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ABSTRACT

We have generated accurate V and I template light curves using a combination of Fourier decomposition and princi-
pal component analysis for a large sample of Cepheid light curves. Unlike previous studies, we include short-period
Cepheids and stars pulsating in the first overtone mode in our analysis. Extensive Monte Carlo simulations show
that our templates can be used to precisely measure Cepheid magnitudes and periods, even in cases where there are
few observational epochs. These templates are ideal for characterizing serendipitously discovered Cepheids and
can be used in conjunction with surveys such as Pan-Starrs and LSST where the observational sampling may not

be optimized for Cepheids.
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1. INTRODUCTION

The Cepheid period—luminosity (PL) relation is a fundamen-
tal rung in the astronomical distance ladder. With the Hubble
Space Telescope (HST) routinely resolving stellar populations
in nearby galaxies, Cepheid distances can potentially be cal-
culated for a large number of new systems. In this paper, we
show that high-quality template light curves can accurately fit
pulsation periods and mean luminosities to sparsely sampled
Cepheid observations. It is our hope that these templates can be
used to characterize Cepheids in archival as well as new obser-
vations, even when the time sampling of observations has not
been optimized for Cepheid studies.

Principal component analysis (PCA) has found application
in a wide range of astronomical studies (e.g., Faber 1973;
Conselice 2006). The motivation behind PCA is that it can
greatly reduce the number of variables required to describe a
data set. By performing an eigenvalue decomposition, PCA
can be used to generate a small number of eigenvectors that
describe the majority of the variance in a data set. In the case of
Cepheid variables, one could use PCA analysis to construct light
curves with the smallest possible number of free parameters.
Ideally, all Cepheids with identical periods would have a single
unique light-curve shape. In this case, only a period, an average
magnitude, and a phase would be needed as free parameters to
fit a light curve.

The classical technique for determining a stellar pulsation
period is to calculate a “string length” (Lafler & Kinman 1965;
Burke et al. 1970). A light curve is folded along a trial period
and a string length is computed by summing distances between
points consecutive in phase. The trial period with the shortest
computed string length is taken as the true period. This method
is accurate for well-sampled light curves with small photometric
errors, but has been supplanted by recent techniques.

More robust periods can be obtained by fitting template
light curves. Fourier analysis of Cepheids was introduced
in Schaltenbrand & Tammann (1971), and Stetson (1996)
generated templates based on Fourier decomposition of Milky
Way (MW) and Large Magellanic Cloud (LMC) stars. Tanvir
et al. (2005) used PCA to construct a large set of well-sampled
Cepheid observations. Deb & Singh (2009) use the Fourier plus
PCA technique on many types of variable stars and show how
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powerful the technique can be for identifying different variable
types. In this paper, we extend the techniques of Tanvir et al.
(2005) to include short-period Cepheids as well as first overtone
Cepheids.

Short-period Cepheids (with periods less than ~10 days) have
been excluded from many studies for a variety of reasons. First,
LMC Cepheids may show a discontinuity in the PL relation at
10 days, casting uncertainty on their utility as reliable standard
candles (Ngeow & Kanbur 2008). Second, there is the possibility
of confusion between fundamental and first-overtone mode
Cepheids that have similar periods but different PL relations.
Third, if fainter stars like short-period Cepheids are used to
estimate distances, incompleteness bias can skew the derived
distances to smaller values (Sandage & Carlson 1988; Freedman
et al. 2001). Finally, the shorter period Cepheids show more
variation in light-curve shape, making template construction
more daunting. Keeping these potential problems in mind, we
boldly go forward and derive short-period templates regardless.

The outline of the paper is as follows. In Section 2, we
describe generating template light curves using PCA from
a large literature sample of Cepheid stars. In Section 3, we
perform Monte Carlo simulations to determine how precisely
we can recover Cepheid parameters using our templates. In
Section 4, we discuss the process of converting fit parameters
into a distance measure.

2. PRINCIPAL COMPONENT ANALYSIS
2.1. Training Set Selection

Following Tanvir et al. (2005), we perform PCA on V
and /-band light curves simultaneously. We therefore gathered
light curves for stars that have both V and / measurements.
The majority of our template stars come from the Optical
Gravitational Lensing Experiment (OGLE) databases for the
LMC (Udalski et al. 1999a) and Small Magellanic Cloud
(SMC; Udalski et al. 1999b). We gathered additional LMC
observations from Sebo et al. (2002) and additional LMC and
SMC light curves from Moffett et al. (1998). Our Galactic
Cepheid sample was compiled from light curves in the VizieR
database (Ochsenbein et al. 2000), including data presented
in Berdnikov (1997) and Berdnikov & Turner (2001). We
also included Galactic Cepheids from the McMaster Cepheid
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Figure 1. Period distribution of the stars that are used to generate our templates. V-1 V-1

The MW, LMC, and SMC fundamental mode stars along with the combined
LMC and SMC first overtone pulsators are plotted.

