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Structured representation of input physical patterns a afdocal features has
been useful for a veriety of robotics and human computeracteon (HCI) ap-
plications. It enables a stable understanding of the viarigputs. However, this
representation does not fit the conventional machine legraigorithms and dis-
tance metrics because they assume vector inputs. To leamifiput patterns with
variable structure is thus challenging. To address thiblpro, | propose a general
and systematic method to design distance metrics betweactiged inputs that
can be used in conventional learning algorithms. Based oplikervation of the
stability in the geometric distributions of local featui@ger the physical patterns
across similar inputs, this is done combining the local ksirities and the confor-
mity of the geometric relationship between local featurBlse produced distance

metrics, called “parametric kernels”, are positive seegiidte and require almost

viii



linear time to compute. To demonstrate the general applityadnd the efficacy of

this approach, | designed and applied parametric kerndiauntdwritten character
recognition, on-line face recognition, and object detecfrom laser range finder
sensor data. Parametric kernels achieve recognition catapetitive to state-of-

the-art approaches in these tasks.
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Chapter 1

Introduction

Humans constantly interact with the physical world for sas purposes. Continu-
ous streams of physical patterns from one’s surroundirggsearsed and analyzed to
extract information that is useful for either taking appiafe actions or understand-
ing the world. They approach a destination, avoid obstaml@®ngers, recognize
faces, group similar objects into categories, localizexawhange information with
peers using language or images.

The main goal of robotics or human-computer interaction (HE€$earch is
to develop techniques that enable a computer to autonognmagon about and in-
teract with its environment much like humans do. In doingve® hope to achieve
a deeper understanding of our own human abilities, and ta tedbuild more pow-
erful and intelligent robots or interactive computer sysde

In this research, | focus on the problemanimputing the similarity between

physical patternsThis is a fundamental problem that underlies a variety bbtcs



and HCI learning tasks, such as recognition, grouping, esiim, or searching,

where the input examples are physical patterns obtainedyrtay taking measure-

ments or capturing human interaction. For instance, mabbets use laser range
finders to measure distances to surrounding objects or webta capture visual

information. They make decisions on its next action to ashighe goal such as
navigation or object avoidance. Human authenticationesgstrequire biological

signatures such as fingerprints, voice, face images, omrateh characters, as the
input.

Humans are remarkably accurate and efficient at telling hiowlas two
physical patterns are. This ability is extremely robustiagtaall sorts of change
in the physical conditions. The first step to make computerthi is to represent
the physical patterns in a form that computers can accesstiyithis is done by
digitally sampling thephysical input spacd-or instance, on-line handwritten char-
acters consist of sequences of 2D points that are obtainealdiyiring pen or mouse
points in a 2D plane. Likewise, music and speech consistqpfesgces of quantized
amplitude values that are obtained by recording using rplovaes, shape contours
are represented as sequences of 2D points around the edgigieds in images,
and 2D arrays of pixels have been used to represent imagéstumately, changes
in physical conditions such as pose or illumination agaivitsth humans can reli-
ably analyze physical patterns often may result in varympyts that are extremely
difficult for computers to learn.

To cope with this difficulty, people have tried to find feattbat are robust

against such variations from the input patterns. Consideinstance, contours of



objects that are represented as sets of 2D points. Contotlie sAme object may
vary in size, orientation, or position, or are composed fiéent numbers of points.
But, they are considered contours of the same object by hubeuaise they con-
tain parts that are relatively invariant against thoseatems. Inshape contexta
histogram of normalized relative distances to other canpmints is computed at
each contour point [11]. Shape context is invariant to cleang size or position.

Object recognition or category learning in computer visiesearch requires
the ability to find similar parts of similar or identical olofs across different im-
ages. Scale invariant feature transform (SIFT) [34], gdameélur [12], or the
Harris-Affine transform [38] extract an unordered set ofldeature vectors from
a varying number of characteristic or salient regions inmage, typically identi-
fied by the use of an interest operator. Alternatively, fezgican be extracted from
a predefined set of points. For instance, the set of geodetandes between the
fiducial points of human faces, such as nostrils, eyes, osmtps, is an effective
feature for 3D face recognition [24]. Such feature vectoessinown to be stable
against transformations such as pose or illumination trarigor noise such as clut-
ter, occlusions, or partial variation. With such reprea@aohs, we can compute the
similarity between two images by, for instanceatchingthe local features that are
closest in the feature space [23].

Usually the number of local features extracted varies aodifferent input
patterns, and therefore the representations are not geaftarfixed dimension. In
the machine learning literature, inputs that are not vecioe referred to astruc-

tured Sets of local features of varying cardinality are thusdtrited inputs. An
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Figure 1.1: Examples of Sets of Local Features

interesting and useful property that underlies such remtasions, specifically for
physical patterns, is thelationshipof local features. This is of particular interest
because it can provide a very useful means to compute thiagimbetween input
physical patterns. A major goal of this research is to fineéaive ways to take
advantage of this useful information. Methods for doing #nie not well studied in
the literature to date.

To illustrate the types of relationship between local feaduhat | deal with,
and to motivate our approach, consider the problem of ohlarelwritten character
recognition. Each handwritten character consists of a §@Dopoints of vary-
ing cardinality. By applying existing techniques to compilie similarity between
two sets of vectors, we may compute the similarity betweentwo handwritten
characters. However, in doing so, we neglect the ordernmétion underlying the
set of points. This is of particular importance since it @amé the key informa-
tion that enables the recovery of strokes, which are clitideen we compute the
similarity between two handwritten characters. Withost ttotion of strokes, it is
harder for computers to distinguish some sets of points, ‘e'g‘e’, or ‘0’. One

simple approach to represent this order information isjrfstance, to append the



sequence numbeto the coordinates of thieth input point(z;, y;) as an additional
dimension. This transforms the sequence of points in a hatidw character into
an unordered set of local features;, y;,7). By applying the same technique to
compute the similarity between two sets of vectors, we canpude the similarity
between the two handwritten characters, without neglgctie order information.
Thus the specific type of relationship in this example is tiput order of the data
points.

As another example, consider two sets of SIFT features ctedgtom var-
ious locations within two different input images. For eadRTSfeature in one set,
we may find the nearest neighbour from the other set and campatnumerical
distance between them. By aggregating the distances codypméecan evaluate
the similarity bewteen the two input images. However, thsra possibility that
two matched nearest neighbours in the feature space argtnatted from nearby
positions in the input images. In the context of certain ejagpilbon domains, e.g.
face recognition, this may indicatebad match in the sense that it may result in an
undesirable increase in the similarity between face imafiéso different people.
One simple approach is to append to each of the SIFT featuré® coordinates
of the location(z;, y;) within the image where each SIFT feature is located. This
transforms the set of SIFT features computed from an imageaiset of local fea-
tures(o;, z;, y;). When applying technigues to compute the similarity betwteen
sets of vectors, we may additionally rule out or penalizéhduad matches. In this
manner, we can compute the similarity between the two imagésout neglecting

the geometric relationship between the local features.speeific type of relation-



ship in this example is the geometric distribution of the Bt€ature positions over
the input images.

This research deals with particular types of structure@ adtere the in-
formation about such additional relationships betweenldlbal features is quite
useful or critical. In this thesis, such types of structudada are said to bgeo-
metric or geometrically structured Also, such a relationship is referred to as the
geometric structuref local features. | search for a novel technique to reprtesen
such relationships between the local features in a systemainner and combine
this representation data with the local features in the fofia similarity metric. It

can then be used directly in a conventional machine learfinamgework.

1.1 Learning Algorithms

Once the representation of features is determined, agptepearning algorithms
must be chosen. Two important criteria must be taken intowacin this process.
First, a learning algorithm must be able to take the chospresentation as input.
Second, the similarity measure between any two such inputt be efficient to
compute.

Learning algorithms for structured inputs can be roughtggarized into
two groups, i.egenerativeanddiscriminative Generative methods such as hidden
Markov models (HMM) provide a principled way of handling datith variable
structures and treating missing information. They usuadtyuire certain underly-

ing probabilistic models for the process of data generatiime drawback is that



the accuracy of generative models greatly depends on theaycof such prob-
abilistic models. However, such models are very difficulidentify in general
because we often have no knowledge of the data generatieceggdor complex
physical patterns. Discriminative methods such as newtsl(INN) or support vec-
tor machines (SVM) instead learn decision boundaries. Theyfind complex and
flexible decision boundaries using kernel functions, ansl ot necessary to build
any probabilistic models for the data generation. Howawamny conventional dis-
criminative learning techniques assume inputs are repredas fixed dimensional
vectors and do not allow for the direct application of stuwetl data. There have
also been hybrid approaches that take advantage of bothmageeeand discrimi-
native algorithms to yield improved solutions over methbdsed on an individual
method, but the drawbacks from both methods can also beitieti¢28, 39, 56].
Moreover, these methods require two training steps, onledoning the probabilis-
tic model and the other for learning the decision boundaries

In general, discriminative learning methods have emgiyicdemonstrated
superior classification results to those of generative otth Among the well
known discriminative learning methods, support vector mrae (SVM) has re-
cently drawn strong interest as it has shown state of theeglidnance on a variety
of learning tasks [49,57]. The ability to learn non-linekassifiers in a linear frame-
work using kernel functions is one of the powerful featureS¥M. In particular,
the principle of structural risk minimization of SVM guataes the minimization
of the generalization error. A large volume of research heenhdevoted to the

application of SVM to a broad set of problem domains and dgpaasentations to



take advantage of its excellent performance.

Traditional kernel methods such as SVM assume that inpat datepre-
sented as fixed dimensional feature vectors, which are cadpasing generic
kernel functions, e.g. linear kernels or radial basis fiomst (RBF). In practice,
what kernel functions really evaluate is often the simijabetween two input vec-
tors. Most methods that use generic kernel functions for @éMewhat arbitrarily
choose them. Considering that the type of kernel has a dimguacét on the clas-
sification performance and the learning complexity, deteimy a suitable kernel
function given a problem domain is an open problem that ii@hging.

Typical approaches to applying such traditional kernehmégues to struc-
tured inputs involve transforming the inputs into featueeters in a single feature
space of some dimension and then classifying these usiregigéwrnel functions.
The problem with this approach is that it may result in theslosuseful structural
information between local features because fixed dimensi@ature vectors are
often too restricted a format to represent irregular stmgs. For instance, in [54],
a fixed size feature vector is computed from strokes, and avi 8¥ssifier is used.
The dimensions of the features include the mean coordiratdssecond order
statistics such as median, variance, minimum and maximstarttes, area, etc.

However, information about the shape of the strokes is ftostis process. In [32],

ExtendedR-squared FR?) is proposed as the similarity measure for sequences.

Though it uses the coordinates of points directly as feafureey can only oper-
ate on point sequences of a fixed-length so as to compute dpeged similarity

metric.



In addition, this may not be general enough to be used in sihelar prob-
lems. For example, a common first step for the detection ofrange ball from
camera images is to segment out orange regions from the lmacidy Segmented
orange regions are not vectors but rather variable-sizmtkblof connected pixels.
To tell whether an orange region is a ball or not, a fixed nunolbéeatures could
be computed to construct the feature vector. Since the ersegjon of the ball is
round, one could fit a bounding circle to compute feature$ @&cthe fitness of
the region contour to the bounding circle. This transfornseof variable-sized
blocks of pixels into a fixed dimensional feature vector,atgénables the direct use
of generic kernel functions. However, fitting a boundingl@mwould not work sim-
ilarly if objects to detect have different shapes, such ahifits or bags. Different
features customized to the specific class of objects to tlatemecessary. Unfor-
tunately, finding such custom features for complex objext®ry tedious and may
be even possible.

An alternative approach is to find kernel functions for suakadypes that
can effectively combine the structural information witle flocal features into sim-
ilarity metrics. For instance, the pyramid math kernel (PM#nction computes
the similarity between two unordered sets of feature vedbgrpartially matching
them within a hierarchy of histogramming bins [23]. PMK igatitly usable in
the traditional kernel algorithms based on convex optitiorasince it is positive
and semi-definite. As another example, spectrum kernel aogspgwo strings by
counting how many (contiguous) substrings of lengthey share and constructing

the histogram of the frequencies of all possible commontsinlgs of all possible



lengths p-spectra) [25, 33,49, 61, 62].

The disadvantage of this approach is that it is not straogiwrd to find
such kernel functions from the structure of the inputs. INiis it straightforward
to use or modify existing kernel functions such as PMK or spea kernels to han-
dle inputs with other types of structures such as trees @hgraPMK, for instance,
has been effectively used in many computer vision tasksidiiey image retrieval,
object detection, and clustering to match unordered sdtxaf features computed
from two images. However, it does not support inputs whetallteatures form a
more complex structure than unordered sets, such as tregapits. The same is
true for spectrum kernels which is specifically tailored $equential inputs which
are common in tasks such as text or document classificatiare Klexible tech-
niques for designing kernels that can be used across a widge raf data types
would be much more powerful, but are currently lacking.

