
Copyright

by

Gregory Phillip Johnson

2014

The Dissertation Committee for Gregory Phillip Johnson

certifies that this is the approved version of the following dissertation:

A Tabu Search Methodology for Spacecraft Tour

Trajectory Optimization

Committee:

Cesar A. Ocampo, Supervisor

Wallace T. Fowler

David P. Morton

Ryan P. Russell

Juan S. Senent

A Tabu Search Methodology for Spacecraft Tour

Trajectory Optimization

by

Gregory Phillip Johnson, B.S.AS.E., M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2014

To my wife Angie, and to my parents Don and Sharon.

Acknowledgments

First and foremost, I want to thank my advisor, Dr. Cesar Ocampo. His guidance

and unending support have been invaluable throughout my studies. His enthusiasm

was inspiring, and he gave me the freedom to explore many different topics. I am

grateful to my committee members: Dr. Wallace Fowler, Dr. David Morton, Dr.

Ryan Russell and Dr. Juan Senent, for all of their support and valuable feedback.

I would also like to thank Dr. J. Wesley Barnes for introducing me to tabu search

and for the discussions along the way.

I have been lucky to develop many long-lasting friendships during my time

at the university. I wish to thank Paul Bauman and Victor Calo for helping me

to always stay positive, and in particular for their feedback during the dissertation

writing process. I would also like to thank Sebastian Munoz and Divya Thakur; it

was a pleasure going through the undergraduate and graduate programs with them.

I also thank my research group, Mark Jesick, Ricardo Restrepo, Noble Hatten, Drew

Jones and Nick Bradley, for the many discussions and the exchange of ideas.

I owe a huge debt of gratitude to my colleagues at the Texas Advanced

Computing Center, especially to Kelly Gaither, Paul Navratil and Jay Boisseau, for

their support during my graduate studies.

To conclude, and most importantly, I would like to thank my wife Angie and

my parents Don and Sharon. None of this would have been possible without their

unfailing support and patience.

v

A Tabu Search Methodology for Spacecraft Tour

Trajectory Optimization

Publication No.

Gregory Phillip Johnson, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Cesar A. Ocampo

A spacecraft tour trajectory is a trajectory in which a spacecraft visits a

number of objects in sequence. The target objects may consist of satellites, moons,

planets or any other body in orbit, and the spacecraft may visit these in a variety

of ways, for example flying by or rendezvousing with them. The key characteristic

is the target object sequence which can be represented as a discrete set of decisions

that must be made along the trajectory. When this sequence is free to be chosen,

the result is a hybrid discrete-continuous optimization problem that combines the

challenges of discrete and combinatorial optimization with continuous optimization.

The problem can be viewed as a generalization of the traveling salesman problem;

vi

such problems are NP-hard and their computational complexity grows exponentially

with the problem size. The focus of this dissertation is the development of a novel

methodology for the solution of spacecraft tour trajectory optimization problems.

A general model for spacecraft tour trajectories is first developed which de-

fines the parameterization and decision variables for use in the rest of the work. A

global search methodology based on the tabu search metaheuristic is then devel-

oped. The tabu search approach is extended to operate on a tree-based solution

representation and neighborhood structure, which is shown to be especially efficient

for problems with expensive solution evaluations. Concepts of tabu search includ-

ing recency-based tabu memory and strategic intensification and diversification are

then applied to ensure a diverse exploration of the search space. The result is an

automated, adaptive and efficient search algorithm for spacecraft tour trajectory

optimization problems. The algorithm is deterministic, and results in a diverse pop-

ulation of feasible solutions upon termination. A novel numerical search space prun-

ing approach is then developed, based on computing upper bounds to the reachable

domain of the spacecraft, to accelerate the search. Finally, the overall methodol-

ogy is applied to the fourth annual Global Trajectory Optimization Competition

(GTOC4), resulting in previously unknown solutions to the problem, including one

exceeding the best known in the literature.

vii

Contents

Acknowledgments v

Abstract vi

List of Tables xii

List of Figures xv

List of Algorithms xxiii

Chapter 1 Introduction 1

1.1 Spacecraft Tour Trajectory Definition 1

1.1.1 Optimization Problem . 2

1.1.2 Relation to Traveling Salesman Problem 4

1.2 Motivation . 5

1.3 Related Work . 7

1.4 Dissertation Organization and Contributions 10

Chapter 2 Tour Trajectory Modeling 12

2.1 General Model . 12

2.1.1 Initial Conditions . 13

2.1.2 Target Objects . 13

viii

2.1.3 Trajectory Segments . 14

2.1.4 Tour Trajectory . 15

2.2 Spacecraft Tour Trajectories . 18

2.2.1 Spacecraft Dynamics . 18

2.2.2 Target Object Dynamics . 20

2.2.3 Finite Burn Trajectory Segments 20

2.2.4 Impulsive Trajectory Segments 24

2.2.5 Impulsive Maneuver to Finite Burn Maneuver Conversion . . 27

2.2.6 Augmented Impulsive Tour Model 36

Chapter 3 Global Search Methodology 39

3.1 Solution Representation . 40

3.1.1 Properties of Tour Trajectories 41

3.1.2 Tree-Based Solution Representation 45

3.2 Neighborhoods . 53

3.2.1 Neighborhoods for the Tree Solution Representation 54

3.2.2 Restricted Best-First Neighborhood 60

3.3 Objectives . 62

3.3.1 Guiding Objective . 63

3.3.2 Budget Penalty Terms . 67

3.4 Solution Construction (Node Expansion) 70

3.5 Tabu Search . 73

3.5.1 Recency-based Tabu Memory 75

3.5.2 Strategic Intensification and Diversification 81

3.6 Algorithm Summary . 87

Chapter 4 Search Space Pruning 92

4.1 Brute-force Approach . 92

ix

4.2 Trajectory Envelopes . 95

4.2.1 Bounding Boxes . 100

4.2.2 Summary . 106

4.3 Performance . 107

Chapter 5 Application to Fourth Global Trajectory Optimization

Competition 113

5.1 Problem Definition . 115

5.1.1 GTOC4 Augmented Impulsive Tour Model 117

5.2 Best Known Solutions . 120

5.3 Results . 120

5.3.1 Base Case . 122

5.3.2 Finite Burn Constraints . 129

5.3.3 Search Space Pruning . 132

5.3.4 Dynamic Neighborhood Selection 136

5.3.5 Reduced Spacecraft Performance 142

5.3.6 Comparison to GTOC4 Winning Solution 152

5.3.7 Low-thrust Finite-burn Conversion 159

5.4 Summary . 164

Chapter 6 Conclusions 169

6.1 Dissertation Summary . 169

6.2 General Conclusions . 171

6.3 Future Work . 172

Appendices 174

Appendix A Software Implementation 174

A.1 Tree-Based Solution Representation 174

x

Appendix B Set of GTOC4 Asteroids 180

Bibliography 208

Vita 217

xi

List of Tables

2.1 Decision variables for the general tour trajectory model. 16

2.2 Spacecraft parameters and descriptions. 18

3.1 Summary of components and parameters for the tabu search algorithm. 90

4.1 Sampling parameters for trajectory segments in the augmented im-

pulsive tour model. 93

4.2 Parameters for the trajectory envelope search space pruning procedure.107

4.3 Search space pruning parameters and trajectory segment sampling

parameters for performance analysis of the space pruning procedure. 108

4.4 Results of the search space pruning approach applied to the GTOC4

problem over varying values of ∆Vmax. 110

5.1 Summary of past Global Trajectory Optimization Competition (GTOC)

problems and their mission sequences to be optimized [1]. 114

5.2 GTOC4 mission and spacecraft parameters [12]. 115

5.3 The sun’s gravitational parameter and Earth orbital elements for

GTOC4 problem in J2000 heliocentric ecliptic reference frame [12]. . 116

5.4 Final results of the fourth Global Trajectory Optimization Competi-

tion (GTOC4) [11]. 121

xii

5.5 For each case, a collection of 1024 runs are generated over a range of

launch epochs. Each run executes for 2 hours, requiring 2048 compute

hours in total. 121

5.6 Tabu search algorithm parameters for the base case. 123

5.7 Base case: the minimum, median and maximum best solutions found

over the 1024 runs. 124

5.8 Comparison of best solutions found in the GTOC4 competition results

and the base case [11]. 125

5.9 Base case: run #409/1024. The tour itinerary is shown for a J = −45

solution rendezvousing with asteroid 2006BZ147. 127

5.10 Spacecraft parameters for base case and reduced spacecraft perfor-

mance cases. 142

5.11 Summary of best solutions found for base case and reduced spacecraft

performance cases. 143

5.12 Reduced performance case A: run #622/1024. The tour itinerary is

shown for a J = −45 solution rendezvousing with asteroid 2006QQ56. 146

5.13 Reduced spacecraft performance case B: run #402/1024. The tour

itinerary is shown for a J = −43 solution rendezvousing with asteroid

2006UB17. 151

5.14 Increased spacecraft performance case: The tour itinerary is shown

for a J = −45 solution rendezvousing with asteroid 2000SZ162. . . . 156

5.15 Low-thrust finite burn trajectory corresponding to the J = −45 im-

pulsive trajectory of the reduced spacecraft performance case shown

in Figure 5.16 and Table 5.12. The tour itinerary is shown. 163

5.16 Low-thrust finite burn trajectory corresponding to the J = −43 im-

pulsive trajectory of the reduced spacecraft performance case shown

in Figure 5.18 and Table 5.13. The tour itinerary is shown. 167

xiii

A.1 Tree traversal methods implemented in the TreeNode class. 176

xiv

List of Figures

2.1 A single trajectory segment and its associated initial conditions and

decision variables. zi−1(ti−1) represents the state at the initial time.

si denotes the target object, and yi gives the continuous decision

variables of the segment including the segment duration ∆ti. 15

2.2 A tour trajectory and its associated decision variables. z0 represents

the initial state at time t0. s1 . . . sns ∈ O denote the sequence of

objects visited in the tour, and y1 . . .yns give the continuous decision

variables of each segment. The tour consists of ns trajectory segments

visiting ns target objects. 16

2.3 A finite burn trajectory segment. An initial maneuver causes the

spacecraft to intercept the target object, and an optional final ma-

neuver causes a rendezvous. 21

2.4 An impulsive trajectory segment. An initial impulse ∆Vint maneu-

vers the spacecraft to intercept the target object, and an optional

final impulse ∆Vren maneuvers the spacecraft to rendezvous with

the target. 25

2.5 The impulsive trajectory segment shown in Figure 2.4 with all space-

craft states and discontinuities shown. 26

xv

2.6 A valid finite burn representation of an impulsive ∆V maneuver The

finite burn begins at time tfb0 , thrusts over a period of time and

matches position and velocity with the post-impulse trajectory at

time tfbf [50]. 28

2.7 An impulsive trajectory segment with estimates for finite burn ma-

neuvers replacing the impulses. 30

2.8 The finite burn characteristic velocity and duration ratios are shown

for the case where gravity losses are considered and for the ideal

case. 50 consecutive maneuvers are made for an impulsive ∆V of 1

km/s. The spacecraft parameters correspond to the GTOC4 problem

described in Chapter 5. 35

3.1 k tour trajectories are shown with final states z1
ns
. . . zkns

. Each tra-

jectory shares the previous ns − 1 segments in common. The state

zns−1 can be used in the computation of the k final segments. 43

3.2 A group of trajectories. Colors identify different objects. The fi-

nal bright green object is visited with three different segments corre-

sponding to different segment decision variables y. 46

3.3 A detailed view of the tree representation of Figure 3.2 is shown.

Children of nodes are numbered in ascending order starting at 0.

Paths can be defined with ordered lists of node numbers starting at

the root of the tree. States and decision variables are annotated for

two paths, corresponding to the superscripts 1 and 2. 47

3.4 All possible tour sequences shown in the tree solution representation

for No = 5 candidate objects and sequence lengths of ns = 5. 49

3.5 Number of tours and tree solution representation speedup for total

enumeration of No = 100 candidate objects and segment discretiza-

tions of K = 1, 2, 4, 8. 51

xvi

3.6 An annotated tree is shown for an incumbent solution x. The root of

the tree xroot, children nodes C(x) and parent nodes Pk(x) are labeled. 55

3.7 The neighborhood definition N (x) = C(x) leads to a depth-first

search. At each iteration the incumbent solution moves deeper in

the tree. 56

3.8 The neighborhood corresponds to a breadth-first search. The search

explores all nodes at at the highest level of the tree before progressing

deeper. 58

3.9 A group of tour trajectories represented in the tree solution represen-

tation. The best-first neighborhood is highlighted. 59

3.10 A group of tour trajectories represented in the tree solution repre-

sentation. The restricted best-first neighborhoods corresponding to

different h values are shown. 61

3.11 The guiding objective contains the objective defined in the problem

statement evaluated on the partial trajectory J(x), and a heuristic

term based on the parameter dJ
dt

?
estimating contributions over the

remaining mission time. 64

3.12 The mass and ∆V time histories are shown for maximum continuous

thrust until fuel exhaustion and the budgeted amount. The regions

where penalties are added to the objective are highlighted. The infea-

sible regions for a finite burn model and for the final state constraints

are shown. The spacecraft parameters correspond to the GTOC4

problem [12]. 69

3.13 For the next target object s, a discretized grid of possible new chil-

dren solutions over the range of allowed τ and ∆t values. The set of

solutions found to be feasible after evaluation is highlighted. 72

xvii

3.14 The tabu list T is an array of solution attributes that are prohib-

ited in the search. Its length is the tabu tenure NT and determines

how many iterations attributes are considered tabu. As attributes of

new incumbent solutions A(xi) are added to the list, the oldest tabu

attributes are forgotten. 78

3.15 An example search history. The incumbent solution lengths are shown

along with the stall condition evaluated for Nstall = 25 and R
¯

= 5. . 83

4.1 The values for ∆Vmax are shown over varying spacecraft initial mass

and values of ∆tmax. The spacecraft parameters correspond to the

fourth annual global trajectory optimization competition (GTOC4)

summarized in Table 5.2. 97

4.2 Discretization of all possible impulsive maneuvers for a magnitude

of ∆Vmax. The maneuver direction is discretized over the spherical

angles α and β for a total of K∆V = KαKβ discretizations. 99

4.3 The trajectories forming a trajectory envelope are shown for ∆Vmax =

1 km/s and ∆tmax = 0.55 years. The spherical angles α and β are

each discretized over a 15 degree spacing. 100

4.4 An axis-aligned bounding box bounds a volume in the spatial region

of ([xmin, xmax], [ymin, ymax], [zmin, zmax]). We additionally constrain

the bounding box with a time range [tmin, tmax]. 102

4.5 NBB = 10 bounding boxes are shown for the trajectory envelope of

Figure 4.3 (∆Vmax = 1 km/s). 105

4.6 The target object bounding box intersections are shown for the case

in Figure 4.5. 105

4.7 The bounding boxes associated with trajectory envelopes from the

results in Table 4.4. 111

xviii

5.1 The set of 1436 asteroids for the GTOC4 problem. The highlighted

regions show combinations of semimajor axis and eccentricity for Ati-

ras, Atens, Apollos and Amors near-Earth asteroids [45]. 116

5.2 Base case: Best partial and complete solutions found for 1024 runs

over launch dates from 2015 to 2025. 124

5.3 Base case: run #409/1024. The objective history for the incumbent

solution and best found partial and complete solutions are shown. . 126

5.4 Base case: run #409/1024. The trajectory is shown for a J = −45

solution rendezvousing with asteroid 2006BZ147. 128

5.5 The best solutions found for the base case and the case ignoring finite

burn constraints. 130

5.6 The number of trajectory families found for complete solutions in the

base case and the case ignoring finite burn constraints. 131

5.7 Performance of base case (search space pruning) versus case with

space pruning disabled for 1024 runs. The run time is constrained to

2 hours. A median of 10.5× more iterations are computed with space

pruning enabled, with 95% of runs seeing at least a 5× improvement. 133

5.8 Results of base case (search space pruning) versus case with space

pruning disabled for 1024 runs. The run time is constrained to 2

hours. The best partial and complete solutions are shown. 134

5.9 Performance of base case (search space pruning) versus case with

space pruning disabled for 1024 runs. 1000 iterations are computed

and the run time is unconstrained. The median runtime speedup is

11.0× with 99% of the runs seeing at least a 5× speedup. 135

xix

5.10 The results of the base case are re-run with dynamic neighborhood

selection disabled for various static values of the restricted best-first

neighborhood parameter h. The best solutions found are shown for

each case. 138

5.11 The best solutions found for the static neighborhood h =∞ case and

the dynamic neighborhood selection case. 139

5.12 The number of trajectory families found for complete solutions in the

dynamic neighborhood selection case and the static neighborhood

h =∞ case. 140

5.13 The standard deviation of the incumbent solution length for all runs

in the dynamic neighborhood selection case and the static neighbor-

hood h =∞ case. 141

5.14 Reduced spacecraft performance cases compared to base case: Best

partial and complete solutions generated by 1024 runs over launch

dates from 2015 to 2025. 144

5.15 Reduced spacecraft performance case A: run #622/1024. The objec-

tive history for the incumbent solution and best found partial and

complete solutions are shown for (a) 2 hour run time and (b) 36 hour

run time. 145

5.16 Reduced performance case A: run #622/1024. The trajectory is

shown for a J = −45 solution rendezvousing with asteroid 2006QQ56. 147

5.17 Reduced spacecraft performance case B: run #402/1024. The objec-

tive history for the incumbent solution and best found partial and

complete solutions are shown for (a) 2 hour run time and (b) 36 hour

run time. 148

xx

5.18 Reduced spacecraft performance case B: run #402/1024. The tra-

jectory is shown for a J = −43 solution rendezvousing with asteroid

2006UB17. 150

5.19 Number of trajectory families found versus objective for the base

case parameters and a launch epoch of 58676.40 MJD. The search is

allowed to run for 12 hours. Only complete solutions are shown. . . 153

5.20 Number of trajectory families found versus objective for the increased

spacecraft performance case and a launch epoch of 58676.40 MJD.

The spacecraft’s maximum allowed thrust Tmax is increased by 5%

from 0.135 N to 0.14175 N. The search is allowed to run for 12 hours.

Only complete solutions are shown. 155

5.21 Increased spacecraft performance case: The trajectory is shown for a

J = −45 solution rendezvousing with asteroid 2000SZ162. 157

5.22 Workflow for GTOC4 solution process. The impulsive search algo-

rithm generates a population of impulsive trajectories. The user then

selects specific impulsive trajectories, optimizes them impulsively, and

passes them to the black-box finite burn conversion and optimization

tool. 160

5.23 Low-thrust finite burn trajectory corresponding to the J = −45 im-

pulsive trajectory of the reduced spacecraft performance case shown

in Figure 5.16 and Table 5.12. 161

5.24 Low-thrust finite burn trajectory corresponding to the J = −45 im-

pulsive trajectory of the reduced spacecraft performance case shown

in Figure 5.16 and Table 5.12. The original impulsive trajectory is

also shown. 162

xxi

5.25 Low-thrust finite burn trajectory corresponding to the J = −43 im-

pulsive trajectory of the reduced spacecraft performance case shown

in Figure 5.18 and Table 5.13. 165

5.26 Low-thrust finite burn trajectory corresponding to the J = −43 im-

pulsive trajectory of the reduced spacecraft performance case shown

in Figure 5.18 and Table 5.13. The original impulsive trajectory is

also shown. 166

A.1 The software package that implements the tabu search methodology

allows users to interactively run, adjust and analyze results of the

search through its user interface and visualization capabilities. . . . 175

A.2 The TreeNode class represents nodes in the tree-based solution repre-

sentation. A TreeNode object is shown with the parent and children

nodes it references. The collection of TreeNode objects combine to

form the search tree. 177

xxii

List of Algorithms

1 Local search algorithm. 40

2 Adaptively update guiding objective heuristic 67

3 Basic tabu search algorithm [63]. 76

4 Test if a solution x is tabu. 80

5 Update tabu attributes. 80

6 Intensify the search about the solution x. 85

7 Diversify the search about the solution x. 86

8 Escape from the region of the search space near the solution x. . . . 86

9 Dynamically update the neighborhood based on the search performance. 88

10 Tabu search algorithm. 91

11 Expand the bounding box b given the position (x, y, z) at time t. . . 103

12 Test if the bounding box b contains the position (x, y, z) at time t. . 104

13 Example getLeaves() implementation. 178

xxiii

Chapter 1

Introduction

1.1 Spacecraft Tour Trajectory Definition

A spacecraft tour trajectory can be defined as a trajectory in which a spacecraft

visits a number of objects in sequence. The collection of target objects may consist

of satellites, moons, planets or any other body in orbit. The spacecraft may visit

these in a variety of ways, for example flying by or rendezvousing with the targets.

The conditions that must be satisfied at each target are problem-specific, as are the

dynamics of the trajectory and constraints on the spacecraft. The key characteristic

however is the target object sequence: this is a discrete set of decisions that must be

made along the trajectory. For some missions the sequence may be predetermined,

while for others it may be designed to optimize mission objectives. This work

focuses on the latter case. The sequence of a tour trajectory may be designed by

hand; however, as mission complexity grows this quickly becomes challenging. For

such problems there may be a vast number of potential sequences, and enumerating

even a fraction of them is not practical. Further, for each single sequence there may

exist a continuum of solutions. Developing an automated methodology for finding

promising spacecraft tour trajectories, subject to problem-provided constraints and

1

objectives, is the subject of this work.

1.1.1 Optimization Problem

We can formulate the spacecraft tour trajectory design problem as an optimization

problem. The decision variables of the optimization include two principal com-

ponents: the target object sequence of the trajectory, and the remaining decision

variables representing initial conditions, timing and maneuvering information, for

example. The sequence decision variables are discrete, belonging to a finite (but

potentially very large) set of possible values. Conversely, the remaining decision

variables are continuous. The resulting problem is thus a hybrid discrete-continuous

optimization problem combining the challenges of discrete and combinatorial opti-

mization with continuous optimization.

We can examine the overall problem by considering its simplifications. First,

consider the target object sequence to be predetermined and fixed. This eliminates

the discrete decision variables and yields a continuous optimization problem that is

treatable using optimal control methods. Numerical methods for continuous optimal

control problems can be broadly classified as either indirect or direct methods [13].

Indirect methods are based on analytical necessary conditions from the calculus

of variations, and usually require the solution of a nonlinear multipoint boundary

value problem [33]. Direct methods instead introduce a parameterization for the

control variables, transcribing the continuous optimal control problem into a pa-

rameter optimization problem. The control variables are then manipulated directly

to optimize the objective function, resulting in a nonlinear programming problem

(NLP) [48]. The general optimal control problem is a global optimization problem;

however both the indirect and direct methods described so far only find locally opti-

mal solutions. These formulations can be used in multi-stage workflows, for example

executing the optimization for a variety of starting conditions [60] or in combination

2

with metaheuristic approaches [18, 67], to explore the global search space. Further,

metaheuristic methods can be used on their own to find optimal solutions in the

global search space [66, 61].

We can also simplify the problem by eliminating the continuous decision

variables, either by fixing their values or disregarding the dynamics of the problem.

The result is then a discrete optimization problem that only considers the target

object sequence of the trajectory. If we represent the sequence with integer decision

variables, the result is an integer programming problem (IP) [47]. Integer pro-

gramming problems are NP-hard, and it is widely believed that no polynomial-time

algorithms exist for their solution [53]. We can classify solution methods for integer

programming problems as either exact or approximate. An exact method finds a

provably optimal solution, while an approximate method finds good solutions with

no guarantee of optimality. The commonly used exact method for solving integer

programming problems is branch and bound. The algorithm systematically enumer-

ates candidate solutions, discarding subsets of solutions based on estimates for upper

and lower bounds on the objective being optimized. In the case of minimization,

lower bounds are often found by solving relaxations of the original problem–for

example by allowing integer decision variables to be continuously valued. Upper

bounds representing worst-case best solutions are generated as integer-feasible so-

lutions are found. Dynamic programming is another method applicable to integer

programming problems that can be decomposed into simpler subproblems in a recur-

sive manner. The method is based on Bellman’s principle of optimality [10]. Both

branch and bound and dynamic programming find globally optimal solutions; how-

ever the required computational effort make them impractical for many larger-scale

problems. In these cases approximate methods such as metaheuristics can be used.

These include evolutionary and genetic algorithms, simulated annealing, particle

swarm optimization and tabu search, among others [43]. These methods generally

3

do not find provably global optimal solutions; their purpose is instead to find good

solutions in reasonable compute times. For both exact and approximate methods,

space pruning approaches can be used to reduce the size of the search space and re-

duce the time to solution. For example, cutting plane methods use valid inequalities

to prune the search space; when combined with branch and bound these form the

basis for branch and cut algorithms [47]. Similarly, other space pruning procedures

can be combined with approximate methods to achieve speedups [35].

When we combine both the discrete and continuous components of the op-

timization problem, we can form a mixed-integer nonlinear programming problem

(MINLP) [22]. The focus of this work is on large-scale spacecraft tour trajectory

problems, and thus we explore metaheuristic methods for their solution in this study.

1.1.2 Relation to Traveling Salesman Problem

The traveling salesman problem (TSP) is perhaps the most widely studied problem

in discrete and combinatorial optimization, and can be considered as a basis for

the spacecraft tour trajectory optimization problem [40]. The problem considers

a salesman that departs his home city, visits each of a collection of cities, and

then returns to his home city upon completion. The optimal tour minimizes the

total distance traveled by the salesman. For N cities, there are a total of (N − 1)!

possible tours starting from the home city. If the distance between cities is the

same regardless of direction, then the problem is symmetric and the search space

can be reduced to (N−1)!
2 solutions. For N = 10, there are nearly 200,000 possible

solutions; for N = 100, there are more than 10155. Total enumeration is clearly not

feasible except for the smallest problem instances. In 1954, Dantzig solved a 49-city

TSP, establishing a record that held for 17 years [19]. As of this writing, the largest

known solved instance of the traveling salesman problem consists of 85,900 cities,

and was found by the Concorde solver using cutting plane methods [5].

4

We can adapt the TSP to fit the spacecraft tour trajectory optimization

problem by considering the salesman to be the spacecraft, the cities to be target ob-

jects, and the objective to minimize fuel consumption or mission time, for example.

Further, there exist variations of the TSP which can be mapped to other compo-

nents of spacecraft tour trajectory problems [30]. While the standard TSP considers

visiting the entire collection of cities, the orienteering problem instead requires vis-

iting only a subset of the cities. Each city has an associated value or prize, and

the objective is to find a tour maximizing the total collected prize. Travel between

cities has an associated duration, and the tour must not exceed a problem-specified

total duration. The duration constraint can be mapped to either a maximum time

limit or fuel limit on a spacecraft trajectory, and the prize associated with each city

can be mapped to mission value per target object, for example. Another variation

is the time dependent TSP, which considers the cost of travel between cities to vary

with each time period. The moving target TSP further complicates the problem

by assuming all cities are moving at some fixed velocity. The combination of these

latter two variations could be used to approximate the dynamics and maneuver-

ing costs of a spacecraft trajectory, for example. The close relation of the TSP to

the spacecraft tour trajectory optimization problem highlights the applicability of

discrete and combinatorial optimization methods to the current work.

1.2 Motivation

The main purpose of this dissertation is the development of a novel methodology

for solving spacecraft tour trajectory design and optimization problems. The search

space for problems of this type is sufficiently large to make exact approaches imprac-

tical. Therefore, the focus of this work is the development of an efficient algorithm

that finds promising, but not provably globally optimal, solutions quickly. We base

our approach on the tabu search metaheuristic, adapting and extending the method

5

to the spacecraft tour trajectory optimization problem, and benchmark the method

against known problems in the literature [27].

There are many examples of interplanetary missions that can be considered

spacecraft tour trajectories. These include the Voyager 1 and 2, Cassini-Huygens,

Messenger and Rosetta missions, among others. Each of these trajectories executes

a sequence of gravitational flybys, and could therefore have been posed as a space-

craft tour trajectory optimization problem. However, the primary motivation for

this work is problems with much larger design spaces. An example of practical im-

portance is the Earth orbital debris problem: as the amount of debris in low Earth

orbit increases, the collision risk to current and future space missions grows [37].

Even with no new satellite launches, in the absence of any mitigation strategy this

population will continue to increase due to collisional cascading, a behavior known

as the Kessler syndrome [38]. As a result, recent studies have emphasized the need

for active debris removal (ADR) to control the orbital debris population [41, 42].

One concept for ADR is the design of missions to rendezvous with multiple debris

objects for the purposes of mitigation [6, 14, 15]. This is a challenging problem,

requiring the design of a trajectory that visits a subset of debris objects out of a

population of thousands of potential targets. The methodology developed in this

work is directly applicable to such problems.

The Global Trajectory Optimization Competition (GTOC) is another pri-

mary motivation for this study [1]. The GTOC is an international competition

focusing each year on challenging global optimization problems in interplanetary

trajectory design. Each of the past seven competition problems have belonged to

the class of discrete-continuous optimization problems that is the focus of this work.

The GTOCs have enjoyed wide participation, and the competition results serve as a

useful set of benchmark solutions for testing new methodologies for spacecraft tour

trajectory optimization. The fourth GTOC problem, a multiple asteroid intercept

6

and rendezvous mission, is specifically considered in this work [12].

1.3 Related Work

Recently there has been an increase in research related to the spacecraft tour tra-

jectory problem, including applications of both exact and approximate methods for

discrete-continuous optimization. At the time of Betts’s survey paper, he made the

claim that trajectory optimization problems do not fall into the class of problems

with discrete decision variables, and therefore there was no reason to use such meth-

ods [13]. Although this was more true at that time, this is becoming no longer the

case. Here we give a brief overview of some of the relevant contributions in this

area.

Alemany conducted a survey in 2007 on global optimization for low-thrust

multiple asteroid tour missions [4]. At the time, there were no fully integrated

methods in the literature for optimizing full tour trajectories, including the mission

sequence. Instead, the sequences were predetermined using other approaches be-

fore passing them to a continuous optimization method. Alemany later developed a

branch and bound approach that she combined with pruning techniques to systemat-

ically explore the asteroid sequences as well [3]. The pruning techniques were limited

to rendezvous missions only, however, ignoring the possibility for flybys. Cerf later

successfully applied branch and bound to a multiple space debris collection mission

[15]. He points out, however, that the approach is limited to smaller problem sizes,

and for large-scale problems it would be necessary to explore alternate approaches.

A dynamic programming based approach was used by Grigoriev to generate the win-

ning solution for the fourth Global Trajectory Optimization Competition (GTOC4)

[29]. That method relied on a heuristic procedure to significantly prune the search

space, and thus the final solution was not provably globally optimal. In general, the

successful application of these exact procedures depends on either a small problem

7

size or a significant problem-specific pruning of the search space.

There have been various approaches to addressing tour problems using meta-

heuristics, many of which have been hybrid approaches. Sentinella developed a hy-

brid evolutionary algorithm for interplanetary trajectories with multiple impulses

and gravity assists [61]. The method makes use of genetic algorithms, differential

evolution and particle swarm optimization in parallel . The approach finds globally

good solutions, but does not vary the discrete decision variables of the problem–the

mission sequences are fixed. Izzo applies differential evolution, particle swarm opti-

mization, and genetic algorithms to multiple gravity assist trajectories in a similar

way [35]. Another hybrid approach by Woo uses a genetic algorithm for global search

and refines solutions with an indirect calculus of variations based method [72], while

Shan does the same but instead combines particle swarm optimization with a direct

method [62]. Vinko benchmarks several global optimization metaheuristics on tour

problems as well [69]. In all of these cases, the metaheuristic methods are used to

find globally good solutions for fixed mission sequences, not treating the discrete

decision variables of the problems.

Other approaches treat the combinatorial components of the tour problem

serially in a multi-stage manner. Izzo presents a three-stage method to for an

asteroid grand tour problem [36]. The first stage treats the combinatorial problem,

finding promising sequences based on a generalized distance metric, while the latter

two stages treat the global and local optimization of the problem for the given

sequence. Olympio formulates the low-thrust multiple asteroid tour problem as an

optimal control problem, utilizing an indirect method for its solution [52]. It takes

as input an impulsive tour with a predetermined sequence to generate the low-thrust

optimal result, and can thus be used as a final stage for other methods.

A limited number of approaches have varied the mission sequences directly

in the metaheuristic search procedures. Vasile combined an evolutionary algorithm

8

with a systematic branching strategy [65]. In some of the results, the mission se-

quences were left free in the optimization, and promising results were found for

flyby sequences to Jupiter. However, the author recommended that the combina-

torial components of the problem be treated separately. Morimoto implements a

basic genetic algorithm for multiple asteroid sample return missions [46]. In that

work the asteroid sequence was left free (but of fixed length), and missions visiting

sequences of up to three asteroids were found.

Finally, custom approaches not based on a particular metaheuristic have

been used. Barbee created the series method for finding promising tours of multiple

small bodies, considering both rendezvous and flyby, and applied the methodol-

ogy to the fourth Global Trajectory Optimization Competition [7]. The method

iteratively constructs the tour, at each step generating a population of additional

trajectory segments and choosing the next segment in a greedy nearest-neighbor

manner. The method therefore does not explore the global search space, but exe-

cutes with a reduced computational complexity. Later, he applied the same method

for designing missions to remove multiple orbital debris objects [6]. In both cases,

both the sequence of target objects and continuous decision variables were allowed

to vary simultaneously. However, the optimality of the series method has not been

determined.

The methods surveyed span exact and approximate methods in discrete and

combinatorial optimization, global optimization, as well as direct and indirect meth-

ods in continuous trajectory optimization. However, few methods treat both the

mission sequence and continuous decision variables in a unified approach. The au-

thor notes however that there are undoubtedly other approaches not documented in

the literature that have been developed and applied to the several Global Trajectory

Optimization Competition problems [1].

9

1.4 Dissertation Organization and Contributions

The current dissertation describes an overall methodology for the solution of space-

craft tour trajectory optimization problems for the purposes of preliminary and

conceptual mission design. The work focuses on large-scale problems, and applies

many of the tenets of tabu search. The resulting method is intended to be broadly

applicable to spacecraft tour trajectory optimization problems.

Chapter 2 develops a general model for tour trajectories that visit a collection

of target objects in sequence. Cases are modeled where both the agent and target

objects move with time according to some set of prescribed dynamics. This general

model defines the parameterization and decision variables that are used in subse-

quent models and the development of the global search methodology. A model for

spacecraft tour trajectories subject to two-body dynamics utilizing impulsive ma-

neuvers is then developed for use in later applications. Chapter 3 develops the global

search methodology, based on the tabu search metaheuristic, for finding promising

solutions to tour trajectory optimization problems. It first describes a tree-based

solution representation for tour trajectories, and then defines neighborhoods that

operate on that representation. It then presents guiding objective functions for use

in the search, and describes the use of recency-based tabu memory as well as strate-

gic intensification and diversification. The result is an algorithm based on the tabu

search metaheuristic, which is the first known application of tabu search to space-

craft trajectory optimization. Chapter 4 then develops a novel numerical method

for search space pruning which can be used to accelerate the tabu search algorithm.

The approach efficiently computes an upper bound to the reachable domain of the

spacecraft that is used to prune the search space and reduce the number of infea-

sible trajectories explored during the search. Finally, Chapter 5 applies all of the

components of the methodology to the fourth annual Global Trajectory Optimiza-

tion Competition (GTOC4). It combines the impulsive spacecraft tour trajectory

10

model, the tabu search algorithm and the search space pruning method. A sensi-

tivity analysis is conducted to study the effect of each component of the algorithm.

Selected solutions are converted to optimal finite burn trajectories, generating new

previously unknown solutions to GTOC4. Chapter 6 then draws general conclusions

and presents possibilities for future work.

11

Chapter 2

Tour Trajectory Modeling

This chapter develops models for tour trajectories that visit a collection of target

objects in sequence. We model cases where both the agent and target objects are

allowed to move with time according to some set of prescribed dynamics. These

tour trajectories therefore represent complications of simpler models such as that

of the traveling salesman problem. A general model is first developed; this defines

the parameterization and decision variables for use in subsequent models and the

global search methodology discussed in Chapter 3, “Global Search Methodology”.

We then develop a model for spacecraft tour trajectories considering their specific

dynamics that is used for applications in Chapter 5, “Application to Fourth Global

Trajectory Optimization Competition”.

2.1 General Model

We develop a general model for tour trajectories that represents all of the deci-

sion variables applicable to the types of tour problems we will consider. Like the

traveling salesman problem, it must first represent the sequence of target objects

the agent must visit. However, now we assume that the agent and target objects

12

move with time, and therefore may be visited at different times resulting in differ-

ent costs. There are a continuum of ways with associated costs to move from one

target to another, rather than the singular static costs of moving between objects in

the traveling salesman problem. The tour problem thus has both discrete decision

variables to represent the sequence and continuous decision variables that determine

the properties of the specific path taken.

2.1.1 Initial Conditions

The tour begins with the initial conditions of the agent. This includes the time at

which the tour starts, t0, and the initial state of the agent at that time. Since the

agent moves according to some dynamics, the state contains the velocity in addition

to the position. Specific problems may include additional elements in the state such

as the agent’s mass or available fuel, for example. The components of the state are

given in the state vector z. Thus, the decision variables for the initial conditions are

t0 initial time (2.1)

z0(t0) =

r(t0)

v(t0)

 agent state at initial time (2.2)

The initial conditions may be free or constrained in the problem statement. For

example, they may be constrained to match the state of an initial target object at

t0.

2.1.2 Target Objects

We have a collection of target objects that the agent may visit during the tour. We

define these target objects with the set O,

O = {O1, O2, O3, . . . , ONO
} (2.3)

13

In the traveling salesman problem, these target objects represented cities with fixed

positions and therefore fixed distances between them. We now allow them to move

with time and assume that their position and velocity are known for all time. Their

state can be computed according to known dynamics or retrieved by some other

means such as an ephemeris. We define the state of a target object Oi with its

position and velocity as

XOi(t) =

rOi(t)

vOi(t)

 (2.4)

With the addition of the velocity to the state, there are now two ways that

we may visit a target object. We say that the agent intercepts the target it matches

the target’s position at a specified time. The agent rendezvouses with the target if

it additionally matches the target’s velocity. If we visit a target object Oi at time

tk, then the conditions for an intercept and rendezvous are

r(tk) = rOi(tk) (intercept) (2.5)r(tk)

v(tk)

 =

rOi(tk)

vOi(tk)

 (rendezvous) (2.6)

2.1.3 Trajectory Segments

We define a trajectory segment for each target object in a tour sequence. A segment

begins at a given time and state ti−1 and zi−1 and ends at a target object specified

by the discrete decision variable si ∈ O. We also associate continuous decision

variables yi with the segment; at a minimum this contains the segment duration

∆ti, but can also have elements to represent maneuvers or other properties of the

trajectory to si. We then have

yi =

∆ti
...

 (2.7)

14

Figure 2.1: A single trajectory segment and its associated initial conditions and
decision variables. zi−1(ti−1) represents the state at the initial time. si denotes the
target object, and yi gives the continuous decision variables of the segment including
the segment duration ∆ti.

The time at the end of the segment ti is found from the known initial time ti−1 and

the segment duration ∆ti as

ti = ti−1 + ∆ti (2.8)

Given the initial conditions zi−1 at ti−1 and the segment decision variables

si and yi, we can compute the state at the end of the segment zi according to the

prescribed dynamics functionally as

zi(ti) = zi (ti−1, zi−1, si,yi) (2.9)

This assumes that any required maneuvers can be computed for either intercepting

or rendezvousing with the target object. This is dependent on the dynamics of the

specific problem; we consider specific cases for spacecraft tour trajectories in later

sections. Figure 2.1 shows a single trajectory segment.

2.1.4 Tour Trajectory

We can patch multiple trajectory segments together to form a complete tour tra-

jectory, where the final state of one segment corresponds to the initial conditions of

15

Figure 2.2: A tour trajectory and its associated decision variables. z0 represents
the initial state at time t0. s1 . . . sns ∈ O denote the sequence of objects visited in
the tour, and y1 . . .yns give the continuous decision variables of each segment. The
tour consists of ns trajectory segments visiting ns target objects.

Name Description

t0 Initial time of the tour
z0 Initial state of the tour at time t0
s1 . . . sns Sequence of objects (from the set O) visited in the tour
y1 . . .yns Continuous decision variables of each trajectory segment (contains

the duration of each segment ∆ti)

Table 2.1: Decision variables for the general tour trajectory model.

the next. A tour begins at the initial conditions z0 at time t0 and continues for ns

trajectory segments visiting ns target objects. Figure 2.2 shows a tour trajectory,

and Table 2.1 summarizes the decision variables. We can combine all of the decision

variables into a solution vector x as

x = [t0, z0, s1 . . . sns , y1 . . .yns] (2.10)

Given a solution x, we can compute the state z at any time according to the problem-

provided prescribed dynamics as

z(t) = f(t,x) (2.11)

16

A tour trajectory optimization problem can then be written in terms of a

scalar objective function J(x), dynamics f and inequality constraints C as.

Determine x = [t0, z0, s1 . . . sns , y1 . . .yns] (2.12)

minimizing J(x) (2.13)

subject to z(t) = f(t,x) (2.14)

Cinitial(t0, z0) ≤ 0 (2.15)

Csequence(s1 . . . sns) ≤ 0 (2.16)

Csegment(si,yi) ≤ 0 for i = 1 . . . ns (2.17)

C(x) ≤ 0 (2.18)

Note that equality constraints can be expressed as two inequality constraints in

the above formulation. The definitions of the objectives, dynamics and constraints

above are problem specific. Separable constraints of the initial conditions, tour

sequence, or segment decision variables may exist (Equations (2.15) through (2.17)).

Constraints coupling all of the decision may also exist (Equation (2.18)). This model

is general in the sense that it encompasses problems of simpler types. For example,

when the dynamics vanish and the objective is to minimize the total travel cost

visiting all target objects, it represents a traveling salesman problem. Alternatively,

when the object sequence is fixed, we have a continuous trajectory optimization

problem. The objective, dynamics and constraints in the model may be nonlinear,

and the sequence decision variables s1 . . . sns can represented as a set integer decision

variables. The model is therefore a mixed-integer nonlinear programming problem

[54, 22].

17

m0 Initial mass (with fuel)
mdry Dry mass (fuel exhausted)
Tmax Maximum thrust magnitude
Isp Specific impulse

Table 2.2: Spacecraft parameters and descriptions.

2.2 Spacecraft Tour Trajectories

We now implement the general tour model described in the previous section for

the specific case of spacecraft tour trajectories. The agent of the model is now

a spacecraft, and the target objects are now objects in space such as satellites,

asteroids or other celestial objects. We treat the spacecraft and target objects as

point masses throughout the development.

2.2.1 Spacecraft Dynamics

We define the spacecraft with a propulsion system and a corresponding mass of fuel

onboard with which to make maneuvers. We limit our development to a constant

specific impulse propulsion system with a maximum thrust magnitude [16]. Table 2.2

gives the parameters of the spacecraft. We extend to the state vector z to now

include the spacecraft’s mass as

z(t) =


r(t)

v(t)

m(t)

 (2.19)

Then, at the initial time of the tour the spacecraft’s mass is

m(t0) = m0 (2.20)

18

and it is constrained for all time by the limited fuel mass as

m(t) ≥ mdry (2.21)

The spacecraft may thrust in any direction and with any magnitude up to the limit

of Tmax as long as fuel is available. We define the spacecraft’s thrusting over time

with T(t) such that T (t) ≤ Tmax. The spacecraft is subject to a gravitational

acceleration g(r), and its motion is governed by

z0(t0) =


r(t0)

v(t0)

m(t0)

 ż(t) =


v(t)

g(r(t)) + T(t)
m(t)

− T (t)
Isp g0

 (2.22)

where g0 is the standard gravitational acceleration on Earth’s surface. This initial

value problem can be numerically integrated given a definition of g(r) and a thrust

history T(t). If we have Keplerian two-body motion about a central body with

gravitational parameter µ, then the spacecraft’s equations of motion are

z0(t0) =


r(t0)

v(t0)

m(t0)

 ż(t) =


v(t)

− µ
r(t)3 r(t) + T(t)

m(t)

− T (t)
Isp g0

 (2.23)

This ignores any effect of target objects on the spacecraft’s motion. We will assume

Keplerian two-body motion for the rest of the development. The spacecraft is in

ballistic motion when T(t) = 0; in that case it is only subject to the gravitational

acceleration of the central body. The ballistic motion can then be found as the

solution to Kepler’s problem [8].

19

2.2.2 Target Object Dynamics

The motion of the target objects Oi is assumed to be known such that their state

XOi at any time t can be represented as

XOi(t) =

rOi(t)

vOi(t)

 (2.24)

The state XOi(t) may be provided in the form of a pre-computed ephemeris and

retrieved directly, or may be computed according to prescribed dynamics. For ex-

ample, if the objects Oi move according to a gravitational acceleration g(r), then

their states may be found at any time as the solution of the initial value problem

XOi(t0) =

rOi(t0)

vOi(t0)

 ẊOi(t) =

 vOi(t)

g(rOi(t))

 (2.25)

which can be numerically integrated. If we further assume that the target objects

Oi are in two-body Keplerian motion about a central body as we did with the

spacecraft, then we have

XOi(t0) =

rOi(t0)

vOi(t0)

 ẊOi(t) =

 vOi(t)

− µ
rOi

(t)3 rOi(t)

 (2.26)

This motion may also be integrated numerically, but can also more simply be solved

as the solution to Kepler’s problem [8].

2.2.3 Finite Burn Trajectory Segments

We can model the thrust history of the spacecraft T(t) directly as a series of finite

burn maneuvers. A single finite burn maneuver models a continuous thrust over a

non-zero period of time, and is therefore a realistic model for low-thrust spacecraft.

20

(rendezvous only)

Figure 2.3: A finite burn trajectory segment. An initial maneuver causes the
spacecraft to intercept the target object, and an optional final maneuver causes a
rendezvous.

Here we will define trajectory segments using finite burns for use in constructing

tour trajectories.

Figure 2.3 gives one possible parameterization for a finite burn segment.

There are two finite burn maneuvers: Tint(t) intercepting the target object and

Tren(t) completing an optional rendezvous to match its velocity. The τ decision

variables give time bounds on the finite burn maneuvers and are constrained such

that

0 ≤ τint0 < τintf ≤ τren0 < 1 (2.27)

The rendezvous maneuver ends at the final time of the segment. In order to pa-

rameterize the thrust histories, let us decompose the thrust vector T(t) into its

21

magnitude T (t) and a unit thrust direction û(t), such that

T(t) = T (t) û(t) (2.28)

0 ≤ T (t) ≤ Tmax (2.29)

‖û(t)‖ = 1 (2.30)

The unit thrust direction can be further parameterized by spherical angles α(t) and

β(t) as

û(t) =


cosα(t) cosβ(t)

sinα(t) cosβ(t)

sinβ(t)

 (2.31)

If we assume a quadratic steering model [49], then we have

α(t) = α0 + α̇0(t− tfb0) +
α̈0(t− tfb0)2

2
(2.32)

β(t) = β + β̇0(t− tfb0) +
β̈0(t− tfb0)2

2
(2.33)

where tfb0 is the beginning time of the maneuver. Finally, we can fix the thrust

magnitude to its maximum value such that

T (t) = Tmax (2.34)

The continuous decision variables for a finite burn trajectory segment intercepting

a target object are then

yinti =
(

∆ti τint0 τintf (α0 α̇0 α̈0 β0 β̇0 β̈0)int

)T
1×9

(2.35)

22

and for the rendezvous case they are

yreni =

 ∆ti τint0 τintf (α0 α̇0 α̈0 β0 β̇0 β̈0)int · · ·
τren0 (α0 α̇0 α̈0 β0 β̇0 β̈0)ren

T

1×16

(2.36)

The segment decision variables yi must then be chosen to intercept or ren-

dezvous with the target object si, given the initial conditions zi−1 at ti−1. For

each segment in a tour then, the segment conditions that must be satisfied for the

intercept case are

C(yinti) =
(
r(ti−1 + ∆ti)− rsi(ti−1 + ∆ti)

)
3×1

= 0 (2.37)

and for the rendezvous case are

C(yreni) =

r(ti−1 + ∆ti)− rsi(ti−1 + ∆ti)

v(ti−1 + ∆ti)− vsi(ti−1 + ∆ti)


6×1

= 0 (2.38)

In both cases we have an underdetermined system of nonlinear equations. Multiple

feasible solutions may be possible, or a feasible solution may not exist. If multiple

feasible solutions are possible, then a single solution can be found by defining an

objective function and computing an optimal solution. However, multiple locally

optimal solutions may also exist. In general this is a challenging the problem,

and constructing a tour trajectory composed of multiple of these segments only

increases the difficulty. Existing systems such as Copernicus can be used to find

such solutions given a fixed sequence s1 . . . sns [51, 71]. Olympio provides an optimal

control formulation of the tour problem for fixed sequences as well [52].

23

2.2.4 Impulsive Trajectory Segments

We can alternatively develop trajectory segments in terms of impulsive maneuvers,

ignoring the spacecraft’s limited maximum thrust magnitude. An impulsive maneu-

ver occurs instantaneously and imparts a change in velocity denoted as ∆V. This

is a discontinuous change in the spacecraft’s state, and is thus a less realistic model

for spacecraft, especially those with low-thrust propulsion systems where the thrust

durations are long. However, this approach has advantages compared to the finite

burn approach especially in the context of tour trajectories.

The states immediately before and after the maneuver are z(t−) and z(t+)

and can be expressed as

z(t−) =


r(t−)

v(t−)

m(t−)

 z(t+) =


r(t+)

v(t+)

m(t+)

 (2.39)

The change in velocity ∆V defines the maneuver. There is also a corresponding

change in mass ∆m corresponding to fuel used during the maneuver. The states

instantaneously before and after the maneuver satisfy the relation

z(t+) = z(t−) +


0

∆V

∆m

 (2.40)

Only the position of the spacecraft is the same across the impulse. Given the

magnitude of a maneuver ∆V , the change in mass ∆m may be determined using

the Tsiolkovsky rocket equation that relates the magnitude of the maneuver to the

propellant mass consumed [59].

∆V = Isp g0 ln

(
m(t−)

m(t+)

)
(2.41)

24

(rendezvous only)

Figure 2.4: An impulsive trajectory segment. An initial impulse ∆Vint maneuvers
the spacecraft to intercept the target object, and an optional final impulse ∆Vren

maneuvers the spacecraft to rendezvous with the target.

Manipulating the rocket equation we then have

∆m = m(t+)−m(t−) = m(t−)
(
e−∆V/(Ispg0) − 1

)
(2.42)

The state change that occurs for an impulsive maneuver is therefore completely

determined by the ∆V maneuver as

z(t+) = z(t−) +


0

∆V

m(t−)
(
e−∆V/(Ispg0) − 1

)
 (2.43)

Figure 2.4 shows an impulsive trajectory segment. The segment begins at a

given initial state zi−1 at ti−1 and has a total duration ∆ti. An intercept maneuver

25

(rendezvous only)

Figure 2.5: The impulsive trajectory segment shown in Figure 2.4 with all spacecraft
states and discontinuities shown.

occurs at time ti−1 + τi∆ti, where 0 ≤ τi ≤ 1. Finally, an optional maneuver to

rendezvous with the target object occurs at ti−1 + ∆ti. The states of the spacecraft

are discontinuous across the maneuvers, and are shown schematically in Figure 2.5.

