𝑑𝛺𝑑𝑡
𝛺

𝑡𝑑

0
+ (∫ ∫ 𝑐

𝜕𝒖 𝑡 

𝜕𝑡
∙ 𝒑 𝑡 𝑑𝛺

𝛺

𝑡𝑑

0
𝑑𝑡 + ∫ ∫ 𝜌

𝜕2𝒖 𝑡 

𝜕𝑡2 ∙ 𝒑 𝑡 𝑑𝛺
𝛺

𝑡𝑑

0
𝑑𝑡) −

(∫ ∫ 𝑓 𝑡 ∙ 𝒑 𝑡 𝑑𝑠
𝜕𝛺4

𝑡𝑑

0
𝑑𝑡 + ∫ ∫ 𝑏 ∙ 𝒑 𝑡 𝑑𝛺

𝛺

𝑡𝑑

0
𝑑𝑡)]     ∈ Ω ×  0, 𝑡𝑑   (4-12) 

where 𝒖 (displacement), 𝑝 (test function), and 𝑚 are three “independent” variables of the 

Lagrangian function.  𝒑 may also be called as Lagrangian multiplier. 

4.3. Inverse Computation Method 

4.3.1 Optimality Conditions 

To find material parameter 𝑚  using the Lagrangian function, the optimality 

conditions shall be satisfied for the inverse procedure. Here, both the first order necessary 

and second order sufficient conditions were imposed for optimality (Nocedal and Wright 

2006): 

First order necessary condition (also called Karush–Kuhn–Tucker [KKT] 

condition) states: Suppose that 𝑚  is a local minimizer and ℒ  is continuously 

differentiable in an open neighborhood of 𝑚 then, the gradient is zero (∇ℒ m = 0). 

Second order sufficient condition states: Suppose that the Hessian matrix (∇2ℒ ) is 

continuous in an open neighborhood of 𝑚 ; if ∇ℒ 𝑚 = 0  and  ∇2ℒ m  is positive 

definite, then 𝑚 is a strict local minimizer of ℒ. 

The first order necessary condition finds the stationary point, including those local 

stationary points where the tangents are ideally zero. The second order sufficient 

condition is to assure that the stationary point is the strict local minimum. 
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4.3.2 Inverse procedures 

4.3.2.1  Framework 

The inverse computation is an iterative procedure in which the material model 

parameters are updated at each iteration step as an evolving procedure until reaching an 

optimal point at which the numerical error (the difference between response observations 

and modeling results) is small enough.  

Figure 66 shows the flow chart of the numerical inverse computation procedures. 

The inputs include the model geometry, loading sources, and initial guessed material 

model seeds. Responses (e.g., deflections) are computed given the initial conditions. The 

root mean squared value (𝑅𝑀𝑆) of deflection difference between measurements and 

simulations is calculated.as follows: 

𝑅𝑀𝑆 =  √  (
𝑢𝑖𝑗−𝑢𝑜𝑏𝑠,𝑖𝑗

𝑢𝑜𝑏𝑠,𝑖𝑗
)𝐿

𝑗=1
𝑁
𝑖=1

2

/𝐿𝑁 (4-13) 

where 𝑢𝑖𝑗 is the response values at the 𝑖𝑡ℎ time step (total 𝑁) and 𝑗𝑡ℎ location (total 𝐿). 

If the 𝑅𝑀𝑆 is lower than the allowable error limit (e.g., 5%) then the iteration 

stops and outputs the material model parameters as the inverse computed ones; otherwise, 

the iteration continues. The gradient vector and then the Hessian matrix are computed. 

Given gradient and Hessian values, the inverse search direction and step length are 

determined as will be discussed later. Then the material model parameter values are 

updated as follows: 

mk = mk−1 + 𝛼𝑘m k (4-14) 

where mk−1, mk  is the material model parameter computed at the  𝑘 − 1 𝑡ℎ  and 𝑘𝑡ℎ 

iteration step and the initial value m0 could be any estimated value (e.g., 𝑚∗); m kis the 

search direction at the 𝑘𝑡ℎ iteration step; and 𝑎𝑘 is the step length at the 𝑘𝑡ℎ iteration step 

as used to adjust the search direction value. 
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Given the updated material model parameters at the 𝑘𝑡ℎ iteration step, the 𝑅𝑀𝑆 

can be recomputed, and the iteration continues until 𝑅𝑀𝑆 is lower than the permitted 

error when the updated material model parameters are considered acceptable inverse 

results. 

 

Figure 66. Flow chart for the numerical inverse computation 

 

Figure 67 demonstrates an example of an objective function 𝑓 𝑥, 𝑦 = 𝑥2 − 𝑦2 

∀𝑥 ∈  −10,10 × 𝑦 ∈  −10,10  used to find the optimal point (target). The minimum 

values of the objective function occur at the boundaries, but they are not the inverting 

targets. Searching begins at a lower boundary, involving six iteration steps until arriving 

at the “target.” At each iteration step of this inverse computation, three key elements are 

computed including the gradient 𝒈 (to satisfy the first order necessary condition), search 

direction 𝑚  and step length 𝛼𝑘. The Hessian matrix 𝐇, the second order differential of 

Lagrangian with respect to material model parameter 𝑚 , may also be calculated to 

improve the convergence speed. 
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Figure 67. Inverse computation illustration (plotted using Surfer® software). 

4.3.2.2  Calculation of Gradient and Hessian 

The computation of the gradient vector involves three steps: 1) find deflection 𝑢; 

2) find test function 𝑝,; and then, 3) calculate the gradient vector given 𝑢 and 𝑝. 

Applying the first order variation of Lagrangian with respect to test function 𝒑 

and zeroing it, the deflection 𝑢 could be computed by the following equation: 

∂ℒ 𝐩  

∂𝒑
= ∫ ∫ 𝛔: 𝛁𝒑 𝑑Ω𝑑𝑡 +

Ω

𝑡𝑑
0

∫ ∫ 𝑏 ∙ 𝒑 𝑑Ω𝑑𝑡 +
Ω

𝑡𝑑
0

∫ ∫ 𝑐
𝜕𝒖 𝑡 

𝜕𝑡
∙ 𝒑 𝑑Ω𝑑𝑡

Ω

𝑡𝑑
0

+ ∫ ∫ 𝜌
𝜕2𝒖

𝜕𝑡2 ∙
Ω

𝑡𝑑
0

𝒑 𝑑Ω𝑑𝑡 − ∫ ∫ 𝑓 ∙ 𝒑 𝑑𝑠𝑑𝑡
∂Ω4

 
𝑡𝑑
0

= 0 (4-15) 

where, 𝒑  is variation of test function 𝒑, ∀𝒑 ∈ Ω ×  0, 𝑡𝑑 . 

Applying the first order variation of Lagrangian with respect to variable 𝒖 and 

zeroing it, and given the computed 𝒖 above, the test function 𝒑 could be computed by the 

following equation: 

∂ℒ u  

∂𝐮
= ∫ ∫  𝒖 − 𝒖𝒐𝒃𝒔 ∙ 𝒖 𝑑Ω𝑑𝑡

Ω

𝑡𝑑
0

+ ∫ ∫
𝜕𝛔

𝜕𝒖
𝒖 ∶ 𝛁𝒑𝑑Ω𝑑𝑡 +

Ω

𝑡𝑑
0

∫
𝜕

∂𝒖
[∫ 𝑐

𝜕𝒖 𝑡 

𝜕𝑡
∙

Ω

𝑡𝑑
0

𝒑𝑑Ω]𝒖 𝑑𝑡 + ∫
𝜕

∂𝒖
[∫ 𝜌

𝜕2𝒖

𝜕𝑡2
∙ 𝒑𝑑Ω

Ω
] 𝒖 𝑑𝑡

𝑡𝑑
0

= 0 (4-16) 

where 𝒖  is variation of response variable 𝒖 , ∀𝒖 ∈ Ω ×  0, 𝑡𝑑 . 
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Given that 𝒖 and 𝒑 have been determined, the gradient g could be calculated by 

applying the first order differential to the Lagrangian with respect to material parameter 

𝑚 by the following equation: 

∫ 𝐠 ∙ 𝐦 𝑑Ω
Ω

=
∂ℒ 𝑢 ,p  

∂𝒎
= 𝛾 ∫  m − m∗ ∙ 𝐦 𝑑Ω 

Ω
+ ∫ ∫

∂𝛔

𝜕m
∙ 𝐦 ∙ ∇𝒑𝑑Ω𝑑𝑡

Ω
 

𝑡𝑑
0

+

𝜕

𝜕𝑚
∫ ∫ 𝑐

𝜕𝒖 𝑡 

𝜕𝑡
∙ 𝐦 ∙ 𝒑 𝑡 𝑑𝛺

𝛺

𝑡𝑑
0

𝑑𝑡 (4-17) 

where, 𝐦   is a variation of 𝐦, ∀𝐦 ∈ Ω ×  0, 𝑡𝑑 ; in this case 𝜒 𝑚1
∗ ,𝑚2

∗  
𝑚 = 0, the same for 

all of the following mathematical derivations. Thus, the strong form of the gradient is 

written as follows: 

𝒈 = 𝛾 m − m∗ + ∫
∂𝛔

𝜕m
∙ ∇𝒑𝑑𝑡 

𝑡𝑑
0

+
𝜕

𝜕𝑚
∫ 𝑐

𝜕𝒖 𝑡 

𝜕𝑡
∙ 𝒑 𝑡 

𝑡𝑑
0

𝑑𝑡 (4-18) 

where the third term of damping is dependent on the elastic stiffness according to the 

Rayleigh damping model (𝐂 = 𝛼𝐌 + 𝛽𝐊). 

Finding the Hessian matrix also involves three computation steps with three 

equilibrium equations: 1) an incremental state equation to determine incremental 

response of displacement �̃�, 2) an incremental adjoint equation to determine incremental 

test function 𝑝 , and 3) an incremental decision or control equation to determine the 

Hessian matrix given  �̃� and 𝑝. 

Applying the second order variation of Lagrangian with respect to 𝜕2𝒑, 𝜕𝒑𝜕𝒖, 

and 𝜕𝒑𝜕𝑚, sum and then zero, the incremental deflection �̃� can be computed by the 

following equation: 

𝜕ℒ 𝒑   𝒑  

𝜕2𝒑
+

𝜕ℒ 𝒑   𝒖  

𝜕𝒑𝜕𝒖
+

𝜕ℒ 𝒑   𝒎  

𝜕𝒑𝜕𝒎
= 0 (4-19) 

Given �̃� and applying the second order variation of Lagrangian with respect to 

𝜕𝒖𝜕𝒑, 𝜕2𝒖, and 𝜕𝒖𝜕𝒎, sum and then zero, the incremental test function 𝒑  can be 

computed by the following equation: 

𝜕ℒ 𝒖   𝒑  

𝜕𝒖𝜕𝒑
+

𝜕ℒ 𝒖   𝒖  

𝜕2𝒖
+

𝜕ℒ 𝒖   𝒎  

𝜕𝒖𝜕𝒎
= 0 (4-20) 
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Given �̃� and 𝑝 values, and applying the second order variation of Lagrangian with 

respect to 𝜕𝑚𝜕𝒑 , 𝜕𝑚𝜕𝒖 , and 𝜕2𝑚 , the Hessian matrix could be computed by the 

following equilibrium: 

𝐇 𝒎 ,𝒎  =
𝜕ℒ 𝒎    𝒑  

𝝏𝒎𝝏𝒑
+

𝜕ℒ 𝒎    𝒖  

𝝏𝒎𝝏𝒖
+

𝜕ℒ 𝒎  

𝜕2𝒎
 (4-21) 

4.3.2.3  Determining Search Direction and Step Length 

Given the initial material property seed values (e.g., the elastic modulus 𝐸𝑖 and 

viscosity of 𝜂𝑖 of viscoelastic layers as detailed in Equation (4-2), and moduli of elastic 

layers, the gradient and Hessian matrix are computed above. Then according to Newton’s 

method (derived from the Taylor’s theorem), the search direction m 𝑘 at the iteration step 

of 𝑘 is determined as follows: 

m 𝑘 = −𝐇𝐤 m −1𝐠k m    (4-22) 

where 𝐇𝐤 m  is the Hessian matrix, and 𝐠k 𝑚  is gradient computed at the 𝑘𝑡ℎ iteration 

step. 

The Wolfe conditions are proposed for performing the inexact line search in an 

efficient way to compute an acceptable search direction and step length. The Wolfe 

conditions are as follows (Wolfe 1969): 

(i) 𝑢 𝑚𝑘+1 − 𝑢 𝑚𝑘 ≤ 𝑐1𝛼𝑘m 𝑘
𝑇g𝑘  (4-23)-a 

(ii) m 𝑘
𝑇g𝑘+1 ≥ 𝑐2m 𝑘

𝑇g𝑘  (4-23)-b 

where u𝑘+1 , u𝑘  are displacement vectors at the  k + 1 th  and kth  iteration step, 

respectively; gk+1 , gk  are gradient vectors at the  k + 1 th  and kth  iteration step, 

respectively; m 𝑘 , m 𝑘
𝑇   are search direction vectors and its transpose; c1, c2  are two 

constants for numerical practice, i.e., 0 <  c1  <  c2  <  1.  

Inequality (i) in Equation (4-23) is known as the Armijo rule, and inequality (ii) in 

Equation (4-23) is known as the curvature condition. The Armijo rule is to ensure that the 

step length αk decreases the parameter value sufficiently, and the inequality (ii) is to 
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ensure that the gradient has been reduced sufficiently (Nocedal and Wright 2006). In 

particular, if the two inequalities hold when the cosine of the angle between m 𝑘 and the 

gradient g𝑘 (𝐶𝑜𝑠 𝜃 = g𝑘
𝑇m 

k

‖gk‖‖m k‖
) is bounded away from zero, the gradient g𝑘 → 0 

(Nocedal and Wright 2006). 𝑐1 value is usually set quite small while 𝑐2  value is much 

bigger. Nocedal and Wright (2006) gives example values of 𝑐1 = 10−4, and 𝑐2 = 0.9 for 

the Newton or quasi-Newton method, and 0.1 for the conjugate gradient method.  

To maintain a descent search direction, m 𝑇
kg𝑘 < 0  satisfies. The inequality (ii) 

of Equation (4-23) can be modified as a strong Wolfe condition on curvature as follows: 

|m 𝑇
kg𝑘+1| ≤ |𝑐2𝑚 𝑘

𝑇g𝑘|  (4-24) 

The step length is used to constrain the “diversion” (overestimated or 

underestimated search direction) toward a more stable inverse computation. Here a 

modified Armijo rule is proposed to determine the step length as follows: 

‖𝑢−𝑢𝑜𝑏𝑠‖

𝛼𝑘m k
𝑇gk

≤ 𝑐1 (4-25) 

where 𝑢 is simulated displacement response; 𝑢𝑜𝑏𝑠 is measured displacement; and 𝑐1 is a 

parameter. The initial step length is set as 𝛼𝑘, here αk is proportional to 1/ 𝑢 − 𝑢𝑜𝑏𝑠 
2. 

Then at each iteration step, it is reduced to half until this inequality is satisfied. 

4.3.3 Computation Time 

To calculate the gradient, the Lagrangian optimization method always involves four 

linear system solutions (two for gradient vector, and another two for Hessian matrix). 

When dealing with relatively large-scale model parameters such as a viscoelastic inverse 

problem with 18 model parameters, the two-stage approach involves 18 linear system 

solutions to calculate 18 gradient values in order to achieve good accuracy. Table 10 

presents the computation time in contrast. The developed method could significantly 

improve the computation speed when dealing with large scale inverse problems. 

However, the Lagrangian optimization method involves much more complex 

mathematical derivations and requires relatively expensive numerical solutions for the 
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linear system(s). When dealing with simpler inverse problems with a small model 

parameter number, the two-stage method is sufficient and accurate enough as the 

analytical solution can be used for very fast computation of the forward responses 

instead.  