The motivation of this work is at the search for a systemaijfmraach to en-
code the geometric structure of local features into kennmgttions. It will provide a
straightforward scheme to synthesize kernel functionthi®given structure, which
could be used in discriminative learning algorithms wittibwe need for transform-
ing input data into fixed dimensional vectors. The approgmopose in this thesis
provides the ability to mechanicaltgilor kernel functions customized specifically
for a given application domain by making an explicit encodwfi the geometry that

is used in conjunction with the local features.
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1.2 Dissertation Contribution

| first introduce a method to encode the geometric structtilecal features. Then
| provide a systematic framework to combine the encodeaire and the local
features to construct an effective measure of similarityvben the geometrically
structured data. The constructed similarity metrics orraye requirdinear or
close to lineartime to compute.

Encoding the geometric structure begins by imposing a ralghdn it. For
instance, we could impose a 1D manifold for a sequence otpaira handwritten
character, or a 2D manifold for a set of fiducial points in a 30ef image. The
proposed method encodes geometric structure by assgoitan local feature with
a point in this manifold. This implements the structural ikhnity as a distance
metric for the manifold. | combine this distance with thelgemm-specific similarity
between local features in a framework callfgarametric kernel functionswvhich
define the similarity metrics between geometrically sturetl data in a systematic
manner that is applicable to a variety of problem domainss ffamework provides
tailorability, which is defined ashe ability to aggregate atomic kernel functions
to construct custom kernel functions for structured inptits the association of
parameters with the local features of structured inpuihe similarity measure
provides information about the distribution of the inpuéiples in a space where
the class boundaries are searched for. In addition, to dtbowhe application of
kernel-based learning algorithms such as SVM to structdagal in this framework,

| show that parametric kernel functions are positive andigirfinite. For certain
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kernel-based methods that require Mercer kernel functitns is a necessary and
sufficient condition to guarantee the existence of a uniguienal solution [49,57].

Kernel functions for geometrically structured inputs wibbk ideal if they
have the following properties. 1) Synthesizing kerneld #ra customized for the
given structure is systematic. 2) The kernel functions areputationally efficient
to evaluate to handle large inputs. 3) There is no need taoitkpkevaluate proba-
bilistic models to model the generative process of the patet) The synthesized
kernels are positive semi-definite to guarantee a uniquéisnlwhen used in ker-
nel algorithms based on convex optimization. 5) Tailoraddenel functions for
one problem are easily modifiable for other problem domaiitk similar input
structures. While previous approaches fail to satisfy sonal of these, all of the
requirements are satisfied by our approach.

| applied the proposed technique to a number of machineitegatasks with
a variety of different input formats, characteristic fea) and geometric structures
relating these features. | demonstrate the effectiverfessr@pproach by showing
that | achieve classification performance that is competiwith state of the art
techniques for those tasks using application-specific atesthYet we achieve this
with kernel functions that are synthesized in a common fiaonk. | apply this
method to well-studied representative tasks for two ingartypes of geometric
structures that appear in a wide range of problem domains.

The first type issequencesOver a wide range of robotics or HCI applica-
tions, the inputs are represented as sequenaeswadata vectorsof possibly vari-

able lengths, when measurements are taken from a systertiraeer~or instance,
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inputs for on-line handwritten character recognition &g esented as sequences of
2D points which are obtained by the regular time sampling ofise or input pen
cursor position, while inputs for voice recognition or nusdllowing are digital
audio streams which are obtained by the regular time sampi the quantiza-
tion of the amplitude of sound waves captured by the micraphdExamples of
sequential inputs that are not necessarily ordered overiticiude the range infor-
mation captured by laser sensors. Such devices take messutseof distances to
the surrounding objects omni-directionally at certaindagresolutions. Inputs for
common robot control tasks such as object detection or ancilare sequences of
distance values which are ordered by the angles that theunsgasnts are taken.
As the representative task, we implement and test our métinalle task of on-line
handwritten character recognition. In addition, we wildesks the aspects to be
considered specifically for handling inputs where locatdess are just raw data
vectors.

The second type ignordered setsUnordered sets dbcal feature vectors
have been shown to be an effective representation of objests&any computer
vision tasks. For instance, combinations of features caegpfrom images, e.g.
sets of local energy maxima points or SIFT keypoints, are asanputs for image
classification or object detection and recognition taskshe©examples include
inputs for molecular docking simulation systems which ats sf electromagnetic
fields computed at each of the molecules. As the representatks, we implement
and test our method for the task of face recognition fromwiskeeams. This show

that utilizing the geometric structure in conjunction witie local features improves
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the classification performance.

Lastly, we present the result of applying our method for cbpetection
from the laser range finder sensor data. No comparison whikr @ompetitive ap-
proaches is made because it is not a much studied problemamgtpublic bench-
mark data and reported results along with any test criteria.

The novelty of the proposed technique is at the explicitespntation of ge-
ometric structures in terms of parameters. Parameter sjgmemposition scheme
greatly reduces the size of search space when matching flestaires, while re-
taining quality matches. Parametric kernel framework fgles a tool to flexibly
construct similarity metrics where the geometric struetigreasily combined with
the local features. Parametric kernels are efficient touewaland could be directly

used in the conventional kernel framework.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follolmsChapter 2, | give a
more detailed overview of the problem setting and a disonssi related work. In
Chapter 3, | define the core parametric kernel algorithm.okoilg these presenta-
tion of the algorithmic components of the proposed meth@dovide experiments
and results demonstrating these ideas applied to severamtbbotics problems.
Specifically, in Chapter|4, | present on-line hand writtenrahter recognition re-
sults with a variety of dataset and demonstrate the effigiand the ease of learn-

ing handwritings without the knowledge of any language. Im@kr 5, | present
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face recognition experiments and results and show how temgion to higher di-
mensional manifolds seamlessly provides the same perfarengain. Finally, in
Chapter 6, | develop a method for detecting objects from gedata using the

same kernel framework for handwritten character recogmiti
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Chapter 2

Background and Related Work

In this section, | present the basic concepts and the relabekd for an in-depth

understanding of our approach.

2.1 Research Domain

Our goal is a systematic framework to tailor kernel funcsidar geometrically
structured data types. To meet this goal, | apply our metbhadhtumber of machine
learning tasks of which inputs have a number of differenesypf representative ge-
ometric structures. | demonstrate the effectiveness oapproach by showing that
this approach achieves classification performance thatgpetitive with the state-
of-the-art techniques for those tasks. A strong emphasidded to the fact that |
achieve this with kernel functions that are synthesizeddaramon framework.

To complete our demonstration with a realistic amount ofkywbinad to limit
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the number of applications that | test our method. But to naamrthe generality, |
chose to apply our method to well studied representatidestagth two important
types of input data structures that could cover a wide rafigeatlem domains.

The first type issequences Over a wide range of robotics or HCI appli-
cations, the inputs are represented as sequencesvoflata vectorsof possibly
variable lengths when measurements are taken from a systertime. As the
representative task, | implement and test our method fotasle of on-line hand-
written character recognition. In addition, | will addrelse aspects to be considered
specifically for handling inputs where local features ast jaw data vectors.

The second type isnordered setsUnordered sets dbcal feature vectors
have been shown to be an effective feature representatioaiy computer vision
tasks. As the representative tasks, | implement and tesnethiod for the task of
on-line face recognition from video streams. This demeansgs how inputs with
no specificorder between the local features are handled. But more importantly
show that utilizing the information about the distributiohthe local features over
the input images improves the classification performance.

Lastly, | present the result of applying our method for trektaf ball recog-
nition from the sensor data captured by a laser range findercdshparison with
other competitive approaches is made because it is not a studied problem
with any public benchmark datasets and reported resultgalith any test criteria.
Rather, the purpose is at the demonstration of the gendrdiiyaf our approach

to a variety of problem domains.
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2.2 Kernel-based Learning Methods

Support vector learning is one of the state of the art macl@aming techniques
that has been used extensively in this research. It is ayiged technique that has
been applied to numerous classes of problems includingititzgion, regression,
novelty detection, and clustering, to name just a few. Wagmean introduction
to support vector classification (SVC) below as backgroumdife results we will

show later.

2-Class Support Vector Classification Given two classes of training inputs (de-
noted a® and x in Figure 2.1), the objective of SVC is to find a hyperplghthat

separates two classes with the maximal margin

©)

Figure 2.1: An example of support vector learning; 2-cldassification

Suppos¢ training examples; fori = 1, -- - , ¢ are taken fronR?. Eachx;
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is labeled ag; = 1ifitis a positive example, oy; = —1 if it is a negative example.

Denote the hyperplane as

f(x) = ng’((w - X) + b), (2.1)

wherew € R? is the weight vector and is the bias. f is found by solving the

following quadratic program :
minimize %||w||2
subjectto y,((w-x;) +b) > 1,fori=1,--- ,¢.
The general technique to find the solution is to solve its gwablem. To
convert this into the dual form, the Lagrangian of this qadidrprogram is first
differentiated

l
Liw,b,o) = wl? 3 u(w - x0) +5) — 1] (2.2)

=1

where the non-negative variables for i = 1,--- ,¢ are called the Lagrangian
multipliers, with respect to the primal variablesandb, and set them to zero for

stationarity,

¢

OL(w,b,a) L OL(w,b,a) ! B

=1
Rewriting the given quadratic problem solely in terms of th@ldvariables

yields the following dual problem
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1

T l ¢ ¢

maximize >, _, «a; — 5 it ijl Yy 0G0 (X - X;)
subjectto 3_ yioy = 0,anda; > 0fori=1,--- L.

Suppose the training set is linearly separable andjidor: = 1,--- |/ be
the solution to the dual problem. Thew; = Zle y;ax; realizes the maximal
margin hyperplane. In this case, the bias is found as

maxy,——1 ((W* - x;)) +miny,_; ((W* - x;))

b= — 5 . (2.4)

Pluggingw* into (2.1) yields

L
Fx) = sgn( S vt ) + b*). (25)

The Karush-Khun-Tucker conditions; [y;((w* - x;) + b*) — 1] = 0, for
i =1,---,(, state that the sign of the functional margirf(w* - x;) + b*) equals
1, i.e. x; is at the margin off, if and only if o > 0. Otherwise,a; = 0, in
which case, the corresponding term in equation (2.5) vasish is therefore only
the set of examples located at the margin of the hyperplatattually constitutes
the solution. Such training examples are calleddhgport vectorsThe fewer the

support vectors, the sparser the solution becomes, and@isa.

Kernel Trick  The training set may not be linearly separable in the inpatepin
such cases, mapping to a higher dimensional space may liakba solution [17].
Let ¢ : R — H be a mapping from the input space to a hyperspace&onsider

mapping the training examples infd using¢ and findf in H. Then (2.5) inH
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becomes

l
7o) = san( (ot - o) + ). 26)
=1
The Representer’s theorem guaranteessthahdx appear only in the form
of an inner product. If there exists a functien R? x R? — R that evaluates the
inner product of two vectors(x) and¢(z) in H, directly using two input vectors
x andz in R¢, without explicitly evaluating the mapping functignfor x andz and

their inner product irff, then we could rewrite (2.6) in terms efas follows,

¢
f(x) = sgn( Z vl K(X, X) + b*> : (2.7)
=1

The first advantage of using functions like calledkernel functionsis to
avoid the heavy computation of mapping thand taking their inner product. Since
kernel functions correspond to inner products in hyperspathe necessary and
sufficient condition that must meet to be a valid kernel is that it is positive and
semi-definite. That is, for any given dataset, the Gram matnstructed using
must have only non-negative real eigenvalues. This guegeara unique solution to
the quadratic program of SVM.

When kernels are used in practice, kernel functions are araisectly rather
than by mapping the since it may not be possible to find a closed form mapping
of ¢ that corresponds to a kernel function. However, a valid éeguarantees the
existence of a hyperspace thataps the input vectors to. Examples of valid kernel

functions include linear kernels, radial basis functidRBF), or polynomial kernel
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functions.

The second advantage of using kernel functions is that, pp@t vector
learning, non-linear decision boundaries could be found §gimple linear frame-
work.