Photometry and Radial Velocity Data Archive that includes light
curves from many sources (Gieren 1981; Moffett & Barnes
1984; Coulson & Caldwell 1985; Berdnikov & Turner 1995;
Henden 1996; Barnes et al. 1997). We would have liked to
include light curves from the MACHO survey. However, the
MACHO survey uses nontraditional “blue” and “red” filters
that are nontrivial to convert to V and /.

To be included in our analysis we required each light curve
to have at least 15 epochs of observations in both V and 7, with
the exception of well-spaced light curves from Berdnikov &
Turner (2001), where we only demand six epochs in both V
and /. The initial sample contained 3173 light curves, with 248
Milky Way LCs, 1378 LMC LCs, and 1514 SMC LCs. Unlike
the majority of previous Cepheid studies, we did not exclude
stars with periods shorter than 10 days from the analysis. We
fit Fourier components to every light curve and rejected 305
outliers (i.e., those with unusual light-curve shapes or poor
fits). The final sample included 150 MW Cepheids, 677 LMC
Cepheids, 689 SMC Cepheids, and 1171 overtone pulsators
from the LMC (549 stars), SMC (575 stars), and MW (47). The
period distributions of these stars are plotted in Figure 1.

The OGLE database does not distinguish between fundamen-
tal mode Cepheids and Cepheids pulsating in the first overtone

Figure 3. Color-magnitude plots for the OGLE stars, uncorrected for reddening.
Points have been color-coded by pulsation period. The upper panels show LMC
stars, while the lower panels show SMC stars. Fundamental mode pulsators are
shown on the left and first overtones are on the right.

mode. Figure 2 shows our simple cuts in period—magnitude
space used to provisionally classify OGLE stars as fundamen-
tal or overtone pulsators. For the rest of the stars, we use the
source catalog designation of overtone or fundamental Cepheid.
Color—magnitude diagrams of the OGLE are plotted in Figure 3.

We initially decompose each light curve in our sample into
Fourier components by fitting the following equations to the V
and 7 light curves simultaneously:

k=8
my(t) =myo+ Y oy sin(2mkt/P)+py cos 2kt /P), (1)
k=1
j=8
my(t) =myo + Y _ o;sin(2xjt/P)+ p;cos 2mjt/P),
j=1
2

where P is the period, ¢ is the Julian day of the observation,
myo and my o are the average magnitudes in each band, and
the o and B terms are the Fourier amplitudes. We constrain
Bj=1 to zero to impose a common phase for all the fits. These
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Figure 2. First pass classification between fundamental mode and first overtone from the LMC and SMC OGLE data. Stars between the solid blue and dash—dot green
line are provisionally labeled as fundamental mode and stars between the dash—dot green and dashed red are labeled as first overtone. The lines have a slope of —3
and y-intercepts of 17.2, 16.65, and 15.9 for the LMC and 17.8, 17.15, and 16.5 for the SMC.
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Figure 4. Example of an OGLE 2.8 day period Cepheid with the solid curves
showing the best-fit Fourier decomposition. The upper curve shows the 7 band,
while the lower curve shows V. The sparse sampling in the V' band around a phase
of 1.0 and 1.2 allows the fit slightly too much freedom (the curve rises slightly
in those two regions). By performing the PCA analysis over many hundreds of
light curves, such discrepancies should be averaged out.
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Fourier fits generate the 32 « and 8 values for each star that
are used in the PCA. While the shapes of the light curves
are fitted simultaneously, the average magnitudes in each band
are completely independent. This ensures that our light-curve
templates are not dependent on the various dust corrections
(or lack thereof) that have been applied in our different source
catalogs.