Table 10. Computation time comparison 

 

4.4. Numerical Solution Method 

The numerical solution involves computations of gradient vector, Hessian matrix, 

search direction and step length, and lastly, material model properties. The numerical 

solution developed is based on a time-domain finite element (FE) method. Unique 

mathematical derivations and solutions of this specific dynamic viscoelastic multilayer 

system inverse problem are developed and detailed in the following way. 

4.4.1 Lagrangian Weak Form 

Firstly, the Lagrangian form is re-expressed in a weak form for numerical 

computation purposes. As discussed in Chapter 3, viscoelastic stress can be expressed as 

follows: 

𝝈 𝑡 = 𝑹 𝑡 − 𝜏 
𝜕𝒖 𝑡 

𝜕𝑡
 (4-26) 

where 𝑹 𝑡 − 𝜏  is the relaxation modulus such that: 

𝑹 𝑡 − 𝜏 := 2∫ 𝐺 𝑡 − 𝜏 
𝑡

0
(
1

2
 𝛁 + 𝛁𝐓 −

1

3
𝛁 ∙) 𝑑𝜏 + 3𝐈 ∫ 𝐾 𝑡 − 𝜏 (

1

3
𝛁 ∙) 𝑑𝜏

𝑡

0
 (4-27) 

where 𝐺 𝑡 − 𝜏  and 𝐾 𝑡 − 𝜏  are the shear and bulk relaxation modulus, respectively. 

Substitute Equation (4-26) into the Langrangian function (4-12), and discretize 

the displacement and test function (𝒖 = 𝜱𝑢; 𝒑 = 𝜱𝑝, where 𝜱 is the shape function 

matrix); then, the Lagrangian weak form can re-expressed as follows: 

Inverse Problem

Methods
Two-stage 

approach

Langrangian 

optimization

Two-stage 

approach

Langrangian 

optimization

Linear systems 4 4 18 4

Time steps 1 1 25 25

Total time 4 4 450 100

Elastic Problem Viscoelastic Problem
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ℒ =
1

2
∫ ∫  𝜱𝑢 − 𝜱𝑢𝑜𝑏𝑠 

2
𝜕𝛺5

𝑑𝑠𝑑𝑡
𝑡𝑑
0

+
𝛾

2
∫  1 − 𝜒 𝑚1

∗ ,𝑚2
∗  

𝑚   𝑚 − 𝑚∗ 2𝑑Ω
Ω

 +

∫ ∫ ∫ 𝑅 𝑡 − 𝜏 
𝜕(𝑢 𝜏 )

𝜕𝜏
𝑑𝜏

𝑡

0
𝑝 𝑡 𝑑𝛺𝑑𝑡

𝛺

𝑡𝑑
0

+ [∫ 𝐂
𝜕𝑢 𝑡 

𝜕𝑡
𝑝 𝑡 

𝑡𝑑
0

𝑑𝑡 + ∫ 𝐌
𝜕2𝑢 𝑡 

𝜕𝑡2
∙ 𝑝 𝑡 

𝑡𝑑
0

𝑑𝑡] −

[∫ ∫ 𝜱Γ
𝑇𝑓 𝑡 𝑝 𝑡 𝑑𝑠

𝜕𝛺4

𝑡𝑑
0

𝑑𝑡 + ∫ ∫ 𝜱𝑇𝑏𝑝 𝑡 𝑑𝛺
𝛺

𝑡𝑑
0

𝑑𝑡]   ∈ Ω ×  0, 𝑡𝑑             (4-28) 

where 𝜱𝜞 is the shape function matrix to discretize the loading at the surface area 𝜕Ω4; 

𝑩 = ∇𝜱 is the displacement-strain matrix; 𝐂 = ∫ 𝝓𝑇𝑐𝝓𝑑𝛺
𝛺

 is the damping matrix; 𝐌 =

∫ 𝝓𝑇𝜌𝝓𝑑𝛺
𝛺

 is the mass matrix; and 𝑅 𝑡 − 𝜏  is a relaxation modulus matrix such that: 

𝑅 𝑡 − 𝜏 := 𝑩𝑻𝑹 𝑡 − 𝜏 𝑩  (4-29) 

The Rayleigh damping model is adopted in this research for determining the 

damping matrix as follows (Chopra 2001, Cook 2002): 

𝐂 = 𝛼𝐌 + 𝛽𝐊 (4-30)-a 

𝛼 =
2𝜉𝜔1𝜔2

𝜔1+𝜔2
 (4-30)-b 

𝛽 =
2𝜉

𝜔1+𝜔2
 (4-30)-c 

where 𝛼, 𝛽 are Rayleigh coefficients; M is mass matrix, and 𝐊 is elastic stiffness matrix. 

4.4.2 Computation of Gradient Vector 

Computation of gradient includes three steps of consequence (see Equation (4-

15)-(4-17), and the numerical solutions for the specific dynamic viscoelastic multilayer 

system are developed as follows. 

4.4.2.1  State equation to determine deflection u 

Applying the first order variation of the Lagrangian with respect to test function 

variable 𝑝, the governing state equation weak form can be formed as follows: 

𝜕ℒ

𝜕𝑝
= ∫ ∫ ∫ 𝑅 𝑡 − 𝜏 

𝜕(𝑢 τ )

𝜕𝜏
𝑑𝜏

𝑡

0
�̂� 𝑡 𝑑Ω𝑑𝑡

Ω

𝑡𝑑
0

+ ∫ 𝐂
𝜕𝒖 𝑡 

𝜕𝑡
�̂� 𝑡 𝑑𝑡

𝑡𝑑
0

+ ∫ 𝐌
𝜕2𝑢

𝜕𝑡2 �̂� 𝑡 𝑑𝑡
𝑡𝑑
0

+

∫ 𝑏�̂� 𝑡 𝑑𝑡
𝑡𝑑
0

− ∫ ∫ 𝚽𝚪𝑓�̂� 𝑡 𝑑𝑠𝑑𝑡
∂Ω4

𝑡𝑑
0

= 0 (4-31) 
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The numerical solution of 𝑢 is presented with accompanying details in Chapter 3. 

The computation begins at the first time step (𝑡𝑛=1) and evolves until the end of time 

period 𝑡𝑑. 

4.4.2.2  Adjoint equation to determine test function p 

The numerical solution of the test function 𝑝  step-by-step for the dynamic 

viscoelastic multilayer system was developed in the following manner: 

Galerkin Method for the Weak Form 

Using the Galerkin method, applying the first order variation of the Larangian (4-

28) with respect to displacement variable 𝑢, the weak form of the adjoint equation can be 

achieved as follows: 

∂ℒ

𝜕𝑢
= ∫ ∫ 𝜱𝑻 𝑢 − 𝑢𝑜𝑏𝑠 𝜱�̂�ds𝑑𝑡

∂Ω5

td
0

+ ∫ ∫
𝜕

𝜕𝑢
[∫ 𝑅 𝑡 − 𝜏 

𝜕 𝑢 𝜏  

𝜕𝜏
𝑑𝜏

𝑡

0
] 𝑑𝛺

𝛺
𝑝 𝑡 𝑑𝑡

𝑡𝑑
0

+

𝜕

𝜕𝑢
[∫ 𝐂

𝜕𝑢

𝜕𝑡
𝑝 𝑡 𝑑𝑡

𝑡𝑑
0

] +
𝜕

𝜕𝑢
[∫ 𝐌

𝜕2𝑢

𝜕𝑡2 𝑝 𝑡 𝑑𝑡
𝑡𝑑
0

] = 0 (4-32) 

Define ℒ𝑑 ≔ 𝐌∫
𝜕2𝑢 𝑡 

𝜕𝑡2 𝑝 𝑡 𝑑𝑡
𝑡𝑑
0

 

ℒ𝑑 can be re-derived as follows according to the integration by parts: 

ℒ𝑑 = ∫ 𝐌𝑝 𝑡 𝑑 (
𝜕𝑢

𝜕𝑡
)

𝑡𝑑
0

= ∫ 𝐌(𝑝 𝑡𝑑 
𝜕𝑢 𝑡𝑑 

𝜕𝑡
− 𝑝 0 

𝜕𝑢 0 

𝜕𝑡
) 𝑑𝛺

Ω
− ∫ 𝐌

𝜕𝑝 𝑡 

𝜕𝑡
𝑑𝑢 𝑡 

𝑡𝑑
0

=

−∫ 𝐌𝑝 0 
𝜕𝑢 0 

𝜕𝑡
𝑑𝛺

Ω
+ ∫ 𝐌

𝜕2𝑝 𝑡 

𝜕𝑡2 𝑢 𝑡 𝑑𝑡
𝑡𝑑
0

         given 𝑝 𝑡𝑑 = 0 & 𝑢 0 = 0  (4-33) 

Define: 

 ℒ𝑐 ≔ ∫ 𝐂
𝜕𝑢

𝜕𝑡
𝑝 𝑡 𝑑𝑡

𝑡𝑑

0
  (4-34) 

According to the integration by parts, ℒ𝑐 can be re-derived as follows: 

ℒ𝑐 = ∫ 𝐂𝑝 𝑡 𝑑𝑢 𝑡 
𝑡𝑑
0

= −∫ 𝐂
𝜕𝑝 𝑡 

𝜕𝑡
𝑢 𝑡 𝑑𝑡

𝑡𝑑
0

 (4-35) 

Define: 

ℒ𝑅: = ∫ ∫ �̂� 𝜏 
𝜕𝑅 𝑡−𝜏 

𝜕𝜏
𝑝 𝑡 𝑑𝜏

𝑡

0
𝑑𝑡

𝑡𝑑
0

 (4-36) 
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This is a double integral of function, first for the time domain 𝜏 ∈  𝑜, 𝑡  and then 

for the second integration with a time domain of 𝑡 ∈  𝑜, 𝑡𝑑  for 0 < 𝜏 < 𝑡 < 𝑡𝑑, as shown 

in Figure 68a. For the nuemrical computation purpose (to take �̂� 𝜏  out of the 𝜏 ∈  0, 𝑡  

integration and then be dismissed for solving 𝑝 𝑡 ), this integration is converted to an 

integration with a reversed order: with respect to 𝑡 first and then 𝜏, as shown in Figure 

68b as follows: 

ℒ𝑅 = ∫ �̂� 𝜏 [∫
𝜕𝑅 𝑡−𝜏 

𝜕𝜏
𝑝 𝑡 𝑑𝑡

𝑡𝑑
𝜏

] 𝑑𝜏
𝑡𝑑
0

 (4-37) 

 

Figure 68.  Integration of 2-D time field of  𝟎 < 𝛕 < 𝐭 < 𝐭𝐝.  

𝑡 and 𝜏 notations are shifted to each other to arrive at the new form of ℒ𝑅: 

ℒ𝑅 = ∫ �̂� 𝑡 ∫
𝜕𝑅 𝜏−𝑡 

𝜕𝑡
𝑝 𝜏 𝑑𝜏

𝑡𝑑
𝑡

𝑑𝑡
𝑡𝑑
0

 (4-38) 

Substitute Equation (4-33), (4-35) and (4-38) into (4-32) to re-derive the weak 

form of the adjoint equation as follows:  

∫ ∫ 𝜱𝑻 𝑢 − 𝑢𝑜𝑏𝑠 𝜱�̂� 𝑡 𝑑𝛺𝑑𝑡
𝜕𝛺5

𝑡𝑑
0

+ ∫ �̂� 𝑡 ∫ 𝑅 0 
𝛺

𝑝 𝑡 𝑑𝛺𝑑𝑡
𝑡𝑑
0

−

∫ �̂� 𝑡 ∫ [∫
𝜕𝑅 𝜏−𝑡 

𝜕𝑡
𝑝 𝜏 𝑑𝜏

𝑡𝑑
𝑡

]
𝛺

𝑑𝛺𝑑𝑡
𝑡𝑑
0

+ ∫ �̂� 𝑡 𝐂
𝜕𝑝 𝑡 

𝜕𝑡
𝑑𝑡

𝑡𝑑
0

+ ∫ �̂� 𝑡 𝐌
𝜕2𝑝 𝑡 

𝜕𝑡2 𝑑𝑡
𝑡𝑑
0

= 0(4-39) 

∀�̂� ∈ 𝛺, ∀𝑡 ∈  0, 𝑡𝑑  and thus �̂� 𝑡 can be dismissed on both sides, such that the 

following equilibrium satisfies ∀𝑡 ∈  0, 𝑡𝑑 : 



148 

 
 

∫ 𝜱𝑻 𝑢 − 𝑢𝑜𝑏𝑠 𝜱𝑑𝛺
𝜕𝛺5

+ ∫ 𝑅 0 
𝛺

𝑝 𝑡 𝑑𝛺 − ∫ ∫
𝜕𝑅 𝜏−𝑡 

𝜕𝑡
𝑝 𝜏 𝑑𝜏𝑑𝛺

𝑡𝑑
𝑡𝛺

− 𝐂
𝜕𝑝 𝑡 

𝜕𝑡
+

𝐌
𝜕2𝑝 𝑡 

𝜕𝑡2 = 0 (4-40) 

According to the chain rule and integration by parts, the third term can be derived 

as follows: 

∫ �̂� 𝑡 ∫
𝜕𝑅 𝜏−𝑡 

𝜕𝑡
𝑝 𝜏 𝑑𝜏

𝑡𝑑
𝑡

𝑑𝑡
𝑡𝑑
0

= ∫ �̂� 𝑡 ∫
𝜕𝑅 𝜏−𝑡 

𝜕 𝜏−𝑡 

𝜕 𝜏−𝑡 

𝜕𝑡
𝑝 𝜏 𝑑𝜏

𝑡𝑑
𝑡

𝑑𝑡
𝑡𝑑
0

=

−∫ ∫ �̂� 𝑡 𝑝 𝜏 𝑑𝑅 𝜏 − 𝑡 𝑑𝑡
𝜏=𝑡𝑑
𝜏=𝑡

𝑡𝑑
0

= ∫ �̂� 𝑡 𝑅 0 𝑝 𝑡 𝑑t
𝑡𝑑
0

− ∫ �̂� 𝑡 ∫ 𝑅 𝜏 −
t

𝑡𝑑

𝑡𝑑
0

𝑡 
𝜕𝑝 𝜏 

𝜕𝜏
𝑑𝜏 𝑑𝑡 (4-41) 

Substitute Equation (4-41) into Equation (4-40) to arrive at an equilibrium for the 

solution of test function 𝑝: 

∫ ∫ 𝑅 𝜏 − 𝑡 
𝜕𝑝 𝜏 

𝜕𝜏
𝑑𝜏𝑑𝛺

t

𝑡𝑑𝛺
− 𝐂

𝜕𝑝 𝑡 

𝜕𝑡
+ 𝐌

𝜕2𝑝 𝑡 

𝜕𝑡2 = −∫ 𝜱𝑻 𝑢 − 𝑢𝑜𝑏𝑠 𝜱𝑑𝛺
𝜕𝛺5

  (4-42) 

The term ∫ 𝑅 𝜏 − 𝑡 
𝜕𝑝 𝜏 

𝜕𝜏
𝑑𝜏

𝑡

𝑡𝑑
 is an integration of time 𝜏 ∈  𝑡𝑑 , 𝑡  as shown in 

Figure 69. The total time is broken into 𝑛 time steps, and the calculation at time 𝑡 is an 

integration with respect to 𝜏 ∈  𝑡𝑑, 𝑡 . Therefore, at each time step, the calculation starts 

from the loading period end of 𝑡𝑑 which is assigned as the 0th time step, and then the time 

step of 1, 2, … n is solved in a backward order, until the last time step at the time of zero 

(𝑡𝑛 = 0) is reached as shown in Figure 69. The time order for 𝑝 solution is opposite to 

that for the solution of displacement 𝑢 as discussed in Chapter 3. 
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Figure 69.  Time discretization for solution of test function. 