Kernel functions evaluate the inner product in a hyperspa@etechnical
sense. Meanwhile, the semantics of what is being computdeinel functions
is the similarity between the input vectors. Hence, a gémprae to determining
the right kernel function for a given problem domain is to ab® a kernel function
that evaluates to a large (small) value if the inputs are séinaly similar (dissim-
ilar). However, most approaches that use generic kerngleiment the semantics
of similarity by carefully selecting a set of features to swuact the input vector.
RBF, for instance, computes the distance between any tworgeztohe same di-
mension which exponentially decreases proportional to tigometric distance.
Linear kernel computes the inner product of any two vectifnsormalized by the
lengths of the two vectors, then linear kernel computes ithéagity between two
vectors as the cosine of the angles between them. Theréfi@rgeneric kernels
in this sense are chosen somewhat arbitrarily. Considehnaigthe type of kernel
has a direct impact on the classification performance antetraing complexity,
determining a suitable kernel function given a problem dianmsan open problem
that is challenging.

So far, SVMs have shown excellent performance in quite a rurabma-
chine learning problems. In part, this is due to the stradttisk minimization

(SRM) scheme of support vector learning. The purpose of SRMeisrtinimiza-
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tion of the generalization error of a learning scheme. Adeay to the upper bound
of the generalization error of a classifigthat is provided by the VC theory, max-
imizing the marginh of a given training set minimizes the upper bound of the
generalization error.

The immediate disadvantage of using kernel functions isttiedetermi-
nation of kernel functions along with the related paranseiem challenging task.
Another more serious problem is that often the implememnatequires a large
memory to store the kernel matrices. However, algorithneh 1 sequential min-
imal optimization (SMO) that do not require a huge memorycsgar storing the

kernel matrices are available as well.

2.3 Learning Structured Data

The two most important components of most applications aftnimee learning tech-
niques to real world problems are feature extraction andahming algorithm.

Feature extraction is related to the representation thd itigta, while the learning
algorithm is related to finding and modeling the underlyietationship between
the features. Feature extraction removes noise and sumesamportant charac-
teristics of the input data in a form that can be handled byghaming algorithms to
be used. Learning algorithms either use the extractedrisatn conjunction with

generic metrics, e.g. distance or inner product, or defistoumetrics to compute
the similarity between input examples.

Many learning algorithms assume inputs are in a single feagpace of
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some fixed dimension, but structured inputs are also quiteroan. There are two
categories of input structures. Onggsometricand the other igliscrete Geomet-

rically structured inputs consist of local features that @sntained in a continuous
space, e.g. points in 2D plane, while those of discretelycttred inputs are ele-
ments of a discrete set, e.g. alphabets of a language. Imethesrch, | consider

geometrically structured inputs.

Learning Sequence Data Sequence data consistaferedlocal features. They
form a 1-dimensional manifolds. Computing the similarityvaeen two input se-
guences is challenging because it is not a straightforwaskl tTwo categories of
approach are available.

First, one could extract fixed dimensional feature vectossfsequences
and use generic similarity measures, though it is difficuitniaintain structural in-
formation. In [54], a fixed size feature vector is computeatrfrstrokes, and an
SVM classifier is used. Features used include the mean cwtedi and second
order statistics such as median, variance, minimum andmuaridistances, area,
etc. They achieved a high accuracy of 098f:. Such features do not general-
ize well because they allow only fixed feature vectors forhesitoke. In [32],
ExtendedR-squared FR?) is proposed as the similarity measure for sequences.
Though it uses the coordinates of points directly as featuhey can only operate
on point sequences of fixed-length so as to compute the pedpomilarity met-
ric. In addition, such features are heuristically choseend¢, it is very difficult

to apply feature vectors that work well for problems of onendin to those of
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other domains. Extracting feature vectors of uniform disien is also possible
through histogramming [11, 23, 43]. Histograms are an &ffescheme to map
varying length sequences into uniform dimensional feataors. For instance,
Porikli computed histograms of locations, speed, sizez@sjatio, etc. of points in
trajectories to extract fixed dimensional feature vectd8j.[ Unfortunately, infor-

mation about the ordering of the points in the trajectorse®st in the process of
histogramming.

One can instead extract a set of fixed dimensional featur®nrgefrom se-
guences. The incline scanning n-tuple classifier (OnSNa yvery fast and accurate
method to learn from sequences. This is based on the standapile (SNT) clas-
sifier proposed by Aleksander and Stoham [7]. OnSNT firstaekér both static
and dynamic features into chain codes and then a slidingommns scanned across
the chain code sampling it into n-tuples that become thaifeaf or “addresses”,
presented to a probabilistic n-tuple classifier [35]. OnSiNE been applied to
both on-line and off-line recognition of handwritten cheteas and showed excel-
lent performance [36, 45]. Since OnSNT and SNT assume seqseari elements
in discrete input space, the input handwritten characters first be converted into
sequences of elements from a discrete space, e.g. alpluabigtite sets of points
in R, For instance, from a black and white image of handwrittesratters, edge
transitions are encoded into top-down/left-right/bladkite. Similar technique is
used to convert handwritten characters represented asiBB gequences into se-
guences of elements from a discrete space. But finding suamsformation is in

general not a straightforward process.
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Alternatively, we could use methods that compare variadgigth sequences
directly, e.g. dynamic time warping (DTW). DTW is an effeeimethod to com-
pute the similarity, or equivalently, distance between s&quences such as speech
or handwritten characters [9,50]. For two sequences otlengandm, DTW first
computes am x m distance matriXM, whereM,; is the distance betweerth
element of one sequence ajh element of the other one. Then, DTW matches
elements by walking along a pathiM from M, to M,,,,,. A diagonal step in this
path indicates a match. Total distance is the summationstamices of matched
elements. The path that gives minimum total distance isdaiging dynamic pro-
gramming. An extensive survey has shown that DTW methodaramg the most
effective techniques for classifying sequence data [29,829], normalized coor-
dinates and the tangent slope angle are computed at each pbithts in a stroke
sequence to form a feature vector. The distance is then dehpsing DTW, which
is used as the exponent of a radial basis function (RBF).

DTW is useful because the similarity of variable length sawes can be
systematically computed. It does so by non-linearly mafglsiequences, skipping
elements that yield sub-optimal solutions. However, atstirae time, information
is lost in doing so. Unmatched elements may exhibit usefigrmation for fur-
ther learning. Also, the path of comparison must start frbm top left element
of comparison matrix. This means that at least one of the ®guances match
from its first element. This will be a limitation if we need tantially match both
sequences. In this case, one must start the path from agpositier than anywhere

in the top row or leftmost column. Similar reasoning apptieshe end point as
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well. However, DTW does not support any mechanism for therd@nation of
the optimal starting and ending points. A set of subsequeratehing techniques
has been proposed to match subsequences instead. Anaibimpiwith DTW is
the heavy computation needed for matching, @énm), which makes application
to long sequences prohibitive. DTW based kernels can bersimle symmetric
and to satisfy the Cauchy-Schwartz inequality [50]. SVM sifisrs may employ
such kernels to classify sequential data. However, as tttoeof [50] pointed
out, kernels based on DTW are not metrics. The triangle iakgus violated in
many cases and the resulting kernel matrices are not posiimi-definite. There-
fore, they are not admissible for kernel methods such as SyMat they cannot
guarantee the existence of a corresponding feature spd@gmotion of optimal-
ity with respect to such a space. This, however, may not belalgm if one uses

learning methods that do not involve convex optimization.

On-line Handwritten Character Recognition On-line handwritten character recog-
nition is aimed at recognizing the movements of the charaoprt devices such

as digital pens or mice that are represented as sequencests imto symbols as

the characters are written. This is different from the taskeoognizing symbols
from the images of handwritten characters. Previous worlomtine handwrit-

ten character recognition can be roughly grouped into twegmaies of feature
extraction and direct matching, depending on how two haittbmrcharacters are
compared. In feature extraction, a fixed number of feattse®mputed from the

strokes which are compared using a generic similarity we#ig. inner product of
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RBF [8,32,45,54]. The advantage of this type of approach tstlaay conventional
learning algorithms are directly applicable that assunotoreénputs and the major
drawback is the difficulty in representing the informatidooat the ordering of the
points as a fixed dimensional vector. In comparison, appeam direct match-
ing matches points in the strokes directly using technicuueh as DTW [9, 50].
The advantage of this approach is that it is easy and stfarglard to compare
sequences of variable lengths. The drawback is that segs@fizvariable lengths
do not fit traditional learning algorithms and distance mstthat assume vector

inputs.

Learning Unordered Sets Many representations used in computer vision con-
sist of unordered sets of features. An example is SIFT keypoiSIFT computes
affine-invariant points in an image based on an analysigusinti-resolution con-
volutions. To compute the similarity between the two setSIHT keypoints of
two different images, Lowe suggests to match keypoints dasethe distances
between descriptors [34]. If more than a certain number gpémts match be-
tween two images, then the images may be considered to nadhtasame object.
SIFT descriptors can be computed efficiently, but the suggesmilarity metric
between two sets of SIFT descriptors is not a Mercer kernelcvi easily see this
by recognizing that it is not symmetric.

Grauman proposed pyramid match kernel (PMK) which compiliesimi-
larity of two unorderedsetsof local features [23]. It can handle inputs that consist

of unordered sets of features or parts with varying cardinalhere the correspon-
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dence between the features across each set is often unkttowra valid Mercer
kernel based on pyramid or multi-resolution histogramsai tjuarantees conver-
gence to a unique optimum when used with methods that reqosgive semi-
definite kernels. Kernel computation is extremely efficiéxtim log D), whered
andm are the sizes of two input sets of features &nid the diameter of the smallest
sphere that bounds the features.

Local features of this type of data are scattered around ipaaesthat is
often different from the space in which the local features @sntained. For in-
stance, SIFT keypoints are computed at varimesitionswithin the image or the
electromagnetic fields of molecules or fiducial points in 3D&f images are located
at various positions ifk3. The locations at which the local feature vectors are com-
puted form a geometric structure by themselves, thougle lsero notion of order.
Unfortunately, this information has been neglected in mapgroaches. In part,
this is because its use resulted in an adverse effect. Quitsastiow, however, that
this structural information, if used right, could improvestclassification accuracy
dramatically.

Numerous similarity metrics for unordered sets of locatdess have been
categorized into voting, bags of prototypical features] aarrespondence-based
approaches [23]. PMK overcomes the difficulties of thesehou by incorporat-
ing co-occurrence feature statistics and cross-bin magshand doing so with a
significantly lower computational demand. However, PKM siders multi-level
histogramming only in the feature space. My parametric édefunction is simi-

lar to PKM in that it incorporates co-occurrence and can ligxsupport cross-bin
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matching. In contrast to PKM, my approach takes the holg#iometric structure

of local features through the use of meta information.

Face Recognition from Video Streams Given an arbitrary image, the goal of
facedetectionis to determine whether or not there are any faces in the iraade
if present, return the image location and extent of each feaeerecognitionis the
task of comparing an input image against a database of fddésvent people and
finding a match to a specific person [66]. We apply our taile&iernel technique
to the task of on-line face recognition in real-time on melodbots. In general, face
recognition is a harder problem to solve than face detediewause human faces
are distinct from other types of objects but have small hotess variations. Itis one
of the most studied problems in image analysis and compigemy with various
successful results obtained. Recently, it has drawn signifisterest due to the
wide range of commercial and law enforcement applicatiand,the availability of
feasible algorithms and hardware systems after 30 yeaessefrch [67]. Though
there have been many promising face recognition methods,ré&cognition robust
against significant pose and illumination variations i atvery difficult task [67].
Most earlier work in face recognition is single image bagéte regions are
first detected from images by separating faces from backgravea. From the de-
tected face images, features are extracted for furthegreton. Feature extraction
methods can be categorized into two groups: holistic or @rapt-based. In holis-
tic approaches, a single feature vector is used to représeriice. For instance,

Karhunen-Loeve (KL) expansion is used to represent featasdow dimensional

30



vectors of coefficients of orthogonal components known gerdaces computed
from principal component analysis (PCA) [55]. Other teclueis include Fisher’s
discriminant analysis [10], neural networks [20] and nagattive matrix factoriza-
tion (NMF) [31]. Holistic approaches, however, fail to aehe our goal because
they are highly sensitive to pose variations [26]. Such detrs require that the
face images being compared are registered, i.e. well aigoea reasonably high
precision [53]. This is also what | have observed from my enpéntations of face
recognizers using PCA and NMF.

Component-based methods locate and extract facial comfsosanh as
eyes, mouth, and nose and construct features from themf28jJinstance, Gabor
wavelets can be used to detect scale-invariant facial caerme [65]. The advan-
tage of component-based methods is that they do not reqedreate alignment of
face images. However, facial component extraction may bshawv (e.g. 4 frames
per second [64]) for real-time applications. Combined wétbef detection, overall
processing speed drops below 2 Hz. Or facial componentatixinamay be very
difficult to use [22]. Also, recognition performance degatidn is observed if facial
component extraction is not accurate enough [67].