Ngeow et al. (2003) discuss how fitting Fourier components
to sparsely sampled data can result in poor fits (see their
Figure 2(b) for an example of how Fourier decomposition
can fail for sparsely sampled light curves). To keep our fits
constrained to reasonable shapes, we create a smooth light curve
by linearly interpolating each observed Cepheid to include 50
points evenly distributed across the full phase of the light curve.
We then fit the Fourier components of this smoothed light curve,
and use the results as the initial guess for the fitting of the
observed data points. In the final fit, each Fourier component is
allowed to change by a maximum of 20% from the smoothed
fit parameters, thereby preventing divergences compared to the
smooth fit. Figure 4 shows typical results for out fitted Fourier
components. Figures 5 and 6 show the distribution of the 16
best fit « and g values for all of the fundamental and overtone
I-band light curves.
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Figure 5. Distribution of Fourier decomposition parameters for the best fits to all fundamental mode Cepheids in the / band. For each population of stars, we fit
low-order polynomials to these Fourier component vs. period plots and reject stars from further analysis that are more than 3¢ outliers. The number of stars in our
sample is large enough that we have plotted contours in the densely populated regions and individual points in the sparsely sampled regions.
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Figure 6. Best-fit Fourier components for the overtone Cepheids in the / band. The distributions for the high-order coefficients are concentrated near zero, implying
these light curves are simply sinusoidal, an unsurprising result for stars commonly referred to as “sinusoidal” or sCepheids.
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Figure 7. Average light curve (a) and eigenvectors from the fundamental Cepheid PCA. The 7 band is shown in thick red, while the V band is shown in blue. The first
PCA vector (shown in (b)) primarily controls the magnitude of pulsation, while the other PCA vectors ((c)—(e)) control the exact shape of the sawtooth rise of the light
curve. Template light curves are constructed as linear combinations of these vectors, an example of which is shown in (f). Typical coefficients for these vectors are
plotted in Figure 8.
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Table 1

Percentage of the Total Variance Contained in Each PCA Component for Each

of our Constructed Templates

Model PCA1 PCA2 PCA3 PCA4 Total

(%) (%) (%) (%) (%)
Short period 70.1 18.7 4.8 1.4 95.1
Long period 64.1 16.6 6.8 29 90.4
LMC 66.7 15.6 9.8 1.8 94.0
SMC 70.1 17.2 6.0 1.5 94.8
Overtones 82.8 6.0 3.0 1.0 92.9

2.2. PCA Template Construction

To test for differences in Cepheid populations, we constructed
templates based on various subsets of the data. In particular, we
made templates that include all our fundamental mode Cepheids
and subsets that included only LMC stars, only SMC stars, only
short-period stars, only long-period stars, and only overtones.
For each subsample, we first subtracted an average light curve
from each measured light curve. We then performed a PCA on
the residuals to develop eigenvectors that can be used to correct
for deviations from the average light curve. In all cases, over
90% of the variance could be described with only four principle
component eigenvectors (Table 1). An example of an average
light curve and PCA eigenvectors are plotted in Figure 7.

We plot the PCA vector strengths as a function of period in
Figure 8. Several of the PCA vectors show strong trends with
period. This is fortunate (and not too surprising), as it means
while fitting for a star’s period, we can simultaneously make an
educated guess as to what the corresponding shape parameters
should be. Figures 9 and 10 show how well our templates fit a
variety of fundamental and first overtone stars.

Before performing PCA, we needed 32 Fourier components,
as well as two magnitudes, a period, and a phase to accurately
fit a Cepheid light curve. After performing PCA >90% of the
variation in the light-curve’s shape can be described with just
four eigenvector amplitudes. As a final step we note that the
eigenvector amplitudes are strong functions of period, allowing
us to make a quality template fit with only four free parameters

0.0 T T T T
Period= 1.16 days Period= 2.85 days

m;, my - const

Average + Free PCA

6
————— Average + Poly PCA §4 /
25k - Average (4) I ]
0.0 f f f f f f
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m;, my - const

250 1 ‘ 1

L L
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Figure 9. Examples of four OGLE fundamental mode Cepheids fit with our
derived templates. Both the V and I light curves are fit simultaneously. The
dotted lines show the best-fitting curve if we fit with just the average light curve
(PCA eigenvectors fixed at zero), the dashed curves show the best fit if we set
the PCA eigenvectors to the best polynomial fit values for the given period, the
solid curves show the fit if we leave the first two PCA vectors as free parameters.
The numbers in parentheses show the total number of free parameters in
each fit.

(two average magnitudes, a phase, and a period). Figure 8 does
show one possible pitfall as the first PCA vector for the short-
period stars shows a great deal of scatter and little trend with
period. We therefore caution that it is possible this eigenvector
amplitude should be left as a free parameter if possible when
fitting a light curve.
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Figure 10. Same as Figure 9, only now for Cepheids identified as first overtones and fit with our overtone template. Again, it does not seem necessary to leave the

PCA amplitudes as free parameters to converge on a quality fit.