The 
∂p τ 

∂τ
 is a tangent, which can be linearly approximated using the Euler method 

or forward finite difference method (FDM) as follows: 

𝜕𝑝 𝜏 

𝜕𝜏
= 𝑙𝑖𝑚𝛥𝜏  

𝑝 𝜏+𝛥𝜏 −𝑝 𝜏 

𝛥𝜏
 ≈

𝑝 𝑗 −𝑝 𝑗−1 

𝑡𝑗+1−𝑡𝑗
 ∀𝜏 ∈  𝑡𝑗−1, 𝑡𝑗  (4-43) 

Given a very small time step length, the solution would be accurate enough. 

Substitute equation (4-43) into (4-42): 

 𝑱𝒑
 𝑗 𝑘

𝑗=1
𝑝 𝑗 −𝑝 𝑗−1 

𝛥𝑡
− 𝐂

𝜕𝑝 𝑡 

𝜕𝑡
+ 𝐌

𝜕2𝑝 𝑡 

𝜕𝑡2
= −∫ 𝜱𝑻 𝑢 − 𝑢𝑜𝑏𝑠 𝜱𝑑𝛺

𝜕𝛺5
 (4-44) 

where 𝑗  is a sub-time step of the viscoelastic solution; 𝑗 = 1,2,3…𝑘  for each of 𝑘 =

1,2,3…𝑛; 𝑘 is the current time step with a time 𝑡 = 𝑡𝑘; 𝑡0 = 𝑡𝑑 (𝑡𝑑 is the total loading 

time at the end) , 𝑡1 = 𝑡𝑑 − Δ𝑡, 𝑡2 = 𝑡𝑑 − 2Δ𝑡,… 𝑡𝑛 = 0; Δt   is a negative backward time 

step length that equals to  tj − tj−1); and 𝑱𝒑 𝑗  is a defined as a viscoelastic stiffness 

matrix at time step 𝑗 as follows: 

𝑱𝒑 𝑗 := ∫ ∫ 𝑅 𝜏 − 𝑡 𝑑𝜏
𝑡𝑗
𝑡𝑗−1

𝑑Ω
Ω

 (4-45) 

The adjoint weak form of Equation (4-44) can be briefed and rearranged as 

follows: 

… …

StartEnd
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 𝑱𝒑 𝑗 
𝑝 𝑡𝑗 −𝑝 𝑡𝑗−1 

𝛥𝑡

𝑘
𝑗=1 − 𝐂

𝜕𝑝 𝑡 

𝜕t
𝑑𝑡 + 𝐌

𝜕2𝑝 𝑡 

𝜕𝑡2
𝑑𝑡 = ℜu (4-46) 

where 𝐌  is mass matrix; 𝐂 is damping matrix; ℜ𝑢 is a “displacement misfit vector,”𝑅𝑢 =

∫ 𝜱𝑻 𝑢𝑜𝑏𝑠 − 𝑢 𝜱𝑑𝛺𝑑𝑡
𝛺𝜕5

.  

Viscoelastic Stiffness Matrix Solution 

The numerical solution of the viscoelastic stiffness matrix 𝑱𝒑 𝑗  is described as 

follows. When the Poisson’s ratio 𝑣 is considered constant, the shear and bulk relaxation 

moduli could be determined from the relaxation modulus as follows: 

𝐺 𝑡 =
E t 

2 1+𝑣 
  (4-47)-a 

K t =
E t 

3 1−2𝑣 
 (4-47)-b 

where 𝑣 is Poisson’s ratio and 𝐸 𝑡  is  the relaxation modulus. 

Substitute Equation (4-47) into Equation (4-29) to arrive at the new form of the 

relaxation modulus matrix as follows: 

𝑅 𝜏 − 𝑡 = 𝑱𝑩𝐸 𝜏 − 𝑡   (4-48) 

where 𝑱𝑩 is a VE shape function matrix defined as follows: 

𝑱𝑩: = ∫ 𝑩𝑻 [
1

1+𝑣
(
1

2
 𝛁 + 𝛁𝐓 −

1

3
𝛁 ∙) 𝑑𝜏 +

1

1−2𝑣
𝐈 ∫ (

1

3
𝛁 ∙)

𝑡

0
] 𝑩𝑑Ω

𝛀
  (4-49) 

Substitute Equation (4-48) into Equation (4-45), the VE stiffness matrix for 𝑝 

solution 𝑱𝒑 𝑗  can be derived as follows: 

𝑱𝒑 𝑗 = 𝑱𝑩 ∫ 𝐸 𝜏 − 𝑡 𝑑𝜏
𝑡𝑗
𝑡𝑗−1

= 𝑱𝑩 ∫ (𝐸∞ +  𝐸𝑖𝑒
− 

𝐸𝑖
𝜂𝑖

 𝜏−𝑡 𝑁
𝑖=1 )𝑑𝜏

𝑡𝑗
𝑡𝑗−1

= 𝑱𝑩 (𝐸∞𝛥𝑡 −

 𝜂𝑖 [𝑒
− 

𝐸𝑖
𝜂𝑖

 𝑡𝑗−𝑡 
− 𝑒

− 
𝐸𝑖
𝜂𝑖

 𝑡𝑗−1−𝑡 
]𝑁

𝑖 ) (4-50) 

Thus, given 𝑱𝑩 and relaxation modulus 𝐸 𝑡 , 𝑱𝒑 𝑗  can be numerically solved.  

Time Discretization and Linear System 
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The Houbolt finite-difference for time discretization of velocity and acceleration 

is adopted due to its ability to use a relatively longer time step length than many other 

methods (Bathe 1996): 

∂𝑝2 k 

∂t2
=

2𝑝 𝑘 −5𝑝 𝑘−1 +4𝑝 𝑘−2 −𝑝 𝑘−3 

𝛥𝑡2  (4-51)-a 

∂𝑝 k 

∂𝑡
=

11𝑝 𝑘 −18𝑝 𝑘−1 +9𝑝 𝑘−2 −2𝑝 𝑘−3 

6𝛥𝑡
 (4-51)-b 

Substitute Equation (4-51) into Equation (4-46) and rearrange it as follows: 

 𝑱𝒑 𝑗 
𝑝 𝑗 −𝑝 𝑗−1 

𝛥𝑡

𝑘
𝑗=1 − 𝐂

11𝑝 𝑘 −18𝑝 𝑘−1 +9𝑝 𝑘−2 −2𝑝 𝑘−3 

6𝛥𝑡
+

𝐌
2𝑝 𝑘 −5𝑝 𝑘−1 +4𝑝 𝑘−2 −𝑝 𝑘−3 

𝛥𝑡2 𝑑𝑡 = ℜ𝑢 (4-52) 

where  𝑝 𝑗  is 𝑝 solution at time step of 𝑗 as 𝑡 = 𝑡𝑗; 𝑝 𝑗 − 1  is  𝑝 at time step of 𝑗 − 1. 

Equation (4-52) can be re-arranged as follows: 

[
𝑱𝒑 𝑘 

𝛥𝑡
+

2𝐌

𝛥𝑡2 −
11𝐂

6Δ𝑡
] 𝑝 𝑘 = ℜ𝑢 𝑡 + 𝑱𝒑 𝑘 

𝑝 𝑘−1 

𝛥𝑡
−  𝑱𝒑 𝑗 

𝑝 𝑗 −𝑝 𝑗−1 

𝛥𝑡
 

𝑗=𝑘−1
𝑗=1 −

𝐂
18𝑝 𝑘−1 −9𝑝 𝑘−2 +2𝑝 𝑘−3 

6𝛥𝑡
+ 𝐌

5𝑝 𝑘−1 −4𝑝 𝑘−2 +𝑝 𝑘−3 

𝛥𝑡2  (4-53) 

This equilibrium form can be briefed as a final linear system: 

𝐊dve𝑝 𝑘 = ℜ𝑝
∗  (4-54) 

where 𝐊dve is the dynamic viscoelastic stiffness matrix and  ℜ𝑝
∗ is the vector. 

𝐊p = [
𝑱𝒑 𝑘 

𝛥𝑡
+

2𝐌

𝛥𝑡2 −
11𝐂

6Δ𝑡
]  (4-55) 

ℜ𝑝
∗ = ℜ𝑢 𝑡 −  𝑱𝒑 𝑗 

𝑝 𝑗 −𝑝 𝑗−1 

𝛥𝑡
 

𝑗=𝑘−1
𝑗=1 + (

𝑱𝒑 𝑘 

Δ𝑡
+

5𝐌

Δ𝑡2 −
3𝐂

Δ𝑡
) 𝑝 𝑘 − 1 − (

4𝐌

Δ𝑡2 −

3𝐂

2Δ𝑡
) 𝑝 𝑘 − 2 + (

𝐌

Δ𝑡2
−

𝐂

3Δ𝑡
) 𝑝 𝑘 − 3  (4-56) 

By assembling all elements of each layer including both the viscoelastic and 

elastic materials, the global linear system can be formed as follows: 

𝐊𝐩𝑢 𝑡 = ℜ𝑝
∗  (4-57) 
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where, 𝐊𝐩 is global stiffness matrix of the multilayer system, a 2𝑛𝑁 × 2 𝑛𝑁 matrix with 

𝑛𝑁 as the total FE node number, expressed as follows: 

𝐊𝐩 = 𝐊𝐄 + [
𝑱 𝑘 

Δ𝑡
−

11𝐂

6Δ𝑡
+

2𝐌

Δ𝑡2]  (4-58) 

where 𝐊𝐄 is global stiffness matrix of the elastic layers, a 2𝑛𝑁 × 2 𝑛𝑁 matrix, and the 

element values at the viscoelastic layers are all zeroed. 

To solve the global linear system, the factorization method is employed to 

decompose the stiffness matrix 𝐊𝐩 to an upper and a lower triangular matrix (L and U, 

respectively) following the LU factorization rule as discussed in Chapter 3.  The global 

linear systems can be solved by the following: 

𝐋y = ℜ𝑝
∗  (4-59)-a 

𝐔𝑝 = 𝑦 (4-59)-b 

By solving these two linear equations, the test function 𝑝 𝑡  is computed for 𝑡 =

𝑡𝑑 , 𝑡𝑛−1, 𝑡𝑛−1 …𝑡2, 𝑡1, 𝑡0 = 0 (reversed order of times). 

4.4.2.3  Decision equation to determine gradient g 

Weak Form 

The first order decision or control equation is formed by applying the first order 

variation of the Lagrangian with respect to material model parameter 𝑚 as follows: 

𝜕ℒ

𝜕𝑚
= ∫ 𝒈 ∙ 𝒎 

Ω
= 𝑟 ∫  𝑚 − 𝑚∗ ∙ 𝒎 𝑑𝛺

𝛺
 + ∫ ∫ ∫

𝜕𝑅 𝑡−𝜏 

𝜕𝑚

𝜕 𝑢 𝜏  

𝜕𝜏
𝑑𝜏

𝑡

0𝛺
𝑝 𝑡 ∙ 𝒎 𝑑𝛺𝑑𝑡

𝑡𝑑
0

+

∫
∂𝐂

∂m

𝜕𝑢 𝑡 

𝜕𝑡
𝑝 𝑡 

𝑡𝑑
0

∙ 𝒎 𝑑𝑡  (4-60) 

where 𝐂 = 𝛼𝐌 + 𝛽𝐊 (𝛼, 𝛽 is the Rayleigh damping coefficients, M is mass matrix and K 

is elastic stiffness matrix); 
∂𝐂

∂m
= 𝛽

𝜕𝐊

𝜕𝑚
. 

Substitute 𝒈 = 𝜱g and 𝒎 = 𝜱𝑚  (g and 𝑚  are those discretized at FE nodes), where 𝜱 is 

the shape function. 𝜱  is taken as 1 since the material model parameters are space 

independent for the same layer of the multilayer system. 𝑚  is arbitrary and thus it can be 
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dismissed on both sides of Equation (4-60). Therefore, the gradient 𝑔 is determined as 

follows: 

𝑔 = 𝛾 m − m∗  + ∫ ∫ ∫
𝜕𝑅 𝑡−𝜏 

𝜕m

𝜕 𝑢 𝜏  

𝜕𝜏
𝑑𝜏𝑝 𝑡 𝑑𝛺𝑑𝑡

𝑡

0𝛺

𝑡𝑑
0

+ 𝛽
𝜕𝐊

𝜕𝑚
∫

𝜕𝑢 𝑡 

𝜕𝑡
𝑝 𝑡 

𝑡𝑑
0

𝑑𝑡 (4-61) 

Define the relaxation modulus derivative: 𝑅𝑚: =
𝜕𝑅 𝑡−𝜏 

𝜕𝑚
   

𝑅𝑚  is a second rank matrix with a size of 2𝑛𝑁 × 𝑛𝑚 (𝑛𝑁  is the total FE node 

number, 𝑛𝑚 is the material model parameter number). For each 𝑅𝑚 𝑖  with regard to the 

ith material model parameter: 

𝑅𝑚 𝑖 =
𝜕𝑅 𝑡−𝜏 

𝜕𝑚𝑖 
 𝑓𝑜𝑟 𝑖 = 1,2,3…𝑛𝑚 (4-62) 

where 𝑅𝑚 𝑖  is the differential of 𝑅 with respect to the ith material model parameter; 𝑚𝑖 

is the ith material model parameter, i = 1,2,3…nm. 

Define the viscoelastic stiffness matrix derivative at the 𝑗𝑡ℎ time step as follows: 

𝑱𝝏𝒎 𝑗 := ∫ ∫
𝜕𝑅 𝑡−𝜏 

𝜕𝑚
𝑑𝜏

𝑡𝑗
tj−1

𝑑Ω
Ω

 (4-63) 

Discretize the displacement tangent following the Euler method: 

𝜕(𝑢 𝜏 )

𝜕𝜏
=

𝑢(𝑡𝑗)−𝑢(𝑡𝑗−1)

𝛥𝑡
  (4-64) 

Substitute Equation (4-63) and (4-64) into Equation (4-61) to arrive at a new form 

for the solution of gradient: 

𝑔 = 𝛾 m − m∗  + ∫ [ 𝑱𝝏𝒎 𝑗 𝑘
𝑗=1

𝑢 𝑡𝑗 −𝑢 𝑡𝑗−1 

𝛥𝑡
] ∙ 𝑝 𝑡 𝑑𝑡

𝑡𝑑
0

+ 𝛽
𝜕𝐊

𝜕𝑚
∫

𝜕𝑢 𝑡 

𝜕𝑡
𝑝 𝑡 

𝑡𝑑
0

𝑑𝑡(4-65) 

where 𝑢 𝑡 , 𝑝 𝑡  are the displacement and test function solved in the earlier sections. For 

each material model parameter, gradient 𝑔𝑖 can be expressed as follows: 

𝑔𝑖 = 𝛾 𝑚 − 𝑚∗ + ∫ [ 𝑱𝝏𝒎 𝑗 𝑘
𝑗=1

𝑢 𝑡𝑗 −𝑢 𝑡𝑗−1 

𝛥𝑡
] ⋅ 𝑝 𝑡 𝑑𝑡

𝑡𝑑
0

+ 𝛽
𝜕𝐊

𝜕𝑚𝑖
∫

𝜕𝑢 𝑡 

𝜕𝑡
𝑝 𝑡 

𝑡𝑑
0

𝑑𝑡(4-66) 

Time Discretization and Solution of Viscoelastic Layers 
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Break the time 𝑡 ∈  0, 𝑡𝑑  into 𝑛 steps, as shown in Figure 70. Applying Euler’s 

method, the integration of 𝑝 with time can be discretized as follows: 

∫ 𝑝 𝑡 
𝑡𝑑
0

=  (𝑝 𝑡𝑘−1 + 𝑝 𝑡𝑘 )
𝑘=𝑛
𝑘=1

Δ𝑡

2
 (4-67) 

Substituting Equation (4-67) into (4-66) and following the Trapezoidal rule, the 

gradient for each material model parameter at the time-discretized form can be derived as 

follows:   

𝑔𝑖 = 𝛾 𝑚𝑖 − 𝑚𝑖
∗ +   𝑱𝝏𝒎 𝑗 [𝑢(𝑡𝑗) − 𝑢(𝑡𝑗−1)]

𝑘
𝑗=1 ⋅  𝑝 𝑡𝑘−1 + 𝑝 𝑡𝑘  

Δ𝑡

2

𝑛
𝑘=1 +

1

2
𝛽

𝜕𝐊

𝜕𝑚𝑖
  𝑢 𝑡𝑘 − 𝑢 𝑡𝑘−1  ⋅  𝑝 𝑡𝑘−1 + 𝑝 𝑡𝑘  

𝑛
𝑘=1  (4-68) 

 

 

Figure 70. Integration of the combined function of displacement and test 

function. 