Certain face recognition methods require special hardwage, a Smart
Camera [19], which may be prohibitively expensive. Many otheethods are
demonstrated by training and testing image from databasdsas FERET [65],
the CMU PIE database [66], or the Yale Face B dataset. Howsueh image
databases are often constructed with care in a controlledoament, i.e. faces

are relatively well aligned and illumination varies in a ghictable manner. In com-
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parison, in uncontrolled environments as in our problera Mriation in pose and
illumination is too extreme, making it almost practicalippossible to build such
an image database.

Recently, research has focused more on face recognition video se-
guences [15]. However, face recognition from video streaapured by surveil-
lance cameras or webcams is still difficult because the inaagecolor quality of
the video is low. Tracking head and facial components mayecd face recog-
nition by correctly registering face images. If the cameoaition is stationary as
in surveillance systems, this is achievable because thérg conditions remain
reasonably stationary as well. However, those technigeesrbe mostly infeasible
if both the camera and the subject are moving because pos#uanithation vary
significantly.

SIFT extracts scale and rotation invariant features frormges. SIFT fea-
tures are also partially invariant to changing viewpoimsd dlumination [34]. It
has been used in tasks such as matching different views dbjaotar scene e.g.
stereo vision, object recognition, and robot localizatiBtFT has recently been ap-
plied to face recognition and promising results are replji8, 53]. However, the
representational ability of SIFT features for face rectigniapplications has rarely
been investigated systematically [37]. Other similardeatxtraction methods that
find affine-invariant interest point descriptors includ&][3But most are compu-
tationally expensive for real-time purposes [14]. Based @mnexperiments, SIFT
recognized faces very well if illumination remains statioy) but slight changes in

the direction of lighting result in a significant degradatiof recognition perfor-
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mance. Nevertheless, | have chosen SIFT as the featuresegpation because of
its advantages including robustness against pose varsatim need for expensive
face image registration, and computational efficiency.

Perhaps the most closely related work to ours is that of Tdegand Schouten
[53]. They used an image descriptor called bi-cubic intergal and histogram
equalized gray-scale image (BHG) descriptor to represdatti face images. In
the preprocessing phase, the IDIAP frontal face detect®f ¢4tracts near-front
face regions of size x n pixels,n > 24. BHG is computed from a detected face
image by resizing it inta x s images § = 8,16, 24, - - -) using bi-cubic interpo-
lation and applying histogram equalization for illumiratiinvariance. Tangelder
and Schouten compare BHG against other feature represergtaticluding SIFT
in the framework of face recognition using still images @améd in video stream
recorded in unconstrained environments [53]. A sparseesgprtation of the most
discriminant descriptors learned by a greedy search mathaded as the train-
ing dataset. Their analysis claims that their method aelsi@/recognition rate of
94% with a sparse representation containiryo of all available data, at a false
acceptance rate df’.

The framework of this method is similar to ours in that a seintdge de-
scriptors is constructed during training but differs in antner of aspects. First,
test images are captured in a much more controlled environthan ours. The
video clips of the ITT-NRC facial video database that are ueddst the proposed
method are shot under approximately the same illuminatmditions (no sunlight,

only ceiling light evenly distributed over the room), thersasetup and almost the
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same background, for all people in the database [21]. Thistadest the recog-
nition performance with respect to factors inherent in vibased face recognition
such as low resolution, motion blur, out-of-focus, facigbeession and orientation
variation, and occlusion. In comparison, the camera is tatioiary in our sys-

tem as it is mounted on a mobile robot. People can walk freely space where
lights are unevenly distributed. In addition, the lightingvideo clips of ITT-NRC

is brighter than that in our environment. Second, the greksdgriptor selection is

not an on-line learning method, thus not directly applieablour framework.

2.4 Summary

In this chapter, | presented a set of approaches relatee tvdbk in this disserta-
tion. Structured inputs do not fit traditional learning nath and distance metrics
that assume vector inputs. Neither is it easy to represeritrégular structure into
uniform length vectors. Fortunately, we can provide a sofuto this problem by
defining kernels for structured inputs.

Kernels for sequences and unordered sets of local featatersenave been
proposed. They have been applied to a wide range of applicaincluding on-line
handwritten character recognition, trajectory clasdiiicg object recognition, or
image category learning and retrieval, etc. It is difficaltépresent the information
about the ordering of the points in strokes in uniform lerfgtiture vectors. DTW
does not yield a distance metric that cannot be used in kbased learning algo-

rithms and is in general not applicable to structures othen sequences. Kernels
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such as PMK has successfully computed the distance betweennordered sets
of local features. However, the usefulness of the inforamaéibout the distribution
of the local features over the input images has not been ssieileenough.

Our review motivates the need of a more systematic appraabhild ker-

nels that effectively model the structure among the locatiiess.
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Chapter 3

Parametric Kernels

This chapter introduces the fundamental concept of paenmation and paramet-
ric kernel functions that provides the ability to tailor kel functions to adapt to
the structures of local features in the inputs. As mentianéchapter 1, the under-
lying intuition is to capture the structural informationtime notion ofmanifoldsof
some dimension. For convenience, the presentation is lwasedt not limited to

sequence structures.

3.1 Parameterization

Consider an inpuk represented as a sequencenaélementsr; € X, i.e. x =

[x1,--- ,x,]. We could choose to associate each elememtith parameterr(z;)
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in parameter space as follows

) = S ek =z || if i > 1, 3.1)
0 otherwise

The associated parameters form a non-decreasing sequerme-egative
real numbers, starting from zero. This is equivalent to angth computed from
piece-wise linear interpolation of the. For any two such sequences, a parametric
kernel at each iteration picks one element from each of theesees and computes
the similarities between the elements and their assocdegimeters separately.
These are multiplied to return an overall similarity betwedble elements. This
product of the similarities of the elements and their patanseimplies that two
similar elements may contribute significantly to the ovesatjuence similarity only
when their associated parameters are similar as well. Tésis repeated for all
pairs of elements from the two sequences, and the resulssiammed to return the
overall sequence similarity.

Naive application of this approach has the potential to be gveahby the
computational expense of performing many comparisons dmtvelements with
widely divergent parameters which contribute little ormog to the final result.
Intuitively, we could handle this by limiting the compamsoonly to subsets of
elements that arelosein parameter space. This closeness in parameter space is
easily specified by the decomposition of parameter spaogamiges, so that close

elements are defined to be those whose parameters fall iatsatine range. For

instance, we could decompogento non-overlapping intervals of equal length
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Figure 3.1: Mapping Sequence to Parameter Space

and elements from the two sequences are close if their assdgrarameters fall
into the same interval. See Figure 3.1, where elementsandz are grouped into
three ranges based on the aforementioned decompositiemsch,, for instance,

will be compared against onby andz,, both in X and7'. Any sequenceéata types

fall into this category, e.g. handwritten characters, Hasnsor readings, digital
signals, and so on.

The underlying intuition in our work is to associatparametemwith each of
the elements so that enforcing parametric similarity isvajent to the similarity in
the structure of elements in the input patterns. For exarhpledwritten characters
are sequences of 2D points, while images are often convertedinordered sets
of d dimensional local features. Tlstructureof handwritten characters is a 1D

manifold in R? and that of unordered sets @fdimensional local feature vectors
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computed from images is a 2D manifoldkf. A parameter of an element is then
a point in this manifold that corresponds to the element.atbmeters of any two
elements are close, then they are structurally close. Trenpetrization is part of
our kernel design scheme. Though we propose methods ofrilegigernels for
variable length sequences of local feature vectors, maitieah extension of our

formulation to structures of higher dimensional manifakistraightforward.

3.2 Parametric Kernel

Our input patternx is a sequence dk| elements, where each elementis a d-
dimensional vector, i.ex = [z, - , 25 ] andz; € R¢. We associate each element
with a parameter in parameter spatesia a functiont : R — 7. Consider a

decomposition of " into N non-overlapping ranges

N-1
T=|JT. (3.2)
t=0
For instance, recall the earlier sequence example, whemas the set of

non-negative real numbers amds defined as (3.1)I" was decomposed as shown

in Figure 3.2.

’ TO Tl Tz T3 ﬂ
0 A 21 3A 4A 5A

Y

Figure 3.2: Parameter space is decomposed into non-opertapanges of length
A.
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For the derivation of parameter kernel functions, we firgindethedecom-
posed element sé&ir 7; asZ;(x) = {z;|7(x;) € T;}, which is the set of elements
of x whose associated parameters ardin In our previous example shown in
Figure 3.1, for instancel; (x) = {2, 23} andZi(z) = {z3, 24, 25, 26 }. We then
compute a similarity for each range by taking a weighted s@ithe similarities
of every pair of elements of the sets being compared whoserers fall within
the range. Fofl7, we will comparez, with z3, o with z4,--- | andx3 with zg.

The similarity for a given pair of elements is obtained byingkthe product of the
similarity k- : T'x T' — R between those elements’ parameters and a similarity
ke : RT x RY — R defined directly on the elements themselves, each of which is
a Mercer kernel function. Then, the feature extraction fiamc¢ of a parametric

kernel is defined as

o (x) = [¢o(x), P1(x), - - - dn-1(X)], (3.3)
where
Z W, Ko (Tiy )R (T(25), T(4)), (3.4)
xZEIt( )
andw,, is a non-negative weighting factor. Given two sequences|z,, - - - , Z|x|]
andz = [z, - ,z|zd, the parametric kernel functidmefore normalizations then

defined as the sum of the similarities for all ranges :

K(x,2) = ($(x) - @(2)) = <¢t( ) - &u(2)), (3.5)



where

(Dr(x) - ¢u(2)) = Z wxiWZjH:c(mi’ zj) ke (T (), T(25)). (3.6)
;€7 (x)
z;€Z¢(z)

Note that the product of, andx. is taken in/(3.4). This means that both
must score high to have significance/in (3.5). It is worthe/hdl compare this form
of embedding parametric similarity against other posisiéd. A simpler way, for
example, is to use combined feature vectdrs= (z;, 7(z;)) andz; = (z;, 7(z;))
instead and use only,. In this case, parametric similarity may non-linearly con-
tribute to overall similarity depending on the kernel chgseesulting in behavior
that is difficult to predict. Also note that no comparison iade between elements
that are not from a common range. If, instead, we have to coengldelements
from one input with all from the other input, we will face a nbar of undesirable
consequences. For instance, in Figure 3.1, we will compaweith {z,--- , 27},
rather than{z;, z;}. This will result in a higher similarity value, which may be
helpful for certain cases. But, at the same time, we are mkeé/lto be confused
by inputs where there are too maiay elements, in which case we are swamped by
bad comparisons. Of course, we may need dramatically mueett compute (3.5)
as the number of kernel evaluations is significantly inaedasnce all elements are
compared.

Parameter space decomposition solves such problems. ldgvgexch a de-
composition scheme can introduce quantization errors.vécome this problem,
we allow the ranges to overlap. For instance, ranges in Eigt may overlap by

A/2, as shown in Figure 3.3. To suppress over-contribution @nehts that fall
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into the intersections of ranges, we introduce weightimgdis in (3.4).

1 T 7.
I l
T T

3

0 A2 A 302 2A 5A/2

-
!

Figure 3.3: Ranges overlap hy/2.

The simplest weighting scheme is to take the average of theasity at

the overlapped regions. In this scheme, the default value fois 1/|7,,|, where

7., = {Ti|7(x;) € T:}. When no ranges overlap, we haf&,| = 1 and there-
fore, w,, = 1. Otherwise, overlapped ranges may yield < 1. For instance,
with the decomposition scheme in Figure 3.3, at intersedily’2, A), we will set
w,, = 1/2, since|7,,| = 2. Note that this scheme will not result j@,| = 0, i.e.
w,, — 00, sincel(3.4) will be evaluated only whéip(x) # @. If Z,(x) = @, then
¢:(x) = 0 and the term is just ignored. Further discussion of diffedmtomposi-
tion schemes is given in 3.3.

Finally, to avoid favoring large inputs, we normalize (3§)dividing it by
the product of the norms of andz,

K(X,2)

K(x,z) = ) 3.7
() VEX, X) X K(z,2) (3-7)

This is equivalent to computing the cosine of the angle bete/o feature

vectors in a vector space model.
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3.3 Parameter Space Decomposition Scheme

In this section, our decomposition scheme is discussednergéin terms of pros
and cons with respect to additional cost of computation &athges in classification
performance due to range overlapping and similarity wangfatThen, a number of
different decomposition schemes are presented.

