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Structured representation of input physical patterns as a set of local features has

been useful for a veriety of robotics and human computer interaction (HCI) ap-

plications. It enables a stable understanding of the variable inputs. However, this

representation does not fit the conventional machine learning algorithms and dis-

tance metrics because they assume vector inputs. To learn from input patterns with

variable structure is thus challenging. To address this problem, I propose a general

and systematic method to design distance metrics between structured inputs that

can be used in conventional learning algorithms. Based on theobservation of the

stability in the geometric distributions of local featuresover the physical patterns

across similar inputs, this is done combining the local similarities and the confor-

mity of the geometric relationship between local features.The produced distance

metrics, called “parametric kernels”, are positive semi-definite and require almost
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linear time to compute. To demonstrate the general applicability and the efficacy of

this approach, I designed and applied parametric kernels tohandwritten character

recognition, on-line face recognition, and object detection from laser range finder

sensor data. Parametric kernels achieve recognition ratescompetitive to state-of-

the-art approaches in these tasks.
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Chapter 1

Introduction

Humans constantly interact with the physical world for various purposes. Continu-

ous streams of physical patterns from one’s surroundings are sensed and analyzed to

extract information that is useful for either taking appropriate actions or understand-

ing the world. They approach a destination, avoid obstaclesor dangers, recognize

faces, group similar objects into categories, localize, orexchange information with

peers using language or images.

The main goal of robotics or human-computer interaction (HCI) research is

to develop techniques that enable a computer to autonomously reason about and in-

teract with its environment much like humans do. In doing so,we hope to achieve

a deeper understanding of our own human abilities, and to learn to build more pow-

erful and intelligent robots or interactive computer systems.

In this research, I focus on the problem ofcomputing the similarity between

physical patterns. This is a fundamental problem that underlies a variety of robotics
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and HCI learning tasks, such as recognition, grouping, estimation, or searching,

where the input examples are physical patterns obtained mainly by taking measure-

ments or capturing human interaction. For instance, mobilerobots use laser range

finders to measure distances to surrounding objects or webcams to capture visual

information. They make decisions on its next action to achieve the goal such as

navigation or object avoidance. Human authentication systems require biological

signatures such as fingerprints, voice, face images, or handwritten characters, as the

input.

Humans are remarkably accurate and efficient at telling how similar two

physical patterns are. This ability is extremely robust against all sorts of change

in the physical conditions. The first step to make computers do this is to represent

the physical patterns in a form that computers can access. Mostly, this is done by

digitally sampling thephysical input space. For instance, on-line handwritten char-

acters consist of sequences of 2D points that are obtained bycapturing pen or mouse

points in a 2D plane. Likewise, music and speech consist of sequences of quantized

amplitude values that are obtained by recording using microphones, shape contours

are represented as sequences of 2D points around the edges ofobjects in images,

and 2D arrays of pixels have been used to represent images. Unfortunately, changes

in physical conditions such as pose or illumination againstwhich humans can reli-

ably analyze physical patterns often may result in varying inputs that are extremely

difficult for computers to learn.

To cope with this difficulty, people have tried to find features that are robust

against such variations from the input patterns. Consider, for instance, contours of

2



objects that are represented as sets of 2D points. Contours ofthe same object may

vary in size, orientation, or position, or are composed of different numbers of points.

But, they are considered contours of the same object by humansbecause they con-

tain parts that are relatively invariant against those variations. Inshape context, a

histogram of normalized relative distances to other contour points is computed at

each contour point [11]. Shape context is invariant to changes in size or position.

Object recognition or category learning in computer visionresearch requires

the ability to find similar parts of similar or identical objects across different im-

ages. Scale invariant feature transform (SIFT) [34], geometric blur [12], or the

Harris-Affine transform [38] extract an unordered set of local feature vectors from

a varying number of characteristic or salient regions in an image, typically identi-

fied by the use of an interest operator. Alternatively, features can be extracted from

a predefined set of points. For instance, the set of geodesic distances between the

fiducial points of human faces, such as nostrils, eyes, or mouse tips, is an effective

feature for 3D face recognition [24]. Such feature vectors are shown to be stable

against transformations such as pose or illumination variation, or noise such as clut-

ter, occlusions, or partial variation. With such representations, we can compute the

similarity between two images by, for instance,matchingthe local features that are

closest in the feature space [23].

Usually the number of local features extracted varies across different input

patterns, and therefore the representations are not vectors of a fixed dimension. In

the machine learning literature, inputs that are not vectors are referred to asstruc-

tured. Sets of local features of varying cardinality are thus structured inputs. An

3



(a) SIFT [34] (b) Geometric Blur [12] (c) Harris-Affine [38]

Figure 1.1: Examples of Sets of Local Features

interesting and useful property that underlies such representations, specifically for

physical patterns, is therelationshipof local features. This is of particular interest

because it can provide a very useful means to compute the similarity between input

physical patterns. A major goal of this research is to find effective ways to take

advantage of this useful information. Methods for doing this are not well studied in

the literature to date.

To illustrate the types of relationship between local features that I deal with,

and to motivate our approach, consider the problem of onlinehandwritten character

recognition. Each handwritten character consists of a set of 2D points of vary-

ing cardinality. By applying existing techniques to computethe similarity between

two sets of vectors, we may compute the similarity between the two handwritten

characters. However, in doing so, we neglect the order information underlying the

set of points. This is of particular importance since it contains the key informa-

tion that enables the recovery of strokes, which are critical when we compute the

similarity between two handwritten characters. Without the notion of strokes, it is

harder for computers to distinguish some sets of points, e.g. ‘c’, ‘e’, or ‘o’. One

simple approach to represent this order information is, forinstance, to append the

4



sequence numberi to the coordinates of thei-th input point(xi, yi) as an additional

dimension. This transforms the sequence of points in a handwritten character into

an unordered set of local features(xi, yi, i). By applying the same technique to

compute the similarity between two sets of vectors, we can compute the similarity

between the two handwritten characters, without neglecting the order information.

Thus the specific type of relationship in this example is the input order of the data

points.

As another example, consider two sets of SIFT features computed from var-

ious locations within two different input images. For each SIFT feature in one set,

we may find the nearest neighbour from the other set and compute the numerical

distance between them. By aggregating the distances computed, we can evaluate

the similarity bewteen the two input images. However, thereis a possibility that

two matched nearest neighbours in the feature space are not extracted from nearby

positions in the input images. In the context of certain application domains, e.g.

face recognition, this may indicate abadmatch in the sense that it may result in an

undesirable increase in the similarity between face imagesof two different people.

One simple approach is to append to each of the SIFT featuresφi the coordinates

of the location(xi, yi) within the image where each SIFT feature is located. This

transforms the set of SIFT features computed from an image into a set of local fea-

tures(φi, xi, yi). When applying techniques to compute the similarity betweentwo

sets of vectors, we may additionally rule out or penalize such bad matches. In this

manner, we can compute the similarity between the two images, without neglecting

the geometric relationship between the local features. Thespecific type of relation-
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ship in this example is the geometric distribution of the SIFT feature positions over

the input images.

This research deals with particular types of structured data where the in-

formation about such additional relationships between thelocal features is quite

useful or critical. In this thesis, such types of structureddata are said to begeo-

metric or geometrically structured. Also, such a relationship is referred to as the

geometric structureof local features. I search for a novel technique to represent

such relationships between the local features in a systematic manner and combine

this representation data with the local features in the formof a similarity metric. It

can then be used directly in a conventional machine learningframework.

1.1 Learning Algorithms

Once the representation of features is determined, appropriate learning algorithms

must be chosen. Two important criteria must be taken into account in this process.

First, a learning algorithm must be able to take the chosen representation as input.

Second, the similarity measure between any two such inputs must be efficient to

compute.

Learning algorithms for structured inputs can be roughly categorized into

two groups, i.e.generativeanddiscriminative. Generative methods such as hidden

Markov models (HMM) provide a principled way of handling data with variable

structures and treating missing information. They usuallyrequire certain underly-

ing probabilistic models for the process of data generation. The drawback is that
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the accuracy of generative models greatly depends on the accuracy of such prob-

abilistic models. However, such models are very difficult toidentify in general

because we often have no knowledge of the data generation process for complex

physical patterns. Discriminative methods such as neural nets (NN) or support vec-

tor machines (SVM) instead learn decision boundaries. Theycan find complex and

flexible decision boundaries using kernel functions, and itis not necessary to build

any probabilistic models for the data generation. However,many conventional dis-

criminative learning techniques assume inputs are represented as fixed dimensional

vectors and do not allow for the direct application of structured data. There have

also been hybrid approaches that take advantage of both generative and discrimi-

native algorithms to yield improved solutions over methodsbased on an individual

method, but the drawbacks from both methods can also be inherited [28, 39, 56].

Moreover, these methods require two training steps, one forlearning the probabilis-

tic model and the other for learning the decision boundaries.

In general, discriminative learning methods have empirically demonstrated

superior classification results to those of generative methods. Among the well

known discriminative learning methods, support vector machine (SVM) has re-

cently drawn strong interest as it has shown state of the art performance on a variety

of learning tasks [49,57]. The ability to learn non-linear classifiers in a linear frame-

work using kernel functions is one of the powerful features of SVM. In particular,

the principle of structural risk minimization of SVM guarantees the minimization

of the generalization error. A large volume of research has been devoted to the

application of SVM to a broad set of problem domains and data representations to
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take advantage of its excellent performance.

Traditional kernel methods such as SVM assume that input data is repre-

sented as fixed dimensional feature vectors, which are compared using generic

kernel functions, e.g. linear kernels or radial basis functions (RBF). In practice,

what kernel functions really evaluate is often the similarity between two input vec-

tors. Most methods that use generic kernel functions for SVMsomewhat arbitrarily

choose them. Considering that the type of kernel has a direct impact on the clas-

sification performance and the learning complexity, determining a suitable kernel

function given a problem domain is an open problem that is challenging.

Typical approaches to applying such traditional kernel techniques to struc-

tured inputs involve transforming the inputs into feature vectors in a single feature

space of some dimension and then classifying these using generic kernel functions.

The problem with this approach is that it may result in the loss of useful structural

information between local features because fixed dimensional feature vectors are

often too restricted a format to represent irregular structures. For instance, in [54],

a fixed size feature vector is computed from strokes, and an SVM classifier is used.

The dimensions of the features include the mean coordinatesand second order

statistics such as median, variance, minimum and maximum distances, area, etc.

However, information about the shape of the strokes is lost in this process. In [32],

ExtendedR-squared (ER2) is proposed as the similarity measure for sequences.

Though it uses the coordinates of points directly as features, they can only oper-

ate on point sequences of a fixed-length so as to compute the proposed similarity

metric.
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In addition, this may not be general enough to be used in othersimilar prob-

lems. For example, a common first step for the detection of an orange ball from

camera images is to segment out orange regions from the background. Segmented

orange regions are not vectors but rather variable-sized blocks of connected pixels.

To tell whether an orange region is a ball or not, a fixed numberof features could

be computed to construct the feature vector. Since the orange region of the ball is

round, one could fit a bounding circle to compute features such as the fitness of

the region contour to the bounding circle. This transforms aset of variable-sized

blocks of pixels into a fixed dimensional feature vector, which enables the direct use

of generic kernel functions. However, fitting a bounding circle would not work sim-

ilarly if objects to detect have different shapes, such as T-shirts or bags. Different

features customized to the specific class of objects to detect are necessary. Unfor-

tunately, finding such custom features for complex objects is very tedious and may

be even possible.

An alternative approach is to find kernel functions for such data types that

can effectively combine the structural information with the local features into sim-

ilarity metrics. For instance, the pyramid math kernel (PMK) function computes

the similarity between two unordered sets of feature vectors by partially matching

them within a hierarchy of histogramming bins [23]. PMK is directly usable in

the traditional kernel algorithms based on convex optimization since it is positive

and semi-definite. As another example, spectrum kernel compares two strings by

counting how many (contiguous) substrings of lengthp they share and constructing

the histogram of the frequencies of all possible common substrings of all possible
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lengths (p-spectra) [25,33,49,61,62].

The disadvantage of this approach is that it is not straightforward to find

such kernel functions from the structure of the inputs. Neither is it straightforward

to use or modify existing kernel functions such as PMK or spectrum kernels to han-

dle inputs with other types of structures such as trees or graphs. PMK, for instance,

has been effectively used in many computer vision tasks including image retrieval,

object detection, and clustering to match unordered sets oflocal features computed

from two images. However, it does not support inputs where local features form a

more complex structure than unordered sets, such as trees orgraphs. The same is

true for spectrum kernels which is specifically tailored forsequential inputs which

are common in tasks such as text or document classification. More flexible tech-

niques for designing kernels that can be used across a wide range of data types

would be much more powerful, but are currently lacking.

The motivation of this work is at the search for a systematic approach to en-

code the geometric structure of local features into kernel functions. It will provide a

straightforward scheme to synthesize kernel functions forthe given structure, which

could be used in discriminative learning algorithms without the need for transform-

ing input data into fixed dimensional vectors. The approach Ipropose in this thesis

provides the ability to mechanicallytailor kernel functions customized specifically

for a given application domain by making an explicit encoding of the geometry that

is used in conjunction with the local features.
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1.2 Dissertation Contribution

I first introduce a method to encode the geometric structure of local features. Then

I provide a systematic framework to combine the encoded structure and the local

features to construct an effective measure of similarity between the geometrically

structured data. The constructed similarity metrics on average requirelinear or

close to lineartime to compute.

Encoding the geometric structure begins by imposing a manifold on it. For

instance, we could impose a 1D manifold for a sequence of points in a handwritten

character, or a 2D manifold for a set of fiducial points in a 3D face image. The

proposed method encodes geometric structure by associating each local feature with

a point in this manifold. This implements the structural similarity as a distance

metric for the manifold. I combine this distance with the problem-specific similarity

between local features in a framework calledparametric kernel functions, which

define the similarity metrics between geometrically structured data in a systematic

manner that is applicable to a variety of problem domains. This framework provides

tailorability, which is defined asthe ability to aggregate atomic kernel functions

to construct custom kernel functions for structured inputsvia the association of

parameters with the local features of structured inputs. The similarity measure

provides information about the distribution of the input examples in a space where

the class boundaries are searched for. In addition, to allowfor the application of

kernel-based learning algorithms such as SVM to structureddata in this framework,

I show that parametric kernel functions are positive and semi-definite. For certain
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kernel-based methods that require Mercer kernel functions, this is a necessary and

sufficient condition to guarantee the existence of a unique optimal solution [49,57].

Kernel functions for geometrically structured inputs would be ideal if they

have the following properties. 1) Synthesizing kernels that are customized for the

given structure is systematic. 2) The kernel functions are computationally efficient

to evaluate to handle large inputs. 3) There is no need to explicitly evaluate proba-

bilistic models to model the generative process of the patterns. 4) The synthesized

kernels are positive semi-definite to guarantee a unique solution when used in ker-

nel algorithms based on convex optimization. 5) Tailorablekernel functions for

one problem are easily modifiable for other problem domains with similar input

structures. While previous approaches fail to satisfy some or all of these, all of the

requirements are satisfied by our approach.

I applied the proposed technique to a number of machine learning tasks with

a variety of different input formats, characteristic features, and geometric structures

relating these features. I demonstrate the effectiveness of our approach by showing

that I achieve classification performance that is competitive with state of the art

techniques for those tasks using application-specific methods. Yet we achieve this

with kernel functions that are synthesized in a common framework. I apply this

method to well-studied representative tasks for two important types of geometric

structures that appear in a wide range of problem domains.

The first type issequences. Over a wide range of robotics or HCI applica-

tions, the inputs are represented as sequences ofraw data vectors, of possibly vari-

able lengths, when measurements are taken from a system overtime. For instance,
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inputs for on-line handwritten character recognition are represented as sequences of

2D points which are obtained by the regular time sampling of mouse or input pen

cursor position, while inputs for voice recognition or music following are digital

audio streams which are obtained by the regular time sampling and the quantiza-

tion of the amplitude of sound waves captured by the microphone. Examples of

sequential inputs that are not necessarily ordered over time include the range infor-

mation captured by laser sensors. Such devices take measurements of distances to

the surrounding objects omni-directionally at certain angular resolutions. Inputs for

common robot control tasks such as object detection or avoidance are sequences of

distance values which are ordered by the angles that the measurements are taken.

As the representative task, we implement and test our methodfor the task of on-line

handwritten character recognition. In addition, we will address the aspects to be

considered specifically for handling inputs where local features are just raw data

vectors.

The second type isunordered sets. Unordered sets oflocal feature vectors

have been shown to be an effective representation of objectsin many computer

vision tasks. For instance, combinations of features computed from images, e.g.

sets of local energy maxima points or SIFT keypoints, are used as inputs for image

classification or object detection and recognition tasks. Other examples include

inputs for molecular docking simulation systems which are sets of electromagnetic

fields computed at each of the molecules. As the representative tasks, we implement

and test our method for the task of face recognition from video streams. This show

that utilizing the geometric structure in conjunction withthe local features improves
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the classification performance.

Lastly, we present the result of applying our method for object detection

from the laser range finder sensor data. No comparison with other competitive ap-

proaches is made because it is not a much studied problem withany public bench-

mark data and reported results along with any test criteria.

The novelty of the proposed technique is at the explicit representation of ge-

ometric structures in terms of parameters. Parameter spacedecomposition scheme

greatly reduces the size of search space when matching localfeatures, while re-

taining quality matches. Parametric kernel framework provides a tool to flexibly

construct similarity metrics where the geometric structure is easily combined with

the local features. Parametric kernels are efficient to evaluate and could be directly

used in the conventional kernel framework.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows.In Chapter 2, I give a

more detailed overview of the problem setting and a discussion of related work. In

Chapter 3, I define the core parametric kernel algorithm. Following these presenta-

tion of the algorithmic components of the proposed method, Iprovide experiments

and results demonstrating these ideas applied to several HCIand robotics problems.

Specifically, in Chapter 4, I present on-line hand written character recognition re-

sults with a variety of dataset and demonstrate the efficiency and the ease of learn-

ing handwritings without the knowledge of any language. In Chapter 5, I present
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face recognition experiments and results and show how the extension to higher di-

mensional manifolds seamlessly provides the same performance gain. Finally, in

Chapter 6, I develop a method for detecting objects from sensor data using the

same kernel framework for handwritten character recognition.
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Chapter 2

Background and Related Work

In this section, I present the basic concepts and the relatedwork for an in-depth

understanding of our approach.

2.1 Research Domain

Our goal is a systematic framework to tailor kernel functions for geometrically

structured data types. To meet this goal, I apply our method to a number of machine

learning tasks of which inputs have a number of different types of representative ge-

ometric structures. I demonstrate the effectiveness of ourapproach by showing that

this approach achieves classification performance that is competitive with the state-

of-the-art techniques for those tasks. A strong emphasis isadded to the fact that I

achieve this with kernel functions that are synthesized in acommon framework.

To complete our demonstration with a realistic amount of work, I had to limit
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the number of applications that I test our method. But to maintain the generality, I

chose to apply our method to well studied representative tasks with two important

types of input data structures that could cover a wide range of problem domains.

The first type issequences. Over a wide range of robotics or HCI appli-

cations, the inputs are represented as sequences ofraw data vectorsof possibly

variable lengths when measurements are taken from a system over time. As the

representative task, I implement and test our method for thetask of on-line hand-

written character recognition. In addition, I will addressthe aspects to be considered

specifically for handling inputs where local features are just raw data vectors.

The second type isunordered sets. Unordered sets oflocal feature vectors

have been shown to be an effective feature representation inmany computer vision

tasks. As the representative tasks, I implement and test ourmethod for the task of

on-line face recognition from video streams. This demonstrates how inputs with

no specificorder between the local features are handled. But more importantly, I

show that utilizing the information about the distributionof the local features over

the input images improves the classification performance.