Recall that the initial state of the spacecraft zi−1(ti−1) is known, and the

states of the target objects are known for all time. The targeting problem is therefore

to determine the ∆V maneuvers such that

r(ti−1 + ∆ti)− rOi(ti−1 + ∆ti) = 0 (intercept) (2.44)r(ti−1 + ∆ti)− rOi(ti−1 + ∆ti)

v(ti−1 + ∆ti)− vOi(ti−1 + ∆ti)

 = 0 (rendezvous) (2.45)

For two-body Keplerian motion, these maneuvers may be computed as a solution

to Lambert’s problem [9, 64]. Concisely, given two positions and the elapsed time

between them, the solutions of Lambert’s problem provide the velocities at the

26

endpoints.

Lambert(r1, r2,∆t) =⇒ v1,v2 (2.46)

These computed velocities allow for the determination of ∆Vint and ∆Vren in the

impulsive trajectory segment. It is important to note that in general there are

multiple solutions to Lambert’s problem corresponding to “short way”, “long way”,

and multiple revolution solutions [28]. It is assumed that the solution corresponding

to the minimum total maneuver magnitude is used. Thus, for the intercept we only

need to know when the maneuver occurs; a rendezvous maneuver occurs at the time

of intercept to match velocity with the target.

We can now define the parameters for the impulsive trajectory segment as

the segment duration and intercept maneuver time

yi =

∆ti

τi

 (2.47)

These uniquely determine the maneuvers and trajectory to the target object si. The

segment can be fully computed given its initial conditions, target object and segment

decision variables. The resulting computation gives the values for any intercept and

rendezvous maneuvers as

zi(ti) = zi(ti−1, zi−1, si,yi) =⇒ ∆Vinti ,∆Vreni (2.48)

2.2.5 Impulsive Maneuver to Finite Burn Maneuver Conversion

The use of impulsive maneuvers simplifies the generation of tour trajectories. We

are able to parameterize an impulsive trajectory segment with only one additional

decision variable: the time at which the intercept maneuver occurs. We can then

compute the resulting intercept and optional rendezvous maneuvers by solving the

corresponding Lambert’s problem. In contrast, a finite burn trajectory segment is

27

pre-impulse
trajectory

post-impulse
trajectory

Figure 2.6: A valid finite burn representation of an impulsive ∆V maneuver The
finite burn begins at time tfb0 , thrusts over a period of time and matches position
and velocity with the post-impulse trajectory at time tfbf [50].

more difficult; parameterizations require many more decision variables that must

be chosen to satisfy intercept or rendezvous conditions. This can be an iterative

procedure, and there is no guarantee that a feasible solution will be found. Finite

burn trajectory segments, however, realistically model low-thrust trajectories and

are therefore more useful for practical applications. This section describes the con-

version of impulsive maneuvers to equivalent finite burns and develops constraints

on impulsive maneuvers such that the conversion is likely to be feasible. This in

turn allows us to use impulsive trajectory segments in the search for optimal tour

trajectories and then later convert an impulsive solution to an equivalent finite burn

solution if necessary.

Figure 2.6 shows a finite burn maneuver representation of an impulsive ma-

neuver [50]. The impulsive ∆V occurs at t∆V and instantaneously changes the space-

craft’s trajectory from the pre-impulse trajectory Xpre(t∆V) to the post-impulse

trajectory Xpost(t∆V). A valid finite burn representation instead maneuvers from

the pre-impulse spacecraft trajectory to the post-impulse trajectory over a non-zero

period of time. The finite burn begins at time tfb0 and continues until it matches

28

position and velocity with the post-impulse trajectory at time tfbf . Determining

such a finite burn maneuver requires finding values for tfb0 , tfbf and the thrust

time history T(t) such that X(tfbf) = Xpost(tfbf). Rather than treating the full

conversion process, we instead attempt only to find constraints on the impulsive

maneuvers such that the conversion may be feasible. For the above finite burn to

be valid, its burn time must not fall outside of the prescribed bounds t0 and tf .

t0 ≤ tfb0 < tfbf ≤ tf (2.49)

So far the time bounds t0 and tf are arbitrary. We could define them to correspond

to the bounds of a trajectory segment in a tour, or define them in relation to other

proximal finite burn maneuvers.

We can estimate the duration a finite burn representation of an impulsive

∆V based on the rocket equation. If we assume the spacecraft thrusts at Tmax for

the duration of the finite burn, then the predicted burn time is

∆t∆V = − ∆m

Tmax/ (Isp g0)
=
m(t−)

(
1− e−∆V/(Ispg0)

)
Tmax/ (Isp g0)

(2.50)

For both impulsive and finite burn trajectory segments, we have described two types

of maneuvers: intercepts and rendezvouses. For the intercept case, we assume the

impulse to be at the midpoint of the corresponding finite burn. For the rendezvous

case, we assume that the finite burn ends at the time of the impulse. The impulsive

maneuvers and their corresponding finite burn representations are shown in Fig-

ure 2.7. The estimated start times for finite burn representations of intercept and

29

(rendezvous only)

Figure 2.7: An impulsive trajectory segment with estimates for finite burn maneu-
vers replacing the impulses.

30

rendezvous maneuvers are then

tfb0 = t∆V −
∆t∆V

2
(intercept) (2.51)

tfb0 = t∆V −∆t∆V (rendezvous) (2.52)

In both cases, the end time is

tfbf = t∆V + ∆t∆V (2.53)

We can add constraints on impulsive tours that prevent the finite burn es-

timates of their impulsive maneuvers from overlapping in time. This additionally

restricts the feasible solution space so that the solutions found are more likely to

have corresponding feasible finite burn trajectories. The constraints are in terms

of the time bounds of Equations 2.51 through 2.53. If we have a set of N∆V ma-

neuvers in a tour trajectory (intercepts and/or rendezvouses), then the additional

constraints are

(tfb0)0 ≥ t0 (2.54)

(tfbf)N∆V
≤ tns (2.55)

(tfbf)i ≤ (tfb0)i+1 for i ∈ 1 . . . N∆V − 1 (2.56)

Equations (2.54) and (2.55) constrain the finite burn maneuvers from occuring out-

side of the initial and final times of the full tour trajectory, respectively. Equa-

tion (2.56) constrains the finite burn maneuvers from overlapping each other. Con-

structing an initial guess for the thrust histories T(t) is beyond the scope of the

current work, but is addressed by Ocampo [50].

31

Gravity Losses

The estimate for the duration of a finite burn given in Equation 2.50 is based on

the Tsiolkovsky rocket equation, and is thus only exact in the absence of external

forces. We now consider performance penalties associated with the replacement

of impulsive maneuvers with finite burns in the presence of gravity, following the

analysis of Robbins [57]. Adjusting our finite burn estimates for these penalties

will tighten the associated constraints on the impulsive maneuvers and improve the

feasibility of the impulsive to finite burn conversion.

We define the characteristic velocity of a finite burn maneuver as the integral

of the thrust acceleration magnitude over the duration of the maneuver. Assuming

continuous maximum thrust, we have

∆Vfb =

∫ tfbf

tfb0

Tmax
m(t)

dt (2.57)

When gravity (or more generally a gravity gradient) is absent and the thrust di-

rection is constant, the characteristic velocity ∆Vfb is equal to the total velocity

change achieved, and thus the finite burn estimate is an exact replacement for the

corresponding impulsive maneuver. However, in realistic cases where a gravity gra-

dient exists there is a performance penalty associated with the use of finite thrust

such that

∆Vfb > ∆V (2.58)

That is, the characteristic velocity of the finite burn maneuver must be higher

than the corresponding impulsive ∆V to achieve the same result. The finite burn

maneuver must then thrust over a longer period of time using a larger mass of fuel.

Robbins provides an analytical upper bound for this penalty as

∆Vfb ≤ ∆V +
1

24
(ωs∆t∆V)2∆V (2.59)

32

where ∆t∆V is our original rocket equation estimate for the finite burn duration,

and ωs is the Schuler frequency defined as

ω2
s =

µ

r3
(2.60)

This approximate upper bound is valid for mass-optimal impulsive maneuvers and

cases where the dimensionless quantity ωs∆t∆V does not exceed unity. For a space-

craft orbiting the sun at 1 AU, the approximation is therefore valid for finite burn

durations up to approximately 60 days. We see that the penalty grows rapidly with

the duration of the finite burn maneuver as expected.

We now use this upper bound in our impulsive trajectory segment computa-

tions. We use

∆Vfb = ∆V +
1

24
(ωs∆t∆V)2∆V (2.61)

We replace the change in mass across the impulsive maneuver with the estimated

mass use of the representative finite burn,

∆mfb = m(t−)
(
e−∆Vfb/(Ispg0) − 1

)
(2.62)

The new change in mass corresponds to a longer finite burn time which we compute

as

∆tfb = − ∆mfb

Tmax/ (Isp g0)
(2.63)

We now modify the state change across an impulsive maneuver to correspond to the

finite burn estimate’s mass usage as

z(t+) = z(t−) +


0

∆V

∆mfb

 (2.64)

33

and update the estimated bounds on intercept and rendezvous finite burn maneuvers

as

tfb0 = t∆V −
∆tfb

2
(intercept) (2.65)

tfb0 = t∆V −∆tfb (rendezvous) (2.66)

tfbf = t∆V + ∆tfb (2.67)

Compensating for gravity losses yields higher characteristic velocities for the

finite burn maneuvers and a corresponding increase in fuel mass usage. It is interest-

ing to note however that the effects are greater on earlier maneuvers in a trajectory.

The increased fuel mass usage (and therefore reduced mass) makes the spacecraft

more efficient for later maneuvers. In fact, the timing constraints on the finite burn

maneuvers can actually be less restrictive later in a tour than the ideal case ignoring

gravity losses. Figure 2.8 shows the ratios of the characteristic velocities and finite

burn durations with gravity losses versus the ideal case for 50 sequential maneuvers.

While the finite burn characteristic velocity always exceeds the impulsive value, we

see that after a number of maneuvers the estimated maneuver duration becomes

less than when gravity losses are not considered. The associated timing constraints

would then be less restrictive than the ideal case where gravity losses are ignored.

Finally, we note that these finite burn estimates and their associated con-

straints are only valid for mass-optimal impulses and short finite burn durations.

The additional constraints therefore do not guarantee feasible finite burn conver-

sions. However, they do restrict the feasible solution space to improve the likelihood

that such a conversion is possible.

34

0 10 20 30 40 50

Maneuver number

0.90

0.95

1.00

1.05

1.10

1.15

1.20

G
ra

vi
ty

lo
ss

ca
se

/I
de

al
ca

se
ra

tio

∆Vfb/∆V

∆tfb/∆t∆V

Figure 2.8: The finite burn characteristic velocity and duration ratios are shown for
the case where gravity losses are considered and for the ideal case. 50 consecutive
maneuvers are made for an impulsive ∆V of 1 km/s. The spacecraft parameters
correspond to the GTOC4 problem described in Chapter 5.

35

2.2.6 Augmented Impulsive Tour Model

We implement the general tour trajectory model of Section 2.1.4 for spacecraft tour

trajectories. The state of the spacecraft includes its mass such that

z(t) =


r(t)

v(t)

m(t)

 (2.68)

We use the impulsive model for trajectory segments and maneuvers. The continuous

segment decision variables are

yi =

∆ti

τi

 (2.69)

The required impulsive maneuvers are computed by solving Lambert’s problem, and

the ballistic motion is found by solving Kepler’s problem. The final state of each

segment and the impulsive maneuvers can be found as

zi(ti) = zi(ti−1, zi−1, si,yi) =⇒ ∆Vinti ,∆Vreni (2.70)

The final mass of the tour is restricted by the available fuel so that m(t) ≥ mdry.

We augment the model to consider the feasibility of converting the impulsive

maneuvers to finite burns. The state change of the spacecraft across impulsive

maneuvers is then

z(t+) = z(t−) +


0

∆V

∆mfb

 (2.71)

where ∆mfb is the change in mass for a representative finite burn corrected for

gravity losses given in Equation 2.62. Further, we add time constraints for each

36

impulsive maneuver such that the corresponding finite burn maneuvers do not over-

lap in time. These constraints are given by Equations 2.54 through 2.56 where the

finite burn time bounds are given by Equations 2.65 through 2.67. The augmented

impulsive tour model is thus

Determine x = [t0, z0, s1 . . . sns , y1 . . .yns] (2.72)

minimizing J(x) (2.73)

subject to z(t) = f(t,x) =⇒ ∆V1 . . .∆VN∆V
(2.74)

m(tns) ≥ mdry (2.75)

(tfb0)0 ≥ t0 (2.76)

(tfbf)N∆V
≤ tns (2.77)

(tfbf)i ≤ (tfb0)i+1 for i ∈ 1 . . . N∆V − 1(2.78)

Cinitial(t0, z0) ≤ 0 (2.79)

Csequence(s1 . . . sns) ≤ 0 (2.80)

Csegment(si,yi) ≤ 0 for i = 1 . . . ns (2.81)

C(x) ≤ 0 (2.82)

We still allow general constraints on the initial conditions, sequence, segment deci-

sion variables and full decision vector that can be implemented for specific problems.

The definition of an objective J(x) is also left to a problem statement.

The impulsive tour model simplifies the search for optimal trajectories. Each

segment has a single additional decision variable that uniquely determines the re-

quired maneuvers and trajectory of the segment. Finite burn segments more realis-

tically model low-thrust spacecraft, but add to the complexity of the model since a

two-point boundary value problem must be solved at each segment to satisfy inter-

cept or rendezvous conditions. The addition of the finite burn feasibility constraints

37

to the impulsive tour model aims to ensure that the impulsive trajectory has a cor-

responding finite burn trajectory. This therefore allows for a two stage approach:

search and optimization of an impulsive tour trajectory, followed by conversion of

impulsive trajectories to realistic finite burn tours.

38

Chapter 3

Global Search Methodology

This chapter develops a search methodology for finding solutions to tour trajec-

tory design and optimization problems. The approach is based on the Tabu search

metaheuristic developed by Glover [27], but draws on elements from graph theory

and path finding approaches including the A* search algorithm [32]. We develop

the methodology in terms of building blocks common to local search approaches:

the solution representation, neighborhood and objective function. First, we have

a given or incumbent solution representing a tour trajectory denoted as x. For a

given problem, the solution x may be represented or encoded in a variety of ways;

the chosen solution representation can have a significant impact on the implemen-

tation and performance of the search. Next, we define a neighborhood of solutions

nearby the incumbent. This neighborhood N (x) determines the candidate solutions

that can be moved to from the incumbent x. Finally, a scalar objective function

J(x)–provided in a problem statement–gives a metric for comparing solutions. We

assume without loss of generality that the goal is to minimize this objective func-

tion. A simple local search algorithm illustrating these building blocks is given in

Algorithm 1. The algorithm is considered greedy since at every iteration it moves to

39

Algorithm 1 Local search algorithm.

procedure LocalSearch(x0)
repeat

. find the best solution in the neighborhood of the incumbent
x′ ← argmin

x∈N (x0)
J(x)

. accept the solution as the new incumbent if it is an improvement

. otherwise, we have converged to a locally optimal solution
if J(x′) < J(x0) then

x0 ← x′

else
converged

end if
until converged

. return the best solution found
return x0

end procedure

the best possible candidate solution in the neighborhood. Further, it can only find

locally optimal solutions since it never moves beyond its neighborhood or accepts

non-improving moves. We consider this approach, however, as a basis for developing

more advanced approaches that address these weaknesses.

The following sections develop the solution representation, neighborhoods,

and objective functions used in the search. These are then combined to form the

search algorithm.

3.1 Solution Representation

A solution representation encodes the decision variables of a problem into a form

that a search or optimization algorithm can evaluate and manipulate to move to

new solutions. Since all solutions considered are in terms of this representation, its

definition determines the search space. For example, consider the traveling salesman

problem. For an n-city problem, one solution representation is a permutation of the

40

integers 1 . . . n, where each number corresponds to a city and the order determines

the sequence [43]. The search space consists of all of these permutations and has a

size of n! solutions. However, consider that this is a symmetric traveling salesman

problem where the distances from cities i to j and j to i are equal. In this case, a tour

and the same tour in reverse order can be considered equivalent, and the search space

can be reduced by half. Further, since the problem statement requires the tour be a

complete cycle, the starting city is unimportant and can be fixed. The search space

can thus be reduced further to (n−1)!
2 solutions. The original solution representation

yields a search space 2n times larger than what is required and therefore may be

less efficient for solving the problem. Conversely, other solution representations may

underrepresent the feasible solution space of the problem, leaving out good or even

optimal solutions. A careful definition of the solution representation is critical to

the performance of the search or optimization.

Section 2.1 gives a model for a general tour trajectory. The decision variables

are t0 and z0 representing the initial time and state, s1 . . . sns representing the target

object sequence, and y1 . . .yns representing the continuous decision variables of each

segment of the sequence. Recall a solution is denoted as x. The most basic solution

representation would be a concatenation of these decision variables, for example

x = [t0, z0, s1 . . . sns , y1 . . .yns] (3.1)

This solution representation gives the information needed to represent a full tour

trajectory. However, other solution representations are possible.

3.1.1 Properties of Tour Trajectories

There are properties associated with tour trajectories that should be noted and

considered in determining what solution representation to use. First, we note that

the evaluation of a single tour trajectory can be computationally expensive. While

41

evaluating a solution to the traveling salesman problem is quick, only involving ba-

sic arithmetic, the evaluation of a tour trajectory solution is much more complex.

The evaluation may involve numerically integrating equations of motion according

to prescribed dynamics, computing maneuvers to target objects and other compu-

tationally expensive operations. The result is that in a fixed amount of time, we are

able to compute far fewer tour trajectory evaluations than for other problems such

as the traveling salesman. This translates to fewer iterations for the same search

algorithm. The expense of tour evaluations should therefore be addressed in the

design of the solution representation if possible.

Tour trajectories can naturally be decomposed sequentially by trajectory

segments. A segment i can be completely computed given its initial state zi−1 (the

final state of the previous segment) and its segment decision variables si and yi.

The final state for segment i is computed functionally as

zi = zi(zi−1, si,yi) (3.2)

This is a recursive relationship, since the final state of every segment depends upon

the final state of the previous segment. For example, the final states at various

segments can be evaluated as

z1 = z1(z0, s1,y1) (3.3)

z2 = z2(z1(z0, s1,y1), s2,y2) (3.4)

z3 = z3(z2(z1(z0, s1,y1), s2,y2), s3,y3) (3.5)

Clearly, as the number of segments ns grows, the final state of the tour trajectory

zns becomes more expensive to compute. Another consequence of this recursion,

however, is that multiple tour trajectories can share past segments in common.

42

t0

z0

z1

zns-1

zns
1

zns
2

zns
k

Figure 3.1: k tour trajectories are shown with final states z1
ns
. . . zkns

. Each trajec-
tory shares the previous ns − 1 segments in common. The state zns−1 can be used
in the computation of the k final segments.

43

Consider the scenario shown in Figure 3.1. There are k tour trajectories of length

ns ending with states z1
ns
. . . zkns

. These k trajectories each share their first ns − 1

segments in common. If the state zns−1 is computed once and stored, it can be

reused in computing the final segments for all k trajectories, reducing the total

computation time significantly (by nearly a factor of k).

Objective and constraint evaluations may also be decomposed by segment.

A general objective J is a function of the entire set of decision variables x.

J(x) = J(t0, z0, s1 . . . sns , y1 . . .yns) (3.6)

However, consider the objective is based in part on the total change of state of the

spacecraft ∆z, where

∆z = zns − z0 (3.7)

This could correspond to total fuel mass used during the tour, for example, and

would be commonly minimized or constrained in a tour problem. Clearly ∆z can

be decomposed by segment as

∆z =

ns∑
i=1

(zi − zi−1) =

ns∑
i=1

∆zi (3.8)

Other objective contributions may be due directly to the decision variables of the

segment si and yi, or results of the computations of the segment. Such contri-

butions might include segment duration or maneuvers, which could correspond to

minimizing or constraining total tour time or total maneuver magnitudes, for ex-

ample. Many common objective functions can therefore be decomposed by segment

with contributions Ji as

J(x) =

ns∑
i=1

Ji(zi−1, si,yi) (3.9)

44

and constraints can be decomposed similarly. Thus, in addition to the final states

of segments, objective and constraint contributions can be computed and stored per

segment.

The ability to decompose and compute tour trajectories by segment allows

for the use of constructive approaches. Rather than working only with full-length

complete solutions, the search can work with partial solutions and construct them

segment-by-segment over many iterations. Further, a constructive approach that

also stores the results of segment computations for later re-use can reduce the num-

ber of evaluations required for evaluating large numbers of tour trajectories, allowing

for exploration of a larger region of the search space.

3.1.2 Tree-Based Solution Representation

Consider a “tree” solution representation. Branches of the tree represent trajectory

segments and their decision variables, and nodes of the tree correspond to states at

the segment boundaries. A node of the tree may have multiple “children” corre-

sponding to different segments. The tree can grow to arbitrary depth, representing

tour trajectories of any length. Results of state, objective and constraint evalua-

tions are stored in the tree, allowing for new solutions to be generated quickly by

expanding the tree segment by segment. This allows existing solutions to be used

as building blocks for new solutions, with no recomputation of existing segments

required. Consider the group of trajectories shown in the left of Figure 3.2. There

are eight complete trajectories corresponding to the eight terminal states. Although

these trajectories all differ in their final segments, they each share at least one pre-

vious segment in common. These trajectories can be represented in a tree as shown

at the right of Figure 3.2. New tour trajectories can be created simply by adding

additional segments (branches) to nodes in the tree.

The new solution representation is now a single path through the tree. Recall

45

t0

t0

Figure 3.2: A group of trajectories. Colors identify different objects. The final
bright green object is visited with three different segments corresponding to different
segment decision variables y.

the simple solution representation discussed in Equation (3.1),

x = [t0, z0, s1 . . . sns , y1 . . .yns] (3.10)

This same representation can be recovered from a path through the tree. Consider

the more detailed view of the tree in Figure 3.2 shown in Figure 3.3. States and

decision variables are annotated for two paths, where the superscripts 1 and 2 are

used to differentiate them. The nodes are also numbered, where children of nodes

are numbered in ascending order starting at 0. Consider the two paths through the

tree, (0, 0, 0, 0) and (0, 0, 1, 1, 2). The values of the paths determine which node to

move to at each step, beginning at the root of the tree. From these paths, different

solutions can be recovered. In terms of the simple solution representation, we can

46

0

0

0 1

0 1 2 0 1 2

10 2

t0, z0

z1

s1, y1

s3
1,

y3
1

s2
2,

y2
2

z2
1

z3
1

s2
1,

y2
1

z2
2

z3
2

s3
2, y3

2

s4
2, y4

2

z4
2

Figure 3.3: A detailed view of the tree representation of Figure 3.2 is shown.
Children of nodes are numbered in ascending order starting at 0. Paths can be
defined with ordered lists of node numbers starting at the root of the tree. States
and decision variables are annotated for two paths, corresponding to the superscripts
1 and 2.

47

recover from the two example paths the solutions

(0, 0, 0, 0) =⇒ x1 =
[
t0, z0, s1, s

1
2, s

1
3,y1,y

1
2,y

1
3

]
(3.11)

(0, 0, 1, 1, 2) =⇒ x2 =
[
t0, z0, s1, s

2
2, s

2
3, s

2
4,y1,y

2
2,y

2
3,y

2
4

]
(3.12)

For clarity we will continue to use x to denote a solution and all of its associated

decision variables, understanding that it corresponds to branches and nodes along

a path through the tree.

We can analyze the performance of the tree solution representation by con-

sidering its use for enumerating all possible solutions for a tour problem. Although

a total enumeration is not feasible for even moderately sized problems, this analysis

can be used to show the relative performance of the tree solution representation

compared to other approaches. Assume that there are No candidate objects that

can be visited in a tour. Further, assume we compute tours that visit only ns of

these objects, where ns ≤ No. Each object may be visited only once, and each tour

begins from the same initial state. The number of possible tour sequences is then

Nseq =
No!

(No − ns)!
(3.13)

Figure 3.4 shows the possible sequences in a tree solution representation for No =

ns = 5. The total number of tours possible is much larger than the number of

sequences, however, when the continuous decision variables yi are allowed to vary

for each segment i ∈ 1 . . . ns of each sequence j ∈ 1 . . . Nseq. If we assume that there

are K discretizations of the continuous decision variables at each segment, then the

number of possible tours is

Ntours = Nseq K
ns =

No!

(No − ns)!
Kns (3.14)

48

Figure 3.4: All possible tour sequences shown in the tree solution representation
for No = 5 candidate objects and sequence lengths of ns = 5.

49

We consider the performance in terms of the number of trajectory segment

evaluations required, since this is the most computationally expensive operation in

the search. For the tree representation, the total number of segment evaluations is

ns∑
h=1

No!

(No − h)!
Kh (3.15)

If instead each solution is considered independently using another solution repre-

sentation where segment computations are not stored and reused, then the number

of segment evaluations required is larger at

ns
No!

(No − ns)!
Kns (3.16)

We can compare the relative magnitude of these to determine the expected speedup

of using the tree solution representation versus enumerating the tours independently,

as

f =
nsK

ns

(No − ns)!
ns∑
h=1

Kh

(No−h)!

(3.17)

We can simplify this expression to find bounds on the expected speedup. If we

assume No →∞, ns = No and K = 1, we find a lower bound on f to be

¯
f =

ns
e

(3.18)

Conversely, if we assume No →∞ and ns → 1, we find an upperbound on f to be

f̄ = ns (3.19)

This upper bound corresponds to an ideal linear speedup in the length of the tour.

Figure 3.5 shows the number of tours and speedup for No = 100 candidate

50

0 20 40 60 80 100
Sequence length, ns

102
1020
1038
1056
1074
1092

10110
10128
10146
10164
10182
10200
10218
10236

N
um

be
ro

ft
ou

rs
Number of tours and tree solution representation speedup

for No = 100 candidate objects

K = 1

K = 2

K = 4

K = 8

0 20 40 60 80 100
Sequence length, ns

0

20

40

60

80

100

Tr
ee

so
lu

tio
n

re
pr

es
en

ta
tio

n
sp

ee
du

p,
f

upper bound, f̄
lower bound,

¯
f

Figure 3.5: Number of tours and tree solution representation speedup for total
enumeration of No = 100 candidate objects and segment discretizations of K =
1, 2, 4, 8.

objects and varying tour lengths and segment discretizations. We see a near ideal

linear speedup over most of the domain of sequence lengths. This means that the

tree solution representation will accelerate the evaluations–and therefore the search–

compared to other representations that ignore the hierarchical structure of the search

space. Recall, however, that total enumeration is impossible for these problems

given the size of the search space; for this small example the number of possible

tours quickly exceeds 10100. Any search will only be able to explore a small region

of the search space–however, a near linear speedup can be expected over the region

of the search space that is explored.

51

The tree solution representation gives increased computational speed at the

cost of storage: the results of all segment computations have to be held in memory.

This is in contrast to more typical representations that only require storing one or

a fixed number of solutions at a time. For problems with cheap evaluations, such as

the traveling salesman, there is less benefit to using the tree representation–the cost

of looking up a solution evaluation approaches the cost of simply recomputing it.

However, for problems with expensive evaluations, the speedup is significant and is

well represented by the current analysis. Finally, we note that the memory required

for the tree representation grows as the search progresses. Eventually the memory

required will exceed the memory available. In this case, regions of the tree would

need to be pruned to make more memory available for the search to continue. This

is not an issue for problems with sufficiently expensive evaluations, as the available

memory exceeds that required for executing the search over a reasonable period of

time.

In summary, we have defined a tree-based solution representation for use in

a search. Each solution x corresponds to a single path through the tree. This solu-

tion representation is especially efficient for problems with expensive evaluations: it

gives a near linear speedup in the length of the tour. This results from the storage

and re-use of segment computations. The representation also facilitates a construc-

tive approach where trajectories are formed segment-by-segment. Additionally, an

entire population of solutions is maintained during the search, in contrast to other

approaches that maintain only a single (best) solution. The tree solution represen-

tation is a building block of a search or optimization algorithm and can be used

with many approaches. Aspects of its software implementation are discussed in

Appendix A.

52

3.2 Neighborhoods

Section 3.1 developed a tree-based solution representation for tour trajectories. This

solution representation allows for a constructive search approach where partial so-

lutions are expanded segment by segment by adding branches to the tree. However,

at this point it has not yet been determined how this expansion of the tree should

occur. In practice computing the full tree is infeasible, so it is important to expand

it in a way that finds good solutions quickly. This section introduces the concept of

neighborhoods, and describes various neighborhoods that can be used to guide the

exploration of the tree.

Consider that we have a current solution x, defined as the incumbent solution.

We want to determine an improved solution x′ to move to from this incumbent. A

neighborhood defines the set of nearby candidate solutions and is denoted as N (x).

Then, as we iteratively move to a new solution x′, we are choosing from available

solutions in the neighborhood N (x). That is,

x′ ∈ N (x) (3.20)

In a greedy search, we would simply move to the best solution in the neighborhood

at every iteration, as

x′ = argmin
x∈N (x)

J(x) (3.21)

The properties of the neighborhood determine the behavior and performance

of the search. For example, one might be tempted to define a very large neighbor-

hood with many candidate solutions in an attempt to find an optimal solution in a

small number of iterations. However, since each solution in the neighborhood has

to be evaluated to determine which is best, these iterations will be slower. Further,

a neighborhood consisting of the entire search space would constitute an exhaustive

enumeration of the problem. If this were possible, there would be no need for a

53

search algorithm to begin with. Consequently, neighborhoods are typically defined

to only contain a small number of solutions that can be evaluated quickly, and im-

proved solutions are found over many iterations. Neighborhoods can also be defined

to intensify or diversify a search about the incumbent solution. Intensification oc-

curs when all candidate solutions in the neighborhood share attributes in common

with the incumbent. The search will therefore tend to focus in a smaller region of the

search space about the incumbent. Alternatively, a diversifying neighborhood might

include solutions sharing little in common with the incumbent, or more explicitly

might not have any solutions sharing attributes of the incumbent. The search in

this case would tend to quickly move to different regions of the search space. Inten-

sification and diversification can be strategically used to focus on promising regions

of the search space or rapidly move away from unfavorable regions.

The remainder of this section develops specific neighborhoods for the tree-

based solution representation. These are developed and discussed in terms of their

sizes and tendency to diversify or intensify the search.

3.2.1 Neighborhoods for the Tree Solution Representation

Neighborhoods operating on the tree solution representation are constructive neigh-

borhoods since they operate on partial solutions and provide neighboring solutions

of longer lengths through expansion of the tree [27]. The tree of solutions grows

as neighborhoods are evaluated over many iterations. This is in contrast to most

neighborhoods used for combinatorial problems in the operations research literature

that only work with complete solutions.

Graph and tree traversal algorithms can be applied and used as neighbor-

hoods in the search given the tree-based solution representation. Before these are

considered, let us first define terminology and notation. If we are at an incumbent

solution x, let the children of that solution (which are generated by adding segments

54

incumbent

new child

Figure 3.6: An annotated tree is shown for an incumbent solution x. The root of
the tree xroot, children nodes C(x) and parent nodes Pk(x) are labeled.

to the tree) be denoted as C(x). Methods for generating the solutions C(x) will be

discussed in later sections. A node of the tree is a leaf node if it has no current

children. Its immediate children, if any are feasible, are generated and added to the

tree when C(x) is evaluated. The leaf nodes that are descendants of a solution x are

denoted as L(x). The immediate parent of a solution is P1(x). The grandparent

is P2(x), and further ancestors can be found as Ph(x). We define P0(x) to be the

solution x itself. The root of the tree (corresponding to the initial state) is denoted

55

incumbent

new child

neighborhood

iteration 0 iteration 1 iteration 3iteration 2

Figure 3.7: The neighborhood definition N (x) = C(x) leads to a depth-first search.
At each iteration the incumbent solution moves deeper in the tree.

as xroot. Figure 3.6 shows an annotated tree for these definitions.

Depth-First and Breadth-First Search

Consider a partial tour trajectory x is the current incumbent solution and a leaf node

of the tree. Since the incumbent is only a partial solution, there are a set of children

solutions that can be constructed by adding segments to it. These children solutions

are generated through the evaluation of C(x). Consider then a neighborhood defined

as

N (x) = C(x) (3.22)

This neighborhood corresponds to all of the children solutions of x. If at every

iteration of the search we move to a solution in this neighborhood, x′ ∈ C(x), the

56

result will be a depth-first search as shown in Figure 3.7 [17]. Although a depth-first

search will quickly yield tours with long sequences, the resulting solutions are not

likely to be near optimal. If we further assume that at each step we move to the

best solution (corresponding to the objective definition) in the neighborhood such

that

x′ = argmin
x∈C(x)

J(x) (3.23)

then we have a greedy depth-first search. This is analogous to the nearest-neighbor

heuristic used in the traveling salesman problem, where at every step the salesman

simply moves to the next nearest city until the tour is completed [58]. Such solutions

are rarely optimal or near optimal and therefore are typically only used to provide

a worst-case bound on the optimal solution. The same is true in this case–the

greedy depth-first search will quickly find sub-optimal full length solutions. These

solutions, however, can be used as upper bounds on the optimal solution and to

establish baseline values for objectives and constraints.

Breadth-first search instead expands all of the children of the incumbent C(x)

before progressing deeper into the tree [17]. The result is that all possible nodes

at a given depth of the tree are generated before the search moves deeper in the

tree, as shown in Figure 3.8. Thus, all tour trajectories of the shortest length are

enumerated before longer tours are generated. Only in the late iterations of the

search will full length solutions be found.

The depth-first search neighborhood leads to intensification about the in-

cumbent solution. At every iteration, the neighboring solutions are descendants of

the incumbent and therefore possess all attributes of the incumbent: the tour se-

quence and segment decision variables. Depth-first search neighborhoods can there-

fore be used to strategically focus on regions of the search space about promising

solutions. The breadth-first neighborhood instead leads to diversification since it

57

incumbent

new child

neighborhood

iteration 0 iteration 1 iteration 3iteration 2

Figure 3.8: The neighborhood corresponds to a breadth-first search. The search
explores all nodes at at the highest level of the tree before progressing deeper.

expands nodes highest in the tree first before expanding the incumbent. As the

search iterates, it will move to solutions with differing attributes–different sequences

and segment decision variable values. A breadth-first neighborhood can be used to

strategically move away from the current region of the search space.

Best-First Search

Consider now that instead of expanding the tree with a predefined depth ordering,

we explore the most promising nodes of the tree at each iteration. We can define a

neighborhood of an incumbent x as

N (x) = C(x) + L(xroot) (3.24)

where L(xroot) is the set of all leaf nodes in the tree. If at every iteration we move

to the new solution x′,

x′ = argmin
x∈C(x)+L(xroot)

J(x) (3.25)

then we have a best-first search algorithm [39]. At every iteration, the children of

the incumbent solution C(x) are generated and added to the tree, and the best of

58

t0

incumbent

new child

neighborhood

Figure 3.9: A group of tour trajectories represented in the tree solution represen-
tation. The best-first neighborhood is highlighted.

all new and existing leaf nodes is moved to. The best-first neighborhood is shown

in Figure 3.9.

While depth-first search can be viewed as an intensification strategy, and

breadth-first search can be seen as a diversification strategy, best-first search is

neither. It instead expands the tree only according to objective values with no pref-

erence for solution depth or length. Best-first search is the basis for many graph

and tree search algorithms. The primary difference between these algorithms is

their definition of the objective. For example, Dijkstra’s algorithm is a best-first

59

search using only the objective evaluated on the current partial solution [21]. The

A* algorithm instead uses the objective evaluated on the current partial solution in

addition to a heuristic term predicting objective contributions of the best complete

descendent solution [32]. Best-first search in many cases will find provably optimal

solutions. However, a drawback is that as the algorithm iterates, the neighborhood

continues to grow as the number of leaf nodes L(xroot) increases. The larger neigh-

borhood is more expensive to evaluate and compare, resulting in slower iterations

as the algorithm progresses.

3.2.2 Restricted Best-First Neighborhood

The neighborhood used in best-first search can be modified to allow for strategic

intensification or diversification in the search. Recall the best-first search neighbor-

hood is defined as

N (x) = C(x) + L(xroot) (3.26)

An additional parameter h can be added that dictates how far upward in the tree

to ascend before finding leaf nodes. While L(xroot) gives all leaf nodes of the tree

starting from the root, L(Ph(x)) gives all leaf nodes of the tree starting from the

hth ancestor of x. The restricted best-first neighborhood is therefore

N (x, h) = C(x) + L(Ph(x)) (3.27)

This neighborhood is shown in Figure 3.10. Small values of h lead to intensification,

with h = 0 corresponding to depth-first search, while large values of h allow for

diversification. When h = ns, a breadth-first search is possible.

Further, h can be varied to affect the size of the neighborhood. For large

trees, large h values can give neighborhoods with many solutions and lengthen the

compute time per iteration. While existing leaf nodes do not have to be recomputed

60

in
cu

m
be

nt
ne

w
 c

hi
ld

ne
ig

hb
or

ho
od

F
ig

u
re

3.
10

:
A

g
ro

u
p

o
f

to
u

r
tr

a
je

ct
or

ie
s

re
p

re
se

n
te

d
in

th
e

tr
ee

so
lu

ti
on

re
p

re
se

n
ta

ti
on

.
T

h
e

re
st

ri
ct

ed
b

es
t-

fi
rs

t
n

ei
g
h
b

or
h

o
o
d

s
co

rr
es

p
o
n

d
in

g
to

d
iff

er
en

t
h

va
lu

es
ar

e
sh

ow
n

.

61

since results are stored in the tree, simply sorting a large number of solutions by

objective can be expensive for large neighborhoods–finding the single best solution

is O(n) in the number of solutions [17]. Therefore, in these cases h can be decreased

to reduce the size of the neighborhood.

The restricted best-first neighborhood is the most flexible of the tree-based

neighborhoods presented so far. It allows for strategic intensification and diversi-

fication of the search as well as implicit limiting of the neighborhood size through

its parameter h. It will therefore be used as the neighborhood in the overall search

algorithm.

3.3 Objectives

The objective J(x) is provided as part of the problem statement. It gives a scalar

value that is used to compare solutions to each other and judge which is superior.

This objective function is appropriate to use when comparing complete (full-length)

solutions. However, in the context of the tree-based solution representation, it

instead may be used to compare partial solutions composed of only a few segments

with complete solutions composed of many. In these cases, the provided objective

function may not be appropriate. For example, objectives based on minimizing

resource consumption such as fuel usage will tend to favor partial solutions with

few segments. The search would then tend to be a breadth-first search of the tree.

Conversely, objectives based on mission goals such as maximizing the number of

visited objects will tend to favor complete longer-length solutions. In this case, the

search would tend toward a depth-first search. Although the provided J(x) is the

metric for judging complete solutions at the end of the search, it should not be used

to guide the exploration and construction of partial solutions during the search.

62

3.3.1 Guiding Objective

A guiding objective can be defined and used during the search in place of the pro-

vided objective J(x). The goal of this objective would be to better compare partial

solutions of only a few segments with solutions containing many segments. The idea

is that a partial solution with a currently poor objective value may produce a bet-

ter solution if expanded to full length than a near-complete solution with a better

objective value. The guiding objective therefore attempts to quantify the potential

value of partial solutions. Specifically, it attempts to estimate the best possible so-

lution that can result from expanding a partial solution to full length. In this way,

it can more effectively guide the search into promising regions of the search space.

This approach is inspired by the objective definition in the A* search algorithm,

which has a heuristic term predicting the best achievable objective originating from

the current path [55]. While problem-specific heuristics can be developed to deter-

mine the value of the guiding objective, this section focuses on developing a general

strategy that can be applied to any tour problem and objective definition.

We can define the guiding objective J?(x) in terms of a constrained value of

the problem, such as a limited mass of fuel or limited mission time. For example,

assume the total mission time is limited to tmax, according to the tour model of

Section 2.2.6. A partial tour begins at time t0, and each segment ends at time ti.

The final segment of the tour ends at tns . The remaining allowed mission time

is then tmax − tns . The guiding objective should include an estimate of the best

possible complete tour originating from the current partial tour. Assume that the

future objective contribution is linear in the time of flight. The contribution can

then be defined by a parameter dJ
dt

?
. This parameter can be used in the heuristic

term in the guiding objective. The guiding objective is then defined as

J?(x) = J(x) +
dJ

dt

?

(tmax − tns) (3.28)

63

segment 1

segment 2

segment 3

Figure 3.11: The guiding objective contains the objective defined in the problem
statement evaluated on the partial trajectory J(x), and a heuristic term based on
the parameter dJ

dt

?
estimating contributions over the remaining mission time.

The guiding objective contains the objective defined in the problem statement eval-

uated on the partial trajectory and a heuristic term estimating contributions over

the remaining mission time. Figure 3.11 shows the guiding objective schematically.

The choice of dJdt
?

governs the expansion of the tree from iteration to iteration.

Ideally the chosen value would perfectly represent the best solution originating from

the current solution and therefore guide the search directly to the globally optimal

solution. However, since this is not possible, we must consider the effects of under

or overestimating the value. For simplicity, assume that the objective we attempt to

64

minimize monotonically decreases as trajectory segments are added to a tour. Such

an objective definition would correspond to mission goals: gaining value for every

object visited in the tour.

A pessimistic value for dJ
dt

?
will cause the guiding objective to underestimate

the best solution possible from a partial solution. Consider the limiting case of

dJ
dt

?
= 0. This simplifies the guiding objective to the problem-provided objective

so that J?(x) = J(x). The guiding objective now predicts no improvement in the

objective from adding segments to the partial tour x. Since the objective J(x)

monotonically decreases with the tour length, any solution that is expanded will

then do better than the guiding objective predicted. The guiding objective will thus

tend to favor longer solutions with many segments over shorter solutions with few,

and the iterations will tend toward a depth-first search of the tree. The search will

quickly yield solutions for long tours.

An optimistic value for dJ
dt

?
will instead cause the guiding objective to over-

estimate the best solution possible from the current solution. Consider now dJ
dt

?
=

−M . The guiding objective is then

J?(x) = J(x)−M (tmax − tns) (3.29)

If M is sufficiently large, then the guiding objective will predict more improvement

than is possible from adding segments to a tour. Any solution that is expanded

will do worse than the guiding objective predicted. The guiding objective will thus

tend to favor shorter solutions with fewer segments, and the iterations will tend

toward a breadth-first search of the tree. We can compare an optimistic guiding

objective definition to an “admissible heuristic” in the A* search algorithm [20].

The heuristic is termed admissible since it guarantees that the search will never

overlook the possibility of a lower cost path. When a complete solution is found, it

must therefore be optimal. The concept extends to this case as well.

65

In practice we neither want to favor depth-first search nor breadth-first

search, but an adaptive exploration of the tree based on the search history. Consider

now varying the heuristic term of the guiding objective with

0 ≥ dJ

dt

?

≥ −M (3.30)

If we start the search with dJ
dt

?
= 0, then we will quickly find solutions for long tours

in a depth-first search manner. We decrease (make more optimistic) dJ
dt

?
as better

solutions are found, causing the search to focus on increasingly more promising

solutions. Eventually when the magnitude of dJ
dt

?
is large enough, the heuristic

term will become admissible and thus guarantee that any complete solutions found

will be optimal. The search then has the desirable properties of finding solutions for

long tours quickly, continually improved solutions over many iterations and provably

optimal solutions as the run time approaches infinity.

dJ
dt

?
can be chosen from a desired goal objective for the problem, Jgoal. In

turn, the goal objective can be adjusted adaptively as the search progresses. Given

a value for Jgoal, we define
dJ

dt

?

=
Jgoal

(tmax − t0)
(3.31)

The value of Jgoal gives the predicted best solution from the initial conditions of the

search. That is,

Jgoal = J?(xroot) (3.32)

We adjust Jgoal rather than dJ
dt

?
directly so that the units of the parameter match

the units of the problem-provided objective J(x). This allows for easier use of a

priori information, such as known achievable objectives, into the search. In the

absence of such information, we initialize Jgoal to zero (thus initializing dJ
dt

?
to zero)

and then adaptively decrease it as solutions with objectives better than the goal

objective are found. The change in Jgoal is according to a user-defined parameter,

66

∆Jgoal. A procedure for the adaptive update is shown in Algorithm 2. We note that

the update makes use of only the objective J(x) and not the guiding objective.

Algorithm 2 Adaptively update guiding objective heuristic

procedure UpdateGuidingObjectiveHeuristic
. find the best objective of all solutions in the tree
Jbest ← min

x∈L(xroot)
J(x)

. if the best objective found is better than the goal, then decrease the goal
and update dJ

dt

?

if Jbest ≤ Jgoal then
Jgoal ← Jbest −∆Jgoal
dJ
dt

? ← Jgoal
(tmax−t0)

. the guiding objective definition has changed; clear stored J?(x) results
clear stored J?(x) results

end if
end procedure

The defined guiding objective J?(x) quantifies the potential of a partial so-

lution by estimating the best achievable solution originating from it. This allows

for better comparison of solutions of varying lengths. Further, the guiding objective

definition is adaptively updated as the search progresses, causing it to favor increas-

ingly promising solutions over time. In the limit as the run time approaches infinity,

the guiding objective will lead the search to find provably optimal solutions.

3.3.2 Budget Penalty Terms

Spacecraft tour trajectory problems will all in practice have resource constraints

that solutions must satisfy in order to be feasible. Such constraints include a limited

mass of available fuel or equivalently a maximum allowed ∆V , for example. These

constraints are provided in the problem statement as constraints on the final state

of the spacecraft. In the context of our tree-based search, these constraints are

67

evaluated on partial solutions as they are constructed, and solutions violating them

are rejected. Assume again that the objective is based on mission goals such as

maximizing the number of visited objects. Longer-length solutions will be favored,

and we can expect that these longer-length solutions will also be of longer duration.

Thus, solutions where all the resources are used very early in the mission are not

likely be near optimal. We therefore wish to discourage the search from exploring

solutions that use limited resources too quickly. We accomplish this by penalizing

the objective when the resource usage exceeds a provided budget.

Consider the impulsive spacecraft tour model defined in Section 2.2.6. If the

spacecraft thrusts continuously at a constant magnitude T , then it will deplete its

fuel at a constant rate of

ṁ = − T

Isp g0
(3.33)

Then, noting that the mass can never fall below the spacecraft’s dry mass, its mass

at time t can be computed as

m(t) = max [m0 + ṁ(t− t0), mdry] (3.34)

Given the mass history, the corresponding cumulative ∆V can be calculated as

∆V (t) = Isp g0 ln
m0

m(t)
(3.35)

Given a maximum thrust magnitude Tmax, the maximum allowed mass depletion

rate is

ṁmax = − Tmax
Isp g0

(3.36)

The corresponding mass and ∆V profiles define the feasible region for a finite burn

trajectory. However, we can also budget the available fuel mass over the maximum

allowed duration of the tour so long as we do not exceed this maximum mass rate.

68

0 2 4 6 8 10

Time (years)

0

200

400

600

800

1000

1200

1400

M
as

s
(k

g)

0 2 4 6 8 10

Time (years)

0

5

10

15

20

25

30

35

40

∆
V

(k
m

/s
)

Maximum continuous thrust Budget Penalty Infeasible (finite burn) Infeasible

Figure 3.12: The mass and ∆V time histories are shown for maximum continuous
thrust until fuel exhaustion and the budgeted amount. The regions where penalties
are added to the objective are highlighted. The infeasible regions for a finite burn
model and for the final state constraints are shown. The spacecraft parameters
correspond to the GTOC4 problem [12].

Then, we have

ṁbudget = max

[
−m0 −mdry

tmax − t0
, ṁmax

]
(3.37)

The corresponding mass and ∆V profiles define a budget over the time of the tra-

jectory. We wish to penalize trajectories that exceed this budget. Figure 3.12 shows

the mass and ∆V histories corresponding to maximum continuous thrust and the

budgeted mass usage, and also highlights the regions of infeasibility for both the fi-

nite burn and general cases. We penalize solutions falling within the penalty region

shown.

Penalty terms can be defined by a non-negative weight and the magnitude

exceeding the budget. We can define penalties for both the mass and the ∆V as

Pm(x) = wm max [mbudget(tns)−m(tns), 0] (3.38)

P∆V (x) = w∆V max [∆V (tns)−∆Vbudget(tns), 0] (3.39)

69

Only one such term should have a positive weight, however, as they have similar

effects on the objective. These non-negative penalty terms are then added to the

guiding objective, giving

J?(x) = J(x) +
dJ

dt

?

(tmax − tns) + Pm(x) + P∆V (x) (3.40)

3.4 Solution Construction (Node Expansion)

This section describes the construction of new solutions during the search. When

the search begins, the tree is created with only a root node representing initial

conditions. This solution, xroot, is the basis for all future solutions generated dur-

ing the search. These new solutions are generated from iteration to iteration as

neighborhoods of incumbents are evaluated. The neighborhood evaluation triggers

expansion of nodes in the tree when terms C(x) representing the children of a solu-

tion are evaluated. It is only when these children are explored that new solutions

are generated and added to the tree. The remainder of this section details the

generation of children solutions C(x).

When C(x) is evaluated, trajectory segments are added to the solution x to

generate a set of children solutions. The parent solution’s final state is the childrens’

initial state. The new children solutions therefore only require the definition of s

and y, the next target object and the continuous decision variables of the trajectory

segment. The children generated determine the part of the search space that can be

explored. Children solutions should therefore be created for all feasible possibilities.

The simplest approach for generating C(x) would be to enumerate all possible

values for s and y, construct the corresponding solutions, and keep the solutions that

are feasible to the problem constraints. The enumeration of s is straightforward:

consider all values of s ∈ O feasible to the problem statement. Let us define a

function F(x) that determines the set of feasible objects that may be visited next

70

in a given tour x. If there are no restrictions on the tour itinerary (i.e. each object

can be visited any number of times and in any order), then

F(x) = O (3.41)

If, however, there are restrictions on the itinerary, then the feasible objects would

instead be a subset of O. If each object may only be visited once in a tour, then

F(x) = O \ {s1 . . . sns} (3.42)

We then generate solutions for all s ∈ F(x). Then, for each enumeration of s, values

for y must also be enumerated. Since y represents continuous decision variables,

there are an infinite number of possible values. So, a discretization of y must occur.

We define for each element yi ∈ y a range, yimin and yimax , and a number of dis-

cretizations Ki. If there are ny elements of y, then there are K total discretizations

of the continuous decision variables y, where

K =

ny∏
i=1

Ki (3.43)

The total number of solutions evaluated in the generation of C(x) is then

‖F(x)‖K = ‖F(x)‖
ny∏
i=1

Ki (3.44)

Only a subset of these solutions will be feasible and define C(x).

Consider the impulsive tour model of Section 2.2.6 as an example for gener-

ating children solutions. In this case, we have

y =

 τ

∆t

 (3.45)

71

Segment Duration

In
te

rc
ep

tM
an

eu
ve

rT
im

e

∆tmin ∆tmax

τmin

τmax

Children Generation Discretization for Impulsive Tour Model

Feasible solutions

Figure 3.13: For the next target object s, a discretized grid of possible new children
solutions over the range of allowed τ and ∆t values. The set of solutions found to
be feasible after evaluation is highlighted.