As mentioned above, decomposition lets us avoid swampinigalolycom-
parisons and dramatically reduces the computational ddstroel evaluation but
introduces quantization error. This is alleviated by alluyvfor range overlapping
and similarity weighting. However, overlapping must beoatd with care. In-
creasing the size of range overlaps will require additi@mthputation since it is
likely to involve more kernel evaluations as more elemergs@und in each inter-
section. The gain of decreasing quantization error mayigeolttle improvement
in classification performance if we are swamped by bad coisqas. Thus there is
a trade off between quantization error and classificatiofopmance.

One issue left is the time to compute the decomposed elensént $he
more complicated a decomposition scheme gets, the moreutlitine implementa-
tion becomes and the more time it takes to run. Fortunatetexperimentation has
revealed that classification performance is relativelgmsstive to minor changes in
the decomposition scheme. Therefore, we can often favgslemadecomposition
schemes for ease of implementation and efficient kerneliatiah with the expec-
tation of only minimal losses in performance.

We now present a number of example parameter space decdimpeshemes.
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Regular Decomposition Parameter ranges all have a common lendytlas in
Figure 3.2 or 3.3. Implementation is simple, and it showsdgdassification per-

formance in general. But we have limited freedom to fit the data

Irregular Decomposition Parameter ranges are of varying lengths. Implementa-
tion is complicated and often decomposed element setsdagei to compute. But

we can freely decompose the parameter space to better fiathe d

Multi-scale Decomposition Parameter ranges form a hierarchical structure at dif-
ferent resolutions. For instance, we may consider a decsitigo where ranges
form a pyramid as shown in Figure 3.4. Elements from noneadjaranges could
be compared at coarser resolutions. Along with a proper hiieig scheme, this
may improve the performance. But implementation is more dexmand kernel

evaluation may take longer.

To Tl Tz T3 T7
0 A 2A 3A 4A 5A

Y

Figure 3.4: Pyramidal Parameter Space Decomposition
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3.4 Mercer Condition

According to Mercer’s theorem, a kernel function corresfsoto an inner product
in some feature space if and only if it is positive and senfinite. A unique op-

timal solution is guaranteed by kernel methods only whenddsrare positive and
semi-definite. To see that our proposed method producetvecsind semi-definite

kernels, we first note that (3.4) is positive and semi-defirituch kernels are called
summation kerneland proven to be positive and semi-definite [25]. It is nofi-dif
cult to see that (3.5) is just a sum of summation kernels.eSive can synthesize a

new Mercer kernel by adding Mercer kernels [49], (3.5) is addekernel.

3.5 Efficiency

The time complexity to compute parametric kernels depeneiatly on the partic-
ular decomposition scheme used. Here we provide a brieysisanly for regular
decomposition schemes.

Assume that constant time is needed to evaluatand .. and that we are
using a regular decomposition scheme as in Figure 3.2 off&&n the time com-
plexity of evaluating (3.5) for sequencesandz composed ofx| and|z| elements,
respectively, is, on averagé,|x||z|A/L), whereL = max(7(zx|), T(25)). In
the worst case without decompositiah,= L, so the complexity i€)(|x]||z|). In
general, we expect decomposition to proddceg L since we would like to have

only a reasonably small subset of elements in each range.
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The storage complexity i©(1) since we only keep the sum of kernel eval-
uations in memory. The time complexity to decompose the esecgs into their

respective element setsdX |x| + |z|), if constant time is taken for each element.

3.6 Manifolds in Higher Dimensions

For convenience, the presentation in this chapter so fanzsd that the structure of
the input patterns is sequences. However, the idea is ntiatiéed to sequences
since the parametric spag¢emay be arbitrarily chosen. The importance is rather at
the interpretation of the manifold of structures in highanehnsions. Just as with
sequences, the natural encoding of local features scattertioe surfaces or the
volume should be a 2D or 3D manifold, respectively. Depegdin the problems

at hand, the manifold of the structure may be even higher msmneal.
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Chapter 4

On-line Handwritten Character

Recognition

In this chapter, | apply the parametric kernel framework® task of recognizing
on-line handwritten characters. This is a different taskrfrthe optical character
recognition (OCR) which is aimed at the translation of chamaithages into cor-
responding characters. The goal of the on-line handwrittearacter recognition,
or equivalently, the handwriting recognition is an autamabnversion of text as it

is written using pointers such as a digitizing pen or a mow$ere a sensor picks
up the pointer position. | adopt a common representationndlinee characters,
where an on-line handwritten character is represented eguesce of strokes and
a stroke is represented as a sequence of 2D coordinate artipedd pointer posi-
tion p(t) = (z(t),y(t)) over timet. A stroke is separated from another by a pen up

or mouse release event.
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Taking p(t) as the element and the accumulated piece-wise linear destan
as the parameter, it is straightforward to construct a patacrkernel function ap-
plicable to on-line handwritten character recognition. tAs preliminary work, |
applied this kernel to handwritten digits recognition amject detection from the
laser range finder sensor data. Though | achieved exce#lenlts of about % of
average false negative rate [51], it still required an dibje@erformance evaluation
including the comparison against existing techniques iz #he results are based
on experiments using datasets that are not public. Henaghlecglataset has been
used in the main work presented in this chapter.

I experimented with the UNIPEN dataset, which has been widséd in a
large volume of research over a decade. This dataset is Wacylto classify since
the underlying data sources are highly variable in term&)afplets, (2) drivers and
(3) the signal type (e.g. equidistant in time, equidistargpace, non-equidistant).
Also, there are labeling and segmentation problems [5]omunction with SVMs,
| obtained competitive results in the task of recognizirgjtdiand upper and lower
case alphabets.

In section 4.1, | describe the setup of my experimentatioliged by the

results in section 4.2. | conclude this chapter with thewlison in section 4.3.

4.1 Experimentation Setup

In this section, | describe the data sets and normalizatsad in my experiments

on the on-line handwritten character recognition, folldw®y the definitions of
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the and the parametric kernel functions for handwritterrattars and the learning

algorithm.

4.1.1 Handwritten Character Datasets

Handwritten character recognition is often categorized fwo classes, i.e. multi-
writer and omni-writer recognition. The goal of the multriter recognition is to
recognize characters written by a set of predefined writenge that of the omni-
writer is to recognize characters written by any writers.otigh the omni-writer
recognition is desirable, it is in general a more difficukkdhan the multi-writer
recognition as the handwriting variation is significanvietn different individuals.
The dataset used in the preliminary work is limited in terrhthe size of the data
and the number of writers to support learning multi- or owwniter recognizers.
Therefore, | experimented with the UNIPEN TraR01/V07 dataset, which has
been widely used in a large volume of research over a decade.

The UNIPEN TrainR01/V07 dataset is composed of total 6 categories of
isolated characters and 5 categories of isolated words eXémmples are voluntar-
ily generated and submitted by hundreds of writers intéynAlmong the 11 cate-
gories, | experimented with 1a (isolated digits), 1b (isedaupper case alphabets),
and 1c (isolated lower case alphabets). This is because alygtm demonstrate
the efficacy of the parametric kernel using 1D manifold patamzation, rather
than a full scale handwriting recognition. Also, since mmestearch has used only

the three categories, it is feasible to make comparisormagtiem over the same
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set of data.

This dataset is, however, very difficult to classify since tinderlying data
sources are highly variable in terms of (1) tablets, (2)atsvand (3) the signal type
(e.g. equidistant in time, equidistant in space, non-agtadt). Also, some exam-
ples are corrupt and there are labeling and segmentatiors¢s]. Some of the data
are lost or unreadable. Especially, | had to deliberatetyusle the examples under
t os directory because the data are corrupt in that either sorkest are missing
or noisy strokes are added. See the bad examples in Figuréhk3otal number of
examples and the actual number of examples used in my exg@srafter remov-
ing unreadable or corrupt data from categories 1a, 1b, anfl T@in R01/V07 are

summarized in Figure 4.1, followed by example characteosvahin Figure 4.2.

Category| # of Total Examples # of Examples Used Loss Ratio
la 15953 15404 3.44%
1b 28069 26341 6.16%
1c 61351 59893 2.38%

Total 105373 101638 3.54%

Figure 4.1: Total number of examples are shown in the firsirool The number
of actual examples used in my experiments after removingipbexamples under
t os directory and those with unreadable strokes are shown isgbend column.
About 3.54% of the overall data in categories la, 1b, and 1c are lost. Remgov
small amount of corrupt, mislabeled, or unreadable exasripten TrainR01/V07
has been inevitable and reported by many researchers [45, 59

Another major problem with UNIPEN dataset is that there iy @train
set in TrainR01/VO7. In the past, some researchers used a separatet daléest
DevTestR02/V02 as the test set. Unfortunately, this dataset is nblighy avail-

able. Therefore, other researchers had to arbitrarilydata in TrainR01/V07 into
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la: Isolated digits

g 1 2 <2 4 S5 b F & 7

o ! 2 3 ¢ 5 6 7 & 9
1b : Isolated upper case alphabets
A B < DD E & G - T J
s B C 3 G F G Fl I J
K L m N 0 p Q R o T
K L M v O 7 & - G T
VA
u VoW A Y Z
1c: Isolated lower case alphabets
a ¢ < 4 £ th A 2 J
a 4 < A4 £ F 7 A \ 7
k L-m n O ¢« T 4
k VA ¢ (Y (V) ¢ 1 Jr 4 t
AL N W X S Z
“m N A X 7 =

Figure 4.2: Examples of the UNIPEN TrakR01/V07 in categories la (isolated
digits), 1b (isolated upper case alphabets), and 1c (esblatver case alphabets)
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Label : O (upper case 'oh’) Label : x Label : y Label : Z

oy A

Label : A Label : 0 (zero) Label : 2 Label : 3

I

Figure 4.3: Some of the corrupt examples undes directory are shown with
their labels. A large portion of the examples are corrupteddded noisy strokes,
while the remaining ones are mainly missing strokes, eitluer to incorrect seg-
ment specification or incorrect captures.

train and test sets. Due to the diversity of methods to clgatih@ data and to split
the dataset, it has been very difficult to directly compaoagaition rates reported

by many other researchers. In this work, | run experiments@mpare against

existing techniques in a context that is as close to the ameged by Ratzlaff [45].

4.1.2 Character Representation and Normalization

In UNIPEN dataset, a handwritten characfris represented as a sequence of
|X| strokes, where a strok¥; is represented as a sequenceXf| pointsx? =

(zF yF) € R% ie. X; = [x},--- ,xLX"‘]. Due to the high variability of the data
sources in terms of the device and the writer, the charastgrsficantly vary in

size and position. To make the system size- and positiomrigwnt, the characters
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are normalized by first translating the points by

X X; X X;
ST S -
x| |Xz| ! ¢ |Xz|

=1 =1

so that they are centered at the origin and scaling horidgratad vertically by a
uniform scaling factof./ (m%x yf—m}in y¥), so that all characters have equal height

h. By default, | usedv = 50.

4.1.3 Parametric Kernels for Handwritten Characters

In the preliminary work, the parametric kernel function velgined for point se-
guences [51]. To overcome the aforementioned limitatibreefined parametric

kernel functions for segment sequences. The definitiongiaea below.

Parameterization Let a charactet¥ = [X;,---, X|x|| be a sequence dft|

| X ]

strokes, where a strok¥; = [x!,--- ,x;" "] is a sequence 9dfX;| pointsx’ € R2,

Then,x! is associated with a parametefx”) in parameter spacg as follows

/

7)o X = x| > k>,
k n—1 e .

= 1%’ — X; ifi=14k>1,

T (Xﬁ’”) ol = x B > 1, k=1,

0 ifi=1k=1,

\

which is the piece-wise linear accumulated distance, denisig that all strokes are
concatenated into a single sequence of points in their ofides parameterization

is used in the following parametric kernel definitions.
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Parametric kernel for handwritten characters The definition of the parametric
kernel function for handwritten characters that is proudidethis section is stroke-
blind, i.e. each of the characters is represented as a ssegjeence of points.
Characters represented as sequences of strokes are strarghtdly converted into

this representation by concatenating all strokes into glsisequence of points in

their order. Consider a decompositionfofnto NV ranges

N—-1
T=JT. (4.3)
t=0
Given two characterd’ = [xy,--- ,xx|] andZ = [z,,--- ,zz|], the para-

metric kernel before normalization is defined as

N

KX, Z) = (X)) - 4u(2)), (4.4)

t=0

=

where

(G(X) - au(2)) = Y wowsren(xi,2))he(T(x), T(25)),  (4.5)
x; €L (X)
z;€11(Z)
wherespr : R? x R? — R andx, : T x T' — R are Mercer kernels that evaluates
the similarity between two points in the sequence and themametric similarity,
respectively. The definition of the decomposed elemenfsand the weighting

scheme is identical as in Chapter 3.