Lastly, I present the result of applying our method for the task of ball recog-

nition from the sensor data captured by a laser range finder. No comparison with

other competitive approaches is made because it is not a muchstudied problem

with any public benchmark datasets and reported results along with any test criteria.

Rather, the purpose is at the demonstration of the generalizability of our approach

to a variety of problem domains.
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2.2 Kernel-based Learning Methods

Support vector learning is one of the state of the art machinelearning techniques

that has been used extensively in this research. It is a widely used technique that has

been applied to numerous classes of problems including classification, regression,

novelty detection, and clustering, to name just a few. We present an introduction

to support vector classification (SVC) below as background for the results we will

show later.

2-Class Support Vector Classification Given two classes of training inputs (de-

noted as◦ and× in Figure 2.1), the objective of SVC is to find a hyperplanef that

separates two classes with the maximal marginh.

h

f

Figure 2.1: An example of support vector learning; 2-class classification

Supposeℓ training examplesxi for i = 1, · · · , ℓ are taken fromR
d. Eachxi
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is labeled asyi = 1 if it is a positive example, oryi = −1 if it is a negative example.

Denote the hyperplane as

f(x) = sgn
(

〈w · x〉+ b
)

, (2.1)

wherew ∈ R
d is the weight vector andb is the bias.f is found by solving the

following quadratic program :

minimize
1

2
‖w‖2

subject to yi(〈w · xi〉+ b) ≥ 1, for i = 1, · · · , ℓ.

The general technique to find the solution is to solve its dualproblem. To

convert this into the dual form, the Lagrangian of this quadratic program is first

differentiated

L(w, b,α) =
1

2
‖w‖2 −

ℓ
∑

i=1

αi

[

yi(〈w · xi〉+ b)− 1
]

, (2.2)

where the non-negative variablesαi for i = 1, · · · , ℓ are called the Lagrangian

multipliers, with respect to the primal variablesw andb, and set them to zero for

stationarity,

∂L(w, b,α)

∂w
= w −

ℓ
∑

i=1

yiαixi = 0,
∂L(w, b,α)

∂b
=

ℓ
∑

i=1

yiαi = 0. (2.3)

Rewriting the given quadratic problem solely in terms of the dual variables

yields the following dual problem
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maximize
∑ℓ

i=1 αi −
1

2

∑ℓ

i=1

∑ℓ

j=1 yiyjαiαj〈xi · xj〉

subject to
∑ℓ

i=1 yiαi = 0, andαi ≥ 0 for i = 1, · · · , ℓ.

Suppose the training set is linearly separable and letα∗
i for i = 1, · · · , ℓ be

the solution to the dual problem. Then,w
∗ =

∑ℓ

i=1 yiα
∗
i xi realizes the maximal

margin hyperplane. In this case, the bias is found as

b∗ = −
maxyi=−1

(

〈w∗ · xi〉
)

+ minyi=1

(

〈w∗ · xi〉
)

2
. (2.4)

Pluggingw∗ into (2.1) yields

f(x) = sgn

( ℓ
∑

i=1

yiα
∗
i 〈xi · x〉+ b∗

)

. (2.5)

The Karush-Khun-Tucker conditions,α∗
i

[

yi(〈w
∗ · xi〉 + b∗) − 1

]

= 0, for

i = 1, · · · , ℓ, state that the sign of the functional marginyi

(

〈w∗ · xi〉 + b∗
)

equals

1, i.e. xi is at the margin off , if and only if α∗
i > 0. Otherwise,α∗

i = 0, in

which case, the corresponding term in equation (2.5) vanishes. It is therefore only

the set of examples located at the margin of the hyperplane that actually constitutes

the solution. Such training examples are called thesupport vectors. The fewer the

support vectors, the sparser the solution becomes, and viceversa.

Kernel Trick The training set may not be linearly separable in the input space. In

such cases, mapping to a higher dimensional space may yield alinear solution [17].

Let φ : R
d → H be a mapping from the input space to a hyperspaceH. Consider

mapping the training examples intoH usingφ and findf in H. Then (2.5) inH
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becomes

f(x) = sgn

( ℓ
∑

i=1

yiα
∗
i 〈φ(xi) · φ(x)〉+ b∗

)

. (2.6)

The Representer’s theorem guarantees thatxi andx appear only in the form

of an inner product. If there exists a functionκ : R
d × R

d → R that evaluates the

inner product of two vectorsφ(x) andφ(z) in H, directly using two input vectors

x andz in R
d, without explicitly evaluating the mapping functionφ for x andz and

their inner product inH, then we could rewrite (2.6) in terms ofκ as follows,

f(x) = sgn

( ℓ
∑

i=1

yiα
∗
i κ(xi,x) + b∗

)

. (2.7)

The first advantage of using functions likeκ, calledkernel functions, is to

avoid the heavy computation of mapping theφ and taking their inner product. Since

kernel functions correspond to inner products in hyperspaces, the necessary and

sufficient condition thatκ must meet to be a valid kernel is that it is positive and

semi-definite. That is, for any given dataset, the Gram matrix constructed usingκ

must have only non-negative real eigenvalues. This guarantees a unique solution to

the quadratic program of SVM.

When kernels are used in practice, kernel functions are chosen directly rather

than by mapping theφ since it may not be possible to find a closed form mapping

of φ that corresponds to a kernel function. However, a valid kernel guarantees the

existence of a hyperspace thatφ maps the input vectors to. Examples of valid kernel

functions include linear kernels, radial basis functions (RBF), or polynomial kernel
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functions.

The second advantage of using kernel functions is that, in support vector

learning, non-linear decision boundaries could be found ina simple linear frame-

work.

Kernel functions evaluate the inner product in a hyperspacein a technical

sense. Meanwhile, the semantics of what is being computed bykernel functions

is the similarity between the input vectors. Hence, a general guide to determining

the right kernel function for a given problem domain is to choose a kernel function

that evaluates to a large (small) value if the inputs are semantically similar (dissim-

ilar). However, most approaches that use generic kernels implement the semantics

of similarity by carefully selecting a set of features to construct the input vector.

RBF, for instance, computes the distance between any two vectors of the same di-

mension which exponentially decreases proportional to their geometric distance.

Linear kernel computes the inner product of any two vectors.If normalized by the

lengths of the two vectors, then linear kernel computes the similarity between two

vectors as the cosine of the angles between them. Therefore,the generic kernels

in this sense are chosen somewhat arbitrarily. Considering that the type of kernel

has a direct impact on the classification performance and thelearning complexity,

determining a suitable kernel function given a problem domain is an open problem

that is challenging.

So far, SVMs have shown excellent performance in quite a number of ma-

chine learning problems. In part, this is due to the structural risk minimization

(SRM) scheme of support vector learning. The purpose of SRM is the minimiza-
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tion of the generalization error of a learning scheme. According to the upper bound

of the generalization error of a classifierf that is provided by the VC theory, max-

imizing the marginh of a given training set minimizes the upper bound of the

generalization error.

The immediate disadvantage of using kernel functions is that the determi-

nation of kernel functions along with the related parameters is a challenging task.

Another more serious problem is that often the implementation requires a large

memory to store the kernel matrices. However, algorithms such as sequential min-

imal optimization (SMO) that do not require a huge memory space for storing the

kernel matrices are available as well.

2.3 Learning Structured Data

The two most important components of most applications of machine learning tech-

niques to real world problems are feature extraction and thelearning algorithm.

Feature extraction is related to the representation the input data, while the learning

algorithm is related to finding and modeling the underlying relationship between

the features. Feature extraction removes noise and summarizes important charac-

teristics of the input data in a form that can be handled by thelearning algorithms to

be used. Learning algorithms either use the extracted features in conjunction with

generic metrics, e.g. distance or inner product, or define custom metrics to compute

the similarity between input examples.

Many learning algorithms assume inputs are in a single feature space of
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some fixed dimension, but structured inputs are also quite common. There are two

categories of input structures. One isgeometricand the other isdiscrete. Geomet-

rically structured inputs consist of local features that are contained in a continuous

space, e.g. points in 2D plane, while those of discretely structured inputs are ele-

ments of a discrete set, e.g. alphabets of a language. In thisresearch, I consider

geometrically structured inputs.

Learning Sequence Data Sequence data consist oforderedlocal features. They

form a 1-dimensional manifolds. Computing the similarity between two input se-

quences is challenging because it is not a straightforward task. Two categories of

approach are available.

First, one could extract fixed dimensional feature vectors from sequences

and use generic similarity measures, though it is difficult to maintain structural in-

formation. In [54], a fixed size feature vector is computed from strokes, and an

SVM classifier is used. Features used include the mean coordinates and second

order statistics such as median, variance, minimum and maximum distances, area,

etc. They achieved a high accuracy of over98%. Such features do not general-

ize well because they allow only fixed feature vectors for each stroke. In [32],

ExtendedR-squared (ER2) is proposed as the similarity measure for sequences.

Though it uses the coordinates of points directly as features, they can only operate

on point sequences of fixed-length so as to compute the proposed similarity met-

ric. In addition, such features are heuristically chosen. Hence, it is very difficult

to apply feature vectors that work well for problems of one domain to those of
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other domains. Extracting feature vectors of uniform dimension is also possible

through histogramming [11, 23, 43]. Histograms are an effective scheme to map

varying length sequences into uniform dimensional featurevectors. For instance,

Porikli computed histograms of locations, speed, size, aspect ratio, etc. of points in

trajectories to extract fixed dimensional feature vectors [43]. Unfortunately, infor-

mation about the ordering of the points in the trajectories is lost in the process of

histogramming.

One can instead extract a set of fixed dimensional feature vectors from se-

quences. The incline scanning n-tuple classifier (OnSNT) isa very fast and accurate

method to learn from sequences. This is based on the standardn-tuple (SNT) clas-

sifier proposed by Aleksander and Stoham [7]. OnSNT first extracts both static

and dynamic features into chain codes and then a sliding window is scanned across

the chain code sampling it into n-tuples that become the features, or “addresses”,

presented to a probabilistic n-tuple classifier [35]. OnSNThas been applied to

both on-line and off-line recognition of handwritten characters and showed excel-

lent performance [36, 45]. Since OnSNT and SNT assume sequences of elements

in discrete input space, the input handwritten characters must first be converted into

sequences of elements from a discrete space, e.g. alphabetsor finite sets of points

in R
d. For instance, from a black and white image of handwritten characters, edge

transitions are encoded into top-down/left-right/black-white. Similar technique is

used to convert handwritten characters represented as 2D points sequences into se-

quences of elements from a discrete space. But finding such a transformation is in

general not a straightforward process.
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Alternatively, we could use methods that compare variable length sequences

directly, e.g. dynamic time warping (DTW). DTW is an effective method to com-

pute the similarity, or equivalently, distance between twosequences such as speech

or handwritten characters [9,50]. For two sequences of lengthsn andm, DTW first

computes ann × m distance matrixM, whereMij is the distance betweeni-th

element of one sequence andj-th element of the other one. Then, DTW matches

elements by walking along a path inM from M11 to Mnm. A diagonal step in this

path indicates a match. Total distance is the summation of distances of matched

elements. The path that gives minimum total distance is found using dynamic pro-

gramming. An extensive survey has shown that DTW methods areamong the most

effective techniques for classifying sequence data [29,32]. In [9], normalized coor-

dinates and the tangent slope angle are computed at each of the points in a stroke

sequence to form a feature vector. The distance is then computed using DTW, which

is used as the exponent of a radial basis function (RBF).

DTW is useful because the similarity of variable length sequences can be

systematically computed. It does so by non-linearly matching sequences, skipping

elements that yield sub-optimal solutions. However, at thesame time, information

is lost in doing so. Unmatched elements may exhibit useful information for fur-

ther learning. Also, the path of comparison must start from the top left element

of comparison matrix. This means that at least one of the two sequences match

from its first element. This will be a limitation if we need to partially match both

sequences. In this case, one must start the path from a position other than anywhere

in the top row or leftmost column. Similar reasoning appliesto the end point as
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well. However, DTW does not support any mechanism for the determination of

the optimal starting and ending points. A set of subsequencematching techniques

has been proposed to match subsequences instead. Another problem with DTW is

the heavy computation needed for matching, i.e.O(nm), which makes application

to long sequences prohibitive. DTW based kernels can be shown to be symmetric

and to satisfy the Cauchy-Schwartz inequality [50]. SVM classifiers may employ

such kernels to classify sequential data. However, as the authors of [50] pointed

out, kernels based on DTW are not metrics. The triangle inequality is violated in

many cases and the resulting kernel matrices are not positive semi-definite. There-

fore, they are not admissible for kernel methods such as SVM in that they cannot

guarantee the existence of a corresponding feature space and any notion of optimal-

ity with respect to such a space. This, however, may not be a problem if one uses

learning methods that do not involve convex optimization.

On-line Handwritten Character Recognition On-line handwritten character recog-

nition is aimed at recognizing the movements of the character input devices such

as digital pens or mice that are represented as sequences of points into symbols as

the characters are written. This is different from the task of recognizing symbols

from the images of handwritten characters. Previous work onon-line handwrit-

ten character recognition can be roughly grouped into two categories of feature

extraction and direct matching, depending on how two handwritten characters are

compared. In feature extraction, a fixed number of features is computed from the

strokes which are compared using a generic similarity metrics e.g. inner product of
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RBF [8,32,45,54]. The advantage of this type of approach is that many conventional

learning algorithms are directly applicable that assume vector inputs and the major

drawback is the difficulty in representing the information about the ordering of the

points as a fixed dimensional vector. In comparison, approaches in direct match-

ing matches points in the strokes directly using techniquessuch as DTW [9, 50].

The advantage of this approach is that it is easy and straightforward to compare

sequences of variable lengths. The drawback is that sequences of variable lengths

do not fit traditional learning algorithms and distance metrics that assume vector

inputs.

Learning Unordered Sets Many representations used in computer vision con-

sist of unordered sets of features. An example is SIFT keypoints. SIFT computes

affine-invariant points in an image based on an analysis using multi-resolution con-

volutions. To compute the similarity between the two sets ofSIFT keypoints of

two different images, Lowe suggests to match keypoints based on the distances

between descriptors [34]. If more than a certain number of keypoints match be-

tween two images, then the images may be considered to contain the same object.

SIFT descriptors can be computed efficiently, but the suggested similarity metric

between two sets of SIFT descriptors is not a Mercer kernel. We can easily see this

by recognizing that it is not symmetric.

Grauman proposed pyramid match kernel (PMK) which computesthe simi-

larity of two unorderedsetsof local features [23]. It can handle inputs that consist

of unordered sets of features or parts with varying cardinality, where the correspon-
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dence between the features across each set is often unknown.It is a valid Mercer

kernel based on pyramid or multi-resolution histograms, that guarantees conver-

gence to a unique optimum when used with methods that requirepositive semi-

definite kernels. Kernel computation is extremely efficientO(dm log D), whered

andm are the sizes of two input sets of features andD is the diameter of the smallest

sphere that bounds the features.

Local features of this type of data are scattered around in a space that is

often different from the space in which the local features are contained. For in-

stance, SIFT keypoints are computed at variouslocationswithin the image or the

electromagnetic fields of molecules or fiducial points in 3D face images are located

at various positions inR3. The locations at which the local feature vectors are com-

puted form a geometric structure by themselves, though there is no notion of order.

Unfortunately, this information has been neglected in manyapproaches. In part,

this is because its use resulted in an adverse effect. Our results show, however, that

this structural information, if used right, could improve the classification accuracy

dramatically.

Numerous similarity metrics for unordered sets of local features have been

categorized into voting, bags of prototypical features, and correspondence-based

approaches [23]. PMK overcomes the difficulties of these methods by incorporat-

ing co-occurrence feature statistics and cross-bin matchings and doing so with a

significantly lower computational demand. However, PKM considers multi-level

histogramming only in the feature space. My parametric kernel function is simi-

lar to PKM in that it incorporates co-occurrence and can flexibly support cross-bin
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matching. In contrast to PKM, my approach takes the holisticgeometric structure

of local features through the use of meta information.

Face Recognition from Video Streams Given an arbitrary image, the goal of

facedetectionis to determine whether or not there are any faces in the imageand,

if present, return the image location and extent of each face. Facerecognitionis the

task of comparing an input image against a database of faces of different people and

finding a match to a specific person [66]. We apply our tailorable kernel technique

to the task of on-line face recognition in real-time on mobile robots. In general, face

recognition is a harder problem to solve than face detectionbecause human faces

are distinct from other types of objects but have small intra-class variations. It is one

of the most studied problems in image analysis and computer vision, with various

successful results obtained. Recently, it has drawn significant interest due to the

wide range of commercial and law enforcement applications,and the availability of

feasible algorithms and hardware systems after 30 years of research [67]. Though

there have been many promising face recognition methods, face recognition robust

against significant pose and illumination variations is still a very difficult task [67].

Most earlier work in face recognition is single image based.Face regions are

first detected from images by separating faces from background area. From the de-

tected face images, features are extracted for further recognition. Feature extraction

methods can be categorized into two groups: holistic or component-based. In holis-

tic approaches, a single feature vector is used to representthe face. For instance,

Karhunen-Loeve (KL) expansion is used to represent features as low dimensional
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vectors of coefficients of orthogonal components known as eigenfaces computed

from principal component analysis (PCA) [55]. Other techniques include Fisher’s

discriminant analysis [10], neural networks [20] and non-negative matrix factoriza-

tion (NMF) [31]. Holistic approaches, however, fail to achieve our goal because

they are highly sensitive to pose variations [26]. Such descriptors require that the

face images being compared are registered, i.e. well aligned, to a reasonably high

precision [53]. This is also what I have observed from my implementations of face

recognizers using PCA and NMF.

Component-based methods locate and extract facial components such as

eyes, mouth, and nose and construct features from them [26].For instance, Gabor

wavelets can be used to detect scale-invariant facial components [65]. The advan-

tage of component-based methods is that they do not require accurate alignment of

face images. However, facial component extraction may be too slow (e.g. 4 frames

per second [64]) for real-time applications. Combined with face detection, overall

processing speed drops below 2 Hz. Or facial component extraction may be very

difficult to use [22]. Also, recognition performance degradation is observed if facial

component extraction is not accurate enough [67].

Certain face recognition methods require special hardware,e.g. a Smart

Camera [19], which may be prohibitively expensive. Many other methods are

demonstrated by training and testing image from databases such as FERET [65],

the CMU PIE database [66], or the Yale Face B dataset. However,such image

databases are often constructed with care in a controlled environment, i.e. faces

are relatively well aligned and illumination varies in a predictable manner. In com-
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parison, in uncontrolled environments as in our problem, the variation in pose and

illumination is too extreme, making it almost practically impossible to build such

an image database.

Recently, research has focused more on face recognition fromvideo se-

quences [15]. However, face recognition from video streamscaptured by surveil-

lance cameras or webcams is still difficult because the imageand color quality of

the video is low. Tracking head and facial components may enhance face recog-

nition by correctly registering face images. If the camera position is stationary as

in surveillance systems, this is achievable because the lighting conditions remain

reasonably stationary as well. However, those techniques become mostly infeasible

if both the camera and the subject are moving because pose andillumination vary

significantly.

SIFT extracts scale and rotation invariant features from images. SIFT fea-

tures are also partially invariant to changing viewpoints and illumination [34]. It

has been used in tasks such as matching different views of an object or scene e.g.

stereo vision, object recognition, and robot localization. SIFT has recently been ap-

plied to face recognition and promising results are reported [13, 53]. However, the

representational ability of SIFT features for face recognition applications has rarely

been investigated systematically [37]. Other similar feature extraction methods that

find affine-invariant interest point descriptors include [38]. But most are compu-

tationally expensive for real-time purposes [14]. Based on our experiments, SIFT

recognized faces very well if illumination remains stationary, but slight changes in

the direction of lighting result in a significant degradation of recognition perfor-
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mance. Nevertheless, I have chosen SIFT as the feature representation because of

its advantages including robustness against pose variations, no need for expensive

face image registration, and computational efficiency.