We define a corresponding range for the elements as

ymin =

 τmin

∆tmin

 ymax =

 τmax

∆tmax

 (3.46)

and a number of discretizations K1 for τ and K2 for ∆t. For a single object s ∈
‖F(x)‖, we can form a grid of K = K1K2 possible new children. Figure 3.13 shows

the enumeration. Each solution in this grid is evaluated. If the solution is feasible

according to the constraints of the problem, then it is added to the set of children

solutions C(x). In this example we see that many more solutions are evaluated

72

than are found feasible. Since these evaluations are computationally expensive, the

excess evaluations can slow down the search dramatically. When possible, specific

knowledge of the problem should be used to inform this grid search so as to minimize

exploration of the infeasible search space.

We have presented a simple method for generating the feasible children so-

lutions C(x). This method enumerates all possibilities subject to a discretization of

the continuous decision variables and discards those solutions that are found to be

infeasible. While this approach does generate all the feasible child solutions as de-

sired, it does so inefficiently: many infeasible solutions may be evaluated, and these

evaluations are computationally expensive. Chapter 4 presents a space pruning

approach that accelerates this approach.

3.5 Tabu Search

Tabu search is a metaheuristic search algorithm first proposed by Glover in 1986

and later formalized in 1989 [24, 25]. Like most metaheuristic approaches, it does

not find provably global optimal solutions; it instead is an approximate method

that attempts to find good, near-optimal solutions quickly. It is thus widely used

on problems where exact methods are not practical. The algorithm is an extension

of local search: at every iteration a new solution is moved to from a neighborhood

of solutions nearby the incumbent. While local search procedures tend to get stuck

at local optima, tabu search explores the search space beyond local optimality and

thus is able to find globally good solutions. The fundamental characteristic of tabu

search is its use of memory: during the search it records attributes of solutions

visited and uses this information to inform future moves and strategy. Unlike other

metaheuristic approaches, tabu search does not rely on randomization and is thus

deterministic.

Tabu search escapes local optima in two ways. Similar to the “steepest as-

73

cent mildest descent” method (for maximization) developed by Hansen, tabu search

allows for non-improving moves when the neighborhood has no improving solutions

[31]. It moves to the best solution in the neighborhood, which is either the most

improving or least disimproving. This allows the algorithm to move away from a

local optimum. However, this alone does not prevent the search from returning to

the same local optimum on subsequent iterations. This behavior, known as cycling,

is prevented in tabu search through the use of memory. During the search, the

solutions visited are recorded. These recently visited solutions are then marked as

“tabu” such that they cannot be visited again for a given number of iterations.

More generally, the search can record attributes of solutions (rather than the solu-

tions themselves) to prevent the search from returning to solutions similar to those

already visited. The tabu restrictions act to filter the full neighborhood N (x) into

a candidate neighborhood of admissible (non-tabu) solutions, Ñ (x) ⊆ N (x). This

approach is termed recency-based tabu search. The number of iterations a solution

attribute is considered tabu is the tabu tenure. Recency-based memory is one of the

most commonly used approaches in tabu search implementations [27].

Advanced tabu search algorithms also employ strategic intensification and di-

versification [27]. When promising solutions are found, the search can be intensified

about them, causing solutions with similar attributes to the promising incumbent

to be favored. This results in a more thorough exploration of the promising region

of the search space in the hopes that the best solutions in that region will be found.

Conversely, diversification may be strategically used when the search is focusing too

heavily in a restricted region of the search space. Although good solutions may

be found there, more interesting or promising regions of the search space may be

left unexplored, and the best solutions to the problem may not be found. Since

tabu search is fundamentally a local search procedure, diversification is viewed as

a critical component to finding globally good solutions [23]. An extreme form of

74

diversification can be implemented as an escape procedure, causing the search to

rapidly move away from the region of the incumbent. Escape procedures are used

when simpler forms of diversification have failed. These strategic intensification, di-

versification and escape methods may be implemented in a variety of ways. Simple

approaches involve manipulating the tabu tenure: a short tabu tenure allows for

intensification, while a long tabu tenure forces diversification. Other approaches in-

volve changing the definition of the neighborhood through a dynamic neighborhood

selection process.

A basic tabu search algorithm demonstrating these approaches is shown in

Algorithm 3. The remainder of this section develops components of this tabu search

algorithm in terms of the previously developed solution representation, neighbor-

hoods and objectives.

3.5.1 Recency-based Tabu Memory

The fundamental component of the tabu search algorithm described in Algorithm 3

is the recency-based tabu memory used in the isTabu(x) and

updateTabuAttributes(x) procedures. This memory maintains a history of re-

cently visited solutions and prevents the search from returning to those solutions for

a period of time, which in turn prevents cycling. The memory can more generally

maintain attributes of recently visited solutions, and thus prevent the search from

visiting a range of solutions similar to those already visited. The definition of the

tabu attributes determines how narrow or broad the resulting tabu restrictions are.

We continue by describing the tabu memory structure and defining tabu attributes.

The recency-based tabu memory is stored in an array called the tabu list,

which we denote as T . At each iteration, attributes of the new incumbent solution

are added to the tabu list. We denote these attributes as A(xi) for the incumbent

solution of iteration i. Solutions sharing any of the attributes in the tabu list are

75

Algorithm 3 Basic tabu search algorithm [63].

. execute tabu search beginning at initial solution x0

procedure TabuSearch(x0)
Initialize tabu memory

. iteration counter
i← 0

repeat
. find all solutions in the neighborhood
Evaluate N (xi)

. add non-tabu neighboring solutions to candidate neighborhood
Ñ (xi)← {x ∈ N (xi) : isTabu(x) = False}
. move to best candidate solution
xi+1 ← argmin

x∈Ñ (xi)

J(x)

. update tabu attributes for the new incumbent solution
updateTabuAttributes(xi+1)

. strategically intensify or diversify the search if necessary
if Intensification conditions satisfied then

intensify(xi+1)
else if Diversification conditions satisfied then

diversify(xi+1)
end if

. increment iteration counter
i← i+ 1

until Stopping criteria satisfied

return best solution found
end procedure

76

not admissible in the search and are thus not allowed in the candidate neighborhood

Ñ (x). The tabu list has a finite length: this is the tabu tenure NT and a parameter

of the search algorithm. A small value of NT gives a short tabu tenure; solution

attributes are then only considered tabu for a short period of time. The result is that

the search is allowed to intensify about the incumbent solution. If the tabu tenure

is too short, then the search may also cycle about a local optimum. A large value

of NT gives a long tabu tenure and instead has a diversifying effect: the search will

tend to move to different regions of the search space. While dynamic adjustment

of the tabu tenure is possible, we instead use a static tabu tenure throughout the

search. As Glover notes, many problem instances have a robust range of good tabu

tenure values that produce good results and can be determined empirically [26].

When the tabu list is full and new attributes are added, the oldest attributes are

dropped from the list in a first-in first-out manner and once again allowed in the

search. Figure 3.14 shows this behavior.

We now consider tabu attributes for tour trajectory solutions. Recall the

solution definition from Equation 3.1,

x = [t0, z0, s1 . . . sns , y1 . . .yns] (3.47)

At one extreme we can mark an exact solution as tabu, defining the the tabu at-

tributes of a solution as

A(x) = [t0, z0, s1 . . . sns , y1 . . .yns] (3.48)

This is the narrowest tabu attribute we can apply; it would prevent the particular so-

lution from being visited again for the duration of the tabu tenure. We note however

that this type of tabu behavior is implicit in the tree-based solution representation

and neighborhood definitions: only leaf nodes are considered in the neighborhood,

77

Figure 3.14: The tabu list T is an array of solution attributes that are prohibited
in the search. Its length is the tabu tenure NT and determines how many iterations
attributes are considered tabu. As attributes of new incumbent solutions A(xi) are
added to the list, the oldest tabu attributes are forgotten.

78

and the new incumbent is always expanded at the next iteration. Therefore, an in-

cumbent solution can only ever be visited once, and cycling among exact solutions is

impossible. Instead we consider more general attributes of the incumbent. Consider

defining a family of trajectories by the ordered sequence of objects they visit. The

attribute definition is then

A(x) = [s1 . . . sns] (3.49)

This contains only the discrete decision variables of the solution and is a broader

tabu restriction on the neighborhood since it matches more solutions. Recall the

construction of new solutions during the search described in Section 3.4. From an

incumbent solution, new solutions are constructed for each feasible target object for

K discretizations of the continuous decision variables y. This results in up to K new

feasible tours for the same sequence. More generally, total enumeration from the

root of the tree allows up to Kns solutions for the same sequence. The trajectory

family tabu attribute prevents the search from cycling among these similar solutions,

promoting the exploration of varying sequences even if one particular sequence is

promising.

We can formalize the procedure for testing if a solution is tabu and there-

fore admissible or not in the candidate neighborhood. This procedure isTabu(x)

is referenced in the basic tabu search algorithm (Algorithm 3) and is defined below

in Algorithm 4. If any of the attributes of the solution are present in the tabu list,

then the solution is tabu. After a non-tabu solution is chosen as the new incum-

bent, the tabu list is updated with attributes of the new solution. This procedure,

updateTabuAttributes(x) adds tabu attributes of x to the tabu list and removes the

oldest tabu attributes. Algorithm 5 shows the procedure. The definition of tabu

attributes A(x), the tabu list T and the tabu tenure NT define all that is necessary

for the implementation of recency-based tabu memory.

79

Algorithm 4 Test if a solution x is tabu.

. test if solution x is tabu
procedure isTabu(x)

if A(x) ∈ T then
return True

else
return False

end if
end procedure

Algorithm 5 Update tabu attributes.

. update tabu attributes for new incumbent solution x
procedure updateTabuAttributes(x)

. shift all tabu attributes back in the tabu list

. the last tabu attribute is removed
for all i ∈ 1 . . . NT − 1 do
Ti+1 ← Ti

end for

. add attributes of solution x to the front of the tabu list
T1 ← A(x)

end procedure

80

3.5.2 Strategic Intensification and Diversification

We have defined the recency-based tabu memory with the primary goal of preventing

cycling. This short-term memory can be viewed as a basic form of diversification:

it prevents the search from visiting similar solutions in sequence within the limits of

the tabu tenure. We now consider methods to more strategically guide the search be-

yond the basic recency-based approach. Specifically, we consider an approach that

adaptively intensifies and diversifies the search based on its performance. When

we intensify the search, we choose to move toward solutions similar to the incum-

bent. Conversely, diversification guides the search away from such solutions. The

remainder of this section develops the conditions that trigger intensification and

diversification as well as the modifications to the search that implement them.

The conditions that trigger intensification and diversification can be based

on any component of the search. For example, we can choose to intensify the search

when a new best solution is found. The resulting intensification would favor solu-

tions sharing attributes of that best solution in the hopes of finding more improved

solutions. We can also diversify the search when solutions are visited too often in

order to explore a more representative sample of the search space; this approach

is typically implemented with a longer term frequency-based tabu memory [27]. In

determining these triggering conditions, however, we must consider the unique char-

acteristics of our search and our solution representation in particular. The tree-based

solution representation represents partial solutions, and the neighborhoods we have

defined expand or contract these partial solutions in constructive and destructive

processes. From iteration to iteration, the incumbent solution thus varies in length,

ranging from partial solutions with few trajectory segments to complete solutions

with many. We wish to maintain a balanced exploration during the search, both

visiting long-length complete solutions that solve the original problem statement

and expanding short-length partial solutions to reveal new promising paths. This is

81

another form of diversity in the search, not based on specific attributes of solutions

but instead on their length. The length of a solution is defined by its sequence length

ns or equivalently its depth in the tree. In the context of our search then, we define

intensification to cause solutions to be expanded to longer lengths. These longer-

length solutions share trajectory segments in common with the incumbent, or may

even be completely based on the incumbent. Diversification instead moves upward

in the tree to shorter solutions that share little in common with the incumbent.

We define a stall condition for identifying when the search should be inten-

sified or diversified. A stall occurs when the search is stuck in a limited range of

solution lengths over a specified number of iterations. The stall condition is thus

identified with two parameters: a minimum solution length range
¯
R and a period

of iterations over which the range is measured Nstall. The range of solution lengths

over the previous Nstall iterations is given by

R(Nstall) = max
x∈{xi...xi−Nstall}

x [ns]− min
x∈{xi...xi−Nstall}

x [ns] (3.50)

A stall thus occurs when

R(Nstall) ≤
¯
R (3.51)

Figure 3.15 shows an example search history where the search proceeds depth-first

and then stalls. After a period of iterations the stall ends and the search proceeds

deeper in the tree. The resulting solution length range calculations are shown. The

stall condition is not evaluated until at least Nstall iterations have occurred. We see

the stall is detected Nstall iterations after it begins.

Once a stall is detected, we wish for the search to dynamically adjust in order

to break the stall. Based on our development so far, we have two options: we can

either intensify the search about the incumbent or instead diversify. Either approach

can break the stall. An intensification can force the search deeper in the tree to

82

0 20 40 60 80 100

Iteration

0

5

10

15

20

25

30

35

40

45

S
ol

ut
io

n
le

ng
th

(n
s
)

0 20 40 60 80 100

Iteration

0

5

10

15

20

25

S
ol

ut
io

n
le

ng
th

ra
ng

e
R

(N
st
a
ll
)

Stall period (Nstall) Stall detected

Stall threshold (
¯
R)

Figure 3.15: An example search history. The incumbent solution lengths are shown
along with the stall condition evaluated for Nstall = 25 and R

¯
= 5.

83

longer solution lengths, while a diversification will allow the search to move upward

in the tree to shorter solutions. We thus choose to react to stalls using both of these

approaches, using the properties of the incumbent to determine which approach is

used. In order to optimize the problem-provided objective J(x), we generally want

to find long-length solutions. We therefore choose by default to react to stalls with

intensification to encourage these long-length solutions. However, intensification in

the form we have described works only when the incumbent solution can be feasibly

expanded. When a tour is near the limits of the problem constraints, any expansion

of the tour will lead to infeasible children solutions. At this point, intensification

can no longer break a stall and will instead prolong it. When this occurs, we

instead choose to break the stall with diversification, which allows the search to

move to shorter-length solutions and find new promising paths in different regions

of the search space. The condition at which we choose diversification rather than

intensification may be defined in terms of any of the problem constraints, such as

limited fuel mass or mission duration. We have already developed budget constraints

to limit fuel usage in Section 3.3.2, so we choose the maximum mission duration as

the limiting condition. Specifically, when the incumbent solution’s mission duration

is sufficiently close to the limit, we choose to react with diversification. When a stall

is detected we react with intensification or diversification according to the conditions

below.

stall reaction =


intensification tns − t0 ≤ 0.9 (tmax − t0)

diversification tns − t0 > 0.9 (tmax − t0)

(3.52)

We can now detect stalls and decide whether to intensify or the diversify the

search in order to escape them. We now need to determine how the desired inten-

sification and diversification should be implemented. For this we can dynamically

change the neighborhood. Dynamic neighborhood selection is an advanced approach

84

used on its own in metaheuristic local search procedures as well as in tabu search

implementations [44, 27]. Recall the restricted best-first neighborhood developed in

Section 3.2.2, defined as

N (x, h) = C(x) + L(Ph(x)) (3.53)

The only parameter of the neighborhood is h which dictates how far upward to

move in the tree before finding leaf nodes. We found that small values of h led to

intensification, with h = 0 forcing a depth-first search. Large values of h allow for

diversification up to the limit of breadth-first search. We now choose to adaptively

update h to achieve intensification or diversification–decreasing it to intensify and

increasing it to diversify. We define additional parameters to bound the values of h,

such that

hmin ≤ h ≤ hmax (3.54)

Algorithms 6 and 7 define procedures for intensifying and diversifying the search.

These procedures are called when the stall condition is satisfied according to the

conditions in Equation (3.52).

Algorithm 6 Intensify the search about the solution x.

procedure intensify(x)
. intensify by updating the restricted best-first neighborhood N (x, h)
. subject to hmin ≤ h ≤ hmax
if h > hmin then

h← h− 1
end if

end procedure

While the intensification and diversification approaches developed are suffi-

cient for addressing most stalls, there may still be scenarios where a stall persists.

For these cases we develop an escape procedure to more drastically react. Escape

85

Algorithm 7 Diversify the search about the solution x.

procedure diversify(x)
. diversify by updating the restricted best-first neighborhood N (x, h)
. subject to hmin ≤ h ≤ hmax
if h < hmax then

h← h+ 1
end if

end procedure

procedures are another component of tabu search that are used in reactive tabu

search methods and ejection chain approaches [27]. We implement the escape pro-

cedure as a stronger form of the diversification in Algorithm 7. That approach

adjusted the h parameter of the neighborhood by an increment of 1 on each call,

up to a maximum for hmax. In the escape procedure we instead increment h by

∆hescape ≥ 1 with no maximum limit. The escape procedure is shown in Algo-

rithm 8. The conditions for triggering the escape procedure are expectedly more

Algorithm 8 Escape from the region of the search space near the solution x.

procedure escape(x)
. diversify by updating the restricted best-first neighborhood N (x, h)
. no constraints on h
h← h+ ∆hescape

end procedure

strict. First, we only consider using the escape procedure when diversification has

failed to break a stall. Since the diversification procedure may be called multiple

times and increase the neighborhood parameter h up to a value of hmax, we only

consider triggering the escape procedure when h = hmax. Further, we only consider

escaping if the stall has been active for Nescape ≥ Nstall iterations. The triggering

conditions for the escape procedure are thus

h ≥ hmax ∧ R(Nescape) ≤
¯
R (3.55)

86

At this point we have developed methods for reacting to stalls, including

intensification, diversification and in extreme cases an escape procedure. Each of

these approaches changes the neighborhood in order to break the stall. When the

search is operating nominally–that is, exploring a sufficiently diverse range of solu-

tion lengths–we should revert the neighborhood to a nominal state. We thus define

a value of the solution length range R̄ >
¯
R indicative of a sufficiently diverse explo-

ration. When the range of solution lengths meets or exceeds this range, we react by

relaxing or diversifying the neighborhood up to the limit of hmax using the diversify

procedure already defined. The search is already exploring sufficiently diverse solu-

tion lengths in this case; the diversification increases the size of the neighborhood

to allow for more promising paths to be found. The triggering conditions for the

relaxation are then

R(Nstall) ≥ R̄ (3.56)

The strategic intensification, diversification and escape procedures–as well

as the neighborhood relaxation–can now all be integrated into a single dynamic

neighborhood selection strategy. However, we introduce one final parameter: a cool

down period, Ncooldown. The cool down period gives a minimum number of iterations

between changes to the neighborhood, restricting how often neighborhood changes

may occur. This in turn allows the effects of a neighborhood change to be measured

before more changes are made. Algorithm 9 shows the combined neighborhood

modification procedure.

3.6 Algorithm Summary

The previous sections developed the components of the overall global search method-

ology. These include the tree-based solution representation for efficiently handling

tour trajectory solutions and neighborhoods that operate on that solution repre-

87

Algorithm 9 Dynamically update the neighborhood based on the search perfor-
mance.

procedure updateNeighborhood(xi . . .x0)
. do nothing if we are in the cool down period
if i− neighborhoodUpdated ≤ Ncooldown then

return
end if

. evaluate the escape conditions
if R(Nescape) ≤

¯
R ∧ h ≥ hmax then

escape(xi)
neighborhoodUpdated← i
return

end if

. evaluate the stall condition
if R(Nstall) ≤

¯
R then

. the iterations have stalled

. intensify or diversify to break the stall depending on solution duration
if xi[tns]− xi[t0] ≤ 0.9 (tmax − xi[t0]) then

intensify(xi)
else if xi[tns]− xi[t0] > 0.9 (tmax − xi[t0]) then

diversify(xi)
end if
neighborhoodUpdated← i
return

end if

. increase the size of the neighborhood if the search is proceeding nominally
if R(Nstall) ≥ R̄ then

diversify(xi)
neighborhoodUpdated← i
return

end if
end procedure

88

sentation to enable a local search approach. A guiding objective was defined for

use during the search to better compare solutions of varying lengths. The process

of constructing new solutions based on existing partial solutions was outlined. Fi-

nally, a tabu search algorithm was developed in terms of these building blocks. The

tabu search algorithm includes a recency-based tabu memory to avoid cycling as

well as a dynamic neighborhood selection procedure to strategically intensify and

diversify the search for better performance. Table 3.1 summarizes the components

and parameters of the search. Algorithm 10 gives the complete algorithm.

The use of the tree-based solution representation is novel in the context of

tabu search. It allows a constructive approach that is especially beneficial for prob-

lems with expensive solution evaluations. Further, the tree solution representation

implicitly maintains a population of solutions, thereby providing a collection of so-

lution alternatives at the termination of the search rather than just a single best

solution.

89

Name Description

xi Incumbent solution of iteration i; x0 is the initial solution
[yimin , yimax] Range of allowed values for the ith element of the continuous segment

decision variables y
Ki Number of discretizations for the ith element of the continuous seg-

ment decision variables y
T Tabu list
NT Tabu tenure
A(x) attributes of solution x to consider for tabu status
N (x, h) Restricted best-first neighborhood of solution x
h Restricted best-first neighborhood: maximum ascendance in tree
[hmin, hmax] Range of allowed values for h for intensification or diversification
∆hescape Change in h for escape procedure

Ñ (x) Candidate neighborhood of non-tabu solutions
J?(x) the guiding objective for use during the search (different than the

problem-provided objective)
dJ
dt

?
parameter of the guiding objective that predicts objective contribu-
tions over the remaining allowed time

∆Jgoal parameter for updating dJ
dt

?
when a new best solution is found

wm, w∆V budget penalty weights for mass and ∆V terms used in the guiding
objective

Ncooldown Cool down period: number of iterations between allowed changes to
the neighborhood

Nstall Stall period: number of iterations over which the stall condition is
evaluated

Nescape Escape period: number of iterations over which the escape condition
is evaluated

¯
R Stall threshold: a stall occurs when the range of solution lengths is

below
¯
R for Nstall iterations

R̄ Relaxation threshold: when the range of solution lengths is above R̄,
the neighborhood is relaxed

Table 3.1: Summary of components and parameters for the tabu search algorithm.

90

Algorithm 10 Tabu search algorithm.

. execute tabu search beginning at initial solution x0

procedure TabuSearch(x0)
. initialize tabu memory
T ← ∅
. iteration counter
i← 0

repeat
. find all solutions in the neighborhood
Evaluate N (xi, h)

. add non-tabu neighboring solutions to candidate neighborhood
Ñ (xi)← {x ∈ N (xi, h) : isTabu(x) = False}
. move to best candidate solution according to the guiding objective
xi+1 ← argmin

x∈Ñ (xi)

J?(x)

. update tabu attributes for the new incumbent solution
updateTabuAttributes(xi+1)

. dynamically change the neighborhood based on the search history

. includes strategic intensification, diversification and escape procedures
updateNeighborhood(xi+1 . . .x0)

. increment iteration counter
i← i+ 1

until Stopping criteria satisfied

return best solution found
end procedure

91

Chapter 4

Search Space Pruning

In this chapter we develop a search space pruning approach to accelerate the con-

struction of new feasible trajectories. The goal of pruning procedures in general is

to prune out regions of the search space known to be infeasible or non-optimal. This

reduces the size of the search space and accelerates the underlying optimization al-

gorithm. In the context of our work, we apply search space pruning to the solution

construction (node expansion) phase of the tree-based tabu search algorithm de-

veloped in Chapter 3. We continue by describing the brute-force approach already

developed and its performance characteristics. We then develop the search space

pruning procedure and compare its performance to the brute-force approach.

4.1 Brute-force Approach

Section 3.4 developed a basic procedure for solution construction. Recall that at each

iteration, new trajectories are constructed by adding new trajectory segments to an

incumbent solution x. Although many trajectory segments may be computed, only

those that are found to be feasible to the problem constraints are kept. These feasible

trajectory segments are then added to the tree-based solution representation, and

92

[τmin, τmax] Range of allowed segment intercept maneuver times
(fraction of segment duration)

Kτ Discretizations of τ
[∆tmin,∆tmax] Range of allowed segment durations
K∆t Discretizations of ∆t

Table 4.1: Sampling parameters for trajectory segments in the augmented impulsive
tour model.

those found to be infeasible are discarded after computation. The basic approach

developed was a total enumeration of all possible segment decision variable values

subject to bounds and discretization. Recall that F(x) gives us the set of target

objects that may be feasibly visited next in a solution x, and that we make Ki

discretizations of each of the ny continuous decision variable for i ∈ 1 . . . ny. A

brute force approach enumerates all of these possibilities. The number of trajectory

segments created during expansion of a single node is thus

‖F(x)‖
ny∏
i=1

Ki (4.1)

However, the total number of these trajectory segments that are feasible can be

much less depending on the problem constraints.

We now consider the specific case of the augmented impulsive tour model

developed in Section 2.2.6 for the rest of the development. We again have F(x)

representing the feasible next target objects. However now we have two continuous

decision variables,

yi =

 τi

∆ti

 (4.2)

representing the time of the intercept maneuver and the duration of the trajectory

segment i. These are subject to minimum and maximum bounds and a discretization

that are summarized in Table 4.1. The number of trajectory segments computed in

93

the brute force approach for this model is now

‖F(x)‖KτK∆t (4.3)

The definition of F(x) is problem-specific, but an upper bound is the full set of NO

target objects. Therefore, an upper bound on the number of trajectory segment

computations for expansion of a single node in the tree for any problem is

NOKτK∆t (4.4)

We can further quantify the computations based on the number of Kepler propaga-

tions and Lambert targeting calls required, which we denote as k and l, respectively.

The Lambert targeting procedure is in general more computationally expensive than

a Kepler propagation; the specific performance difference depends on the underlying

algorithms used for each and their implementation. The evaluation of a trajectory

segment in this case requires two Kepler propagations. The first finds the position

of the spacecraft at the time of the intercept maneuver,

ti−1 + τi∆ti (4.5)

The second computes the position of the target object at the end time of the segment,

ti−1 + ∆ti (4.6)

When τi = 0 then the first Kepler call is not required as the final state of the

previous segment is known; however in the general case we must account for it.

A single Lambert targeting call then computes the maneuver between these two

positions over the elapsed time. Thus, for the brute force approach expanding the

94

solution x and reusing the results of computations when allowed we have

kBF = KτK∆t + ‖F(x)‖K∆t (4.7)

lBF = ‖F(x)‖KτK∆t (4.8)

We wish to minimize both of these quantities in a more efficient solution construction

procedure. Since the Lambert targeting procedure is more expensive, we wish to

especially minimize its use. We will measure the performance of the space pruning

procedure we develop in terms of the number of required computations k and l.

4.2 Trajectory Envelopes

This section describes the use of trajectory envelopes to prune infeasible trajectory

segments from the search space. The trajectory envelope forms the reachable domain

of the spacecraft; any target objects not intersecting this envelope cannot be feasibly

visited, and therefore should not be considered in solution construction. This reduces

the number of trajectory segment computations required which in turns accelerates

the search. However, computing the trajectory envelope has its own associated cost

as well.

Vinh et al. introduced the concept of the reachable domain, which is a set of

points attainable by an interceptor with a limited ∆V capability [68]. Their work

analyzed the reachable domain for interception of targets at hyperbolic speeds for

short times of flight. They proved that the largest reachable domain is achieved

when the maximum allowed impulse is applied as early as possible (under the as-

sumption of short time of flight). Independent works by Wen and Xue develop

analytical approaches for computing the reachable domain of a spacecraft in elliptic

motion subject to a single upper-bounded impulsive maneuver [70, 73]. However,

the approaches compute the reachable domain without consideration to time: either

95

the limited trajectory duration or the time accessibility of the reachable space (e.g.

a target object’s orbit may intersect the reachable domain but may not be reachable

at the time of intersection). We develop an alternative simulation-based approach

that defines the reachable domain both based on position in space and time.

We begin by generating a collection of spacecraft trajectories for a set of pos-

sible impulsive maneuvers. Each trajectory begins at the final state of the previous

segment zi−1(t− 1) where

zi−1(ti−1) =


r(ti−1)

v(ti−1)

m(ti−1)

 (4.9)

For the purpose of computing the trajectory envelope, we assume that maneuvers

occur at the beginning of the trajectory segment with the largest allowed magni-

tude. We can compute the maximum feasible magnitude of an impulsive maneuver

based on the mass of the spacecraft and the maximum allowed trajectory segment

duration. We further assume that the impulsive maneuver is an idealization for

a low-thrust spacecraft, and constrain the impulse appropriately. The maximum

thrust magnitude Tmax and specific impulse Isp are provided as part of the space-

craft parameters given in Chapter 2 (Table 2.2). Assuming the spacecraft thrusts

over the maximum duration of a trajectory segment, then the maximum correspond-

ing impulsive maneuver magnitude is

∆Vmax = Isp g0 ln

(
m(ti−1)

m(ti−1)− Tmax
Ispg0

∆tmax

)
(4.10)

Figure 4.1 shows values for ∆Vmax for different allowed trajectory segment durations

and the spacecraft parameters of the fourth annual global trajectory optimization

competition (GTOC4) shown in Table 5.2. The resulting values depend also on the

96

600800100012001400

Spacecraft initial mass (kg)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

∆
V
m
a
x

(k
m

/s
)

∆tmax = 0.1 years
∆tmax = 0.2 years
∆tmax = 0.3 years
∆tmax = 0.4 years
∆tmax = 0.5 years

Figure 4.1: The values for ∆Vmax are shown over varying spacecraft initial mass
and values of ∆tmax. The spacecraft parameters correspond to the fourth annual
global trajectory optimization competition (GTOC4) summarized in Table 5.2.

97

initial mass of the spacecraft at the trajectory segment–the spacecraft becomes more

efficient as its mass decreases. Using this approach we can compute an appropriate

∆Vmax when new trajectory segments are to be generated during solution expansion.

We note that a range of trajectory segment durations are allowed; we compute

∆Vmax corresponding to ∆tmax which is an upper bound for values associated with

lesser values of ∆t.

The impulsive maneuver may occur in any unit direction, which we can

parameterize with spherical angles α and β as

û =


cosα cosβ

sinα cosβ

sinβ

 (4.11)

Then, the set of maximum allowed impulsive maneuvers is given by

∆Vmax = ∆Vmax û(α, β) (4.12)

for any values of α and β. We can discretize the angles to form a finite set of these

maneuvers; we allow α to vary between [0, 2π] and β to vary between [−π/2, π/2].

Within these ranges we choose Kα and Kβ evenly spaced values for α and β respec-

tively. Then, the total number of maneuver discretizations is

K∆V = KαKβ (4.13)

Figure 4.2 shows the discretizations of ∆Vmax. The set of possible maneuvers form

a sphere of radius ∆Vmax.

We can now enumerate the K∆V possible maneuvers to form the set of ini-

tial conditions for the trajectories forming the trajectory envelope. These initial

98

r

v

∆Vmax

Figure 4.2: Discretization of all possible impulsive maneuvers for a magnitude of
∆Vmax. The maneuver direction is discretized over the spherical angles α and β for
a total of K∆V = KαKβ discretizations.

conditions are given by

Xj(ti−1) =

 r(ti−1)

v(ti−1) + ∆Vmax û(αj , βj)

 for j = 1 . . .K∆V (4.14)

We can propagate each of these K∆V states forward in time by ∆tmax. The result-

ing trajectories form the trajectory envelope that bounds the reachable domain of

the spacecraft given a single maneuver originating at the state zi−1(ti−1) with an

upper-bounded maneuver magnitude of ∆Vmax. Figure 4.3 shows an example of the

trajectories forming the envelope.

A target object whose orbit intersects this envelope may be reachable by

the spacecraft; otherwise it can be pruned from the search space. Intersecting the

envelope is a necessary but not sufficient condition for reachability. First, ∆Vmax

is an upper bound computed for the maximum segment duration ∆tmax. Secondly,

intersecting the spatial region of the envelope does not mean the target object is

99

Figure 4.3: The trajectories forming a trajectory envelope are shown for ∆Vmax =
1 km/s and ∆tmax = 0.55 years. The spherical angles α and β are each discretized
over a 15 degree spacing.

reachable at the time of intersection; the trajectory envelope is again an upper bound

in this regard. Finally, although we can visualize this envelope, we do not yet have

a method for determining when such target object orbit intersections occur.

4.2.1 Bounding Boxes

This section develops a procedure for determining when a target object’s orbit inter-

sects the trajectory envelope. At a high level we need to determine if a path-volume

intersection occurs, where the path is the target object orbit and the volume is

the trajectory envelope. However, although we have the trajectories bounding the

envelope, we do not have an analytical representation of its volume. Computing

these intersections is thus challenging. It is analogous to a collision detection prob-

lem, where it must be determined if two objects of arbitrary shape intersect or not.

Such problems commonly occur in physical simulations, for example. A common ap-

proach to accelerate this collision detection is to generate simpler shapes that bound

100

the more complicated shape of the object. If the simpler shapes intersect, then the

objects themselves may collide–otherwise no collision is possible. The most common

approach is the use of bounding boxes; for each object a bounding box is computed

that contains the shape. The bounding box is an upper bound on the actual volume.

The problem we face here is most similar to the ray tracing algorithm of computer

graphics, where individual rays of light are traced through a scene, and ray-object

intersections must be computed to determine visibility and lighting [56]. We apply

and extend the bounding box procedure commonly used in such algorithms to our

case here.

The trajectory envelope bounds a three-dimensional region of space. How-

ever, the trajectories making up the envelope also include time information. For

example, the later parts of the envelope are only reachable by the spacecraft for

longer times of flight (approaching ∆tmax). Even if a target object intersects the

spatial volume of the trajectory envelope then, it may still not be reachable due to

the timing of the intersection. We therefore add another dimension to our bounding

boxes–time–and create multiple bounding boxes over discrete time intervals. A path

now intersects a bounding box if it intersects its spatial volume at a time within its

time bounds. The bounding box is still only a necessary condition for reachability,

but it represents a tighter upper bound with the additional timing restriction. A

bounding box may be oriented arbitrarily; however for simplicity we use axis-aligned

bounding boxes such that the spatial bounds are along the Cartesian dimensions of

the underlying coordinate system. Therefore, each bounding box is represented by

the spatial and time bounds shown in Figure 4.4.

We create NBB bounding boxes over the feasible trajectory segment dura-

tions [∆tmin,∆tmax] provided in the trajectory segment sampling parameters. The

101

(xmin, ymin, zmin)

(xmax, ymax, zmax)

[tmin, tmax]

Figure 4.4: An axis-aligned bounding box bounds a volume in the spatial region
of ([xmin, xmax], [ymin, ymax], [zmin, zmax]). We additionally constrain the bounding
box with a time range [tmin, tmax].

102

minimum and maximum time bounds for each bounding box b are then given by

(tmin)b = ti−1 + ∆tmin +
b− 1

NBB
(∆tmax −∆tmin)

(tmax)b = ti−1 + ∆tmin +
b

NBB
(∆tmax −∆tmin)

for b = 1 . . . NBB (4.15)

These time bounds are constant once the bounding box is created. The spatial

extents of a bounding box are formed by propagating the trajectories that form the

envelope (Equation (4.14)) and expanding the bounding boxes over discrete points of

each trajectory. A bounding box is expanded according to Algorithm 11. Similarly,

Algorithm 11 Expand the bounding box b given the position (x, y, z) at time t.

procedure expandBoundingBox(b, (x, y, z), t)
. the current spatial extents are ([xmin, xmax], [ymin, ymax], [zmin, zmax])b
. expand the bounding box only if within its time bounds
if (tmin)b ≤ t ≤ (tmax)b then

(xmin)b ← min [x, (xmin)b]
(ymin)b ← min [y, (ymin)b]
(zmin)b ← min [z, (zmin)b]

(xmax)b ← max [x, (xmax)b]
(ymax)b ← max [y, (ymax)b]
(zmax)b ← max [z, (zmax)b]

end if
end procedure

we can test if a trajectory intersects a bounding box by testing if any point along its

trajectory is within its spatial and time bounds; Algorithm 12 shows the procedure.

These two procedures form the basis for the overall search space pruning procedure.

We form the spatial extents of all the bounding boxes by propagating each

of the K∆V initial states of Equation (4.14) forward in time and expanding each

bounding box as required. We consider KBB discrete time intervals for each of the

NBB bounding boxes. Therefore, we have NBBKBB + 1 samples of each trajectory

103

Algorithm 12 Test if the bounding box b contains the position (x, y, z) at time t.

procedure intersectsBoundingBox(b, (x, y, z), t)
. the current spatial extents are ([xmin, xmax], [ymin, ymax], [zmin, zmax])
. test the position only if within bounding box time bounds
if (tmin)b ≤ t ≤ (tmax)b then

if (xmin)b ≤ x ≤ (xmax)b and (ymin)b ≤ y ≤ (ymax)b and (zmin)b ≤ z ≤
(zmax)b then

return True
end if

end if

return False
end procedure

and K∆V (NBBKBB + 1) total samples for the trajectory envelope. Each of these

samples requires a single Kepler propagation. Figure 4.5 shows NBB = 10 bounding

boxes computed for the trajectory envelope of Figure 4.3. We see that the bounding

boxes overlap in space, and that the overlap increases toward the end of the envelope.

This is expected as the trajectories forming the envelope diverge from each other

over time.

Finally, given the bounding boxes associated with the trajectory envelope,

we can compute when target objects intersections with the envelope may occur (in

space and time). As in the brute force approach, we sample each target object in

the feasible set ‖F(x)‖ over K∆t times. In each case we propagate the target object

to the time ti−1 + ∆ti and test for a bounding box intersection. Figure 4.6 shows an

example of the target object bounding box intersections for the GTOC4 problem.

If the target object intersects a bounding box at a given time, then we construct

trajectory segments to the target object at that time and compute the required

maneuvers using the Lambert procedure. If we assume the number of target object

bounding box intersections is a factor of f less than the total number enumerated,

then the complexity of this approach in terms of Kepler propagations k and Lambert

104

Figure 4.5: NBB = 10 bounding boxes are shown for the trajectory envelope of
Figure 4.3 (∆Vmax = 1 km/s).

Figure 4.6: The target object bounding box intersections are shown for the case in
Figure 4.5.

105

targeting calls l is

kSP = K∆V (NBBKBB + 1) + ‖F(x)‖K∆t +KτK∆t (4.16)

lSP =
‖F(x)‖KτK∆t

f
(4.17)

The first term of Equation (4.16) represents the computations that expand the

bounding boxes of the trajectory envelope; the second gives the required propa-

gations to compute target object bounding box intersections; and the third is an

upper bound on computing the position of the spacecraft at the time of maneuver

for the required Lambert targeting calls of Equation (4.17). We see an increase

in the required Kepler propagations of K∆V (NBBKBB + 1) due to the bounding

box generation, but a decrease by a factor of f in required Lambert targeting calls.

Since the Lambert procedure is more computationally expensive, we expect to see a

performance increase. Further, the increase in k is of constant complexity, while the

decrease in l scales with the number of target objects, and is thus of greater benefit

for larger problems with many target objects.

4.2.2 Summary

The search space pruning approach we have developed forms a trajectory envelope

bounding the reachable domain of the spacecraft. The trajectory envelope is based

on an upper-bounded single impulsive maneuver occurring at the beginning of a

trajectory segment. In order to more simply compute intersections of target object

orbits with this envelope and to consider the time feasibility of resulting trajectory

segments, we developed an approach based on bounding boxes. The approach results

in fewer trajectory segments being created, and therefore reduces the number of

Lambert procedure calls and accelerates solution construction. The trade-off is an

increase in Kepler propagations required to generate the envelope. The parameters

106

∆Vmax Maximum allowed impulsive maneuver
Kα,Kβ Number of discretizations of the spherical angles α and

β for possible impulsive maneuver directions
K∆V Total number of discretizations for impulsive maneu-

vers (equal to KαKβ)
NBB Number of bounding boxes
KBB Number of time intervals for each bounding box

Table 4.2: Parameters for the trajectory envelope search space pruning procedure.

of the search space pruning approach are shown in Table 4.2. We further note that

since the procedure is simulation-based, it can easily be applied to dynamics other

than two-body motion.

4.3 Performance

This section considers the relative performance of the search space pruning approach

compared to the brute force method. Here we only consider the number of required

computations: Kepler propagations k and Lambert targeting calls l. We consider

the full performance impact of the space pruning approach later for the GTOC4

problem in Section 5.3.3.

We fix the sampling parameters for the search space pruning procedure at

NBB = 10 bounding boxes and KBB = 10 time intervals per bounding box. We

discretize the spherical angles of the unit impulse direction at intervals of 15 degrees,

resulting in Kα = 24 and Kβ = 13 for a total of K∆V = 312 impulsive maneuvers

to enumerate for the trajectory envelope. We then consider the performance over

varying values of ∆Vmax for the initial maneuvers. We use the trajectory segment

sampling parameters from the GTOC4 application in Chapter 5. All of these pa-

rameters are summarized in Table 4.3. Finally, we assume the set of feasible target

objects for new trajectory segments is the set of all asteroids in the GTOC4 problem.

107

Search space pruning parameters

Kα,Kβ Number of discretizations of the spherical
angles α and β for possible impulsive ma-
neuver directions

24, 13

K∆V Total number of discretizations for impul-
sive maneuvers (equal to KαKβ)

312

NBB Number of bounding boxes 10
KBB Number of time intervals for each bound-

ing box
10

Sampling parameters

[τmin, τmax] Range of allowed segment intercept ma-
neuver times (fraction of segment dura-
tion)

[0.0, 0.0]

Kτ Discretizations of τ 1
[∆tmin,∆tmax] Range of allowed segment durations [0.05, 0.55] years
K∆t Discretizations of ∆t 50

Table 4.3: Search space pruning parameters and trajectory segment sampling pa-
rameters for performance analysis of the space pruning procedure.

108

For the GTOC4 problem there are NO = 1436 asteroids, such that

‖F(x)‖ = NO = 1436 (4.18)

The required number of computations for the brute force approach are given

in Equations (4.7) and (4.8) and are of constant complexity in the trajectory segment

sampling parameters. We can compute their values directly as

kBF = KτK∆t + ‖F(x)‖K∆t = 71850 (4.19)

lBF = ‖F(x)‖KτK∆t = 71800 (4.20)

These are the computations required for expanding a single solution which occurs

once per iteration. The required computations for the space pruning approach are

given in Equations (4.16) and (4.17). Once again we have constant complexity in the

number of required Kepler propagations; however the required Lambert targeting

calls is determined by the number of target object intersections which we quantify

with the factor f . Therefore for the space pruning approach we have

kSP = K∆V (NBBKBB + 1) + ‖F(x)‖K∆t +KτK∆t = 103362 (4.21)

lSP =
‖F(x)‖KτK∆t

f
=

71800

f
(4.22)

We see that additional Kepler propagations are required for computing the bounding

boxes of the trajectory envelope, such that kSP > kBF . However, the number of

Lambert computations required in the space pruning approach is bounded from

above by the brute force approach such that lSP ≤ lBF . We continue by computing

the trajectory envelopes for various values of ∆Vmax so that we can measure the

improvement directly. We assume the spacecraft has initial conditions matching the

Earth at ti−1 = 54000 MJD for the tests. Table 4.4 summarizes the results, and

109

∆Vmax Intersecting asteroids Intersecting points Reduction factor, f

0.25 km/s 11 32 2243.75
0.5 km/s 23 80 897.50
1.0 km/s 46 209 343.54
1.5 km/s 69 421 170.55
2.0 km/s 92 700 102.57
2.5 km/s 125 1048 68.51
3.0 km/s 149 1455 49.35
3.5 km/s 183 1930 37.20
4.0 km/s 224 2479 28.96

Table 4.4: Results of the search space pruning approach applied to the GTOC4
problem over varying values of ∆Vmax.

Figure 4.7 shows the trajectory envelope bounding boxes for several of the tests.

We see the reduction factor f is largest for small values of ∆Vmax; this corresponds

to the smaller trajectory envelope of the more limited impulse magnitude. As ∆Vmax

increases, we see a lesser but still significant improvement, however. The factor f

gives the reduction in overall required Lambert computations, or equivalently the

reduction in number of trajectory segments to compute. In this example we see

greater than 100× improvements when using the search space pruning approach.

We note however that this does not consider the additional Kepler propagations to

form the envelope. However, those computations are of fixed complexity while the

space pruning improvement scales with problem size. Later analysis considers the

improvement in the overall search due to the space pruning procedure.

The critical assumption in the trajectory envelope approach is that the reach-

able domain of the spacecraft is given by the maximum allowed impulsive maneuver

occurring at the beginning of the segment. In our tests here with ∆tmax = 0.55 years

we have validated this assumption. However, clearly there are cases where this is

not true–for example if ∆tmax corresponds to a full period of the spacecraft, then a

110

(a
)

∆
V
m

a
x

=
0.

25
k
m

/s
(b

)
∆
V
m

a
x

=
0.

5
k
m

/
s

(c
)

∆
V
m

a
x

=
1.

0
k
m

/
s

(d
)

∆
V
m

a
x

=
1.

5
k
m

/s
(e

)
∆
V
m

a
x

=
2.

0
k
m

/
s

(f
)

∆
V
m

a
x

=
2.

5
k
m

/
s

F
ig

u
re

4.
7:

T
h

e
b

o
u

n
d

in
g

b
ox

es
as

so
ci

at
ed

w
it

h
tr

a
je

ct
or

y
en

ve
lo

p
es

fr
om

th
e

re
su

lt
s

in
T

ab
le

4
.4

.

111

maneuver at the half-period time will allow the spacecraft to reach regions that a

maneuver at the beginning of the segment will not. In such cases the approach can

be extended and additional envelopes can be computed for varying maneuver times

over the duration of the trajectory segment.

We further note that no effort has been made to tune the search space pruning

parameters of Table 4.3 for optimal performance. For example, a larger number of

bounding boxes may provide a tighter upper bound on the trajectory envelope. This

is an optimization problem unto itself and we leave this analysis to future work.

Other bounding shapes (besides boxes) and coordinate systems (such as spherical

coordinates) are also possible in the bounding procedure that are worth exploration.

Finally, we note that the search space pruning procedure developed here can be

combined with other space pruning approaches, such as analytical constraints for

specific problem dynamics, for even greater performance improvements.

112

Chapter 5

Application to Fourth Global

Trajectory Optimization

Competition

This chapter applies the search methodology developed in Chapter 3 to the fourth

annual Global Trajectory Optimization Competition (GTOC) problem. The chap-

ter begins with a description of the GTOC4 problem and its known solutions. The

methodology is then applied under varying parameter sets and the results are dis-

cussed. Finally, low-thrust finite burn solutions are generated from specific impulsive

solutions found in the search.

The GTOC was created in 2005 by the Advanced Concepts Team of the Eu-

ropean Space Agency [34]. The competition presents challenging global optimization

problems in interplanetary trajectory design, and has enjoyed wide international par-

ticipation. Each of the seven past competition problems have involved optimizing a

mission sequence of some kind [1]. For example, the first GTOC problem required

the determination of flyby sequences for gravity assists. The second through fifth

and seventh GTOC competitions were each asteroid intercept and/or rendezvous

113

Problem Mission sequence

GTOC1: “Save the Earth” multiple gravity assists
GTOC2: “Multiple asteroid ren-
dezvous”

multiple asteroid rendezvous

GTOC3: “Multiple sample re-
turn”

multiple asteroid rendezvous, Earth gravity
assists allowed

GTOC4: “Asteroids billiard” multiple asteroid intercept and final asteroid
rendezvous

GTOC5: “Penetrators” multiple asteroid rendezvous and intercept
GTOC6: “Global mapping of
Galilean moons”

repeated flybys of four Galilean moons of
Jupiter

GTOC7: “Multiple ship mission
to main belt asteroids”

multiple spacecraft each with multiple aster-
oid rendezvous

Table 5.1: Summary of past Global Trajectory Optimization Competition (GTOC)
problems and their mission sequences to be optimized [1].

missions where the asteroid sequence was free to be chosen. The sixth GTOC re-

quired the design of multiple flybys and gravity assists. The past GTOC problems

are summarized in Table 5.1. Each of these mission sequences can be represented

by discrete decision variables in the problem formulation. The persistence of these

problem types in the competition emphasizes the importance of combinatorial op-

timization methods for spacecraft trajectory optimization.

The fourth GTOC (GTOC4) occurred in 2009 and was organized by the

Interplanetary Mission Analysis team of the Centre National d’Etudes Spatiales de

Toulouse, the winners of the third GTOC competition [12]. The mission proposed

was entitled “how to maximize the relevance of a rendezvous mission to a given NEA

by visiting the largest set of intermediate asteroids”. The mission begins when a

spacecraft is launched from the Earth. The spacecraft must then flyby a maximum

number of asteroids before rendezvousing with a final asteroid. The GTOC4 problem

is specifically considered as a benchmark problem for the global search methodology

developed in this work.

114

Maximum launch hyperbolic
excess velocity, v∞max

4.0 km/s

Minimum launch date, t0min 00:00 January 1, 2015 (57023 MJD)
Maximum launch date, t0max 24:00 December 31, 2025 (61041 MJD)
Maximum mission duration,
∆tmission

10 years

m0 1500 kg
mdry 500 kg
Tmax 0.135 N
Isp 3000 s

Table 5.2: GTOC4 mission and spacecraft parameters [12].

5.1 Problem Definition

This section summarizes the GTOC4 problem statement from [12]. The spacecraft

is launched from Earth with a hyperbolic excess velocity v∞ of up to 4.0 km/s in

magnitude and in unconstrained direction. The launch must occur within the years

of 2015 and 2025, and the total mission duration must not exceed ten years. The

spacecraft is equipped with an electric propulsion system, and gravity assists are not

allowed during the mission. The mission and spacecraft parameters are summarized

in Table 5.2. The Earth and asteroids follow Keplerian orbits about the Sun. The

sun’s gravitational parameter and Earth’s orbital elements are given in Table 5.3.

A collection of 1436 near Earth asteroids (NEAs) are given; their orbital elements

are provided in Appendix B. Figure 5.1 shows the asteroids’ semimajor axis and

eccentricity values. The highlighted regions indicate the asteroid types: Atiras,

Atens, Apollos and Amors [45].

After being launched from Earth, the spacecraft must flyby a maximum

number of intermediate asteroids and then rendezvous with a final asteroid. Each

asteroid may be visited at most once (intercept or rendezvous). An intercept requires

115

Sun gravitational parameter, µ (km3/s2) 1.32712440018E11
Semimajor axis, a (AU) 0.999988049532578
Eccentricity e 1.671681163160E-2
Inclination i (deg) 0.8854353079654E-3
Longitude of ascending node Ω (deg) 175.40647696473
Argument of periapsis ω (deg) 287.61577546182
Mean anomaly at epoch M (deg) 257.60683707535
Epoch t (MJD) 54000

Table 5.3: The sun’s gravitational parameter and Earth orbital elements for GTOC4
problem in J2000 heliocentric ecliptic reference frame [12].

0.0 0.2 0.4 0.6 0.8 1.0
Eccentricity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
em

im
aj

or
ax

is
(A

U
)

GTOC4 Asteroids

Atiras
Atens
Apollos
Atens

Figure 5.1: The set of 1436 asteroids for the GTOC4 problem. The highlighted
regions show combinations of semimajor axis and eccentricity for Atiras, Atens,
Apollos and Amors near-Earth asteroids [45].