To suppress favoring large inputs and to penalize the pcesgfrunmatched
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points, [(4.4) is normalized by the produce of self similadgf X andZ :

_ KX, Z2)
KX, 2) = VX, X)X R(Z.2) (4.6)

Assuming that a regular overlapping decomposition schemesed with

range lengthA and hop lengthA /2 and that constant time is needed to evalu-
atekpr and k., the average time complexity afis O(|X||Z|A/L), whereL =

max(7(Xx|), T(2z|)).-

4.1.4 Learning Algorithm

| take a kernel-based approach to learn classifiersXlis the set of total symbols
in the dataset. For each symbple 3., a set of/ training character examples
Xlran — {x!, ... X'} are provided. The objective of training is to learn a multi-
class classifief : X — ¢ € {@} U X, that maps an input charactét to the
correct label of the character, if it is a symboliy or a null symbolz, otherwise.

In my learning framework, | implement as a set of>| one-versus-all classifiers,
fo: X — sgnd. — 0.) for all ¢ € X, which computes a certainty, € R that
indicates how certairf. is that the true label oit’ is ¢ and maps to 1 i), > 6,

and -1, otherwise, for a threshdld € R. The final decision is made such that, for

Yy ={¢| fe(X)>0forg e X},

arg max v if [X4] >0,
Fa) =4 s (4.7)

1%} otherwise.
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During testing, f classifies a set of test character examplésfor n =
1,2,---, each of which is labeled with the correct symhpl e >. The classi-
fication of f is said to be correct whelfi(X,,) = ¢,. If either f(X,) # ¢, or
f(X,) = o, then the classification of is said to be incorrect. | use the support
vector novelty detection algorithm to leafp

The main shortcoming of the multi-class classifier in (4Wwhijch is some-
times calledvinner-takes-allapproach, is that it is somewhat heuristic. Egcls
trained on different unsupervised learning problem, thitaggty values may not be
on comparable scales. When more than gnelassifies an example as positive,
i.e. |[X4] > 0, then their certainty values must be somehow compared toseho
one class as the decision. For this, there has been someteffmnvert the cer-
tainty values into probabilities [48, 52], such as relewamector machines [41].
Other common approach is to train a binary classifier foryeypassible pair of
classes [30]. This results {x|(|%| — 1)/2 binary classifiers. Due to the quadratic
increase in the number binary classifiers to train and etaldaring testing, it is
often prohibitive for practical purposes. For instance,dcset of upper case al-
phabet, total6(26 — 1)/2 = 325 binary classifiers must be evaluated to classify a
single example. An alternative approach is to train andsiestiltaneously by hav-
ing a multi-dimensional labels [63]. Unfortunately, optaation is difficult since
it has to deal with all support vectors at the same time. Qletas fair to say
that there is probably no multi-class approach that gelyevaktperforms the oth-
ers [47]. Therefore, | chose a one-versus-all approactgvadiows for fast training

and classification with reasonably acceptable results.
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Support vector novelty detection Support vector novelty detection (SVND) is
an unsupervised learning algorithm for the estimation ofetty of an example.
This problem can be described as follows. Given a set of etgalexamples drawn
from an underlying probability distributiof?, we estimate a subsétof the input
space such that the probability that a test point drawn ffores outside ofS
equals some a priori specified value between 0 and 1 [47]. Arbislem is solved
by finding the boundary functiofi which is positive inS and negative on the com-
plement in the support vector framework as follows.

Suppose we are given a set of unlabeled, m@rmal training examples

drawn from an input spac#

X ={xy, - ,x} C X, (4.8)

where/ is the training set size. For simplicity, suppokes a compact subset &

for some dimensiod. Consider the following boundary function

f(x) = sgn({w - x) - p), (4.9)

wherew € R? is the weight vector angd € R is the bias. We findv andp by

solving the following quadratic problem :

11
m|n|m|ze§\|wH +V—€Zé}-—p
subject to(w - x;) > p — &, (4.10)

& >0, fori=1,--- 4,
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where¢; are the slack variables ande (0, 1] is a control parameter.

The dual of this problem is

.1
maximize Z i (X - X;)
2,)

. 1
subjectta) < a < i fori=1,--- ¢, (4.11)
1%

4

ZO&Z' = 1,

=1
whereq; are the Lagrangian multipliers. t; solve the dual problem, then the
primal variables can be computedws= >_'_ aix; andp = > ar(x; - x;), for
any support vector, i.e0 < «f < 1/(v¢). A non-linear solution could be found
by substituting(x; - x;) in (5.17) with a non-linear Mercer kernel. The following

statements hold far if p # 0.

e v is an upper bound on the fraction of outliers.

e v is alower bound on the fraction of support vectors.

4.2 Results

| begin with presenting the result of the preliminary work4ir2.1 on the multi-
writer digit recognition. | experimented with a handwrnitteharacter dataset of
digits of which is constructed by a predefined number of wsgita a similar man-
ner as the UNIPEN dataset. The results of this preliminarskwaas very promis-

ing [51]. In[4.2.2, | present the results of the main work oa WNIPEN dataset
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which is widely used by many researchers for over a decaddloWfed the context
suggested by Ratzlaff to make comparisons against otheingxischniques on the

same dataset [45].

4.2.1 Preliminary Work on Digit Recognition

As a proof of concept of the parametric kernels, | designedrarpetric kernel for
sequences of elements and implemented a handwritten dggnizer. | used a
handwritten character dataset of digits constructed d@wel The train dataset is
composed of 200 labeled examples created by two writerdy eaevhom wrote

numeric characters from ’0’ to '9’ ten times. The test dataseomposed of 500
labeled examples created by other authors, 50 for eachatkar&igure 4.4 shows
some training examples for characters '0’ to '9’ with the raenof points in each
of them shown below. Characters are normalized to fit the adingrbox of size

300 x 300 centered at the origin.

24 points 4 points 11 points 13 points 13 points 17 points 11 points 7 points 17 points 16 points

D/ Ls%56 7584

16 points 3 points 21 points 21 points 22 points 25 points 28 points 17 points 37 points 22 points

D/ 42456 89

14 points 7 points 11 points 13 points 17 points 17 points 9 points 8 points 13 points 14 points

077l 5456 7/7F1

Figure 4.4: Examples of handwritten digits

| used a regular overlapping parameter space decomposti@mme shown
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in Figure 3.3, with range length = 60 and hop length\ /2 = 30. | chosexpr as

a radial basis function

x—z|?
/ipT(X, Z) =e 'YO]%T , (412)
whereopr € R is the width,y € R is the width control parameter, and as a

radial basis function

rx) — (=)
ke(T(X),7T(2)) =€ V07 : (4.13)

whereo.. € R is the width andy. € R is the width control parameter. The widths
are set tarpr = 30, 0 = 30, the width control parameters are sette- v, = 1.0,

and the SVND parameteris set tov = 0.8.

The result is shown in Figure 4.5. The classification erraneasured as
the ratio of incorrectly classified examples to the totalnegkes in the test set. The

average error rate is aboli.

Class| Error | Class| Error
"1 1 0.98% | '6 1.15%
2 1.12% e 0.41%
'3 |1 0.10% | '8 | 0.23%
4 1 089% | 9" | 0.09%
'5 1.01% | '0" | 0.01%

Figure 4.5: Results of handwritten digit recognition

Though the result is promising to be a proof of concept, itfiscdlt to ob-

jectively compare against other approaches because thiésrage not based on a
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publicly available dataset. However, this work identifiedwamber of important
components of the idea including data normalization andrpater space decom-

position.

4.2.2 Multi-Writer Character Recognition

Many researchers reported the difficulty in directly conmpgithe recognition rates
of existing techniques using the UNIPEN TradR01/V07 dataset. Also, There is
only a train set in TrairR01/VO7. In the past, some researchers used a sepa-
rate dataset called DevTeRD2/V02 as the test set. Unfortunately, this dataset
is not publicly available. Therefore, other researchexs thaarbitrarily split data
in Train.R01/VO7 into train and test sets. Due to the diversity of meshto clean
up the data and to split the dataset, it has been very diffioutirectly compare
recognition rates reported by many other researchers., Haere experiments and
compare against existing techniques in a context that ibae to the one provided
by Ratzlaff [45].

For each category, e.g. 1a, 1b, or 1c, a subsat&f, 20%, 33%, 50%,
66%, and90% of the TrainR01/V07 dataset as the train data and the rest as the test
data. Following the scheme suggested by Ratzlaff, the ctemsafor each category
are drawn in character-by-character, file-by-file order imergin the file list and
distributed in sequence into different buckets taking tleglobus N = 10, 5, 3, 2.
For 10% ~ 50%, the subset in the first bucket are used as the train set and the

remainder as the test set, while 6% and90%, | usedN = 3 and N = 10
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and chose the firsV — 1 buckets as the test data. | use the same split scheme in
my experiments. The classification error is measured asaticeaf the number of
incorrectly classified test characters to total number afatters in the test subset.
| used the same learning algorithm and the evaluation masria the preliminary
work.

The parameter values are determined as follows. Lep#nametric length
T » Of a characte” be the parameter of the last point in the last stroke. Theageer

parametric length of characters in a trainSet= {X!, - - - , X} for a symbok is

n‘xl»—l

l
Z (4.14)

| setA aspgr., whereg € R is a control parameter. The default valuesof
is 0.25. Also, | set the hop length a8 /2. For two character®” = [ X, -+, X|x]

andX” = [X7, -+, X[y, ], letthe average point distance be

Yite X xena) x— x|

s X €L () (4.15)
Yo [T |Z(x)]
For the train sef,, the width ofxpt for a symbok is
0 l xnxm
_ 0' S <
OpT = Zn_l Zm#n . (416)

00—1)

Similarly, let the average parametric distance be

o' X xenx) (%) = T(x)|

xx’ x'ET(X')
oY = . . (4.17)
A9 lIvAE D]
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For the train se&,, the width ofx. for a symbok is

¢ ¢ AZ A
o — Zn:l Zm;ﬁn Or
T 00 —1)

(4.18)

The width control parameters are sette= v, = 0.5. For SVND, | used
v = 0.5 based on the Séitkopf's observation that a reasonably largeesults in
classifiers that do not overfit the data but, at the same tiowverdgsolated examples
in the feature space [47].

For any given portion of the training data used, | achieveltiweest and
the highest error rates in category la (isolated digits) Bm@solated lower case
alphabets), respectively. This is not only because la tsssnember of classes
but the class boundaries between many of the lower casebafshare fuzzy, for
instance, the cursive writings of 'e’ vs. 'I' or '0’ vs. 'c’ vs’e’, or 'f’ vs. 'h’.
For each category, the error gets lower as more number of@rarare used. At
about50% or higher, the error rates get stabilized around the minimalue. The
classification errors of multi-writer recognition from tesvith varying proportion
of the train set used for the three categories 1a, 1b, andelshamwn in Figure 4.6,
4.7,and 4.8.

For category 1a, the parametric kernels achieve erroroat8% and3.4%,
using20% and33% of the training data, respectively. Compared to this, Bahhtsan
SVM / GDTW method achieved% and3.8% using20% and40% of the training
data that are randomly drawn [9]. Using HMM / SDTW [8], Bahlmaarchieved
4.5% and3.2% of the error rates, fror80% and40% of training data ratio. After

removing aboutd% of “bad characters”, Hu et el. achievd®2% of error rate
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Figure 4.6: Multi-writer recognition error rates for cabegs la (isolated digits)

using HMM [27]. Using the on-line scanning n-tuple (OnSN3ssifier [35, 44],
Ratzlaff achieved the best error rates of abbéts or less. OnSNT is known as
a fast and accurate method for classifying sequences [36END first extracts
both static and dynamic features into chain codes and théidiagswindow is
scanned across the chain code sampling it into n-tupled#taime the features (or
“addresses”) presented to a probabilistic n-tuple clagsifA\lso, the HMM model
based approach of Li et. el achieved% of error rate, using aboat% of the data.
The error rates of my approach is ab@ut- 2.5% higher than those of OnSNT, if
less than half of the training data are used, while it is Sopéw other approaches.
If 50% or more data are used, then the error rate drops to &éuivhich is only
about0.5% more than the best known results.