Perhaps the most closely related work to ours is that of Tangelder and Schouten

[53]. They used an image descriptor called bi-cubic interpolated and histogram

equalized gray-scale image (BHG) descriptor to represent detected face images. In

the preprocessing phase, the IDIAP frontal face detector [46] extracts near-front

face regions of sizen × n pixels,n ≥ 24. BHG is computed from a detected face

image by resizing it intos × s images (s = 8, 16, 24, · · · ) using bi-cubic interpo-

lation and applying histogram equalization for illumination invariance. Tangelder

and Schouten compare BHG against other feature representations including SIFT

in the framework of face recognition using still images contained in video stream

recorded in unconstrained environments [53]. A sparse representation of the most

discriminant descriptors learned by a greedy search methodis used as the train-

ing dataset. Their analysis claims that their method achieves a recognition rate of

94% with a sparse representation containing10% of all available data, at a false

acceptance rate of4%.

The framework of this method is similar to ours in that a set ofimage de-

scriptors is constructed during training but differs in a number of aspects. First,

test images are captured in a much more controlled environment than ours. The

video clips of the ITT-NRC facial video database that are usedto test the proposed

method are shot under approximately the same illumination conditions (no sunlight,

only ceiling light evenly distributed over the room), the same setup and almost the
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same background, for all people in the database [21]. This was to test the recog-

nition performance with respect to factors inherent in video-based face recognition

such as low resolution, motion blur, out-of-focus, facial expression and orientation

variation, and occlusion. In comparison, the camera is not stationary in our sys-

tem as it is mounted on a mobile robot. People can walk freely in a space where

lights are unevenly distributed. In addition, the lightingin video clips of ITT-NRC

is brighter than that in our environment. Second, the greedydescriptor selection is

not an on-line learning method, thus not directly applicable in our framework.

2.4 Summary

In this chapter, I presented a set of approaches related to the work in this disserta-

tion. Structured inputs do not fit traditional learning methods and distance metrics

that assume vector inputs. Neither is it easy to represent the irregular structure into

uniform length vectors. Fortunately, we can provide a solution to this problem by

defining kernels for structured inputs.

Kernels for sequences and unordered sets of local feature vectors have been

proposed. They have been applied to a wide range of applications including on-line

handwritten character recognition, trajectory classification, object recognition, or

image category learning and retrieval, etc. It is difficult to represent the information

about the ordering of the points in strokes in uniform lengthfeature vectors. DTW

does not yield a distance metric that cannot be used in kernel-based learning algo-

rithms and is in general not applicable to structures other than sequences. Kernels
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such as PMK has successfully computed the distance between two unordered sets

of local features. However, the usefulness of the information about the distribution

of the local features over the input images has not been addressed enough.

Our review motivates the need of a more systematic approach to build ker-

nels that effectively model the structure among the local features.
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Chapter 3

Parametric Kernels

This chapter introduces the fundamental concept of parameterization and paramet-

ric kernel functions that provides the ability to tailor kernel functions to adapt to

the structures of local features in the inputs. As mentionedin Chapter 1, the under-

lying intuition is to capture the structural information inthe notion ofmanifoldsof

some dimension. For convenience, the presentation is basedon but not limited to

sequence structures.

3.1 Parameterization

Consider an inputx represented as a sequence ofn elementsxi ∈ X, i.e. x =

[x1, · · · , xn]. We could choose to associate each elementxi with parameterτ (xi)
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in parameter spaceT as follows

τ (xi) =











∑i

k=2 ‖xk − xk−1‖ if i > 1,

0 otherwise.
(3.1)

The associated parameters form a non-decreasing sequence of non-negative

real numbers, starting from zero. This is equivalent to arc length computed from

piece-wise linear interpolation of thexi. For any two such sequences, a parametric

kernel at each iteration picks one element from each of the sequences and computes

the similarities between the elements and their associatedparameters separately.

These are multiplied to return an overall similarity between the elements. This

product of the similarities of the elements and their parameters implies that two

similar elements may contribute significantly to the overall sequence similarity only

when their associated parameters are similar as well. This step is repeated for all

pairs of elements from the two sequences, and the results aresummed to return the

overall sequence similarity.

Näıve application of this approach has the potential to be swamped by the

computational expense of performing many comparisons between elements with

widely divergent parameters which contribute little or nothing to the final result.

Intuitively, we could handle this by limiting the comparisons only to subsets of

elements that areclosein parameter space. This closeness in parameter space is

easily specified by the decomposition of parameter space into ranges, so that close

elements are defined to be those whose parameters fall into the same range. For

instance, we could decomposeT into non-overlapping intervals of equal length∆,
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Figure 3.1: Mapping Sequence to Parameter Space

and elements from the two sequences are close if their associated parameters fall

into the same interval. See Figure 3.1, where elements inx andz are grouped into

three ranges based on the aforementioned decomposition scheme.x1, for instance,

will be compared against onlyz1 andz2, both inX andT . Any sequencedata types

fall into this category, e.g. handwritten characters, laser sensor readings, digital

signals, and so on.

The underlying intuition in our work is to associate aparameterwith each of

the elements so that enforcing parametric similarity is equivalent to the similarity in

the structure of elements in the input patterns. For example, handwritten characters

are sequences of 2D points, while images are often convertedinto unordered sets

of d dimensional local features. Thestructureof handwritten characters is a 1D

manifold in R
2 and that of unordered sets ofd dimensional local feature vectors
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computed from images is a 2D manifold inR
d. A parameter of an element is then

a point in this manifold that corresponds to the element. If parameters of any two

elements are close, then they are structurally close. This parametrization is part of

our kernel design scheme. Though we propose methods of designing kernels for

variable length sequences of local feature vectors, mathematical extension of our

formulation to structures of higher dimensional manifoldsis straightforward.

3.2 Parametric Kernel

Our input patternx is a sequence of|x| elements, where each elementxi is a d-

dimensional vector, i.e.x = [x1, · · · , x|x|] andxi ∈ R
d. We associate each element

with a parameter in parameter spaceT via a functionτ : R
d → T . Consider a

decomposition ofT into N non-overlapping ranges

T =
N−1
⋃

t=0

Tt. (3.2)

For instance, recall the earlier sequence example, whereT was the set of

non-negative real numbers andτ is defined as (3.1).T was decomposed as shown

in Figure 3.2.

0 ∆ 2∆ 3∆ 4∆ 5∆

...T0 T T T1 2 3 T4

Figure 3.2: Parameter space is decomposed into non-overlapping ranges of length
∆.
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For the derivation of parameter kernel functions, we first define thedecom-

posed element setfor Tt asIt(x) = {xi|τ (xi) ∈ Tt}, which is the set of elements

of x whose associated parameters are inTt. In our previous example shown in

Figure 3.1, for instance,I1(x) = {x2, x3} andI1(z) = {z3, z4, z5, z6}. We then

compute a similarity for each range by taking a weighted sum of the similarities

of every pair of elements of the sets being compared whose parameters fall within

the range. ForT1, we will comparex2 with z3, x2 with z4, · · · , andx3 with z6.

The similarity for a given pair of elements is obtained by taking the product of the

similarity κτ : T × T → R between those elements’ parameters and a similarity

κx : R
d × R

d → R defined directly on the elements themselves, each of which is

a Mercer kernel function. Then, the feature extraction function φ of a parametric

kernel is defined as

φ(x) = [φ0(x), φ1(x), · · ·φN−1(x)], (3.3)

where

φt(x) =
∑

xi∈It(x)

wxi
κx(xi, ·)κτ(τ (xi), τ (·)), (3.4)

andwxi
is a non-negative weighting factor. Given two sequencesx = [x1, · · · , x|x|]

andz = [z1, · · · , z|z|], the parametric kernel functionbefore normalizationis then

defined as the sum of the similarities for all ranges :

κ(x, z) = 〈φ(x) · φ(z)〉 =
N−1
∑

t=0

〈φt(x) · φt(z)〉, (3.5)

40



where

〈φt(x) · φt(z)〉 =
∑

xi∈It(x)
zj∈It(z)

wxi
wzj

κx(xi, zj)κτ(τ (xi), τ (zj)). (3.6)

Note that the product ofκx andκτ is taken in (3.4). This means that both

must score high to have significance in (3.5). It is worthwhile to compare this form

of embedding parametric similarity against other possibilities. A simpler way, for

example, is to use combined feature vectorsx′
i = (xi, τ (xi)) andz′j = (zj, τ (zj))

instead and use onlyκx. In this case, parametric similarity may non-linearly con-

tribute to overall similarity depending on the kernel chosen, resulting in behavior

that is difficult to predict. Also note that no comparison is made between elements

that are not from a common range. If, instead, we have to compare all elements

from one input with all from the other input, we will face a number of undesirable

consequences. For instance, in Figure 3.1, we will comparex1 with {z1, · · · , z7},

rather than{z1, z2}. This will result in a higher similarity value, which may be

helpful for certain cases. But, at the same time, we are more likely to be confused

by inputs where there are too manyfar elements, in which case we are swamped by

bad comparisons. Of course, we may need dramatically more time to compute (3.5)

as the number of kernel evaluations is significantly increased since all elements are

compared.

Parameter space decomposition solves such problems. However, such a de-

composition scheme can introduce quantization errors. To overcome this problem,

we allow the ranges to overlap. For instance, ranges in Figure 3.2 may overlap by

∆/2, as shown in Figure 3.3. To suppress over-contribution of elements that fall
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into the intersections of ranges, we introduce weighting factors in (3.4).

0

...T1

0T T2

3T

T4

∆/2 ∆ 3∆/2 2∆ 5∆/2

Figure 3.3: Ranges overlap by∆/2.

The simplest weighting scheme is to take the average of the similarity at

the overlapped regions. In this scheme, the default value for wxi
is 1/|Txi

|, where

Txi
= {Tt|τ (xi) ∈ Tt}. When no ranges overlap, we have|Txi

| = 1 and there-

fore, wxi
= 1. Otherwise, overlapped ranges may yieldwxi

< 1. For instance,

with the decomposition scheme in Figure 3.3, at intersection [∆/2, ∆), we will set

wxi
= 1/2, since|Txi

| = 2. Note that this scheme will not result in|Txi
| = 0, i.e.

wxi
→ ∞, since (3.4) will be evaluated only whenIt(x) 6= ∅. If It(x) = ∅, then

φt(x) ≡ 0 and the term is just ignored. Further discussion of different decomposi-

tion schemes is given in 3.3.

Finally, to avoid favoring large inputs, we normalize (3.5)by dividing it by

the product of the norms ofx andz,

κ(x, z) =
κ(x, z)

√

κ(x,x)× κ(z, z)
. (3.7)

This is equivalent to computing the cosine of the angle between two feature

vectors in a vector space model.
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3.3 Parameter Space Decomposition Scheme

In this section, our decomposition scheme is discussed in general in terms of pros

and cons with respect to additional cost of computation and changes in classification

performance due to range overlapping and similarity weighting. Then, a number of

different decomposition schemes are presented.

As mentioned above, decomposition lets us avoid swamping bybad com-

parisons and dramatically reduces the computational cost of kernel evaluation but

introduces quantization error. This is alleviated by allowing for range overlapping

and similarity weighting. However, overlapping must be allowed with care. In-

creasing the size of range overlaps will require additionalcomputation since it is

likely to involve more kernel evaluations as more elements are found in each inter-

section. The gain of decreasing quantization error may provide little improvement

in classification performance if we are swamped by bad comparisons. Thus there is

a trade off between quantization error and classification performance.

One issue left is the time to compute the decomposed element sets. The

more complicated a decomposition scheme gets, the more difficult the implementa-

tion becomes and the more time it takes to run. Fortunately, our experimentation has

revealed that classification performance is relatively insensitive to minor changes in

the decomposition scheme. Therefore, we can often favor simpler decomposition

schemes for ease of implementation and efficient kernel evaluation with the expec-

tation of only minimal losses in performance.

We now present a number of example parameter space decomposition schemes.
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Regular Decomposition Parameter ranges all have a common length∆ as in

Figure 3.2 or 3.3. Implementation is simple, and it shows good classification per-

formance in general. But we have limited freedom to fit the data.

Irregular Decomposition Parameter ranges are of varying lengths. Implementa-

tion is complicated and often decomposed element sets take longer to compute. But

we can freely decompose the parameter space to better fit the data.

Multi-scale Decomposition Parameter ranges form a hierarchical structure at dif-

ferent resolutions. For instance, we may consider a decomposition where ranges

form a pyramid as shown in Figure 3.4. Elements from non-adjacent ranges could

be compared at coarser resolutions. Along with a proper weighting scheme, this

may improve the performance. But implementation is more complex and kernel

evaluation may take longer.

7T

0 ∆ 2∆ 4∆ 5∆

...T T1 2 3 TT

3∆

...

...T

T T4 5

6

0

Figure 3.4: Pyramidal Parameter Space Decomposition
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3.4 Mercer Condition

According to Mercer’s theorem, a kernel function corresponds to an inner product

in some feature space if and only if it is positive and semi-definite. A unique op-

timal solution is guaranteed by kernel methods only when kernels are positive and

semi-definite. To see that our proposed method produces positive and semi-definite

kernels, we first note that (3.4) is positive and semi-definite. Such kernels are called

summation kernelsand proven to be positive and semi-definite [25]. It is not diffi-

cult to see that (3.5) is just a sum of summation kernels. Since we can synthesize a

new Mercer kernel by adding Mercer kernels [49], (3.5) is a Mercer kernel.

3.5 Efficiency

The time complexity to compute parametric kernels depends greatly on the partic-

ular decomposition scheme used. Here we provide a brief analysis only for regular

decomposition schemes.

Assume that constant time is needed to evaluateκx andκτ and that we are

using a regular decomposition scheme as in Figure 3.2 or 3.3.Then the time com-

plexity of evaluating (3.5) for sequencesx andz composed of|x| and|z| elements,

respectively, is, on average,O(|x||z|∆/L), whereL = max(τ (x|x|), τ (z|z|)). In

the worst case without decomposition,∆ = L, so the complexity isO(|x||z|). In

general, we expect decomposition to produce∆ ≪ L since we would like to have

only a reasonably small subset of elements in each range.
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The storage complexity isO(1) since we only keep the sum of kernel eval-

uations in memory. The time complexity to decompose the sequences into their

respective element sets isO(|x|+ |z|), if constant time is taken for each element.

3.6 Manifolds in Higher Dimensions

For convenience, the presentation in this chapter so far assumed that the structure of

the input patterns is sequences. However, the idea is not at all limited to sequences

since the parametric spaceT may be arbitrarily chosen. The importance is rather at

the interpretation of the manifold of structures in higher dimensions. Just as with

sequences, the natural encoding of local features scatter over the surfaces or the

volume should be a 2D or 3D manifold, respectively. Depending on the problems

at hand, the manifold of the structure may be even higher dimensional.

46



Chapter 4

On-line Handwritten Character

Recognition

In this chapter, I apply the parametric kernel framework to the task of recognizing

on-line handwritten characters. This is a different task from the optical character

recognition (OCR) which is aimed at the translation of character images into cor-

responding characters. The goal of the on-line handwrittencharacter recognition,

or equivalently, the handwriting recognition is an automatic conversion of text as it

is written using pointers such as a digitizing pen or a mouse,where a sensor picks

up the pointer position. I adopt a common representation of on-line characters,

where an on-line handwritten character is represented as a sequence of strokes and

a stroke is represented as a sequence of 2D coordinate of the sampled pointer posi-

tion p(t) = (x(t), y(t)) over timet. A stroke is separated from another by a pen up

or mouse release event.
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Takingp(t) as the element and the accumulated piece-wise linear distance

as the parameter, it is straightforward to construct a parametric kernel function ap-

plicable to on-line handwritten character recognition. Asthe preliminary work, I

applied this kernel to handwritten digits recognition and object detection from the

laser range finder sensor data. Though I achieved excellent results of about1% of

average false negative rate [51], it still required an objective performance evaluation

including the comparison against existing techniques because the results are based

on experiments using datasets that are not public. Hence, a public dataset has been

used in the main work presented in this chapter.

I experimented with the UNIPEN dataset, which has been widely used in a

large volume of research over a decade. This dataset is very difficult to classify since

the underlying data sources are highly variable in terms of (1) tablets, (2) drivers and

(3) the signal type (e.g. equidistant in time, equidistant in space, non-equidistant).

Also, there are labeling and segmentation problems [5]. In conjunction with SVMs,

I obtained competitive results in the task of recognizing digits and upper and lower

case alphabets.

In section 4.1, I describe the setup of my experimentation, followed by the

results in section 4.2. I conclude this chapter with the discussion in section 4.3.

4.1 Experimentation Setup

In this section, I describe the data sets and normalization used in my experiments

on the on-line handwritten character recognition, followed by the definitions of
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the and the parametric kernel functions for handwritten characters and the learning

algorithm.

4.1.1 Handwritten Character Datasets

Handwritten character recognition is often categorized into two classes, i.e. multi-

writer and omni-writer recognition. The goal of the multi-writer recognition is to

recognize characters written by a set of predefined writers,while that of the omni-

writer is to recognize characters written by any writers. Though the omni-writer

recognition is desirable, it is in general a more difficult task than the multi-writer

recognition as the handwriting variation is significant between different individuals.

The dataset used in the preliminary work is limited in terms of the size of the data

and the number of writers to support learning multi- or omni-writer recognizers.

Therefore, I experimented with the UNIPEN TrainR01/V07 dataset, which has

been widely used in a large volume of research over a decade.

The UNIPEN TrainR01/V07 dataset is composed of total 6 categories of

isolated characters and 5 categories of isolated words. Theexamples are voluntar-

ily generated and submitted by hundreds of writers internally. Among the 11 cate-

gories, I experimented with 1a (isolated digits), 1b (isolated upper case alphabets),

and 1c (isolated lower case alphabets). This is because my goal is to demonstrate

the efficacy of the parametric kernel using 1D manifold parameterization, rather

than a full scale handwriting recognition. Also, since mostresearch has used only

the three categories, it is feasible to make comparison against them over the same

49



set of data.

This dataset is, however, very difficult to classify since the underlying data

sources are highly variable in terms of (1) tablets, (2) drivers and (3) the signal type

(e.g. equidistant in time, equidistant in space, non-equidistant). Also, some exam-

ples are corrupt and there are labeling and segmentation errors [5]. Some of the data

are lost or unreadable. Especially, I had to deliberately exclude the examples under

tos directory because the data are corrupt in that either some strokes are missing

or noisy strokes are added. See the bad examples in Figure 4.3. The total number of

examples and the actual number of examples used in my experiments after remov-

ing unreadable or corrupt data from categories 1a, 1b, and 1cof Train R01/V07 are

summarized in Figure 4.1, followed by example characters shown in Figure 4.2.

Category # of Total Examples # of Examples Used Loss Ratio
1a 15953 15404 3.44%
1b 28069 26341 6.16%
1c 61351 59893 2.38%

Total 105373 101638 3.54%

Figure 4.1: Total number of examples are shown in the first column. The number
of actual examples used in my experiments after removing corrupt examples under
tos directory and those with unreadable strokes are shown in thesecond column.
About 3.54% of the overall data in categories 1a, 1b, and 1c are lost. Removing
small amount of corrupt, mislabeled, or unreadable examples from TrainR01/V07
has been inevitable and reported by many researchers [45,59].