For the viscoelastic material, the numerical solution of 𝑱𝝏𝒎 𝑗  is described as 

follows: 

𝑱𝝏𝒎 𝑗 = ∫
𝜕𝐸 𝑡−𝜏 

𝜕𝑚𝑖
𝑱𝑩𝑑

𝑡𝑗
𝑡𝑗−1

𝜏  (4-69) 

For the elastic material layers of the multilayer system: 

𝑱𝝏𝒎 𝑗 = ∫
𝜕Ei

𝜕E𝑖
𝑱𝑩𝑑τ

𝑡𝑗
𝑡𝑗−1

= 𝑱𝑩Δ𝑡 (4-70) 

where Δ𝑡 is the time step length. 

… …

Start

Trapezoidal area

End
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For example, for a multilayer structure with one layer considered VE, and the 

other layers are considered elastic, the material parameter vector can be expressed as: 

m =  𝐸0, 𝐸1, 𝐸2, 𝐸3 …𝐸𝑁 , 𝜂1, 𝜂2, 𝜂3 …𝜂𝑁 , E2𝑁+2 …E𝑛−1, En 
𝑇  (4-71) 

where 𝐸0 is the first spring elastic modulus; 𝐸𝑖and 𝜂𝑖 for i=1,2…N are the spring elastic 

modulus and dashpot viscosity of the parallel series, of the generalized Maxwell model; 

E𝑖 for i=2N+2...n is the elastic modulus of the elastic layers.  The gradient for the first 

material model parameter 𝐸∞ can be derived as follows: 

𝑔1 = 𝛾 𝐸∞ − 𝐸∞
∗  +  ( 

𝜕𝐸 𝑡−𝜏 

𝜕𝐸∞
𝑱𝑩[𝑢(𝑡𝑗) − 𝑢(𝑡𝑗−1)]

𝑘
𝑗=1 ) ⋅  𝑝 𝑡𝑘−1 + 𝑝 𝑡𝑘  

Δ𝑡

2

𝑛
𝑘=1 +

1

2
𝛽𝑱𝑩   𝑢 𝑡𝑘 − 𝑢 𝑡𝑘−1  ⋅  𝑝 𝑡𝑘−1 + 𝑝 𝑡𝑘  

𝑛
𝑘=1  (4-72) 

where 𝑱𝑩  is the VE shape function matrix (see Equation (4-49)); 𝐸∞  is the elastic 

modulus at infinite time (see Figure 65). 

The derivative of relaxation modulus to 𝐸∞ is: 

𝜕𝐸 𝑡−𝜏 

𝜕𝐸∞
= 𝜕 𝐸∞ +  𝐺𝑖𝑒

− 
𝐸𝑖
𝜂𝑖

 𝑡𝑁
𝑖=1  /𝜕𝐸∞ = 1 (4-73) 

Therefore, the gradient can be determined as follows: 

𝑔1 = 𝛾 𝐸∞ − 𝐸∞
∗  +

1

2
 𝑱𝑩𝑢 𝑡𝑘 ⋅  𝑝 𝑡𝑘−1 + 𝑝 𝑡𝑘  Δ𝑡𝑛

𝑘=1 +
1

2
𝛽𝑱𝑩   𝑢 𝑡𝑘 −𝑛

𝑘=1

𝑢 𝑡𝑘−1  ⋅  𝑝 𝑡𝑘−1 + 𝑝 𝑡𝑘    (4-74) 

For the 𝑖𝑡ℎ  spring modulus of the generalized Maxell of 𝑖 = 1,2,3…𝑁 (total N 

springs in parallel) 

gi+1 = 𝛾 𝐸𝑖 − 𝐸𝑖
∗ +   ∫

𝜕𝐸 𝑡−𝜏 

𝜕𝐸𝑖

𝑡𝑗
𝑡𝑗−1

𝑱𝑩𝑑𝜏[𝑢(𝑡𝑗) − 𝑢(𝑡𝑗−1)] ∙ 𝑘
𝑗=1

(𝑝 𝑡𝑘−1 +𝑝 𝑡𝑘 )

2

𝑛
𝑘=1 +

𝛽𝑱𝑩   𝑢 𝑡𝑘 − 𝑢 𝑡𝑘−1  ⋅ 𝑝 𝑡𝑘 
𝑛
𝑘=1  (4-75) 

where the differential of relaxation modulus is derived as: 

𝜕𝐸 𝑡−𝜏 

𝜕𝐸𝑖
= 𝜕 (𝐸∞ +  𝐸𝑖𝑒

− 
𝐸𝑖
𝜂𝑖

 𝑡𝑁
𝑖=1 )/𝜕𝐸𝑖 = 𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝜏 
−

𝐸𝑖

𝜂𝑖
 𝑡 − 𝜏 𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝜏 
 (4-76) 
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∫
𝜕𝐸 𝑡−𝜏 

𝜕𝐸𝑖

𝑡𝑗
𝑡𝑗−1

𝑑𝜏 = ∫ [𝑒
−

𝐸𝑖
𝜂𝑖

 𝑡−𝜏 
−

𝐸𝑖

𝜂𝑖
 𝑡 − 𝜏 𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝜏 
]

𝑡𝑗
𝑡𝑗−1

𝑑𝜏 (4-77) 

where 𝐸𝑖is the elastic modulus of the ith spring element for i = 1,2,3…N. The integration 

terms in Equation (4-77) can be derived as follows: 

∫ 𝑒
−

𝐸𝑖
𝜂𝑖

 𝑡−𝜏 
𝑑𝜏

𝑡𝑗
𝑡𝑗−1

=
𝜂𝑖

𝐸𝑖
[𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝑡𝑗 
− 𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝑡𝑗−1 
] (4-78) 

∫
𝐸𝑖

𝜂𝑖
 𝑡 − 𝜏 

𝑡𝑗
𝑡𝑗−1

𝑒
−

𝐸𝑖
𝜂𝑖

 𝑡−𝜏 
𝑑𝜏 = ∫  𝑡 − 𝜏 

𝑡𝑗
𝑡𝑗−1

𝑑𝑒
−

𝐸𝑖
𝜂𝑖

 𝑡−𝜏 
= [ 𝑡 − 𝑡𝑗 𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝑡𝑗 
−  𝑡 −

𝑡𝑗−1 𝑒
−

𝐸𝑖
𝜂𝑖

 𝑡−𝑡𝑗−1 
] +

𝜂𝑖

𝐸𝑖
[𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝑡𝑗 
− 𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝑡𝑗−1 
] (4-79) 

Substitute Equation (4-76) to (4-79) into Equation (4-75): 

𝑔𝑖+1 = 𝛾 𝐸𝑖 − 𝐸𝑖
∗ +   ((𝑡 − 𝑡𝑗−1)𝑒

−
𝐸𝑖
𝜂𝑖

(𝑡−𝑡𝑗−1)
− (𝑡 −𝑘

𝑗=1
𝑛
𝑘=1

𝑡𝑗)𝑒
−

𝐸𝑖
𝜂𝑖

(𝑡−𝑡𝑗)
) 𝑱𝑩(𝑢 𝑡𝑗 − 𝑢 𝑡𝑗−1 ) ∙

(𝑝 𝑡𝑘−1 +𝑝 𝑡𝑘 )

2
 (4-80) 

For the viscosity of generalized Maxell model’s 𝑖𝑡ℎ dashpot, 𝑖 = 1,2,3…𝑁: 

𝑔𝑖+𝑁+1 = 𝛾 𝜂𝑖 − 𝜂𝑖
∗ +   ∫

𝝏𝑬 𝒕−𝝉 

𝜕𝜂𝑖

𝑡𝑗
𝑡𝑗−1

𝑑𝜏𝑱𝑩[𝑢(𝑡𝑗) − 𝑢(𝑡𝑗−1)]
𝑘
𝑗=1 ⋅  𝑝 𝑡𝑘−1 +𝑛

𝑘=1

𝑝 𝑡𝑘  
Δ𝑡

2
 (4-81) 

𝜕𝐸 𝑡−𝜏 

𝜕𝜂𝑖
= 𝜕 (𝐸∞ +  𝐸𝑖𝑒

− 
𝐸𝑖
𝜂𝑖

 𝑡𝑁
𝑖=1 )/𝜕𝜂𝑖 =

𝐸𝑖
2

𝜂𝑖
2  𝑡 − 𝜏 𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝜏 
 (4-82) 

Substitute Equation (4-82) into Equation (4-81): 

𝑔𝑖+𝑁+1 = 𝛾 𝜂𝑖 − 𝜂𝑖
∗ +   ∫

𝐸𝑖
2

𝜂𝑖
2  𝑡 − 𝜏 𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝜏 𝑡𝑗
𝑡𝑗−1

𝑑𝜏𝑱𝑩 [
𝑢(𝑡𝑗)−𝑢(𝑡𝑗−1)

Δ𝑡
]𝑘

𝑗=1 ⋅𝑛
𝑘=1

 𝑝 𝑡𝑘−1 + 𝑝 𝑡𝑘  
Δ𝑡

2
  (4-83) 



157 

 
 

According to the integration by parts, the integration term in Equation (4-83) can 

be rederived as: 

∫
𝐸𝑖

2

𝜂𝑖
2  𝑡 − 𝜏 𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝜏 𝑡𝑗
𝑡𝑗−1

𝑑𝜏 = ∫
𝐸𝑖

𝜂𝑖
 𝑡 − 𝜏 𝑑𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝜏 𝑡𝑗
𝑡𝑗−1

= [
𝐸𝑖

𝜂𝑖
(𝑡 − 𝑡𝑗)𝑒

−
𝐸𝑖
𝜂𝑖

(𝑡−𝑡𝑗)
−

𝐸𝑖

𝜂𝑖
(𝑡 − 𝑡𝑗−1)𝑒

−
𝐸𝑖
𝜂𝑖

(𝑡−𝑡𝑗−1)
]  + [𝑒

−
𝐸𝑖
𝜂𝑖

(𝑡−𝑡𝑗)
− 𝑒

−
𝐸𝑖
𝜂𝑖

(𝑡−𝑡𝑗−1)
] (4-84) 

Substitute Equation (4-84) into Equation (4-83): 

𝑔𝑖+𝑁+1 = 𝛾 𝜂𝑖 − 𝜂𝑖
∗ +

1

𝑉𝑣𝑒
  ([

𝐸𝑖

𝜂𝑖
(𝑡 − 𝑡𝑗)𝑒

−
𝐸𝑖
𝜂𝑖

(𝑡−𝑡𝑗)
−

𝐸𝑖

𝜂𝑖
(𝑡 −𝑘

𝑗=1
𝑛
𝑘=1

𝑡𝑗−1)𝑒
−

𝐸𝑖
𝜂𝑖

(𝑡−𝑡𝑗−1)
]  + [𝑒

−
𝐸𝑖
𝜂𝑖

(𝑡−𝑡𝑗)
− 𝑒

−
𝐸𝑖
𝜂𝑖

(𝑡−𝑡𝑗−1)
]) 𝑱𝑩 (𝑢(𝑡𝑗) − 𝑢(𝑡𝑗−1)) ⋅

(𝑝 𝑡𝑘−1 +𝑝 𝑡𝑘 )

2
(4-85) 

It could be rearranged as follows to arrive at the final discretized form: 

𝑔𝑖+𝑁+1 = 𝛾 𝜂𝑖 − 𝜂𝑖
∗ +

1

𝑉𝑣𝑒
  [

𝐸𝑖(𝑡𝑘−𝑡𝑗)+𝜂𝑖

𝜂𝑖
𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡𝑘−𝑡𝑗 
−𝑘

𝑗=1
𝑛
𝑘=1

𝐸𝑖(𝑡𝑘−𝑡𝑗−1)+𝜂𝑖

𝜂𝑖
𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡𝑘−𝑡𝑗−1 
] 𝑱𝑩 (𝑢(𝑡𝑗) − 𝑢(𝑡𝑗−1)) ∙

(𝑝 𝑡𝑘−1 +𝑝 𝑡𝑘 )

2
 (4-86) 

Gradient Solution of Moduli of Elastic Layers 

For the gradient of the elastic modulus Ei of the elastic composite layer(s) for 𝑖 =

2𝑁 + 2…𝑛 − 1, 𝑛  (𝑛  is the total material model parameter number). The gradient is 

calculated as follows: 

𝑔𝑖 = 𝛾 Ei − Ei
∗ + ∫

𝝏𝐊𝐞

𝜕Ei

𝑡𝑑
0

𝑢 𝑡 ⋅ 𝑝 𝑡 𝑑𝑡 + ∫
𝝏𝐊𝐞

𝜕Ei

𝑡𝑑
0

𝝏𝒖 𝒕 

𝜕𝑡
⋅ 𝑝 𝑡 𝑑𝑡 = 𝛾 Ei − Ei

∗ +

∫ 𝐊𝝏𝐄
𝑡𝑑
0

𝑢 𝑡 ⋅ 𝑝 𝑡 𝑑𝑡 + 𝛽 ∫ 𝐊𝝏𝐄
𝑡𝑑
0

𝝏𝒖 𝒕 

𝜕𝑡
⋅ 𝑝 𝑡 𝑑𝑡 (4-87) 

where Ei is the elastic modulus of the 𝑖𝑡ℎ elastic layer of the multilayer system; Ei
∗ is the 

elastic moduli range for penalization; 𝐊e is the elastic stiffness matrix; 𝐊𝝏𝐄 is the elastic 

stiffness matrix derivative such that 𝐊𝝏𝐄 =
𝝏𝐊𝐞

𝝏𝐄
 . After assembling all the element values 

by summing up all values at the same nodes, the gradient can be determined. 
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𝑔𝑖 = 𝛾 Ei − Ei
∗ +  𝐊𝝏𝐄 𝑢 𝑡𝑘 ⋅ 𝑝 𝑡𝑘 + 𝑢 𝑡𝑘−1 ⋅ 𝑝 𝑡𝑘−1  

Δ𝑡

2

𝑛
𝑘=1 +

𝛽  𝐊𝝏𝐄 𝑢 𝑡𝑘 − 𝑢 𝑡𝑘−1  ⋅
 𝑝 𝑡𝑘 +𝑝 𝑡𝑘−1  

2

𝑛
𝑘=1  (4-88) 

4.4.3 Second Order Variational Method Computing Hessian Matrix 

The mathematical derivations of Hessian matrix of the dynamic viscoelastic 

multilayer systems are developed and detailed in the following. Computation of Hessian 

matrix involves three steps in sequence (see Equations (4-19)-(4-21)). The numerical 

solutions are developed and detailed in the followings. 