116

a match of position between the spacecraft and asteroid, while a rendezvous requires

a match of both position and velocity. The objective to be maximized is the number

of intermediate asteroids. The provided objective function is given by

J =
n∑
j=1

αj (5.1)

where n is the total number of asteroids provided, and αj ∈ {0, 1} denotes the num-

ber of times asteroid j is visited during the mission, excepting the final rendezvous.

That is, the final asteroid jf corresponds to αjf = 0. Therefore the objective func-

tion J cannot exceed n − 1. If multiple solutions have the same objective value J ,

the best solution is that which maximizes the final mass, given by the secondary

objective function

K = mf (5.2)

5.1.1 GTOC4 Augmented Impulsive Tour Model

We use the augmented impulsive tour model developed in Section 2.2.6 for the

GTOC4 problem. Following the notation defined there and defining the objective

for minimization rather than maximization, we define the objective as

J(x) = −(ns − 1) (5.3)

which corresponds to the number of intermediate asteroids. The mission launch

timing and duration constraints are given by

t0min ≤ t0 ≤ t0max (5.4)

tns ≤ t0 + ∆tmission (5.5)

117

The spacecraft begins the mission at Earth with a constrained hyperbolic excess

velocity. Its initial conditions are constrained as

r(t0) = rearth(t0) (5.6)

‖v(t0)− vearth(t0)‖ ≤ v∞max (5.7)

Each asteroid may only be visited once in the tour. Rather than write explicit

constraints on the sequence decision variables s1 . . . sns , we instead specify the set

of feasible target objects for solution construction according to Section 3.4 as

F(x) = O \ {s1 . . . sns} (5.8)

where O is the set of all GTOC4 asteroids. The feasible target objects F(x) are

evaluated every time new segments are added to an existing tour. For a given

trajectory segment i of the tour then, this constrains the feasible target objects that

may be chosen as

si ∈ O \ {s1 . . . si−1} (5.9)

The GTOC4 problem requires intercepting a number of intermediate aster-

oids before rendezvousing with a final asteroid. When we add new trajectory seg-

ments onto an existing tour then, we can attempt to either intercept or rendezvous

with the next target. If we intercept the next target, then we say the result is a

partial solution, since it may still be expanded to produce a longer tour. If how-

ever we rendezvous with the next target, the solution is complete since it satisfies

the original problem statement and can no longer be expanded. During solution

construction, we create both intercept and rendezvous segments to the next target

object si, and the feasible segments are kept.

We restate the augmented impulsive tour model developed in Section 2.2.6

here with the additional constraints developed for GTOC4. The GTOC4 augmented

118

impulsive tour model is thus

Determine x = [t0, z0, s1 . . . sns , y1 . . .yns] (5.10)

minimizing J(x) = −(ns − 1) (5.11)

subject to z(t) = f(t,x) =⇒ ∆V1 . . .∆VN∆V
(5.12)

m(tns) ≥ mdry (5.13)

(tfb0)0 ≥ t0 (5.14)

(tfbf)N∆V
≤ tns (5.15)

(tfbf)i ≤ (tfb0)i+1 for i ∈ 1 . . . N∆V − 1(5.16)

t0min ≤ t0 ≤ t0max (5.17)

tns ≤ t0 + ∆tmission (5.18)

r(t0) = rearth(t0) (5.19)

‖v(t0)− vearth(t0)‖ ≤ v∞max (5.20)

r(ti) = rsi(ti) for i = 1 . . . ns (5.21)

v(tns) = vsns
(tns) (5.22)

The dynamics f(t,x) are computed according to the augmented impulsive tour

model, where ballistic arcs are propagated according to Kepler’s problem and im-

pulsive maneuvers are found as the solution to Lambert’s problem. Equations (5.21)

define the intermediate intercepts of the tour, and for i = ns Equations (5.21) and

(5.22) define the final rendezvous for complete solutions. These constraints deter-

mine the required maneuvers (whether a rendezvous maneuver is necessary) and are

implicitly satisfied in the computation of the dynamics. Finally, Equations (5.14)

through (5.16) constrain estimates of representative finite burn maneuvers from

overlapping in time or exceeding the mission time bounds. These estimates are

based on the development in Section 2.2.5 and include the effects of gravity losses.

119

5.2 Best Known Solutions

We choose to apply the methodology to the GTOC4 problem in part because there

exist a collection of known solutions to the problem generated using a variety of

methods. We use these existing solutions as a benchmark to judge the performance

of our own search algorithm. The final results of the GTOC4 competition are shown

in Table 5.4. The winning solution was found by Moscow State University and visited

44 intermediate intercepts before finally rendezvousing with asteroid 2000SZ162.

We emphasize that these solutions are low-thrust finite burn trajectories,

whereas the solutions we generate during the search use impulsive maneuvers. Al-

though we constrain the impulsive solutions based on estimates of representative

finite burns in an effort to ensure a finite burn conversion is feasible, a direct com-

parison is still not appropriate. We however reference the objectives achieved by

these solutions in the discussion of our results. In later sections we find optimal low-

thrust finite burn trajectories based on these impulsive solutions that are feasible

to the original GTOC4 problem statement.

5.3 Results

In this section we apply the tabu search algorithm developed in Chapter 3 to the

GTOC4 problem. We first examine results of a base case for a given set of search

parameters. We then conduct a sensitivity analysis to determine the effects of

varying these parameters and components of the search algorithm. For each case we

generate a collection of results corresponding to a range of launch times t0. Unless

indicated otherwise, we generate results for 1,024 launch epochs evenly spaced over

the allowed 10 year launch window and run each search for 2 hours. Each case

therefore requires 2,048 hours of compute time. This is summarized in Table 5.5.

120

Rank Team name J
Final mass
(kg)

Duration
(years)

Rendezvous
asteroid

1 Moscow State University -44 553.46 10 2000SZ162
2 The Aerospace Corporation -44 516.83 10 2000SZ162
3 Advanced Concepts Team, ESA -42 511.45 10 2008UA202
4 DEIMOS Space -39 605.44 10 2006BZ147
5 GMV -39 516.30 10 2007YF
6 Jet Propulsion Laboratory -38 515.87 10 138911

7
Politecnico di Torino,
Universita di Roma La Sapienza

-36 574.44 10 2006QQ56

8 University of Texas at Austin, Odyssey
Space Research, ERC Incorporated

-32 639.86 9.69 2006UB17

9
University of Glasgow,
University of Strathclyde

-29 715.21 9.98 2006QQ56

10 Thales Alenia Space -27 533.25 10 2006QQ56
11 University of Trento -26 721.73 9.73 2006UB17

12
University of Bremen,
Politecnico di Milano

-26 577.97 9.82 2008GM2

13 Moscow Aviation Institute, Research
Institute of Applied Mechanics and
Electrodynamics

-24 720.62 10 2007YF

14 Georgia Institute of Technology -24 500.27 9.5 2008UA202
15 TOMLAB -22 615.22 9.65 2006XP4
16 VEGA -20 653.07 10 2008UA202

17
DLR German Space Operations Center,
Aachen University of Applied Sciences

-20 635.09 10 2005BG28

18 Team Astroshape -20 524.48 10 2006SV5
19 DLR Institute of Space Systems -19 592.35 10 138911
20 Tsinghua University -18 539.98 10 138911
21 University of Missouri -15 836.06 10 2005CD69
22 Beijing University of Aeronautics and

Astronautics
-13 651.87 9.98 2006RJ1

23 Texas A&M University -12 697.93 10 2006UB17

Table 5.4: Final results of the fourth Global Trajectory Optimization Competition
(GTOC4) [11].

Minimum launch epoch Maximum launch epoch Number of runs Run time

57023 MJD
00:00 January 1, 2015

61041 MJD
24:00 December 31, 2025

1024 2 hours

Table 5.5: For each case, a collection of 1024 runs are generated over a range of
launch epochs. Each run executes for 2 hours, requiring 2048 compute hours in
total.

121

All results were computed on the Stampede supercomputer at the Texas

Advanced Computing Center (TACC) at the University of Texas at Austin [2]. The

author thanks TACC for supporting this work.

5.3.1 Base Case

We define a set of parameters for the tabu search algorithm in Table 5.6. We

generate new trajectory segments in the search according to the sampling parameters

provided. For this case, intercept maneuvers always occur at the beginning of the

trajectory segment, and we consider segment durations from 0.05 to 0.55 years with

50 discretizations. When a new best solution is found, we decrease the goal objective

(which in part defines the guiding objective) by ∆Jgoal = 1. The guiding objective

penalizes excess ∆V over the defined budget with a weight of 1. A tabu tenure of

10 iterations is used to prevent cycling among similar solutions. The parameters for

the dynamic neighborhood selection procedure are also shown.

We first examine the runs in terms of their best solutions found. Recall that

a partial solution consists only of intermediate intercepts, while a complete solution

also includes a rendezvous with a final target asteroid. Figure 5.2 and Table 5.7

shows the results for the 1024 runs of the base case. We see that we achieve better

objectives for partial solutions than for complete solutions. This is expected as the

rendezvous conditions are more difficult to satisfy; the target asteroid must be in

a similar orbit to the spacecraft in order for a final rendezvous maneuver to be

feasible. We further see approximately normal distributions of the best objectives

achieved, with no particular range of launch epochs more or less favorable. For

complete solutions, the median best objective found is J = −42, with the best

solutions found to be J = −45. The J = −45 solutions exceed the best known

GTOC4 solutions–we note again however that these are impulsive solutions rather

122

Sampling parameters

[τmin, τmax] Range of allowed segment intercept ma-
neuver times (fraction of segment dura-
tion)

[0.0, 0.0]

Kτ Discretizations of τ 1
[∆tmin,∆tmax] Range of allowed segment durations [0.05, 0.55] years
K∆t Discretizations of ∆t 50

Guiding objective parameters

∆Jgoal Parameter for updating dJ
dt

?
when a new

best solution is found
1

wm Budget penalty weight for mass in guiding
objective

0.0

w∆V Budget penalty weight for ∆V in guiding
objective

1.0

Tabu search parameters

NT Tabu tenure 10
[hmin, hmax] Allowed range of neighborhood parameter

h for intensification or diversification
[3, 7]

∆hescape Change in neighborhood parameter h for
escape procedure

10

Ncooldown Cool down period: number of iterations
between allowed changes to the neighbor-
hood

25

Nstall Stall period: number of iterations over
which the stall condition is evaluated

25

Nescape Escape period: number of iterations over
which the escape condition is evaluated

50

¯
R Stall threshold: a stall occurs when the

range of solution lengths is below
¯
R for

Nstall iterations

5

R̄ Relaxation threshold: when the range of
solution lengths is above R̄, the neighbor-
hood is relaxed

15

Table 5.6: Tabu search algorithm parameters for the base case.

123

57000 57500 58000 58500 59000 59500 60000 60500 61000 61500

Launch Epoch (MJD)

−48

−46

−44

−42

−40

−38

−36

−34

B
es

tO
bj

ec
tiv

e

Partial Solutions

57000 57500 58000 58500 59000 59500 60000 60500 61000 61500

Launch Epoch (MJD)

−48

−46

−44

−42

−40

−38

−36

−34

B
es

tO
bj

ec
tiv

e

Complete Solutions

−49 −48 −47 −46 −45 −44 −43 −42 −41 −40 −39 −38 −37 −36 −35 −34 −33

Best Objective

0

50

100

150

200

250

300

350

400

450

N
um

be
ro

fR
un

s

Partial solutions
Complete solutions

Figure 5.2: Base case: Best partial and complete solutions found for 1024 runs over
launch dates from 2015 to 2025.

Minimum Median Maximum

Base case (partial) -48 -45 -37
Base case (complete) -45 -42 -34

Table 5.7: Base case: the minimum, median and maximum best solutions found
over the 1024 runs.

124

Best objective, J
Rendezvous
asteroid

GTOC4 results
Base case
(1024 runs)

Base case:
run #409/1024

2000SZ162 -44 -44 -42
2008UA202 -42 -45 -42
2006BZ147 -39 -45 -45
2007YF -39 -45 -42
138911 -38 -44 -38
2006QQ56 -36 -45 -42
2006UB17 -32 -44 -41
2008GM2 -26 -44 -42
2006XP4 -22 -43 –
2005BG28 -20 -44 –
2006SV5 -20 -42 -42
2005CD69 -15 -44 -39
2006RJ1 -13 -44 –

Table 5.8: Comparison of best solutions found in the GTOC4 competition results
and the base case [11].

than low-thrust finite burn solutions.

We examine the entire population of complete solutions generated in the base

case and find solutions corresponding to each of the final rendezvous asteroids from

the GTOC4 competition results. These are shown in Table 5.8. We see that in all

cases we find results that meet or exceed the GTOC4 competition results. In fact,

for only two of the rendezvous asteroids do the results not meet the GTOC4 winning

objective of J = −44. This demonstrates the broad set of good solutions the search

is able to find.

We now investigate an individual run of the 1024 runs executed for the

base case. We choose run #409/1024 which corresponds to a launch epoch of

t0 = 58629.41 MJD. This is one of the several runs that found complete solu-

tions for J = −45. We find that this run alone finds solutions rendezvousing with

10 of the 13 final asteroids from the GTOC4 results, also shown in Table 5.8. Fig-

125

Figure 5.3: Base case: run #409/1024. The objective history for the incumbent
solution and best found partial and complete solutions are shown.

ure 5.3 shows the objectives achieved over the iteration history. The search executes

more than 15,000 iterations over the two hour run time. The search quickly finds

complete solutions better than J = −40 and finds J = −45 complete solutions

approximately half way through. We see an oscillatory behavior in the incumbent

solution objective. Recall that the objective corresponds to the solution length ns,

or equivalently the depth in the search tree. These oscillations therefore represent a

diverse exploration of the search tree, as solutions of varying lengths are visited and

stalls are quickly broken. We attribute this diversity of the search in part to the

dynamic neighborhood selection procedure that modifies the neighborhood when

stalls are detected. The impact of dynamic neighborhood selection is investigated

further in Section 5.3.4.

We now examine one of the J = −45 solutions generated by this run. Fig-

ure 5.4 shows the trajectory of a solution rendezvousing with the asteroid 2006BZ147.

The full tour itinerary is shown in Table 5.9. The mass history over the trajectory

closely follows the linear mass budget. We see portions of the trajectory where the

spacecraft uses more mass than budgeted; the partial solutions ending at these seg-

ments would be penalized during the search. However, they are still feasible and

126

no. t (MJD) mass (kg) Asteroid no. t (MJD) mass (kg) Asteroid

0 58629.41 1500.00 Earth 1 58713.42 1500.00 2006QV89
2 58815.69 1470.01 2003YT70 3 58922.79 1449.25 2008CL20
4 59003.68 1405.84 2005ED318 5 59062.81 1392.57 2005NW44
6 59162.22 1367.57 2007TK15 7 59199.40 1351.71 2005GA120
8 59265.91 1343.26 2006KQ1 9 59406.16 1300.46 2001GO2
10 59523.95 1273.81 2000RN77 11 59604.68 1237.90 2003SW130
12 59674.94 1221.59 162173 13 59792.74 1183.36 2007DS84
14 59891.76 1139.15 2005BC 15 59969.68 1116.96 2008SW7
16 60025.00 1094.31 2003WY153 17 60113.15 1075.84 1998DK36
18 60186.68 1058.79 2002JR100 19 60256.89 1032.36 2008NQ3
20 60326.59 1007.38 2006RJ7 21 60396.51 988.81 2007US12
22 60481.29 961.61 2004YC 23 60532.90 947.45 2005CN
24 60635.94 922.78 2007LF 25 60790.26 910.34 2004TP1
26 60853.27 902.49 2005XY4 27 60912.49 881.65 162157
28 60986.19 860.20 2005GY8 29 61071.24 831.07 68372
30 61162.56 806.94 2008TC3 31 61236.31 794.12 2004JN1
32 61298.81 771.87 175729 33 61368.96 750.65 2007YF
34 61449.31 739.09 2006UB17 35 61512.08 718.63 2005NE21
36 61557.33 698.63 2004RU109 37 61634.61 685.94 2000UG11
38 61734.14 664.80 2004PR92 39 61800.31 645.00 162416
40 61874.01 630.85 2006WQ29 41 61933.24 607.81 2007RE2
42 61959.06 601.32 2001SE270 43 62032.77 588.42 2002XV90
44 62103.03 574.49 2007DS7 45 62202.56 545.42 2004CZ1
46 62273.00 506.24 2006BZ147

Table 5.9: Base case: run #409/1024. The tour itinerary is shown for a J = −45
solution rendezvousing with asteroid 2006BZ147.

ultimately the search expands the trajectory to the complete solution shown.

Overall we find that the search produces a diverse population of good solu-

tions to the GTOC4 problem using the base case parameters. We find trajectories

exceeding the best known solutions of the GTOC4 problem. We now continue by

varying aspects of the search and studying the effects in comparison to this base

case.

127

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

X
(A

U
)

−
1.

0

−
0.

5

0.
0

0.
5

1.
0

Y(AU)

E
ar

th
de

pa
rt

ur
e

In
te

rc
ep

t
Im

pu
ls

iv
e

m
an

eu
ve

r
Fi

na
lr

en
de

zv
ou

s

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

Ti
m

e
(d

ay
s

si
nc

e
de

pa
rt

ur
e,

M
JD

)

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

DistancetoSun(AU)

In
te

rc
ep

t

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

Ti
m

e
(d

ay
s

si
nc

e
de

pa
rt

ur
e,

M
JD

)

40
0

60
0

80
0

10
00

12
00

14
00

16
00

Mass(kg)

M
as

s
bu

dg
et

Pe
na

lty

F
ig

u
re

5.
4:

B
a
se

ca
se

:
ru

n
#

4
09

/1
02

4.
T

h
e

tr
a

je
ct

or
y

is
sh

ow
n

fo
r

a
J

=
−

45
so

lu
ti

on
re

n
d

ez
vo

u
si

n
g

w
it

h
as

te
ro

id
2
00

6B
Z

1
47

.

128

5.3.2 Finite Burn Constraints

The finite burn constraints in the augmented impulsive tour model (Equations (5.14)

through (5.16)) ensure that estimates for finite burn maneuvers representing each

impulsive maneuver do not overlap in time or occur outside the mission time of

flight. These finite burn estimates are developed in Section 2.2.5 and include the

effects of gravity losses. The goal of these constraints is to restrict the search to find

only impulsive solutions that can likely be feasibly converted to low-thrust finite

burn trajectories.

The additional constraints further limit the feasible solution space of the

problem. We run an additional case without these constraints in order to study their

effects. We use the base case search parameters of Table 5.6, but ignore the finite

burn constraints in the augmented impulsive tour model. Figure 5.5 shows the best

solutions found over 1024 runs in comparison to the base case. The differences are

significant: the median best complete solution ignoring finite burn constraints is J =

−46, better than the best overall complete solution found in the base case. Further,

we find complete solutions visiting up to 50 intermediate asteroids (J = −50). These

solutions, although not practical, are impressive compared to the known GTOC4

solutions. We can also examine the quantity and diversity of solutions found. Recall

a family of trajectories is identified by its asteroid sequence si . . . sns . Figure 5.6

compares the number of trajectory families found for complete solutions to the base

case. We see at least an order of magnitude more solutions over each range of

objectives, with some ranges seeing a nearly 5 order of magnitude difference. The

disparity is greatest for objectives near zero–these solutions correspond to short

sequences. The spacecraft is less efficient when its mass is maximum early in a

trajectory; for the early maneuvers then the finite burn estimates will be of longer

duration, and the finite burn constraints will eliminate more solutions. This explains

129

−53 −52 −51 −50 −49 −48 −47 −46 −45 −44 −43 −42 −41 −40 −39 −38 −37 −36 −35 −34 −33

Best Objective

0

50

100

150

200

250

300

350

400

450

N
um

be
ro

fR
un

s

Base case

Partial solutions
Complete solutions

−53 −52 −51 −50 −49 −48 −47 −46 −45 −44 −43 −42 −41 −40 −39 −38 −37 −36 −35 −34 −33

Best Objective

0

50

100

150

200

250

300

350

400

450

N
um

be
ro

fR
un

s

No finite burn constraints

Figure 5.5: The best solutions found for the base case and the case ignoring finite
burn constraints.

130

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0

Objective

102

103

104

105

106

107

108

N
um

be
ro

fT
ra

je
ct

or
y

Fa
m

ili
es

No finite burn constraints
Base case

Figure 5.6: The number of trajectory families found for complete solutions in the
base case and the case ignoring finite burn constraints.

131

in part these larger differences.

The finite burn constraints prune at least an order of magnitude of the solu-

tions away over every range of objectives. These pruned solutions represent better

objective values; however they are not likely to have feasible low-thrust finite burn

counterparts and are thus not of interest in the search. Further, the search tree is

smaller in size when such solutions are pruned, which increases the efficiency of the

search.

5.3.3 Search Space Pruning

The search space pruning procedure developed in Chapter 4 is designed to accelerate

the generation of new solutions by discarding infeasible trajectory segments before

they are computed. This in turn accelerates the computation of each iteration and

allows the search to explore a larger region of the search space in a fixed time.

We now disable the space pruning procedure and re-run results to measure the

performance improvement in comparison to the base case. We otherwise use the

same base case search parameters of Table 5.6.

We first run results for the same fixed run time of 2 hours and consider

the performance in terms of the number of iterations computed during that time.

Figure 5.7 shows a comparison against the base case with space pruning enabled.

We see that in all runs more iterations are computed with space pruning enabled

than not. A median of 10.5× more iterations are computed when space pruning

is enabled. This order of magnitude improvement allows the search to explore and

find more improved solutions for the same fixed compute time. Over 95% of the

runs see at least a 5× improvement. The improvement directly impacts the quality

of solutions found. Figure 5.8 shows a comparison of the best solutions found in

comparison to the base case. The differences are significant; without space pruning,

the median objective found for complete solutions is only J = −38, much worse

132

57000 57500 58000 58500 59000 59500 60000 60500 61000 61500

Run Launch Epoch (MJD)

0

5000

10000

15000

20000

N
um

be
ro

fI
te

ra
tio

ns

Space pruning No space pruning

5 10 15 20 25 30

Performance increase (Space pruning / No space pruning)

0

20

40

60

80

100

120

N
um

be
ro

fR
un

s

Figure 5.7: Performance of base case (search space pruning) versus case with space
pruning disabled for 1024 runs. The run time is constrained to 2 hours. A median
of 10.5× more iterations are computed with space pruning enabled, with 95% of
runs seeing at least a 5× improvement.

133

−49 −48 −47 −46 −45 −44 −43 −42 −41 −40 −39 −38 −37 −36 −35 −34 −33 −32 −31 −30 −29 −28

Best Objective

0

50

100

150

200

250

300

350

400

450
N

um
be

ro
fR

un
s

Space pruning

Partial solutions
Complete solutions

−49 −48 −47 −46 −45 −44 −43 −42 −41 −40 −39 −38 −37 −36 −35 −34 −33 −32 −31 −30 −29 −28

Best Objective

0

50

100

150

200

250

300

350

400

450

N
um

be
ro

fR
un

s

No space pruning

Figure 5.8: Results of base case (search space pruning) versus case with space
pruning disabled for 1024 runs. The run time is constrained to 2 hours. The best
partial and complete solutions are shown.

than the base case value of J = −42.

We run another comparison against the base case, but this time fix the

runs at 1,000 iterations total with an unrestricted run time. We then compare the

performance in terms of the required run time. Figure 5.9 shows the results. All

of the runs with space pruning enabled complete in a shorter run time than those

without space pruning. The median runtime speedup of the space pruning approach

is 11.0×. Again, we see more than an order of magnitude improvement. Over 99%

of the runs see a greater than 5× runtime speedup.

134

57000 57500 58000 58500 59000 59500 60000 60500 61000 61500

Run Launch Epoch (MJD)

0

50

100

150

200

250

300

E
xe

cu
tio

n
Ti

m
e

(m
in

ut
es

)

Space pruning No space pruning

5 10 15 20 25 30

Speedup (No space pruning / Space pruning)

0

20

40

60

80

100

120

140

N
um

be
ro

fR
un

s

Figure 5.9: Performance of base case (search space pruning) versus case with space
pruning disabled for 1024 runs. 1000 iterations are computed and the run time is
unconstrained. The median runtime speedup is 11.0× with 99% of the runs seeing
at least a 5× speedup.

135

The search space pruning procedure provides a median order of magnitude

performance improvement to the search, with practically all runs seeing at least a

5× improvement. We can either compute an order of magnitude more iterations

in the same allowed run time, or compute the same number of iterations an order

of magnitude faster. This provides a significant boost to the search performance,

especially important in the context of limited compute resources or a limited time

during which to solve a problem. We see a distribution of performance gains rather

than a fixed improvement due to the variability in the number of infeasible trajec-

tory segments that are pruned during solution construction. We expect to see a

larger improvement when fewer feasible solutions exist, since more solutions can be

discarded prior to computation. When most of the candidate solutions are feasible,

the space pruning approach is of less benefit.

5.3.4 Dynamic Neighborhood Selection

The dynamic neighborhood selection procedure developed in Section 3.5.2 dynam-

ically intensifies and diversifies the search in an effort to provide improved overall

solutions compared to statically defined neighborhoods. It achieves this by main-

taining a diverse exploration of the search tree, breaking any stalls about particular

regions of the search space that may occur. In this section we compare the dynamic

neighborhood selection approach to various static neighborhoods.

Recall that we use the restricted best-first neighborhood defined in Sec-

tion 3.2.2 in the tabu search algorithm. This neighborhood has one parameter

h that dictates the neighborhood’s size, in terms of how far upward in the tree to

move before finding neighboring leaf nodes to expand. The dynamic neighborhood

selection procedure adjusts h throughout the search. A static neighborhood instead

maintains a fixed value of h.

We now run cases for various fixed values of h. These cases use the same

136

search parameters as the base case (Table 5.6) but do not dynamically update the

neighborhood. The results for several trial values of h are shown in Figure 5.10. We

see that the h = 3 case significantly underperforms the base case, with a median best

complete solution of only J = −31. The performance improves as h is increased.

The h = 5 is a small improvement with a median best complete solution of J = −32.

The improvement continues with the h = 20 case giving a median best complete

solution of J = −41, nearly as good as the base case with dynamic neighborhood

selection enabled (J = −42). From these metrics then, it appears that the results

steadily improve as h is increased.

We now compare the extreme case of h = ∞ with the base case directly.

Figure 5.11 shows the results. The distributions of best solutions found for each

run appear nearly identical, with the h = ∞ case having several runs achieving

best complete solutions of only J = −28 while all runs of the base case (dynamic

neighborhood selection) achieve at least J = −34. However, the results are further

distinguished when we consider the quantity and variety of solutions found rather

than just the best single solution of each run. Recall that we define a family of

trajectories by their target object sequence s1 . . . sns . Figure 5.12 compares the

h =∞ case against the dynamic neighborhood selection case based on the number

of trajectory families found for complete solutions. We see many more families of so-

lutions are found for the dynamic neighborhood selection case. This is an important

result, as it indicates the search is providing a more varied set of trajectory options

in the population of final solutions. We attribute this to the strategic intensification

and diversification of the search provided by the dynamic neighborhood selection

procedure. We can quantify this diversity in part by the variation in the incumbent

solution lengths over the iterations. Figure 5.13 shows that the standard deviation of

incumbent solution lengths is much higher for the dynamic neighborhood selection

137

−49 −48 −47 −46 −45 −44 −43 −42 −41 −40 −39 −38 −37 −36 −35 −34 −33 −32 −31 −30 −29 −28 −27 −26 −25 −24 −23 −22 −21 −20 −19

Best Objective

0

50

100

150

200

250

300

350

N
um

be
ro

fR
un

s

h = 3

Partial solutions
Complete solutions

−49 −48 −47 −46 −45 −44 −43 −42 −41 −40 −39 −38 −37 −36 −35 −34 −33 −32 −31 −30 −29 −28 −27 −26 −25 −24 −23 −22 −21 −20 −19

Best Objective

0

50

100

150

200

250

300

350

N
um

be
ro

fR
un

s

h = 5

−49 −48 −47 −46 −45 −44 −43 −42 −41 −40 −39 −38 −37 −36 −35 −34 −33 −32 −31 −30 −29 −28 −27 −26 −25 −24 −23 −22 −21 −20 −19

Best Objective

0

50

100

150

200

250

300

350

N
um

be
ro

fR
un

s

h = 10

−49 −48 −47 −46 −45 −44 −43 −42 −41 −40 −39 −38 −37 −36 −35 −34 −33 −32 −31 −30 −29 −28 −27 −26 −25 −24 −23 −22 −21 −20 −19

Best Objective

0

50

100

150

200

250

300

350

N
um

be
ro

fR
un

s

h = 15

−49 −48 −47 −46 −45 −44 −43 −42 −41 −40 −39 −38 −37 −36 −35 −34 −33 −32 −31 −30 −29 −28 −27 −26 −25 −24 −23 −22 −21 −20 −19

Best Objective

0

50

100

150

200

250

300

350

N
um

be
ro

fR
un

s

h = 20

Figure 5.10: The results of the base case are re-run with dynamic neighborhood
selection disabled for various static values of the restricted best-first neighborhood
parameter h. The best solutions found are shown for each case.

138

−49 −48 −47 −46 −45 −44 −43 −42 −41 −40 −39 −38 −37 −36 −35 −34 −33 −32 −31 −30 −29 −28

Best Objective

0

50

100

150

200

250

300

350

400

450

N
um

be
ro

fR
un

s

h =∞

Partial solutions
Complete solutions

−49 −48 −47 −46 −45 −44 −43 −42 −41 −40 −39 −38 −37 −36 −35 −34 −33 −32 −31 −30 −29 −28

Best Objective

0

50

100

150

200

250

300

350

400

450

N
um

be
ro

fR
un

s

Dynamic neighborhood selection

Figure 5.11: The best solutions found for the static neighborhood h =∞ case and
the dynamic neighborhood selection case.

139

−45 −40 −35 −30 −25 −20 −15 −10 −5 0

Objective

0

10000

20000

30000

40000

50000

N
um

be
ro

fT
ra

je
ct

or
y

Fa
m

ili
es

Fixed neighborhod, h =∞
Dynamic neighborhood selection

Figure 5.12: The number of trajectory families found for complete solutions in the
dynamic neighborhood selection case and the static neighborhood h =∞ case.

140

2 4 6 8 10 12 14 16 18 20

Incumbent solution length standard deviation

0

50

100

150

200

250

300

350

400

450
N

um
be

ro
fR

un
s

Fixed neighborhood, h =∞
Dynamic neighborhood selection

Figure 5.13: The standard deviation of the incumbent solution length for all runs in
the dynamic neighborhood selection case and the static neighborhood h =∞ case.

case as expected.

Although a static neighborhood can give good results, it does not give the

breadth of solutions that dynamic neighborhood selection provides. Further, with

h = ∞ the neighborhood size will monotonically increase as the search tree grows

over the iterations. We would then expect to see a performance decrease over time

compared to the dynamic neighborhood selection approach which restricts the neigh-

borhood size. This scalability is important if we consider running the search over

longer periods of time.

141

Base Case
Reduced Performance A

(5% change)
Reduced Performance B

(10% change)

Tmax 0.135 N 0.12825 N 0.1215 N
mdry 500 kg 525 kg 550 kg

Table 5.10: Spacecraft parameters for base case and reduced spacecraft performance
cases.

5.3.5 Reduced Spacecraft Performance

We now modify the spacecraft parameters for reduced performance. We consider

a reduction to the spacecraft’s maximum thrust magnitude Tmax as well as to its

available fuel mass. The reduction in thrust capability extends the duration of

finite burn estimates for the impulsive maneuvers. The longer finite burn maneuvers

consequently also experience greater gravity losses. The reduced fuel mass further

limits the maneuverability of the spacecraft. The resulting solutions are more tightly

constrained than those of the base case. We study this case both to examine the

impact of reduced spacecraft performance on the quality of solutions found and

to find more conservative solutions that are more likely to converge to low-thrust

finite burn trajectories, noting that the finite burn feasibility constraints placed on

impulsive solutions are based only on estimates of the corresponding finite burn

maneuvers.

Table 5.10 gives the spacecraft parameters for the base case and two reduced

performance cases. For the Reduced Performance A case, we decrease the space-

craft’s maximum thrust magnitude by 5% and increase its dry mass by 5% (keeping

the initial mass constant and therefore reducing the available fuel mass). For the

Reduced Performance B case we instead change the values by 10% for even more

conservative results. We generate results for the reduced performance cases using

the base case parameters shown in Table 5.6 with the new reduced spacecraft perfor-

mance parameters. Figure 5.14 shows the best solutions for these cases (over 1024

142

Minimum Median Maximum

Partial solutions

Base case -48 -45 -37
Reduced performance A -47 -44 -40
Reduced performance B -46 -43 -37

Complete solutions

Base case -45 -42 -34
Reduced performance A -45 -42 -34
Reduced performance B -43 -40 -32

Table 5.11: Summary of best solutions found for base case and reduced spacecraft
performance cases.

runs) in comparison to the base case.

We see the reduced performance cases have similar results to the base case.

However, the objective distributions have shifted. For partial solutions, the median

objective value increases by one for each 5% reduction in the spacecraft’s perfor-

mance. For complete solutions, the Reduced Performance A case achieves the same

minimum, median and maximum objective, while the values for the Reduced Per-

formance B case are increased by two. Table 5.11 summarizes the differences in the

solution statistics. We continue by investigating individual runs from both reduced

performance cases.

Reduced Performance Case A

We examine a single run from the collection of 1024 runs of Reduced Performance

Case A. We consider run 622 corresponding to a launch date of 59466.01 MJD

and a best complete solution objective of J = −45. The run’s iteration history is

shown in Figure 5.15. The best complete solution objective of J = −45 is achieved

143

−49 −48 −47 −46 −45 −44 −43 −42 −41 −40 −39 −38 −37 −36 −35 −34 −33 −32 −31

Best Objective

0

50

100

150

200

250

300

350

400

450

N
um

be
ro

fR
un

s

Base Case

Partial solutions
Complete solutions

−49 −48 −47 −46 −45 −44 −43 −42 −41 −40 −39 −38 −37 −36 −35 −34 −33 −32 −31

Best Objective

0

50

100

150

200

250

300

350

400

450

N
um

be
ro

fR
un

s

Reduced Performance A

−49 −48 −47 −46 −45 −44 −43 −42 −41 −40 −39 −38 −37 −36 −35 −34 −33 −32 −31

Best Objective

0

50

100

150

200

250

300

350

400

450

N
um

be
ro

fR
un

s

Reduced Performance B

Figure 5.14: Reduced spacecraft performance cases compared to base case: Best
partial and complete solutions generated by 1024 runs over launch dates from 2015
to 2025.

144

(a) 2 hour run time.

(b) 36 hour run time.

Figure 5.15: Reduced spacecraft performance case A: run #622/1024. The objective
history for the incumbent solution and best found partial and complete solutions
are shown for (a) 2 hour run time and (b) 36 hour run time.

145

no. t (MJD) mass (kg) Asteroid no. t (MJD) mass (kg) Asteroid

0 59466.01 1500.00 Earth 1 59521.45 1500.00 2007VL3
2 59646.51 1475.03 2005CD69 3 59712.87 1445.24 164207
4 59768.40 1425.32 2003LN6 5 59856.87 1419.93 2001SQ3
6 59963.48 1387.41 2003YG136 7 60051.66 1349.72 2002GR
8 60132.93 1328.15 186844 9 60248.09 1296.64 2006UB17
10 60340.42 1274.68 2002AU4 11 60421.69 1255.34 2005EB30
12 60513.76 1224.11 163364 13 60561.85 1205.37 2004FD
14 60657.28 1188.57 2008GF1 15 60778.42 1157.35 2008PW4
16 60852.23 1127.47 138175 17 60925.93 1119.86 2002EM7
18 61014.46 1089.48 2000SZ162 19 61161.70 1054.68 2005EZ169
20 61217.45 1050.13 2008JP24 21 61287.36 1034.04 2000AA6
22 61350.13 1013.53 1997UA11 23 61416.64 991.23 2006KV89
24 61508.61 974.09 2000EB14 25 61586.09 947.95 2004JO20
26 61685.62 924.96 2003OT13 27 61774.17 887.88 2006VU2
28 61837.15 878.08 2006XP4 29 61940.03 858.12 2006GC1
30 62020.65 839.36 2003XK 31 62104.66 798.21 2006RJ1
32 62171.01 780.54 1998UY24 33 62241.09 759.72 175706
34 62311.30 743.73 2008CP 35 62367.10 725.61 2006HF6
36 62429.73 712.75 2008LG2 37 62481.67 686.30 2004PR92
38 62537.42 678.12 2001RQ17 39 62611.49 661.37 2001XG1
40 62700.21 645.89 2004BN41 41 62792.83 617.95 2004UT1
42 62844.78 600.03 2008AP33 43 62886.17 588.39 2006QK33
44 62941.61 576.69 2002TX59 45 62993.56 556.94 2006VY2
46 63117.74 525.32 2006QQ56

Table 5.12: Reduced performance case A: run #622/1024. The tour itinerary is
shown for a J = −45 solution rendezvousing with asteroid 2006QQ56.

early within the two hour run time at iteration 6100 of 22401. We extend this

run to compute for 36 hours–however we see no further improvement for partial or

complete solutions.

We examine a single complete solution from this run for J = −45. We

choose a trajectory rendezvousing with asteroid 2006QQ56. Figure 5.16 shows the

trajectory, and Table 5.12 shows the tour itinerary. The spacecraft mass history

closely follows the linear budget as in the other cases. Since this trajectory uses

more conservative values for the spacecraft performance, we expect that this solution

146

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

X
(A

U
)

−
1.

0

−
0.

5

0.
0

0.
5

1.
0

Y(AU)

E
ar

th
de

pa
rt

ur
e

In
te

rc
ep

t
Im

pu
ls

iv
e

m
an

eu
ve

r
Fi

na
lr

en
de

zv
ou

s

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

Ti
m

e
(d

ay
s

si
nc

e
de

pa
rt

ur
e,

M
JD

)

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

DistancetoSun(AU)

In
te

rc
ep

t

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

Ti
m

e
(d

ay
s

si
nc

e
de

pa
rt

ur
e,

M
JD

)

40
0

60
0

80
0

10
00

12
00

14
00

16
00

Mass(kg)

M
as

s
bu

dg
et

Pe
na

lty

F
ig

u
re

5.
16

:
R

ed
u

ce
d

p
er

fo
rm

a
n

ce
ca

se
A

:
ru

n
#

62
2/

10
24

.
T

h
e

tr
a

je
ct

or
y

is
sh

ow
n

fo
r

a
J

=
−

45
so

lu
ti

on
re

n
-

d
ez

vo
u

si
n

g
w

it
h

a
st

er
oi

d
2
00

6Q
Q

5
6.

147

(a) 2 hour run time.

(b) 36 hour run time.

Figure 5.17: Reduced spacecraft performance case B: run #402/1024. The objective
history for the incumbent solution and best found partial and complete solutions
are shown for (a) 2 hour run time and (b) 36 hour run time.

could more easily be converted into a feasible low-thrust finite burn trajectory.

Reduced Performance Case B

We similarly examine a single run from the collection of 1024 runs of Reduced

Performance Case B. We consider run 402 corresponding to a launch date of 58601.92

MJD and a best complete solution objective of J = −43. The run’s iteration history

is shown in Figure 5.17. The best complete solution objective of J = −43 is achieved

148

at iteration 8196 of the total 13892 iterations for the two hour run time. Again, we

extend the search to 36 hours to see if better solutions can be found. We see that

the search does not provide any improved complete solutions with the additional

runtime. The best partial solution objective improves to J = −46 before 4 hours

has elapsed, but improves no further afterward.

We examine a single complete solution from this run for J = −43. We choose

a trajectory rendezvousing with asteroid 2006UB17. Figure 5.18 shows the trajec-

tory, and Table 5.13 shows the tour itinerary. The spacecraft mass history closely

follows the linear budget as in the other cases. Again, since this trajectory uses

more conservative values for the spacecraft performance, we expect that this solu-

tion could more easily be converted into a feasible low-thrust finite burn trajectory.

For both runs of the reduced performance cases, we see that the search finds

its best complete solutions within two hours of run time, even when the searches

are continued for up to 36 hours. Thus, the search algorithm appears to find good

solutions rapidly, with little improvement for extended run times.

149

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

X
(A

U
)

−
1.

0

−
0.

5

0.
0

0.
5

1.
0

Y(AU)

E
ar

th
de

pa
rt

ur
e

In
te

rc
ep

t
Im

pu
ls

iv
e

m
an

eu
ve

r
Fi

na
lr

en
de

zv
ou

s

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

Ti
m

e
(d

ay
s

si
nc

e
de

pa
rt

ur
e,

M
JD

)

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

DistancetoSun(AU)

In
te

rc
ep

t

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

Ti
m

e
(d

ay
s

si
nc

e
de

pa
rt

ur
e,

M
JD

)

40
0

60
0

80
0

10
00

12
00

14
00

16
00

Mass(kg)

M
as

s
bu

dg
et

Pe
na

lty

F
ig

u
re

5.
18

:
R

ed
u

ce
d

sp
ac

ec
ra

ft
p

er
fo

rm
an

ce
ca

se
B

:
ru

n
#

40
2/

10
24

.
T

h
e

tr
a

je
ct

or
y

is
sh

ow
n

fo
r

a
J

=
−

43
so

lu
ti

on
re

n
d

ez
vo

u
si

n
g

w
it

h
as

te
ro

id
20

06
U

B
17

.

150

no. t (MJD) mass (kg) Asteroid no. t (MJD) mass (kg) Asteroid

0 58601.92 1500.00 Earth 1 58708.53 1500.00 2000QW7
2 58815.02 1466.78 2003YT70 3 58920.94 1433.92 2005EZ169
4 59023.98 1391.65 2007LF 5 59090.33 1369.23 175729
6 59175.11 1348.86 2004UT1 7 59275.37 1330.43 2004XG
8 59335.02 1320.35 2005VO 9 59426.99 1296.31 2004MS1
10 59489.99 1263.38 2005WK4 11 59578.47 1252.98 1999VM11
12 59633.79 1231.10 2004BF11 13 59710.95 1217.08 152563
14 59799.78 1176.37 2007DS84 15 59902.66 1158.79 2003OQ13
16 59990.32 1128.78 2003WY153 17 60081.63 1103.00 2008JP24
18 60137.44 1085.03 2008CP 19 60244.17 1066.57 2008WM
20 60343.70 1052.84 2008CY118 21 60387.79 1032.13 2001TB
22 60512.86 1023.40 2007YM 23 60612.39 986.64 2001SE270
24 60686.09 971.82 2005YP180 25 60789.33 950.53 2006SD25
26 60855.68 917.67 2006WG130 27 60918.69 905.75 2006BY8
28 60966.67 888.86 2002VX91 29 61098.95 876.94 2004FD
30 61187.78 837.46 2008TC3 31 61247.44 823.68 2005GC120
32 61346.97 807.12 2007CC27 33 61438.93 774.13 7335
34 61512.46 762.33 2008CN116 35 61578.82 747.57 2004RQ252
36 61649.26 719.79 2006BZ147 37 61734.64 705.10 1995CR
38 61800.99 687.61 2008EE9 39 61860.01 671.39 2007DB83
40 61915.81 657.86 2008UB7 41 62007.66 639.05 2003SW130
42 62066.38 616.91 2004JN1 43 62147.41 599.79 2005YK
44 62236.48 579.46 2006UB17

Table 5.13: Reduced spacecraft performance case B: run #402/1024. The tour
itinerary is shown for a J = −43 solution rendezvousing with asteroid 2006UB17.

151

5.3.6 Comparison to GTOC4 Winning Solution

In the previous sections we generated solutions across the full 10-year range of al-

lowed launch epochs (Table 5.5) and found solutions that compared favorably to

the overall GTOC4 competition results. In this section we instead wish to more

directly compare against the winning GTOC4 solution found by Moscow State Uni-

versity [11]. In their solution, the spacecraft departs the Earth at 58676.40 MJD and

visits 44 intermediate asteroids before completing a final rendezvous with asteroid

2000SZ162, achieving an objective value of J = −44. We now examine solutions for

the same launch epoch, and place emphasis on solutions that similarly rendezvous

with asteroid 2000SZ162.

We first generate solutions for the base case parameters given in Table 5.6

for the launch epoch of 58676.40 MJD and allow the search to run for 12 hours.

Figure 5.19 shows the number of trajectory families found and their objective val-

ues for complete solutions. The best overall solution is found after 12 hours and

rendezvouses with asteroid 2008JP24 for an objective value of J = −43. The best

solution rendezvousing with asteroid 2000SZ162 is found after 4 hours and visits 41

intermediate asteroids, fewer than the 44 achieved by the winning GTOC4 solution.

The J = −41 objective achieved is close to the median of J = −42 for all runs of

the base case (Table 5.7). Although a J = −44 solution rendezvousing with asteroid

2000SZ162 was not found for the base case parameters at this launch epoch, we note

that the base case executed across the full range of launch epochs did find such solu-

tions (Table 5.8). These were found at the nearby launch epochs of 58032.41 MJD,

58323.06 MJD, 58448.74 MJD and 58955.41 MJD.

The base case solutions found are constrained so that finite burn estimates

for the impulsive maneuvers do not overlap in time in an effort to ensure that the

resulting impulsive trajectories also have valid finite burn representations. These

constraints are only estimates, however, and are specific to the impulsive tour model

152

−45 −40 −35 −30 −25 −20 −15 −10 −5

Objective

0

5

10

15

20

25

30

35

40

45

N
um

be
ro

fT
ra

je
ct

or
y

Fa
m

ili
es

12 hours
8 hours
4 hours
2 hours

Figure 5.19: Number of trajectory families found versus objective for the base case
parameters and a launch epoch of 58676.40 MJD. The search is allowed to run for
12 hours. Only complete solutions are shown.

153

used in this work. Further, these constraints do not guarantee that a feasible conver-

sion is possible and may instead over- or under-constrain the search. Section 5.3.2

showed that the constraints significantly reduce the feasible solution space, in turn

limiting the objectives achievable. We note that the Moscow State University search

methodology also operates on impulsive trajectories, but allows finite burn estimates

for impulsive maneuvers to overlap in time [29]. When the finite burn conversion

occurs, many of these overlaps are resolved in the optimization, while some asteroids

are dropped from the itinerary as necessary. It therefore makes sense to consider

relaxing (but not eliminating) the finite burn constraints used in our model.

Increased Spacecraft Performance

We now consider relaxing the finite burn constraints through an increase to the

maximum allowed thrust Tmax of the spacecraft. The increased Tmax reduces the

duration of finite burn estimates for the impulsive maneuvers, and therefore makes

the finite burn constraints less restrictive. One can equivalently view this as allow-

ing an overlap in finite burn estimates for the original Tmax value. We generate

solutions for the base case parameters again for a launch epoch of 58676.40 MJD,

but increase the value of Tmax by 5% from 0.135 N to 0.14175 N. Figure 5.20 shows

the distribution of trajectory families found for complete solutions up to a 12 hour

runtime. The best solutions are found after 4 hours and achieve an objective of

J = −46, exceeding the best results of the base case previously executed across the

full 10-year launch window. These best three trajectory families rendezvous with

two different final asteroids, 2006DN and 2003YG136. Ten trajectory families ren-

dezvousing with seven final asteroids are found with objective values of J = −45.

One of these rendezvouses with asteroid 2000SZ162. We have found a solution ren-

dezvousing with the same final asteroid for the same launch epoch that improves

upon the winning GTOC4 solution. Figure 5.21 shows the trajectory, and Table 5.14

154

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0

Objective

0

20

40

60

80

100

120

140

N
um

be
ro

fT
ra

je
ct

or
y

Fa
m

ili
es

12 hours
8 hours
4 hours
2 hours

Figure 5.20: Number of trajectory families found versus objective for the increased
spacecraft performance case and a launch epoch of 58676.40 MJD. The spacecraft’s
maximum allowed thrust Tmax is increased by 5% from 0.135 N to 0.14175 N. The
search is allowed to run for 12 hours. Only complete solutions are shown.

155

no. t (MJD) mass (kg) Asteroid no. t (MJD) mass (kg) Asteroid

0 58676.40 1500.00 Earth 1 58739.41 1500.00 2000QW7
2 58845.33 1482.62 2006XP4 3 58970.38 1413.66 2006UJ185
4 59091.90 1390.88 2005NW44 5 59140.15 1367.49 2007TK15
6 59210.41 1360.11 2005VY1 7 59280.62 1320.97 199003
8 59336.37 1303.26 2005VO 9 59529.95 1281.63 2000RN77
10 59606.66 1258.96 2003SW130 11 59735.44 1239.92 2007CC27
12 59805.52 1199.20 2005TF45 13 59890.90 1191.00 5496
14 59964.43 1161.82 1999YR14 15 60012.52 1151.97 2008SW150
16 60096.53 1137.19 1998DK36 17 60155.42 1125.36 2003GD
18 60210.68 1106.51 2002JR100 19 60339.53 1092.84 2004RN111
20 60423.54 1053.52 2006UQ216 21 60497.60 1034.50 1995CR
22 60541.84 1009.89 2008GF1 23 60586.08 1000.45 7335
24 60678.40 993.92 2003QY29 25 60770.68 952.51 2007VD8
26 60848.16 927.45 136849 27 60896.25 895.36 2002CX58
28 60980.65 888.44 2006KC40 29 61054.72 860.19 2003NO4
30 61110.25 845.91 2006RJ1 31 61198.59 838.29 2007VV6
32 61257.61 819.55 2001BA16 33 61338.88 797.59 2006KZ39
34 61412.58 778.92 2002NW 35 61497.63 762.74 2004SA20
36 61571.70 732.29 2007XO 37 61626.86 714.09 2007YF
38 61656.69 707.29 2007CR5 39 61726.09 692.93 2002VX91
40 61806.89 664.78 2006QQ56 41 61851.09 648.01 2008GM2
42 61954.41 628.94 2005UF1 43 62031.89 606.11 2007YM
44 62116.51 577.94 2006UP217 45 62182.25 568.56 2007RQ12
46 62312.33 516.35 2000SZ162

Table 5.14: Increased spacecraft performance case: The tour itinerary is shown for
a J = −45 solution rendezvousing with asteroid 2000SZ162.

shows the tour itinerary. We do note that the sequence of intermediate asteroids

in this solution is different than that of the winning GTOC4 solution. In our re-

sults we were unable to reproduce that solution’s exact sequence. We have however

found a comparable trajectory for the same launch epoch and rendezvous asteroid,

as well as many other solutions with the same or superior objective values. Due to

the large asteroid population and the vast number of feasible sequences, we find it

unlikely that any two methodologies will reproduce the same asteroid sequence in

reasonable compute times. This is in part due to the differing constraints, objec-

156

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

X
(A

U
)

−
1.

0

−
0.