Another major problem with UNIPEN dataset is that there is only a train

set in TrainR01/V07. In the past, some researchers used a separate dataset called

DevTestR02/V02 as the test set. Unfortunately, this dataset is not publicly avail-

able. Therefore, other researchers had to arbitrarily split data in TrainR01/V07 into
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1a : Isolated digits

1b : Isolated upper case alphabets

1c : Isolated lower case alphabets

Figure 4.2: Examples of the UNIPEN TrainR01/V07 in categories 1a (isolated
digits), 1b (isolated upper case alphabets), and 1c (isolated lower case alphabets)
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Label : O (upper case ’oh’) Label : x Label : y Label : Z

Label : A Label : 0 (zero) Label : 2 Label : 3

Figure 4.3: Some of the corrupt examples undertos directory are shown with
their labels. A large portion of the examples are corrupted by added noisy strokes,
while the remaining ones are mainly missing strokes, eitherdue to incorrect seg-
ment specification or incorrect captures.

train and test sets. Due to the diversity of methods to clean up the data and to split

the dataset, it has been very difficult to directly compare recognition rates reported

by many other researchers. In this work, I run experiments and compare against

existing techniques in a context that is as close to the one provided by Ratzlaff [45].

4.1.2 Character Representation and Normalization

In UNIPEN dataset, a handwritten characterX is represented as a sequence of

|X | strokes, where a strokeXi is represented as a sequence of|Xi| pointsx
k
i =

(xk
i , y

k
i ) ∈ R

2, i.e. Xi = [x1
i , · · · ,x

|Xi|
i ]. Due to the high variability of the data

sources in terms of the device and the writer, the characterssignificantly vary in

size and position. To make the system size- and position- invariant, the characters
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are normalized by first translating the points by

(

−

∑|X |
i=1

∑|Xi|
k=1 xk

i
∑|X |

i=1 |Xi|
,−

∑|X |
i=1

∑|Xi|
k=1 yk

i
∑|X |

i=1 |Xi|

)

(4.1)

so that they are centered at the origin and scaling horizontally and vertically by a

uniform scaling factorh/(max
i,k

yk
i −min

i,k
yk

i ), so that all characters have equal height

h. By default, I usedh = 50.

4.1.3 Parametric Kernels for Handwritten Characters

In the preliminary work, the parametric kernel function wasdefined for point se-

quences [51]. To overcome the aforementioned limitations,I defined parametric

kernel functions for segment sequences. The definitions aregiven below.

Parameterization Let a characterX = [X1, · · · , X|X |] be a sequence of|X |

strokes, where a strokeXi = [x1
i , · · · ,x

|Xi|
i ] is a sequence of|Xi| pointsx

k
i ∈ R

2.

Then,xk
i is associated with a parameterτ (xk

i ) in parameter spaceT as follows

τ (xk
i ) =







































τ (x1
i ) +

∑k

n=2 ‖x
n
i − x

n−1
i ‖ if i > 1, k > 1,

∑k

n=2 ‖x
n
i − x

n−1
i ‖ if i = 1, k > 1,

τ
(

x
|Xi−1|
i−1

)

+
∥

∥

∥
x

1
i − x

|Xi−1|
i−1

∥

∥

∥
if i > 1, k = 1,

0 if i = 1, k = 1,

(4.2)

which is the piece-wise linear accumulated distance, considering that all strokes are

concatenated into a single sequence of points in their order. This parameterization

is used in the following parametric kernel definitions.

53



Parametric kernel for handwritten characters The definition of the parametric

kernel function for handwritten characters that is provided in this section is stroke-

blind, i.e. each of the characters is represented as a singlesequence of points.

Characters represented as sequences of strokes are straightforwardly converted into

this representation by concatenating all strokes into a single sequence of points in

their order. Consider a decomposition ofT into N ranges

T =
N−1
⋃

t=0

Tt. (4.3)

Given two charactersX = [x1, · · · ,x|X |] andZ = [z1, · · · , z|Z|], the para-

metric kernel before normalization is defined as

κ(X ,Z) =
N−1
∑

t=0

〈φt(X ) · φt(Z)〉, (4.4)

where

〈φt(X ) · φt(Z)〉 =
∑

xi∈It(X )
zj∈It(Z)

wxi
wzj

κPT(xi, zj)κτ(τ (xi), τ (zj)), (4.5)

whereκPT : R
2 × R

2 → R andκτ : T × T → R are Mercer kernels that evaluates

the similarity between two points in the sequence and their parametric similarity,

respectively. The definition of the decomposed element setIt and the weighting

scheme is identical as in Chapter 3.

To suppress favoring large inputs and to penalize the presence of unmatched
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points, (4.4) is normalized by the produce of self similarity of X andZ :

κ(X ,Z) =
κ(X ,Z)

√

κ(X ,X )× κ(Z,Z)
. (4.6)

Assuming that a regular overlapping decomposition scheme is used with

range length∆ and hop length∆/2 and that constant time is needed to evalu-

ateκPT andκτ , the average time complexity ofκ is O(|X ||Z|∆/L), whereL =

max(τ (x|X |), τ (z|Z|)).

4.1.4 Learning Algorithm

I take a kernel-based approach to learn classifiers. LetΣ be the set of total symbols

in the dataset. For each symbolς ∈ Σ, a set ofℓ training character examples

X train
ς = {X 1

ς , · · · ,X ℓ
ς } are provided. The objective of training is to learn a multi-

class classifierf : X 7→ ς ∈ {∅} ∪ Σ, that maps an input characterX to the

correct label of the character, if it is a symbol inΣ, or a null symbol∅, otherwise.

In my learning framework, I implementf as a set of|Σ| one-versus-all classifiers,

fς : X 7→ sgn(ϑς − θς) for all ς ∈ Σ, which computes a certaintyϑς ∈ R that

indicates how certainfς is that the true label ofX is ς and maps to 1 ifϑς > θς ,

and -1, otherwise, for a thresholdθς ∈ R. The final decision is made such that, for

Σ+ = {ς | fς(X ) > 0 for ς ∈ Σ},

f(X ) =











arg
ς∈Σ+

max ϑς if |Σ+| > 0,

∅ otherwise.

(4.7)
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During testing,f classifies a set of test character examplesXn for n =

1, 2, · · · , each of which is labeled with the correct symbolςn ∈ Σ. The classi-

fication of f is said to be correct whenf(Xn) = ςn. If either f(Xn) 6= ςn or

f(Xn) = ∅, then the classification off is said to be incorrect. I use the support

vector novelty detection algorithm to learnfς .

The main shortcoming of the multi-class classifier in (4.7),which is some-

times calledwinner-takes-allapproach, is that it is somewhat heuristic. Eachfς is

trained on different unsupervised learning problem, the certainty values may not be

on comparable scales. When more than onefς classifies an example as positive,

i.e. |Σ+| > 0, then their certainty values must be somehow compared to choose

one class as the decision. For this, there has been some effort to convert the cer-

tainty values into probabilities [48, 52], such as relevance vector machines [41].

Other common approach is to train a binary classifier for every possible pair of

classes [30]. This results in|Σ|(|Σ| − 1)/2 binary classifiers. Due to the quadratic

increase in the number binary classifiers to train and evaluate during testing, it is

often prohibitive for practical purposes. For instance, for a set of upper case al-

phabet, total26(26 − 1)/2 = 325 binary classifiers must be evaluated to classify a

single example. An alternative approach is to train and testsimultaneously by hav-

ing a multi-dimensional labels [63]. Unfortunately, optimization is difficult since

it has to deal with all support vectors at the same time. Overall, it is fair to say

that there is probably no multi-class approach that generally outperforms the oth-

ers [47]. Therefore, I chose a one-versus-all approach, which allows for fast training

and classification with reasonably acceptable results.
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Support vector novelty detection Support vector novelty detection (SVND) is

an unsupervised learning algorithm for the estimation of novelty of an example.

This problem can be described as follows. Given a set of unlabeled examples drawn

from an underlying probability distributionP , we estimate a subsetS of the input

space such that the probability that a test point drawn fromP lies outside ofS

equals some a priori specified value between 0 and 1 [47]. Thisproblem is solved

by finding the boundary functionf which is positive inS and negative on the com-

plement in the support vector framework as follows.

Suppose we are given a set of unlabeled, i.e.normal training examples

drawn from an input spaceX

X = {x1, · · · ,xℓ} ⊂ X , (4.8)

whereℓ is the training set size. For simplicity, supposeX is a compact subset ofR
d

for some dimensiond. Consider the following boundary function

f(x) = sgn
(

〈w · x〉 − ρ
)

, (4.9)

wherew ∈ R
d is the weight vector andρ ∈ R is the bias. We findw andρ by

solving the following quadratic problem :

minimize
1

2
‖w‖2 +

1

νℓ

∑

ξi − ρ

subject to〈w · xi〉 ≥ ρ− ξi,

ξi ≥ 0, for i = 1, · · · , ℓ,

(4.10)

57



whereξi are the slack variables andν ∈ (0, 1] is a control parameter.

The dual of this problem is

maximize
1

2

∑

i,j

αiαj〈xi · xj〉

subject to0 ≤ α ≤
1

νℓ
, for i = 1, · · · , ℓ,

ℓ
∑

i=1

αi = 1,

(4.11)

whereαi are the Lagrangian multipliers. Ifα∗
i solve the dual problem, then the

primal variables can be computed asw =
∑ℓ

i=1 α∗
i xi andρ =

∑

j α∗
j〈xj · xi〉, for

any support vector, i.e.0 < α∗
i < 1/(νℓ). A non-linear solution could be found

by substituting〈xi · xj〉 in (5.17) with a non-linear Mercer kernel. The following

statements hold forν if ρ 6= 0.

• ν is an upper bound on the fraction of outliers.

• ν is a lower bound on the fraction of support vectors.

4.2 Results

I begin with presenting the result of the preliminary work in4.2.1 on the multi-

writer digit recognition. I experimented with a handwritten character dataset of

digits of which is constructed by a predefined number of writers in a similar man-

ner as the UNIPEN dataset. The results of this preliminary work was very promis-

ing [51]. In 4.2.2, I present the results of the main work on the UNIPEN dataset
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which is widely used by many researchers for over a decade. I followed the context

suggested by Ratzlaff to make comparisons against other existing techniques on the

same dataset [45].

4.2.1 Preliminary Work on Digit Recognition

As a proof of concept of the parametric kernels, I designed a parametric kernel for

sequences of elements and implemented a handwritten digit recognizer. I used a

handwritten character dataset of digits constructed as follows. The train dataset is

composed of 200 labeled examples created by two writers, each of whom wrote

numeric characters from ’0’ to ’9’ ten times. The test dataset is composed of 500

labeled examples created by other authors, 50 for each character. Figure 4.4 shows

some training examples for characters ’0’ to ’9’ with the number of points in each

of them shown below. Characters are normalized to fit the a bounding box of size

300× 300 centered at the origin.

24 points 4 points 11 points 13 points 13 points 17 points 11 points 7 points 17 points 16 points

16 points 3 points 21 points 21 points 22 points 25 points 28 points 17 points 37 points 22 points

14 points 7 points 11 points 13 points 17 points 17 points 9 points 8 points 13 points 14 points

Figure 4.4: Examples of handwritten digits

I used a regular overlapping parameter space decompositionscheme shown

59



in Figure 3.3, with range length∆ = 60 and hop length∆/2 = 30. I choseκPT as

a radial basis function

κPT(x, z) = e
−
‖x− z‖2

γσ2
PT , (4.12)

whereσPT ∈ R is the width,γ ∈ R is the width control parameter, andκτ as a

radial basis function

κτ(τ (x), τ (z)) = e
−
‖τ (x)− τ (z)‖2

γτσ2
τ , (4.13)

whereστ ∈ R is the width andγτ ∈ R is the width control parameter. The widths

are set toσPT = 30, στ = 30, the width control parameters are set toγ = γτ = 1.0,

and the SVND parameterν is set toν = 0.8.

The result is shown in Figure 4.5. The classification error ismeasured as

the ratio of incorrectly classified examples to the total examples in the test set. The

average error rate is about1%.

Class Error Class Error
’1’ 0.98% ’6’ 1.15%
’2’ 1.12% ’7’ 0.41%
’3’ 0.10% ’8’ 0.23%
’4’ 0.89% ’9’ 0.09%
’5’ 1.01% ’0’ 0.01%

Figure 4.5: Results of handwritten digit recognition

Though the result is promising to be a proof of concept, it is difficult to ob-

jectively compare against other approaches because the results are not based on a
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publicly available dataset. However, this work identified anumber of important

components of the idea including data normalization and parameter space decom-

position.

4.2.2 Multi-Writer Character Recognition

Many researchers reported the difficulty in directly comparing the recognition rates

of existing techniques using the UNIPEN TrainR01/V07 dataset. Also, There is

only a train set in TrainR01/V07. In the past, some researchers used a sepa-

rate dataset called DevTestR02/V02 as the test set. Unfortunately, this dataset

is not publicly available. Therefore, other researchers had to arbitrarily split data

in Train R01/V07 into train and test sets. Due to the diversity of methods to clean

up the data and to split the dataset, it has been very difficultto directly compare

recognition rates reported by many other researchers. Here, I run experiments and

compare against existing techniques in a context that is as close to the one provided

by Ratzlaff [45].

For each category, e.g. 1a, 1b, or 1c, a subset of10%, 20%, 33%, 50%,

66%, and90% of the TrainR01/V07 dataset as the train data and the rest as the test

data. Following the scheme suggested by Ratzlaff, the characters for each category

are drawn in character-by-character, file-by-file order as given in the file list and

distributed in sequence into different buckets taking the modulusN = 10, 5, 3, 2.

For 10% ∼ 50%, the subset in the first bucket are used as the train set and the

remainder as the test set, while for66% and90%, I usedN = 3 andN = 10
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and chose the firstN − 1 buckets as the test data. I use the same split scheme in

my experiments. The classification error is measured as the ratio of the number of

incorrectly classified test characters to total number of characters in the test subset.

I used the same learning algorithm and the evaluation metricas in the preliminary

work.

The parameter values are determined as follows. Let theparametric length

τX of a characterX be the parameter of the last point in the last stroke. The average

parametric length of characters in a train setSς = {X 1
ς , · · · ,X ℓ

ς } for a symbolς is

τ ς =
1

ℓ

ℓ
∑

n=1

τXn
ς
. (4.14)

I set∆ asβτ ς , whereβ ∈ R is a control parameter. The default value ofβ

is 0.25. Also, I set the hop length as∆/2. For two charactersX = [X1, · · · , X|X |]

andX ′ = [X ′
1, · · · , X

′
|X ′|], let the average point distance be

σXX ′

=

∑N−1
t=0

∑

x∈It(X )
x
′∈It(X ′)

‖x− x
′‖

∑N−1
t=0 |It(X )||It(X ′)|

. (4.15)

For the train setSς , the width ofκPT for a symbolς is

σPT =

∑ℓ

n=1

∑ℓ

m6=n σXn
ς Xm

ς

ℓ(ℓ− 1)
. (4.16)

Similarly, let the average parametric distance be

σXX ′

τ
=

∑N−1
t=0

∑

x∈It(X )
x
′∈It(X ′)

‖τ (x)− τ (x′)‖

∑N−1
t=0 |It(X )||It(X ′)|

. (4.17)

62



For the train setSς , the width ofκτ for a symbolς is

στ =

∑ℓ

n=1

∑ℓ

m6=n σ
Xn

ς Xm
ς

τ

ℓ(ℓ− 1)
. (4.18)

The width control parameters are set toγ = γτ = 0.5. For SVND, I used

ν = 0.5 based on the Schölkopf’s observation that a reasonably largeν results in

classifiers that do not overfit the data but, at the same time, cover isolated examples

in the feature space [47].

For any given portion of the training data used, I achieve thelowest and

the highest error rates in category 1a (isolated digits) and1c (isolated lower case

alphabets), respectively. This is not only because 1a has less number of classes

but the class boundaries between many of the lower case alphabets are fuzzy, for

instance, the cursive writings of ’e’ vs. ’l’ or ’o’ vs. ’c’ vs. ’e’, or ’f’ vs. ’h’.

For each category, the error gets lower as more number of examples are used. At

about50% or higher, the error rates get stabilized around the minimumvalue. The

classification errors of multi-writer recognition from tests with varying proportion

of the train set used for the three categories 1a, 1b, and 1c are shown in Figure 4.6,

4.7, and 4.8.

For category 1a, the parametric kernels achieve error ratesof 3.9% and3.4%,

using20% and33% of the training data, respectively. Compared to this, Bahlmann’s

SVM / GDTW method achieved4% and3.8% using20% and40% of the training

data that are randomly drawn [9]. Using HMM / SDTW [8], Bahlmann achieved

4.5% and3.2% of the error rates, from20% and40% of training data ratio. After

removing about4% of “bad characters”, Hu et el. achieved3.2% of error rate
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Figure 4.6: Multi-writer recognition error rates for categories 1a (isolated digits)

using HMM [27]. Using the on-line scanning n-tuple (OnSNT) classifier [35, 44],

Ratzlaff achieved the best error rates of about1.5% or less. OnSNT is known as

a fast and accurate method for classifying sequences [36]. OnSNT first extracts

both static and dynamic features into chain codes and then a sliding window is

scanned across the chain code sampling it into n-tuples thatbecome the features (or

“addresses”) presented to a probabilistic n-tuple classifier. Also, the HMM model

based approach of Li et. el achieved8.2% of error rate, using about50% of the data.

The error rates of my approach is about2 ∼ 2.5% higher than those of OnSNT, if

less than half of the training data are used, while it is superior to other approaches.

If 50% or more data are used, then the error rate drops to about2%, which is only

about0.5% more than the best known results.

For category 1b, the parametric kernels achieve error ratesof 7.2% and6.3%,
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Figure 4.7: Multi-writer recognition error rates for categories 1b (isolated upper
case alphabets)

using20% and33% of the training data, respectively. Compared to this, SVM /

GDTW method achieved7.6%, using both20% and40% of the training data [9].

HMM / SDTW method achieved10% and8%, using20% and40% of the data, re-

spectively. Vuurpijl’s two-stage classification method using hierarchical clustering

and applying SVC for misclassified examples showed6% of error rate [60]. On-

SNT achieved the best error rates of about6.7% and5.5%, using20% and33% of

the training data. Also, the HMM model based approach of Li et el. achieved an

error rate of6.4% after removing about4% of “bad characters”. The error rates of

my approach is on average about0.8 ∼ 1% higher than the those of OnSNT, for all

of the partition ratios used. If more than50% of the data are used, then the error

rate drops to about6 ∼ 7%.
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Figure 4.8: Multi-writer recognition error rates for categories 1c (isolated lower
case alphabets)

For category 1c, the parametric kernels achieve error ratesis 12.2%, 10.7%,

and9.5%, using20%, 33%, and50% of the training data, respectively. Compared to

this, SVM / GDTW method achieved11.7% and12.1% using20% and40% of the

training data [9]. HMM / SDTW method achieved13%, 11.4%, and9.7% of error

rates using10%, 20%, and66% of the training data, respectively. After removing

about4% of “bad characters”, the HMM model based approach of Li et el.achieved

14.1% of error rate. OnSNT achieved the best error rates of about8.6% using50%

of the training data or more. With only10 ∼ 20% of the training data, the error

rates of my approach is about2 ∼ 4% higher than that of OnSNT. However, with

30% of more of the training data, my approach is higher than that of OnSNT only

by 1% or less. My apporach shows superior performance to approaches other than
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OnSNT, irrespective of the partition ratio.

4.2.3 Computational Complexity

For kernel-based learning techniques, the speed with whichclassifiers can be learned

and used depends greatly on the computational cost to evaluate the kernel functions.

This becomes a critical bottleneck when we need to constructkernel matrices for

huge datasets. In practice, the time cost therefore has a strong influence on making

the decision whether or not to use a new kernel or kernel-based learning technique.