4.4.3.1  Incremental state equation to determine incremental deflection 𝒖  

The numerical solution of Equation (4-19) consists of three terms which are 

computed as follows in sequence: 

The second order variation with respect to 𝑝: 

𝜕ℒ 𝑝  �̃� 

𝜕2𝑝
=

𝜕

𝜕𝑝
(

𝜕ℒ

𝜕𝑝
) = 0  (4-89) 

The second order variation with respect to 𝑢, which is equal to the first order 

variation of 𝜕ℒ/𝜕𝑝 (see Equation (4-31) with respect to 𝑢: 

𝜕ℒ 𝑝  𝑢  

𝜕𝑝𝜕𝑢
= ∫ ∫ (∫ 𝑅 𝑡 − 𝜏 

𝜕(𝑢  𝜏 )

𝜕𝜏
𝑑𝜏

𝑡

0
) �̂� 𝑡 𝑑Ω𝑑𝑡

Ω

𝑡𝑑
0

+ ∫ 𝐂
𝜕𝑢  𝑡 

𝜕𝑡
∙ 𝒑 

𝑡𝑑
0

𝑑𝑡 +

∫ 𝐌
𝜕2𝑢 

𝜕𝑡2
�̂� 𝑡 𝑑𝑡

𝑡𝑑
0

 (4-90) 

The second order variation with respect to 𝑚: 

𝜕ℒ 𝑝  𝑚  

𝜕𝑝𝜕𝑚
= ∫

∂

∂𝑚
(∫ ∫ 𝑅 𝑡 − 𝜏 

𝜕(𝑢 𝜏 )

𝜕𝜏
𝑑𝜏

𝑡

0
�̂� 𝑡 𝑑Ω

Ω
)𝑑𝑡

𝑡𝑑
0

+
∂

∂𝑚
∫ 𝐂

𝜕𝑢 𝑡 

𝜕𝑡
�̂� 𝑡 𝑑𝑡

𝑡𝑑
0

=

∫ (∫ ∫
∂𝑅 𝑡−𝜏 

∂𝑚

𝜕(𝑢 𝜏 )

𝜕𝜏
𝑑𝜏

𝑡

0
�̂� 𝑡 𝑑Ω

Ω
)𝑑𝑡

𝑡𝑑
0

+ 𝛽
∂𝐊

∂𝑚
∫

𝜕𝑢 𝑡 

𝜕𝑡
�̂� 𝑡 𝑑𝑡

𝑡𝑑
0

 (4-91) 

where the viscoelastic stress term can be reformulated as follows: 
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𝜎 𝑡 𝑅 = ∫ 𝑅 𝑡 − 𝜏 
𝜕(𝑢 𝜏 )

𝜕𝜏
𝑑𝜏

𝑡

0
= ∫ 𝑅 𝑡 − 𝜏 𝑑𝑢 𝜏 

𝑡

0
= 𝑅 0 𝑢 𝑡 −

∫ 𝑢 𝜏 
𝜕𝑅 𝑡−𝜏 

𝜕𝜏
𝑑𝜏

𝑡

0
  given 𝑢 0 = 0  (4-92) 

Substitute Equation (4-92) into Equation (4-91): 

𝜕ℒ 𝑝  𝑚  

𝜕𝑝𝜕𝑚
= ∫

∂

∂𝑚
(∫ [𝑅 0 𝑢 𝑡 − ∫ 𝑢 𝜏 

𝜕𝑅 𝑡−𝜏 

𝜕𝜏
𝑑𝜏

𝑡

0
] �̂� 𝑡 𝑑Ω

Ω
) 𝑑𝑡

𝑡𝑑

0
+

∂

∂𝑚
∫ 𝐂

𝜕𝑢 𝑡 

𝜕𝑡
�̂� 𝑡 𝑑𝑡

𝑡𝑑

0
=

∫ (∫
𝜕𝑅 0 

𝜕𝑚
𝑢 𝑡 �̂� 𝑡 − ∫ ∫ 𝑢 𝜏 

𝜕2𝑅 𝑡−𝜏 

𝜕𝜏𝜕𝑚
𝑑𝜏

𝑡

0
�̂� 𝑡 𝑑Ω

ΩΩ
)𝑑𝑡

𝑡𝑑

0
+ 𝛽

∂𝐊

∂𝑚
∫

𝜕𝑢 𝑡 

𝜕𝑡
�̂� 𝑡 𝑑𝑡

𝑡𝑑

0
 (4-93) 

Sum Equations (4-89), (4-90) and (4-93) and zero it: 

∫ ∫ (∫ 𝑅 𝑡 − 𝜏 
𝜕(𝑢  𝜏 )

𝜕𝜏
𝑑𝜏

𝑡

0
) �̂� 𝑡 𝑑Ω𝑑𝑡

Ω

𝑡𝑑

0
+ ∫ 𝐂

𝜕𝑢  𝑡 

𝜕𝑡
�̂� 𝑡 

𝑡𝑑

0
𝑑𝑡 + ∫ 𝐌

𝜕2𝑢 

𝜕𝑡2
�̂� 𝑡 𝑑𝑡

𝑡𝑑

0
+

∫ (∫
𝜕𝑅 0 

𝜕𝑚
𝑢 𝑡 �̂� 𝑡 − ∫ ∫ 𝑢 𝜏 

𝜕2𝑅 𝑡−𝜏 

𝜕𝜏𝜕𝑚
𝑑𝜏

𝑡

0
�̂� 𝑡 𝑑Ω

ΩΩ
)𝑑𝑡

𝑡𝑑

0
+ 𝛽

∂𝐊

∂𝑚
∫

𝜕𝑢 𝑡 

𝜕𝑡
�̂� 𝑡 𝑑𝑡

𝑡𝑑

0
= 0(4-94) 

Equation (4-94) is subjected to �̂� 𝑡 ∈Ω ×  0, 𝑡𝑑 , and thus �̂� 𝑡  can be 

dismissed on both sides, and ∀𝑡 ∈  0, 𝑡𝑑 ; hence, the following equation satisfies: 

∫ ∫ 𝑅 𝑡 − 𝜏 
𝜕(𝑢  𝜏 )

𝜕𝜏
𝑑𝜏

𝑡

0
𝑑Ω

Ω
+ 𝐂

𝜕𝑢  𝑡 

𝜕𝑡
+ 𝐌

𝜕2𝑢  𝑡 

𝜕𝑡2 + ∫ (∫
𝜕𝑅 0 

𝜕𝑚
𝑢 𝑡 −

Ω

𝑡𝑑
0

∫ ∫ 𝑢 𝜏 
𝜕2𝑅 𝑡−𝜏 

𝜕𝜏𝜕𝑚

𝑡

0Ω
)𝑑𝜏𝑑Ω𝑑𝑡 + 𝛽

∂𝐊

∂𝑚

𝜕𝑢 𝑡 

𝜕𝑡
= 0 (4-95) 

where 
𝜕𝑅 0 

𝜕𝑚
 is a matrix with size of 2𝑛𝑁 × 𝑁𝑚,the ith column of the matrix is 

𝜕𝑅 0 

𝜕𝑚𝑖
 for 𝑖 =

1,2,3…𝑁𝑚; 
𝜕𝑅 𝑡−𝜏 

𝜕𝑚
 is differential of 𝑅 𝑡 − 𝜏  with respect to 𝑚, a matrix with size of 

2𝑛𝑁 × 𝑁𝑚, the ith column of the matrix is 
𝜕𝑅 𝑡−𝜏 

𝜕𝑚𝑖
 for 𝑖 = 1,2,3…𝑁𝑚; 𝑛𝑁 is the total FE 

node number, and 𝑁𝑚 is the material model parameter number. 

∫
𝜕2𝑅 𝑡−𝜏 

𝜕𝜏𝜕𝑚
𝑢 𝜏 𝑑𝜏

𝑡

0
= ∫ 𝑢 𝜏 𝑑 (

𝜕𝑅 𝑡−𝜏 

𝜕𝑚
)

𝑡

0
= 𝑢 𝑡 

𝜕𝑅 0 

𝜕𝑚
− ∫

𝜕𝑅 𝑡−𝜏 

𝜕𝑚

𝜕𝑢 𝜏 

𝜕𝜏
𝑑𝜏

𝑡

0
 (4-96) 

Substitute Equation (4-96) into (4-95): 

∫ ∫ 𝑅 𝑡 − 𝜏 
𝜕(𝑢  𝜏 )

𝜕𝜏
𝑑𝜏

𝑡

0
𝑑Ω

Ω
+ 𝐂

𝜕𝑢  𝑡 

𝜕𝑡
+ 𝐌

𝜕2𝑢  𝑡 

𝜕𝑡2
+ ∫ ∫

𝜕𝑅 𝑡−𝜏 

𝜕𝑚

𝜕𝑢 𝜏 

𝜕𝜏
𝑑𝜏

𝑡

0
𝑑Ω

Ω
+

𝛽
∂𝐊

∂𝑚

𝜕𝑢 𝑡 

𝜕𝑡
= 0 (4-97) 
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Discretize the velocity and acceleration following the Houbolt method (Houbolt 

1950, Bathe 1996): 

𝜕𝑢  𝜏 

𝜕𝑡
=

11𝑢  𝑘 −18𝑢  𝑘−1 +9𝑢  𝑘−2 −2𝑢  𝑘−3 

6𝛥𝑡
 (4-98)-a 

∂𝑢 2 k 

∂t2
=

2𝑢  𝑘 −5𝑢  𝑘−1 +4𝑢  𝑘−2 −𝑢  𝑘−3 

𝛥𝑡2 ) (4-98)-b 

Then Equation  (4-97) can be re-expressed as follows: 

 𝑱 𝑗 𝑘
𝑗=1

𝑢 (𝑡𝑗)−𝑢 (𝑡𝑗−1)

Δ𝑡
+ 𝐂

11𝑢  𝑘 −18𝑢  𝑘−1 +9𝑢  𝑘−2 −2𝑢  𝑘−3 

6𝛥𝑡
+

𝐌
2𝑢  𝑘 −5𝑢  𝑘−1 +4𝑢  𝑘−2 −𝑢  𝑘−3 

𝛥𝑡2 +  𝑱𝝏𝒎 𝑗 
𝑢(𝑡𝑗)−𝑢(𝑡𝑗−1)

Δ𝑡

𝑘
𝑗=1 + 𝛽

∂𝐊

∂𝑚

𝜕𝑢 𝑡 

𝜕𝑡
= 0 (4-99) 

where 𝑱 𝑗 = ∫ ∫ 𝑅 𝑡 − 𝜏 𝑑𝜏
𝑡𝑗
tj−1

𝑑Ω
Ω

 is the viscoelastic stiffness matrix; 𝑱𝝏𝒎 𝑗 =

∫ ∫
𝜕𝑅 𝑡−𝜏 

𝜕𝑚
𝑑𝜏

𝑡𝑗
tj−1

𝑑Ω
Ω

 is the viscoelastic stiffness matrix derivative. 

Equation (4-99) can be rearranged as follows: 

[
𝑱 𝑘 

Δ𝑡
+

2𝐌

Δ𝑡2 +
11𝐂

𝟔𝚫𝐭
] �̃� 𝑘 =

𝑱 𝑘 

Δ𝑡
�̃� 𝑘 − 1 −  𝑱 𝑗 

𝑢 (𝑡𝑗)−𝑢 (𝑡𝑗−1)

Δ𝑡

𝑘−1
𝑗=1 −

𝐂
−18𝑢  𝑘−1 +9𝑢  𝑘−2 −2𝑢  𝑘−3 

6𝛥𝑡
− 𝐌

−5𝑢  𝑘−1 +4𝑢  𝑘−2 −𝑢  𝑘−3 

𝛥𝑡2 −  𝑱𝝏𝒎 𝑗 
𝑢(𝑡𝑗)−𝑢(𝑡𝑗−1)

Δ𝑡

𝑘
𝑗=1 −

𝛽
∂𝐊

∂𝑚

11𝑢 𝑘 −18𝑢 𝑘−1 +9𝑢 𝑘−2 −2𝑢 𝑘−3 

6𝛥𝑡
 (4-100) 

where 𝐌  is the mass matrix; 𝑱𝝏𝒎 𝑘  is the viscoelastic stiffness matrix derivative; 

�̃� 𝑘 − 1 , �̃� 𝑘 − 2 , �̃� 𝑘 − 3  are computed results at previous time steps; and , 𝑢 𝑗  for 

𝑗 = 𝑘 to 𝑘 − 3 are computed 𝑢 values earlier. 

Equation (4-100) can be re-reduced to: 

�̃�𝑢�̃� 𝑘 = ℜ̃𝑢 (4-101) 

where �̃�𝑢 is a stiffness matrix (�̃�𝑢 =
𝑱 𝑘 

Δ𝑡
+

2𝐌

Δ𝑡2
+

11𝐂

𝟔𝚫𝐭
); ℜ̃𝑢 is a reaction force. 



161 

 
 

ℜ̃𝑢 = (
𝑱 𝑘 

Δ𝑡
+

3𝐂

Δ𝑡
+

5𝐌

Δ𝑡2) �̃� 𝑘 − 1 − (
3𝐂

2Δ𝑡
+

4𝐌

Δ𝑡2) �̃� 𝑘 − 2 + (
𝐂

3Δ𝑡
+

𝐌

Δ𝑡2) �̃� 𝑘 − 3 −

 𝑱 𝑗 
𝑢 (𝑡𝑗)−𝑢 (𝑡𝑗−1)

Δ𝑡

𝑘−1
𝑗=1 −  𝑱𝝏𝒎 𝑗 

𝑢(𝑡𝑗)−𝑢(𝑡𝑗−1)

Δ𝑡

𝑘
𝑗=1 − 𝛽

∂𝐊

∂𝑚

11𝑢 𝑘 −18𝑢 𝑘−1 +9𝑢 𝑘−2 −2𝑢 𝑘−3 

6𝛥𝑡
  

 (4-102) 

After assembling values of all elements, the global linear system can be formed 

and solved to determine the incremental displacement �̃� 𝑡 . 