Table 2
The Different Epoch Samplings Used in Our Monte Carlo Error Analysis
Model 1 Observations V Observations Total
1 20 15 35
2 10 5 15
3 5 3 8
4 4 2 6

3. TEMPLATE FITTING ACCURACY

Tanvir et al. (2005) have already demonstrated that the tem-
plate fitting technique is superior to other common period es-
timation techniques for cases where the photometry is noisy.
They show magnitudes and periods determined through tem-
plate fitting can reduce the scatter in distance estimates by 30%
compared to simple string length methods.

‘We now endeavor to use Monte Carlo simulations to quantify
how well our templates can recover magnitudes and periods
from photometry of Cepheid stars. We have developed a
fitting routine that uses Levenberg—Marquardt least-squares
minimization to find the best-fitting Cepheid light curve, given a
set of V and I photometry. The best-fitting template is found by
varying period, phase, (1), and (V). We have included an option
to vary the amplitude of the PCA eigenvectors. Fitting sparsely
sampled light curves, there is a risk of aliasing or converging
on local x? minima. To avoid such problems, we use a series of
initial guess periods and phases to ensure we find the global x>
minimum.

Our Monte Carlo varies four parameters to judge their impact
on our fitting routine’s robustness. First, we compare five well-

sampled Cepheids from the OGLE database with different
periods. Second, we vary the total number of observations
in each band. Next, we look at possible effects of template
mismatch (fitting LMC stars with a template derived from SMC
stars, fitting overtone stars with fundamental mode templates
and vice-versa). Finally, we vary the photometric precision of
the light-curve points.

For each realization the star was randomly sampled in
both bands. Therefore, there are N; + Ny unique epochs of
observations and we do not explicitly model observing strategies
that observe in multiple filters simultaneously.

We used four fundamental mode Cepheids (periods of 2.5,
4.2, 16.0, and 20.7 days), and one overtone (period 2.5 days)
from the OGLE LMC data set for the Monte Carlo tests. All
the photometry has initial errors of the order of 0.013 mag in
both bands. Although there could be some objection to using
stars, which are included in the PCA analysis, our sample sizes
are large enough that the addition or subtraction of a few stars
should make little difference to our final templates.

For the error analysis, we fit for only period, m,, m;, and
phase. We rely on the polynomial fits in Figure 8 to give
reasonable amplitudes for the PCA eigenvectors. We also folded
the original light curves so that the photometry covers at most
three periods. This restriction is needed to keep the fitting
procedure from falling into local minima caused by aliasing.
When fitting sparsely sampled data over a long baseline a more
brute-force exploration of period parameter space would be
required than our current fitting procedure.

Figure 11 shows an example of one of our fitting simulations.
As expected, the errors are largest for the overtone Cepheid
when fit with the wrong template. We also show the calculated
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Figure 11. Results of our Monte Carlo simulation where we recover Cepheid
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different stars, along with the five different observing strategies listed in
Table 2. The four panels on the left show the errors in fitting magnitudes and
periods and the corresponding error in distance modulus. On the right, we show
the uncertainties returned by our least-squares fitting routine. With photometric
errors of 0.01 mag and only six total epochs of observations, the uncertainties
of the fitted parameters result in only a 0.1 mag uncertainty in A,u% ¢

uncertainties reported by our fitting routine in Figures 11
and 12. In general, the reported uncertainties are a good match
to the actual errors resulting from the fits. The one exception
is that the overtone uncertainties are underestimated as a result
of making the assumption that the reduced x? should be unity,
which is clearly incorrect in the case of fitting an overtone with a
fundamental mode template. When we use an overtone template,
there is a clear improvement in the x? values, indicating that it
is a better fit.

We have also explored possible template mismatches due
to metallicity by repeating the Monte Carlo experiment using
an SMC template ([Fe/H]~ —0.7) to fit LMC stars ([Fe/H]~
—0.3). The resulting periods and magnitudes are practically
identical, suggesting that the templates can be used across
different metallicity populations.
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Figure 12. Same as Figure 11, only now the photometric errors have been
increased to 0.2 mag. Again, the actual errors (left side) are very similar to the
returned uncertainties (right side).