5

0.
0

0.
5

1.
0

Y(AU)

E
ar

th
de

pa
rt

ur
e

In
te

rc
ep

t
Im

pu
ls

iv
e

m
an

eu
ve

r
Fi

na
lr

en
de

zv
ou

s

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

Ti
m

e
(d

ay
s

si
nc

e
de

pa
rt

ur
e,

M
JD

)

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

DistancetoSun(AU)

In
te

rc
ep

t

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

Ti
m

e
(d

ay
s

si
nc

e
de

pa
rt

ur
e,

M
JD

)

40
0

60
0

80
0

10
00

12
00

14
00

16
00

Mass(kg)

M
as

s
bu

dg
et

Pe
na

lty

F
ig

u
re

5
.2

1:
In

cr
ea

se
d

sp
ac

ec
ra

ft
p

er
fo

rm
an

ce
ca

se
:

T
h

e
tr

a
je

ct
or

y
is

sh
ow

n
fo

r
a
J

=
−

45
so

lu
ti

on
re

n
d

ez
vo

u
si

n
g

w
it

h
a
st

er
oi

d
2
00

0S
Z

1
62

.

157

tives and penalties placed on solutions during the search, and is supported by the

original GTOC4 results where no two asteroid sequences were replicated. Further,

we note that the top two solutions had similar launch epochs (within two weeks of

each other) and rendezvoused with the same final asteroid, but differed significantly

in the intermediate asteroid sequence, sharing only three asteroids in common.

Relaxing the finite burn constraints through an increase to the spacecraft’s

maximum allowed thrust magnitude Tmax increases the variety and quality of so-

lutions found and allows us to find solutions comparable to the winning GTOC4

solution. We note again that these are impulsive solutions, however, and that there

is a trade-off: with less restrictive finite burn constraints, we expect the subsequent

finite burn conversion to be more difficult. The next section considers the low-thrust

finite burn conversion of selected impulsive solutions.

158

5.3.7 Low-thrust Finite-burn Conversion

The GTOC4 problem statement requires low-thrust finite burn trajectories that ad-

here to the specified maximum thrust Tmax. The solutions we have presented up to

this point have all been impulsive, ignoring this limit on the thrust magnitude. We

have however constrained the impulsive solutions based on estimates of representa-

tive finite burn maneuvers; these constraints further limit the feasible solution space

in an effort to only find trajectories that can be converted to low-thrust finite burn

solutions. These finite burn estimates are only approximations, however, and we are

not guaranteed that our solutions will converge to valid finite burn trajectories. This

section evaluates the finite burn conversion and optimization of selected impulsive

solutions. The resulting low-thrust finite burn trajectories can be compared directly

to the best known solutions of GTOC4 (Section 5.2).

An impulsive solution generated by the search algorithm can act as an initial

guess for a low-thrust finite burn trajectory. In this conversion, the sequence of

target asteroids of the impulsive solution becomes fixed. The impulsive maneuvers

are then replaced with finite burn maneuvers that must satisfy the original problem

constraints. The resulting problem is a continuous optimization problem with no

discrete decision variables. We can solve the problem in a variety of ways, either

formulating it as a parameter optimization problem or instead taking an optimal

control approach, for example. Existing tools such as Copernicus are well suited

to this task [71]. Olympio has developed an optimal control formulation that can

optimize GTOC4 trajectories directly [52]. The method takes an initial guess in

the form of the asteroid sequence, asteroid visit times, and spacecraft velocity and

mass values along the trajectory and generates mass-optimal low-thrust finite burn

trajectories. We use Olympio’s approach and software to find finite burn solutions

based on our impulsive solutions. The optimization varies the thrust history of

the spacecraft, but in our usage treats the asteroid encounter dates as fixed. The

159

Impulsive Search Population of
Impulsive Trajectories

Impulsive Trajectory
Selection

Impulsive Trajectory
Optimization

Finite Burn Trajectory
Conversion and

Optimization

Figure 5.22: Workflow for GTOC4 solution process. The impulsive search algorithm
generates a population of impulsive trajectories. The user then selects specific im-
pulsive trajectories, optimizes them impulsively, and passes them to the black-box
finite burn conversion and optimization tool.

resulting solutions are optimal for the fixed encounter dates, but we expect they

would be further improved if the encounter dates were also free to vary.

Reduced Performance Case A

We first consider the J = −45 impulsive trajectory from Reduced Performance Case

A (Figure 5.16 and Table 5.12). This solution was generated for a 5% reduction in

the spacecraft’s maximum thrust magnitude and a 5% increase in its dry mass.

We generate the initial guess using the search-generated impulsive solution

and run the optimization using Olympio’s approach. In this case, we are not initially

able to find a feasible finite burn solution satisfying the problem constraints. A lim-

itation of our usage of Olympio’s approach is that the asteroid encounter dates are

fixed–in general these encounter dates could also be optimized, or in this case mod-

ified to find a feasible solution. We now consider the additional step of optimizing

the search-generated impulsive trajectory to maximize the final mass, noting that

the search-generated solutions are not optimal in part because the encounter dates

are chosen from a discretization of possible dates. We use the same constraints as

in the search; however we now consider the asteroid sequence to be fixed, and only

optimize the launch date and encounter dates. The workflow for the full solution

process is shown in Figure 5.22.

We find that optimizing the launch and encounter dates for the impulsive

trajectory increases the final mass from 525.32 kg to 643.86 kg. The optimized

160

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

X (AU)

−1.0

−0.5

0.0

0.5

1.0

Y
(A

U
)

Thrusting
Earth departure

Intercept
Final rendezvous

Figure 5.23: Low-thrust finite burn trajectory corresponding to the J = −45
impulsive trajectory of the reduced spacecraft performance case shown in Figure 5.16
and Table 5.12.

impulsive trajectory still adheres to the original model constraints. We now optimize

this solution using Olympio’s approach, and find that it does converge to an optimal

low-thrust finite burn trajectory. Figures 5.23 and 5.24 show the solution, and

Table 5.15 shows the tour itinerary. The final mass of the trajectory is 505.12

kg, just above the limit of 500 kg. This solution exceeds the best known GTOC4

solution of J = −44.

161

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

Ti
m

e
(d

ay
s

si
nc

e
de

pa
rt

ur
e,

M
JD

)

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

DistancetoSun(AU)

Im
pu

ls
iv

e
tra

je
ct

or
y

Th
ru

st
in

g
In

te
rc

ep
t

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

Ti
m

e
(d

ay
s

si
nc

e
de

pa
rt

ur
e,

M
JD

)

40
0

60
0

80
0

10
00

12
00

14
00

16
00

Mass(kg)

Im
pu

ls
iv

e
tra

je
ct

or
y

O
pt

im
iz

ed
im

pu
ls

iv
e

tra
je

ct
or

y

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

Ti
m

e
(d

ay
s

si
nc

e
de

pa
rt

ur
e,

M
JD

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T/Tmax

F
ig

u
re

5.
24

:
L

ow
-t

h
ru

st
fi

n
it

e
b

u
rn

tr
a
je

ct
or

y
co

rr
es

p
on

d
in

g
to

th
e
J

=
−

45
im

p
u

ls
iv

e
tr

a
je

ct
or

y
of

th
e

re
d

u
ce

d
sp

ac
ec

ra
ft

p
er

fo
rm

a
n

ce
ca

se
sh

ow
n

in
F

ig
u

re
5.

16
an

d
T

ab
le

5.
12

.
T

h
e

or
ig

in
al

im
p

u
ls

iv
e

tr
a
je

ct
or

y
is

al
so

sh
ow

n
.

162

no. t (MJD) mass (kg) Asteroid no. t (MJD) mass (kg) Asteroid

0 59466.35 1500.00 Earth 1 59522.01 1482.87 2007VL3
2 59646.13 1443.13 2005CD69 3 59712.44 1419.88 164207
4 59768.76 1399.81 2003LN6 5 59856.82 1367.21 2001SQ3
6 59964.82 1326.88 2003YG136 7 60051.80 1294.77 2002GR
8 60133.21 1266.10 186844 9 60248.35 1229.74 2006UB17
10 60339.88 1198.87 2002AU4 11 60421.47 1171.73 2005EB30
12 60513.15 1141.77 163364 13 60562.14 1130.04 2004FD
14 60657.46 1103.90 2008GF1 15 60776.49 1074.82 2008PW4
16 60852.29 1061.95 138175 17 60926.93 1048.99 2002EM7
18 61014.49 1027.92 2000SZ162 19 61161.87 994.24 2005EZ169
20 61217.04 983.12 2008JP24 21 61287.33 965.70 2000AA6
22 61350.55 947.92 1997UA11 23 61417.28 932.02 2006KV89
24 61508.23 910.54 2000EB14 25 61586.83 884.05 2004JO20
26 61685.83 850.00 2003OT13 27 61774.00 821.49 2006VU2
28 61837.49 796.35 2006XP4 29 61940.14 755.61 2006GC1
30 62020.78 723.64 2003XK 31 62101.87 691.49 2006RJ1
32 62171.65 666.46 1998UY24 33 62241.05 651.05 175706
34 62311.32 639.17 2008CP 35 62367.09 627.78 2006HF6
36 62432.42 612.26 2008LG2 37 62481.55 607.35 2004PR92
38 62537.71 599.40 2001RQ17 39 62610.26 585.80 2001XG1
40 62700.35 578.14 2004BN41 41 62792.01 550.38 2004UT1
42 62843.90 546.90 2008AP33 43 62883.52 546.75 2006QK33
44 62937.09 541.34 2002TX59 45 62992.59 534.42 2006VY2
46 63118.46 505.12 2006QQ56

Table 5.15: Low-thrust finite burn trajectory corresponding to the J = −45 impul-
sive trajectory of the reduced spacecraft performance case shown in Figure 5.16 and
Table 5.12. The tour itinerary is shown.

163

Reduced Performance Case B

We now consider the J = −43 impulsive trajectory from Reduced Performance Case

B (Figure 5.18 and Table 5.13). This solution was generated for a 10% reduction in

the spacecraft’s maximum thrust magnitude and a 10% increase in its dry mass.

We again follow the workflow shown in Figure 5.22. Optimizing the launch

and encounter dates for the impulsive trajectory increases the final mass from 579.46

kg to 679.11 kg. We now optimize this solution using Olympio’s approach, and find

that it does converge to an optimal low-thrust finite burn trajectory. Figure 5.25

and 5.26 show the solution, and Table 5.16 shows the tour itinerary. The final mass

of the trajectory is 583.91 kg, well above the limit of 500 kg. This solution would

have placed third in the original GTOC4 competition.

We found that both of the impulsive trajectories from both reduced per-

formance cases could be converted to optimal low-thrust finite burn solutions. In

these cases we added an intermediate impulsive optimization to maximize the final

mass. The low-thrust finite burn trajectory corresponding to the first case represents

the best known solution to the GTOC4 problem. This validates the overall global

search methodology. More specifically, the feasible finite burn conversion validates

that our estimates for representative finite burn maneuvers sufficiently constrain the

impulsive solution space.

5.4 Summary

This chapter applied the search methodology developed in Chapter 3 to the GTOC4

problem, and found impulsive solutions exceeding the best known. The method uses

no a priori information of these best known solutions, but rather adaptively updates

parameters of the search to find increasingly better solutions over time. We var-

164

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

X (AU)

−1.0

−0.5

0.0

0.5

1.0

Y
(A

U
)

Thrusting
Earth departure

Intercept
Final rendezvous

Figure 5.25: Low-thrust finite burn trajectory corresponding to the J = −43
impulsive trajectory of the reduced spacecraft performance case shown in Figure 5.18
and Table 5.13.

165

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

Ti
m

e
(d

ay
s

si
nc

e
de

pa
rt

ur
e,

M
JD

)

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

DistancetoSun(AU)

Im
pu

ls
iv

e
tra

je
ct

or
y

Th
ru

st
in

g
In

te
rc

ep
t

−
50

0
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Ti
m

e
(d

ay
s

si
nc

e
de

pa
rt

ur
e,

M
JD

)

40
0

60
0

80
0

10
00

12
00

14
00

16
00

Mass(kg)

Im
pu

ls
iv

e
tra

je
ct

or
y

O
pt

im
iz

ed
im

pu
ls

iv
e

tra
je

ct
or

y

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

Ti
m

e
(d

ay
s

si
nc

e
de

pa
rt

ur
e,

M
JD

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T/Tmax

F
ig

u
re

5.
26

:
L

ow
-t

h
ru

st
fi

n
it

e
b

u
rn

tr
a
je

ct
or

y
co

rr
es

p
on

d
in

g
to

th
e
J

=
−

43
im

p
u

ls
iv

e
tr

a
je

ct
or

y
of

th
e

re
d

u
ce

d
sp

ac
ec

ra
ft

p
er

fo
rm

a
n

ce
ca

se
sh

ow
n

in
F

ig
u

re
5.

18
an

d
T

ab
le

5.
13

.
T

h
e

or
ig

in
al

im
p

u
ls

iv
e

tr
a
je

ct
or

y
is

al
so

sh
ow

n
.

166

no. t (MJD) mass (kg) Asteroid no. t (MJD) mass (kg) Asteroid

0 58597.39 1500.00 Earth 1 58712.38 1457.94 2000QW7
2 58813.53 1420.30 2003YT70 3 58929.01 1377.53 2005EZ169
4 59027.42 1341.40 2007LF 5 59089.62 1319.57 175729
6 59174.83 1290.98 2004UT1 7 59275.26 1260.41 2004XG
8 59334.95 1244.26 2005VO 9 59427.34 1215.52 2004MS1
10 59489.27 1197.00 2005WK4 11 59580.26 1174.04 1999VM11
12 59634.77 1156.66 2004BF11 13 59707.72 1127.75 152563
14 59798.87 1091.59 2007DS84 15 59902.33 1068.51 2003OQ13
16 59988.93 1054.56 2003WY153 17 60082.70 1043.16 2008JP24
18 60139.25 1033.89 2008CP 19 60247.89 1013.21 2008WM
20 60343.62 1005.01 2008CY118 21 60388.42 1003.53 2001TB
22 60514.72 980.09 2007YM 23 60612.26 956.87 2001SE270
24 60686.02 943.55 2005YP180 25 60788.65 902.69 2006SD25
26 60855.97 880.71 2006WG130 27 60918.35 866.50 2006BY8
28 60967.84 854.57 2002VX91 29 61099.21 833.68 2004FD
30 61186.52 817.66 2008TC3 31 61247.22 803.61 2005GC120
32 61347.72 773.80 2007CC27 33 61438.96 752.68 7335
34 61513.01 730.21 2008CN116 35 61578.52 711.02 2004RQ252
36 61651.78 693.46 2006BZ147 37 61734.71 679.68 1995CR
38 61801.32 665.82 2008EE9 39 61859.87 642.32 2007DB83
40 61915.18 636.55 2008UB7 41 62009.96 623.66 2003SW130
42 62067.65 610.20 2004JN1 43 62149.77 597.06 2005YK
44 62248.87 583.91 2006UB17

Table 5.16: Low-thrust finite burn trajectory corresponding to the J = −43 impul-
sive trajectory of the reduced spacecraft performance case shown in Figure 5.18 and
Table 5.13. The tour itinerary is shown.

167

ied several components of the search to study their impact on the results. We

found that the finite burn feasibility constraints reduce the feasible solution space

by orders of magnitude. Additionally, we found the search space pruning approach

developed in Chapter 4 accelerates the search by an order of magnitude. The dy-

namic neighborhood selection procedure provides more diverse solutions through

its dynamic intensification and diversification of the search. Finally, we generated

optimal low-thrust finite burn trajectories for selected impulsive trajectories, and

found a solution exceeding the best known for GTOC4.

The search procedure developed in this work is meant as the first stage of a

multi-stage workflow. It finds impulsive solutions that are constrained in a way that

helps ensure they can be converted to low-thrust finite burn trajectories. However,

this conversion is not guaranteed to be feasible. In the future a second stage of this

workflow should be developed that automatically converts and optimizes selected

impulsive solutions into low-thrust finite burn trajectories.

168

Chapter 6

Conclusions

6.1 Dissertation Summary

This dissertation describes the spacecraft tour trajectory optimization problem, and

develops an overall methodology for finding promising solutions. The method is

based on many of the tenets of tabu search, and represents an automated, adaptive

and efficient approach to finding globally good solutions to a broad class of spacecraft

tour trajectory problems.

Chapter 2 begins by developing a general model and parameterization for

tour trajectories. This model is a complication to the traveling salesman problem,

where now both the agent and targets objects are allowed to move with time ac-

cording to a set of prescribed dynamics. A model for spacecraft tour trajectories

subject to two body dynamics and impulsive maneuvers is then presented. Con-

straints are developed on impulsive maneuvers to prune away solutions that are

unlikely to have equivalent finite burn trajectories. These additional constraints are

only approximations, but allow the model to be used for preliminary design for low-

thrust trajectory optimization problems as well. This augmented model is used in

later applications to the fourth annual Global Trajectory Optimization Competition

169

problem (GTOC4).

Chapter 3 develops the overall global search methodology, and is the core

chapter of the dissertation. It begins by implementing the building blocks com-

mon to local search algorithms: the solution representation, neighborhoods, and

objectives. A tree-based solution representation is defined that is shown to be es-

pecially efficient for problems with expensive solution evaluations. Neighborhoods

are then defined to operate on this representation, leading to a neighborhood defini-

tion that allows for strategic intensification and diversification during the search. A

guiding objective is then developed which allows the algorithm to adaptively target

increasingly better solutions as the search progresses. Finally, these components

are combined within the context of the tabu search algorithm. Tabu attributes

and recency-based tabu memory are presented, as well as a strategic intensification

and diversification approach that dynamically adjusts the neighborhood to ensure

a sufficiently diverse exploration of the search space. The final result of the chapter

is a tabu search algorithm applicable to general tour trajectory optimization prob-

lems. The algorithm is deterministic and generates a diverse population of feasible

solutions.

Chapter 4 develops a numerical search space pruning procedure which can

be used to improve the performance of the tabu search algorithm. The chapter first

describes the brute force approach, and then develops the concept of a trajectory

envelope that bounds the reachable domain of the spacecraft. A simple numerical

procedure is then developed to compute an upper bound on the trajectory envelope.

The procedure is based on the generation of bounding boxes in space and time.

Target objects intersecting these bounding boxes may be feasibly reached by the

spacecraft; those not intersecting can be safely pruned from the search space. The

pruning condition is thus a necessary, but not sufficient, condition for reachability.

The performance of the space pruning method is analyzed for a simple example

170

according to an assumed discretization, and a significant reduction in the number

of required Lambert targeting computations is shown, which should yield speedups

in real applications.

Chapter 5 then applies all of these components together to the fourth annual

Global Trajectory Optimization Competition (GTOC4). The impulsive tour model

is extended with constraints specific to GTOC4, and the tabu search algorithm is

executed for a broad set of cases. Each case is executed in parallel on the Stam-

pede supercomputer to generate a distribution of results across a range of launch

epochs. The algorithm finds impulsive solutions meeting or exceeding every solution

from the original GTOC4 results. Impulsive solutions are also found exceeding the

currently best known GTOC4 solution. A sensitivity analysis is then conducted,

examining the impact of components of the search algorithm including the finite

burn feasibility constraints, search space pruning procedure and dynamic neighbor-

hood selection procedure. In particular, the search space pruning approach is found

to yield an order of magnitude speedup in performance. We then examine cases

where the spacecraft is assumed to have reduced performance through lower thrust

capability and available fuel to see the impact of solution quality. Finally, we con-

vert solutions from the reduced performance cases into fully optimized low-thrust

finite burn solutions, making use of an indirect optimal control approach provided

by Olympio. The results are new solutions to the GTOC4 problem, including one

exceeding the best known solution in the literature.

6.2 General Conclusions

The primary contribution of this work is the development of a tabu search method-

ology for the spacecraft tour trajectory optimization problem. This work represents

the first application of tabu search to spacecraft trajectory optimization, and it is

the hope of the author that such methods will find more practical applications in

171

the future. The resulting algorithm represents an automated and adaptive approach

for finding promising solutions to tour problems, and yields a broad population of

feasible solutions in short run times. Another contribution is the extension of tabu

search to tree-based solution representations and neighborhoods. The tree-based

representation leads to increased speed and efficiency on problems with expensive

solution evaluations. We believe this is the first time a tree-based solution repre-

sentation has been used with a tabu search algorithm. The search space pruning

procedure based on trajectory envelopes is also novel, and could be applicable other

problems with different trajectory dynamics. Finally, the work resulted in a collec-

tion of new solutions to the GTOC4 problem, including a new solution exceeding

the previously best known.

6.3 Future Work

This work does not represent an exhaustive exploration of search approaches for

spacecraft tour trajectory optimization, nor does it fully explore the ways in which

tabu search can be used to attack such problems. It is the hope of the author that fu-

ture work is able to build upon and improve the methods developed here. Although

the tabu search approach has been demonstrated successfully on the GTOC4 prob-

lem, it should also be applied to other problems to further test its applicability

and performance. The ability to adapt the definitions of the solution representation

and neighborhoods should make the algorithm easily applicable to diverse problem

types, in particular other GTOC problems. Further, applying it to the design of

active debris removal trajectories addressing the Earth orbital debris problem could

be fruitful.

A particular area for future work is the parallelization of the algorithm. Al-

though we ran the software on large-scale supercomputing clusters, we did so by

running independent instances for varying launch epochs. Another approach is to

172

parallelize the solution representation and neighborhood computations directly. The

tree-based solution representation is especially amenable to distributed paralleliza-

tion, as subtrees of the overall search tree can be distributed across a supercomputing

cluster and computed on in an embarrassingly parallel manner. Such a paralleliza-

tion would further improve the speed of search and possibly aid in the discovery of

improved solutions to challenging problems in spacecraft tour trajectory optimiza-

tion.

173

Appendix A

Software Implementation

A software package was developed that implements all components of the tabu search

methodology presented in this work. This cross-platform application has a graphical

user interface and visualization capabilities that allow users to interactively run,

adjust parameters and analyze results of the tabu search algorithm (Figure A.1).

Additionally, the application can run in batch mode for large-scale studies, such as

those executed in Chapter 5 on the Stampede supercomputer at the Texas Advanced

Computing Center [2]. The application, written in C++, relies heavily on an object-

oriented programming model. This section briefly describes the implementation

of the tree-based solution representation used throughout the work as well as the

neighborhoods built on that representation. The implementation is described using

C++ terminology; however the strategy described here can be implemented in other

object-oriented programming languages.

A.1 Tree-Based Solution Representation

The tree-based solution representation developed in Section 3.1 is implemented using

an object-oriented approach. Recall that branches of the tree represent trajectory

174

Figure A.1: The software package that implements the tabu search methodology
allows users to interactively run, adjust and analyze results of the search through
its user interface and visualization capabilities.

175

Method Description

getParent() returns parent node of the current node
getChildren() returns children node(s) of the current node
getAncestor(h) returns hth ancestor of the current node
getLeaves() returns all descendant leaf node(s) of the current node

Table A.1: Tree traversal methods implemented in the TreeNode class.

segments and their decision variables, and nodes of the tree correspond to states at

the segment boundaries. Each node of the tree may have multiple children nodes,

and except for the root node, each has a single parent node. Results of state,

objective and constraint evaluations are stored in the tree, allowing for efficient

generation of new solutions through iterative expansion of the tree.

The tree and all of its basic traversal operations are implemented using a

single class in C++ named TreeNode. This class contains member variables repre-

senting the trajectory segment decision variables and evaluations as well as member

methods (or functions) that operate on this data. The class also contains pointers

that reference children nodes as well as the parent node. When this class is instan-

tiated it forms an object. Any number of these objects can be instantiated, and

through assigning the children and parent pointers, the tree structure is formed.

Figure A.2 shows a TreeNode object and both the parent and children nodes it

references.

The methods defined in the TreeNode class allow for traversing the search

tree through use of the parent and child node pointers. Table A.1 lists several

of these methods. The getParent() and getChildren() methods are simple:

they simply return the member pointers to the corresponding TreeNode objects.

The remaining methods, getAncestor(h) and getLeaves(), rely on recursion to

compute their results. Algorithm 13 gives pseudocode for a getLeaves() imple-

176

TreeNode

Trajectory segment
decision variables

Results of evaluations

Parent node

Methods

TreeNode TreeNode TreeNode

Child node

TreeNode

Figure A.2: The TreeNode class represents nodes in the tree-based solution rep-
resentation. A TreeNode object is shown with the parent and children nodes it
references. The collection of TreeNode objects combine to form the search tree.

177

mentation. For a large tree, the getLeaves() method will be called recursively

Algorithm 13 Example getLeaves() implementation.

. return all descendant leaf node(s) of the current node

. on initial call, leafNodes is an empty list

. upon termination, leafNodes contains the full set of leaf node(s)

procedure getLeaves(leafNodes)

. get list of children of current node
children = this→ getChildren()

. if there are no children, add this node to the list of leaf nodes and return

. otherwise, continue recursively to find the remaining leaf nodes
if length(children) == 0 then

leafNodes = leafNodes + this
return

else
for child in children do

child→ getLeaves(leafNodes)
end for

end if

return
end procedure

many times to populate the full list of leaves. Other operations on the tree-based

solution representation are implemented in a similar manner. For example, when a

TreeNode object is deleted from memory, upon destruction it will recursively delete

all of its children nodes and their descendants. In this manner, entire subtrees of

the overall search tree can be easily pruned.

Neighborhoods can also be computed using these basic tree traversal meth-

ods. Recall the restricted best-first neighborhood presented in Section 3.2.2, defined

as

N (x, h) = C(x) + L(Ph(x)) (A.1)

In this case the solution x is a node of the tree. This neighborhood is composed

of the children of the current node x (which are generated on-demand) and the

178

leaf nodes of the hth ancestor of x. The two terms of the neighborhood can then

concisely be computed as

neighborhood = x→ generateChildren() (A.2)

x→ getAncestor(h)→ getLeaves(neighborhood) (A.3)

We limit the discussion here to the implementation of the basic tree data struc-

ture and operations required by the search. The object-oriented approach gave a

great deal of flexibility in the search algorithm design, and simplified the overall

implementation of the tabu search methodology.

179

Appendix B

Set of GTOC4 Asteroids

Name
a

(AU)

e i

(deg)

LAN

(deg)

arg periapsis

(deg)

M

(deg)

Epoch

(MJD)

’Earth’ 0.99998805 0.016716812 0.000885435 175.406477 287.6157755 257.6068371 54000

’1580’ 2.196803375 0.487683107 52.0907939 62.32479512 159.5398386 3.521686818 54800

’1620’ 1.245550856 0.335510678 13.33769341 337.2660168 276.8065388 136.950031 54800

’1943’ 1.430317185 0.25581586 8.704064516 246.4019152 338.2538753 288.4052376 54800

’2061’ 2.264953422 0.537119092 3.770822489 207.6541081 156.4320284 46.9954969 54800

’2135’ 1.599571803 0.503267841 23.05431224 191.2628488 290.8388917 256.7249811 54800

’2201’ 2.172221847 0.71280397 2.51676523 76.61936199 96.22575966 353.1160627 54800

’2329’ 2.404555168 0.657495712 24.42995952 169.4393808 145.8319771 235.8255564 54800

’2340’ 0.844210764 0.449758341 5.854788239 211.5046016 39.99419575 240.4482744 54800

’2368’ 2.104871082 0.413837066 5.237068616 287.5929827 42.60536676 87.28448582 54800

’3199’ 1.57448481 0.283803324 32.96957152 340.0439748 53.37489659 65.45870912 54800

’3352’ 1.878651159 0.369609614 4.774066184 107.4215245 15.91244872 288.4003058 54800

’3361’ 1.209433393 0.322874052 2.684893669 189.6018219 301.6452091 49.38366372 54800

’3551’ 2.093250599 0.4866558 9.503739583 173.8729195 193.1758024 114.8907422 54800

’3671’ 2.198421931 0.541925061 13.54629618 82.19859996 204.2248653 177.8625945 54800

’3752’ 1.413609555 0.301934792 55.55533428 147.9932027 312.2097902 207.086479 54800

’3838’ 1.504735141 0.702152155 29.24191496 235.6247583 49.57599503 9.295677694 54800

’4015’ 2.637358396 0.624226876 2.785634942 270.5551279 91.25972407 284.9655895 54800

’4179’ 2.531891004 0.628756787 0.446055628 124.2914647 278.7504608 5.856710222 54800

’4183’ 1.981401438 0.63605604 6.750976852 295.6387792 235.4235865 288.9865162 54800

’4197’ 2.301850396 0.77243627 12.27416923 9.094393488 120.3567665 155.1451023 54800

’4401’ 2.579475249 0.565697433 26.64396129 23.14640005 68.00072541 194.7461434 54800

’4581’ 1.022340642 0.356990879 4.912672961 180.3796973 255.2124382 82.96810044 54800

’4769’ 1.063106675 0.483276505 8.888351558 325.641394 121.3283773 149.8263685 54800

’4953’ 1.620966177 0.657184694 24.40880111 77.92573895 77.54990252 35.68316165 54800

’4954’ 2.001241603 0.448627643 17.44936075 358.560784 52.42077466 129.1405337 54800

’5324’ 2.961804862 0.614749968 19.4955921 353.0854483 320.1433509 69.50895951 54800

’5381’ 0.947472265 0.296151529 48.96972507 58.55949159 37.42691489 120.5688032 54800

’5496’ 2.433767578 0.637130122 68.02254894 101.063151 118.13515 130.4864891 54800

’5836’ 2.444042815 0.53307381 7.982279679 239.7403886 76.70188788 2.73534173 54800

’5879’ 1.624537687 0.289357225 21.57451779 145.9020014 355.5520251 42.755942 54800

180

’6047’ 1.454334288 0.352136234 23.4706 6.157745352 103.7241373 223.265127 54800

’6050’ 2.203564288 0.435671439 6.401849655 88.43165461 284.6361028 84.7744825 54800

’6178’ 2.810797107 0.585699102 4.308460392 64.80047655 127.1709546 286.5684651 54800

’6491’ 2.502080004 0.589355142 5.736291828 304.0793167 320.6442509 140.9882493 54800

’6611’ 1.695486073 0.485142564 8.691105208 231.0855529 281.1748921 247.1230966 54800

’7088’ 1.980593158 0.390968965 8.302423916 102.7213092 354.7150648 21.33957576 54800

’7236’ 2.726675994 0.558938898 16.32393379 308.5686477 337.967811 275.5454243 54800

’7335’ 1.770682123 0.484335415 15.21284399 61.45731733 232.0635564 83.4831008 54800

’7822’ 1.122713269 0.164604295 37.12224582 156.8869326 249.4491272 57.43900588 54800

’7888’ 2.434533927 0.664254211 26.07679261 165.9632278 323.0514121 319.7774804 54800

’7889’ 1.261607118 0.346373832 36.90786965 111.3076654 349.1251113 262.5499401 54800

’7977’ 2.226427348 0.465318559 25.17583433 134.2720121 248.0245805 132.2103866 54800

’8037’ 1.986173128 0.417996714 5.909083326 22.50606756 105.6917101 249.2985719 54800

’8566’ 1.506610616 0.430722445 37.96443823 164.184782 125.1150488 238.1682175 54800

’10165’ 1.234614611 0.503836635 23.89632955 312.4810833 348.389821 244.8915151 54800

’11284’ 1.740183865 0.337880053 1.994816337 311.8533323 170.8187529 74.51135363 54800

’15745’ 1.719608036 0.255020728 14.42364283 132.6924575 140.4725298 269.4994476 54800

’15817’ 1.32470088 0.118163447 13.87174661 162.5436592 94.27673054 190.437439 54800

’18736’ 2.355153205 0.487381265 2.857904445 298.754223 220.8942834 57.54143321 54800

’20425’ 1.564747005 0.476410788 6.977300036 227.5209849 295.9391302 352.1284795 54800

’20429’ 1.555971437 0.464074166 6.297251978 61.82626684 147.4952282 337.5648847 54800

’22753’ 1.218706829 0.569861831 3.205236104 307.5937648 324.5706645 237.3954333 54800

’24443’ 2.310334597 0.821838061 25.81427434 178.3058762 231.017156 119.5056066 54800

’25330’ 1.540386481 0.370977534 14.32876201 50.6890964 85.85195384 19.44766289 54800

’26166’ 3.300186332 0.644688186 14.79281632 185.7727227 62.87749458 97.96360211 54800

’26817’ 2.809844016 0.592016883 3.486512037 153.282956 156.521087 199.2725031 54800

’29075’ 1.698749638 0.507531452 12.18197322 356.7825853 224.5335567 161.059429 54800

’31346’ 2.029336634 0.430606905 5.966392429 299.8201609 350.2553987 211.4706406 54800

’40263’ 1.494876494 0.161115872 25.84356888 172.8663764 198.6014335 264.146218 54800

’52340’ 2.209848082 0.549929889 8.045830458 5.867502095 115.4703029 280.1327446 54800

’52387’ 1.282142847 0.189705143 24.15552334 297.6328423 195.4394356 6.895723957 54800

’52750’ 1.427127526 0.525219207 11.16150198 141.4095756 334.0095306 113.8409431 54800

’53409’ 2.100983516 0.62860865 10.80502183 207.0195274 147.2200228 8.434473167 54800

’54660’ 1.476664703 0.280924976 46.68459728 223.7485473 157.9271945 182.2056258 54800

’54686’ 1.776491378 0.341909194 33.20560209 161.7916281 265.8687923 153.5615067 54800

’55532’ 1.794762081 0.695961054 38.47314311 81.58369333 132.2883251 276.1954517 54800

’65733’ 1.154166638 0.474510895 4.15615228 337.5049656 168.1712913 303.178422 54800

’67399’ 1.301190105 0.346028973 14.69838053 332.9459236 225.1701241 314.7159721 54800

’68267’ 1.50942487 0.42770736 38.81869472 8.065275279 317.3510195 321.2861488 54800

’68346’ 1.507367363 0.416676208 16.68730349 219.467612 140.142533 285.2511937 54800

’68348’ 2.15229294 0.842163684 25.44436903 236.2814352 181.5422624 43.61374569 54800

’68372’ 1.618224127 0.415657856 8.09481772 253.1304042 322.0808376 260.974575 54800

’85770’ 0.998587664 0.344931005 33.17892204 18.39094108 234.3488472 144.8679418 54800

’85774’ 1.404102635 0.329549296 13.59119125 64.72582717 49.99786202 339.8609108 54800

’85804’ 1.721249491 0.354226419 27.66244479 285.8425937 269.7262061 59.62985604 54800

’85818’ 1.656659573 0.416943184 62.70177829 235.6841505 301.3033528 145.4152686 54800

’85867’ 1.83044366 0.301975239 0.942737744 254.7382609 286.9289404 315.4889281 54800

’85938’ 1.852525771 0.483076591 9.149753901 20.00323414 197.5512351 295.9403189 54800

’86666’ 1.462938703 0.426851765 29.01462618 187.0054919 258.8274099 10.71355278 54800

’86667’ 0.859290751 0.59466828 14.28367694 208.394114 172.4010033 118.2779807 54800

’86878’ 1.341664031 0.618518983 9.474205434 231.1173124 214.7637777 235.7586408 54800

’87025’ 1.226752294 0.48369449 25.32151624 120.5474333 359.5390192 158.519311 54800

’88188’ 2.006621285 0.392973328 11.39165586 340.3315041 194.8070711 234.2302096 54800

181

’88213’ 0.953955927 0.595319797 17.81513774 114.3112178 194.9494557 299.0335363 54800

’88254’ 1.181885041 0.629434958 1.524048634 272.5891799 139.7134338 39.25672262 54800

’88263’ 2.096851272 0.431466503 38.81746237 232.9576842 241.4817739 236.6536192 54800

’89355’ 1.78698398 0.307979262 22.67116814 103.2034548 84.77086051 291.7632555 54800

’89958’ 1.642025674 0.88616959 9.963631901 188.5371693 222.5275178 348.6287744 54800

’90147’ 1.474132433 0.331548616 27.99181896 282.7752048 104.9911597 127.1275253 54800

’90373’ 1.626719395 0.204626083 9.871523725 189.483247 218.605361 161.870993 54800

’96744’ 2.088694973 0.780130777 35.23004106 196.4956261 35.3275688 97.10859278 54800

’99907’ 0.728523907 0.594662556 28.79484776 225.6204498 2.818189851 46.50983881 54800

’101869’ 1.623770941 0.610707599 4.764751493 111.1241734 268.5582825 171.0534702 54800

’108519’ 1.60334332 0.270758773 16.39241798 267.349534 343.7148912 260.212813 54800

’115052’ 1.668771748 0.318153219 31.31981816 190.5983676 88.16274908 206.6199823 54800

’136617’ 1.637015962 0.416973711 4.634071975 268.7839676 24.74307724 256.2013024 54800

’136745’ 2.365179413 0.483637689 17.77380099 248.0911341 131.5166154 221.7052074 54800

’136793’ 1.146997931 0.46532235 17.38035169 296.3220823 36.95020666 339.0497247 54800

’136795’ 1.745578148 0.478466325 11.00230925 50.28077213 147.335731 23.03013041 54800

’136818’ 0.937516093 0.346476757 12.7723709 260.0393953 203.7323821 18.36475196 54800

’136849’ 1.492708101 0.57835311 7.798230669 110.9539571 97.40055875 306.3685345 54800

’136923’ 2.134151268 0.442260879 6.61900528 51.32713015 286.9037093 50.99542533 54800

’137064’ 1.374171498 0.19529683 19.50169977 36.18398842 97.49879028 30.05835516 54800

’137078’ 1.939006551 0.639190224 23.20768442 324.5398769 9.461415035 284.8944892 54800

’137126’ 1.772582569 0.599487824 5.545796776 157.3554951 89.89392987 19.44823082 54800

’137170’ 0.819000805 0.462408512 25.66262523 155.9171598 253.3569392 98.03128354 54800

’137199’ 1.457304441 0.29272176 16.57247087 105.00906 76.28470007 202.3482294 54800

’137802’ 1.77661438 0.35183578 31.584273 116.5086618 272.5529736 319.6560879 54800

’137805’ 0.829417131 0.558351642 16.74206645 349.6469436 292.7593644 81.76134505 54800

’138175’ 1.004744986 0.293434217 5.241567706 25.94844279 280.9125953 133.7812764 54800

’138205’ 2.572119285 0.619018839 11.04862802 5.217152095 304.0430921 355.2085959 54800

’138325’ 2.164510393 0.804026781 25.5863925 173.4596962 164.2696747 225.3774374 54800

’138359’ 1.14127737 0.361304818 20.24014291 44.04001146 4.676807639 177.6810939 54800

’138524’ 2.362045766 0.565326178 6.213428735 226.7129144 181.0904829 70.27235765 54800

’138847’ 1.618789112 0.287526374 22.17896106 207.1708585 16.15509619 150.3717449 54800

’138859’ 1.573461425 0.531641523 13.1427338 56.02835702 144.2434605 289.0824843 54800

’138893’ 1.172912905 0.743622469 18.33146209 265.3273 341.2849035 6.746425751 54800

’138911’ 1.349690546 0.081610559 1.660676415 171.511561 42.9268535 273.7541041 54800

’138971’ 1.034781446 0.333641021 7.903356226 353.8533776 271.6844622 82.28247079 54800

’139289’ 1.2595377 0.841214664 23.21835873 102.9948392 291.2181077 64.29201543 54800

’140158’ 1.347082459 0.460823212 2.513012139 126.9377669 42.55450599 38.69557353 54800

’140928’ 1.518728493 0.296909829 20.66254158 245.547743 257.218896 194.6091057 54800

’141018’ 1.398528121 0.24104933 2.866921953 91.85186236 100.9683262 351.0646663 54800

’141078’ 1.862935783 0.450973288 11.46784377 234.8885659 270.5064089 225.2037989 54800

’141424’ 0.979708095 0.176707303 6.878981113 8.737677973 331.5935572 144.2108945 54800

’141484’ 0.857597351 0.369433062 16.60285192 234.3266209 94.07338159 284.8363857 54800

’141527’ 1.514018807 0.626759774 9.195853842 187.7139153 247.427582 253.2030183 54800

’141593’ 2.001531876 0.530120513 2.360340563 307.1780805 2.02942708 82.9188566 54800

’141851’ 1.197996788 0.850017829 19.22098967 304.2933442 224.2376902 331.4690526 54800

’142348’ 2.065864969 0.458107007 6.06203918 96.75231763 324.1028353 4.129807776 54800

’142464’ 1.233365066 0.154348907 16.27789665 191.8926309 29.21085413 332.1986528 54800

’143409’ 1.949386122 0.351037924 8.165153317 163.9115661 44.1164357 9.454139923 54800

’143527’ 1.661484437 0.351925358 17.3106945 181.8024765 242.0822366 319.8244601 54800

’143947’ 2.180557165 0.655158898 21.00430673 217.6446355 135.5921114 251.1026794 54800

’144861’ 2.511605134 0.747854978 39.40286721 159.251881 199.4036456 349.4737141 54800

’145656’ 2.62939026 0.561173352 11.02900344 176.8144361 97.95384724 118.0720336 54800

182

’152561’ 1.454612041 0.485515401 19.58482121 359.4199756 68.8353691 260.9574389 54800

’152563’ 0.908038661 0.271823498 7.254113017 315.4681181 336.4302657 17.5656488 54800

’152575’ 2.685129552 0.524396541 12.33108803 33.80387635 190.5615433 114.3651481 54800

’152742’ 0.878266762 0.739126431 13.43603598 280.0958637 353.0725613 151.5625478 54800

’152895’ 2.288361947 0.494232412 2.983254668 29.91508906 173.8693449 167.8069601 54800

’153002’ 1.340611486 0.795645177 31.47615081 213.2194226 233.3050461 224.6951264 54800

’153195’ 1.301297795 0.619045412 41.11364232 21.48247534 262.8741887 208.3488402 54800

’153249’ 2.117879975 0.590894572 41.21392332 329.0210753 297.9237421 119.9303065 54800

’153267’ 1.781585579 0.614162604 9.659820988 75.67633588 330.334646 124.1436647 54800

’153306’ 2.552069358 0.52354033 26.98349642 226.7311328 272.5337589 335.4574798 54800

’153315’ 1.237488472 0.4497061 34.6959012 112.6067591 288.3551273 55.55647625 54800

’153460’ 1.413822196 0.581028137 10.09321265 211.5781371 30.25052966 146.7139543 54800

’153792’ 2.104925334 0.739112797 10.69119804 277.3734862 243.0279652 77.00195325 54800

’154144’ 1.834033296 0.296257438 23.61083392 172.6662506 126.2440294 172.6756262 54800

’154244’ 2.308247656 0.548886131 3.236898587 214.9045038 95.98028344 293.9412337 54800

’154276’ 1.705709894 0.68990451 8.744831299 34.40099908 99.31485112 240.0697741 54800

’154347’ 1.849917384 0.691913883 17.81432896 331.8105514 24.71506523 162.7846473 54800

’154991’ 1.704954244 0.322952841 5.637623681 245.700687 269.2153475 289.3650595 54800

’155110’ 1.261393147 0.348316939 30.38683148 226.2333639 44.71994178 125.3562108 54800

’159368’ 2.331231324 0.442583998 3.354671556 342.412487 12.16223919 69.66271563 54800

’159399’ 1.526966571 0.21407673 41.96430846 214.9000642 353.1036303 299.4964988 54800

’159459’ 2.340591966 0.79650335 56.02443317 185.4523728 185.0552943 119.90976 54800

’159504’ 2.432958001 0.618287761 9.70283995 107.8070033 237.6186999 72.49907729 54800

’159533’ 1.654667608 0.288928749 12.85126992 71.71691828 275.7979811 109.3381647 54800

’159555’ 1.630387552 0.230091585 29.43376646 215.0079911 123.417784 179.108276 54800

’161995’ 2.287905139 0.47818729 25.26696316 81.27775681 220.7054199 115.923422 54800

’162039’ 1.802188278 0.660369157 5.280127202 53.09786244 279.945133 42.98338218 54800

’162080’ 0.896685587 0.358217996 16.20857228 344.4124973 356.8079102 71.32535153 54800

’162082’ 1.246143989 0.187064235 20.04528294 213.6065487 148.4523757 79.41694601 54800

’162157’ 1.297150145 0.351560708 15.26385593 132.050521 279.2290826 283.0036694 54800

’162173’ 1.189708611 0.190336053 5.88339684 251.6413476 211.4098741 243.1297112 54800

’162196’ 1.826382443 0.374934128 22.44043354 172.0391229 234.1427255 231.4929225 54800

’162210’ 2.295139395 0.696321825 5.20986728 327.7911059 319.1032767 243.0870171 54800

’162215’ 1.081404466 0.436518421 17.33462851 202.3886911 346.7011769 238.5222534 54800

’162273’ 1.59365182 0.236077793 20.18417428 234.4670267 40.87056367 302.4392615 54800

’162416’ 1.853851964 0.477534444 0.393857923 215.3540621 18.92938397 139.7685629 54800

’162470’ 1.112691911 0.552821121 35.28404293 83.79906314 31.73425416 152.4796746 54800

’162566’ 2.636859035 0.573468502 13.84740096 331.4001654 143.149663 284.3468138 54800

’162581’ 1.667645759 0.351554299 15.89063036 200.4320363 248.050929 244.4466153 54800

’162873’ 1.400631967 0.086489309 20.19672217 357.9468463 198.5972131 220.0305422 54800

’162913’ 1.271098777 0.51960266 8.639820111 170.6166023 356.0451564 133.3721046 54800

’162922’ 1.318085021 0.381629656 10.29819223 284.3243426 291.1059919 357.3656081 54800

’162979’ 2.035944399 0.545406523 17.08398093 311.6721368 325.9695738 192.67716 54800

’162980’ 1.553094714 0.488898441 30.39075163 177.673755 351.3538362 93.37027543 54800

’163191’ 1.836355093 0.464054753 16.30285242 179.250576 44.10591786 232.3880181 54800

’163250’ 2.692448889 0.538249111 34.97028805 170.3155238 350.9397579 185.552618 54800

’163252’ 2.13080607 0.439920633 9.000471127 95.70720719 200.8596804 12.83836698 54800

’163295’ 2.474582565 0.64005412 5.822522981 33.12795494 76.72169162 267.0606029 54800

’163335’ 1.327976502 0.667216346 56.28635426 247.0797416 155.6111193 33.43179437 54800

’163364’ 1.364276095 0.368725797 4.17500486 260.1622684 274.9125884 100.0498607 54800

’163732’ 2.752731464 0.695906155 44.61953735 193.4239356 190.6045351 44.92608391 54800

’164121’ 1.10997633 0.291947144 44.05984819 38.3624784 90.94344263 25.45138439 54800

’164202’ 0.989436124 0.279691619 4.66341354 343.4112319 55.76853507 23.60924836 54800

183

’164207’ 1.000827922 0.136404427 13.64799725 38.83385442 280.9710469 115.7980815 54800

’164215’ 2.114956167 0.396922416 4.879021978 236.3292023 76.13584346 147.8671941 54800

’164216’ 2.153500086 0.563962646 19.89511929 295.2837167 326.1704499 156.6873993 54800

’164217’ 2.013107188 0.415931563 48.89984284 145.0244786 178.9283016 180.900169 54800

’164294’ 0.617714332 0.454270094 2.9536299 211.7945395 4.763826765 236.1438523 54800

’164341’ 1.626795168 0.254143343 13.01421275 140.7341333 42.71066437 275.5504947 54800

’164400’ 1.6565537 0.467601183 6.625671594 219.0499604 202.91902 8.574228375 54800

’170013’ 2.963934399 0.801025288 24.04526153 185.9768161 328.278736 53.13334281 54800

’172722’ 1.543646849 0.699450801 7.232599973 341.40854 17.04284038 213.7637546 54800

’173689’ 1.779628035 0.394589426 10.40737755 273.1393456 313.6132043 89.75993231 54800

’174806’ 2.515581128 0.572610648 11.35407493 318.990632 204.877171 52.35016765 54800

’175189’ 2.056423411 0.3874061 2.62398849 169.6302451 78.4462168 34.54314366 54800

’175706’ 1.054271178 0.349872214 1.990349109 299.8810867 23.93032639 150.918598 54800

’175729’ 1.2720696 0.424807259 11.53689051 124.3797596 259.1173302 255.1302962 54800

’177016’ 1.15995231 0.582116888 13.79999349 137.6573047 155.2632898 134.5702654 54800

’177651’ 1.154377745 0.698853767 42.40955431 89.44742819 186.3192465 157.2931357 54800

’185851’ 1.365429567 0.376716445 8.669995771 358.7831634 289.6529655 79.07800391 54800

’186823’ 1.205114893 0.676862075 21.94828868 190.1243135 161.0586363 105.325275 54800

’186844’ 2.436984235 0.669293502 7.792965521 261.9084756 54.22102069 49.15142779 54800

’189011’ 1.500140847 0.232081945 18.6937839 254.496593 130.2552306 346.0843383 54800

’189173’ 1.843861598 0.570310269 43.0717803 269.0523425 273.7397206 106.8198136 54800

’189263’ 2.729666967 0.588355038 16.7446469 202.1491882 203.9260484 340.6959272 54800

’190119’ 2.462719261 0.891004755 30.05670457 225.5732001 19.84805084 33.79449573 54800

’190161’ 2.23752586 0.454335041 3.993268983 305.1122919 55.55790772 358.9380411 54800

’190208’ 2.053666545 0.486408565 4.080519795 326.2190122 104.8024463 340.7616372 54800

’190758’ 1.749197744 0.364558754 13.9446294 178.7043475 130.2620821 69.06699258 54800

’190788’ 1.268260084 0.791939539 20.13557116 350.0674973 199.5246917 107.9812156 54800

’191094’ 2.113591041 0.641885465 32.20036631 349.7461255 259.1067811 50.57046495 54800

’192563’ 1.45214248 0.408040579 24.74983928 68.81444947 110.5953098 199.5410774 54800

’194126’ 1.432726577 0.247610153 26.6814372 35.16546011 200.2533072 174.8904793 54800

’194268’ 1.453079535 0.787367201 5.428755596 161.0896563 107.396251 50.6537459 54800

’196068’ 2.117188183 0.664099337 59.40515062 33.67335375 251.1655594 29.5663475 54800

’199003’ 0.959006581 0.152059963 21.61578726 288.0947674 297.5853194 239.8413611 54800

’199801’ 1.684821679 0.569649652 2.28337519 245.8457318 86.51933458 33.88013061 54800