4.4.3.2  Incremental adjoint equation to determine incremental test function 𝒑  

To find the incremental test function, the second order variations of the 

Lagrangian is computed following Equation (4-20). Each term in Equation (4-20) is 

computed as follows in sequence: 

The second order variation with respect to 𝑝, which is equal to the first order 

variation of 𝜕ℒ/𝜕𝑢 (see Equation (4-39) with respect to p: 

𝜕ℒ u  ℒ p     

𝜕u∂p
= ∫ ∫ �̂� 𝑡 ∫ 𝑅 𝜏 − 𝑡 

𝜕�̃� 𝜏 

𝜕𝜏
𝑑𝜏𝑑𝛺𝑑𝑡

𝑡𝑑
𝑡𝛺

𝑡𝑑
0

− ∫ �̂� 𝑡 𝐂
𝜕�̃� 𝑡 

𝜕𝑡
𝑑𝑡

𝑡𝑑
0

+

∫ �̂� 𝑡 𝐌
𝜕2�̃� 𝑡 

𝜕𝑡2 𝑑𝑡
𝑡𝑑
0

 (4-103) 

The second order variation with respect to 𝑢, which is equal to the first order 

variation of 𝜕ℒ/𝜕𝑢 Equation (4-39) with respect to 𝑢: 

𝜕ℒ u  ℒ u    

𝜕2u
= ∫ ∫ 𝚽𝑻ũû𝝓𝑑Ω𝑑𝑡

Ω

𝑡𝑑
0

= ∫ 𝐌𝟎ũû𝑑𝑡
𝑡𝑑
0

 (4-104) 

where 𝐌𝟎 is a mass matrix unit expressed as follows: 

𝐌𝟎 = ∫ 𝚽𝑻𝚽𝑑Ω
Ω

=
𝐌

𝜌
  (4-105) 

The second order variation of Lagrangian with respect to 𝑚, which equals to the 

first order variation of 𝜕ℒ/𝜕𝑢 with respect to m can be derived as: 

𝜕ℓℒ u  ℒ m     

𝜕u∂m
= ∫

𝜕

𝜕𝑚
∫ �̂� 𝑡 ∫ 𝑅 𝜏 − 𝑡 

𝜕𝑝 𝜏 

𝜕𝜏
𝑑𝜏𝑑𝛺𝑑𝑡

𝑡𝑑
𝑡𝛺

𝑡𝑑
0

−
𝜕

𝜕𝑚
∫ �̂� 𝑡 𝐂

𝜕𝑝 𝑡 

𝜕𝑡
𝑑𝑡

𝑡𝑑
0

 (4-106) 

Sum these three terms and zero it as follows: 
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∫ ∫ �̂� 𝑡 ∫ 𝑅 𝜏 − 𝑡 
𝜕�̃� 𝜏 

𝜕𝜏
𝑑𝜏𝑑𝛺𝑑𝑡

𝑡𝑑
𝑡𝛺

𝑡𝑑
0

− ∫ �̂� 𝑡 𝐂
𝜕�̃� 𝑡 

𝜕𝑡
𝑑𝑡

𝑡𝑑
0

+ ∫ �̂� 𝑡 𝐌
𝜕2�̃� 𝑡 

𝜕𝑡2
𝑑𝑡

𝑡𝑑
0

+

∫ 𝐌𝟎ũû𝑑𝑡
𝑡𝑑
0

+ ∫
𝜕

𝜕𝑚
∫ �̂� 𝑡 ∫ 𝑅 𝜏 − 𝑡 

𝜕𝑝 𝜏 

𝜕𝜏
𝑑𝜏𝑑𝛺𝑑𝑡

𝑡𝑑
𝑡𝛺

𝑡𝑑
0

− 𝛽
∂𝐊

∂𝑚
∫ �̂� 𝑡 

𝜕𝑝 𝑡 

𝜕𝑡
𝑑𝑡

𝑡𝑑
0

= 0  

 (4-107) 

It is subjected to ∀ �̂� 𝑡 ∈ Ω ×  0, 𝑡𝑑 , and thus �̂� 𝑡  can be dismissed on both 

sides and ∀𝑡 ∈  0, 𝑡𝑑  the following equation  satisfies: 

∫ ∫ 𝑅 𝜏 − 𝑡 
𝜕�̃� 𝜏 

𝜕𝜏
𝑑𝜏𝑑𝛺

𝑡𝑑
𝑡𝛺

− 𝐂
𝜕�̃� 𝑡 

𝜕𝑡
+ 𝐌

𝜕2�̃� 𝑡 

𝜕𝑡2 + 𝐌𝟎ũ + ∫ ∫
𝜕𝑅 𝜏−𝑡 

𝜕𝑚

𝜕𝑝 𝜏 

𝜕𝜏
𝑑𝜏𝑑𝛺

𝑡𝑑
𝑡𝛺

−

𝛽
∂𝐊

∂𝑚

𝜕𝑝 𝑡 

𝜕𝑡
= 0 (4-108) 

Discretize the first and second order differentials of 𝑝 𝑡  with the Houbolt method 

(Houbolt 1950, Bathe 1996): 

𝜕�̃� 𝑡 

𝜕𝑡
=

11�̃� 𝑘 −18�̃� 𝑘−1 +9�̃� 𝑘−2 −2𝑝 𝑘−3 

6𝛥𝑡
  (4-109)-a 

𝜕�̃�2 𝑡 

𝜕𝑡2 =
2�̃� 𝑘 −5�̃� 𝑘−1 +4�̃� 𝑘−2 −�̃� 𝑘−3 

𝛥𝑡2   (4-109)-b 

The tangent is discretized following the explicit Euler rule: 

𝜕�̃� 𝜏 

𝜕𝜏
=

�̃�(𝑡𝑗)−�̃�(𝑡𝑗−1)

𝛥𝑡
 (4-110) 

Then Equation (4-108) can be re-derived as follows: 

∫  ∫ 𝑅 𝑡 − 𝜏 𝑑𝜏
𝑡𝑗
tj−1

𝑘
𝑗=1 𝑑Ω

Ω

�̃� 𝑡𝑘 −�̃� 𝑡𝑘−1 

Δ𝑡
− 𝐂

11�̃� 𝑘 −18�̃� 𝑘−1 +9�̃� 𝑘−2 −2�̃� 𝑘−3 

6𝛥𝑡
+

𝐌
2�̃� 𝑘 −5�̃� 𝑘−1 +4�̃� 𝑘−2 −�̃� 𝑘−3 

𝛥𝑡2 = −𝐌𝟎�̃� 𝑡 − ∫  ∫
𝜕𝑅 𝑡−𝜏 

𝜕𝑚
𝑑𝜏

𝑡𝑗
tj−1

𝑘
𝑗=1 𝑑Ω

Ω

𝑝 𝑡𝑘 −𝑝 𝑡𝑘−1 

Δ𝑡
+

𝛽
∂𝐊

∂𝑚

11𝑝 𝑘 −18𝑝 𝑘−1 +9𝑝 𝑘−2 −2𝑝 𝑘−3 

6𝛥𝑡
 (4-111) 

It can be briefed and rearranged as follows: 

 𝑱 𝑘 𝑘
𝑗=1

�̃� 𝑡𝑘 −�̃� 𝑡𝑘−1 

Δ𝑡
− 𝐂

11�̃� 𝑘 −18�̃� 𝑘−1 +9�̃� 𝑘−2 −2𝑝 𝑘−3 

6𝛥𝑡
+

𝐌
2�̃� 𝑘 −5�̃� 𝑘−1 +4�̃� 𝑘−2 −�̃� 𝑘−3 

𝛥𝑡2 = −𝐌𝟎�̃� 𝑡 −  𝑱𝝏𝒎 𝑗 
𝑝 𝑡𝑘 −𝑝 𝑡𝑘−1 

Δ𝑡

𝑘
𝑗=1 −

𝛽
∂𝐊

∂𝑚

11𝑝 𝑘 −18𝑝 𝑘−1 +9𝑝 𝑘−2 −2𝑝 𝑘−3 

6𝛥𝑡
 (4-112) 
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where  𝑱 𝒌 = ∫ 𝑅 𝑡 − 𝜏 𝑑𝜏
𝑡𝑗
tj−1

is the viscoelastic stiffness matrix; 𝑱𝝏𝒎 𝑗 =

∫ ∫
𝜕𝑅 𝑡−𝜏 

𝜕𝑚
𝑑𝜏

𝑡𝑗
tj−1

𝑑Ω
Ω

 is the viscoelastic stiffness matrix derivative; and �̃� 𝑡 = �̃� 𝑘  is 

calculated value at the current or 𝑘𝑡ℎ time step as discussed above. 

Equation (4-112) can be rearranged as follows for building the linear system: 

[
𝑱 𝑘 

Δ𝑡
+

2𝐌

𝑡2 −
11𝐂

6Δ𝑡
] 𝑝 𝑡𝑘 = 𝑱 𝑘 

�̃� 𝑡𝑘−1 

Δ𝑡
−  𝑱 𝑘 𝑘−1

𝑗=1
�̃� 𝑡𝑘 −�̃� 𝑡𝑘−1 

Δ𝑡
+

𝐂
−18�̃� 𝑘−1 +9�̃� 𝑘−2 −2𝑝 𝑘−3 

6𝛥𝑡
− 𝐌

−5�̃� 𝑘−1 +4�̃� 𝑘−2 −�̃� 𝑘−3 

𝛥𝑡2 − 𝐌𝟎�̃� 𝑘 −

 𝑱𝝏𝒎 𝑗 
𝑝(𝑡𝑗)−𝑝(𝑡𝑗−1)

Δ𝑡

𝑘
𝑗=1 − 𝛽

∂𝐊

∂𝑚

11𝑝 𝑘 −18𝑝 𝑘−1 +9𝑝 𝑘−2 −2𝑝 𝑘−3 

6𝛥𝑡
 (4-113) 

Combining the dynamic viscoelastic feature of the viscoelastic layers and the 

dynamic elastic feature of other elastic materials, the linear system can be derived as: 

[𝐊𝐞 + 
𝑱 𝑘 

Δ𝑡
+

2𝐌

𝑡2 −
11𝐂

6Δ𝑡
] 𝑝 𝑡𝑘 = 𝑱 𝑘 

�̃� 𝑡𝑘−1 

Δ𝑡
−  𝑱 𝑘 𝑘−1

𝑗=1
�̃� 𝑡𝑘 −�̃� 𝑡𝑘−1 

Δ𝑡
+

𝐂
−18�̃� 𝑘−1 +9�̃� 𝑘−2 −2𝑝 𝑘−3 

6𝛥𝑡
− 𝐌

−5�̃� 𝑘−1 +4�̃� 𝑘−2 −�̃� 𝑘−3 

𝛥𝑡2 − 𝐌𝟎�̃� 𝑘 −

 𝑱𝝏𝒎 𝑗 
𝑝(𝑡𝑗)−𝑝(𝑡𝑗−1)

Δ𝑡

𝑘
𝑗=1 − 𝛽

∂𝐊

∂𝑚

11𝑝 𝑘 −18𝑝 𝑘−1 +9𝑝 𝑘−2 −2𝑝 𝑘−3 

6𝛥𝑡
 (4-114) 

where 𝐊𝐞 is the elastic stiffness matrix of the elastic layer(s) of the multilayer system, 

2𝑛𝑁 × 2𝑛𝑁  matrix (𝑛𝑁  is the total FE node number); for the viscoelastic layers the 

element values are all zeroed. 

For the global system after assembling all element and node values, Equation (4-

114) can be re-reduced to: 

�̃�𝑃�̃� 𝑘 = ℜ̃𝑃  (4-115) 

where �̃�𝑃 is stiffness matrix for test function linear system and ℜ̃𝑃 is a reaction force for 

test function linear system: 

�̃�𝑃 = 𝐊𝐞 + 
𝑱 𝑘 

Δ𝑡
+

2𝐌

𝑡2
−

11𝐂

6Δ𝑡
 (4-116) 

ℜ̃𝑃 = 
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(
𝑱 𝑘 

Δ𝑡
−

3𝐂

Δ𝑡
+

5𝐌

Δ𝑡2) 𝑝 𝑡𝑘−1 + (
3𝐂

2Δ𝑡
−

4𝐌

Δ𝑡2) 𝑝 𝑡𝑘−2 − (
𝐂

3Δ𝑡
−

𝐌

Δ𝑡2) 𝑝 𝑡𝑘−3 −

 𝑱 𝑘 𝑘−1
𝑗=1

�̃� 𝑡𝑘 −�̃� 𝑡𝑘−1 

Δ𝑡
− 𝐌𝟎�̃� 𝑘 −  𝑱𝝏𝒎 𝑗 

𝑝(𝑡𝑗)−𝑝(𝑡𝑗−1)

Δ𝑡

𝑘
𝑗=1 −

𝛽
∂𝐊

∂𝑚

11𝑝 𝑘 −18𝑝 𝑘−1 +9𝑝 𝑘−2 −2𝑝 𝑘−3 

6𝛥𝑡
 (4-117) 

Thus, the global linear system is formed and solved to determine the incremental 

test function 𝑝 𝑡 . 

4.4.3.3  Incremental decision equation to determine Hessian 

Given the incremental response and test function calculated above, the Hessian 

matrix can be determined following Equation (4-21), in which each term is numerically 

computed as follows in sequence: 

Second order variation of Lagrangian with respect to 𝑝, which is equal to the first 

order variation of 𝜕ℒ/𝜕𝑚 (see Equation (4-60)) with respect to 𝑝 as follows: 

𝜕ℒ m  ℒ p  

𝜕m∂p
= ∫ ∫ ∫

𝜕𝑅 𝑡−𝜏 

𝜕𝑚

𝜕(𝑢 τ )

𝜕𝜏
𝑚 𝑑𝜏

𝑡

0
𝑝 𝑡 𝑑Ω𝑑𝑡

Ω

𝑡𝑑
0

 (4-118) 

Second order variation of Lagrangian with respect to 𝑢, which is equal to the first 

order variation of 𝜕ℒ/𝜕𝑚 (see Equation (4-60)) with respect to 𝑢 as follows: 

𝜕ℓ m  ℓ u  

𝜕m∂u
= ∫ ∫ ∫

𝜕𝑅 𝑡−𝜏 

𝜕𝑚

𝜕(𝑢  τ )

𝜕𝜏
𝑚 𝑑𝜏

𝑡

0
𝑝 𝑡 𝑑Ω𝑑𝑡

Ω

𝑡𝑑
0

 (4-119) 

Second order variation of Lagrangian with respect to 𝑚, which is equal to the first 

order variation of 𝜕ℒ/𝜕𝑚 (see Equation (4-60)) with respect to 𝑚 as follows: 

𝜕ℒ m  ℒ m  

𝜕2m
= 𝛼 ∫ m m 𝑑Ω 

Ω
+ [∫ ∫ (∫

𝜕2𝑅 𝑡−𝜏 

𝜕𝑚2

𝜕(𝑢 τ )

𝜕𝜏
𝑚 𝑑𝜏

𝑡

0
) 𝑑Ω𝑝 𝑡 𝑑𝑡

Ω

𝑡𝑑
0

] (4-120) 

Sum these three terms to determine hessian matrix:  

∫ 𝐇 ∙ 𝐦 𝐝𝛀 = ∫ ∫ ∫
𝜕𝑅 𝑡−𝜏 

𝜕𝑚

𝜕(𝑢 τ )

𝜕𝜏
𝑑𝜏

𝑡

0
𝑝 𝑡 ∙ 𝐦 𝑑Ω𝑑𝑡

Ω

𝑡𝑑
0

+ ∫ ∫ ∫
𝜕𝑅 𝑡−𝜏 

𝜕𝑚

𝜕(𝑢  τ )

𝜕𝜏
𝑑𝜏

𝑡

0
𝑝 𝑡 ∙

Ω

𝑡𝑑
0

𝐦 𝑑Ω𝑑𝑡 + 𝛼 ∫ m ∙ 𝐦 𝑑Ω 
Ω

+ [∫ ∫ (∫
𝜕2𝑅 𝑡−𝜏 

𝜕𝑚2

𝜕(𝑢 τ )

𝜕𝜏
𝑑𝜏

𝑡

0
) 𝑑Ω𝑝 𝑡 ∙ 𝐦 𝑑𝑡

Ω

𝑡𝑑
0

] (4-121) 
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Substitute 𝐇 = 𝜱H and 𝒎 = 𝜱𝑚  (H and 𝑚  are those at FE nodes), where 𝜱 is 

the shape function. 𝜱 is taken as 1 since the material model parameters are constants for 

the same layer of the multilayer system. 𝑚  is arbitrary and thus vanishes on both sides. 