A proper assessment of the errors of individual measurements
is key for determining a proper PL relation. We have therefore
compared the uncertainties reported by our fitting procedure to
the true offsets seen in our Monte Carlo resampling. Overall,
the returned uncertainties are comparable to the actual errors
derived from the Monte Carlo analysis. When the photometric
errors were low (0.01 mag), the returned uncertainties were
slightly too small (by ~15%). On the other hand, when the
errors were high and the sampling was sparse, the returned
uncertainties were slightly larger than the true Monte Carlo
calculated errors. Typically, around 10% of the fits would
fail catastrophically, usually caused by aliasing or very sparse
sampling. These failures could readily be seen as poor x 2 values
or by visual inspection. This seems to imply that we can use
the returned uncertainties, but as we will see later, observing
strategy also affects the results and it is probably best to simply
run a Monte Carlo for the photometric error and uncertainties
for the specific sampling frequency used by a given observing
program.
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Figure 13. Example of how effective our templates can be at fitting sparsely sampled data. In the left-hand panels are the /-band light curves from Figure 9 fitted
with our LMC templates (blue) and a simple asymmetric sawtooth function (red). The right-hand panel shows the results when seven random points from the light
curve are sampled and the fitting is repeated. In four of the five cases, the templates are able to fit accurate average magnitudes and periods. The larger number of free
parameters in the sawtooth function prevents it from properly converging in the sparsely sampled cases.

We ran several simulations to test how sensitive our fits are
to the phase coverage of the observations. Generally, if the
observations do not span more than half of the full phase,
there is a large likelihood (10%-40%) that the fitted period
will catastrophically fail (defined as a final fitted distance error
of greater than 10%).

To illustrate how well our fitting procedure works, we
compared our template fits to fits using a simple asymmetric
sawtooth function. The results are plotted in Figure 13. When
the light curves are well sampled, the templates and sawtooth
converge to practically identical values. In the sparsely sampled
case (only seven observational epochs), the templates return
accurate fits in four out of five cases, while the sawtooth function
fits fail in every case.

In summary, our tests indicate that our PCA template tech-
nique can fit periods with a precision of £0.1-0.3 days with
only six epochs and photometric precision of 0.01 mag. If the
number of epochs increases to 15 days, our uncertainty drops to
£0.03-0.2 days.

4. CONVERTING FITS TO DISTANCES

Having established that our templates can accurately fit
Cepheid periods and average magnitudes, we now point out
some of the potential pitfalls in using fitted parameters to derive
accurate distances. In theory, distances from single Cepheids
can be averaged together to find a precise distance to a galaxy.

Besides the usual systematic errors associated with photometry,
there are additional caveats that apply when observing a sample
of Cepheids. (1) Cepheids used for a distance calculation must
be above the completeness limit of the observations, otherwise,
faint short-period stars will be undersampled and the final
calculated distance will be biased (Sandage & Carlson 1988;
Freedman et al. 2001). (2) If the Cepheids do not sample
the full range of the instability strip, they can be offset from
a standard PL relation. Mager et al. (2008) discuss how the
scatter in the PL relation in the outskirts of NGC 4258 (Macri
et al. 2006) is greatly reduced because the Cepheids populate
a limited region of the instability strip. (3) Finally, there is
always the risk that a Cepheid may not be deblended from a
nearby optical /physical companion. Blending is expected to
bias Cepheid distance measurements to smaller values (Stanek
& Udalski 1999; Mochejska et al. 2000, 2004).

In a companion paper (McCommas et al. 2009), we have
successfully applied our templates to HST data. Figure 14 shows
some examples of how well the templates can fit noisy and
suboptimally sampled data. The templates only start to fail for
the star with the longest period, where only half of the full phase
is observed.

4.1. Metallicity Effects on Light-Curve Shape

There is some question as to whether the shape of the light
curve can be used to determine the metallicity of a Cepheid
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Figure 14. Example of V and I light curves of Cepheids in M81 observed with HST and fit with our templates. See McCommas et al. (2009) for a larger sample of
Cepheids and a full distance calculation to M81. The fitted period in the lower right is poorly constrained due to the sparse phase coverage.

(Paczyniski & Pindor 2000; Kanbur et al. 2002). Looking at the
long-period Cepheids (Figure 8), the first and second principle
components have systematically smaller values for the SMC
stars compared to the LMC and MW, suggesting that the shapes
might be intrinsically different. We use a two-dimensional
Kolmogorov—Smirnov test to compare the distributions in the
PCA-period distributions (the MW, LMC, and SMC long-period
variables all have very similar period distributions). The LMC
and MW are consistent (probability > 0.12) with being drawn
from the same populations for all of the PCA vectors (i.e.,
the shape of the light curve at a given period does not show
significant differences). The SMC shows a significant difference
between the MW (P = 0.008) and LMC (P = 0.04) in the
distribution of the first PCA vector, but not the higher order
PCA vectors. While the SMC light-curve shape is different on
average, there is little hope of assigning a metallicity to an
individual star based on its light-curve shape, since the intrinsic
scatter within the SMC is larger than the differences from the
LMC or MW. Even with the large number of stars in our sample,
it is difficult to differentiate between the low-metallicity SMC
Cepheids and the higher metallicity LMC and MW Cepheids.
It is possible, in theory, to observe enough long-period stars
that one could distinguish if a population was high or low
metallicity based on the PCA distribution. However, it would
require a prohibitively large sample size, as well as sufficient

phase coverage that the shape parameters could be measured
robustly.