’1979XB’ 2.351049444 0.726046355 25.13874324 85.49544485 75.7428619 2.936666778 54800

’1983LC’ 2.613694398 0.708842552 1.519945709 159.5699088 184.836557 353.9391431 54800

’1988NE’ 2.26871648 0.449864084 9.708569997 251.4703848 3.765629143 355.9835378 54800

’1989AZ’ 1.647360204 0.468518899 11.78417015 295.6349798 111.8152084 170.5951022 54800

’1990SM’ 2.101033091 0.766065191 11.57957264 136.8540175 107.0247606 9.579915699 54800

’1991FB’ 2.370739218 0.566641274 9.037932418 18.06819952 219.9877987 287.587686 54800

’1991LH’ 1.356770649 0.732577793 53.18574608 281.0876849 203.7472958 128.537589 54800

’1991TT’ 1.19434631 0.161354453 14.80458918 192.4145699 218.0107167 22.52112329 54800

’1991XB’ 2.940113852 0.589537108 16.30513453 250.3863387 172.3347861 129.4632735 54800

’1992BC’ 1.422481343 0.352611682 14.36230282 123.4390308 77.09717786 296.4562433 54800

’1993BU3’ 2.405610749 0.51441058 5.295749663 316.2591191 144.3178121 95.90536758 54800

’1993FA1’ 1.426126024 0.288567104 20.45286483 187.3202529 343.5727844 82.54058062 54800

’1993RA’ 1.918646327 0.416183834 5.5996968 171.9121477 264.9808472 215.0462297 54800

’1993UD’ 1.319726346 0.194528077 22.79342512 25.08054354 254.8506876 79.45010641 54800

’1993VC’ 2.775607624 0.532345641 3.206068164 242.4193446 177.1088741 85.79943313 54800

’1993VD’ 0.8761973 0.551406373 2.062210141 2.720247353 253.6621141 234.1661206 54800

’1994EK’ 2.158002585 0.639999967 6.049027623 333.2352081 99.05802105 259.0103535 54800

’1994GV’ 2.009515607 0.519506473 0.457943032 20.1056358 154.0100241 56.87009092 54800

’1994UG’ 1.238293494 0.29238149 5.20697655 13.75589969 225.4443341 217.0882987 54800

184

’1994US’ 2.735411989 0.56826597 8.491427894 223.6616067 121.3912966 55.55009823 54800

’1994WR12’ 0.756417685 0.398423118 6.871125181 62.85018111 205.8901481 235.2581666 54800

’1995CR’ 0.906731886 0.868514097 4.037199387 342.7586676 322.4166786 293.0512482 54800

’1995EK1’ 2.265143725 0.775752749 8.857172808 355.454349 296.817402 347.8011489 54800

’1995FF’ 2.319499482 0.709407366 0.590570641 172.4707826 296.3640056 322.0561844 54800

’1995FG’ 1.849264049 0.372840709 1.961807555 184.998189 36.75070841 142.8699337 54800

’1995SA4’ 2.500845606 0.578734493 2.816679247 187.6644943 148.2776546 127.4990414 54800

’1995SB’ 1.320207078 0.085431617 14.88881055 352.0248442 263.456165 341.4896121 54800

’1996HN’ 2.203356303 0.411205201 8.605892734 203.0441918 25.13750265 301.9254521 54800

’1996TE9’ 1.793128796 0.325911394 21.63630461 13.93824646 3.7813878 16.99465823 54800

’1996XW1’ 1.725680152 0.454148444 30.59206717 247.9958073 264.519646 65.93491598 54800

’1996XX14’ 2.549335465 0.649873055 10.55951874 195.5917571 185.0015455 351.2037157 54800

’1997CD17’ 1.122613203 0.141564167 15.10417353 320.4837531 221.4337668 301.1266988 54800

’1997GL3’ 2.281152788 0.782810282 6.688630358 196.2470794 260.5912382 153.3371724 54800

’1997MS’ 1.936905147 0.727667016 54.96607793 86.33214307 65.83230523 112.2163103 54800

’1997QK1’ 2.79967498 0.640195313 2.877547033 307.0777178 2.554461644 149.5519662 54800

’1997UA11’ 2.363046438 0.62045902 3.300251178 212.5126053 138.4294636 26.17825764 54800

’1997UH9’ 0.830094504 0.474683526 25.49129072 42.44034664 180.8619857 48.75397365 54800

’1997US2’ 1.674009982 0.660636506 3.169584181 66.24658022 99.87673 357.3748758 54800

’1997US9’ 1.052655845 0.281884202 20.016011 212.2612861 357.3262979 284.8632433 54800

’1997XR2’ 1.076944541 0.201215856 7.172531662 250.8245182 84.58487206 13.66060782 54800

’1997XS2’ 2.662154055 0.521022275 19.48431617 75.22249476 24.00076014 186.9348516 54800

’1998BT13’ 2.457000162 0.596897592 1.415007722 123.3570673 353.3797913 293.4328724 54800

’1998BY7’ 2.024221774 0.604498608 3.282234303 122.3655312 90.00692526 251.9315646 54800

’1998DK36’ 0.69231541 0.415487023 2.02699123 151.125101 180.3693782 70.79126383 54800

’1998FN9’ 1.396477869 0.235613273 14.6244169 183.9013271 329.2150123 192.0813957 54800

’1998GC1’ 1.442352291 0.293128331 18.750722 19.12747339 117.0890437 85.62045628 54800

’1998HM3’ 1.246510401 0.062186869 39.32826404 210.8468624 137.0067219 95.68617481 54800

’1998HN3’ 3.11858015 0.618525946 9.217724306 49.17966399 250.727982 305.5343204 54800

’1998KH9’ 2.203262383 0.458232285 17.66522372 82.73192373 184.9506904 67.73473891 54800

’1998KJ17’ 1.986054397 0.482830067 9.148299684 76.07418649 163.9758447 273.8913009 54800

’1998KM3’ 1.671466487 0.611295941 4.661821752 263.3984126 84.92864909 272.6349406 54800

’1998MW5’ 1.022801173 0.362662274 6.287074577 80.47583114 26.65671591 172.2878231 54800

’1998QA1’ 2.104380797 0.532169372 8.16501834 299.1460316 332.9167666 150.4237625 54800

’1998QA105’ 2.700851892 0.533464999 8.327575247 337.0819727 39.83107683 100.4451557 54800

’1998QQ’ 1.233177065 0.680136698 36.6954847 325.3822177 220.380832 246.967606 54800

’1998QQ63’ 2.362497204 0.550481017 1.667655083 104.4642788 265.5239708 290.7411038 54800

’1998SE35’ 3.018446371 0.589923896 14.72019832 334.1454422 43.78343684 340.4731834 54800

’1998SL36’ 1.394277611 0.420040141 19.15816658 353.1694232 116.6301368 358.6094922 54800

’1998ST4’ 2.814406307 0.599012284 9.300916153 239.3280533 207.0530196 26.06628985 54800

’1998SV4’ 0.816494924 0.641998453 53.29453671 177.2616613 359.481833 99.19350085 54800

’1998UY24’ 1.364007899 0.321219646 16.88437027 38.79876789 275.6140152 166.2518009 54800

’1998VD31’ 2.651416697 0.803637427 10.23830094 47.70006344 113.3877918 102.1478779 54800

’1998WC2’ 2.551903392 0.563218787 26.55146254 208.9225176 269.8490719 150.9343136 54800

’1998WP7’ 1.212975809 0.427364054 21.62712516 230.914426 64.81608632 247.3687798 54800

’1998XX2’ 0.741105994 0.367472879 6.969350195 74.55769826 152.833163 96.72474379 54800

’1998YF10’ 1.490767779 0.247874059 15.61043376 85.98483133 296.4017263 203.2364475 54800

’1998YM4’ 1.476211239 0.719694769 3.436554 341.8799877 344.3989273 230.1820209 54800

’1999AF4’ 2.823465559 0.618914247 12.59241109 294.94861 154.7888469 31.4131741 54800

’1999AU23’ 2.159898297 0.410376208 20.42509712 293.6980561 117.8809408 54.67090114 54800

’1999CW8’ 2.237356026 0.597784558 33.65592361 317.1658652 262.0505015 313.3650043 54800

’1999ED5’ 1.745519014 0.466373643 18.18065658 5.675118385 273.8844439 33.96109819 54800

’1999FP19’ 1.942577471 0.51989595 15.0808404 347.0635868 273.9539411 180.5518567 54800

185

’1999GL4’ 2.116341586 0.603389587 7.246971111 178.6730651 293.6740083 72.08451061 54800

’1999GR6’ 1.348494559 0.763186695 29.31642065 180.9636408 146.469223 19.5244093 54800

’1999GY5’ 1.146242751 0.614504957 24.44372701 203.4622906 232.1438501 358.8746838 54800

’1999JU6’ 1.469095456 0.200660349 22.45740089 220.2216436 69.00416229 92.21480724 54800

’1999LD30’ 2.852814514 0.622957913 8.420513665 86.17411686 205.5414073 333.93877 54800

’1999LP28’ 1.219339414 0.090844754 16.31253316 88.00395273 306.9722615 236.5956421 54800

’1999LV7’ 2.208461566 0.470663868 30.4802745 87.48366231 158.9259591 319.834044 54800

’1999RK33’ 2.4864954 0.585922151 2.898494358 319.3882032 53.68080486 121.7744515 54800

’1999TA10’ 1.505677161 0.241650289 20.84270601 214.7319767 84.68784438 35.57480722 54800

’1999TC5’ 2.015031493 0.548180238 29.09760182 192.5272818 282.604299 37.89788551 54800

’1999TM12’ 1.589171133 0.46434531 28.59641486 199.0500288 250.8500279 175.6130291 54800

’1999TN12’ 1.886495229 0.391060478 37.25811658 212.3955957 150.2131756 205.2910339 54800

’1999TO13’ 1.582267873 0.435729476 20.27521907 15.02177427 302.2695557 235.9462101 54800

’1999TT16’ 2.164314679 0.665882512 2.014934144 328.2029962 148.6437252 279.8696772 54800

’1999TW16’ 1.424845088 0.735595341 34.6294019 28.33824449 134.6623503 91.19539575 54800

’1999TX2’ 1.28081798 0.463158289 61.38858117 179.9750715 53.56548743 185.7170889 54800

’1999VG22’ 1.646608012 0.330069998 2.853425526 271.4645234 222.4794678 49.78363178 54800

’1999VM11’ 1.594543985 0.279099333 17.05250545 218.090849 206.306954 164.9994467 54800

’1999VN6’ 1.733287714 0.370498586 19.48471702 58.12750087 43.5607165 323.3276092 54800

’1999VR6’ 2.211801718 0.761395808 8.567884843 213.0808032 294.0154261 254.4555579 54800

’1999VS6’ 1.197569876 0.223080114 27.97163962 35.34448305 89.29411567 267.4662016 54800

’1999VV25’ 2.230527196 0.555390193 7.431757438 231.8507388 204.6371794 253.4825399 54800

’1999VX15’ 3.003014471 0.601954735 12.34010729 222.4049351 268.2908753 235.6433813 54800

’1999XM141’ 1.238891608 0.370553874 21.68182803 73.11532536 105.5309005 132.763574 54800

’1999YF3’ 1.48698521 0.143351242 26.76285041 298.9482593 147.07168 340.415903 54800

’1999YR14’ 1.653651269 0.400692618 3.722193016 3.133896349 9.414387529 114.7340213 54800

’2000AA6’ 1.289429601 0.520724878 2.046821823 280.2362895 287.2405274 345.6831727 54800

’2000AD6’ 2.214009106 0.423661801 30.06113454 112.8698517 335.1563939 263.121297 54800

’2000AD205’ 1.693236917 0.585854124 7.927731543 157.2792218 191.8936416 49.16875988 54800

’2000AE205’ 1.164091641 0.137352457 4.459952011 271.7038089 150.3179304 65.76423875 54800

’2000AG6’ 1.017661088 0.189842472 2.435327189 283.0958052 276.3479347 175.0141853 54800

’2000AG205’ 2.291692135 0.521107063 18.41314678 269.9788861 249.00486 179.5095472 54800

’2000BK19’ 2.413162296 0.576885432 14.78234434 310.6749897 200.7922512 124.0089011 54800

’2000BL19’ 2.727676858 0.639655644 15.13060082 314.8235685 241.2049124 333.8171519 54800

’2000BO28’ 1.698792435 0.599429597 6.338255315 320.0807351 303.0330986 299.9599469 54800

’2000CR101’ 1.694740465 0.246209949 0.599457594 333.7572045 152.9220412 8.698136827 54800

’2000DN1’ 2.883839566 0.669219115 7.772648953 42.3468173 146.1906671 278.0911933 54800

’2000DV110’ 2.091269766 0.387190882 4.395924775 11.67358759 220.2593281 280.3801818 54800

’2000EA14’ 1.116850414 0.202516088 3.554314075 203.9815847 206.0596511 236.6728054 54800

’2000EB14’ 0.895576549 0.495441881 11.56195226 162.8952775 139.5771723 26.14335771 54800

’2000EM26’ 0.816086953 0.469756898 3.873103112 345.2547298 23.96570784 66.77439243 54800

’2000EU70’ 2.226629623 0.76599184 13.07704528 166.2399094 253.1626193 249.6290114 54800

’2000EV106’ 1.648623884 0.348672951 33.47449983 170.9230192 255.2998169 107.5776926 54800

’2000FP10’ 1.440085934 0.237435915 23.57414594 5.13749573 165.2960095 14.39266447 54800

’2000GC147’ 2.771938652 0.615179958 2.327840633 319.0680723 126.8503 319.6391936 54800

’2000GF2’ 1.340968048 0.377572644 9.627538303 176.1226664 107.9897087 161.879806 54800

’2000GV147’ 1.746532508 0.456277961 10.57183715 68.76523129 215.9375377 237.4029065 54800

’2000JB6’ 1.786449986 0.345339087 10.63996081 110.7083993 175.4648853 178.8016813 54800

’2000LF3’ 2.579260041 0.660010689 14.94730921 83.19810531 222.6302202 4.160561969 54800

’2000LG6’ 0.917369681 0.111128708 2.830919257 72.57085867 8.089670403 54.99053768 54800

’2000OG8’ 2.667743712 0.542252985 5.286942821 295.9247209 70.83784438 314.0732954 54800

’2000OH’ 2.423161545 0.590323347 18.56138531 284.0805373 354.5093876 83.01985822 54800

’2000OK8’ 0.984679929 0.221126738 9.985597025 304.6319964 166.1394703 38.91888985 54800

186

’2000PD3’ 1.998675458 0.592745904 7.689197348 299.0111792 109.7771231 307.731591 54800

’2000PG3’ 2.824759665 0.859259445 21.64787227 324.1859574 140.8075134 241.2147106 54800

’2000PN’ 1.01964328 0.761326324 22.77552587 128.7671924 37.7417606 85.06642193 54800

’2000PO30’ 1.835803753 0.399719099 3.578645943 201.1349943 217.8569126 110.9528696 54800

’2000PP9’ 2.327511183 0.553111991 5.59133109 171.7746159 159.4724908 119.9894871 54800

’2000QO130’ 2.249609131 0.455610656 5.900361024 343.2656392 339.4863103 166.0749258 54800

’2000QU7’ 2.279165965 0.648935438 22.32782591 339.6029497 87.34829753 123.9625989 54800

’2000QV7’ 1.408677651 0.522910306 9.125016136 154.9007741 79.36673502 18.99498076 54800

’2000QW7’ 1.946293114 0.467928316 4.162681062 158.7301825 190.5935352 10.08133732 54800

’2000QY69’ 1.426536617 0.163689299 25.20357364 342.0267051 64.96141553 251.9047387 54800

’2000RD52’ 2.203947646 0.443865658 4.945601573 309.1477827 24.36908001 188.0236242 54800

’2000RJ12’ 2.152288024 0.482218527 7.150137335 318.0970041 25.67905939 218.1626992 54800

’2000RK12’ 2.519214879 0.68706092 31.82270189 161.6258689 251.4508465 9.504514264 54800

’2000RK60’ 2.178196414 0.488089703 6.585929981 197.2056648 133.4113652 206.5848575 54800

’2000RN77’ 0.951002945 0.318273452 16.0958665 312.8411469 211.7109183 142.8437694 54800

’2000SB8’ 2.277946518 0.480209146 8.777081639 43.01783824 311.9517694 140.4065568 54800

’2000SN10’ 2.494700605 0.549599221 11.7603497 353.4658308 353.2208681 31.6057149 54800

’2000SS43’ 1.731818313 0.409779332 4.093698838 6.896856145 353.1915483 212.9904319 54800

’2000SZ162’ 0.930171312 0.167694558 0.893353596 14.82238438 131.384934 275.7039381 54800

’2000TE2’ 1.3204527 0.213922313 6.220658041 9.158973883 9.944158731 131.3141143 54800

’2000TG2’ 1.521606455 0.245328089 11.99889796 206.8983252 200.3110272 98.2565091 54800

’2000TH1’ 2.307924346 0.541990586 12.13108439 12.79618677 335.2891472 124.4531144 54800

’2000UG11’ 1.928400337 0.57294023 8.924763172 224.2714489 240.5319015 348.0963372 54800

’2000WH10’ 2.52613563 0.663057035 13.26211028 50.22042447 63.36425855 349.3101187 54800

’2000WM107’ 2.541885342 0.60725575 19.35172519 71.65440284 280.9760329 12.03563637 54800

’2000WP19’ 0.854472024 0.288621909 7.681142545 55.83243571 222.0306299 170.4192779 54800

’2000WP148’ 1.318294513 0.264170303 21.28130817 252.0690351 237.8394727 58.19201345 54800

’2000WT28’ 2.551925921 0.610373815 5.654897774 47.10176858 19.79509457 343.2507671 54800

’2000WY28’ 1.63861427 0.289485311 19.44771735 63.36201341 357.2867791 292.8550262 54800

’2000YG29’ 3.174964828 0.692976349 18.88808716 92.44044174 358.491086 147.7902758 54800

’2000YJ29’ 1.961315005 0.833369084 43.68747752 266.2201375 327.7354496 294.1130798 54800

’2001BA16’ 0.940314425 0.137423212 5.76889984 115.6154682 242.8093806 330.7986698 54800

’2001BE16’ 1.255021329 0.40399654 39.38282642 121.9705856 106.147857 148.2137999 54800

’2001BN61’ 1.82803812 0.464215152 9.731194897 118.8962583 334.1645257 73.00729238 54800

’2001BZ39’ 1.988437523 0.421272478 8.834776278 225.1741304 197.0207766 318.1460054 54800

’2001DB3’ 2.685154738 0.558752686 24.5629739 341.4982933 263.520601 243.6793877 54800

’2001DC77’ 2.543401331 0.500017004 9.404034044 356.321546 195.1042739 318.8552096 54800

’2001DQ8’ 1.841905584 0.901427445 12.89105188 342.8591765 14.59819642 68.93618794 54800

’2001DZ76’ 2.356516978 0.608636603 5.750598301 152.1215452 38.11110915 45.99200895 54800

’2001EC16’ 1.345509649 0.363932403 4.711455201 175.626489 70.39778891 303.413813 54800

’2001FA7’ 2.007041543 0.535896744 22.85874486 352.5952239 62.39915481 316.3529175 54800

’2001FP32’ 1.359490362 0.333559785 29.29196932 182.5790748 64.70258151 272.7271582 54800

’2001FX9’ 1.932329589 0.33142956 3.494136644 184.5507318 291.9119833 344.3139501 54800

’2001GO2’ 1.006559674 0.167995166 4.61482654 193.5925501 265.3671952 288.7554105 54800

’2001GQ2’ 1.213857966 0.503066548 21.82149385 37.21415429 280.2228046 201.2996833 54800

’2001HA4’ 2.684549923 0.795805012 17.16345089 355.0036277 94.70615782 275.0697216 54800

’2001HA8’ 2.383634668 0.530160564 11.54309261 96.03406244 201.8300045 351.2434748 54800

’2001HC’ 0.874652993 0.499269928 23.74189495 32.64190441 28.16788172 221.8875507 54800

’2001HX7’ 2.261303168 0.507679101 56.75771004 205.4758634 40.67101163 74.37508159 54800

’2001HY7’ 0.913901433 0.411990202 5.209114436 205.369114 211.0087779 26.12750726 54800

’2001HZ7’ 1.468368332 0.498244867 5.41699694 156.4726297 312.6188791 142.3376312 54800

’2001JW1’ 1.178348932 0.068750718 35.39315184 62.06815275 97.41877021 31.74122852 54800

’2001KD68’ 2.381339193 0.505520136 2.043518083 249.8508171 350.5200046 16.92368435 54800

187

’2001KW18’ 1.241935786 0.157212084 7.188106329 61.71019444 181.8309128 155.3518391 54800

’2001LC’ 1.054476756 0.677552707 16.97028858 112.4273797 2.42084235 30.63061417 54800

’2001LM5’ 1.231557369 0.034624715 12.54781974 270.2430162 255.7891812 263.58421 54800

’2001MR3’ 2.364408249 0.454573167 4.444779909 221.0541799 58.43056739 14.45123263 54800

’2001OA14’ 1.089129792 0.421622836 29.23969107 309.5655804 144.3381902 65.89708551 54800

’2001OD3’ 2.61071514 0.520849279 14.94314311 122.5177001 209.9939666 259.4320714 54800

’2001OX13’ 2.382698 0.462469076 4.1833437 54.52005475 277.4226993 349.2896303 54800

’2001PD1’ 2.235250658 0.456966374 5.961092811 282.5324574 94.49719805 51.94990351 54800

’2001QB34’ 2.20619469 0.417451269 5.736760866 267.1086916 86.2148165 76.18000572 54800

’2001QD96’ 1.274386799 0.496610763 17.95303947 330.367458 145.7208677 260.8496757 54800

’2001QH142’ 1.527460085 0.221646392 30.60080644 318.3848612 253.4377061 64.37117675 54800

’2001QM163’ 2.320364548 0.73450184 9.227150037 88.02739236 165.8495727 34.82324868 54800

’2001QN142’ 3.089031686 0.686167982 10.23400212 164.3801305 110.1665775 131.4211186 54800

’2001RA18’ 2.6027851 0.591959851 10.98173862 179.7559227 205.6723794 247.6419571 54800

’2001RP3’ 2.345062855 0.558817351 9.269959219 170.6984893 158.622759 6.761725291 54800

’2001RQ17’ 2.003259322 0.492798503 1.33007288 30.85767009 284.3442889 206.4018735 54800

’2001RX11’ 2.771017168 0.544080298 13.04801686 344.0105391 307.6154175 216.9851986 54800

’2001RX47’ 2.021439103 0.422953095 10.745862 277.0742631 23.69117354 201.1816247 54800

’2001SA270’ 1.302336577 0.735284528 38.53904347 210.056282 15.56137746 331.7898017 54800

’2001SD348’ 1.884914509 0.328349226 14.38562097 202.9330964 89.36974513 318.3580949 54800

’2001SE270’ 1.215050219 0.481848872 5.369229404 357.0874808 107.5412393 83.12727017 54800

’2001SE286’ 2.035426097 0.456871455 26.85193065 268.6461204 199.033326 135.7679739 54800

’2001SG262’ 1.963510461 0.582482272 4.810999194 359.6434776 99.48799462 196.6339845 54800

’2001SQ3’ 1.110197381 0.254518561 23.89749164 356.2138636 268.1059758 121.1600771 54800

’2001SS287’ 3.247082196 0.674199525 18.41289784 230.8608013 173.8492978 76.69844682 54800

’2001SY169’ 1.227015052 0.408218196 5.098072644 171.6503399 82.01965709 163.5684074 54800

’2001TB’ 1.716852637 0.525264501 3.96803148 192.2697714 245.0530232 44.12379043 54800

’2001TD’ 0.954140682 0.166064739 9.012583297 13.2106394 241.3570728 343.2961109 54800

’2001TE45’ 1.805816098 0.462799927 14.60699116 208.7424417 120.3518838 355.6720236 54800

’2001TY1’ 2.407932814 0.593216507 5.849968171 9.695905912 342.8256886 332.4775229 54800

’2001TY44’ 2.361456421 0.51875975 2.535546875 357.1802301 72.87966257 333.0755081 54800

’2001UC5’ 2.731184153 0.625179892 30.39936453 28.36207463 23.90710034 202.8922718 54800

’2001UE18’ 1.361370965 0.181932518 15.44863116 33.23576633 60.63840275 125.4059822 54800

’2001UF18’ 1.141145475 0.609493396 31.27882849 46.02419845 202.5310502 7.456045204 54800

’2001UO’ 2.549019692 0.66901848 10.27737818 21.76582119 303.2269582 278.4235918 54800

’2001UO27’ 2.631718779 0.520976543 40.19693732 217.1342885 153.0222066 242.3279709 54800

’2001UQ163’ 2.17154795 0.492902769 6.757442667 56.08827079 262.3254046 108.936898 54800

’2001UW16’ 1.36409284 0.178314209 37.5980402 37.07807922 106.6571113 72.34735334 54800

’2001UW17’ 1.557912892 0.232207493 12.90404025 223.2987375 217.7671276 200.9569742 54800

’2001VB2’ 1.718264156 0.395329397 7.93570965 50.1396775 319.5865391 57.52201342 54800

’2001VB76’ 1.45840335 0.348422792 4.238976233 259.5823245 248.2432802 302.797615 54800

’2001VC76’ 1.754545551 0.442167828 16.84997651 52.34658652 258.6994651 60.6864087 54800

’2001VE76’ 1.741008131 0.514638833 4.155557011 217.3560133 262.461042 1.612754126 54800

’2001VF2’ 1.818041065 0.384620898 8.910993997 58.89839992 11.66779833 308.8394828 54800

’2001VH5’ 1.273963264 0.186643694 26.51610168 230.4481215 119.3220549 6.189209693 54800

’2001WH1’ 2.466794363 0.800362751 15.57988302 68.33207057 107.2929653 276.1030339 54800

’2001WJ4’ 1.255446138 0.21637657 7.908879629 57.22819474 18.6522551 347.4227276 54800

’2001WK15’ 1.140978336 0.136962138 24.50933226 66.3961333 99.89068343 189.5983638 54800

’2001XE1’ 1.603518778 0.210851683 20.95146854 231.1865884 272.9687611 107.2855405 54800

’2001XF1’ 1.478885427 0.463849001 22.0408131 87.87359182 231.480811 14.99911158 54800

’2001XG1’ 2.006133215 0.598132588 3.017506561 56.5245504 81.36252579 149.8963753 54800

’2001XP88’ 1.346800191 0.194436491 6.74825863 97.90598791 261.1695601 229.2930137 54800

’2001XQ31’ 2.850458554 0.578046574 19.51189364 85.70161983 333.5346284 168.9053558 54800

188

’2001XV10’ 2.206723375 0.583640463 22.27384465 31.54259549 341.7853554 82.10803375 54800

’2001XW10’ 2.103840397 0.767626065 4.65904182 340.4833282 353.5362551 121.7546738 54800

’2001XW266’ 2.286721743 0.449217817 4.617255121 206.1975157 89.40220896 36.71276531 54800

’2001XX103’ 2.051599716 0.665344781 6.171876559 79.8066488 84.81120073 115.9114909 54800

’2001XY10’ 0.871777972 0.387232628 30.99519754 92.9782006 219.6724533 308.0723486 54800

’2001YA1’ 2.161296127 0.472766122 27.97899194 255.3269406 167.91376 71.28357537 54800

’2001YE1’ 1.912031704 0.502088267 4.457827872 65.92907998 97.54430972 200.4746119 54800

’2002AA’ 1.147936608 0.302333965 11.27285637 302.2687327 64.5563748 280.8413397 54800

’2002AC29’ 1.641601873 0.503288006 26.58007334 85.21069795 129.5424309 22.84367944 54800

’2002AF29’ 3.246806432 0.614649403 8.001787483 217.2108243 282.5070126 61.03104462 54800

’2002AU4’ 0.855563804 0.373648298 17.18086593 99.50935788 205.1518748 70.17955517 54800

’2002AV’ 2.465190371 0.660778977 2.841110632 124.0794251 285.5176274 292.7899006 54800

’2002AW11’ 1.44696024 0.330393024 18.33071146 95.63424888 91.03062825 316.2769354 54800

’2002AY1’ 0.778708828 0.437707559 29.88734905 287.8976428 323.8569822 260.0228131 54800

’2002BJ2’ 2.048472888 0.653679482 26.13153875 16.65232926 60.852933 154.9107556 54800

’2002BK25’ 2.296507125 0.749096098 11.92852279 156.4002852 103.6926275 321.819486 54800

’2002BM26’ 1.832228657 0.445039301 16.2272804 319.6957722 180.4012074 265.996196 54800

’2002CS11’ 2.020229504 0.4032339 9.803541658 346.3483434 160.1667661 132.3610208 54800

’2002CT46’ 2.361227912 0.531198086 15.73443638 157.4711245 356.2052351 312.3663391 54800

’2002CT118’ 1.279336658 0.350852016 10.37527921 321.9528585 266.0906642 205.0504321 54800

’2002CU46’ 1.737600391 0.565282708 32.18865823 145.1966894 92.75510267 318.0776315 54800

’2002CW11’ 0.865480941 0.225580829 3.133939157 137.6247826 210.350877 301.4838274 54800

’2002CX58’ 2.797331811 0.659214558 2.534185251 110.1827277 75.74394095 154.4807085 54800

’2002CY9’ 1.648573998 0.508439149 41.9709023 305.3823426 117.3725943 103.4987906 54800

’2002CY58’ 1.365977733 0.384396922 8.283664232 341.6895742 39.94642982 168.9988095 54800

’2002CZ58’ 2.187921554 0.465408233 18.82845986 339.5615337 87.9280756 62.27078937 54800

’2002DJ5’ 1.400369221 0.567800104 6.439700302 348.099162 295.9973965 311.8300734 54800

’2002DQ3’ 1.387188679 0.254895052 5.051837003 340.6195642 160.1812448 58.63184399 54800

’2002EB3’ 1.758104388 0.684453917 9.912684731 1.791811501 300.0324237 283.5292734 54800

’2002EM7’ 0.92123263 0.36297078 1.547432464 347.2071486 57.68837704 302.9851282 54800

’2002EV’ 2.45601064 0.581939385 10.41758245 156.310531 353.4805176 273.3206157 54800

’2002EY’ 2.136692846 0.630390143 20.23174164 170.8846787 264.8570546 77.97823316 54800

’2002FB6’ 1.796476087 0.54493341 33.70223562 182.8208581 101.775922 254.485454 54800

’2002FW1’ 0.823350353 0.342015469 6.592641824 164.1464448 223.1410409 109.6715861 54800

’2002FW5’ 1.314970529 0.217718142 46.44431137 21.77561836 85.42704348 221.637853 54800

’2002GF8’ 2.283567733 0.453706458 4.886860254 20.37466094 237.1577162 313.2294503 54800

’2002GK8’ 1.841243135 0.401400292 38.99834189 47.89325252 266.7539684 182.0323429 54800

’2002GM2’ 2.198649831 0.807975231 3.356043697 339.8801188 83.82749971 42.83499017 54800

’2002GR’ 1.201532225 0.20760734 7.323664581 183.8431858 313.6817245 56.86827116 54800

’2002JA9’ 1.985011041 0.483084906 10.51024232 93.72876597 230.2780689 79.45580851 54800

’2002JB9’ 2.71823306 0.784872235 46.73548604 70.42208228 277.9028065 145.1819748 54800

’2002JE9’ 1.067779968 0.416720917 8.827300453 200.1437533 255.3844115 58.91935416 54800

’2002JQ100’ 1.180542737 0.518847295 29.6089218 47.37797396 40.06189048 124.9106473 54800

’2002JR9’ 2.38608516 0.636909651 9.907490845 122.9549295 203.4021088 257.9600591 54800

’2002JR100’ 0.924673959 0.297798077 3.763163526 203.5554627 253.4473863 238.742324 54800

’2002KJ3’ 2.268790014 0.488790857 6.425884385 48.12577792 252.0640164 302.9323481 54800

’2002KL3’ 1.951566445 0.74907457 20.72596584 73.50185983 293.0282404 106.7479413 54800

’2002LZ45’ 2.310275074 0.634019152 6.186032263 91.34935757 239.7583351 287.8762509 54800

’2002MT1’ 2.37469308 0.497596887 4.730939436 205.6823638 82.46721368 268.4317805 54800

’2002NA31’ 1.665988794 0.288598273 19.97699187 125.5706689 219.7839621 321.0840709 54800

’2002NW’ 1.608708734 0.667970403 6.027175137 102.3808595 287.9878283 22.19775304 54800

’2002PE130’ 2.558271889 0.619640438 15.62659015 357.5407176 33.46477303 180.9463446 54800

’2002PH80’ 2.169831897 0.458211314 6.422528235 351.3040292 331.1878721 351.6834083 54800

189

’2002PO6’ 2.235006677 0.5190652 20.59061367 304.3291629 301.1681461 344.0680949 54800

’2002QE7’ 1.469822183 0.18118064 12.11033232 244.5516752 88.33742076 180.692713 54800

’2002QH10’ 2.360933278 0.56042801 4.793405489 0.483469669 23.71232485 248.4493451 54800

’2002QQ40’ 1.215227133 0.564610745 1.723280561 104.1637021 356.4549576 183.4716136 54800

’2002RC118’ 2.951243209 0.566205912 28.03480978 208.9828054 222.2018622 68.94707347 54800

’2002RH52’ 1.978928668 0.492282161 16.18692263 2.371189429 96.61246354 39.71939245 54800

’2002RP28’ 1.66196005 0.390539866 7.999730006 163.5247819 250.4604408 295.2897787 54800

’2002RT129’ 1.832369738 0.75378 19.63694368 178.725369 55.64949635 207.5664476 54800

’2002RV112’ 2.220682998 0.489130312 16.50556811 196.1230305 199.3967504 313.4148508 54800

’2002SL’ 2.201788042 0.499294087 6.505614043 139.2924772 151.955489 348.6953554 54800

’2002SN’ 1.949039648 0.377894729 6.42373428 36.60968638 337.2152128 93.54011043 54800

’2002SQ41’ 2.6047404 0.801892554 25.06966704 22.71579201 95.12030107 153.3768165 54800

’2002SR’ 1.179824011 0.196038964 6.688557057 160.9435121 285.0759198 237.3294474 54800

’2002SV’ 1.403351061 0.236890694 16.7732143 352.7117301 326.8581254 280.5438713 54800

’2002TS67’ 2.345431522 0.491380059 9.697026954 79.52333193 322.8100884 248.8607967 54800

’2002TX55’ 2.228310482 0.570864906 4.379631401 190.2452352 148.8380891 313.0404183 54800

’2002TX59’ 1.223476724 0.145773336 12.97641826 188.5875741 132.7027374 234.4470395 54800

’2002TY68’ 2.218097532 0.514100119 20.80169465 19.91474498 57.98729072 282.906895 54800

’2002UL11’ 2.811703709 0.558524122 9.743318037 52.39453254 331.9474222 104.3657037 54800

’2002UN3’ 1.744143314 0.257344179 8.695680562 28.08034346 112.5961626 155.7827621 54800

’2002UX’ 1.473432334 0.163396909 20.20657942 263.9213204 84.27950545 179.534241 54800

’2002VD118’ 1.427632787 0.143647327 14.25044998 35.26763358 66.27651216 155.8687947 54800

’2002VE68’ 0.723589662 0.410515769 8.980538881 231.6524629 355.5027705 121.1010776 54800

’2002VO69’ 1.44044533 0.349151656 20.94255275 47.35438863 55.67914894 152.4600747 54800

’2002VQ14’ 2.584349693 0.510503036 7.228831592 236.4274501 159.056878 167.5041802 54800

’2002VR14’ 1.625655533 0.498835067 5.532247969 76.32103523 44.11651262 304.74967 54800

’2002VV17’ 0.83743279 0.43653465 9.698213272 222.2942569 348.7650752 196.7992274 54800

’2002VX91’ 0.985069444 0.201283632 2.335509572 216.7237513 78.10746459 160.1639145 54800

’2002VY94’ 3.241663611 0.658221007 9.152408967 280.9452523 233.1949082 339.605983 54800

’2002WP’ 1.449839876 0.215919394 19.15205651 76.37420823 1.020911412 145.1069174 54800

’2002WX12’ 1.750391641 0.659555541 8.634530064 211.7431658 328.2909805 183.0926165 54800

’2002XA’ 2.827125889 0.626061226 3.319145604 96.13151487 34.80338322 80.71581713 54800

’2002XA40’ 2.263091915 0.481689719 4.455688695 300.9527034 66.45249608 311.3577047 54800

’2002XB40’ 1.854174333 0.553654132 6.800386455 255.6920319 118.1569045 149.3992435 54800

’2002XM90’ 1.79108251 0.377919314 20.18254382 81.70633578 80.68027989 140.2030278 54800

’2002XN14’ 1.766465822 0.440553705 11.78561414 86.27957247 310.7453362 216.3242928 54800

’2002XT4’ 1.609844263 0.422539507 7.508260624 67.35116035 313.1270337 355.8648577 54800

’2002XT90’ 1.02977307 0.223789924 43.38818726 287.699753 43.05087977 354.0745161 54800

’2002XV90’ 1.578813707 0.376262798 9.994957521 79.03541887 356.2742127 3.416435591 54800

’2002XX4’ 1.789138759 0.283945668 25.60576878 74.15572688 286.9544726 224.132252 54800

’2002XY39’ 1.447933301 0.167117265 21.44647552 252.3195567 213.7571547 134.7586056 54800

’2002YD12’ 2.21957798 0.49951012 14.72561509 276.0331896 193.0803267 279.1830074 54800

’2002YO2’ 1.500730676 0.295114293 6.438108116 278.7805694 187.5991197 73.05064292 54800

’2002YQ5’ 1.286947194 0.123548131 15.54667559 279.9840715 258.5080245 314.012964 54800

’2003AA3’ 1.421295162 0.289405602 13.78222211 106.4551926 346.9199795 177.6803785 54800

’2003AA83’ 2.493155935 0.783405003 6.84508659 88.58985213 126.4449714 163.2835599 54800

’2003AF23’ 0.874850924 0.426196628 23.23720276 286.8241785 43.94682552 166.921073 54800

’2003AO4’ 2.165591071 0.451913099 21.08122053 306.5358488 112.0814115 326.7910193 54800

’2003AS42’ 1.501244604 0.341262152 9.982372616 107.4223301 24.0669204 62.16366416 54800

’2003AY2’ 1.821649115 0.564803013 10.30753671 275.3312121 285.5597592 116.1774032 54800

’2003BA21’ 1.100298773 0.83313449 23.73627108 308.9249898 18.07928025 105.372189 54800

’2003BB21’ 2.228502361 0.556726555 4.845458564 344.8844864 211.6669374 254.9302624 54800

’2003BK47’ 2.743225529 0.707944605 20.75098226 139.1570897 234.9525359 141.3849277 54800

190

’2003BN4’ 1.269265789 0.170826571 5.600352111 307.7243202 192.8256574 22.27573824 54800

’2003BO1’ 1.328496507 0.080582501 13.69613208 140.8526496 2.825319947 281.0238373 54800

’2003BS47’ 2.099853678 0.521295083 4.886017965 131.6059637 358.2265642 330.2281192 54800

’2003BX33’ 1.181968279 0.422627305 7.920504954 143.3415502 221.1164672 274.4757424 54800

’2003CA’ 1.379095858 0.719532863 21.17866341 126.3355496 234.6328101 256.6184807 54800

’2003CR1’ 1.453457248 0.463150126 12.71439116 311.1013129 101.8465117 156.6969553 54800

’2003DE6’ 1.699445234 0.32858403 23.199593 160.1943215 68.65993565 172.594744 54800

’2003DF6’ 1.220693674 0.17265946 25.784656 157.2538195 76.35971113 39.06760132 54800

’2003DN4’ 1.145292852 0.477299662 36.30657697 157.8323437 141.5742695 157.6818026 54800

’2003DW10’ 1.446357342 0.360772208 2.196658067 342.2652455 220.9388357 90.32828143 54800

’2003DX10’ 1.375523716 0.410696309 3.147596208 61.97686519 193.7902099 152.2065781 54800

’2003DZ15’ 1.220515647 0.486834037 3.651474461 142.013642 263.5714838 151.8710708 54800

’2003ED50’ 1.41601913 0.546803534 33.72998511 173.611099 93.92992052 106.0362132 54800

’2003EG16’ 2.399907371 0.686153443 20.27027055 152.1243124 109.8593685 177.8595411 54800

’2003EJ59’ 3.21017086 0.620523116 13.41999895 0.386275049 167.1958009 357.7377765 54800

’2003EZ16’ 1.175872726 0.139631519 5.804382236 341.9801435 71.45515575 279.3582656 54800

’2003FB5’ 2.51152223 0.788524134 5.334906845 358.2716111 288.521537 141.0530596 54800

’2003FF5’ 1.368596528 0.30343907 6.356351112 192.9916283 54.08792559 162.3962494 54800

’2003FJ1’ 2.173591178 0.815481914 20.87798202 128.724437 181.7725616 256.9916558 54800

’2003FQ6’ 1.371112171 0.131556728 3.620519905 86.6602047 233.3438258 72.30766502 54800

’2003FT3’ 2.670619283 0.572445892 4.323888445 182.136911 84.10619685 87.76455935 54800

’2003FU3’ 0.858495795 0.394042873 13.04100014 21.64755958 339.2687556 253.3751676 54800

’2003GD’ 1.604472515 0.367321251 31.3542356 13.49030204 160.4239844 289.6883081 54800

’2003GD42’ 1.294936307 0.228981323 12.24783454 18.17147062 156.1539974 313.7225937 54800

’2003GP51’ 2.153051942 0.602977122 2.859325752 141.8415053 357.5426107 296.5506813 54800

’2003GS22’ 2.739788158 0.577487103 2.420376157 148.0676231 4.365229386 100.0016448 54800

’2003GX’ 1.329891379 0.207156376 10.85048911 19.63279552 167.9960373 251.5264757 54800

’2003HB6’ 2.700813602 0.575316425 6.312596017 164.1740444 142.1579383 61.59932068 54800

’2003HF2’ 1.113529941 0.675384261 3.056417463 190.0495824 230.851665 11.29414432 54800

’2003HP32’ 2.697251963 0.777914277 3.432506839 188.0527314 155.4273681 67.30914104 54800

’2003HR32’ 1.748354622 0.687468596 8.290173492 342.0380728 352.5540903 111.4826475 54800

’2003HW10’ 1.797314642 0.532584664 3.916613843 37.88804984 239.2318036 97.99663384 54800

’2003JD13’ 1.681270631 0.2717239 40.82595837 226.1638336 351.5989101 204.7027458 54800

’2003JD17’ 2.457574645 0.552025747 21.09052067 219.5312081 34.16705088 154.5606448 54800

’2003JO14’ 1.22491423 0.340638532 7.101208471 50.02999557 95.7008956 82.56673008 54800

’2003JV14’ 1.633656972 0.579343004 5.463047159 99.1089802 33.18240437 270.9574105 54800

’2003KU2’ 2.695895001 0.675282593 5.403717919 105.4569517 246.5370187 56.91304782 54800

’2003KX16’ 1.334681666 0.579072431 23.63907989 94.3570823 28.23125643 262.1410348 54800

’2003LH’ 0.960513471 0.149746576 10.79561453 247.325235 238.138055 51.78485912 54800

’2003LN6’ 0.856893998 0.210516927 0.632617618 215.7369228 210.512885 162.6117511 54800

’2003LS3’ 2.65432185 0.524063426 9.525623521 158.1215506 175.1028169 74.90307061 54800

’2003LW2’ 1.877480775 0.479196794 2.294348229 247.1935258 335.2993201 58.3895847 54800

’2003MD7’ 1.4670422 0.594344514 5.787454213 200.5865827 185.1602428 335.4913655 54800

’2003ME1’ 1.040478329 0.302863161 21.05562691 268.6699854 255.5712851 116.2102183 54800

’2003MH4’ 1.963015732 0.51471915 3.874243081 260.037953 322.8832206 10.32951594 54800

’2003MT2’ 2.68227474 0.535798568 27.92010101 305.1857409 304.6266678 100.8904555 54800

’2003MT9’ 2.536520826 0.92099956 6.824907875 233.3562645 200.6439985 110.8044846 54800

’2003ND’ 2.220531876 0.450615391 5.115737627 297.2536553 23.15665472 221.2305609 54800

’2003NO4’ 1.715056681 0.312860956 22.6977069 135.4315521 171.0627353 140.9892125 54800

’2003OQ13’ 1.302575556 0.160784904 16.15040938 123.7933279 152.8077713 238.557141 54800

’2003OT13’ 1.173573726 0.171778338 13.11783964 135.6191986 242.4436701 18.09792844 54800

’2003QC’ 2.572787333 0.531249993 7.857623759 321.744673 37.39943961 92.59231544 54800

’2003QW30’ 1.053445007 0.331782863 11.2766464 164.6189797 303.0843903 223.8107399 54800

191

’2003QY29’ 2.634299311 0.59047789 16.4236187 326.9175639 348.6195856 86.76887943 54800

’2003QZ29’ 2.479349449 0.602249998 8.717834533 162.8563058 251.0982954 104.3285889 54800

’2003RD5’ 1.398364564 0.246880567 8.720066684 155.8629271 170.1262767 70.1376513 54800

’2003SF’ 2.165272944 0.777655377 5.64519925 77.10649159 32.51672406 209.9072596 54800

’2003SG170’ 1.858878016 0.604426976 36.94152449 199.4110602 309.1481527 318.4768173 54800

’2003SH84’ 1.700157818 0.315398849 2.322690079 268.7840383 134.5622929 100.2144562 54800

’2003SJ84’ 1.737789472 0.284245824 36.64687954 183.1274065 307.0079903 351.1339738 54800

’2003SK215’ 1.851551538 0.446530556 36.01078545 2.854170923 288.9337634 46.91733934 54800

’2003SM215’ 2.102508828 0.561698605 4.987840618 5.898342873 40.94228936 240.4432576 54800

’2003SN214’ 2.036141752 0.549064381 8.332546098 353.5306498 284.5376943 306.5622333 54800

’2003SQ15’ 1.665676918 0.458532442 45.3667958 333.992699 327.9086264 169.4036588 54800

’2003SR84’ 1.706545962 0.476410651 7.53073234 183.424733 229.6962203 99.0867368 54800

’2003SU84’ 1.498928013 0.385506985 16.46039091 181.9111559 95.48096544 338.4802798 54800

’2003SV159’ 2.162558492 0.519372553 5.015651798 200.1416496 135.6219972 233.5697105 54800

’2003SW130’ 0.883792255 0.30402724 3.667674513 176.5263837 47.73710981 188.9223263 54800

’2003SY4’ 2.477617914 0.611854235 3.922136519 353.8143278 327.6477234 127.1154221 54800

’2003TH2’ 2.451450815 0.670535335 1.3923293 50.30395942 44.31845689 107.6796543 54800

’2003TK2’ 2.343077664 0.650337548 4.293055372 1.047113308 320.8781799 168.5936112 54800

’2003TM1’ 1.361978655 0.562834868 1.704450449 271.5369466 354.8571658 128.5263746 54800

’2003TN1’ 1.432811179 0.135802506 19.23228742 13.72438283 54.55246404 326.9586343 54800

’2003UB22’ 1.219733034 0.225330699 15.8595352 212.4611246 116.1334468 323.4565251 54800

’2003UC5’ 1.185347249 0.818281907 36.8429535 31.01446611 210.5903016 26.30507635 54800

’2003UC20’ 0.781286551 0.336784955 3.794729949 188.8641335 59.28881366 267.8887041 54800

’2003UE22’ 2.338576017 0.547148468 8.120486812 29.43924618 356.2068404 153.3046366 54800

’2003UO25’ 1.016432467 0.228765904 15.4736231 211.9060116 28.51887453 127.5840364 54800

’2003UP12’ 1.785254762 0.49074204 13.89929144 208.3507823 231.6676757 33.81441859 54800

’2003UP24’ 2.236549815 0.49675152 21.68460879 213.2579784 237.6617391 169.1936671 54800

’2003UQ25’ 2.534975202 0.681013728 2.126962806 187.4386431 276.645317 82.77590648 54800

’2003UR12’ 2.431334654 0.568167165 60.46870576 194.0332197 122.3574366 137.3448414 54800

’2003UX26’ 1.154745649 0.365308477 4.544726134 35.36829546 263.9817911 91.27795587 54800

’2003UX34’ 1.095218711 0.615697927 2.566365109 4.676058173 218.1698829 293.3227326 54800

’2003VE1’ 1.94275275 0.4950409 16.31114522 29.67864593 323.0498547 333.9893126 54800

’2003VG1’ 2.699022028 0.575480259 8.807152789 331.8807372 135.2778389 39.00797578 54800

’2003WB25’ 1.785050027 0.288630211 29.7974039 260.0401363 210.8776708 15.64276784 54800

’2003WE157’ 2.249908793 0.565562448 9.621645424 227.3240408 263.6257589 155.0237187 54800

’2003WL25’ 2.398467641 0.740800611 23.76678955 267.1780991 24.97948578 167.8642302 54800

’2003WO151’ 1.545012746 0.663186846 19.79241692 228.1561669 330.7736394 158.3548382 54800

’2003WP7’ 2.293812794 0.642487588 1.012921537 252.4797937 236.6534966 147.1602085 54800

’2003WP25’ 0.991222895 0.121059601 2.528085679 41.85153566 224.6416742 177.6428317 54800

’2003WR21’ 1.119082533 0.261434367 9.275520115 85.93129415 107.8692547 331.7241993 54800

’2003WU21’ 0.908664875 0.544452232 28.53468955 57.58339781 140.6610161 207.2530838 54800

’2003WX25’ 2.909766418 0.582826045 23.9677735 40.09193704 39.36702814 354.1681903 54800

’2003WY153’ 2.46337963 0.59162191 1.177575708 210.9032736 211.3436506 106.1100698 54800

’2003XJ7’ 1.24301797 0.465853347 18.17795088 254.0493936 271.6983879 174.6267573 54800

’2003XK’ 2.338053777 0.713354503 2.329783126 246.0716038 104.6765198 155.8800901 54800

’2003YD45’ 2.489246061 0.695643932 8.404940371 252.8516624 104.2994433 108.2628214 54800

’2003YG118’ 2.282286598 0.64429509 8.129023147 348.579456 232.219348 116.2212074 54800

’2003YG136’ 0.96887193 0.354891429 2.735200536 86.54730674 127.9875507 341.8604894 54800

’2003YH111’ 1.419401335 0.486586942 4.367754156 91.8301615 84.16160466 297.9624153 54800

’2003YH136’ 2.324326245 0.89383841 16.03711581 306.5501054 304.3438543 126.1468872 54800

’2003YL’ 1.14607312 0.632458468 5.659853172 292.0590615 29.28201264 69.73794596 54800

’2003YM1’ 2.605285429 0.522753806 13.65022898 291.4494317 223.7025673 38.52158072 54800

’2003YO1’ 1.157611787 0.399017467 14.25725634 65.20496006 161.3898849 234.8782707 54800

192

’2003YP3’ 1.34878359 0.493033586 37.28283421 260.4122766 282.1154004 12.60788238 54800

’2003YP94’ 2.168156849 0.534221332 8.177483835 263.5380007 211.360627 190.6423859 54800

’2003YQ94’ 2.653248595 0.618168544 8.531467754 272.5764867 85.68442189 87.57127099 54800

’2003YT70’ 1.591150766 0.347533126 0.375769887 74.06500106 10.41540646 169.9015851 54800

’2003YT124’ 2.31795811 0.47967808 5.45083487 327.1210488 117.4871815 148.786435 54800

’2003YW1’ 1.6655605 0.297155583 19.41200909 277.0298055 182.3095794 104.7235939 54800

’2004BB103’ 1.907117117 0.621804052 55.88798211 271.1937972 71.49405712 321.8105706 54800

’2004BF11’ 1.892616884 0.406287127 1.806292471 277.1277301 199.0949719 313.287728 54800

’2004BG41’ 2.513975126 0.611079974 2.954787602 301.7431204 152.9511632 83.21823697 54800

’2004BG121’ 1.612418629 0.342853809 19.42971236 128.712282 206.6998061 266.1275119 54800

’2004BH11’ 1.265868321 0.32788068 4.352311116 309.6989207 83.17478155 198.5796571 54800

’2004BH41’ 1.194856641 0.500146474 30.45488184 123.2408498 200.3036903 30.6931992 54800

’2004BJ11’ 1.751316879 0.397620023 4.268473218 269.1124864 112.1571015 86.95594198 54800

’2004BK11’ 2.065154458 0.391817657 5.375922891 276.532918 211.7845439 225.8616729 54800