For category 1b, the parametric kernels achieve error cdife2% and6.3%,
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Figure 4.7: Multi-writer recognition error rates for categs 1b (isolated upper
case alphabets)

using20% and 33% of the training data, respectively. Compared to this, SVM /
GDTW method achieved.6%, using both20% and40% of the training data [9].
HMM / SDTW method achieved0% and8%, using20% and40% of the data, re-
spectively. Vuurpijl’s two-stage classification method using hierarchical clustering
and applying SVC for misclassified examples show&dof error rate [60]. On-
SNT achieved the best error rates of ab@utc and5.5%, using20% and33% of

the training data. Also, the HMM model based approach of Li et el. achieved an
error rate 0f6.4% after removing about% of “bad characters”. The error rates of
my approach is on average abOout ~ 1% higher than the those of OnSNT, for all

of the partition ratios used. If more th&n% of the data are used, then the error

rate drops to abouit ~ 7%.
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Figure 4.8: Multi-writer recognition error rates for cabegs 1c (isolated lower
case alphabets)

For category 1c, the parametric kernels achieve error miies2%, 10.7%,
and9.5%, using20%, 33%, and50% of the training data, respectively. Compared to
this, SVM / GDTW method achievetll.7% and12.1% using20% and40% of the
training data [9]. HMM / SDTW method achieved%, 11.4%, and9.7% of error
rates usingl0%, 20%, and66% of the training data, respectively. After removing
about4% of “bad characters”, the HMM model based approach of Li eaehieved
14.1% of error rate. ONSNT achieved the best error rates of ah6Ut using50%
of the training data or more. With onl}0 ~ 20% of the training data, the error
rates of my approach is aboRit~ 4% higher than that of OnSNT. However, with
30% of more of the training data, my approach is higher than th@nSNT only

by 1% or less. My apporach shows superior performance to appesauther than
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ONSNT, irrespective of the partition ratio.

4.2.3 Computational Complexity

For kernel-based learning techniques, the speed with vafessifiers can be learned
and used depends greatly on the computational cost to égahekernel functions.
This becomes a critical bottleneck when we need to conskerctel matrices for
huge datasets. In practice, the time cost therefore hasragstifluence on making
the decision whether or not to use a new kernel or kerneleblasening technique.
Since the time for training and testing classifiers may vagpicantly according
to the specific algorithm used as well as many other factgosedent an analysis
only on the speed of evaluating the parametric kernels fpueseces and then com-
pare this against GDTW. For this, | randomly sampleexamples from each of
the ten categories of the UNIPEN category 1a dataset (ebligits) and measure
the time to compute the parametric kernel functions for fithe 100 x 100 pairs
of characters. | measure the average and the variance afitdd compute the
similarity metrics implemented in C++ on Linux. | set the rengidth A asgr.
which is given in[(4.14), while setting the hop lengthaas. | varied s from 0.1 to

1 anda from 0.25 to 1 to show how the kernel computation time varEoeding
to the range size and overlap. A single Intel Core 2 Duo 2.13 @ittz4MB L-2
cache is used. For comparison, | also implement and compaetine to evaluate
GDTW kernel with RBF on the same set of randomly sampled examnple

| also measure the average and the variance of the time toatgalhe
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(a) Varying range size (b) Varying hop size
Figure 4.9: In (a), the range size varies according twhile « is fixed to 0.5. The
computation time of the parametric kernel function on sequences shows a roughly
guadratic increase a& increases according td. In (b), the hop length varies
according ton, while 3 is fixed to 0.25. Since a larger number of ranges overlap
asa gets smaller, i.e. the hop length gets smaller, the computation time increases
dramatically.
GDTW kernel with RBF. Specifically, in DTW, the distance matrix is computed
first by evaluating RBF at each cell, and the optimal path is searched for using a
recursion based on dynamic programming. To profile the cost more accurately, |
measured the time taken in matrix computation and recursive path searching sep-
arately. On evarage, it tod)8.3 4+ 5.78 msec to construct the kernel matrix and
174 + 32.84 msec to recursively search for the optimal path in this matrix.

With parameters set to = 0.5 and = 0.25, which are used in the exper-
iments on my online handwritten recognition task, the results show that it is about
ten times faster to evaluate parametric kernels than GDTW kernels. The source of
computational cost is mainly in the evaluation of element-wise and parameter-wise
kernel functions for parametric kernels. In comparison, recursion in GDTW is a

significant bottleneck due to context switching. Also, building the distance matrix

requires a quadratic order number of kernel evaluations, which may significantly
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slow down for long sequences. Though the time complexityiligsiadratic, para-
metric kernels alleviate this via parametric space decaitipa. Thus, in practice,

parametric kernels are much more efficient to compute.

4.3 Discussion

The parametric kernel framework is applied to the on-linadweitten character
recognition problem. Since my primary goal is to demonstthe efficacy of the
parametric kernel using 1D manifold parameterizatioherathan to build a full-
scale handwritten character recognizer, only the threegoaies 1a (isolated dig-
its), 1b (isolated upper case alphabets), and 1c (isolatgdricase alphabets) of
UNIPEN dataset have been used in the experiments. Howeitbrawappropriate
scheme to break cursive handwritings in other categorieseotUNIPEN dataset,
the proposed technique is equally applicable. Since D&\RB2/V02 test set is
not publicly available, | took the scheme of splitting Tra®1/V07 dataset into
the train and the test subsets, as suggested by Ratzlaff [45].

For the data three categories, | achieved competitivetsesoinpared against
the state-of-the-art methods. My approach shows supegidofpnance over most
of the approaches compared except for the work using OnSH[T [though On-
SNT has shown excellent results for on-line and off-line dvaritten character
recognition, it suffers from the lack of generality. It istremasy to apply OnSNT
to sequences of other types of local vectors than 2D poimtbdadwritten char-

acters since the input sequences must be first convertedaqgtences of elements
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from a discrete space. Their scheme worked well for hantemritharacters but
it is not straightforward for sequences of other types omelets. My approach is
straightforwardly applicable to sequences of any type emeints from a continu-
ous space. Furthermore, the same technique is applicabiputs represented in
any complex structure as long as the manifold of the stregtufparameterizable”.
My approach is not dependent on any language- or alphabatifgpinformation,

e.g. mathematical symbols, English alphabets, or Tampts;etc., since | treat the
characters as just a set of strokes. This technique is thualg@pplicable to any
type of sequences of ordered elements such as music, voioeliregs, or motion

capture sequences.
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Chapter 5

Online Face Recognition from Video

Streams

5.1 Introduction

The previous chapter on online handwritten character r@tiog focused on learn-
ing sequentially structured data using 1D manifold paraizegton. In this chapter,
| build parametric kernels for online face recognition frerdeo streams based on
the parameterization in higher manifolds. | show that theupeetric kernel frame-
work is easily applicable to complex structures other thequences and that the
kernel tailoring technique applied to face images represeas unordered sets of
local feature vector using their relative positions in theage as the parameters
greatly improves the performance over other existing tegles that use the same

feature representations but do not adopt the geometrictsteubetween the local
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feature vectors.

In many computer vision tasks, an unordered set of locaufeatectors
has shown to be an effective representation since localrieatre more invariant
against overall noise or changes in the pose or lightingitiond Usually, such a set
comprises descriptors of regions of interest in an inpugienan addition, a variety
of meta information is also computed, such as the locatiqgoixel coordinates of a
region, its size, and its orientation. To learn classifieosf sets of local features,
numerous similarity metrics based oratchingfeatures have been proposed [23].
In general, it is expected that a greater number of locaufeatmatch between
similar images than between dissimilar ones.

This representation has been successful mainly becausieféatures have
strong invariance to visual distortions such as pose aunhifiation variation. At
the same time, local approaches have the drawback that atorés may be in-
distinguishable if they are identified within locally similbut unrelated parts of
the image. In such cases, the meta information within theyeémaovides a useful
guide to alleviate confusion if it contains information abthe holistic geometric
relationship between local features within the image. Weagply the parametric
kernel framework to the task of learning from sets of locattee vectors by taking
the meta information as parameters to encode the geometratige of the local
features.

Face recognition is one of the most important computer mighgks. In the
past, much research has focused on recognizing faces frageimatabases that

are constructed in strictly controlled pose and illumioatconditions. Many re-
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searchers have recently worked on recognizing faces fra®ovstreams. Online
face recognition from video streams has a broad spectrumppications ranging
from video surveillance camera systems to building rodws¢an identify and fol-
low humans [4]. This task is often much more challenging ttemognizing faces
from still shot images because the video streams that thalyvdéh are typically
captured in uncontrolled environments with various typesase. Recognizing
faces from video streams is usually performed in the foltmpsteps: face detec-
tion — feature extraction- training— recognition. The most common factors that
make traditional face recognition methods fail in this peob are errors in face de-
tection, strong noise due to varying pose and illuminatlarspite of the numerous
techniques that have been proposed to overcome these phieost are either
not accurate enough or computationally too demanding &rtieme performance.
When sets of local features are used for recognizing facesvideo streams,
the recognition performance degrades due to the bad magtdififocal features.
Specifically, there are two different cases of bad matchHngt, almost no features
match between two images of the same person under quitendessillumination
conditions due to the qualitative limitation of the featir&econd, a large number
of locally similar but structurally dissimilar featureseamatched between images
of different people because features are computed lochbiyply the parameter
kernel framework to define the similarity metric between t&oe images using
the meta information as the parameter, which encodes thetste explicitly. This
approach shows improved performance mainly because apartjen of matched

features between face images of different people are joseilar but structurally
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dissimilar.
In section 5.2, | describe the setup of my experiments,ialbby the results

in section 5.3. | conclude this chapter with the discussioseiction 5.4.

5.2 Experimental Setup

In this section, | describe the data sets and feature eiinagsed in my experiments
on online face recognition from video streams, followed Iy tlefinitions of the
similarity metrics and online learning algorithm used. £&lpninary version of the
face recognizer presented in this chapter has been usedydbhe Robocup 2007
US Open [4]. To demonstrate the efficacy of the proposed nddfhroonline face
recognition by using meta information as the parametersKewse of the existing
feature extraction technique that is already used for tloseh datasets and show

the performance gain when the parametric kernel frameveoukéd.

5.2.1 Facial Video Databases

Face recognition under dynamic pose and lighting condisostill a largely un-
solved problem [67]. To address this challenge, | have rdmerface recognition
experiments on two databases of video streams; NRC-IIT [1aBd]UT Austin
Villa [3] facial video databases.

NRC-IIT is a public dataset composed of video streams of 1Viddals
captured using a commodity webcam. For each individualetlage two video

streams of about0 ~ 20 seconds; one for training and the other one for testing.
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The video streams total 3,023 and 3,679 images for trainmtasting, respec-
tively. The resolution i960 x 120. The camera position is fixed and the lighting
conditions and the background remain unchanged througheutntire video se-
guence. The NRC-IIT database is thus most suited for testageitognition per-
formance with respect to such factors inherent to vide@tascognition as low
resolution, motion blur, focus, facial expression vaaatifacial orientation varia-
tion, and occlusion [1]. Some of the video frames are showsaawles in Figure
5.6.

To address face recognition under dynamic illuminatiomristructed an UT
Austin Villa database. This database is composed of videasts of 9 individuals.
For each individual, there are 200 training and 400 test @sagespectively. To
incorporate changes in illumination, the video streamscaptured by a webcam
that is mounted on top of a mobile robot following the humaigufe/ 5.1 shows
the mobile robot that consists of a Segway RMP, a webcam, a URG-Maser
rangefinder, and a laptop [4]. The training video streamsapgured inside a lab
where the light is bright, while the test video streams apgwad starting inside
the lab and moving to the corridor of a hall where the light isctm darker. It
is often shot from the back of the human as well. | construthesidatabase for
this research due to the difficulty in finding previously usetto streams from the
public domain that are suitable for testing recognitiorf@renance under dynamic
illumination conditions. Some of the video frames are shasisamples in Figure
5.7.

To extract facial features, | first detect the face regioasifthe video frames
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Figure 5.1: The UT Austin Villa facial video database is domsted using the
mobile robot shown in this figure. It consists of a Segway RMkehcam, a URG-
04LX laser rangefinder, and a laptop. Analyzing the inpuigesafrom the webcam
and the distance information from the URG-04LX laser rangiefinappropriate
motion commands are sent to the Segway RMP to turn and to moweaurfd and

backwards.

using the default OpenCV implementation of the Haar-likeefdetector of Viola
and Jones [58]. | then use Velaldi’'s C++ implementation [2fhaf Scale-Invariant
Feature Transform (SIFT) algorithm originally proposedUmwe [34]. SIFT lo-
cates scale- and rotation- invariant features in an imagecamputes 128 dimen-
sional descriptor vectors for each feature along with aetaef other information.
The result of running the Haar-like face detector and SIFfuee extraction on the
set of images from Figure 5.7 is shown in Figure 5.8. The geayangles indicate
the detected face regions, while the location of the SIFTpkeys are denoted as
the blue dots. More detailed screen shots are shown in Fig8re

The Haar-like face detector is in general quite accurateetealing faces

from front. But the accuracy drops rapidly in a number of ddfe cases. First,
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Figure 5.2: Examples of face detection using the Haar-bloe fdetector and SIFT
feature extraction. The gray rectangles indicate the teddace regions, while the
locations of SIFT keypoint are denoted as blue dots. The eumihd the positions
of SIFT keypoints may vary across images of the same person.
it cannot detect faces when the subject turns or tilts thel he#he side more than
about45° or so (false negative examples). Second, it finds multipkrlapping
regions on a single face. Third, it often returns false pasixamples. The pro-
portion of false negatives returned by the Haar-like fadeder is relatively small
with respect to other sources of error. That is, unless tlee po facial expres-
sion vary significantly or a large portion of the face is odgd, it will be detected.
Also, detecting a face multiple times should not be a probfewe just take the
one with the tightest boundary. But having false positiveatial because it results
in incorrectly trained classifiers, thus making the obtdiresults less accurate and
credible.

| have decided to use the Haar-like face detector for a numberasons.
First, the Haar-like face detector is one of the most efficagorithms that runs
in near real time at about 15 frames per second at ab@utx 120 resolution.