Since the time for training and testing classifiers may vary significantly according

to the specific algorithm used as well as many other factors, Ipresent an analysis

only on the speed of evaluating the parametric kernels for sequences and then com-

pare this against GDTW. For this, I randomly sample10 examples from each of

the ten categories of the UNIPEN category 1a dataset (isolated digits) and measure

the time to compute the parametric kernel functions for all of the 100 × 100 pairs

of characters. I measure the average and the variance of the time to compute the

similarity metrics implemented in C++ on Linux. I set the range width∆ asβτ ς

which is given in (4.14), while setting the hop length asα∆. I variedβ from 0.1 to

1 andα from 0.25 to 1 to show how the kernel computation time varies according

to the range size and overlap. A single Intel Core 2 Duo 2.13 GHzwith 4MB L-2

cache is used. For comparison, I also implement and compute the time to evaluate

GDTW kernel with RBF on the same set of randomly sampled examples.

I also measure the average and the variance of the time to evaluate the
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(a) Varying range size (b) Varying hop size

Figure 4.9: In (a), the range size varies according toβ, while α is fixed to 0.5. The
computation time of the parametric kernel function on sequences shows a roughly
quadratic increase as∆ increases according toβ. In (b), the hop length varies
according toα, while β is fixed to 0.25. Since a larger number of ranges overlap
asα gets smaller, i.e. the hop length gets smaller, the computation time increases
dramatically.

GDTW kernel with RBF. Specifically, in DTW, the distance matrix is computed

first by evaluating RBF at each cell, and the optimal path is searched for using a

recursion based on dynamic programming. To profile the cost more accurately, I

measured the time taken in matrix computation and recursive path searching sep-

arately. On evarage, it took98.3 ± 5.78 msec to construct the kernel matrix and

174± 32.84 msec to recursively search for the optimal path in this matrix.

With parameters set toα = 0.5 andβ = 0.25, which are used in the exper-

iments on my online handwritten recognition task, the results show that it is about

ten times faster to evaluate parametric kernels than GDTW kernels. The source of

computational cost is mainly in the evaluation of element-wise and parameter-wise

kernel functions for parametric kernels. In comparison, recursion in GDTW is a

significant bottleneck due to context switching. Also, building the distance matrix

requires a quadratic order number of kernel evaluations, which may significantly
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slow down for long sequences. Though the time complexity is still quadratic, para-

metric kernels alleviate this via parametric space decomposition. Thus, in practice,

parametric kernels are much more efficient to compute.

4.3 Discussion

The parametric kernel framework is applied to the on-line handwritten character

recognition problem. Since my primary goal is to demonstrate the efficacy of the

parametric kernel using 1D manifold parameterization, rather than to build a full-

scale handwritten character recognizer, only the three categories 1a (isolated dig-

its), 1b (isolated upper case alphabets), and 1c (isolated lower case alphabets) of

UNIPEN dataset have been used in the experiments. However, with an appropriate

scheme to break cursive handwritings in other categories ofthe UNIPEN dataset,

the proposed technique is equally applicable. Since DevTest R02/V02 test set is

not publicly available, I took the scheme of splitting TrainR01/V07 dataset into

the train and the test subsets, as suggested by Ratzlaff [45].

For the data three categories, I achieved competitive results compared against

the state-of-the-art methods. My approach shows superior performance over most

of the approaches compared except for the work using OnSNT [45]. Though On-

SNT has shown excellent results for on-line and off-line handwritten character

recognition, it suffers from the lack of generality. It is not easy to apply OnSNT

to sequences of other types of local vectors than 2D points for handwritten char-

acters since the input sequences must be first converted intosequences of elements
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from a discrete space. Their scheme worked well for handwritten characters but

it is not straightforward for sequences of other types of elements. My approach is

straightforwardly applicable to sequences of any type of elements from a continu-

ous space. Furthermore, the same technique is applicable toinputs represented in

any complex structure as long as the manifold of the structure is “parameterizable”.

My approach is not dependent on any language- or alphabet- specific information,

e.g. mathematical symbols, English alphabets, or Tamil scripts, etc., since I treat the

characters as just a set of strokes. This technique is thus equally applicable to any

type of sequences of ordered elements such as music, voice recordings, or motion

capture sequences.

70



Chapter 5

Online Face Recognition from Video

Streams

5.1 Introduction

The previous chapter on online handwritten character recognition focused on learn-

ing sequentially structured data using 1D manifold parametrization. In this chapter,

I build parametric kernels for online face recognition fromvideo streams based on

the parameterization in higher manifolds. I show that the parametric kernel frame-

work is easily applicable to complex structures other than sequences and that the

kernel tailoring technique applied to face images represented as unordered sets of

local feature vector using their relative positions in the image as the parameters

greatly improves the performance over other existing techniques that use the same

feature representations but do not adopt the geometric structure between the local

71



feature vectors.

In many computer vision tasks, an unordered set of local feature vectors

has shown to be an effective representation since local feature are more invariant

against overall noise or changes in the pose or lighting condition. Usually, such a set

comprises descriptors of regions of interest in an input image. In addition, a variety

of meta information is also computed, such as the location inpixel coordinates of a

region, its size, and its orientation. To learn classifiers from sets of local features,

numerous similarity metrics based onmatchingfeatures have been proposed [23].

In general, it is expected that a greater number of local features match between

similar images than between dissimilar ones.

This representation has been successful mainly because local features have

strong invariance to visual distortions such as pose and illumination variation. At

the same time, local approaches have the drawback that two features may be in-

distinguishable if they are identified within locally similar but unrelated parts of

the image. In such cases, the meta information within the image provides a useful

guide to alleviate confusion if it contains information about the holistic geometric

relationship between local features within the image. We can apply the parametric

kernel framework to the task of learning from sets of local feature vectors by taking

the meta information as parameters to encode the geometric structure of the local

features.

Face recognition is one of the most important computer vision tasks. In the

past, much research has focused on recognizing faces from image databases that

are constructed in strictly controlled pose and illumination conditions. Many re-

72



searchers have recently worked on recognizing faces from video streams. Online

face recognition from video streams has a broad spectrum of applications ranging

from video surveillance camera systems to building robots that can identify and fol-

low humans [4]. This task is often much more challenging thanrecognizing faces

from still shot images because the video streams that they deal with are typically

captured in uncontrolled environments with various types of noise. Recognizing

faces from video streams is usually performed in the following steps: face detec-

tion→ feature extraction→ training→ recognition. The most common factors that

make traditional face recognition methods fail in this problem are errors in face de-

tection, strong noise due to varying pose and illumination.In spite of the numerous

techniques that have been proposed to overcome these problems, most are either

not accurate enough or computationally too demanding for real-time performance.

When sets of local features are used for recognizing faces from video streams,

the recognition performance degrades due to the bad matching of local features.

Specifically, there are two different cases of bad matching.First, almost no features

match between two images of the same person under quite dissimilar illumination

conditions due to the qualitative limitation of the features. Second, a large number

of locally similar but structurally dissimilar features are matched between images

of different people because features are computed locally.I apply the parameter

kernel framework to define the similarity metric between twoface images using

the meta information as the parameter, which encodes the structure explicitly. This

approach shows improved performance mainly because a largeportion of matched

features between face images of different people are locally similar but structurally
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dissimilar.

In section 5.2, I describe the setup of my experiments, followed by the results

in section 5.3. I conclude this chapter with the discussion in section 5.4.

5.2 Experimental Setup

In this section, I describe the data sets and feature extraction used in my experiments

on online face recognition from video streams, followed by the definitions of the

similarity metrics and online learning algorithm used. A preliminary version of the

face recognizer presented in this chapter has been used during the Robocup 2007

US Open [4]. To demonstrate the efficacy of the proposed method for online face

recognition by using meta information as the parameters, I make use of the existing

feature extraction technique that is already used for the chosen datasets and show

the performance gain when the parametric kernel framework is used.

5.2.1 Facial Video Databases

Face recognition under dynamic pose and lighting conditionis still a largely un-

solved problem [67]. To address this challenge, I have run online face recognition

experiments on two databases of video streams; NRC-IIT [1, 21]and UT Austin

Villa [3] facial video databases.

NRC-IIT is a public dataset composed of video streams of 11 individuals

captured using a commodity webcam. For each individual, there are two video

streams of about10 ∼ 20 seconds; one for training and the other one for testing.
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The video streams total 3,023 and 3,679 images for training and testing, respec-

tively. The resolution is160 × 120. The camera position is fixed and the lighting

conditions and the background remain unchanged throughoutthe entire video se-

quence. The NRC-IIT database is thus most suited for testing the recognition per-

formance with respect to such factors inherent to video-based recognition as low

resolution, motion blur, focus, facial expression variation, facial orientation varia-

tion, and occlusion [1]. Some of the video frames are shown assamples in Figure

5.6.

To address face recognition under dynamic illumination, I constructed an UT

Austin Villa database. This database is composed of video streams of 9 individuals.

For each individual, there are 200 training and 400 test images, respectively. To

incorporate changes in illumination, the video streams arecaptured by a webcam

that is mounted on top of a mobile robot following the human. Figure 5.1 shows

the mobile robot that consists of a Segway RMP, a webcam, a URG-04LX laser

rangefinder, and a laptop [4]. The training video streams arecaptured inside a lab

where the light is bright, while the test video streams are captured starting inside

the lab and moving to the corridor of a hall where the light is much darker. It

is often shot from the back of the human as well. I constructedthis database for

this research due to the difficulty in finding previously usedvideo streams from the

public domain that are suitable for testing recognition performance under dynamic

illumination conditions. Some of the video frames are shownas samples in Figure

5.7.

To extract facial features, I first detect the face regions from the video frames
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Figure 5.1: The UT Austin Villa facial video database is constructed using the
mobile robot shown in this figure. It consists of a Segway RMP, awebcam, a URG-
04LX laser rangefinder, and a laptop. Analyzing the input images from the webcam
and the distance information from the URG-04LX laser rangefinder, appropriate
motion commands are sent to the Segway RMP to turn and to move forward and
backwards.

using the default OpenCV implementation of the Haar-like face detector of Viola

and Jones [58]. I then use Velaldi’s C++ implementation [2] ofthe Scale-Invariant

Feature Transform (SIFT) algorithm originally proposed byLowe [34]. SIFT lo-

cates scale- and rotation- invariant features in an image and computes 128 dimen-

sional descriptor vectors for each feature along with a variety of other information.

The result of running the Haar-like face detector and SIFT feature extraction on the

set of images from Figure 5.7 is shown in Figure 5.8. The gray rectangles indicate

the detected face regions, while the location of the SIFT keypoints are denoted as

the blue dots. More detailed screen shots are shown in Figure5.3.

The Haar-like face detector is in general quite accurate in detecting faces

from front. But the accuracy drops rapidly in a number of different cases. First,
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Figure 5.2: Examples of face detection using the Haar-like face detector and SIFT
feature extraction. The gray rectangles indicate the detected face regions, while the
locations of SIFT keypoint are denoted as blue dots. The number and the positions
of SIFT keypoints may vary across images of the same person.

it cannot detect faces when the subject turns or tilts the head to the side more than

about45◦ or so (false negative examples). Second, it finds multiple overlapping

regions on a single face. Third, it often returns false positive examples. The pro-

portion of false negatives returned by the Haar-like face detector is relatively small

with respect to other sources of error. That is, unless the pose or facial expres-

sion vary significantly or a large portion of the face is occluded, it will be detected.

Also, detecting a face multiple times should not be a problemif we just take the

one with the tightest boundary. But having false positives isfatal because it results

in incorrectly trained classifiers, thus making the obtained results less accurate and

credible.

I have decided to use the Haar-like face detector for a numberof reasons.

First, the Haar-like face detector is one of the most efficient algorithms that runs

in near real time at about 15 frames per second at about160 × 120 resolution.

Second, the error is not too significant to affect the face recognition results. This
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(a) False Negatives (b) Multiple Detection (c) False Positives

Figure 5.3: Examples of the three major types of error of the Haar-like face detector
are shown. False negatives are observed relatively less frequently than the other
sources of error. Multiple detections of a single face should not be a problem if we
just take the one with the tightest boundary. However, having false positives is fatal
because it results in incorrectly trained classifiers, thusmaking the obtained results
less accurate and credible. In (c), the false positive face was reported because the
Haar-like face detector confused the two darker colored regions on the wall as eyes.

was also reported in previous research using the same face detector [21, 58] and

other part-based face detectors [42,53]. Since this work focuses on the performance

measurement of face recognition, this should not be a big problem. Thus, I have

manually removed false positives and duplicates from both databases and did not

add faces undetected as false negatives. The following table provides the number

of detected faces and the number of frames actually contained in each of the video

frames.

Though the number of detected faces is significantly smallerthan the number

of frames contained in some of the video streams, this is not solely due to errors

in the face detector used. For instance, there were only 84 faces detected from the

NRC-IIT training video for Face 1. This is largely due to other factors such as a

face going out of view or going too far away from the camera. Figure 5.5 shows a

number of cases where the detector actually failed.
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Database NRC-IIT UT Austin Villa
Face Train Test Train Test

Detected/Total Detected/Total Detected/Total Detected/Total
0 187/228 177/249 196/200 389/400
1 84/237 103/329 199/200 359/400
2 222/257 231/339 189/200 377/400
3 338/448 300/438 197/200 391/400
4 189/353 281/404 198/200 314/400
5 191/198 208/248 200/200 400/400
6 256/324 256/353 189/200 400/400
7 192/258 208/328 197/200 386/400
8 252/346 386/426 164/200 360/400
9 303/318 257/388 N/A N/A
10 260/338 281/378 N/A N/A
fps 20 8

Figure 5.4: The number of detected faces and the number of frames for each of the
video streams used in my experiment.

(a) Subject out of frame (b) Head tilted sideways (c) Head tilted front

Figure 5.5: Examples of video frames where the Haar-like face detector failed to
detect the face. Failure in case (a) is not a false negative example, while those in
(b) and (c) are.
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Summarizing, the Haar-like face detector robustly detectsfront and upright

faces in the scene. Not using the undetected faces may make itdifficult to make a

fair comparison against other face recognizers using more accurate face detectors on

the same data set. At the same time, it is quite difficult to finda common ground for

a fair comparison of existing approaches. For face recognition using still shot image

databases, a number of protocols such as FERET [18, 40] have been proposed to

address this issue. However, no such proposal exists yet forface recognition using

video streams. Therefore claims made from performance comparisons against other

approaches must be quite conservative in this type of work.

5.2.2 Facial Feature Extraction

I use SIFT as the basis for feature representation of the detected faces. Though

SIFT was originally proposed as a method to register images for tasks such as ob-

ject recognition or stereo image matching, many researcherhave recently evaluated

it for face recognition [13, 53]. SIFT extracts keypoints atlocal extrema in the dif-

ference of Gaussian scale-space which is produced by applying the cascade filtering

over the image with varying scales and taking the differencebetween neighboring

scale images. For a detected keypoint at pixel(i, j) at scales, the histogram of the

gradient over a window of sizen × n around(i, j) is computed. The gradient is

computed at each point in the window against 8 different surrounding neighbour di-

rections. The default value forn is 4. The layout of this histogram is concatenated

into a 4 × 4 × 8 = 128 dimensional descriptor vectorx. Also, the orientationθ
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Face Train Test Face Train Test

0 1

2 3

4 5

6 7

8 9

10

Figure 5.6: Sample images from the NRC-IIT facial video database. Both the train-
ing and the test videos for face 0 have been used as queries to the recognizer for
unknownidentity. For face 1 to 10, the training videos are used to learn the initial
classifier, while the test videos are used for testing and online learning. The down-
load web page incorrectly showed the face images and the number of frames for
Face 3. I used the correct images and numbers of frames here.
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Train Test Train Test

Figure 5.7: Sample images of the UT Austin Villa facial videodatabase. The video
streams are captured by a webcam mounted on top of a mobile robot following the
human. This results in a strong varation in the illuminationconditions. Moreover,
the lighting conditions dramatically change in the test video streams as the human
walks from inside of the lab to the hallway.
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Train Test Train Test

Figure 5.8: Sample images of the UT Austin Villa facial videodatabase showing the
detected face regions as gray rectangles and SIFT keypointsas blue dots. The Haar-
like face detector scans for face regions in each frame. Eachof the detected face
regions is converted into grayscale and resized to24×24 to extract SIFT keypoints.
On average, each face contains about10 ∼ 20 SIFT keypoints.
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of the keypoint at(i, j) is obtained as the predominant orientation of the gradient

within the window.

To compute the SIFT features for the detected faces, I preprocess the face

image as follows. First, I convert the part of the image corresponding to the detected

face region into grayscale and scale it to a fixed size ofw×h. To reduce the effect of

illumination variation, I also apply histogram equalization. Then, I run SIFT feature

extraction on the resulting image. Thus, the input face image is transformed into an

unordered set ofx, each of which is associated with meta information(i, j), s, and

θ. Figure 5.9 shows examples of the extracted SIFT features onthe preprocessed

face images.

Figure 5.9: SIFT features are extracted from the preprocessed face images. Each of
the arrows starts at(x, y) and its length and direction correspond tos andθ of the
corresponding SIFT feature.

Once the feature representation is determined, the next step is to define the

distance or similarity metric between them. I use four different metrics for match-

ing sets of SIFT descriptors and compare their performance.The first is matching

by distance ratio as originally proposed and used by Lowe [34]. The second is a

Mercer kernel applied only to the feature space, while the third is the same Mercer
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kernel applied to the combined feature vector of SIFT descriptors and the meta in-

formation. The last one is the parametric kernel that takesx as the local element and

(i, j) as the parameter. According to the categorization by Grauman [23], the first

metric is an example of matching by voting and the second and the third are similar

to the pyramid match kernel. The definitions of these metricsare given below.

Similarity based on the distance ratio Let X = {xi | i = 1, · · · , n} andZ =

{zj | j = 1, · · · ,m} be the sets of SIFT feature descriptors of two face images.

The similarityfromX toZ is defined as follows. Considering SIFT descriptors as

points inR
128, we find the nearest neighborz and the second nearest neighborz

′ in

Z to eachx ∈ X . Then,x matchesz if

‖x− z‖

‖x− z′‖
< α, (5.1)

for a predefined ratio thresholdα. I useα = 0.6 as suggested in [34]. LetSX→Z

be the set of matched feature pair(x, z). The similarity fromZ to X is defined

similarly. The similarity betweenX andZ is defined as the number of matched

pairs of SIFT features for both directions,

d(X ,Z) =
∣

∣{(x, z) | (x, z) ∈ SX→Z or (z,x) ∈ SZ→X}
∣

∣. (5.2)

To handle exceptional cases such as divide-by-zero, it is assumed thatn,m >

1 andxi 6= xj for anyi 6= j. In practice, these assumptions are almost always true.

Note that (5.2) is not a valid Mercer kernel because it does not correspond to a norm

for an inner product space.
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Figure 5.10 shows examples of matching SIFT features between images of

the same person in (a) and different people in (b). The locations of matched SIFT

features are connected with lines. They clearly show that more SIFT features in

general match between images of same person than those of different people.

(a) same person :d(X ,Z) = 55 (b) different peopled :d(X ,Z) = 1

Figure 5.10: The locations of matched SIFT features are connected with a line.
More SIFT features match matched between images of same person in (a) than
those of different people in (b).

There are two important properties of matching SIFT features descriptors

as evidenced by examples in Figure 5.10. First, locations ofmatched SIFT feature

descriptors between images of the same person correspond tosimilar parts of the

face, while those of different people differ significantly.For instance, in Figure 5.10

(b), the descriptor of a SIFT feature located at the right forehead of the left person

matched the descriptor of one located at the center of the right person’s forehead.

This is an instance of a bad match. To exclude such “bad” matches between images

of different people, one may apply a geometric verification technique such as the

regular grid partitioning scheme introduced in [13]. Second, the locations of SIFT

features do not necessarily correspond to facial components such as eyes, nose, and

mouth. Nevertheless, SIFT features can robustly characterize faces because they

are consistent for faces of the same person. In addition, this lets us avoid expensive
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computation for registering face components.