’2004BN41’ 2.052050295 0.516920925 0.39909393 331.3247097 145.397124 235.7473638 54800

’2004BW1’ 2.321240359 0.522070168 4.311830569 76.94629637 294.6505878 177.2262185 54800

’2004BY21’ 2.422899274 0.473814112 6.543807163 40.42308518 155.5338334 72.85260193 54800

’2004BZ74’ 3.048626295 0.891959667 16.60189783 233.8458705 121.3158853 336.4716028 54800

’2004CE39’ 1.027225291 0.391328423 17.70677067 153.2987871 126.0474412 127.6117085 54800

’2004CO49’ 1.375401923 0.388564895 4.261901493 115.2391077 315.8051705 25.78486877 54800

’2004CZ1’ 1.539659326 0.45454907 1.998748716 146.8986314 65.75981307 156.0454042 54800

’2004DH2’ 0.94404479 0.400224631 23.02316035 157.3498478 216.0754526 180.7595412 54800

’2004EK1’ 1.251061358 0.251493124 11.63288811 167.0229756 300.3932326 175.4379027 54800

’2004EN20’ 1.865839293 0.379365823 40.12491088 185.6259166 246.3902062 2.859144982 54800

’2004FA’ 2.122931061 0.590174778 9.193611852 180.208835 55.90306581 173.2626084 54800

’2004FD’ 1.301702933 0.674241711 1.020461995 49.90302006 357.1829859 102.8504833 54800

’2004FE4’ 1.390709189 0.234984684 15.76135209 358.7335469 198.8177877 300.0265046 54800

’2004FG11’ 1.589031592 0.724111133 3.109512451 84.74332408 227.4223695 92.36812521 54800

’2004FP4’ 1.997750119 0.469333692 2.122677391 24.67040288 196.8526068 225.1233328 54800

’2004FU64’ 1.837339483 0.367176623 24.87792891 20.98297329 286.3460411 249.8098009 54800

’2004FW1’ 1.602201084 0.714536351 10.12655311 195.0018863 90.79566095 87.47309013 54800

’2004FZ1’ 1.79388837 0.530981858 52.62938861 152.6756735 89.56669847 311.9446683 54800

’2004GD’ 1.064414292 0.307586136 6.222098651 26.72126523 281.0066804 9.742908817 54800

’2004GD2’ 2.035052999 0.502728709 1.775972581 44.7550659 144.0999181 218.2446302 54800

’2004HC’ 0.789175779 0.598753449 28.97489489 203.022814 159.3271279 92.69855689 54800

’2004HD2’ 2.313100707 0.833536892 15.40668804 26.78987451 61.88382111 125.9715643 54800

’2004HE’ 1.773483526 0.60843577 9.479418568 208.3025211 79.36530926 323.7965503 54800

’2004HO1’ 2.206477691 0.521505041 25.76635853 43.54090026 265.0538995 113.426382 54800

’2004HT59’ 0.97996524 0.223414346 11.13470324 214.7074081 112.1090386 180.0821926 54800

’2004HW53’ 2.178397664 0.581166869 39.06766926 32.9035381 95.68817442 174.3114784 54800

’2004JA’ 1.355766614 0.628413626 29.61572032 56.98928314 54.25960438 359.2381118 54800

’2004JB12’ 2.188413082 0.517131128 8.43513676 152.0850977 152.2046871 120.0802367 54800

’2004JG6’ 0.635140312 0.531242432 18.94546979 37.0606571 352.9650734 205.4283627 54800

’2004JN1’ 1.085333447 0.175585891 1.496836843 144.0413373 1.922803439 73.36779102 54800

’2004JN2’ 1.067680532 0.608375576 19.76087986 228.3838663 179.8733158 224.6178735 54800

’2004JO20’ 1.469026111 0.432714431 10.25417695 234.5116418 68.08380005 170.5601296 54800

’2004JP12’ 1.860959099 0.771364087 8.163070858 216.9879195 262.6902565 304.7580673 54800

’2004JW20’ 0.952773881 0.561536675 14.73070241 235.240851 207.4536364 58.24600172 54800

’2004KZ’ 1.289416872 0.374778818 12.4104022 58.46971899 100.9215168 74.91234114 54800

’2004KZ14’ 1.536982418 0.312983829 7.88514251 200.3276053 310.4905023 190.8164171 54800

’2004LC2’ 1.88051217 0.736948617 11.00495742 84.6161849 290.3500481 242.2184042 54800

’2004LK’ 2.090303409 0.512592219 7.814525366 76.10216511 229.8458235 158.2125706 54800

’2004LX5’ 1.304019067 0.211803292 13.57737888 83.30700686 172.857088 3.271434673 54800

193

’2004MC’ 2.442012877 0.587859478 2.435752494 91.5060602 203.254745 53.36746243 54800

’2004ME6’ 2.366275151 0.575394677 9.437839011 112.2016376 210.3431028 64.46246545 54800

’2004MP7’ 2.74547793 0.716147963 17.21498855 97.95421662 109.5335419 359.9971764 54800

’2004MQ1’ 2.405400018 0.70672077 10.96292213 57.64855759 330.9909716 45.91208589 54800

’2004MS1’ 2.274077847 0.590200591 6.967462128 263.3315245 324.2849916 116.2228101 54800

’2004MW2’ 1.145054698 0.638066017 35.11611123 96.20115838 50.11471596 275.9595181 54800

’2004NC9’ 2.694453093 0.556430774 23.92896743 335.3346585 259.2694041 25.09124866 54800

’2004NF3’ 2.063467586 0.479689983 0.785849351 270.135767 22.61392927 172.0156462 54800

’2004NK8’ 1.326589304 0.280805313 15.93346042 290.0270837 302.6132508 344.9938788 54800

’2004NL8’ 2.566768848 0.72091849 4.973408523 157.6725735 270.881908 356.8391232 54800

’2004OF6’ 2.187860091 0.413545951 8.953323575 39.14561726 262.7710616 124.9191694 54800

’2004PB97’ 1.234845782 0.16278859 10.96756596 140.7427421 160.4862588 62.3522591 54800

’2004PJ2’ 1.417950709 0.341943135 2.583396562 317.234927 281.5994297 238.9247197 54800

’2004PR92’ 1.133223756 0.340476678 13.00528104 321.5963133 100.2542035 141.1638651 54800

’2004QD20’ 2.166789652 0.701387782 17.56504474 224.3432665 353.1087066 152.6058741 54800

’2004QG20’ 2.341672601 0.449745811 7.634459815 169.6288218 208.5108642 57.87915031 54800

’2004QJ13’ 2.028088213 0.481341649 3.022970176 147.5218997 185.8377691 171.5639172 54800

’2004QX2’ 1.286534212 0.902644361 19.06130604 320.325423 218.6574526 9.417768731 54800

’2004RB11’ 2.111884726 0.506254283 3.201750732 161.7496874 194.0199456 133.6109005 54800

’2004RC11’ 1.82573774 0.466477239 1.859458243 147.67136 161.9219363 269.8250863 54800

’2004RC252’ 1.306334985 0.129078741 19.32548346 175.4075754 56.63965747 43.0225854 54800

’2004RD84’ 1.820476098 0.415922331 24.24380585 331.4078449 100.2092439 210.9620975 54800

’2004RK’ 1.388646741 0.300406733 18.14661573 178.8550346 264.3242031 143.2738252 54800

’2004RK9’ 1.838371031 0.426054605 6.226446881 355.0846096 283.9154082 277.4026234 54800

’2004RN111’ 1.668137257 0.393659597 12.60676449 349.8209804 331.3391727 355.8570235 54800

’2004RQ10’ 1.86458451 0.44175834 5.687206939 335.3141046 349.4229677 244.5670799 54800

’2004RQ252’ 1.126055372 0.388545804 7.743883942 25.55918324 82.91150538 117.4903027 54800

’2004RS109’ 2.331103231 0.495625776 33.95789932 173.2773834 192.7592555 61.98698774 54800

’2004RU109’ 1.532276665 0.4891129 5.848367043 171.4280266 250.5643034 53.84786648 54800

’2004RU164’ 3.368038174 0.617786364 12.70187051 114.3949475 232.6444647 244.9322067 54800

’2004RU331’ 1.241371957 0.244038129 17.46394947 201.6472203 261.7526299 296.2432661 54800

’2004RY10’ 1.672739709 0.621213376 15.47550396 165.9115306 283.2670321 310.6719741 54800

’2004SA’ 2.263542032 0.537276879 18.4014051 173.8851663 183.2410273 83.92016646 54800

’2004SA1’ 1.185011003 0.150444139 17.11802944 355.9313496 327.7597558 116.0304073 54800

’2004SA20’ 2.413935965 0.71126999 2.848238704 135.6314685 146.9779987 54.51461138 54800

’2004SB20’ 1.182950682 0.413124557 30.27890718 30.95515064 209.3325487 175.310224 54800

’2004SB56’ 0.865729586 0.237942315 18.69681569 302.11 233.4441192 262.0750681 54800

’2004SD20’ 0.875078561 0.464942424 21.33378893 46.64092042 94.3832741 296.6177296 54800

’2004SD26’ 2.036256536 0.775649469 4.872761947 117.7244046 359.3696994 130.3214215 54800

’2004SS’ 2.195222882 0.526968642 6.515940972 1.509473678 352.8734929 106.143233 54800

’2004ST9’ 2.247953008 0.435350196 12.25170005 195.2720724 59.66890116 161.2110511 54800

’2004TB10’ 1.103143233 0.09356588 22.49960893 12.8937274 149.7077464 63.34267323 54800

’2004TK10’ 1.058062787 0.298931309 24.59773273 205.354915 347.6628162 126.6169989 54800

’2004TL10’ 2.662420583 0.652515647 9.12518127 12.16847478 322.6757045 351.4365583 54800

’2004TL19’ 2.519644628 0.534431843 12.62208595 209.8887955 194.5783576 4.51674983 54800

’2004TN’ 1.428172834 0.435693289 14.04205336 17.20599222 159.8493145 25.5242172 54800

’2004TN1’ 2.749642226 0.697540942 8.442669871 214.0454836 233.4155046 310.1301203 54800

’2004TO20’ 1.439032406 0.295572196 9.555979199 207.8211807 123.5911914 168.338576 54800

’2004TP1’ 1.290560271 0.389282961 7.484580741 30.15506808 87.66441307 243.9157737 54800

’2004TP20’ 1.343911947 0.350874164 25.37209832 213.588012 264.830693 181.597908 54800

’2004TR13’ 2.018190979 0.729490647 17.86543805 12.38295699 249.7839597 180.0128618 54800

’2004TT12’ 2.498907912 0.545084928 0.722697121 184.0341334 197.6205244 17.36509152 54800

’2004UL’ 1.266465535 0.926748377 23.70376592 39.71768181 149.4228671 268.0173732 54800

194

’2004UT1’ 0.964338887 0.221087422 4.507340384 211.9705677 294.2279247 28.42363163 54800

’2004UU1’ 1.226277969 0.273640424 29.96006223 217.8228246 113.5414548 44.97422897 54800

’2004VA15’ 2.884486922 0.596467146 17.41870934 36.06489732 330.1000245 303.1208755 54800

’2004VB61’ 2.300379309 0.495101114 9.249792382 59.84723677 344.0965043 58.2100078 54800

’2004VH1’ 1.55048975 0.471555407 32.76991543 43.38221135 88.60124248 1.409392341 54800

’2004VP’ 1.65483419 0.429379661 11.7006036 45.87693733 70.93448521 296.5290651 54800

’2004XB45’ 1.550351937 0.581298591 3.161816152 85.03651688 85.99107381 352.2457906 54800

’2004XD6’ 1.948231764 0.564737856 6.676912476 66.80847111 88.39243667 143.5770239 54800

’2004XD50’ 1.825200045 0.377157988 20.66079938 106.1654375 63.64040751 172.6507261 54800

’2004XG’ 0.837385169 0.298282642 1.203504747 285.1787603 0.956198972 193.9440883 54800

’2004XH29’ 1.382203977 0.503519775 22.60817996 232.1348482 334.016831 94.69610843 54800

’2004XJ35’ 2.116322487 0.390469762 7.649570775 72.89092107 7.594669002 107.1441213 54800

’2004XK35’ 1.952497829 0.41634174 31.48384203 263.9528775 64.0071483 222.9210029 54800

’2004XM130’ 2.324536316 0.46587958 28.22156934 309.3204383 189.779422 39.84026631 54800

’2004XN29’ 2.425511965 0.705515586 2.381346476 320.0501815 36.94417314 31.28517585 54800

’2004XN44’ 2.422243561 0.579744824 2.765594969 178.8543574 83.01267982 49.75884004 54800

’2004XY60’ 0.640243133 0.796766108 23.75213585 122.6781581 130.7915191 122.7197734 54800

’2004YC’ 0.868335094 0.313304986 6.067147464 263.470442 47.30289962 62.0512695 54800

’2004YG1’ 1.009367532 0.158530813 19.82754187 271.8385767 293.9620408 226.7895742 54800

’2004YZ23’ 3.423849458 0.676827223 56.11498537 253.0550987 300.9407172 207.5787653 54800

’2005AD3’ 2.408107798 0.500084338 14.5532561 294.5947465 277.1541251 330.4151092 54800

’2005AU3’ 1.246427499 0.473639168 3.779873111 105.13211 266.7345759 329.2176083 54800

’2005BC’ 1.189770163 0.278016714 30.12452051 292.5121823 84.17738335 38.04835292 54800

’2005BE’ 0.883822267 0.421171221 31.18904673 116.0008928 168.6771598 60.13756025 54800

’2005BG14’ 1.992903286 0.727995885 21.64623144 95.43906935 280.4758742 153.7583621 54800

’2005BG28’ 1.025771871 0.227092168 6.132406589 313.5247276 80.85090638 317.5971831 54800

’2005BN1’ 1.785860191 0.554118506 6.777651048 300.6352869 107.7586099 243.4351855 54800

’2005CA7’ 1.830102145 0.441043666 6.228983031 316.1932888 176.8235139 196.5117802 54800

’2005CD69’ 1.088423593 0.187595426 2.781808096 336.6049239 264.4538692 47.28409755 54800

’2005CF41’ 1.648841214 0.586051311 15.89382731 132.2790377 208.6072445 57.53827769 54800

’2005CN’ 1.015752478 0.184990673 2.313581729 308.7588122 321.1803878 145.2206292 54800

’2005CS6’ 2.618920784 0.547435305 23.51802358 314.9058545 267.9161884 296.3301664 54800

’2005CW25’ 1.625719985 0.477907425 28.47375402 148.4339683 108.8305562 258.5487209 54800

’2005EB30’ 2.16680793 0.498956934 6.858946889 167.9431972 22.40942258 55.62550352 54800

’2005ED318’ 1.847480384 0.448403603 2.391849319 82.13989582 164.0652433 143.6453126 54800

’2005EH94’ 1.216945268 0.26732903 6.193878098 348.8666342 255.0082404 230.0804022 54800

’2005EL70’ 2.276089346 0.92476618 15.95865558 166.9192965 221.0996494 43.26590739 54800

’2005EN70’ 1.778878087 0.366687591 46.14391428 175.7144001 10.10446278 201.9194654 54800

’2005EO30’ 1.225144711 0.160750382 14.00963523 347.699457 191.8473461 264.0150077 54800

’2005EQ70’ 2.4014516 0.474587015 6.222130641 70.76629671 102.4501778 1.73371485 54800

’2005ES1’ 1.354988842 0.294710531 1.85464365 164.646726 315.2560826 158.0528487 54800

’2005ET70’ 2.129150044 0.828390185 5.577231106 82.96121638 326.8777909 88.23041352 54800

’2005ET95’ 1.862073231 0.417166865 24.78479806 357.4256894 104.5000458 200.6271015 54800

’2005EU2’ 1.5079546 0.353231869 4.577802087 191.1329503 23.9704955 341.2399689 54800

’2005EY169’ 1.30801027 0.233072389 20.89000968 346.9804987 227.5079072 145.5070713 54800

’2005EZ’ 2.337326947 0.48732098 10.4956383 215.4736587 286.6574172 21.99394764 54800

’2005EZ169’ 1.316015467 0.214921822 2.742064345 175.9042429 353.4710434 168.0079481 54800

’2005FH’ 2.696848746 0.656670546 34.84028198 144.156861 317.8869719 322.0491257 54800

’2005FN’ 0.933047105 0.330234645 3.748189396 177.4138347 120.858591 314.999464 54800

’2005GA120’ 1.286746858 0.386443133 12.26139332 197.728335 282.6622159 217.6183499 54800

’2005GC120’ 1.192970386 0.497515276 16.537155 68.05220616 258.1157342 209.5400639 54800

’2005GC141’ 1.489665664 0.198852105 28.2797899 186.0088591 40.52335435 350.7138896 54800

’2005GE59’ 2.109477325 0.601323692 16.10034754 195.0100286 242.7800137 130.9125236 54800

195

’2005GG’ 2.040933471 0.659868545 34.80381081 106.4841771 335.2349215 106.1157844 54800

’2005GH’ 2.174805418 0.478869533 20.20662298 189.7742327 306.0350414 72.16612278 54800

’2005GJ8’ 1.767064046 0.550886411 3.399379193 252.8319426 214.450921 228.4433262 54800

’2005GL1’ 2.508871786 0.515317026 3.214752375 189.4189484 19.5714189 326.6626686 54800

’2005GM162’ 2.245268266 0.494338821 1.975803973 3.552073778 257.6728754 10.21967046 54800

’2005GQ33’ 2.339179053 0.731503423 1.55316151 73.62754183 36.47980697 21.10185741 54800

’2005GU’ 1.551463448 0.614816284 25.0464974 27.05566744 275.6371308 285.1329221 54800

’2005GW119’ 1.640727343 0.233187174 2.88082599 171.1416555 242.8115397 43.7059078 54800

’2005GY8’ 2.048361521 0.67234766 2.825886347 179.9590165 103.2034556 62.77031338 54800

’2005HB’ 2.702076822 0.607078829 9.215964403 96.75150035 125.3097928 290.5638727 54800

’2005HB4’ 1.354808802 0.228133051 2.527210888 83.86106916 153.1999723 87.28396453 54800

’2005HD4’ 1.440484547 0.262357588 22.47087344 224.7605269 349.5999915 26.3902176 54800

’2005HM3’ 1.678365892 0.309922097 28.31914126 209.2738858 4.107080938 238.4252025 54800

’2005JD46’ 2.648037762 0.784752031 19.03380975 49.1326665 49.82326703 312.5128116 54800

’2005JE46’ 1.904142343 0.552408963 8.258963363 238.5951628 114.4603346 73.89199304 54800

’2005JF46’ 2.69519803 0.5352167 35.98800889 80.54245077 197.3873272 276.4314954 54800

’2005JF108’ 1.947648192 0.792870879 34.103474 69.22294564 23.91686414 146.9862019 54800

’2005JJ91’ 2.793635518 0.596803333 24.4377053 67.04427706 206.1177068 265.2892598 54800

’2005JN3’ 2.151971928 0.506323264 9.183457388 205.9941046 49.01832004 31.83552834 54800

’2005JR5’ 1.159540136 0.154671199 31.10020596 49.35437957 246.5515116 255.036665 54800

’2005JU1’ 2.340825669 0.684160966 6.077911928 35.63869808 266.5666157 344.1580506 54800

’2005JU108’ 2.124794149 0.461690997 6.532164901 188.1060625 106.0659666 34.41634888 54800

’2005JV1’ 1.912023366 0.465562998 3.431957631 217.0843286 356.2663226 130.1617925 54800

’2005KD7’ 1.166932371 0.555340185 40.05359991 240.1289082 137.4960595 214.7009721 54800

’2005KR’ 1.138903118 0.3059954 21.63033323 63.40406441 320.7370107 203.9093205 54800

’2005LP40’ 1.963897552 0.546965095 23.60795759 148.7077386 186.5449849 71.33245044 54800

’2005LU3’ 1.057035107 0.308351884 5.580244656 80.77648888 71.77897997 141.3401706 54800

’2005LV3’ 2.208876216 0.438695 7.306736315 250.8820341 13.51259201 22.85823397 54800

’2005LY19’ 1.60182658 0.240114978 30.00412613 338.4803139 120.1811245 62.4554587 54800

’2005MC’ 2.616759751 0.593072635 27.28066142 287.4314494 125.0123628 281.0438205 54800

’2005MG5’ 2.145673724 0.458244941 6.714133752 261.2329581 46.28810165 20.13264938 54800

’2005ML13’ 1.148007716 0.246261617 6.83641982 140.7869716 220.6075759 222.9795422 54800

’2005MO13’ 0.863515305 0.410979372 6.317590806 176.7269629 250.1256549 327.7539206 54800

’2005MP13’ 2.150540491 0.451480874 7.315943087 114.8908844 182.3499246 24.96558617 54800

’2005MW9’ 3.584529497 0.887052439 55.30155234 291.8080986 241.5107269 192.1699419 54800

’2005NE21’ 0.789296649 0.49638216 10.63894348 289.8269391 194.6332905 96.23331753 54800

’2005NG’ 1.783030526 0.505731783 8.457820868 276.2099525 305.9093096 174.2659638 54800

’2005NG56’ 2.80387981 0.649025161 16.72676459 114.5276737 150.3726466 263.7063726 54800

’2005NJ63’ 0.86927114 0.422569141 26.589658 120.8931073 1.695411366 230.2975036 54800

’2005NW44’ 0.779312426 0.483396222 6.056461599 114.5572299 0.648752381 155.2946321 54800

’2005NX44’ 2.215227452 0.905855299 37.23150694 309.6793979 214.5351565 29.36157725 54800

’2005NX55’ 1.52294619 0.587566081 26.17147547 106.3862611 277.2834499 255.9199489 54800

’2005NZ6’ 1.833509482 0.864613757 8.504513139 39.62926132 48.09154086 96.32667797 54800

’2005OF3’ 2.383591248 0.588189101 3.282271387 174.2986194 94.66032303 335.0071349 54800

’2005OJ3’ 2.708964562 0.537753487 4.441970728 239.0331571 155.0169999 238.6926721 54800

’2005OU2’ 1.234831917 0.373662915 47.77706582 127.388817 310.1642771 78.37373265 54800

’2005OW’ 2.666087554 0.601567804 1.639149244 271.7814339 62.24531914 270.4426422 54800

’2005PO’ 1.252199533 0.373094784 12.51816956 300.615136 249.3957568 227.0472696 54800

’2005PY16’ 1.975868043 0.524587696 6.4153256 159.426775 193.3781723 68.91350356 54800

’2005QB5’ 1.122565486 0.252011049 13.67908686 150.0279169 93.62235169 329.2839688 54800

’2005QQ30’ 1.754820646 0.5451692 11.2290824 67.95441817 173.530536 175.0276089 54800

’2005QR87’ 2.135946823 0.426488807 8.616190731 354.1391461 345.9311613 16.99023472 54800

196

’2005QX151’ 2.296878012 0.472824305 7.974924276 359.973229 36.28826112 318.827027 54800

’2005RC’ 2.150401917 0.752939481 16.33545067 192.2432697 40.31751917 35.30076573 54800

’2005RD34’ 1.326417314 0.264614807 19.919738 175.6026883 102.0032352 91.88039095 54800

’2005RN33’ 1.733566606 0.256527107 7.190185311 100.7562033 300.0586891 124.4497007 54800

’2005RR6’ 2.969336487 0.697897249 6.966466283 28.6673223 58.62914914 220.9977284 54800

’2005SC’ 2.271382704 0.663522436 6.613947664 281.1961132 156.5071924 319.37691 54800

’2005SG26’ 2.476597881 0.592412451 5.904627846 184.8982201 207.8710415 287.4353419 54800

’2005SH19’ 2.269393635 0.857968653 47.64097505 18.59280419 158.2046019 282.0599955 54800

’2005SN25’ 1.229902517 0.270441186 13.00958914 168.3839696 45.06086921 250.7635055 54800

’2005SO1’ 2.168532963 0.577016081 5.234725911 358.9656636 315.4877058 9.978147514 54800

’2005SP1’ 2.37580827 0.668293865 5.983466581 180.1230404 109.7287768 326.0708697 54800

’2005SR1’ 2.221846929 0.497465549 3.24188638 147.8565955 135.0513047 20.34619897 54800

’2005SS4’ 1.460089538 0.751245502 14.59314075 28.73142171 192.1607528 343.652486 54800

’2005SV4’ 2.395369798 0.596114731 7.96702675 174.5814913 140.0906096 318.9388223 54800

’2005SX4’ 2.727251144 0.574986138 3.536349355 171.1946329 250.1186505 242.4177625 54800

’2005SY70’ 2.28007754 0.53912002 1.438007742 19.06113315 358.5709861 328.7935946 54800

’2005TC’ 3.726920038 0.721586682 14.9797336 9.027963497 322.0780145 162.6819173 54800

’2005TD49’ 2.686448275 0.622637926 0.09325682 196.5002723 191.7015092 254.9613528 54800

’2005TE’ 1.755282837 0.579457712 6.514189926 13.04512496 270.6185665 155.7445431 54800

’2005TF45’ 1.156047688 0.073985016 6.806169374 197.196284 37.29282955 329.3744275 54800

’2005TF49’ 1.041935363 0.025438959 24.54991821 25.76238079 302.3578537 48.65725156 54800

’2005TM’ 0.84133278 0.416435895 5.202441075 8.517201496 151.9661246 272.9242158 54800

’2005TN’ 1.765844493 0.301106054 16.85119175 13.36395319 313.2072012 147.2250543 54800

’2005TP’ 2.280207672 0.587145899 7.868824698 86.46845479 353.679905 312.0743898 54800

’2005TR15’ 2.116789907 0.432136353 3.918100052 214.2682435 59.08889651 68.01095846 54800

’2005TU45’ 1.9742637 0.495648561 28.54507146 120.2630466 76.89448754 82.42524377 54800

’2005UB’ 1.895572788 0.738643568 27.72199835 272.1626121 3.087655243 88.19781227 54800

’2005UF’ 1.674991008 0.515419137 7.282976177 209.9719735 244.3179185 135.0175388 54800

’2005UF1’ 2.185232075 0.431509762 13.5785393 49.57884008 1.259435249 337.7771025 54800

’2005UH’ 1.626011025 0.380992261 6.32436937 36.48635769 307.5194684 200.6871605 54800

’2005UH6’ 1.000664063 0.632304979 2.648426389 19.20915123 200.2531526 106.7285829 54800

’2005UL1’ 1.367480019 0.230806685 18.38268913 35.74025997 37.81188771 313.4397717 54800

’2005UN157’ 2.546242465 0.855333336 44.83986287 21.79819397 209.9906244 312.6011879 54800

’2005UP64’ 2.689310513 0.579281214 23.69818063 202.7061752 280.4290885 220.1377308 54800

’2005UQ’ 2.244178516 0.547039179 8.709943801 25.59291824 336.8489891 339.7038352 54800

’2005UT64’ 1.821332548 0.522813089 10.48907144 161.7162158 327.136411 57.46585681 54800

’2005UU6’ 2.478509621 0.501759931 16.82881407 212.6972318 190.0797556 282.9166675 54800

’2005UW5’ 1.397354179 0.395133406 2.940546106 35.20344515 63.0514972 284.8940489 54800

’2005UY5’ 2.227320001 0.416993958 7.136187464 56.66409864 261.8681709 27.59243716 54800

’2005VB7’ 1.801915506 0.347563842 32.58234924 241.5194104 212.2904871 69.23831557 54800

’2005VE’ 1.063672325 0.275200614 22.41659306 223.4278133 31.69315547 63.44871235 54800

’2005VJ1’ 2.639034136 0.526602096 11.27494088 330.9907569 76.84161041 253.3955548 54800

’2005VO’ 2.438792896 0.671165136 0.48224813 204.2987972 254.5240958 277.8506118 54800

’2005VR7’ 1.08285778 0.287173463 25.24850524 254.9224722 101.0288498 309.8608468 54800

’2005VT2’ 2.324369675 0.565013896 6.14329564 200.5126122 155.0358766 322.3445378 54800

’2005VY1’ 1.673342099 0.410943236 6.607822777 45.08614926 18.15757882 142.109382 54800

’2005WE55’ 1.742270981 0.397835276 23.53454329 63.30895029 87.31290763 67.84522448 54800

’2005WF4’ 1.509701864 0.232912883 15.96061911 58.41974335 21.57292514 211.5249833 54800

’2005WG4’ 2.437487616 0.601910305 10.34520886 63.65499322 309.2688574 296.2455486 54800

’2005WK4’ 1.01165768 0.237172209 9.832971868 138.3079943 74.34563918 218.5373502 54800

’2005WM3’ 2.671936097 0.621299073 1.230880521 240.4472043 190.0938311 247.774205 54800

’2005WO3’ 1.573600146 0.354902896 22.95368963 64.20302095 312.4808455 212.1926856 54800

’2005WR2’ 1.531501317 0.546277729 7.858207759 282.475663 49.43230205 248.5414802 54800

197

’2005WR3’ 1.297014792 0.294100249 34.24815347 65.96500459 265.7018104 74.67148786 54800

’2005WS3’ 0.671710111 0.575098558 23.02970098 69.43286353 176.050417 1.572083636 54800

’2005XA’ 2.554217603 0.656231272 5.499706456 69.51000457 45.40757104 254.9773294 54800

’2005XC1’ 2.519593249 0.589037749 12.9702906 79.18793436 349.8986404 270.3323416 54800

’2005XL80’ 1.726097361 0.487530668 10.89334507 53.45981227 143.4534545 63.90394874 54800

’2005XM4’ 1.303779973 0.06414282 34.14484148 81.91410849 345.2140955 358.0872983 54800

’2005XN’ 1.7558843 0.417028719 21.13818041 71.87134793 336.047859 111.9026556 54800

’2005XN27’ 2.405402125 0.633458558 0.295596616 215.5373553 169.4889819 297.6203872 54800

’2005XP66’ 2.804118866 0.580182935 2.904008097 215.881942 273.183402 214.2576729 54800

’2005XW77’ 1.615358615 0.355587986 16.44089626 268.8342719 99.99230186 200.5571459 54800

’2005XY4’ 1.056246143 0.598528615 1.907278501 163.1541786 143.3156032 324.1101538 54800

’2005YC’ 3.233825465 0.612156674 24.21097433 296.5309478 123.4983597 188.7083925 54800

’2005YK’ 1.061114662 0.307674427 5.621922941 269.6812915 80.38301272 312.7830135 54800

’2005YN128’ 1.66153217 0.442624114 2.578997109 284.9098802 117.7381248 150.6720463 54800

’2005YP55’ 2.282844984 0.43685745 6.934734066 105.344423 267.5274349 343.7534299 54800

’2005YP180’ 1.37297091 0.617083183 4.112925807 289.1909172 92.15675594 321.3376044 54800

’2005YT55’ 2.251623991 0.460222617 2.300131436 141.397384 11.63415939 294.0471121 54800

’2005YT128’ 2.614667925 0.571442394 27.23314058 294.1404287 115.2622929 262.2347172 54800

’2005YU8’ 2.012120997 0.542691717 4.031543719 279.2588839 237.3328056 352.2980587 54800

’2005YY36’ 1.893321836 0.39558266 4.614268842 275.2987903 213.9906796 37.94148138 54800

’2006AC3’ 2.337417333 0.567849547 3.059553277 108.5341082 323.1884935 299.7018283 54800

’2006AD’ 1.048341233 0.489887754 54.98707887 120.4090217 87.3052664 166.4766625 54800

’2006AH4’ 1.917360219 0.470667966 0.663858332 279.1960296 208.8028407 25.93168508 54800

’2006AL4’ 2.491428298 0.585285015 2.761403374 103.1664279 27.97436534 259.9521996 54800

’2006AN’ 1.093475388 0.219971207 7.40400593 277.7204825 273.4371125 130.447428 54800

’2006AO4’ 2.629712858 0.582417898 24.40164703 318.6284686 50.31731064 315.2742379 54800

’2006AP3’ 1.722149207 0.373532502 10.00705421 289.8035012 172.2430432 103.5437324 54800

’2006AT2’ 2.709321798 0.598210331 21.15584761 144.1663721 39.19241375 204.9670041 54800

’2006AU3’ 2.266766939 0.565231969 1.416723181 114.7072183 0.051167672 303.2098687 54800

’2006AX’ 1.290200226 0.141918408 11.68189996 280.5765243 232.7595466 316.8685431 54800

’2006BB9’ 2.692871886 0.666886172 6.744058464 301.5732089 133.2615101 240.8347628 54800

’2006BC8’ 1.227503583 0.431873768 6.901676483 303.4039899 91.10816964 76.42542756 54800

’2006BE55’ 1.196243223 0.424688099 2.423703331 125.744764 125.8644007 354.6203721 54800

’2006BG’ 1.682327223 0.732371163 4.813774902 281.1111813 341.0293493 70.44594499 54800

’2006BO7’ 1.435195297 0.403149677 0.342534742 295.2219008 247.508062 211.3004048 54800

’2006BP147’ 1.287136729 0.240379367 5.596261112 310.7831892 123.1535268 14.02578024 54800

’2006BT7’ 1.521988193 0.63309142 16.14750798 298.6737779 342.4252015 64.70698748 54800

’2006BX147’ 0.82439941 0.67311291 9.885953 143.270844 202.830405 358.134321 54800

’2006BY7’ 1.873876851 0.455637228 3.178048423 302.7456652 162.3374837 46.43146401 54800

’2006BY8’ 2.485913623 0.673220983 2.688478299 300.7713951 122.4230683 272.4290744 54800

’2006BZ147’ 1.023388406 0.098644885 1.408921578 139.8459247 94.70137815 171.0524632 54800

’2006CL’ 1.662574422 0.412952402 8.147057197 312.9841207 151.6742138 125.7784032 54800

’2006CN10’ 2.800263864 0.607456386 1.236877858 229.4848284 312.2705296 207.3909099 54800

’2006CT10’ 2.89869761 0.660174283 12.93769569 111.483196 30.01049685 204.9975133 54800

’2006CU10’ 1.475186212 0.447464826 49.23682776 146.3228101 130.6421567 118.3802782 54800

’2006CV9’ 2.729665528 0.527295725 19.5694015 116.5839367 32.98020978 224.8154102 54800

’2006CW’ 2.227632201 0.492111282 6.542805332 144.8803116 41.31720155 289.7837422 54800

’2006CX’ 1.714030766 0.296109848 28.9537403 354.8672333 160.7904756 83.89131446 54800

’2006CX10’ 2.554580446 0.517606176 27.33369346 32.42417221 188.9746925 230.6016253 54800

’2006DM’ 1.355156736 0.212117841 7.074477068 333.9955518 177.6941907 272.7521665 54800

’2006DN’ 1.380099766 0.275807843 0.266066675 96.33940368 101.420943 229.9281648 54800

’2006DP11’ 1.859926238 0.697830657 8.544994492 21.51091222 31.00999776 58.50583151 54800

’2006DQ62’ 2.029453024 0.682547645 5.767906 217.9455648 6.821389718 328.2065619 54800

198

’2006DS62’ 2.263084132 0.569097301 1.884239348 153.4418114 38.2297902 283.8910452 54800

’2006DT14’ 1.91101633 0.566673292 8.655118964 78.29281604 178.2140521 348.2784729 54800

’2006DT63’ 2.384313175 0.47187039 4.715187748 335.8896154 188.9842714 269.1509563 54800

’2006EA’ 3.168080808 0.629528678 24.19797596 1.444167892 149.9182748 174.8547449 54800

’2006EC’ 1.137563865 0.217519576 7.578164874 347.6112412 245.5227792 46.0786724 54800

’2006EF1’ 1.262749806 0.342219233 13.60358649 328.2371265 296.4836933 272.7800841 54800

’2006FJ’ 1.179261588 0.287534556 27.71582821 187.7037103 229.1382087 142.9564368 54800

’2006FJ9’ 1.748945697 0.345343684 4.122382242 166.5425144 101.4516739 8.482544905 54800

’2006FX’ 1.49539657 0.438423382 24.62157795 181.2627082 299.3892194 196.0912982 54800

’2006FY35’ 1.812872436 0.359468589 21.24982775 26.46303695 207.2488348 12.65360977 54800

’2006GA’ 2.457058622 0.616458575 18.01422618 188.2869267 304.8475656 260.1604912 54800

’2006GB’ 0.958987887 0.179390487 10.06147021 183.8515764 242.8419633 40.78659446 54800

’2006GC1’ 1.704841953 0.816347037 5.983563097 196.4135701 232.5854355 98.9791255 54800

’2006GQ2’ 1.29063607 0.465741927 25.84115206 13.96936186 64.48934005 344.898337 54800

’2006GT3’ 1.72144492 0.36071067 8.669528284 11.06671688 223.6326253 41.92682526 54800

’2006GU’ 2.703409759 0.581007982 17.56169338 149.4575493 145.7843033 174.9080617 54800

’2006HA6’ 3.250328652 0.633724837 22.70759044 17.00386421 157.0665956 167.7402291 54800

’2006HF6’ 1.406264446 0.549845165 6.583676343 29.53651697 86.38428625 237.1595173 54800

’2006HH56’ 1.364092427 0.324370407 23.83620198 40.6155216 238.434451 193.5144063 54800

’2006HR29’ 0.985193843 0.263331202 9.545781796 232.7674902 212.5625604 332.4728987 54800

’2006HS30’ 2.360474913 0.57194705 2.301468461 208.3728535 20.6363993 255.0100974 54800

’2006HT30’ 2.568988714 0.616587993 1.641125995 73.64236119 224.096325 202.4452931 54800

’2006HU30’ 1.454915943 0.41996227 24.00310831 44.73445043 274.1907349 109.5397722 54800

’2006HW5’ 2.394094884 0.568934408 6.017576062 26.7553833 176.5321261 254.9589143 54800

’2006HW57’ 2.144668488 0.520561935 7.152652351 251.2355473 33.55593103 274.1878471 54800

’2006HY50’ 2.585270774 0.628344342 25.68377607 44.67871109 77.67636455 243.5551757 54800

’2006HY51’ 2.602038462 0.969050864 30.5253584 42.428821 340.4874386 206.0783468 54800

’2006HZ51’ 1.897757049 0.449535744 12.41161842 84.35326432 193.2254394 320.2359229 54800

’2006JE42’ 2.639770527 0.591398473 5.372850581 350.3448158 263.2181863 210.9013032 54800

’2006JF’ 1.084610255 0.658040061 42.60233121 216.2917796 211.0327535 188.8182175 54800

’2006JT’ 2.400537184 0.485828311 36.46394076 21.05480395 161.9391334 255.0686642 54800

’2006JX25’ 2.151341961 0.432433953 3.077716968 44.31258737 262.2376495 254.7085181 54800

’2006KA’ 1.63338032 0.561561436 31.03019321 236.1585644 244.5457683 116.3529761 54800

’2006KC40’ 1.667974025 0.529286537 8.815561872 78.07918463 260.2255232 26.1286778 54800

’2006KF89’ 1.87010875 0.309135169 38.17973405 246.3191416 72.58119584 313.9806035 54800

’2006KL89’ 2.74048957 0.547661181 13.7281233 84.32585932 155.1188647 203.723752 54800

’2006KQ1’ 1.244262686 0.175419545 9.604364894 88.72710239 18.1718882 50.01946703 54800

’2006KS38’ 1.431453318 0.456231417 28.71681862 63.47735164 101.1119986 201.5019783 54800

’2006KT1’ 2.305919342 0.474504456 9.266984338 138.7576417 188.8540808 210.194579 54800

’2006KV89’ 1.150231097 0.272803648 3.554754405 71.81409695 87.70068611 64.37564785 54800

’2006KY67’ 2.07627429 0.535747568 3.025246983 117.2754488 173.854859 289.7502976 54800

’2006KZ39’ 0.609413238 0.541159457 9.928110188 41.48167136 354.3277802 296.3122053 54800

’2006KZ112’ 2.524171205 0.886899429 37.76601985 166.2672409 358.143727 239.3416911 54800

’2006LC’ 1.48141477 0.357404116 11.73502411 249.7001979 52.25487934 113.3936662 54800

’2006LD’ 1.231253797 0.100830557 24.55878256 67.76727884 187.6835581 293.0014727 54800

’2006LH’ 1.084255942 0.315580823 7.850170754 95.2636774 264.6333 4.356061282 54800

’2006MA14’ 2.119549271 0.492229889 7.424559935 311.6921962 330.5821286 281.7563939 54800

’2006MB’ 1.11369185 0.082956024 14.42846152 257.6770271 287.0397476 101.257835 54800

’2006MH10’ 1.245982416 0.15580503 13.34576666 87.95384344 253.6442866 214.0744523 54800

’2006MX13’ 2.174016221 0.465970866 5.735762267 8.383306537 318.635341 255.2013582 54800

’2006NL’ 0.847767992 0.575896332 20.08202853 115.2657005 29.32921267 129.8814966 54800

’2006NM’ 2.784584839 0.615385299 14.20152343 292.6695372 29.98806346 175.3310008 54800

’2006OC5’ 2.399910822 0.651793585 4.747083364 149.2591683 245.6744352 208.5467704 54800

199

’2006OD5’ 2.668175099 0.545870332 10.38056615 143.8690114 223.6492328 179.3497276 54800

’2006OD7’ 1.334852457 0.166253014 30.33365774 127.7107541 197.2587982 171.0510937 54800

’2006OE7’ 1.547850412 0.780156336 10.414387 291.7289905 150.5767201 51.31934783 54800

’2006OF5’ 2.75302244 0.537273288 10.16290175 137.4294015 194.9203083 182.2643647 54800

’2006OG15’ 2.545107798 0.626722666 17.15763354 119.1792864 264.065678 190.3974685 54800

’2006OH15’ 1.511486498 0.294556581 37.004071 122.9662361 76.85190146 166.0992536 54800

’2006OS5’ 2.864328901 0.591097949 26.46025408 293.2239492 58.29680961 163.6026765 54800

’2006OS9’ 2.746933613 0.902186238 21.14856894 127.5038679 35.90244216 195.5157254 54800

’2006OY4’ 2.363811248 0.539122183 2.94679346 84.47106884 231.5486826 229.4075979 54800

’2006OZ’ 2.201750318 0.466287564 5.010680316 40.53336435 318.6869872 239.9893936 54800

’2006OZ4’ 1.022108497 0.432487916 17.47928204 278.5750642 141.5198452 25.42605409 54800

’2006PA1’ 2.033904737 0.550238105 2.433140204 322.5536789 85.51849869 253.5613957 54800

’2006QB31’ 1.176944608 0.611461579 24.72030591 341.0745644 228.4237697 327.8922054 54800

’2006QE89’ 1.954172617 0.565149956 20.97504854 319.7848729 75.76779342 281.3993566 54800

’2006QJ65’ 2.646226332 0.684395276 5.090423456 153.0460956 266.5436191 173.0405718 54800

’2006QK33’ 2.548107346 0.587534083 14.66776516 150.6658019 192.912184 198.3644702 54800

’2006QM33’ 1.800327901 0.310015208 40.27910837 154.9073108 174.0600729 340.0551434 54800

’2006QQ56’ 0.985454897 0.045719555 2.79597911 161.2329568 331.3901577 312.660504 54800

’2006QS23’ 1.192665382 0.502454647 19.96872079 154.885208 303.6606141 206.3786001 54800

’2006QS89’ 1.778444711 0.36568792 16.60062946 159.2692288 229.9543973 318.3755399 54800

’2006QU89’ 1.530353277 0.274382296 14.78588787 162.2747018 79.24227322 133.523375 54800

’2006QV89’ 1.19172699 0.224314088 1.069767667 166.1204697 236.63764 219.7541017 54800

’2006QW89’ 2.618395645 0.566354708 4.87333258 125.5234857 136.341494 218.3862233 54800

’2006QX5’ 2.122376985 0.453968931 5.988326424 326.2325874 6.394761856 264.0211637 54800

’2006QY110’ 1.925256332 0.572953678 6.407027143 222.7565135 221.4366656 280.9197321 54800

’2006RA55’ 2.431495737 0.50100709 1.808537372 22.17435492 60.58185505 182.7608637 54800

’2006RG7’ 1.885015127 0.350225363 22.02277574 181.0574194 191.9423221 292.4012748 54800

’2006RJ1’ 0.950810788 0.300657194 1.414570232 93.49833354 110.2458011 267.3990876 54800

’2006RJ7’ 1.832498734 0.580594787 1.873605041 176.8364082 251.3739061 300.6839843 54800

’2006RO36’ 0.905972124 0.231075556 23.85769751 271.0041797 261.1156019 338.6253939 54800

’2006SD6’ 1.515749323 0.301653003 35.74789906 169.9912062 264.8969494 11.36263027 54800

’2006SD25’ 1.915715011 0.468845746 1.453769835 296.9254624 37.08558423 305.2336084 54800

’2006SK134’ 1.879517511 0.536177279 34.69133014 185.3145102 74.34114234 337.0082471 54800

’2006SL198’ 1.799812721 0.373750021 16.5542786 173.3041303 213.014556 306.9728854 54800

’2006SM198’ 2.367704922 0.533843124 11.0669621 359.336588 345.0949172 218.4820499 54800

’2006SO19’ 1.242384469 0.272029429 14.24310742 98.37915376 169.6887241 267.0836807 54800

’2006SP198’ 2.933124615 0.573943497 6.928383029 192.6820155 226.4124523 143.4198224 54800

’2006SU49’ 1.412738826 0.312275381 2.519757399 303.2219475 198.8596397 348.8703444 54800

’2006SV5’ 1.445230795 0.293150446 4.827104388 182.2871073 208.1515306 75.78613836 54800

’2006SZ217’ 1.67309491 0.285374739 29.21485431 241.4242597 162.9514037 14.13087583 54800

’2006TB’ 1.562035425 0.324554904 27.56475426 169.3625709 180.8489362 45.17725137 54800

’2006TB7’ 1.251341394 0.199266999 21.25521321 185.1652691 154.0342193 215.156766 54800

’2006TC1’ 1.719962056 0.375658575 4.498528928 326.1532362 160.7609636 275.0150206 54800

’2006TC8’ 2.152727161 0.761186035 31.5564107 204.4891945 67.29337152 263.3238534 54800

’2006TF’ 2.327265901 0.561118877 3.493723879 187.8427616 182.3946062 219.2053324 54800

’2006TS7’ 0.946672026 0.57988264 5.465037432 225.4444588 299.7325867 25.90696261 54800

’2006UA17’ 1.371947495 0.28663932 21.90154442 207.8048078 116.6884264 149.6134212 54800

’2006UB17’ 1.140682637 0.103813783 1.991072282 213.9863772 135.1303699 296.3256328 54800

’2006UE185’ 2.29489218 0.490621877 1.047879212 210.6338387 183.7175542 216.7125491 54800

’2006UF’ 2.455061916 0.529630213 6.946289963 207.6133179 203.6197174 191.7078638 54800

’2006UJ’ 2.224314153 0.492493829 5.345156527 203.4168095 164.5829059 235.5588305 54800

’2006UJ185’ 1.692325482 0.57930632 0.865046875 35.04169208 78.75841243 319.3422865 54800

’2006UK217’ 1.489958762 0.668531601 41.02398703 217.3172118 311.4258937 10.73747803 54800

200

’2006UP217’ 1.203192124 0.489614959 1.519455995 206.855916 82.92309327 258.1325178 54800

’2006UQ216’ 1.103772825 0.162519994 0.472588458 217.9150647 247.3899949 235.8873436 54800

’2006UR216’ 1.678147281 0.533103261 14.25633236 21.71427557 133.9675277 313.3215898 54800

’2006UZ215’ 0.89009066 0.206964159 14.27324061 35.22976853 222.1361309 296.623409 54800

’2006VB’ 1.729223865 0.424762905 8.692411042 36.99291243 325.0408524 343.4127161 54800

’2006VB2’ 1.791795877 0.78770041 15.82309007 4.428394512 171.4476719 284.3825001 54800

’2006VB3’ 2.836130403 0.547258374 11.02211015 46.47506651 336.5443679 160.7832907 54800

’2006VB14’ 0.766821681 0.421307727 31.02541492 258.7717793 346.4470722 203.1290423 54800

’2006VB45’ 1.222441519 0.164707863 12.48099262 234.5428409 171.1840133 189.0013131 54800

’2006VD2’ 2.577938062 0.599865646 9.022388233 121.1397404 241.794985 187.2560684 54800

’2006VG13’ 0.817939446 0.303345126 5.854231573 96.67287587 115.1605395 122.3568532 54800

’2006VP13’ 1.177770873 0.142644229 11.07283187 231.010284 234.5349395 174.8591478 54800

’2006VT2’ 1.262674247 0.723171739 31.78993998 59.51511853 152.5547336 72.53237287 54800

’2006VU2’ 2.316964461 0.548663644 2.173569901 226.823137 172.4391752 211.3510049 54800

’2006VV2’ 2.389881623 0.603714609 23.65725163 9.935563893 144.9670781 169.6907599 54800

’2006VW2’ 1.235960556 0.294490276 10.04497069 229.8913284 299.5668283 89.3461397 54800

’2006VY2’ 0.892462204 0.377137019 14.56326938 231.2981902 327.0146165 41.57254825 54800

’2006WA30’ 1.628852375 0.422160977 10.06676053 241.4951203 226.860636 330.942649 54800

’2006WB’ 0.84961229 0.180549435 4.908516557 65.41067387 162.4968319 49.31903802 54800

’2006WB30’ 1.643436212 0.360741683 3.63398328 70.57043181 359.9510218 340.8900983 54800

’2006WD129’ 1.881849475 0.500911092 6.02576927 56.80474233 319.4175121 295.0226574 54800

’2006WG130’ 2.399000021 0.598304328 11.26306765 64.05241626 325.3601308 202.0039475 54800

’2006WH130’ 1.304406277 0.180971955 17.04390405 66.98026285 18.55043745 110.3691598 54800

’2006WJ3’ 1.752400442 0.424104156 15.35503744 232.6456738 178.3817123 315.3102376 54800

’2006WN1’ 2.099443305 0.450705984 4.014308265 239.4308976 93.3387461 286.716832 54800

’2006WP127’ 2.531892571 0.767345938 6.079887514 178.3330709 22.93000819 142.8404874 54800

’2006WQ29’ 1.600832966 0.393570882 8.068607614 112.0762234 136.4592391 172.834271 54800

’2006WQ127’ 1.309169992 0.508540883 18.10619931 73.56098187 87.41163329 84.50998484 54800

’2006WR1’ 1.333117208 0.614106632 38.1624608 106.0672876 132.0439543 67.07909408 54800

’2006WR127’ 0.907119585 0.375986508 16.78751565 260.8583563 351.4176134 306.2651562 54800

’2006WT1’ 2.469661228 0.601241015 13.68580215 244.957998 170.5775564 186.7974544 54800

’2006WY3’ 2.423446739 0.647095196 2.74088052 9.335740258 323.4936429 212.7342954 54800

’2006WZ2’ 1.694544037 0.329974593 24.6586013 354.4543372 65.90764841 10.34215255 54800

’2006WZ3’ 1.746578014 0.577282882 3.804998815 176.3713114 0.134495289 271.3747804 54800

’2006XH1’ 2.362614477 0.454878816 6.319127687 279.0854331 183.4062494 189.1967815 54800

’2006XN4’ 2.603140042 0.607849962 6.65544728 260.386809 191.850022 166.5409523 54800

’2006XP4’ 0.872500426 0.213872489 0.537739623 296.7701806 343.2993675 307.2566054 54800

’2006XY’ 1.498001046 0.338512791 3.638484111 257.9691656 184.0974253 24.79984094 54800

’2006YA’ 1.737719194 0.424334581 15.44316903 92.23449892 28.01365623 292.9093092 54800

’2006YF13’ 0.918934057 0.403488502 10.53118451 205.358165 95.33333973 189.0496185 54800

’2006YN’ 1.477493664 0.224887705 15.27411126 106.3289503 307.7857475 56.01580078 54800

’2006YP44’ 2.542698266 0.626222183 1.985118004 88.23329803 333.0661766 177.2104423 54800

’2007AC12’ 2.775518896 0.548407195 24.05151827 51.55880208 2.675366186 145.8294473 54800

’2007AH12’ 2.044242667 0.452866091 10.45366284 126.6153821 0.604966896 227.8497152 54800

’2007AM’ 0.798648387 0.467224575 11.72110504 107.1797863 172.4933142 63.33833118 54800

’2007AS2’ 2.585833562 0.62394746 3.76034803 308.4445598 121.5087543 170.5663206 54800

’2007AV2’ 1.437535517 0.473701333 12.29728117 286.0276947 293.185354 342.2053031 54800

’2007BG49’ 1.843958728 0.320968895 7.8946103 332.947098 281.4162406 171.6280808 54800

’2007BJ’ 3.06727377 0.692339565 44.35250884 298.672498 134.1870175 131.569434 54800