Unlike the long-period variables, the short-period Cepheids
in the three systems have very different period distributions.
However, the PCA distributions overlap to a sufficiently large
degree (Figure 8) that light-curve shape cannot readily be used
to measure the metallicity of individual stars.

While we find metallicity does not alter light-curve shapes
significantly, there is evidence that metallicity differences can
alter the PL relation. Several studies claim to find a metallicity
dependence (Kennicutt et al. 1998; Sakai et al. 2004; Macri et
al. 2006; Saha et al. 2006; Romaniello et al. 2008; Sandage
& Tammann 2008), while others find that the PL relation is
constant across galaxies (Udalski et al. 2001; Gieren et al. 2005).

5. CONCLUSIONS

We have extended the PCA techniques of Tanvir et al. (2005)
to generate template light curves of Cepheid variables and first
overtone variables. We have used a Monte Carlo simulation
to demonstrate how robustly our templates can be used to fit
Cepheid periods and magnitudes. Unlike previous studies, we
do not limit ourselves to stars with periods longer than 10 days.
Finally, we demonstrate the effectiveness of our templates on
HST data and show that our techniques can be used to fit
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accurate periods and luminosities even when the observations
have not been optimally spaced for observing variable stars.
Our templates open up a new regime of distance measurement
possibilities by enabling accurate fits for long-period, short-
period, and overtone Cepheids from noisy and sparsely sampled
observations.

We thank Andy Becker for helpful conversations. Thanks
to Anil Seth and Greg Stinson for demanding more creative
paper titles. P.Y. was supported by the Harlen J. Smith Post-
doctoral Fellowship. J.J.D. and P.Y. were partially supported
through NSF grant CAREER AST-0238683 and the Alfred P.
Sloan Foundation. Support for this work was provided by NASA
through grant GO-10915 and AR-10945 from the Space Tele-
scope Institute, which is operated by the Association of Uni-
versities for Research in Astronomy, incorporated under NASA
contract NAS5-26555. This work made use of the McMaster
Cepheid database, maintained by Doug Welch. This work made
use of Craig Markwardt’s totally awesome IDL curve fitting
code.

REFERENCES

Barnes, T. G., III, Fernley, J. A., Frueh, M. L., Navas, J. G., Moffett, T. J., &
Skillen, I. 1997, PASP, 109, 645

Berdnikov, L. N. 1997, VizieR Online Data Catalog, 2217, 0

Berdnikov, L. N., & Turner, D. G. 1995, Pis ma Astronomicheskii Zhurnal, 21,
803

Berdnikov, L. N., & Turner, D. G. 2001, ApJS, 137, 209

Burke, E. W., Jr., Rolland, W. W., & Boy, W. R. 1970, J. R. Astron. Soc. Canada,
64, 353

Conselice, C. J. 2006, MNRAS, 373, 1389

Coulson, I. M., & Caldwell, J. A. R. 1985, South African Astron. Obs. Circ., 9,
5

Deb, S., & Singh, H. P. 2009, arXiv:0903.3500

Faber, S. M. 1973, ApJ, 179, 731

Freedman, W. L., et al. 2001, ApJ, 553, 47

Gieren, W. 1981, ApJS, 47, 315

Vol. 137

Gieren, W., Storm, J., Barnes, T. G., III, Fouqué, P., Pietrzynski, G., & Kienzle,
F. 2005, ApJ, 627, 224

Henden, A. A. 1996, AJ, 111, 902

Kanbur, S. M., Iono, D., Tanvir, N. R., & Hendry, M. A. 2002, MNRAS, 329,
126

Kennicutt, R. C., Jr., et al. 1998, ApJ, 498, 181

Lafler, J., & Kinman, T. D. 1965, ApJS, 11, 216

Macri, L. M., Stanek, K. Z., Bersier, D., Greenhill, L. J., & Reid, M. J. 2006, ApJ,
652, 1133

Mager, V. A., Madore, B. F.,, & Freedman, W. L. 2008, ApJ, 689, 721

McCommas, L. P., Yoachim, P., Williams, B. F., Dalcanton, J. J., Davis, M. R.,
& Dolphin, A. E. 2009, AJ, 137, 4707