Kernel for sets of SIFT descriptors The second similarity metric is a kernel

definedonly on the sets of SIFT descriptors. For two sets of SIFT descriptors,X

andZ with |X | ≤ |Z|, the kernel for sets of SIFT descriptors before normalization

is defined as

k(X ,Z) =

|X |
∑

i=1

κSIFT(xi, zxi
), (5.3)

whereκSIFT : R
128 × R

128 → R is a Mercer kernel andzxi
= arg min

zj∈Z
‖xi − zj‖. I

choseκSIFT as a radial basis function

κSIFT(x, z) = e
−
‖x− z‖2

γσ2
, (5.4)

whereσ ∈ R andγ ∈ R are the width and the width control parameter, respectively.

(5.3) matches SIFT descriptors to their nearest neighbors within the whole set.

To suppress favoring large inputs and to penalize the presence of unmatched

SIFT descriptors, (5.3) is normalized by the product of self-similarity ofX andZ :

k(X ,Z) =
k(X ,Z)

√

k(X ,X )× k(Z,Z)
. (5.5)

The complexity of computing (5.3) isO(|X ||Z|). This is computationally

more demanding than PKM, which takes linear time using regular pyramids or sub-

linear time using vocabulary-guided pyramids [23]. I did not use PKM here because

the computational cost of computing the histogram pyramidsis more demanding
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than optimal matching based on exhaustive search at the scale of data used in this

work.

Kernel for SIFT descriptors and meta information The third similarity metric

kτ is almost identical tok except that it is defined on the sets of feature vectorsx
′,

which are constructed by combining a SIFT descriptorx and the associated meta

informationτ (x) ∈ T . I use(i, j), the location of the SIFT descriptors, as the meta

information. Since the only difference betweenkτ andk is the dimension of the

feature vector(x, i, j) ∈ R
130, the definition ofkτ is omitted here.

Parametric kernel for SIFT descriptors and meta information The forth sim-

ilarity metric is a parametric kernel defined for both the SIFT descriptors and their

associated meta information. To apply the parameteric kernel framework, I usex

as the local feature and the meta informationτ (x) = (i, j) as the associated param-

eter. Recall that the face images are resized to a fixed widthw and heighth during

the preprocessing. The parametric space is thusT = [1, w] × [1, h]. T is decom-

posed into ranges of sizew/4× h/2 that are horizonally and vertically overlapped

by w/8 andh/4, respectively. This decomposition is inspired by the observations

made by Bicego [13] on face recognition with SIFT on the FERET and BANCA

face databases. SinceT is finite, there are a total of 23 overlapping ranges, as

shown in Figure 5.11. For notational consistency with respect to the definition of

parametric kernels in Chapter 3, letTi be thei-th range, fori = 0, · · · , 22, with no

favor to any specific ordering.
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Figure 5.11: Parameter spaceT = [1, w]× [1, h] is shown as the thick rectangle that
spans the face region.T is decomposed into 23 ranges of sizew/4×h/2 overlapped
horizontally and vertically byw/8 andh/4. For visibility, the borders of the ranges
are shown as alternating patterns of dashed and solid lines.

For two sets of SIFT descriptorsX andZ, the parametric kernel before

normalization is

κ(X ,Z) = 〈φ(X ) · φ(Z)〉 =
22
∑

t=0

〈φt(X ) · φt(Z)〉, (5.6)

where

〈φt(X ) · φt(Z)〉 =
∑

xi∈It(X )
zj∈It(Z)

wxi
wzj

κSIFT(xi, zj)κτ(τ (xi), τ (zj)), (5.7)

whereκSIFT is defined in (5.4) andκτ : T ×T → R is a Mercer kernel that encodes

the parametric similarity between two SIFT descriptors. Similar to the parametric

kernel definition for sequences, the decomposed element setof X for Tt is defined

89



asIt(X ) = {xi|τ (xi) ∈ Tt}. The default value for the weighting factorwxi
is

1/|Txi
|, whereTxi

= {Tt|τ (xi) ∈ Tt}. I choseκτ as a radial basis function

κτ(τ (x), τ (z)) = e
−
‖τ (x)− τ (z)‖2

γτσ2
τ , (5.8)

whereστ ∈ R andγτ ∈ R are the width and the width control parameter.

In (5.7), SIFT descriptors match if their parameters fall into the same param-

eter range.

To suppress favoring large inputs and to penalize the presence of unmatched

SIFT descriptors, (5.6) is normalized by the product of self-similarity ofX andZ :

κ(X ,Z) =
κ(X ,Z)

√

κ(X ,X )× κ(Z,Z)
. (5.9)

5.2.3 Online Learning

In this section, I describe the online learning algorithm used in this experiment. First

of all, I investigate the behavior of SIFT features in more detail under illumination

changes to show their limitations and motivate the online learning algorithm used

in this work.

It is not surprising that the similarity between sets of SIFTfeatures for im-

ages of thesameperson may be small if the poses are quite different. However, as

shown in Figure 5.12, it may be so even if the pose does not change that much.

Such mismatches are due to the change of illumination when the pose changes

rather than merely the change of pose. This is mainly becausethe changes in illu-
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(a) sitting (b) standing (c) match result

Figure 5.12: The subject was sitting in (a) and standing in (b) when the face images
were captured. Though the orientations of the face relativeto the camera are not
siginificantly different, there are no SIFT features matched between (a) and (b) as
shown in (c). This is mostly due to the change in the directionof the light.

mination result in significant changes in the facial texturesuch as shadows or high-

lights. Figure 5.13 shows examples that manifest this observation. The pose change

in Figure 5.13 (a) is not much different from that in Figure 5.12 (c), while there is

much less of a pose change in Figure 5.13 (b). However, there are 7 matched SIFT

feature descriptors in Figure 5.13 (a), while there are nonein Figure 5.13 (b). This

type of low similarity between instances of the same person is observed when the

light is cast from different sides of the faces, such as in Figure 5.12 (c) and 5.13

(b). SIFT is relatively stable against pose changes but verysensitive to illumination

changes. This is inevitable because SIFT is based solely on the brightness of the

pixels, which is sensitive to the lighting conditions, and there is no abstraction of

the object of interest.

Without complete knowledge of the pose and illumination during training

and testing, this type of limitation is inevitable with exisiting techniques. Therefore,

I take an online learning approach which learns and adaptively updates classifiers

from a series of examples supplied sequentially over time.
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(a) pose change (b) illumination change

Figure 5.13: In (a), the pose varies as the subject stares in different directions, but
the lighting conditions remain the same, while in (b), the pose remains stationary
but the light is cast from right (left) side of the subject in the left (right) face. There
were 7 and 0 matched SIFT feature descriptors in (a) and (b), respectively. This
clearly shows that SIFT is very sensitive to the illumination conditions.

Let N be the number of known face classes and, without loss of generality,

let i be the labels of a face classCi for i = 1, · · · , N . For eachCi, a set ofℓ training

imagesI train
i = {i1i , · · · , i

ℓ
i} is provided. The objective of training is to learn a multi-

class classifierf : i 7→ {0, · · · , N}, that maps an input face imagei to the correct

label of the face, if it is a known face, or0, otherwise. In my learning framework,

I implementf as a set ofN one-versus-all classifiers,fi : i 7→ sgn(ϑi − θi) for

i = 1, · · · , N , which first computes a certaintyϑi ∈ R that indicates how certainfi

is abouti ∈ Ci and maps to1 if ϑi > θi, and−1, otherwise, for a thresholdθi ∈ R.

Since it is the set of SIFT descriptors computed from an inputface image that the

algorithm eventually deals with, I instead learnfi : X 7→ sgn(ϑi − θi), whereX is

the set of SIFT descriptors computed fromi. The final decision is made such that,
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for C+ = {k | fk(X ) > 0 for k = 1, · · · , N},

f(X ) =



















arg
i ∈C+

max ϑi if |C+| > 0,

0 otherwise.

(5.10)

During testing,f classifies a series of test examplesXn for n = 1, 2, · · · ,

each of which is labelled with the correct identityI(Xn). The classification off is

said to be correct whenf(Xn) = I(Xn), for a test exampleXn of known identity

I(Xn) ∈ {1, · · · , N}, or f(Xn) = 0, if Xn is the face of an unknown identity. The

proposed online learning algorithm updatesf during the testing phase to adapt the

class boundaries as pose and illumination change over time.

To formally definef , we introduce a number of definitions. LetX train
i =

{X 1
i , · · · ,X ℓ

i } be the training set forCi, whereX k
i is the set of SIFT descriptors

computed from thek-th training face image ofCi, and⊓(X ,Z) be the similarity

metric between two sets of SIFT descriptorsX andZ. Then,fi is defined as

fi(X ) = sgn

( ℓ
∑

k=1

αk
i ⊓ (X k

i ,X )− θi

)

, (5.11)

whereαk
i ∈ R is a weighting factor that controls the contribution of the similarity

betweenX andX k
i andθi is the threshold value. Learningf , or equivalentlyfi, is

thus finding the values ofαk
i andθi, for k = 1, · · · , ℓ andi = 1, · · · , N .

Actual learning first requires the determination of the similarity metric. In

this work, I experiment with the four similarity metrics introduced in the previous

section,d, k, kτ andκ. Next, we need a learning algorithm. Independent of the
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similarity metric, I use an online learning algorithm that consists of two compo-

nents : learning the classifier from a static training set andadaptively maintaining

the training set during the progress of online classification. Note that the learning is

unsupervised sincefi in (5.11) is solely represented using the training examplesof

Ci. For learning the classifier, I use two different approaches. First, I propose a sim-

ple learning algorithm called Equal contribution Certaintycutoff (EC), which runs

fast enough to support at least near real-time online learning. In this algorithm, all

training examples contribute equally andθi is the cutoff value in the certainty dis-

tribution for a given error margin. Second, I apply support vector novelty detection

(SVND) to demonstrate the behavior of the proposed metrics as the conduits to the

kernel-based learning paradigm. Note, however, that the distance-ratio-based met-

ric d is not positive and semi-definite. Since it is not guaranteedthat kernel-based

learning algorithms, such as support vector machines, based on convex optimiza-

tion will find a unique optimal solution usingd, we do not learn a classifier based

on SVND withd. For adaptive maintenance of the training set, the proposedalgo-

rithm evaluates a simple criterion for the determination ofwhether to add the input

example to the set of training examples or not using the certainty distribution. In

summary, I learn a total of seven different classifiers as shown in Figure 5.14.

The proposed learning algorithm runs in two phases, training and testing.

During training, the initial classifier is learned from the initial training set, while

during testing, the test set is adaptively maintained. When the training set is up-

dated, the classifier is re-learned with the updated training set. I describe the algo-

rithms for EC and SVND, and adaptive training set maintenance below.
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Similarity Learning Algorithm
Metric EC SVND

d fdEC N/A
k fkEC fkSVND

kτ fkτ EC fkτ SVND

κ fκEC fκSVND

Figure 5.14: I learn classifiers for the combinations of the learning algorithm and
the similarity metric, except ford and SVND sinced is not a Mercer kernel.

Equal contribution Certainty cutoff (EC) Learning In EC learning, all training

examples contribute to the final outcome equally. That is,αk
i = 1, for all i andk.

Therefore, learningfi in EC is just determining the certainty threshold valueθi. For

this, I introduce a user-specified error rateεθ ∈ [0, 1]. The idea is to set the value

of θi such that the probability of incorrectly classifying an unseen example isεθ.

Finding θi can be implemented by first computing the probability distribution of

a random variableϑi ∈ R, which is the certainty value of an unseen exampleX

with respect to the training setX train
i , and setting the cutoff value according toεθ as

θi. Unfortunately, it is not possible to compute the true distribution ofϑi using the

small number of examples inX train
i . Instead, EC approximates it by computing the

the discrete distribution ofϑi from the training examples with respect toX train
i as

follows.

Let pϑi
(ϑ) be the probability mass function that evaluates to the probability

thatϑi equalsϑ,

pϑi
(ϑ) =

∣

∣{X n
i ∈ X train

i |
∑ℓ

k=1 ⊓(X k
i ,X n

i ) = ϑ, for n = 1, · · · , ℓ}
∣

∣

ℓ
. (5.12)
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EC computespϑi
(ϑ) by evaluating the certaintyϑk

i of thek-th training ex-

ample with respect toX train
i . Assume thatϑk

i ≤ ϑk+1
i , for k = 1, · · · , ℓ − 1, which

can be easily satisfied by rearranging the order of the training examples accordingly.

Then, the certainty threshold is determined asθi = ϑK
i , where

K = arg
n

min

( n
∑

k=1

pϑi
(ϑk

i ) > εθ

)

. (5.13)

Figure 5.15: The true distribution of the certainty value ofan unseen example is
approximated bypϑi

(ϑ). θi is determined as the cutoff valueϑK
i according to the

user-specified error marginεθ.

Support Vector Novelty Detection (SVND) Learning Support vector novelty

detection (SVND) is an unsupervised learning algorithm forthe estimation of the

novelty of an example. This problem can be described as follows. Given a set

of unlabelled examples drawn from an underlying probability distributionP , we

estimate a subsetS of the input space such that the probability that a test point

drawn fromP lies outside ofS equals some a priori specified value between 0 and

1 [47]. This problem is solved by finding the boundary function f which is positive

in S and negative on the complement in the support vector framework as follows.
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Suppose we are given a set of unlabelled, i.e.normal training examples

drawn from an input spaceX

X = {x1, · · · ,xℓ} ⊂ X , (5.14)

whereℓ is the training set size. For simplicity, supposeX is a compact subset ofR
d

for some dimensiond. Consider the following boundary function

f(x) = sgn
(

〈w · x〉 − ρ
)

, (5.15)

wherew ∈ R
d is the weight vector andρ ∈ R is the bias. We findw andρ by

solving the following quadratic problem :

minimize
1

2
‖w‖2 +

1

νℓ

∑

ξi − ρ

subject to〈w · xi〉 ≥ ρ− ξi,

ξi ≥ 0, for i = 1, · · · , ℓ,

(5.16)

whereξi are the slack variables andν ∈ (0, 1] is a control parameter.

The dual of this problem is

maximize
1

2

∑

i,j

αiαj〈xi · xj〉

subject to0 ≤ α ≤
1

νℓ
, for i = 1, · · · , ℓ,

ℓ
∑

i=1

αi = 1,

(5.17)
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where theαi are the Lagrangian multipliers. Ifα∗
i solves the dual problem, then the

primal variables can be computed asw =
∑ℓ

i=1 α∗
i xi andρ =

∑

j α∗
j〈xj · xi〉, for

any support vector, i.e.0 < α∗
i < 1/(νℓ). A non-linear solution could be found

by substituting〈xi · xj〉 in (5.17) with a non-linear Mercer kernel. The following

statements hold forν if ρ 6= 0.

• ν is an upper bound on the fraction of outliers.

• ν is a lower bound on the fraction of support vectors.

Sinceν controls the upper bound on the fraction of outliers,ν plays a similar role

asεθ in EC learning. Note thatαi andρ in (5.17) correspond toαk
i andθi in (5.11).

Thus, the solution to (5.17) is actuallyfi. Pluggingk, kτ , andκ into (5.17) yields

fkSVND, fkτ SVND, andfκSVND, respectively.

Online Learning The proposed online algorithm runs in two phases, training and

testing. During the training, the initial multi-class classifier f in (5.10) is con-

structed by learning a one-versus-all classifierfi from the initial training set for

each classCi. One additional step is needed to finish the training phase, which will

be described later. Once the initial learning is finished, the algorithm switches to the

testing phase. During the testing phase, the input is a series of test examples pro-

vided sequentially over time,Xn, for n = 1, 2, · · · , which are individually classified

by f one after another.

Let in be the classification result for a test exampleXn. In addition to classi-
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fying Xn, the algorithm checks whether the certaintyϑin computed byfin satisfies

δin < ϑin < ∆in , (5.18)

for threshold valuesδin and∆in, which are determined according to user-specified

error ratesεδ, ε∆ ∈ [0, 1] in the same manner asθi was determined usingpϑin
(ϑ).

If (5.18) is satisfied, then we first remove a training examplefrom the training set

X train
in

that is the most distant fromXn,

arg
Xk

in
∈X train

in

min⊓(X k
in

,Xn) (5.19)

and then addXn to it. This keepsX train
in

from growing arbitrarily large. In case of

a tie, we remove the oldest one. Finally, we retrain with the updated training set

and updateδin and∆in. Note that the initial values ofδi and∆i for i = 1, · · · , N ,

must therefore be computed as the last step of the training phase. The intuition of

using the criterion in (5.18) is to add a test example to the training set iff is certain

that it is not an outlier but, at the same time, not certain enough to consider it as

a trivial example. Hence, in general, the error margins are specified such that that

εθ < εδ < ε∆. The algorithms for training and testing are described below, where

LEARNONEVERSUSALL CLASSIFIER(i) is either EC or SVND for classCi.

Algorithm 1 Train

for i = 1 to N do
[fi, θi, δi, ∆i]← LEARNONEVERSUSALL CLASSIFIER(i)

end for
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Algorithm 2 Test

for n = 1, 2, · · · do
[i, ϑ]← f(Xn)
if i 6= 0 and δi < ϑ < ∆i then
Xmin ← arg

Xk
i ∈X train

i

min ‖Xn −X
k
i ‖

X train
i ← {X train − {Xmin}} ∪ {Xn}

[fi, θi, δi, ∆i]← LEARNONEVERSUSALL CLASSIFIER(i)
end if

end for

Summarizing, the online learning algorithm performs an initial training and

classifies the stream of test examples iteratively. Certain test examples are added

to the training set of the classified class to adapt to the changes of pose and illumi-

nation. Also, we remove an example that is the most distant from the newly added

example in the hope that it is least similar to the examples that will be observed in

the near future. Every time the training set is updated, the corresponding classifier

is retrained. In practice, however, we may retrain classifiers much less frequently

to save computation if a single update does not result in any significant change in

the distribution of the certainty values.

5.3 Results

I begin by presenting the results of the preliminary work in 5.3.1 on the online

face recognition developed for the competition at Robocup 2007 [4]. The system

was based solely on SIFT features and implementedfdEC as the face recognizer.

The behavioral analysis demonstrates the effectiveness ofthe system and presents
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guidelines for determining the parameter values. At the same time, this also shows

its limitations under dynamic illumination.

In the following sections, I present the results of using theparametric ker-

nel framework to overcome this limitation. In 5.3.3, I describe the experiments

using a public face database NRC-IIT, which provides an objective comparison

with existing techniques. In 5.3.4, I describe the experiments with the UT Austin

Villa dataset, which is constructed to exhibit strong variation in the illumination

conditions. I show that using the meta information associated with the features in

the parametric kernel framework shows the best results among the seven similar-

ity metrics. To clearly demonstrate the advantage of using the parametric kernel

method, the experiments are designed to discriminate the contributions by each of

the components in my approach.

5.3.1 Face Recognition Under Known Illumination

The goal of the Robocup at Home competition was to build a mobile robot that

recognizes faces in real-time. The first task was to learn thefaces of a number of

people standing in a row during training and then to classifythe test faces of a row

of a possibly different number and combination of people including unknown faces,

standing at the same location. The second task was to learn inthe same manner as

in the easy task, but the test subjects were standing at locations randomly scattered

around the room. At all times the subjects are assumed to facetowards the camera.

Towards this goal, we started building the system in the lab environment un-
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der two assumptions; 1) the lighting conditions of the lab are similar to those of the

real competition field and 2) the flighting conditions in the training phase are sim-

ilar to those in the test phase, that is, the test lighting conditions are known during

the training phase. The lab is equipped with an uneven distribution of light sources,

e.g. daylight and light bulbs, where the light cast onto the face creates significantly

different patterns of shadow depending on the position and the orientation of the

faces of walking subjects.