’2007BT2’ 1.632399446 0.223957098 26.85446764 31.05304096 148.8763195 306.8551926 54800

’2007BT7’ 2.171285778 0.539748028 17.43045477 294.8923097 117.0216004 225.37321 54800

’2007CC27’ 1.684629529 0.491495929 2.117518171 324.1549499 125.1803482 313.5213163 54800

’2007CF19’ 2.985697707 0.630667215 18.1132383 321.509937 244.4344299 110.55095 54800

201

’2007CO5’ 1.677547276 0.308621232 47.94189511 138.5095459 327.9829686 316.177715 54800

’2007CO26’ 2.78409828 0.624799695 6.277248947 357.2570224 137.8473783 139.6078957 54800

’2007CP5’ 1.65371182 0.357843081 35.96811264 137.9427595 41.38987582 288.1789724 54800

’2007CR5’ 1.617959624 0.44472566 13.86482378 138.8789791 310.687426 334.6663997 54800

’2007DB83’ 1.750625393 0.300043554 10.90336853 55.3230499 162.1622124 240.9282545 54800

’2007DC’ 1.351274519 0.324137148 0.408091443 174.8606397 278.1484904 77.92822406 54800

’2007DD49’ 2.172503027 0.605843992 8.196535125 150.2908322 277.1541425 216.3446906 54800

’2007DH8’ 1.436981284 0.263427573 4.450618649 149.5664073 356.11921 12.97741998 54800

’2007DJ8’ 1.629340837 0.361828594 29.77796159 332.1452112 154.697351 318.3958964 54800

’2007DS7’ 1.180031036 0.399866599 8.448132357 148.5086811 270.7843811 185.3935489 54800

’2007DS84’ 1.866713661 0.445958685 8.908533624 30.69844086 172.5747001 230.8607066 54800

’2007DX40’ 1.533972157 0.536960414 0.448723587 329.7041592 273.9220554 304.612159 54800

’2007EF88’ 2.497306571 0.573760961 7.108208541 167.3874614 323.7484027 164.4829314 54800

’2007EH’ 2.165849076 0.657245791 1.39020461 352.7776428 246.0480873 181.6143399 54800

’2007EK’ 1.126257843 0.272302628 1.206217168 168.5849095 83.24921443 107.327271 54800

’2007EL26’ 1.271107811 0.115316897 13.71680818 344.3689348 229.422073 33.23144389 54800

’2007EQ’ 1.629086372 0.447898206 5.669301717 106.4866372 3.10329487 322.3499389 54800

’2007ES’ 1.579834767 0.601365175 35.54411322 334.4406722 19.68928734 49.86073397 54800

’2007EU’ 1.445506709 0.307104785 13.25786172 164.1383001 334.5572523 13.27868242 54800

’2007FD3’ 2.219685437 0.533924331 33.84385153 20.6918452 140.482573 189.9516024 54800

’2007FH1’ 1.728571222 0.386428102 22.77208332 0.75868594 228.6962811 243.3123878 54800

’2007FJ1’ 1.798568671 0.401971687 3.331615286 130.4200824 50.11110292 252.7425224 54800

’2007FO3’ 1.270609216 0.297497788 6.293306091 356.765837 262.1040832 18.48273522 54800

’2007FS3’ 1.585608948 0.41819402 3.22175153 179.6049051 313.3796013 324.9713811 54800

’2007FY20’ 1.458614853 0.386868106 5.375789335 11.98234094 230.2721879 317.5925649 54800

’2007GF’ 1.300663605 0.378640386 18.87737941 59.04640367 32.95127481 103.7412786 54800

’2007HB’ 2.10823246 0.397901307 23.27144669 67.46570449 103.7720264 207.3920208 54800

’2007HD70’ 2.115168544 0.473425121 5.658167766 161.4293641 82.0559141 180.097391 54800

’2007HG44’ 2.470037661 0.720023539 8.422351812 64.79827424 33.0438018 168.2632751 54800

’2007HH44’ 2.420829123 0.569983719 1.739142758 173.2712038 71.47909199 145.9548138 54800

’2007HL4’ 1.118522081 0.089709231 6.530351486 31.18720817 138.5392778 166.3018148 54800

’2007HW4’ 1.484073705 0.766565583 1.239332826 138.8862389 196.9122752 291.2493954 54800

’2007JB21’ 0.986667896 0.109277756 13.46197314 227.9939011 250.8464774 311.4221456 54800

’2007JD’ 2.83306509 0.812853997 12.26481964 228.808353 93.15656162 108.2930371 54800

’2007JF16’ 2.022564321 0.675637328 44.00760037 225.5099097 221.1754762 257.0549672 54800

’2007JW9’ 2.023731585 0.439925287 2.491717565 230.9542524 334.9259298 203.0443375 54800

’2007JX2’ 1.707546488 0.526955543 4.221370501 44.55430045 87.66212359 280.4330552 54800

’2007KE4’ 2.383196467 0.571578632 9.343543269 65.08426193 194.5849301 144.9423391 54800

’2007KF7’ 1.717676214 0.385962885 11.85326963 64.02500986 185.6334046 240.4377952 54800

’2007KV2’ 1.11632286 0.312769194 13.72167824 235.5601459 264.491845 169.8417237 54800

’2007LA’ 1.550825886 0.593680397 33.51841382 245.5724562 107.6731495 245.7646201 54800

’2007LE’ 1.83852635 0.51668429 29.48608655 73.90117497 119.9223219 231.4752101 54800

’2007LF’ 1.68283586 0.419812554 6.981243974 239.5526699 333.6119419 260.3951865 54800

’2007LQ19’ 2.609659781 0.62774943 17.05579483 110.9413406 207.5953158 121.027545 54800

’2007LS’ 2.694684706 0.682072835 6.36939053 201.0048722 168.5955558 79.01705424 54800

’2007LT’ 1.496856395 0.378920217 0.682602743 222.3363131 342.6334937 315.792791 54800

’2007LV’ 1.762718999 0.270774125 16.99820929 70.37621067 261.9513437 192.1169164 54800

’2007LW19’ 2.357875093 0.581992294 2.128998432 63.82209805 232.9659631 137.2842148 54800

’2007MJ13’ 1.448605608 0.383201631 10.80281238 267.9833425 58.23015959 272.1953867 54800

’2007ML13’ 1.297464646 0.08497482 18.01433942 135.5695882 139.2094147 343.4114004 54800

’2007ML24’ 0.75828218 0.358956827 33.43286044 281.8927526 201.4812849 275.3349915 54800

’2007MT20’ 1.845387724 0.612916086 16.60232098 226.5178821 148.4209891 177.0713842 54800

’2007NL1’ 1.239683799 0.249129648 18.63412425 117.1066059 266.8686858 302.3565448 54800

202

’2007NS4’ 1.874004889 0.597705586 5.80536938 11.28469956 47.18948194 146.2145341 54800

’2007OH3’ 1.947705317 0.460907624 8.306797112 296.4402716 3.677290323 179.8792303 54800

’2007OR9’ 1.625557887 0.262784492 11.81014183 138.4343068 125.5096303 258.6564139 54800

’2007OV’ 2.478797655 0.483788124 12.67453921 353.7042749 333.1930003 120.3363419 54800

’2007PA8’ 2.829249103 0.661501058 1.985441888 143.0410926 291.877141 57.33930216 54800

’2007PF6’ 1.298562939 0.416285266 25.60752297 316.4493405 251.1800857 16.45270586 54800

’2007PH25’ 2.536268493 0.815411473 53.24089606 150.3744608 331.8075507 92.66795391 54800

’2007PQ9’ 1.426439656 0.241156233 8.556541716 136.0339351 215.3455076 256.9668914 54800

’2007PR10’ 1.233086911 0.892680914 21.00051578 335.1761107 190.6476199 20.29633437 54800

’2007QA2’ 2.157363356 0.435339089 4.372302492 298.7374424 22.88685329 146.6999421 54800

’2007RA9’ 2.678571188 0.54086745 14.43919033 119.5786256 256.0950954 94.95609595 54800

’2007RE2’ 2.289211137 0.535613126 12.28393929 160.6054378 188.488376 127.1626275 54800

’2007RO1’ 2.262937585 0.605553152 8.513040703 339.6024245 306.886037 142.7531464 54800

’2007RP9’ 1.53800245 0.384458816 26.38059927 342.3336404 61.83938418 205.1173679 54800

’2007RQ12’ 1.792623721 0.473236926 1.239635988 84.50261666 222.2543964 196.2491465 54800

’2007RR12’ 2.007787126 0.730273375 7.072835537 336.1715634 132.0828708 130.6496792 54800

’2007RT9’ 1.65329669 0.566184535 20.14743079 164.0012353 24.97734786 321.2856317 54800

’2007RU19’ 1.715400417 0.405542153 2.833467612 353.1757545 340.5203551 201.2981242 54800

’2007RX8’ 1.138499401 0.211343191 9.398224463 348.4986059 281.9350661 58.74635598 54800

’2007RY9’ 1.269430917 0.152538359 28.50448247 169.3093744 192.9360481 296.3771154 54800

’2007RZ8’ 1.352420667 0.186302178 10.27161109 343.8222675 7.021833858 278.973814 54800

’2007SU1’ 2.40659784 0.590275692 2.476128697 355.0368648 30.16526621 109.0222633 54800

’2007SV11’ 1.734413072 0.493704836 32.23850476 292.2981879 23.63623413 193.3149946 54800

’2007TB14’ 2.493277444 0.637506951 5.976945829 200.7617795 124.4018539 114.3560479 54800

’2007TC14’ 2.096929392 0.808206199 4.644703779 224.2492114 269.1199149 118.2899593 54800

’2007TD71’ 1.286333518 0.279593393 49.75589917 49.61260458 220.7340433 349.3213899 54800

’2007TE66’ 1.05557762 0.204382795 10.24499946 195.7904661 355.1768915 220.516231 54800

’2007TG15’ 2.253705023 0.475169932 4.594521509 282.3283869 136.5514374 107.0657483 54800

’2007TG71’ 1.305012429 0.238403098 10.40170752 18.3452764 44.44703599 246.1310004 54800

’2007TH71’ 1.341208071 0.313057601 7.064043465 20.04760743 52.85548056 233.6718453 54800

’2007TK15’ 1.909119252 0.424901006 1.042620055 114.7126717 205.4171005 183.7230589 54800

’2007TL15’ 1.39283806 0.547741321 1.330676137 29.76274272 240.7952401 292.3247767 54800

’2007TS68’ 2.248072304 0.436821825 5.581205597 167.0427429 137.1395435 161.4249431 54800

’2007TX18’ 2.137378099 0.416174728 7.371593217 284.2906693 15.7513646 182.8151343 54800

’2007TX24’ 2.314328363 0.535643589 8.159611711 200.2837045 168.8023816 118.611723 54800

’2007TY18’ 2.154633992 0.409461268 8.048347993 6.239170699 301.5156778 173.7045273 54800

’2007TY24’ 2.506299304 0.579322629 4.293164905 194.2807837 180.7836589 103.9416347 54800

’2007UH’ 1.172567994 0.336185198 15.13137213 206.6954498 294.7868992 241.7299433 54800

’2007UJ’ 1.144769183 0.140323823 22.69212217 22.64883991 42.7652858 298.1103415 54800

’2007US’ 0.957493067 0.575268828 12.07794427 24.32911406 202.7610585 167.913763 54800

’2007US3’ 1.51270674 0.363556305 24.34064841 28.83542529 286.9322556 251.2224904 54800

’2007US6’ 2.220799022 0.447838752 12.42755595 225.7557974 224.9165802 97.84082538 54800

’2007US12’ 0.906035282 0.514565398 8.804662769 211.1968373 44.54922183 181.8649695 54800

’2007US51’ 2.192040946 0.632382445 1.472272772 39.36231325 297.9271399 132.4052108 54800

’2007US65’ 2.644177985 0.520638028 1.020722358 192.509018 123.5990021 121.0591939 54800

’2007VA3’ 2.449360189 0.610198687 2.891910092 222.1534771 216.5063018 93.01477238 54800

’2007VA188’ 2.973260871 0.63161949 20.24767148 38.55643537 333.0930587 77.50715384 54800

’2007VB138’ 0.77250904 0.430964363 6.022108481 42.22609962 161.4468168 72.00952061 54800

’2007VD3’ 0.97221917 0.150166153 13.12086093 53.85004856 179.7641877 206.8531362 54800

’2007VD8’ 2.297693614 0.594142074 3.155759105 43.5795438 318.6038973 119.3665615 54800

’2007VD184’ 1.942499802 0.503907555 1.232176362 239.5340031 204.2777996 127.7795517 54800

’2007VE138’ 1.357518105 0.418246649 19.34053503 50.33988065 73.52214323 206.0241494 54800

’2007VF191’ 1.912451478 0.410672179 11.0083166 67.21741755 318.5902666 153.3731325 54800

203

’2007VG’ 1.956930448 0.664892871 51.15978761 33.51652054 261.5823124 166.0169226 54800

’2007VG3’ 3.293698038 0.693953659 10.95047274 215.4101566 174.8559757 66.10232595 54800

’2007VH3’ 1.970690089 0.433199993 2.91909582 120.319282 345.133154 116.0572552 54800

’2007VH186’ 1.574055043 0.196993074 19.23984794 51.53258328 15.06271163 172.858764 54800

’2007VJ184’ 1.686002002 0.461233605 18.17286176 41.5581464 62.22266313 150.5343663 54800

’2007VL3’ 1.452297994 0.451823243 2.331225363 225.3658111 101.3748656 250.8540209 54800

’2007VL184’ 1.294427803 0.207324348 27.65478504 48.27215298 348.0861891 264.9149588 54800

’2007VL243’ 0.965286383 0.728625913 43.33757724 114.7944596 91.21986989 310.5471227 54800

’2007VM84’ 1.298159065 0.189768839 24.62916732 44.6509187 7.624259961 254.6391482 54800

’2007VN243’ 2.150489287 0.612513923 4.449511553 91.03317179 51.93331203 94.4052854 54800

’2007VO84’ 1.308348674 0.185911498 28.30774397 47.61108026 302.4613424 295.0192978 54800

’2007VQ4’ 2.635066551 0.517394437 26.53924779 59.58246647 99.27717772 62.23172915 54800

’2007VS6’ 1.23571105 0.44654899 7.954316793 220.3556309 83.31000859 326.8464717 54800

’2007VV6’ 1.415119416 0.279995062 3.804350502 235.8067446 149.8020425 237.5978676 54800

’2007VW137’ 2.231328744 0.737208011 5.957937034 300.0794274 244.6333652 74.22943057 54800

’2007VX6’ 2.267268359 0.614216671 41.11905192 233.8241786 119.8196712 126.1566287 54800

’2007VZ30’ 1.604647953 0.194819797 2.454626177 344.749558 99.12134029 161.1674235 54800

’2007WB’ 1.669554599 0.709624877 13.75725971 83.158484 203.6400547 220.3377708 54800

’2007WC5’ 0.973226773 0.210437117 8.537132306 236.8206652 66.24389089 116.9103448 54800

’2007WD5’ 2.464426669 0.597564294 2.423168216 68.40153064 309.7961721 104.3621911 54800

’2007WE55’ 1.910944073 0.572810581 11.51873398 304.0480155 205.6783868 113.0341646 54800

’2007WV3’ 1.667837041 0.452503524 12.65840321 261.4713026 107.6294309 200.544185 54800

’2007WX4’ 1.775220197 0.301982627 28.17260695 254.4791733 95.14656622 185.5574056 54800

’2007XA10’ 1.609388698 0.355474927 19.91468699 75.53736154 314.8942353 195.0003802 54800

’2007XA23’ 1.60586259 0.376497597 8.327720985 78.98656551 62.49575295 142.9201536 54800

’2007XD10’ 2.157271162 0.665587276 18.57820958 270.6024107 79.69382327 134.1907164 54800

’2007XF18’ 1.480387915 0.481510511 59.51821295 76.16757981 267.9644745 232.6979738 54800

’2007XH16’ 1.186989723 0.234809621 27.43074482 91.33350354 58.25716951 222.7624941 54800

’2007XJ16’ 2.256484479 0.556535836 6.297846018 309.5651962 32.09293876 147.7755113 54800

’2007XJ20’ 1.693188146 0.599508679 10.62436131 56.73360802 151.7083411 96.01372314 54800

’2007XO’ 1.563567116 0.719271454 14.69400674 69.76844839 113.2015737 156.8052418 54800

’2007YF’ 0.95360344 0.119659911 1.652385495 277.5514384 34.5252577 128.0214789 54800

’2007YH’ 2.153491941 0.618080029 29.4573937 273.576748 96.90727876 127.2861927 54800

’2007YM’ 2.578168909 0.61632854 0.984582859 59.42424484 11.51159182 85.72035646 54800

’2007YN1’ 2.690771685 0.718449697 3.90653181 84.7732121 294.4597396 87.05107356 54800

’2007YO56’ 1.280521229 0.357202381 15.61016928 287.7356273 333.3036087 101.072922 54800

’2007YQ56’ 1.140641469 0.287920736 26.4573077 276.0746386 273.0192912 201.5403444 54800

’2007YR56’ 2.01237996 0.515769179 10.32824699 97.60386523 336.1246553 122.443851 54800

’2007YT56’ 1.294592673 0.287662127 5.998999151 302.5658385 81.66273946 270.8455768 54800

’2008AD’ 1.706023464 0.679073101 6.920108178 224.075113 338.0503533 119.6078055 54800

’2008AE4’ 2.326470909 0.561831614 5.539920344 101.8767383 28.33473922 84.86721693 54800

’2008AF4’ 1.382540706 0.410694168 8.919727694 109.4292902 293.3278365 227.7729414 54800

’2008AG1’ 1.787412857 0.560500445 4.241805421 196.4035132 204.5063912 156.4966293 54800

’2008AJ33’ 3.28512867 0.655499596 11.09871134 98.42090335 308.7490331 61.71081487 54800

’2008AM33’ 1.862589801 0.411522381 1.515023104 307.9939495 222.2747188 105.5300833 54800

’2008AP33’ 1.338206272 0.481273034 8.246621839 122.5607835 257.3886517 243.7530714 54800

’2008AS28’ 2.428162893 0.731733951 19.90079699 86.51117382 248.1213475 106.7581036 54800

’2008BC’ 2.419258416 0.600116669 14.28144676 291.9567846 157.6929027 88.93921112 54800

’2008BC15’ 2.167138632 0.709670421 3.386974465 309.8093837 263.7515753 79.98286763 54800

’2008BO16’ 2.434054225 0.808143172 8.609630115 134.0049856 254.2734126 92.24990551 54800

’2008CA5’ 1.861567712 0.593167684 24.99156424 331.6794492 272.8771896 87.76233008 54800

’2008CA6’ 1.709632507 0.468691211 5.917158314 309.9967229 271.2842031 90.53151249 54800

’2008CC6’ 1.262448857 0.774127319 9.141745128 146.9312858 136.4296397 161.4387447 54800

204

’2008CC175’ 0.954383283 0.499978489 10.12622279 125.6337653 166.4679461 218.7321185 54800

’2008CD22’ 1.576142098 0.322310159 10.17650935 148.5552279 8.952620854 137.4356002 54800

’2008CE119’ 1.212180465 0.178256933 7.771383277 147.504193 49.59763509 177.0805723 54800

’2008CJ22’ 1.44310092 0.278650814 20.47256136 140.0391723 332.1646497 183.0007862 54800

’2008CL20’ 0.766442962 0.319530169 15.94225813 321.3409761 349.6496704 269.8885309 54800

’2008CL70’ 2.180239066 0.671548973 21.36392078 144.2473943 274.7044004 106.8216128 54800

’2008CM116’ 1.630429942 0.663318458 18.71329071 0.172408113 355.6948811 260.7525768 54800

’2008CN116’ 1.219558745 0.361131611 2.387944059 135.714906 87.72817959 170.551843 54800

’2008CP’ 1.12055759 0.077795839 13.5964099 140.0706529 17.08539146 229.8823413 54800

’2008CP23’ 2.207142823 0.455073813 3.774747701 136.9992522 82.602563 59.70315662 54800

’2008CY118’ 1.303997354 0.373375062 21.63378849 321.2767357 94.13868119 239.5876458 54800

’2008DJ’ 1.982405947 0.60370499 5.051221717 319.3066456 117.7893575 117.5443608 54800

’2008DL4’ 0.929354524 0.122755791 3.205813721 341.3399449 42.20456848 68.62845392 54800

’2008DV22’ 2.713075223 0.636633979 11.07695605 153.1227034 56.19611785 50.98729971 54800

’2008DW’ 1.988995589 0.360641541 6.735948702 161.4374133 10.0817202 92.68241408 54800

’2008DW22’ 1.750529948 0.382105884 0.835556902 105.7537595 75.09724143 108.1746296 54800

’2008EA32’ 0.61591521 0.304956607 28.26937499 100.9931243 181.8233198 51.06663468 54800

’2008EC69’ 2.752112397 0.61926715 24.80631804 93.3351654 178.1914203 38.05678141 54800

’2008EC85’ 3.157340942 0.736272931 55.70314347 169.0401581 272.038644 59.12102376 54800

’2008EE9’ 1.324995828 0.527769536 9.970949501 180.6006505 249.5882654 210.9307317 54800

’2008EF9’ 2.146480049 0.600217534 6.636222965 152.9283711 76.60798762 68.37316787 54800

’2008EF32’ 1.623214167 0.520218908 1.726550322 349.1454865 112.3355849 148.1246196 54800

’2008EL85’ 1.920373104 0.56248811 2.296535479 161.5404061 310.6354014 113.0547892 54800

’2008EM6’ 1.844304146 0.491563114 9.155610841 165.1731696 54.80821838 88.02183854 54800

’2008EM9’ 1.959678554 0.8514048 9.392273555 229.736674 181.690846 117.4217826 54800

’2008EN82’ 2.50361579 0.552412076 11.98040597 207.0304846 194.6129899 132.1972664 54800

’2008EO6’ 1.903418603 0.400862972 19.06933905 173.1270957 306.8250174 125.4282127 54800

’2008EP6’ 1.20950206 0.292916734 17.73124183 303.3394987 130.269862 253.1352727 54800

’2008EQ’ 1.7537226 0.458236668 2.723113437 168.7177571 35.52910529 101.4933384 54800

’2008EV5’ 0.960444724 0.083806458 7.426780642 93.60101526 236.7545841 89.46290793 54800

’2008EV68’ 1.460038719 0.284299898 3.262782337 191.3591881 288.7723483 175.0733055 54800

’2008EX5’ 1.36027403 0.391321101 3.38558436 16.38604904 66.01074142 209.4401083 54800

’2008EY68’ 0.745041283 0.759848542 19.7970037 175.5222829 198.9503221 143.3370246 54800

’2008FK7’ 1.887503241 0.393578323 1.432459064 346.9922877 251.4781623 74.95719336 54800

’2008FY6’ 1.813085867 0.387221797 25.53466904 10.22033535 106.5665519 131.589136 54800

’2008GF1’ 1.22945337 0.465365416 1.421379108 16.50070711 276.1965722 128.8166435 54800

’2008GM2’ 1.051831883 0.15721376 4.095999548 195.1238795 278.2255093 282.9633158 54800

’2008GP20’ 1.959648903 0.441892289 32.64737505 31.62551178 92.92788036 113.514723 54800

’2008GQ3’ 2.178555228 0.522881089 25.4505839 356.2047107 142.1170202 82.96430873 54800

’2008GV’ 2.730474849 0.609277329 30.10145421 15.62644055 177.6074306 52.57007602 54800

’2008GX’ 2.275052098 0.484815297 2.621233009 144.5625653 108.9226332 43.40416263 54800

’2008GX3’ 1.888970324 0.476855519 9.497803244 196.8108125 25.06955601 81.744013 54800

’2008GX21’ 1.907921515 0.415462365 9.526637466 27.05572949 166.6386476 89.00882141 54800

’2008HD3’ 1.131356074 0.335715873 52.00709133 222.1019834 223.7503708 284.7091168 54800

’2008HJ’ 1.631788311 0.406710292 0.927357253 47.49597957 204.0830783 88.76380074 54800

’2008HW1’ 2.583037399 0.960588751 10.61353221 129.2559207 248.8705341 39.37497078 54800

’2008JF’ 1.907092318 0.392831257 19.81819803 90.78388527 235.6017557 21.39246713 54800

’2008JO’ 1.50889457 0.5455277 5.372054435 276.9673696 194.6588317 144.3729777 54800

’2008JO14’ 2.002673272 0.796850581 4.975463805 117.1137419 349.5337476 91.78201042 54800

’2008JO20’ 3.284134815 0.610176261 6.787810989 130.2816018 36.28757146 32.28801106 54800

’2008JP’ 1.546614062 0.648483435 18.35809439 31.25270719 307.124833 60.44336351 54800

’2008JP24’ 1.248837104 0.277408114 1.153067124 41.45630896 125.2264597 181.2563597 54800

’2008JQ14’ 2.462552658 0.518163392 14.51085936 204.0133036 22.33698574 47.38435256 54800

205

’2008JR14’ 1.645779769 0.375179275 7.857145901 231.3294143 333.1884253 105.6773888 54800

’2008JZ7’ 2.656778936 0.649241227 24.23934583 219.0311563 69.65034637 29.61557778 54800

’2008KE6’ 1.685134895 0.519650812 3.424037983 113.7737455 224.1729099 56.59023024 54800

’2008KS’ 0.97453673 0.156802034 25.49168375 246.098733 152.7662558 47.86538376 54800

’2008LB’ 2.456142477 0.608779178 4.319576087 80.087429 211.7398439 37.87195859 54800

’2008LD’ 0.891852189 0.154631344 6.54205742 250.9212704 201.4273666 4.178129858 54800

’2008LG2’ 0.854372601 0.228939213 3.055430677 86.18259176 336.9937773 60.29840866 54800

’2008LQ16’ 1.707670581 0.736665562 7.258574338 142.1131278 17.74926191 97.05564443 54800

’2008LV16’ 2.086983331 0.62361238 4.685078136 237.3326752 120.9881851 33.67219627 54800

’2008MH1’ 2.694028329 0.582285308 7.981237481 304.3104772 13.62064057 20.48190844 54800

’2008MU1’ 1.896236359 0.435938082 40.77987472 296.372673 56.4992014 29.77442756 54800

’2008NA’ 0.961767346 0.302309265 9.920332314 104.8663316 52.84265354 245.9953794 54800

’2008NQ3’ 2.451424464 0.581835174 27.17575751 109.3887541 155.2974977 43.40269809 54800

’2008NX’ 1.319265811 0.206716225 0.598129452 258.2813091 25.98500327 96.39884206 54800

’2008ON8’ 1.646963816 0.354010358 5.156411331 130.822436 183.7072381 54.76278606 54800

’2008ON10’ 1.161686422 0.160525177 7.106839519 131.3041564 242.8682759 46.34103966 54800

’2008OO’ 2.105736668 0.700305384 5.491815214 306.3560281 253.3173048 65.19785863 54800

’2008OO1’ 2.425812417 0.617454752 9.33209886 304.3562482 314.1222452 42.44606769 54800

’2008OO8’ 2.050597463 0.506976261 6.356049898 302.0505472 344.6692482 47.47805704 54800

’2008OV2’ 2.380735925 0.574432552 15.29230942 286.4426198 307.6228254 55.41010854 54800

’2008PE1’ 2.168229197 0.507142918 4.453657115 300.8900725 7.189941316 38.08315642 54800

’2008PJ9’ 2.545671924 0.662160732 4.769646929 115.3562644 135.085798 40.61623577 54800

’2008PK3’ 1.891756743 0.598436582 17.08578248 122.8348343 108.9833931 66.88011984 54800

’2008PW4’ 1.161273593 0.272797003 2.701899557 117.7246629 294.7270868 26.06353319 54800

’2008QA1’ 2.223503875 0.514754392 26.4676107 336.7427451 28.22162425 19.68063757 54800

’2008QB’ 1.207174537 0.739614756 35.74936023 146.9994418 314.1526811 32.64790635 54800

’2008QC’ 2.273426345 0.519523976 11.11165667 17.07348434 301.4026477 32.2592682 54800

’2008QF’ 2.077135208 0.377915326 3.777087167 192.7259295 136.1343972 31.8889799 54800

’2008QU3’ 0.869059743 0.247920503 14.07940354 303.6591683 241.2041754 247.2544342 54800

’2008QZ’ 2.169007174 0.423625146 6.830914334 160.7240604 194.0229565 24.64717178 54800

’2008RG98’ 2.188982062 0.768671439 10.7355962 340.1386126 168.3883273 336.8237457 54800

’2008RH1’ 1.063860489 0.161935156 7.465780726 350.9817274 147.4113108 296.7169341 54800

’2008RJ1’ 2.166900858 0.471608655 16.33060013 191.9946059 54.16898834 86.63103317 54800

’2008RS24’ 2.090793267 0.613734131 17.14791858 160.1927202 264.2754397 5.625641495 54800

’2008RT24’ 1.814950243 0.418141127 6.917340468 161.9680331 212.7607361 21.92179813 54800

’2008RU’ 2.114250718 0.648648061 7.211176964 140.1773502 274.5346097 12.44048506 54800

’2008RV’ 2.270774581 0.562366268 2.277263661 119.9514955 192.3503175 31.91358742 54800

’2008RW24’ 1.750610905 0.500077787 2.160744609 14.92907675 38.70927706 12.05661767 54800

’2008RX24’ 2.287079736 0.440343863 2.029875575 7.417832466 340.1425524 24.08932191 54800

’2008SH82’ 2.441143392 0.590185458 4.562684748 269.1489748 157.2937743 358.6523047 54800

’2008SJ82’ 2.377310798 0.578398633 9.712594169 135.3564577 218.2021546 20.21713622 54800

’2008SO’ 1.33030599 0.233337606 7.136259744 191.1575901 71.88958917 119.3798452 54800

’2008SP’ 1.692011642 0.350857606 16.53190553 187.3191391 129.783278 49.10066106 54800

’2008SQ1’ 2.95895752 0.582359089 6.700271905 269.9742289 150.9795379 0.152669425 54800

’2008SR1’ 2.374612613 0.648869392 16.72626182 179.2520117 115.4428428 30.94503776 54800

’2008SR7’ 1.322124543 0.192405511 15.31285464 324.6174963 296.7278431 122.5123725 54800

’2008SS’ 0.92839502 0.479226679 21.12461063 5.100756142 134.9680183 338.9212676 54800

’2008SV11’ 2.614928492 0.721962445 8.294154202 15.68991031 102.8125262 341.6322364 54800

’2008SW7’ 1.612654178 0.350768434 17.46239112 178.6951451 186.8139377 29.88057519 54800

’2008SW11’ 1.134293879 0.408238088 7.432821845 28.92197811 206.877524 148.0939101 54800

’2008SW150’ 1.786097177 0.561793676 20.0070399 39.61961362 51.86544735 351.7077562 54800

’2008TB’ 2.473961851 0.60398086 27.38442773 188.0806232 209.1312873 9.075278678 54800

’2008TC’ 2.063364496 0.50062374 2.677606613 211.1985136 106.4498206 34.39936545 54800

206

’2008TC3’ 1.292904624 0.301100353 2.452792629 194.1072741 234.1540877 330.1153622 54745.91815

’2008TD4’ 1.821391949 0.617560966 14.47606014 222.0772846 54.7082736 49.02723609 54800

’2008TE157’ 2.73539792 0.623846507 1.975431966 26.25019507 77.3944987 350.2391927 54800

’2008TF4’ 1.894053547 0.319727661 24.05473463 213.4909695 113.0926841 46.56557665 54800

’2008TP26’ 1.094520404 0.287369201 13.31787308 12.38628373 241.6314361 139.3631396 54800

’2008TS10’ 1.259219358 0.203115771 1.476221964 5.608952579 345.2497815 52.86292431 54800

’2008TS26’ 1.427974084 0.465503938 6.32061411 16.12783428 284.8794092 59.37869443 54800

’2008TT26’ 1.345510382 0.257273129 8.476473885 210.5859096 190.0007976 17.99280154 54800

’2008TX9’ 1.91160662 0.510239456 7.652182712 199.9007695 223.4563775 5.251846522 54800

’2008TY3’ 1.840253032 0.392200743 3.247424368 25.57575086 327.1851147 30.16361292 54800

’2008TY9’ 1.432311285 0.279203856 8.28511503 205.2128496 158.5713566 36.45647621 54800

’2008UA92’ 2.618284782 0.607588573 3.062866686 39.54580608 351.5995273 8.431836851 54800

’2008UA202’ 1.032725759 0.068786393 0.26459756 21.10151202 300.7308988 96.41230286 54800

’2008UB7’ 1.235224537 0.593548535 2.018702228 219.6975674 287.5317161 340.9273733 54800

’2008UM3’ 1.459696745 0.251030049 10.7013342 213.7291519 211.7723761 0.623347951 54800

’2008UO90’ 2.192815069 0.431602838 5.728998275 221.0928882 100.724262 43.66453616 54800

’2008UT2’ 1.80391249 0.48313163 7.573209216 208.5770819 130.8389768 32.25619254 54800

’2008UU99’ 2.32192398 0.534440552 4.25971379 44.03660517 349.8771499 9.419107424 54800

’2008UX91’ 1.44415947 0.216002573 27.21159548 32.85211045 328.0878012 39.56355804 54800

’2008VC’ 1.12175875 0.17292069 5.724475185 218.4820738 240.5376474 339.4378351 54800

’2008VF’ 0.906073861 0.325771675 26.18710234 234.4560917 3.245130859 204.1933735 54800

’2008VG14’ 2.867098938 0.564879809 10.18128278 260.1497629 112.9417379 12.83128269 54800

’2008VJ’ 1.709901806 0.467051336 25.90575591 227.5539008 83.29498994 51.25551953 54800

’2008VU4’ 2.371886305 0.770037672 11.97415142 291.1918845 23.16850955 23.03733836 54800

’2008WB’ 1.371659075 0.088384399 43.89361778 236.939816 163.4000902 17.85742786 54800

’2008WK’ 1.420893563 0.283406763 6.366828594 61.86724491 28.8359168 348.7157007 54800

’2008WL’ 2.740673154 0.644533653 6.725984812 277.2749624 109.8771876 7.889515969 54800

’2008WM’ 1.073813849 0.141094966 12.31381436 57.73047757 84.91027036 299.8199219 54800

’6344P-L’ 2.804108172 0.66708346 4.726812201 183.611772 234.0696552 79.37913845 54800

207

Bibliography

[1] GTOC Portal | The Global Trajectory Optimisation Competition Portal, March

2014. URL: http://sophia.estec.esa.int/gtoc_portal/.

[2] Texas Advanced Computing Center - Stampede User Guide, May

2014. URL: https://www.tacc.utexas.edu/user-services/user-guides/

stampede-user-guide.

[3] Kristina Alemany. Design Space Pruning Heuristics and Global Optimization

Method for Conceptual Design of Low-thrust Asteroid Tour Missions. PhD

thesis, Georgia Institute of Technology, 2009.

[4] Kristina Alemany and Robert D. Braun. Survey of Global Optimization

Methods for Low-thrust, Multiple Asteroid Tour Missions. In Proceedings of

AAS/AIAA Space Flight Mechanics Meeting, January 2007.

[5] David L. Applegate, Robert E. Bixby, Vasek Chvtal, and William J. Cook. The

Traveling Salesman Problem: A Computational Study. Princeton University

Press, 2nd edition, February 2007.

[6] Brent W. Barbee, Salvatore Alfano, Elfego Pinon, Kenn Gold, and David Gay-

lor. Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects.

In Proceedings of the Aerospace Conference, 2011 IEEE, page 114, 2011.

208

http://sophia.estec.esa.int/gtoc_portal/
https://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide
https://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide

[7] Brent W. Barbee, George W. Davis, and Sun-Hur Diaz. Spacecraft Trajec-

tory Design for Tours of Multiple Small Bodies. Advances in the Astronautical

Sciences, 135(3):2169–2188, 2009.

[8] Roger R. Bate, Donald D. Mueller, and Jerry E. White. Fundamentals of

Astrodynamics. Dover Publications, New York, 1971.

[9] Richard H. Battin. An Introduction to the Mathematics and Methods of Astro-

dynamics. American Institute of Aeronautics and Astronautics, Reston, Va.,

1999.

[10] Richard Bellman. Dynamic Programming. Dover Publications, Mineola, N.Y,

reprint edition, March 2003.

[11] Regis Bertrand, Richard Epenoy, and Benoit Meyssignac. Final Results of the

4th Global Trajectory Optimisation Competition, 2009.

[12] Regis Bertrand, Richard Epenoy, and Benoit Meyssignac. Problem Description

for the 4th Global Trajectory Optimisation Competition, 2009.

[13] John T. Betts. Survey of Numerical Methods for Trajectory Optimization.

Journal of Guidance, Control, and Dynamics, 21(2):193–207, 1998.

[14] Vitali Braun, A. Lupken, S. Flegel, J. Gelhaus, M. Mockel, C. Kebschull,

C. Wiedemann, and P. Vorsmann. Active Debris Removal of Multiple Priority

Targets. Advances in Space Research, 51(9):1638–1648, 2013.

[15] M. Cerf. Multiple Space Debris Collecting Mission–Debris Selection and

Trajectory Optimization. Journal of Optimization Theory and Applications,

156(3):761–796, March 2013.

[16] Bruce A. Conway. Spacecraft Trajectory Optimization. Cambridge University

Press, Cambridge; New York, 2010.

209

[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. The MIT Press, Cambridge, Masachusetts; London,

third edition, 2009.

[18] Timothy Crain, Robert H. Bishop, Wallace Fowler, and Kenneth Rock. In-

terplanetary Flyby Mission Optimization Using a Hybrid Global-Local Search

Method. Journal of Spacecraft and Rockets, 37(4):468–474, 2000.

[19] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a Large-scale

Traveling-salesman Problem. Journal of the Operations Research Society of

America, 2(4):393–410, 1954.

[20] Rina Dechter and Judea Pearl. Generalized Best-first Search Strategies and the

Optimality of A*. J. ACM, 32(3):505–536, July 1985.

[21] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Nu-

merische Mathematik, 1(1):269–271, December 1959.

[22] Claudia DAmbrosio and Andrea Lodi. Mixed Integer Nonlinear Program-

ming Tools: An Updated Practical Overview. Annals of Operations Research,

204(1):301–320, April 2013.

[23] Michel Gendreau. An Introduction to Tabu Search. Springer, 2003.

[24] Fred Glover. Future Paths for Integer Programming and Links to Artificial

Intelligence. Computers & Operations Research, 13(5):533–549, 1986.

[25] Fred Glover. Tabu Search–part I. ORSA Journal on Computing, 1(3):190–206,

1989.

[26] Fred Glover. Tabu Search–part II. ORSA Journal on Computing, 2(1):4–32,

1990.

[27] Fred Glover and Manuel Laguna. Tabu Search. Kluwer, Boston, Mass., 1998.

210

[28] R. H. Gooding. A Procedure for the Solution of Lambert’s Orbital Boundary-

value Problem. Celestial Mechanics and Dynamical Astronomy, 48(2):145–165,

June 1990.

[29] I. S. Grigoriev and M. P. Zapletin. Choosing Promising Sequences of Asteroids.

Automation and Remote Control, 74(8):1284–1296, August 2013.

[30] G. Gutin and A. P. Punnen. The Traveling Salesman Problem and Its Varia-

tions. Springer, New York, 2002 edition, May 2007.

[31] Pierre Hansen. The Steepest Ascent Mildest Descent Heuristic for Combi-

natorial Programming. In Congress on Numerical Methods in Combinatorial

Optimization, Capri, Italy, pages 70–145, 1986.

[32] P.E. Hart, N.J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science

and Cybernetics, 4(2):100–107, July 1968.

[33] David G. Hull. Optimal Control Theory for Applications. Springer, New York,

2003.

[34] Dario Izzo. 1st Act Global Trajectory Optimisation Competition: Problem

Description and Summary of the Results. Acta Astronautica, 61(9):731–734,

November 2007.

[35] Dario Izzo, Victor M. Becerra, D. R. Myatt, Slawomir J. Nasuto, and J. Mark

Bishop. Search Space Pruning and Global Optimisation of Multiple Gravity

Assist Spacecraft Trajectories. Journal of Global Optimization, 38(2):283–296,

2007.

[36] Dario Izzo, Tams Vink, Claudio Bombardelli, Stefan Brendelberger, and Simone

Centuori. Automated Asteroid Selection for a Grand Tour Mission. In 58th

International Astronautical Congress, Hyderabad, India, 2007.

211

[37] Donald J. Kessler and Burton G. Cour-Palais. Collision Frequency of Artificial

Satellites: the Creation of a Debris Belt. Journal of Geophysical Research:

Space Physics, 83(A6):2637–2646, June 1978.

[38] Donald J. Kessler, Nicholas L. Johnson, J. C. Liou, and Mark Matney. The

Kessler Syndrome: Implications to Future Space Operations. Advances in the

Astronautical Sciences, 137(8):2010, 2010.

[39] Richard E. Korf. Linear-Space Best-First Search. Artificial Intelligence,

62(1):41–78, July 1993.

[40] E. L. Lawler, Jan Karel Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The

Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization.

Wiley, Chichester West Sussex, New York, 1st edition, September 1985.

[41] J. C. Liou. An Active Debris Removal Parametric Study for Leo Environment

Remediation. Advances in Space Research, 47(11):1865–1876, June 2011.

[42] J. C. Liou, N. L. Johnson, and N. M. Hill. Controlling the Growth of Fu-

ture LEO Debris Populations With Active Debris Removal. Acta Astronautica,

66(56):648–653, March 2010.

[43] Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics.

Springer, Berlin; New York, 2004.

[44] N. Mladenovi and P. Hansen. Variable Neighborhood Search. Computers &

Operations Research, 24(11):1097–1100, November 1997.

[45] Alessandro Morbidelli, W. F. Bottke, Ch. Froeschle, and P. Michel. Origin and

Evolution of Near-Earth Objects. Asteroids III, 409, 2002.

[46] M. Morimoto, H. Yamakawa, M. Yoshikawa, M. Abe, and H. Yano. Trajec-

212

tory Design of Multiple Asteroid Sample Return Missions. Advances in Space

Research, 34(11):2281–2285, 2004.

[47] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial

Optimization. Wiley, New York, NY, 1999.

[48] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer, New

York, 2nd edition, July 2006.

[49] Cesar Ocampo. Finite Burn Maneuver Modeling for a Generalized Spacecraft

Trajectory Design and Optimization System. Annals of the New York Academy

of Sciences, 1017(1):210–233, 2004.

[50] Cesar Ocampo. Exact Impulsive to Time Optimal Finite Burn Trajectory Au-

tomation (July 2011 Draft). 2011.

[51] Cesar Ocampo, Juan S. Senent, and Jacob Williams. Theoretical Foundation of

Copernicus: A Unified System for Trajectory Design and Optimization. 2010.

[52] Joris T. Olympio. Optimal Control Problem for Low-Thrust Multiple Asteroid

Tour Missions. Journal of Guidance, Control, and Dynamics, 34(6):1709–1720,

2011.

[53] Christos H. Papadimitriou. Combinatorial Optimization: Algorithms and Com-

plexity. Dover Publications, Mineola, N.Y, unabridged edition, January 1998.

[54] Panos M. Pardalos and H. Edwin Romeijn. Handbook of Global Optimization

Volume 2. Springer US, Boston, MA, 2002.

[55] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem

Solving. Addison-Wesley Pub. Co., Reading, Mass., 1984.

213

[56] Matt Pharr and Greg Humphreys. Physically Based Rendering, Second Edition:

From Theory To Implementation. Morgan Kaufmann, Burlington, MA, 2nd

edition, July 2010.

[57] Howard M. Robbins. An Analytical Study of the Impulsive Approximation.

AIAA Journal, 4(8):1417–1423, 1966.

[58] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis, II. An Analysis

of Several Heuristics for the Traveling Salesman Problem. SIAM Journal on

Computing, 6(3):563–581, September 1977.

[59] A. E. Roy. Orbital Motion. Institute of Physics Pub., Bristol, England; Philadel-

phia, 2005.

[60] Ryan P. Russell. Primer Vector Theory Applied to Global Low-Thrust Trade

Studies. Journal of Guidance, Control, and Dynamics, 30(2):460–472, 2007.

[61] Matteo Rosa Sentinella and Lorenzo Casalino. Hybrid Evolutionary Algorithm

for the Optimization of Interplanetary Trajectories. Journal of Spacecraft and

Rockets, 46(2):365–372, 2009.

[62] Jinjun Shan and Yuan Ren. Low-Thrust Trajectory Design With Constrained

Particle Swarm Optimization. Aerospace Science and Technology, 36:114–124,

July 2014.

[63] El-Ghazali Talbi. Metaheuristics: from Design to Implementation. John Wiley

& Sons, Hoboken, N.J., 2009.

[64] David A. Vallado and Wayne D. McClain. Fundamentals of Astrodynamics and

Applications. Microcosm Press, Hawthorne, CA, 2013.

[65] M. Vasile and P. De Pascale. Preliminary Design of Multiple Gravity-Assist

Trajectories. Journal of Spacecraft and Rockets, 43(4):794–805, 2006.

214

[66] Massimiliano L. Vasile. A Behavioral-Based Meta-Heuristic for Robust Global

Trajectory Optimization. In Evolutionary Computation, 2007. CEC 2007.

IEEE Congress on, pages 2056–2063. IEEE, 2007.

[67] Matthew A. Vavrina and Kathleen C. Howell. Global Low-Thrust Trajec-

tory Optimization Through Hybridization of a Genetic Algorithm and a Direct

Method. In AIAA/AAS Astrodynamics Specialist Conference, AIAA, volume

6614, 2008.

[68] Nguyen X. Vinh, Elmer G. Gilbert, Robert M. Howe, Donglong Sheu, and Ping

Lu. Reachable Domain for Interception at Hyperbolic Speeds. Acta Astronau-

tica, 35(1):1–8, January 1995.

[69] Tams Vink, Dario Izzo, and Claudio Bombardelli. Benchmarking Different

Global Optimisation Techniques for Preliminary Space Trajectory Design. In

58th International Astronautical Congress, International Astronautical Federa-

tion (IAF), 2007.

[70] Changxuan Wen, Yushan Zhao, Peng Shi, and Zhang Hao. Orbital Accessibility

Problem for Spacecraft with a Single Impulse. Journal of Guidance, Control,

and Dynamics, 0(0):1–12, January 2014.

[71] Jacob Williams, Juan S. Senent, Cesar Ocampo, Ravi Mathur, and Elizabeth C.

Davis. Overview and Software Architecture of the Copernicus Trajectory Design

and Optimization System. 2010.

[72] Byoungsam Woo, Victoria L. Coverstone, and Michael Cupples. Low-Thrust

Trajectory Optimization Procedure for Gravity-Assist, Outer-Planet Missions.

Journal of Spacecraft and Rockets, 43(1):121–129, 2006.

[73] Dan Xue, Junfeng Li, Hexi Baoyin, and Fanghua Jiang. Reachable Domain for

215

Spacecraft With a Single Impulse. Journal of Guidance, Control, and Dynam-

ics, 33(3):934–942, 2010.

216

Vita

Gregory Phillip Johnson was born to Don and Sharon Johnson on January 17, 1983

in Dallas, Texas. He completed his Bachelor of Science in Aerospace Engineering

(with high honors) at The University of Texas at Austin in 2005, continuing on to the

graduate aerospace program at UT to obtain his Master of Science in Engineering

in 2007, and now his Ph.D. in 2014. During his time as a graduate student, Gregory

also worked full time at the Texas Advanced Computing Center.

Permanent Address: gregjohnson@utexas.edu

This dissertation was typeset with LATEX 2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

217

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	Chapter Introduction
	Spacecraft Tour Trajectory Definition
	Optimization Problem
	Relation to Traveling Salesman Problem

	Motivation
	Related Work
	Dissertation Organization and Contributions

	Chapter Tour Trajectory Modeling
	General Model
	Initial Conditions
	Target Objects
	Trajectory Segments
	Tour Trajectory

	Spacecraft Tour Trajectories
	Spacecraft Dynamics
	Target Object Dynamics
	Finite Burn Trajectory Segments
	Impulsive Trajectory Segments
	Impulsive Maneuver to Finite Burn Maneuver Conversion
	Augmented Impulsive Tour Model

	Chapter Global Search Methodology
	Solution Representation
	Properties of Tour Trajectories
	Tree-Based Solution Representation

	Neighborhoods
	Neighborhoods for the Tree Solution Representation
	Restricted Best-First Neighborhood

	Objectives
	Guiding Objective
	Budget Penalty Terms

	Solution Construction (Node Expansion)
	Tabu Search
	Recency-based Tabu Memory
	Strategic Intensification and Diversification

	Algorithm Summary

	Chapter Search Space Pruning
	Brute-force Approach
	Trajectory Envelopes
	Bounding Boxes
	Summary

	Performance

	Chapter Application to Fourth Global Trajectory Optimization Competition
	Problem Definition
	GTOC4 Augmented Impulsive Tour Model

	Best Known Solutions
	Results
	Base Case
	Finite Burn Constraints
	Search Space Pruning
	Dynamic Neighborhood Selection
	Reduced Spacecraft Performance
	Comparison to GTOC4 Winning Solution
	Low-thrust Finite-burn Conversion

	Summary

	Chapter Conclusions
	Dissertation Summary
	General Conclusions
	Future Work

	Appendices
	Appendix Software Implementation
	Tree-Based Solution Representation

	Appendix Set of GTOC4 Asteroids
	Bibliography
	Vita