Mochejska, B. J., Macri, L. M., Sasselov, D. D., & Stanek, K. Z. 2000, AJ, 120,
810

Mochejska, B. J., Macri, L. M., Sasselov, D. D., & Stanek, K. Z. 2004, in ASP
Conf. Proc. 310, IAU Collog. 193, ed. D. W. Kurtz & K. R. Pollard (San
Francisco, CA: ASP), 41

Moffett, T. J., & Barnes, T. G., III 1984, ApJS, 55, 389

Moffett, T. J., Gieren, W. P., Barnes, T. G., III, & Gomez, M. 1998, ApJS, 117,
135

Ngeow, C., & Kanbur, S. 2008, arXiv:0805.4624

Ngeow, C.-C., Kanbur, S. M., Nikolaev, S., Tanvir, N. R., & Hendry, M. A.
2003, Apl, 586, 959

Ochsenbein, E., Bauer, P., & Marcout, J. 2000, A&AS, 143, 23

Paczynski, B., & Pindor, B. 2000, ApJ, 533, L103

Romaniello, M., et al. 2008, A&A, 488, 731

Saha, A., Thim, F.,, Tammann, G. A., Reindl, B., & Sandage, A. 2006, ApJS,
165, 108

Sakai, S., Ferrarese, L., Kennicutt, R. C., Jr., & Saha, A. 2004, ApJ, 608, 42

Sandage, A., & Carlson, G. 1988, AJ, 96, 1599

Sandage, A., & Tammann, G. A. 2008, ApJ, 686, 779

Schaltenbrand, R., & Tammann, G. A. 1971, A&AS, 4, 265

Sebo, K. M., et al. 2002, VizieR Online Data Catalog, 214, 20071

Stanek, K. Z., & Udalski, A. 1999, arXiv:astro-ph/9909346

Stetson, P. B. 1996, PASP, 108, 851

Tanvir, N. R., Hendry, M. A., Watkins, A., Kanbur, S. M., Berdnikov, L. N., &
Ngeow, C. C. 2005, MNRAS, 363, 749

Udalski, A., Soszynski, 1., Szymanski, M., Kubiak, M., Pietrzynski, G.,
Wozniak, P., & Zebrun, K. 1999a, Acta Astron., 49, 223

Udalski, A., Soszynski, I., Szymanski, M., Kubiak, M., Pietrzynski, G.,
Wozniak, P., & Zebrun, K. 1999b, Acta Astron., 49, 437

Udalski, A., Wyrzykowski, L., Pietrzynski, G., Szewczyk, O., Szymanski, M.,
Kubiak, M., Soszynski, I., & Zebrun, K. 2001, Acta Astron., 51, 221