The system runs in the following stages. First, to constructthe initial training

set, the robot follows the training subject by tracking the detected face and captures

a sequence ofℓ training face images per subject. The initial training set of features

is constructed by detecting face images, each of which is scaled to a fixed size,

24×24, and then extracting the SIFT descriptors. Then the system learns the initial

classifier. Once the initial classifier is learned, the testing phase begins immediately

in a setup identical to that used for training. I used the SIFTdescriptor set as the

feature set for the detected face images and adoptedd and EC as the similarity met-

ric and the learning algorithm, respectively. I implemented tasks 1 and 2 using this

face recognizer. The performance was quite satisfactory for the first task. However,

I observed a significant drop in the accuracy for the second task. This was mainly

because the illumination conditions of the test phase were significantly different

from those used in training, thereby violating the second assumption. Nevertheless,

our team ended in2nd place out of 11 teams, since the illumination was fortunately

omni-directional in the actual competition. This experience motivated the idea of

using meta information in the parametric kernel framework.
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I present the result of this system as preliminary work. Though it suffers

from the aforementioned limitations, it effectively demonstrates the advantage of

the adaptive strategy in EC learning. Also an analysis of itsbehavior provides

useful guidelines for optimizing the parameter values of the learning algorithm.

In the first set of experiments, I give an analysis of the recognition accuracy

of EC with respect to the varying parameters. First, I fix the training set sizeℓ and

measure the true positive and the true negative rates, whilevarying the error margin

εθ. There are total four subjectsS1, · · · , S4; an Asian male, an Asian female, and

two Caucasian males. For each subjectSi, a set ofℓ = 100 training imagesS train
i

are collected while the subject moves around the robot at walking speed. After

training,fdEC classifies a set ofn = 300 face imagesS test
i for each subject in turn

and measures the true positive (TP) and the true negative (TN) rates defined as

follows :

TP =
1

4

4
∑

i=1

|{s ∈ S test
i | f(s) = i}|

n
, (5.20)

and

TN =
1

12

4
∑

i=1

∑

j 6=i

|{s ∈ S test
j | f(s) 6= i}|

n
. (5.21)

TP and TN are shown in Figure 5.16. TP starts at96.37% and drops rapidly

asεθ gets higher. The true negative rate starts at about90.12% and soon reaches and

remains at almost100.00% for εθ ≥ 0.1. The rapid drop in TP is a direct indication

of the fact that the certainties of the majority of test inputs are slightly greater than
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the thresholdθi, which means that the boundary is tight. Also, this means that it is

more difficult to correctly classify positive examples than negative ones using our

method. This is mainly because EC learning is unsupervised. The most promising

value ofεθ = 0.03, which is determined such that TP
.
= TN.
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Figure 5.16: True positive and true negative rates for varying εθ

In the second experiment, I analyze the speed and the accuracy of the al-

gorithm for varyingℓ. ℓ is used as the control parameter because both the amount

of computation to evaluatefdEC and the accuracy are proportional to it. For this,

I measure the average number of frames processed per second and the true posi-

tive rate. This time, I train and test with only a single positive subject that moves

around while facing the camera. This is to measure the time cost of the classifier

that is independent of the number of classes. The result is shown in Figure 5.17. I

useερ = 0.03 andℓ varies from10 to 100. We achieve≥ 95% of true positive rate

for ℓ ≥ 40 but the frame rate gradually drops from about 8 Hz to about 5 Hz for
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ℓ ≥ 70. The frame rate increases asℓ gets smaller, but the true positive rate drops

below90% for ℓ ≤ 30. Therefore, we must choose a reasonably but not too large

training set. In this experiment, the acceptable range ofℓ is about40 to 60.
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Figure 5.17: Accuracy and speed of the classification for varying ℓ.

In the third experiment, I analyze the effectiveness of the adaptive strategy

of EC learning under varying lighting conditions. For this,I measure true positive

and true negative rates for the four different cases of turning on(off) the adaptive

training set maintenance and moving(fixing) the robot. For each case, I trained with

a sequence ofℓ = 80 training examples. For testing, a sequence of a total of 1000

positive examples followed by 1000 negative examples is presented. Both training

and testing examples are captured in the same lighting conditions. Every time a

sequence of 50 positive examples is classified, I measure true positive rate. This

is repeated 20 times, and the average and the variance of the 20 true positive rates

are computed. The following 1000 negative examples are classified in the same
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manner, and I compute the average and the variance of the 20 true negative rates.

The result is plotted in Figure 5.18. When the robot is moving, the true positive

rate increased from75.2 ± 7.31% to 97.3 ± 2.72% and when the robot remained

stationary, the increase was from90.2 ± 3.32% to 97.0 ± 1.26%. The decrease in

true negative rate when the robot was moving (stationary) was8.5%(2.0%). These

results indicate that the adaptive strategy of EC learning improves the classification

accuracy over the cases when it is not used no matter whether the robot is moving

or remains still. Meanwhile, we achieve higher true positive and true negative rates

when the robot remains stationary than when it moves. This is due to the smaller

variation of pose and illumination than in mobile robot platforms.
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Figure 5.18: The true positive and the true negative rates aremeasured for the four
different cases of turning on(off) the adaptive strategy and moving(fixing) the robot.
I usedεθ = 0.03, εδ = 0.4, ε∆ = 0.7, andℓ = 80 for all cases.

The results from the first and the second experiments provide useful guide-

lines to determine the values ofεθ and ℓ. The adaptive learning strategy shows

impressive results if the illumination conditions of the test examples are not signif-
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icantly different from those of the training examples. However, it suffers from a

rapid drop in accuracy if this condition does not hold.

5.3.2 Evaluation Metrics and Parameter Values

Prior to presenting the main results, I introduce the evaluation metrics used through-

out the experiments and the scheme to determine the parameter values. I borrowed

the evaluation metrics from Tangelder’s work on face recognition using the NRC-

IIT facial database [53]. They are discard rate (DR), recognition rate (RR), and false

acceptance rate (FAR). If a test face example is classified as unknown, then it is said

to be “discarded”. Otherwise, it is said to be “recognized” if the test example is of

known identity, i.e.6= 0. DR is defined as the ratio of the number of discarded test

examples to the total number of test examples of known identity. This definition is

slightly different from the original definition by Tangelder in that I define DR over

test examples of known identity only, while Tangelder does not clearly differentiate

it. Since it is correct (incorrect) to discard test examplesof unknown (known) iden-

tity, I think my definition makes more sense. For test examples of knownidentity,

the recognition rate (RR) is defined as the ratio of correctly classified test examples

to the total number of test examples that are not discarded. If a test face example of

unknown identity is classified as known, then it is said to be “falsely accepted”. The

false acceptance rate (FAR) is defined as the ratio of the number of falsely accepted

test examples to the total number of test examples of unknownidentity. Without

loss of generality and following the same experimental setup as Tangelder [53] and
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Gorodnichy [21], I use the training and test images of classC0 as “unknown” test

examples.

Since we deal with stored datasets, I do not provide an analysis on the classi-

fication speed. But I believe that the preliminary work provides enough understand-

ing of the real-time behavior. At the beginning, I assume that the SIFT features

are already precomputed from the detected and preprocessedface regions from the

training and the test video streams. The initial training set is constructed using

cross validation on randomly selected subsets. During the test phase, examples are

provided in the same order as they appear in the original video streams. However,

the adaptive strategy of the online learning algorithm depends on the order of the

classes of the examples. A test example that is incorrectly classified in the previ-

ous step may be added to the training set of an incorrect class. This is unavoidable

unless the classification is perfect. To reduce such bias in learning, the classifica-

tion takes place as follows. For each class, among the test examples that have not

yet been classified, pick the earliest one in the order they appear in the test video

stream, if any are left. The set of test examples thus collected from the training sets

of each class are classified in a random order. Repeat this until no test examples are

left.

In my experiments, I use the following scheme to determine the parameter

values1. ℓ and εθ are found in a similar manner as in the preliminary work.εδ

andε∆ are set appropriately to satisfyεθ < εδ < ε∆. For SVND, I usedν = 0.5

1Parameters can be set freely in a number of different ways including but not limited to the
scheme introduced here.
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based on Scḧolkopf’s observation that a reasonably largeν results in classifiers that

do not overfit the data but, at the same time, cover isolated examples in the feature

space [47]. The second set of paramters is the widths inκSIFT in (5.4) andκτ in (5.8)

and their control parameters. The default values for the width control parameters

areγ = 0.5 andγτ = 0.5. The width is computed differently for each of the classes

as follows.

For SIFT descriptor setsX = {x1, · · · ,x|X |} andX ′ = {x′
1, · · · ,x

′
|X ′|} ∈

X train
i , with |X | ≤ |X ′|, let the average distance between the matched SIFT descrip-

tors using the nearest neighbor matching be

σXX ′

=

∑|X |
n=1 ‖xn − x

′
xn
‖

|X |
, (5.22)

wherex′
xn

= arg
x′

m∈X ′

min ‖xn − x
′
m‖. Then, the width ofκSIFT for classCi is

σi =

∑ℓ

n=1

∑ℓ

m6=n σXnXm

ℓ(ℓ− 1)
. (5.23)

σ for kτ is determined identically, except that the distance is computed be-

tween the combined feature vectorsx
′ = (x, i, j) ∈ R

130.

σ andστ for κ are determined as follows. For SIFT descriptor setsX =

{x1, · · · ,x|X |} andX ′ = {x′
1, · · · ,x

′
|X ′|} ∈ X train

i , with |X | ≤ |X ′|, let the average

distance between the matched SIFT descriptors be

σXX ′

=

∑22
t=0

∑

x∈It(X )
x
′∈It(X ′)

‖x− x
′‖

∑22
t=0 |It(X )||It(X ′)|

. (5.24)
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Then, the width ofκSIFT for classCi is

σi =

∑ℓ

n=1

∑ℓ

m6=n σXnXm

ℓ(ℓ− 1)
. (5.25)

Similarly, let the average parametric distance between thematched SIFT

descriptors be

σXX ′

τ
=

∑22
t=0

∑

x∈It(X )
x
′∈It(X ′)

‖τ (x)− τ (x′)‖

∑22
t=0 |It(X )||It(X ′)|

. (5.26)

Then, the width ofκτ for classCi is

σi
τ

=

∑ℓ

n=1

∑ℓ

m6=n σXnXm
τ

ℓ(ℓ− 1)
. (5.27)

Although determining the values of these parameters is computationally de-

manding, this could be performed offline during the preprocessing stage.

5.3.3 Face Recognition Under Steady Illumination

In this section, I present the results of experiments with the NRC-IIT facial database.

The illumination remains steady throughout the entire database, while other condi-

tions such as pose, expression, or occlusion vary significantly. A total of seven dif-

ferent similarity metrics in Figure 5.14 are evaluated in terms of the three metrics,

RR, DR, and FAR. To isolate the performance gains due to the adaptive strategy of

the online learning algorithm from those due to using the parametric kernel, I run

two identical classifications for each similarity metric, where the adaptive training
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set maintenanace is turned on in one set and off in the other. The parameter values

areℓ = 60, εθ = 0.03, εδ = 0.4, andε∆ = 0.7.

RR, DR, FAR usingfdEC, fkEC, fkSVND, fkτ EC, fkτ SVND, fκEC, andfκSVND

are showin in Figure 5.19, 5.21, and 5.22, respectively. For each metric, I show blue

and red bars that correspond to the peformance metric computed with the adaptive

training set maintenance feature of the online learning algorithm turned off (Fixed)

and on (Adaptive), respectively.
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Figure 5.19: The blue and red bars correspond to the peformance metric com-
puted with the adaptive training set maintenance feature of the online learning al-
gorithm turned off (Fixed) and on (Adaptive), respectively. Irrespective of the type
of similarity metric used, the adaptive learning strategy increases the recognition
rate. Meanwhile,fκEC, along with the adaptive strategy, resulted in the highest RR
= 96.3%.

As shown in Figure 5.19, the strategy of adaptively maintaining the training

set results in an increase in RR of about3% ∼ 5%, irrespective of the type of sim-

ilarity metric used. The increase is not as impressive as in the preliminary work.
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This is due to the characteristics of the NRC-IIT database, where the lighting condi-

tions are steady throughout the entire set of examples. Using fκEC, I obtain the best

results of96.3% and91.5% with and without the adative strategy, respectively. This

is a competitive result compared to the RR of94% by Tangelder [53], while RRs

for other similarity metrics are about10% lower. Comparing this against usingfkEC

shows the advantage of using the meta information. In this example, RR increased

about10% on average. It is also intersting to see thatfkτ EC increases RR by at most

3% ∼ 4%, which indicates that using meta information in the form of additional

dimensions is not a very significant improvement under thesecondistions. This is

because the meta information does not add any significant information if it is used

in this manner. See Figure 5.20 which shows the intra- and inter-class histograms

of different types of distances between the local feature vectors in the left and the

right columns, respectively.

The intra-class histograms show the distances between the matched feature

vectors computed from the randomly chosen 150 training and 150 test examples for

Face 0, while the inter-class histograms show those computed from randomly cho-

sen 150 training examples of Face 0 and Face 10, respectively. The top row shows

the distance distributions between the nearest neighbor SIFT descriptors. The two

distributions largely overlap, except that the intra-class distribution has a long left

tail. The long left tail corresponds to very close matches inthe space of SIFT de-

scriptors between examples of the same class. The second rowshows the distance

distributions between the nearest neighbor combined feature vectorx′ = (x, i, j).

Adding the meta information has the effect of slightly shifting the distributions
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to the right hand side. On average, both distributions shiftabout+0.1. The dis-

tributions look almost similar to those without the meta information. This partly

explains why the increase in RR byfkτ EC compared tofkEC is small. In addition,

combining the local feature vector and the meta informationmay not be numerically

appropriate since they may not be in comparable scale. Without careful numerical

adjustment, the meta information will either dominate the effect of local feature

vectors or add no extra meaning to them. The paramteric kernel framework solves

this problem by computing the normalized similarity between the meta information

separately from that between the local feature vectors.

The third row shows the distance distributions between SIFTdescriptors

matched using the parametric kernel framework. Decomposing the parameter space

into smaller overlapping regions and enforcing matching between features that co-

occur in the same range prevents features far apart in the feature space from match-

ing. At the same time, the co-occurring features may not be the nearest neighbors.

Consequently, a large portion of the matched feature vectorsfor the historgrams

shown in the top two rows disappear, while the newly matched feature vectors are

sub-optimal, that is, further apart. There are44700 matches in the histograms of top

two rows, while there are only21735 and14621 matches in the left and the right

histograms as shown in the third row, respectively. This indicates that the matched

local features are likely to be computed from far apart locations within the face, if

the match is between images of different people rather than asingle person. Also,

the sub-optimal matching explains the increase of the mean distances in the third

row. It is interesting to see that the long left tail still remains in the intra-class dis-
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tance distribution for the parametric kernel. This means that in intra-class matching,

many SIFT descriptors that are close in the feature space also co-occur in the same

parameter range, while there are almost none in inter-classmatching. By favoring

these matches, the parametric kernel framework shows superior performance over

other similarity metrics.

The DRs are computed withεθ for which the the RRs are computed as shown

in Figure 5.19. DRs decrease if the adaptive strategy is used,except forfκSVND.

Compared to the DRs in Tangelder’s work (26%), I achieve much smaller DRs.

My classifiers are empirically shown to correctly discard negative examples much

better than correctly recognizing positive examples. I believe that this is closely

related to the unsupervised nature of learning one-versus-all classifiers in the pro-

posed framework. In general, the lack of knowledge of the distribution of negative

examples tends to make the class boundary fuzzy and thus, more examples are clas-

sified as positive. This also explains in part why the RRs are mostly lower than94%

in Tangelder’s work.

FARs for the seven similarity metrics are shown in Figure 5.22. Compared

to Tangelder’s result using BHG (4%), the FARs of my approach are about twice as

high, but much less than those using SIFT (18%). In addition, the adaptive strategy

does not help that much in lowering the FARs. This is mainly because examples of

unknown identity are rarely added to any of the training sets, even though they are

classified as positive by some of the one-versus-all classifiers.
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Figure 5.20: The intra- and inter-class distance distributions are shown in the left
and the right columns, respectively. The top row shows the distributions of dis-
tances between matched SIFT descriptors, while the second row shows that of the
combined feature vectorx′ = (x, i, j). The distribution remains almost indentical,
which means that using the meta information in the form of extra dimensions does
not make much difference. The histograms in the third row show that matching
in the parametric kernel framework is sub-optimal in that the modes shift to the
right hand side and a much smaller number of features match. Meanwhile, the long
left tail still remains in the intra-class distance distribution for the parametric ker-
nel, which is missing in the inter-class distance distribution. This means that, in
intra-class matching, many SIFT descriptors that are closein the feature space also
co-occur in the same parameter range. By favoring these matches, the parametric
kernel framework shows superior performance over other similarity metrics. The
last row shows the distribution of parameter distances between the nearest neigh-
bor SIFT descriptors. The intra-class histogram shows strong concentration around
[0, 5], which is missing in the inter-class histogram. This implies the importance of
using parameter distances.
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Figure 5.21:εθ for which the RRs are computed in 5.19 are used to compute the
DRs. Except forfκSVND, DRs decrease if the adaptive strategy is used. The DRs
are much smaller than that of Tangelder’s approach26%. However, I believe this
is because the boundaries of the one-versus-all classifiersin my approach are loose
since no information about the distribution of negative examples is used.
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Figure 5.22: FARs are about twice as high as those of Tangelder’s approach using
BHG (4%) but much less than using SIFT (18%). The adaptive strategy does not
help that much in lowering the FARs. This is mainly because examples of unknown
identity are rarely added to any of the training sets, even though they are classified
as positive by some of the one-versus-all classifiers.
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5.3.4 Face Recognition Under Dynamic Illumination

In this section, I present the results of experiments with the UT Austin Villa facial

database. The lighting conditions of the test examples are significantly different

from those of the training examples and unknown a priori, which makes the problem

very difficult to solve. In particular, SIFT is very sensitive to the lighting conditions,

as explained in 5.2.3. The experiments are set up much as in the work with the

NRC-IIT database. The parameter values areℓ = 80, εθ = 0.05, εδ = 0.3, and

ε∆ = 0.7.
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Figure 5.23:fκEC, along with the adaptive strategy, resulted in a maximum RR
of 71.2%, while fκSVND resulted in a maximum RR of65.2%. Though the adap-
tive strategy is an important factor in increasing the RRs, we can still see that the
parametric kernel framework effectively utilizes the meta information.

As shown in Figure 5.23, adaptive training set maintenance increases the

RRs, irrespective of the type of similarity metric used.fκEC, along with the adaptive

strategy, resulted in a maximum RR of71.2%, whilefκSVND resulted in a maximum

RR of65.2% without the adaptive strategy.
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Figure 5.24:εθ for which the RRs are computed in 5.19 are used to compute DRs.
fκEC andfκSVND resulted in maximum DRs of17.2% and23%, with and without
the adaptive strategy, respectively.
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Figure 5.25:fκEC, which showed the highest RR, resulted in a FAR of3.4%.

119



Compared to the results for the NRC-IIT data, the best RR for UT Austin

Villa is about25% lower. I think that this is impressive considering the strong sen-

stivity of SIFT features to illumination variations and theunknown test lighting

conditions during the training phase. Though the adaptive strategy consistently in-

creases the RRs, the increase is smaller than for the NRC-IIT data. This is mainly

due to the lower certainty values during testing. Loweringεδ andε∆ may allow

more examples to be added to the training set, but this also admits more false posi-

tive examples.