Therefore, the Hessian matrix can be determined as follows: 

H = ∫ ∫ ∫ 𝑱𝝏𝒎
𝑢(tj)−𝑢(tj−1)

Δ𝑡
𝑑𝜏

𝑡

0
𝑝 𝑡 𝑑Ω𝑑𝑡

Ω

𝑡𝑑
0

+

∫ ∫  ∫ 𝑱𝝏𝒎𝑑𝜏
𝑢 (tj)−𝑢 (tj−1)

Δ𝑡
𝑝 𝑡 

𝑡𝑗
tj−1

𝑘
𝑗=1Ω

𝑑𝑡
𝑡𝑑
0

+ 𝛾m +

∫ ∫  𝑱𝝏𝟐𝒎
𝑘
𝑗=1

𝑢(tj)−𝑢(tj−1)

Δ𝑡
𝑝 𝑡 𝑑Ω𝑑𝑡

Ω

𝑡𝑑
0

 (4-122) 

where 𝑱𝝏𝒎 =
𝜕𝑅 𝑡−𝜏 

𝜕𝑚
; m  is the search direction which can be approximated from the one 

in the last iteration step;  𝑱𝝏𝟐𝒎 is the second order differential of viscoelastic stiffness 

matrix. 𝑱𝝏𝟐𝒎 is defined as follows: 

𝑱𝝏𝟐𝒎 ≔ ∫ ∫
𝜕2𝑅 𝑡−𝜏 

𝜕𝑚2 𝑑𝜏
𝑡𝑗
tj−1Ω

  (4-123) 

Discretize 𝑝 𝑡 =
 �̃� 𝑡𝑘−1 +�̃� 𝑡𝑘  

2
 and 𝑝 𝑡 =

 p 𝑡𝑘−1 +p 𝑡𝑘  

2
 following the Euler’s 

method and the Hessian matrix can be discretized as follows: 

H =   [𝑢(𝑡𝑗) − 𝑢(𝑡𝑗−1)]𝑱𝝏𝒎 𝑗 
 �̃� 𝑡𝑘−1 +�̃� 𝑡𝑘  

2

𝑘
𝑗=1

𝑛
𝑘=1 +   𝑱𝝏𝒎 𝑗 [�̃�(𝑡𝑗) −𝑘

𝑗=1
𝑛
𝑘=1

�̃�(𝑡𝑗−1)]
 𝑝 𝑡𝑘−1 +𝑝 𝑡𝑘  

2
+ 𝛾m +   𝑱𝝏𝟐𝒎 𝑘 (𝑢(𝑡𝑗) − 𝑢(𝑡𝑗−1))

𝑘
𝑗=1

 𝑝 𝑡𝑘−1 +𝑝 𝑡𝑘  

2

𝑛
𝑘=1  (4-124) 

𝑱𝝏𝟐𝒎 is a matrix with a size of 2𝑛𝑁 × 𝑛𝑚 (𝑛𝑁 is the total node number and 𝑛𝑚 is 

the material model parameter number). The key is to calculate 𝑱𝝏𝟐𝒎  in which the 

differential term can be derived as follows: 

For the viscoelastic layers: 

𝜕2𝑅 𝑡−𝜏 

𝜕𝑚1
2 =

𝜕2𝑅 𝑡−𝜏 

𝜕𝐸0
2 = 0 (4-125) 

where 𝐸0 is the first elastic modulus of the spring; and for 𝑖 = 1,2, …𝑁: 
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𝜕𝐸 𝑡−𝜏 

𝜕2𝐸𝑖
=

𝜕

𝜕𝐸𝑖
[𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝜏 
−

𝐸𝑖

𝜂𝑖
 𝑡 − 𝜏 𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝜏 
] = [

2

𝜂𝑖
 𝜏 − 𝑡 𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝜏 
+

𝐸𝑖

𝜂𝑖
2  𝑡 −

𝜏 2𝑒
−

𝐸𝑖
𝜂𝑖

 𝑡−𝜏 
] (4-126) 

𝜕𝐸 𝑡−𝜏 

𝜕2𝜂𝑖
=

𝜕

𝜕𝜂𝑖
[
𝐸𝑖

2

𝜂𝑖
2  𝑡 − 𝜏 𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝜏 
] = −

2𝐸𝑖
2

𝜂𝑖
3  𝑡 − 𝜏 𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝜏 
+

𝐸𝑖
3

𝜂𝑖
4  𝑡 − 𝜏 2𝑒

−
𝐸𝑖
𝜂𝑖

 𝑡−𝜏 
(4-127) 

For the elastic layers: 

𝜕𝐸 𝑡−𝜏 

𝜕2𝐸𝑖
= 0 (4-128) 

With these terms derived, 𝑱𝝏𝟐𝒎 is computed following Equation (4-123). 

4.4.4   BFGS Algorithm for Hessian Matrix Computation 

The computation of the Hessian matrix of the 2nd order differentials involves 

numerical complexity and could be very costly with additional solutions of two linear 

systems. An alternative option is to use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithm to approximate the Hessian matrix (developed by Broyden), where no linear 

system solutions are needed. With the BFGS algorithm, the Hessian matrix is calculated 

as a function of the search direction and step length at the previous iteration, and the 

gradient at both the current and previous iteration steps:  

𝐻𝑘+1 = 𝐻𝑘 +
Δ𝑔Δ𝑔𝑇

Δ𝑔𝑇Δ𝑚
−

𝐻𝑘Δ𝑚Δ𝑚𝑇𝐻𝑘

Δ𝑚𝑇𝐻𝑘Δ𝑚
 (4-129) 

where 𝐻𝑘 is Hessian matrix at iteration step 𝑘; Δ𝑔 = 𝑔𝑘+1 − 𝑔𝑘 is the gradient variation 

at the current and previous iteration step; Δ𝑚 = 𝛼𝑘𝑚𝑘 is the material model parameter 

variation, 𝑎𝑘 is step length, and 𝑚𝑘 is search direction. H0 is set as an identify matrix 𝐈. 

4.4.5 Inverse Computation of Material Properties 

Following the procedure described in Section 4.3, the material model parameters 

including the generalized Maxwell model (Prony series) parameters and elastic moduli 

are inverted. For the VE material, the master curve of dynamic modulus 𝐸∗  can be 
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determined from the inverted relaxation modulus 𝐸 𝑡  through the Laplace 

transformation as follows (Park and Schapery 1999): 

𝐸∗ 𝜔 = 𝑖𝜔ℓ 𝐸 𝑥 ′ 𝑠=𝑖𝜔 = 𝑖𝜔 ∫ 𝐸 𝜏 𝑒−𝑖𝜔𝑡𝑑𝜏
∞

0
 (4-130) 

where 𝐸 𝑥  is relaxation modulus; 𝜔 is angular frequency; 𝑖 is imaginary unit of complex 

number; ℓ is Laplace transformation; 𝑠 is the transform variable, and 𝜏 = 𝑡 − 𝑥. 

Accordingly, the storage and loss modulus (real and imaginary part) and phase 

angle δ could be expanded as follows: 

E′ 𝑓 = 𝐸∞ +  
4𝐸𝑖𝜏𝑖

2𝜋2𝑓2

1+4𝜏𝑖
2𝜋2𝑓2  

𝑛
𝑖=1 = 𝐸∞ +  

4𝐸𝑖𝜋
2𝑓2

1/𝜏𝑖
2+4𝜋2𝑓2  

𝑛
𝑖=1  (4-131)-a 

𝐸′′ 𝑓 =  
2𝐸𝑖𝜏𝑖𝜋𝑓

1+4𝜏𝑖
2𝜋2 𝑓2 =  

2𝐸𝑖𝜋𝑓

1/𝜏𝑖+4𝜏𝑖𝜋
2𝑓2  

𝑛
𝑖=1   𝑛

𝑖=1  (4-131)-b 

𝛿 = 𝑡𝑎𝑛−1 𝐸′

𝐸′′ (4-131)-c 

where 𝑓 = ω/2π is the frequency (Hz). 

4.5. Computer Program Development and Validation 

4.5.1 Computer Program Development 

A computer program written in Intel Visual Fortran® (IVF) language was 

developed for the entire numerical computation. Figure 71 shows the flow chart of the 

inverse computation of the developed computer coding. The inputs include the dynamic 

loading time histories and the model geometry information. Two core modules were 

designed: I) R-G-H Module for the computations of displacement response, gradient, and 

Hessian matrix which is calculated based on the BFGS algorithm; and II) Inverse 

Computation Module, which performs inverse computation for the search direction, step 

length, and updated material model parameter values of each iteration. Module II calls 

Module I during each iteration procedure. It outputs the inversed material model 

parameter values.  
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Figure 71. Flow chart of the developed computer program for inverse 

computation. 

4.5.2 Validation Method 

4.5.2.1  Validation of gradient 

According the Lagrangian theory, the gradient could also be calculated from the 

cost function as follows: 

𝑔 = lim
Δ𝑚→0

Δ𝐽

Δ𝑚
 (4-132) 

where 𝐽 is the cost function, Δ𝑚 is a variation of material property. 

According to the finite difference method, given a sufficiently small Δ𝑚 , the 

gradient of the 𝑖𝑡ℎ material model parameter for 𝑖 = 1,2,3…𝑛, can be approximated as 

follows (the regularization term is zeroed here when 𝑚 is within range): 

𝑔𝑖 =
Δ𝐽

Δ𝑚
=

𝐽 𝑚+Δ𝑚𝑖 −𝐽 𝑚𝑖 

Δ𝑚𝑖
=

1

2Δm
∫ ∫  𝑢 𝑚𝑖 + Δ𝑚𝑖 − 𝑢𝑜𝑏𝑠 

2
∂Ω5

𝑑𝑠𝑑𝑡
𝑡𝑑

0
−

1

2Δm
∫ ∫  𝑢 𝑚𝑖 − 𝑢𝑜𝑏𝑠 

2
∂Ω5

𝑑𝑠𝑑𝑡
𝑡𝑑

0
=

1

2Δ𝑚
∫ ∫  𝑢 𝑚𝑖 + Δ𝑚𝑖 + 𝑢 𝑚𝑖 − 2𝑢𝑜𝑏𝑠 ∙

∂Ω5

𝑡𝑑

0

 𝑢 𝑚𝑖 + Δ𝑚𝑖 − 𝑢 𝑚𝑖  𝑑𝑠𝑑𝑡 (4-133) 

4.5.2.2  Validation of material property inversion 

A theoretical validation method is proposed as follows: 

Step 1: The first step is to accept following information: (a) material model 

parameters as true values, including the VE model parameters (e.g., 𝐸𝑖  and 𝜂𝑖  of the 

Inputs: Loading 
& deflection, geometry

Gradient

Hessian
Outputs: material 
model parameters

Response
Call

Module: R-G-H

Module
Inverse Computation
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generalized Maxwell model from experimental data), and elastic moduli of elastic layers; 

(b) model geometry; (c) Poisson’s ratio, which is not inverted in this research, and (d) the 

measured loading pulse.  

Step 2: Given data from (a) to (d) in Step 1, the deflection responses at those 

geophone places are simulated using FE method. The simulated response (e.g., 

deflection) time history is treated as observations 𝑢𝑜𝑏𝑠 and true values.  

Step 3: Now, given the 𝑢𝑜𝑏𝑠 and loading history, the material model parameters 

are inverted and named as 𝑚; 

Step 4: For validation, the inverted material model parameter values are compared 

with the true values given in Step 1.  

An alternative experimental validation approach has also been employed, where 

the material dynamic moduli of asphalt concrete, are measured in the laboratory and 

compared with the inverse results. However, one should note that the experimental test 

conditions are carried out on a small scale (e.g., 6" × 4" cylinder) are very different than 

the in-situ condition where solids are confined in a large body. Therefore, there may be 

noticeable differences between the inverse results and experimental measurements.  

4.6. Implementation 

The developed model and numerical method was implemented into a multilayer 

flexible pavement structure with AC as the surface layer, under the falling weight 

deflectometer (FWD) nondestructive test. 

4.6.1 Experimental Design 

As shown in Figure 72 during the FWD test, a mass is dropped on the plate to 

induce a dynamic loading pulse to emulate the vehicle loading (e.g, stress amplitude of 

500 kPa). The loading pulse with time (e.g., every 0.06 second) was recorded by a 

loading sensor. Several geophones (displacement sensors) were set at a variable distances 



170 

 
 

(e.g., 0 to 1.5m) to measure the vertical deflection response pulses in a short time period 

such as 0.1 second.  

a)  

b)  

Figure 72. a) Highway pavement under FWD tests; b) axisymmetric structure 

model. 

4.6.2 Pavement Model Domain and Numerical Solution 

Because of the much larger size of the model domain (e.g., a 400 m2 parking lot) 

as compared to the small loading area (e.g., 0.15 m radius of loading plate), an 

axisymmetric layered model has been used commonly to describe this problem (Xu and 

Subbase

Geophones

AC

B

SB

S
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Prozzi 2014) as shown in Figure 72b.  The 8-node two-dimensional ring element was 

used to model the space domain and the three-node, one-dimensional element was used to 

model the loading area of the axisymmetric model (see Figure 72). The displacements at 

boundaries and the geophone area are as follows: 

ur = 0 ∈ 𝜕2Ω1 ×  0, 𝑡   (4-134)-a 

ur = 0 ∈ 𝜕Ω2 × 𝜕, 𝑡   (4-134)-b 

ur = 0 ∈ 𝜕Ω2 ×  0, 𝑡   (4-134)-c 

uz = 0 ∈ 𝜕Ω3 ×  0, 𝑡   (4-134)-d 

u5 𝑡 = 𝑢 𝑡  ∈ 𝜕Ω5 ×  0, 𝑡   (4-134)-e 

where 𝜕2Ω1 is the axisymmetric line of the model; 𝜕Ω2is the boundary area of the far 

field; 𝜕Ω3 is the boundary area at the model bottom; and 𝜕Ω5 is the loading area. AC is a 

typical VE material under short loading pulses and is temperature dependent (Xu and 

Solaimanian 2009). Furthermore, it is modeled by the generalized Maxell model. Other 

materials could be considered damped elastic. The material vector could be expressed as 

follows: 

m̅ = [𝐸0, 𝐸𝑖=1,2,3……𝑁 , 𝐸𝑏 , 𝜂𝑖=1,2,3……𝑁 , 𝐸𝑏 , 𝐸𝑠𝑏,𝐸𝑠]
𝑇

  (4-135) 

where, 𝐸𝑏 is elastic modulus of base layer, 𝐸𝑠𝑏 is elastic modulus of subbase layer, 𝐸𝑠 is 

elastic modulus of soil, 𝐸𝑖 is elastic modulus of 𝑖𝑡ℎ  spring of the generalized Maxwell 

model of AC layer for 𝑖 = 1,2,3…𝑁, 𝜂𝑖 is viscosity of the 𝑖𝑡ℎ dashpot of the generalized 

Maxwell model of AC layer for 𝑖 = 1,2,3…𝑁, N is the term number of the spring and 

dashpot series of the VE model of AC layer. 

The finite element (FE) method is developed for the numerical solution. As 

shown in Figure 73, the isoparametric 8-node ring element is used for the model body of 

the space domain, and the 2-node surface element is used for the surface tracking area 

under FWD loading. The ring element uses 4 Gauss points at the local coordinates of 

 ξ, ψ =  −
1

√3
,

1

√3
 ,  

1

√3
,

1

√3
 ,  −

1

√3
, −

1

√3
 , and  

1

√3
, −

1

√3
 . 
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Figure 73. Isoparametric finite elements and Gauss points for the domain body 

and loading area. 

The inverse computation is performed following the numerical solution method 

discussed earlier. The reaction vector of each element ℜu
e  can be discretized to Gauss 

points in space for the numerical solution as follows: 

ℜ𝑢
𝑒 =   𝑤𝑘𝑤𝑙2𝜋𝑟 𝜉𝑘, 𝜓𝑙 𝐽𝛺 𝜉𝑘, 𝜓𝑙 𝛷

𝑇 𝜉𝑘, 𝜓𝑙  𝑢 𝜉𝑘, 𝜓𝑙 − 𝑢𝑜𝑏𝑠 𝜉𝑘 , 𝜓𝑙  
𝑛𝐺
𝑙=1

𝑛𝐺
𝑘=1 (4-136) 

where 𝑢 𝜉𝑘, 𝜓𝑙  is the deflection at the local coordinate of  𝜉𝑘, 𝜓𝑙 ; 𝑢𝑜𝑏𝑠 𝜉𝑘, 𝜓𝑙  is the 

observed deflection; 𝑛𝐺  is the number of Gauss point at one direction, 𝑛𝐺 = 2; 𝑤𝑙 and 𝑤𝑘 

are weight functions, 𝑤𝑘 = 𝑤𝑙 = 1; and 𝐽Ω is the determinant of Jacob function, which is 

equal to the area of the element (𝑑𝑟𝑑𝑧 . 