http://dx.doi.org/10.1086/133927
http://adsabs.harvard.edu/cgi-bin/bib_query?1997PASP..109..645B
http://adsabs.harvard.edu/cgi-bin/bib_query?1997PASP..109..645B
http://adsabs.harvard.edu/cgi-bin/bib_query?1997yCat.2217....0B
http://adsabs.harvard.edu/cgi-bin/bib_query?1997yCat.2217....0B
http://adsabs.harvard.edu/cgi-bin/bib_query?1995PAZh...21..803B
http://adsabs.harvard.edu/cgi-bin/bib_query?1995PAZh...21..803B
http://dx.doi.org/10.1086/323629
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJS..137..209B
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJS..137..209B
http://adsabs.harvard.edu/cgi-bin/bib_query?1970JRASC..64..353B
http://adsabs.harvard.edu/cgi-bin/bib_query?1970JRASC..64..353B
http://dx.doi.org/10.1111/j.1365-2966.2006.11114.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.373.1389C
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.373.1389C
http://adsabs.harvard.edu/cgi-bin/bib_query?1985SAAOC...9....5C
http://adsabs.harvard.edu/cgi-bin/bib_query?1985SAAOC...9....5C
http://www.arxiv.org/abs/0903.3500
http://dx.doi.org/10.1086/151912
http://adsabs.harvard.edu/cgi-bin/bib_query?1973ApJ...179..731F
http://adsabs.harvard.edu/cgi-bin/bib_query?1973ApJ...179..731F
http://dx.doi.org/10.1086/320638
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...553...47F
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...553...47F
http://dx.doi.org/10.1086/190762
http://adsabs.harvard.edu/cgi-bin/bib_query?1981ApJS...47..315G
http://adsabs.harvard.edu/cgi-bin/bib_query?1981ApJS...47..315G
http://dx.doi.org/10.1086/430496
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...627..224G
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...627..224G
http://dx.doi.org/10.1086/117837
http://adsabs.harvard.edu/cgi-bin/bib_query?1996AJ....111..902H
http://adsabs.harvard.edu/cgi-bin/bib_query?1996AJ....111..902H
http://dx.doi.org/10.1046/j.1365-8711.2002.04948.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2002MNRAS.329..126K
http://adsabs.harvard.edu/cgi-bin/bib_query?2002MNRAS.329..126K
http://dx.doi.org/10.1086/305538
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJ...498..181K
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJ...498..181K
http://dx.doi.org/10.1086/190116
http://adsabs.harvard.edu/cgi-bin/bib_query?1965ApJS...11..216L
http://adsabs.harvard.edu/cgi-bin/bib_query?1965ApJS...11..216L
http://dx.doi.org/10.1086/508530
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...652.1133M
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...652.1133M
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...689..721M
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...689..721M
http://dx.doi.org/10.1086/301493
http://adsabs.harvard.edu/cgi-bin/bib_query?2000AJ....120..810M
http://adsabs.harvard.edu/cgi-bin/bib_query?2000AJ....120..810M
http://adsabs.harvard.edu/cgi-bin/bib_query?2004IAUCo.193...41M
http://dx.doi.org/10.1086/190960
http://adsabs.harvard.edu/cgi-bin/bib_query?1984ApJS...55..389M
http://adsabs.harvard.edu/cgi-bin/bib_query?1984ApJS...55..389M
http://dx.doi.org/10.1086/313116
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJS..117..135M
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJS..117..135M
http://www.arxiv.org/abs/0805.4624
http://dx.doi.org/10.1086/367698
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...586..959N
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...586..959N
http://dx.doi.org/10.1051/aas:2000169
http://adsabs.harvard.edu/cgi-bin/bib_query?2000A
elax &AS..143...23O
http://adsabs.harvard.edu/cgi-bin/bib_query?2000A
elax &AS..143...23O
http://dx.doi.org/10.1086/312612
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...533L.103P
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...533L.103P
http://dx.doi.org/10.1051/0004-6361:20065661
http://adsabs.harvard.edu/cgi-bin/bib_query?2008A
elax &A...488..731R
http://adsabs.harvard.edu/cgi-bin/bib_query?2008A
elax &A...488..731R
http://dx.doi.org/10.1086/503800
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJS..165..108S
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJS..165..108S
http://dx.doi.org/10.1086/386540
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...608...42S
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...608...42S
http://dx.doi.org/10.1086/114911
http://adsabs.harvard.edu/cgi-bin/bib_query?1988AJ.....96.1599S
http://adsabs.harvard.edu/cgi-bin/bib_query?1988AJ.....96.1599S
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...686..779S
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...686..779S
http://adsabs.harvard.edu/cgi-bin/bib_query?1971A
elax &AS....4..265S
http://adsabs.harvard.edu/cgi-bin/bib_query?1971A
elax &AS....4..265S
http://adsabs.harvard.edu/cgi-bin/bib_query?2002yCat..21420071S
http://adsabs.harvard.edu/cgi-bin/bib_query?2002yCat..21420071S
http://www.arxiv.org/abs/astro-ph/9909346
http://dx.doi.org/10.1086/133808
http://adsabs.harvard.edu/cgi-bin/bib_query?1996PASP..108..851S
http://adsabs.harvard.edu/cgi-bin/bib_query?1996PASP..108..851S
http://dx.doi.org/10.1111/j.1365-2966.2005.09466.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.363..749T
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.363..749T
http://adsabs.harvard.edu/cgi-bin/bib_query?1999AcA....49..223U
http://adsabs.harvard.edu/cgi-bin/bib_query?1999AcA....49..223U
http://adsabs.harvard.edu/cgi-bin/bib_query?1999AcA....49..437U
http://adsabs.harvard.edu/cgi-bin/bib_query?1999AcA....49..437U
http://adsabs.harvard.edu/cgi-bin/bib_query?2001AcA....51..221U
http://adsabs.harvard.edu/cgi-bin/bib_query?2001AcA....51..221U

	1. INTRODUCTION
	2. PRINCIPAL COMPONENT ANALYSIS
	2.1. Training Set Selection
	2.2. PCA Template Construction

	3. TEMPLATE FITTING ACCURACY
	4. CONVERTING FITS TO DISTANCES
	4.1. Metallicity Effects on Light-Curve Shape

	5. CONCLUSIONS
	REFERENCES