5.4 Conclusion

The parametric kernel framework has been applied to the problem of online face

recognition from video streams as part of effort for the Robocup at Home 2007

competition. Recognizing faces from online video streams has recently been much

studied due to the applicability to a wide spectrum of problem domains. Compared

to traditional face recognition based on single-shot face image databases such as

FERET or BANCA, recognizing faces from video streams is a much more challeng-

ing problem due to strong variance in pose, expression, occlusion, and illumination.

Especially changes in illumination make the problem very difficult to solve.

Representing an image as a set of local feature vectors has been effective in

many computer vision tasks. This is particularly advantageous if the global rep-

resentation of a given image changes considerably due to variations in pose, view

points, occlusions, or other types of deformations. The similarity between two im-
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ages could then be computed by matching their local features. In this work, I used

sets of SIFT descriptors as the feature representation for the detected faces. Un-

fortunately, using local features does not work that well under significant changes

in the illumination. This resulted in a large number of matches between features

located at quite irrelevant regions within the face images.

Compared to images from other vision applications such as object catego-

rization or image retrieval, the global representations offace images change much

less dramatically. I take advantage of this characteristicby adopting the geometric

relationship between the locations of local features as theparameter in the param-

eteric kernel framework to suppress matching features computed from irrelevant

regions. However, this strategy reduces bad matches but does not boost good ones.

To handle this, I proposed an online strategy that maintainsthe training set adap-

tively by adding examples during the test phase, which is used in combination with

the parameteric kernels.

I demonstrated the efficacy of this approach through experiments on two

datasets. On the NRC-IIT facial database, I achieved a RR of96.3% at a FAR of

9.9% using the parametric kernel and EC-learning. I compared thisto the state-of-

the-art results using the same dataset produced by Tangelder [53]. Using BHG as

the feature, his approach achieved a RR of94% at a FAR of4%. With SIFT, his

approach achieved a RR of95% but the DR and the FAR are47% and18%. My

approach shows a superior RR at the cost of a higher FAR compared to the result

using BHG. However, compared to the results using SIFT, I obtain much smaller

DR and FAR. Considering that he computes SIFT features after extracting fiducial
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points from the face image, including nose, eyes, and mouth,and that he constructs

the training set optimally using a greedy selection scheme,my results look quite

impressive.

The second sets of experiments with the UT Austin Villa facial database

are aimed at performance analysis under considerable amount of variation in the

illumination, since the illumination was steady in the NRC-IIT data. In particular,

the lighting conditions during the test phase are quite different from those during

the training phase and unknown a priori. I achieved a RR of71.2% at a FAR of

3.4%. Though I cannot provide any comparison since the UT Austin Villa data

is a private dataset, I believe that my results are strong considering the significant

amount of variability in illumination.

Summarizing, I have applied parameteric kernels and an adaptive online

learning strategy to the face recognition task using the locations of local features

as the parameters. The objective was to demonstrate the general applicability of the

parametric kernel framework to structures other than sequences. The only change

required is extending the parameter space to a higher dimensional manifold and

applying an appropriate decomposition scheme within this space. This shows the

potential of the parametric kernel framework to provide a systemmatic approach to

learning structured data.

122



Chapter 6

Sensor Data Analysis

In this chapter, I apply the parametric kernel framework using 1D parameterization

to the task of object detection from the sensor data capturedby laser range find-

ers. The work demonstrates that the parameteric kernel framework for handwritten

character recognition is directly usable in detecting objects from sensor data. This is

because the input patterns from both problem domains are sequentially structured.

Laser range finders are often used in robot systems to sense the nearby en-

vironment. This is done by measuring the distance to the nearest object omni-

directionally in 2D plane at a certain frame rate. Analyzingthis information, robots

take appropriate actions to achieve the goal such as localization, avoiding obstacles,

or approaching the destination. At each frame, the scanned scene returned by laser

range finders is represented as an array or a sequence of distance values, where each

dimension is associated with a certain angle of the direction that the distance was

measured. The first step to analyze a scene is to remove min andmax values from
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the sequence and segment the remaining values into a set of meaningful subregions

called blobs. Object detection in this context is to task of finding a blob that corre-

sponds to the surface of the target object. If the robot or thetarget object is moving

and/or due to the noise and error of the device, the blobs for the same target object

look similar but are all different in terms of the sequence lengths and the distance

values. The parametric kernel framework with 1D manifold parameterization intro-

duced in Chapter 4 is directly applicable to this task with minor difference in the

data normalization scheme and the parameter values. I implemented a soccer ball

detector to demonstrate the efficacy and the generality of the proposed approach.

In section 6.1, I describe the setup of my experimentation, followed by the

results in section 6.2. I conclude this chapter with the discussion in section 6.2.1.

6.1 Experimental Setup

6.1.1 Data Representation and Normalization

I used Hokuyo URG-04LX laser range finder which scans at 10 frames per second

in 2D plane. It is mounted on the front side of the Segway RMP robot that navi-

gates in the lab. The objective is to locate a region in a frameof sensor data that

corresponds to a soccer ball. A frame is represented as a sequence of 768 distance

values measured from−120◦ to 120◦ relative to the front direction. Each distance

is measured in millimeters, ranging from 20 to 4095 with maximum1% error. See

Figure 6.1 (a) for a snapshot.
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Figure 6.1: Raw sensor input is shown in (a) and thick curves in(b) are the blobs
after segmentation. In (c), the thick round blob at angle about 90◦ and distance0.2
is detected as the soccer ball.

Each frame is preprocessed as follows. First, a frame is normalize by di-

viding it by the maximum distance value and segmenting into several meaningful

subregions called blobs. A blob is defined as a subregion of a frame where all dis-

tance values in the subregion are in(θ, 1) and every consecutive values are at mostδ

apart. In this experiment, I usedθ = 0.05 (about 20cm) andδ = 0.02 (about 8cm),

which are found after a number of trials. Excluding values less thanθ is necessary

to remove noise due to parts of the robot that are at the proximity of the sensor. Ex-

cluding value of 1 is also necessary to remove the empty space. Blobs are further

normalized by scaling so that the min and max distance valuesin each blob are 0

and 1.

Blobs that corresponds to the soccer ball are roughly semi-circles because

Hokuyo URG-04LX scans from only one side of it. However, sincethis is also

the case for all round objects such as human legs or beacons, they will confuse the
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classifier. Without any extra information, there is no way totell one from another.

For demonstration purposes, therefore, it is assumed that no such confusing objects

exist in the frame. Some of the ball and non-ball examples areshown in Figure 6.2.

0 20 40 60 80 100
0

0.5

1

Figure 6.2: Solid (dashed) curves are ball (non ball) examples, where vertical and
horizontal axis correspond to the normalized distance and the number of points in
blobs. Clearly, ball blobs are semi-circular, while others are irregular.

6.1.2 Parametric Kernels for Blobs

Let X = [x1, · · · ,x|X |] be a blob, wherexi ∈ (θ, 1) are the normalized distance

values. The parameter forxi is defined as

τ (xi) =











∑i

k=2 ‖xk − xk−1‖ if i > 1,

0 otherwise.
(6.1)

Consider a decomposition of parameter spaceT into N ranges

T =
N−1
⋃

t=0

Tt. (6.2)

Given two blobsX = [x1, · · · ,x|X |] andZ = [z1, · · · , z|Z|], the parametric
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kernel for blobs before normalization is defined as

κ(X ,Z) =
N−1
∑

t=0

〈φ(X ) · φ(Z)〉, (6.3)

where

〈φ(X ) · φ(Z)〉 =
∑

xi∈It(X )
zj∈It(Z)

wxi
wzj

κBD(xi, zj)κτ(τ (xi), τ (zj)), (6.4)

whereκBD : (θ, 1) × (θ, 1) → R andκτ : T × T → R are Mercer kernels that

evaluates the similarity between two distance values in theblobs and their paramet-

ric similarity, respectively. The definition of the decomposed element setIt and the

weighting scheme is identical as in Chapter 3.

To suppress favoring large inputs and to penalize the presence of unmatched

points, (6.3) is normalized by the produce of self similarity of X andZ :

κ(X ,Z) =
κ(X ,Z)

√

κ(X ,X )× κ(Z,Z)
. (6.5)

6.2 Results

The laser range finder is mounted at about 20cm from the groundon the front side

of the mobile robot. The robot is controlled to slowly navigate around the field

with a number of objects including the soccer ball, boxes, and walls. The frames

are captured at about fps for about 30 seconds. After preprocessing each of the

frames into normalized blobs, each of the blobs are manuallylabeled as either +1 if
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it is a ball, or -1, otherwise. The datasetS thusly constructed is composed of total

442 ball blobs and 2199 non-ball blobs. For learning,S is split into train and test

subsets. The train subset is constructed by randomly drawing 20 ball blobs and 22

non-ball blobs fromS and the remainder is the test subset. I trained a soft-margin

support vector classifier (SVC) with a quadratic loss function andκ in (6.5) as the

kernel function. The details of SVC has been described in Chapter 2. See [47, 49]

for an introduction to SVCs.

I used a regular overlapping parameter space decompositionscheme as in

the handwritten character recognition with the range length ∆ = 0.1 and the hop

length∆/2 = 0.05. I choseκBD as a radial basis function

κBD(x, z) = e
−
‖x− z‖2

σ2
BD (6.6)

whereσBD ∈ R is the width, andκτ as a radial basis function

κτ(τ (x), τ (z)) = e
−
‖τ (x)− τ (z)‖2

σ2
τ , (6.7)

whereστ ∈ R is the width. The widths are set toσBD = στ = 0.1. The SVC

parameterC is set to 1000. For a blobX labeled asy ∈ {−1, 1}, the classification

of the learned classifierf is correct iff(X ) = y, or incorrect, iff(X ) 6= y.

The classification error is measured as the ratio of the incorrectly classified

test blobs to the total number of the test blobs. On average, the classification error

was0.82% with 78.6% of the training data being the support vectors. Thus, with

only about1.2% of the total data, I achieved more than99% of error rate. Each
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scene on average contained about 10 to 20 blobs, among which only one corre-

sponds to a soccer ball. Our C++ implementation running on a tablet PC with Intel

Pentium M 1.2 GHz processor on average required less than 0.1seconds to classify

blobs in each scene.

6.2.1 Discussion

A parametric kernel function is defined for blobs. It has beenused in SVC to learn

a blob classifier for the task of object detection from laser range finder sensor data.

With a few minor modification including the data normalization and other param-

eter values, the parametric kernel functions for handwritten character recognition

using a 1D parameterization was directly applicable to thistask without resort to

any heuristic feature extraction. This scheme provides a more systematic, flexible,

and intuitive way to build effective similarity measures that could be used in con-

junction with kernel machines. However, more work needs to be done in terms of

data normalization if the shape of the target object is more irregular and complex

than just the balls. Since the ball was round, it is scale- androtation- invariant. A

possible approach for affine-invariant data normalizationis the shape context pro-

posed by Belongie [11].
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Chapter 7

Conclusion and Future Work

Input patterns in a variety of robotics and HCI learning tasksare geometrically

structured. Making computers recognize the similarities between physical patterns

is an extremely difficult task due to significant amount of noise and change in the

physical conditions against which humans can reliably learn physical patterns. To

cope with this difficulty, a set of local features are extracted from parts of the in-

put patterns that are locally invariant against such noise or change in the physical

conditions.

Unfortunately, such representation does not fit conventional learning algo-

rithms and distance metrics. They assume fixed dimensional vector inputs but the

each physical pattern consists of a variable number of localfeatures. It is not easy to

represent the irregular structure into uniform length vectors either. Kernel functions

provide a flexible solution to this problem. However, neither defining such kernels

for a given type of structured inputs nor adopting existing kernels for other problem
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domains is straightforward.

The work in this dissertation presents a solution to overcome these limita-

tions, which is generally applicable to a diversity of geometric structures. I explore

the concept oftailoring kernelsto address the problem of defining the distance met-

rics between sets of geometrically related local features.The geometric structure

between the local features is embedded into the notion ofkernel parameters.

7.1 Contributions

We can summarize the major contributions of this dissertation as follows.

• Synthesizing Kernels

The parametric kernel framework provides a method to systematically syn-

thesize customized kernel functions for structured inputsby aggregating ker-

nel functions for the local features. The fundamental idea is based on the

concept of convolution kernels proposed by Haussler, whichwas one of the

first instances of kernel functions on structured data [16, 25, 33]. However,

in general, finding the definition of substructures and their“part-of” relation-

ship with the composite objects for a specific problem is quite difficult [6].

The parametric kernel framework provides an important stepto overcome

this limitation by providing a general framework to group local features into

substructures based on their geometric relationship.
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• Structure Embedding via Parameterization

Representing complex geometric structure of local feature vectors in a form

that could directly be used as a distance metric suited to many conventional

learning algorithms is a difficult task. The parametric kernel framework pro-

vides the ability to intuitively encode the geometric structure underlying the

local feature vectors of physical patterns viaparameterization. This scheme

imposes a manifold to represent the geometric structure andassociates each

of the local feature vectors to a point in this manifold. As the proof of con-

cept, I synthesized and applied parametric kernels for handwritten character

recognition and sensor data analysis by parameterization in a 1D manifold,

and face recognition by parameterization in a 2D manifold, respectively. I

achieved competitive results on these tasks.

• General Applicability

Traditional approaches to handling structured data extract application-specific

feature vectors from the input patterns. Therefore, a feature representation

that is effective for inputs with a certain structure is often heuristic and not

generally applicable to inputs from other problem domains with similar struc-

tures. Since the parametric kernel function is not dependent on any specific

context of certain problem domains, it is generally applicable to inputs from

other problem domains as long as they have similar geometricstructure. Us-

ing an identical framework with a minimum of changes limitedto the settings

for parameterization and values of the kernel parameters, Iachieved compet-
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itive results on seemingly quite unrelated problem domains.

• Scalability

The parametric kernel function requires on average a near linear time cost to

evaluate, depending on the parameter space decomposition scheme. There-

fore, it is scalable to inputs that consist of a large number of local feature

vectors. Also, since it is a Mercer kernel, the parametric kernels can be ap-

plied to any learning algorithm based on convex optimization. In this disser-

tation, the parametric kernel functions defined for sequences and unordered

sets have been successfully used in support vector learningalgorithms for

classification and novelty detection.

• Handwritten Character Recognition

As the first set of experiments, I applied the parametric kernel framework to

the task of recognizing handwritten characters. I designedparametric ker-

nel functions for sequences of points using 1D manifold parameterization. I

achieved results that are superior to a number of state-of-the-art techniques

that are specifically designed to recognize digits, Englishalphabets, and some

mathematical symbols. With just minor changes in the kernelparameter val-

ues, the same kernel function has been applied to the task of recognizing

known objects from the sensor data captured by a laser range finder. With

an appropriate choice of local feature representations such as the shape con-

text [11], it is straightforward to extend this applicationto perform critical

robotics tasks such as localization or navigation.
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• Face recognition under varying illumination

Face recognition under varying illumination is an extremely difficult task to

solve. This is all the more so if we are to recognize faces fromlow qual-

ity video streams captured by commodity webcams that are often used in

robotics. As part of the work for Robocup at Home competition,I built

a real-time system that learns to identify faces from video streams. Using

SIFT as the feature representation, I achieved excellent results under steady

or known illumination conditions. However, the performance dropped sig-

nificantly when the test illumination condition is unknown during training.

I designed a parametric kernel for face images represented as a set of SIFT

descriptors, using the position of each SIFT descriptor as its parameter in 2D

manifold. This greatly improved the recognition rate.

7.2 Applications

The series of problems solved in this thesis provides typical examples of using my

method. I design the parameter space and construct customized similarity metrics

as parametric kernel functions following the proposed scheme. In this section, I

discuss the application of the parametric kernel techniqueto other problem domains

that I have not addressed in this work. The primary goal of this discussion is to

provide an analysis of the proposed method which may providea useful insight

into issues such as when and how one could use the parametric kernel technique

to solve the problem at hand, what must be considered to make this method work
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well, and what its limits are.

The parametric kernel technique allows for an easy and straightforward adap-

tation to sequences. In particular, if one needs to construct similarity metrics for

varying length sequences of feature vectors that could be used within a state-of-

the-art kernel learning framework such as support vector machines, my approach

yields an effective and efficient solution. In comparison tothe well known sequence

matching technique based on dynamic time warping (DTW), parametric kernels

take much less time and memory to evaluate. The parametric kernel technique

works well with sequence data where not only the order but also the relative dis-

tances between the consecutive feature vectors convey information that defines the

data characteristics. For instance, consider handwrittencharacters for the same let-

ter that consist of varying numbers of points. This may happen in real handwritten

character systems due to differences in the speed they were written. If the characters

look similar to humans, then my method yields quite stable similarity metrics that

are less dependent on how dense or sparse the distribution ofthe points is. How-

ever, my method may be weak when the characters contain noiseor the shapes for

the same characer vary dramatically. For instance, if a noise point is introduced in

the middle of a stroke, then this will shift the parameters ofthe remaining points in

the stroke. In comparison, DTW yields similarity metrics that are much more stable

than my method in such cases since such noisy points are skipped (warped) during

optimization without interfering with matching the remaining points in the stroke.

We can apply the parametric kernel technique to structured data types with

no specific notion of order between the elements as well. Instead, their positioning
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in the input physical space provides similar information. For instance, consider the

face recognition problem. I used the normalized coordinates of the positions within

an image where SIFT features are computed as their parameters. In some sense, I

would like to argue that the positioning could be consideredas an extended notion

of ordering. My reasoning is as follows. Parameters for sequences encode the order

and the relative distances in terms of their positions alonga 1D parametric axis.

Elevating parameters to a higher dimension yields a notion of ordering that supports

the kind of parameters used in my work on face recognition. The parametric kernel

technique in higher dimensions works well if the relative positioning of feature

vectors conveys information that defines the data characteristics. For instance, in

my face recognition work, the relative positions of fiducialpoints in the face such

as eyes, nose, and mouth within the face do not vary dramatically, while the SIFT

features varied very sensitively due to the changes in the illumination condition.

However, my method may be weak if there is a significant amountof occlusion

or distortion of the objects. Therefore, my method will not work well with image

categorization partial matching for image retrieval.

7.3 Future Work

The work in this dissertation entails some challenging topics for future research.

• Automated and flexible parameter space decompositionThis dissertation

made heavy use of an overlapping regular parameter space decomposition

scheme. However, determining the size of each range and the hop length was
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somewhat arbitrary and heuristic. If the decomposition is too fine-grained,

there will be no local features that match, while, with a composition that

is too rough-grained, we will be swamped by bad matches [23].It will be

challenging but very helpful to be able to automatically determine the optimal

size of the ranges.

Also, regular decomposition may be less effective than moreflexible manual

decompositions and not even work for certain problem domains. There has

been some similar work to find irregular decomposition of thespace of local

features for local matching, e.g. vocabulary-guided irregular pyramid match

kernels [23]. Finding an optimal decomposition scheme using any other use-

ful pieces of information from the context of a given problemis a challenging

and important step to enhance the quality of the technique presented in this

dissertation.

• Computational efficiency

Though the evaluation of parametric kernels requires a nearlinear time cost,

it still means that the kernel functions that compute the distances between

the local feature vectors and between their parameters mustbe evaluated that

many times. Moreover, overlapping the ranges increases thecomputational

cost even further. Therefore, reducing the computation cost is also a very

important enhancement to the current technique. Various computationally

efficient approximation techniques may be applicable, or kernel functions that

are computationally efficient than those used in this work may be chosen
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instead.

• Application to a broader range of problems

This dissertation demonstrates the general applicabilityof the parametric ker-

nel framework by applying it to three seemingly quite unrelated problem do-

mains. However, the structure that underlies the input patterns of those tasks

is limited to just 1D or 2D manifolds. It will be very interesting to see how

this technique works in a broader range of problem domains and more com-

plex input structures. A problem domain to which we can immediately apply

parametric kernels using 1D manifold parameterization is analyzing audio

streams.
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