The viscoelastic stiffness matrix for each element 𝐽𝑝
𝑒 is discretized as follows: 

 𝑱𝒑
𝒆 𝑘 =   𝑤𝑚𝑤𝑙2𝜋𝑟 𝜉𝑚, 𝜓𝑙 𝐽𝛺 𝜉𝑚, 𝜓𝑙 

𝑛𝐺
𝑙=1

𝑛𝐺
𝑚=1 𝑱𝑩 (𝐸0𝛥𝑡 −  [𝜂𝑖𝑒

− 
𝐸𝑖
𝜂𝑖

 𝑡𝑗−𝑡 
−𝑁

𝑖

𝜂𝑖𝑒
− 

𝐸𝑖
𝜂𝑖

 𝑡𝑗−1−𝑡 
]) (4-137) 

The mass matrix of a single element is discretized in space as follows: 

𝐌𝐞 =   𝑤𝑚𝑤𝑙𝜱
𝑻 𝜉𝑚, 𝜓𝑙 𝜌𝜱 𝜉𝑚, 𝜓𝑙 2𝜋𝑟 𝜉𝑚 , 𝜓𝑙 𝐽𝛺 𝜉𝑚, 𝜓𝑙 

𝑛𝐺
𝑙=1

𝑛𝐺
𝑚=1  (4-138) 

1 2 3

4

6

1 2

Gauss point

5

8

(-1,-1)

(1,1)(-1,1)

7

(1,-1)
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The first order variation of the viscoelastic stiffness with respect to material 

model parameter 𝑚 is discretized in space as follows for a single element: 

𝑱𝝏𝒎
𝒆 =   𝑤𝑘𝑤𝑙𝚽

𝐓 𝜉𝑘, 𝜓𝑙 𝚽 𝜉𝑘, 𝜓𝑙 2𝜋𝑟 𝜉𝑘, 𝜓𝑙 𝐽Ω 𝜉𝑘, 𝜓𝑙 
𝑛𝐺
𝑙=1 ∫

𝜕𝑅 𝑡−𝜏 

𝜕𝑚
𝑑𝜏

𝑡𝑗
tj−1

𝑛𝐺
𝑘=1 (4-139) 

where ∫
𝜕𝑅 𝑡−𝜏 

𝜕𝑚
𝑑𝜏

𝑡𝑗
tj−1

 is solved in Section 4.4 with details. 

The second order variation of the viscoelastic stiffness matrix with respect to 

material model parameter 𝑚 is discretized in space as follows for a single element: 

𝑱
𝝏𝟐𝒎
𝒆 =   𝑤𝑘𝑤𝑙𝚽

𝐓 𝜉𝑘, 𝜓𝑙 𝚽 𝜉𝑘 , 𝜓𝑙 2𝜋𝑟 𝜉𝑘 , 𝜓𝑙 𝐽Ω 𝜉𝑘, 𝜓𝑙 
𝑛𝐺
𝑙=1 ∫

𝜕2𝑅 𝑡−𝜏 

𝜕𝑚2 𝑑𝜏
𝑡𝑗

tj−1

𝑛𝐺
𝑘=1  (4-140) 

The global matrixes of the above items can be formed by assembling values at 

each node of elements and then substitute into the linear systems discussed earlier for 

numerical solutions of the inverse model. 

4.6.3 Examples and Results Analysis 

4.6.3.1  Example 1-A theoretical validation  

The FWD loading pulse was collected on I-95 in Florida as shown in Figure 74. 

The loading plate size was 5.9 inch in radius. A master curve of the dynamic moduli of 

AC mixture was given as true values. Given the loading pulse and true material 

properties, deflection responses at the distances of 0, 8, 12, 18, 24, 36, and 60 inches 

were simulated. Figure 74 shows the loading pulses and deflection observations. The 

damping properties are given as known values. Consequently, inverse computation was 

conducted and generalized Maxwell model parameters were inverted. 
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Figure 74. Loading pulse and deflection observations. 

Figure 75 presents the inverted deflections versus the observations with a relatively close 

match. Figure 76 presents the deformation-force loop, in which the max deformation 

appears after the peak loading with a phase lag of about 25oC due to the material 

viscosity. Figure 77 presents the simulated test function pulses, which is extremely small, 

indicating a small deflection misfit. 

 

Figure 75. Inverted deflections vs. observations (𝒖𝒊 is deflection at 𝒊𝒕𝒉 distance). 
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Figure 76. Inverted deflections - loading loop. 

 

 

Figure 77. Simulated test function pulses (𝒑𝒊 is test function at 𝒊𝒕𝒉 distance). 
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Figure 78 presents the inverted dynamic moduli in Prony series  versus true values fitted 

by the smooth sigmoidal function. Results indicate that the inverse results of 𝐸′ are close 

to the given true values. Inversed 𝐸′′ values oscillate, which could be explained by the 

limitation of the generalized Maxwell model in Prony series as it produces non-smooth 

master curves for the AC material, as already proven (Xu 2007; Xu and Solaimanian 

2010). Figure 79 presents the inverted deflections with time (for part of the model). 

a)  

 

b)  

 

Figure 78. Inverse computation results of master curve in Prony series vs. true 

values fitted in sigmoidal function: a) storage modulus and b) loss modulus. 
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Figure 79. Inverted deflections with time. 

4.6.3.2  Example 2- LTPP test data in Florida 

Table 11 presents the site information of one FWD test conducted in Florida. 

Figure 80 presents the FWD measured loading and deflection pulses, and laboratory 

measured dynamic moduli of the Superpave mixture at six frequencies and five 

temperatures (data from LTPP). The deflections (D1 to D9) were measured at the 

distances of 0, 8, 12, -12, 18, 24, 36, 48, and 60 inch. A sudden “drop” of the loading 

pulse at around 0.02 seconds was observed, which was induced by the buffer of the drop 

plate of the Dynatest equipment.  

Table 11. FWD test site information 

 

 

MN: 3.9x10-4m
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State Code SHRP_ID AC Thick (inch) Construction Date Sample Date State Layer No.

12 4106 8.2 11/15/2003 2004 FL 5
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a)  

 

b)  

Figure 80. LTPP data: a) FWD measured loading and deflection pulses and b) 

laboratory measured dynamic moduli. 

 

The master curve of dynamic moduli ( |𝐸∗| ) at the reduced frequency was 

constructed following the time-temperature superposition rule and fitted with the 

sigmoidal function. Figure 81 presents the inverted material model parameters and the 

dynamic moduli master curve of generalized Maxwell model vs. laboratory constructed 

sigmoidal function. 
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Figure 81. Inverse results vs. measurements.  

Table 12 presents the back-calculated moduli for the unbound materials (base, 

subbase, and subground) versus laboratory measurements (from the LTPP database). 

Laboratory tests were conducted from 1992 to 1993 on 30 samples. Results indicate that 

the back-calculation results are closer to that of the maximumn values of the laboratory 

measurements and generally larger than the median values. The difference may be 

explained by the following reasons: 1) the laboratory test conditions of axial loadings 

applied on a small specimen is different than the in-situ conditions of an actual pavement 

structure under vehicle loading; 2) during the laboratory testing, variable axial loading 

levels were applied, resulting in variable moduli values (see Table 12); and 3) FWD tests, 

used for backcalculation, were performed in a different date than laboratory testing, 

during which the moduli of the unbound materials could change due to repeated loading 

effects and the changing of environmental conditions (e.g. moisture).  
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Table 12. Back-calculated unbound material modulus vs. measurements in MPa 

 

Table 13 presents the backcalculated elastic moduli of each layer using the 

ModTag software (data were provided by Dr. Nima Kargah-Ostadi from Fugro in May 

2014). Note that the FWD tests used for backcalculation were performed in 1989 and 

1994, and the peak loadings and deflections were used for backcalculation. Results 

indicate that the backcalculated moduli using ModTag vary within a relatively large 

range, and the median modulus values of subbase and subgrade were much larger than 

that of laboratory measurements (Table 13 vs. Table 12). 

Table 13. Backcalculated elastic moduli using ModTag (MPa) 

 

4.6.3.3  Example 3-seaonal monitoring test 

Figure 82 presents the seasonal FWD testing data on a three-layer flexible 

pavement in Indiana in 2007. The AC and treated base layer had a thickness of 6 and 9 

inches, respectively. The geophone positions were set at 0, 8, 12, -12, 24, 36, and 60 

inches to collect deflection pulses (d1 to d7, respectively).  

Inverted

Single

428

359

201

Laboratory tested

Min Max Mean Median

Base 94 413 233 238

Subbase 63 409 192 192

Subgrade 48 114 82 82

Min Max Median

AC 7520 15000 9855

Base 49 584 187

Subbase 286 243000 1260

Subgrade 63 5980 706
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Figure 82. Seasonal FWD tests on the West Lafayette Test Track 2007. 
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The fast Fourier transforms (FFT) of the FWD loading and deflections from 

April, August, and December were performed, with results shown in Figure 83. Results 

indicate that the vast majority of energy occurs before the frequency of 200 Hz (i.e., 5 to 

200 Hz with only around 5% of the area left out on the left and right sides).  

For the inverse computation, it is reasonable to assume that the moduli of soil and 

base are constant at different seasons within one year. The inverted moduli of treated 

base and soil were 3,447 MPa and 55 MPa, respectively. Figure 84 presents the inverted 

master curve of AC dynamic moduli in April, August, and December. The inverted 

moduli transit from the rubbery stage (with the minimum modulus) to the glassy stage 

(purely elastic with highest modulus) with frequency increase. The 6” AC layer plays a 

major role towards explaining the deflection changes due to seasonal temperature 

variation. The results clearly showed that in the winter condition (i.e., December) AC 

material had a much higher modulus value than that in the summer condition (e.g. 

August). This confirms the temperature dependency of material viscoelasticity. This 

frequency range (5-200 Hz) was highlighted in the master curve of the AC dynamic 

moduli, covering the majority of the FWD test frequencies. 
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Figure 83. Frequency domain of FWD test after fast Fourier transform: a) April, 

b) August, and c) December. 
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Figure 84. Inverted master curves of dynamic moduli of asphalt concrete. 

4.7. Summary 

This Chapter developed a Lagrangian optimization method for inverting dynamic 

moduli and VE (viscoelastic) properties of multilayer systems. Mathematical derivations, 

a finite element numerical solution method, and an independent computer coding for a 

dynamic viscoelastic inverse problem of multilayer systems were developed and applied 

to the flexible pavements using the FWD time records of loading and deflection pulses. 

The main research findings are summarized next. 

This method is based on the Lagrangian function as constrained by the PDE 

governing state equation with modified Armijo rule to determine the step length. 

Compared to the two-stage approach, the developed method improves computation speed 

significantly when dealing with a relatively larger scale model parameter number. The 

developed model was implemented into three FWD test sites.  
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Chapter 5: Conclusion 

5.1 Main Findings 

1) This research developed a finite element and Newton-Raphson model for inverse 

computing the elastic moduli of multilayer flexible pavements. It was a two-stage 

approach. An elastic FE model with infinite elements at boundaries was 

developed to simulate responses, and then a Newton-Raphson method was 

proposed for the inversion of elastic moduli in which the gradient was estimated 

from response outputs using the finite difference method. Compared to most 

existing two-stage elastic backcalculation methods, the new features of the 

method included: a) incorporation of the FHWA’s area method for seed moduli 

estimation, which has improved the engineering accuracy to address the common 

issue of a no-unique backcalculation solution, and b) the ability to account for the 

nonlinear temperature profile and associated moduli variations of the asphalt layer 

based on the simple AASHTO 1993 temperature model. An independent 

FORTRAN code was developed to implement the computation. Monte Carlo 

simulations for each layer of a four-layer pavement structure showed that the two-

stage method is accurate and sufficient for the inverse problem of static, elastic 

multilayer systems with a small scale of model parameters (e.g., a few elastic 

moduli). Sensitivity analysis results demonstrated that the seed moduli only have 

a small effect on numerical accuracy; however, this can affect the inverted moduli 

values significantly, especially for the top asphalt layer. The inverted moduli of 

unbound materials (base/sub-base/soil), especially soil, are much less sensitive to 

the seed moduli values as compared to that of the asphalt layer. 

2) As an extension to the static-elastic FE model developed above, this research 

developed a time-domain dynamic-viscoelastic-system damping-coupled finite 

element (FE) model and a Galerkin-based numerical solution method for 

simulating dynamic viscoelastic responses of a layered half space structure under 

loading pulses. An independent FORTRAN computer code was developed for the 
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numerical computation, and validated by means on an analytical solutions (static 

and elastic) and numerical modeling (dynamic and viscoelastic). A combined 

Houbolt, central and forward finite differences method was proposed for time 

discretization of velocity and acceleration, which reduces the time-step length and 

computer speed. Compared to most existing computer methods for a layered half 

space, the approach developed here represents a more comprehensive model 

because it accounts for the coupled dynamic loading, damping effects, and 

material’s viscoelastic behavior over time. The model has been implemented to 

study flexible pavements under FWD testing and vehicle loading. Simulation 

results of FWD testing demonstrated that a dynamic viscoelastic model 

considering damping can better emulate the in-service conditions than does the 

dynamic elastic or dynamic viscoelastic model without considering damping. 

Specifically, dynamic inertia contributes primarily to the time offset, and the 

damping further adds to this effect and reduces deflection value. The material 

viscoelastic behavior could contribute significantly to the deflection magnitudes 

and shape of the deflection basin. The model developed and computer method are 

also able to simulate two critical environment-associated conditions: a) the 

temperature profile or variation at depth; and b) the space dependent moduli 

profile at depth such as that of soil caused by moisture variations. The model and 

computer method could serve as a potential means to advance the structural 

analysis methods, such as the one used in the national MEPDG. They could also 

be used for other multilayer systems such as laminate and disk structures with 

different length and time scales. 

3) With the dynamic viscoelastic forward model developed above, this research led 

to develop a Lagrangian optimization method with PDE constraints to invert the 

dynamic moduli and viscoelastic (VE) properties of multilayer systems. 

Mathematical derivations for solving the dynamic VE inverse problem of the 

multilayer systems were also developed. The Armijo rule was modified to 

determine a stable step length. An independent FORTRAN code was developed 
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for the numerical implementation. The method was implemented to analyze 

flexible pavements under FWD tests. FWD test data were collected from both in-

situ tests and the LTPP database during different seasons. With the inputs of 

loading pulse and deflection time history data, the method inverts the dynamic 

moduli master curve and material viscoelastic properties. Both experimental and 

numerical analyses demonstrated the material viscoelastic behaviors. Compared 

to the two-stage approach developed in the first task’s development of a finite 

element and Newton-Raphson model, the method developed here involves more 

complex mathematical derivations. However, it has certain advantages when 

dealing with larger scale model parameters, in that it improves numerical 

accuracy and computation speed significantly. Therefore, this method is 

recommended for inverse problems that consider more complex conditions with a 

relatively large model parameter number when time- or space-dependent 

properties are considered such as frequency-temperature-dependent material 

viscoelasticity. 

5.2 Future Study 

1) The generalized Maxwell viscoelastic material model in the Prony series does not 

capture the true response of the material as it fails to represent a smooth master 

curve of relaxation and dynamic moduli. Other material models may be developed 

to improve the physical fitting; 

2) Other damping models besides the Rayleigh damping model may be explored to 

consider nonlinear properties of materials; 

3) Some special conditions of the soil and pavement structures were not considered, 

including at least the following: a) the bedrock of the soil foundation and b) the 

temperature profile and variation; and c) the space dependency of asphalt 

concrete’s properties. 

4) The study of Lagrangian optimization method and its implementations are 

limited. For example, sensitivity analysis should be conducted to study the 
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influence factors of material seed values and more implementation samples 

should be tested; 

5) The developed Lagrangian optimization inverse method could be extended to 

consider more complex situations including the material and structure 

nonlinearity and space dependency for large-scale model parameter inversion 

problems; 

6) Independent computer coding for these numerical methods were developed, 

which have potential for industry applications; 

7) The developed methods may be applied and extended to other multilayer systems 

such as polymers, tissues, and infrastructures (e.g. bridge decks, sandwich 

structures, composite plates, and earthwork) with various boundary conditions, 

time and length scales for forward and inverse problems. 
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