Second, the error is not too significant to affect the facegaition results. This
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(a) False Negatives (b) Multiple Detection

Figure 5.3: Examples of the three major types of error of tharHike face detector
are shown. False negatives are observed relatively legadngly than the other
sources of error. Multiple detections of a single face stiowit be a problem if we
just take the one with the tightest boundary. However, tgafaise positives is fatal
because it results in incorrectly trained classifiers, thaking the obtained results
less accurate and credible. In (c), the false positive faz® n@ported because the
Haar-like face detector confused the two darker coloretbrnsgon the wall as eyes.
was also reported in previous research using the same faeetale[21, 58] and
other part-based face detectors [42,53]. Since this warkdes on the performance
measurement of face recognition, this should not be a biglgno. Thus, | have
manually removed false positives and duplicates from bathlthses and did not
add faces undetected as false negatives. The following faolvides the number
of detected faces and the number of frames actually comtameach of the video
frames.

Though the number of detected faces is significantly sméié&ar the number
of frames contained in some of the video streams, this is oletysdue to errors
in the face detector used. For instance, there were only@%fdetected from the
NRC-IIT training video for Face 1. This is largely due to othactbrs such as a

face going out of view or going too far away from the camerguFe 5.5 shows a

number of cases where the detector actually failed.
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Database NRC-IIT UT Austin Villa
Face Train Test Train Test
Detected/Total Detected/Total Detected/Total Detected/Total

0 187/228 177/249 196,/200 389/400
1 84/237 103/329 199/200 359/400
2 222/257 231/339 189/200 377/400
3 338/448 300/438 197/200 391/400
4 189/353 281/404 198/200 314/400
5 191/198 208/248 200/200 400/400
6 256/324 256/353 189/200 400/400
7 192/258 208/328 197/200 386/400
8 252/346 386/426 164,/200 360/400
9 303/318 257/388 N/A N/A
10 260/338 281/378 N/A N/A
fps 20 8

Figure 5.4: The number of detected faces and the numbermoggdor each of the

video streams used in my experiment.

o | 2

(]

(c) Headdifront

(a) Subject out of frame (b) Head tilted sideways

Figure 5.5: Examples of video frames where the Haar-like faetector failed to
detect the face. Failure in case (@) is not a false negatampbe, while those in
(b) and (c) are.
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Summarizing, the Haar-like face detector robustly detotst and upright

faces in the scene. Not using the undetected faces may mdikicitlt to make a
fair comparison against other face recognizers using numarate face detectors on
the same data set. At the same time, it is quite difficult todmdmmon ground for
a fair comparison of existing approaches. For face recmgnitsing still shot image
databases, a number of protocols such as FERET [18, 40] havepseposed to
address this issue. However, no such proposal exists y&demrecognition using
video streams. Therefore claims made from performance aasgns against other

approaches must be quite conservative in this type of work.

5.2.2 Facial Feature Extraction

| use SIFT as the basis for feature representation of theetdaces. Though
SIFT was originally proposed as a method to register imagetagks such as ob-
ject recognition or stereo image matching, many reseatney recently evaluated

it for face recognition [13,53]. SIFT extracts keypointdatal extrema in the dif-
ference of Gaussian scale-space which is produced by agylye cascade filtering
over the image with varying scales and taking the differdret@een neighboring
scale images. For a detected keypoint at p{xel) at scales, the histogram of the
gradient over a window of size x n around(i, j) is computed. The gradient is
computed at each point in the window against 8 differentaaurding neighbour di-
rections. The default value foris 4. The layout of this histogram is concatenated

into a4 x 4 x 8 = 128 dimensional descriptor vectar. Also, the orientatiort
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Face i Face Train

Figure 5.6: Sample images from the NRC-IIT facial video dasab®oth the train-
ing and the test videos for face 0 have been used as queries tedognizer for
unknownidentity. For face 1 to 10, the training videos are used tonldlae initial
classifier, while the test videos are used for testing anmhemtarning. The down-
load web page incorrectly showed the face images and the ewuafframes for
Face 3. | used the correct images and numbers of frames here.
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rain Test Tr_ain Test

Figure 5.7: Sample images of the UT Austin Villa facial viddaiabase. The video
streams are captured by a webcam mounted on top of a mobdeé falowing the
human. This results in a strong varation in the illuminat@mditions. Moreover,
the lighting conditions dramatically change in the teseadtreams as the human

walks from inside of the lab to the hallway.
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Figure 5.8: Sample images of the UT Austin Villa facial vidisdgabase showing the
detected face regions as gray rectangles and SIFT keypaitisie dots. The Haar-
like face detector scans for face regions in each frame. Bhtie detected face
regions is converted into grayscale and resizetiite 24 to extract SIFT keypoints.

On average, each face contains abidut- 20 SIFT keypoints.
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of the keypoint af, j) is obtained as the predominant orientation of the gradient
within the window.

To compute the SIFT features for the detected faces, | pcepsothe face
image as follows. First, | convert the part of the image cspomding to the detected
face region into grayscale and scale it to a fixed size of.. To reduce the effect of
illumination variation, | also apply histogram equalizati Then, | run SIFT feature
extraction on the resulting image. Thus, the input face eriagransformed into an
unordered set at, each of which is associated with meta informatiayy), s, and
6. Figure 5.9 shows examples of the extracted SIFT featurdbepreprocessed

face images.

Figure 5.9: SIFT features are extracted from the preprecesse images. Each of
the arrows starts dtr, y) and its length and direction correspondstandé of the
corresponding SIFT feature.

Once the feature representation is determined, the ngxiste define the
distance or similarity metric between them. | use four défe metrics for match-
ing sets of SIFT descriptors and compare their performambe.first is matching
by distance ratio as originally proposed and used by Lowég [3#he second is a

Mercer kernel applied only to the feature space, while tirel ik the same Mercer
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kernel applied to the combined feature vector of SIFT desars and the meta in-
formation. The last one is the parametric kernel that takesthe local element and
(1,7) as the parameter. According to the categorization by GraJ@f, the first
metric is an example of matching by voting and the secondlaathird are similar

to the pyramid match kernel. The definitions of these metreggiven below.

Similarity based on the distance ratio LetX = {x;|i=1,--- ,n} andZ =
{z;|j = 1,--- ,m} be the sets of SIFT feature descriptors of two face images.
The similarityfrom X to Z is defined as follows. Considering SIFT descriptors as
points inR'?®, we find the nearest neighbsiand the second nearest neighboin
Z to eachx € X. Then,x matche if

Ix —z|

< a, (5.1)

Ix —2]|
for a predefined ratio threshotd 1 usea = 0.6 as suggested in [34]. L&ty .z
be the set of matched feature péi,z). The similarity fromZ to X is defined
similarly. The similarity betweet’ and Z is defined as the number of matched

pairs of SIFT features for both directions,

d(X,Z) = |{(x,2) | (x,2) € Sy_z Of (z,x) € Sz_.x}|. (5.2)

To handle exceptional cases such as divide-by-zero, isisasd that, m >
1 andx; # x; for anyi # j. In practice, these assumptions are almost always true.
Note that/(5.2) is not a valid Mercer kernel because it doés@mmwespond to a norm

for an inner product space.
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Figure 5.10 shows examples of matching SIFT features betiweages of
the same person in (a) and different people in (b). The lonatof matched SIFT
features are connected with lines. They clearly show thaensdFT features in

general match between images of same person than thoséeoédifpeople.

(a) same persond(X, Z) = 55 (b) different peopled d(X, Z) =1
Figure 5.10: The locations of matched SIFT features are exted with a line.
More SIFT features match matched between images of samerperga) than
those of different people in (b).

There are two important properties of matching SIFT feauescriptors
as evidenced by examples in Figure 5.10. First, locatiomsaithed SIFT feature
descriptors between images of the same person correspamthitar parts of the
face, while those of different people differ significantior instance, in Figure 5.10
(b), the descriptor of a SIFT feature located at the righthead of the left person
matched the descriptor of one located at the center of ti pigrson’s forehead.
This is an instance of a bad match. To exclude such “bad” neatbktween images
of different people, one may apply a geometric verificatechnhique such as the
regular grid partitioning scheme introduced in [13]. Saetadhe locations of SIFT
features do not necessarily correspond to facial compsrseich as eyes, nose, and
mouth. Nevertheless, SIFT features can robustly charaetéaces because they

are consistent for faces of the same person. In additio|dts us avoid expensive
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computation for registering face components.

Kernel for sets of SIFT descriptors The second similarity metric is a kernel
definedonly on the sets of SIFT descriptors. For two sets of SIFT desospi’
and Z with |X| < |Z], the kernel for sets of SIFT descriptors before normalizati
is defined as

¥

]{J(X, Z) = Z /fSIFT(Xi; in), (53)

whererger : R x R'?® — R is a Mercer kernel and,, = arg min||x; — z;||. |

ZjGZ

chosexg et as a radial basis function

x—2?

KsIFT(X,2) = ¢ o ) (5.4)

whereos € R and~y € R are the width and the width control parameter, respectively
(5.3) matches SIFT descriptors to their nearest neighbithinthe whole set.
To suppress favoring large inputs and to penalize the pcesgfrunmatched

SIFT descriptors, (5.3) is normalized by the product of-setiilarity of X and Z :

_ k(X Z)
VEX, X)xk(Z,2)
The complexity of computing (5.3) i©(|X||Z]). This is computationally

k(X, 2) (5.5)

more demanding than PKM, which takes linear time using sagajramids or sub-
linear time using vocabulary-guided pyramids [23]. | did nse PKM here because

the computational cost of computing the histogram pyransdsaore demanding
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than optimal matching based on exhaustive search at the gtdhta used in this

work.

Kernel for SIFT descriptors and meta information  The third similarity metric

k. is almost identical tk except that it is defined on the sets of feature vectérs
which are constructed by combining a SIFT descript@nd the associated meta
informationT(x) € T'. | use(i, j), the location of the SIFT descriptors, as the meta
information. Since the only difference betwekp andk is the dimension of the

feature vectorx, i, j) € R, the definition ofk is omitted here.

Parametric kernel for SIFT descriptors and meta information The forth sim-
ilarity metric is a parametric kernel defined for both the Btfescriptors and their
associated meta information. To apply the parametericekdramework, | usex
as the local feature and the meta informatidsx) = (7, j) as the associated param-
eter. Recall that the face images are resized to a fixed widthd height, during
the preprocessing. The parametric space is thus [1, w] x [1,h]. T is decom-
posed into ranges of size/4 x h/2 that are horizonally and vertically overlapped
by w/8 andh/4, respectively. This decomposition is inspired by the obetions
made by Bicego [13] on face recognition with SIFT on the FERET BANCA
face databases. Sin@eis finite, there are a total of 23 overlapping ranges, as
shown in Figure 5.11. For notational consistency with respethe definition of
parametric kernels in Chapter 3, [Etbe thei-th range, fori = 0, - - - , 22, with no

favor to any specific ordering.
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Figure 5.11: Parameter spdte-= [1,w] x [1, k] is shown as the thick rectangle that
spans the face regiof. is decomposed into 23 ranges of sizél x h /2 overlapped
horizontally and vertically byv/8 andh /4. For visibility, the borders of the ranges
are shown as alternating patterns of dashed and solid lines.

For two sets of SIFT descriptot¥ and Z, the parametric kernel before

normalization is

KX, Z) = (d(X) - d(2)) = D (6n(X) - 4u(2)), (5.6)

where

<¢t(X) : th(Z)) = Z wxiwzj/{S”:T(Xi’ Zj)’l{T(T(Xi)v T(Zj))’ (57)
x; €T (X)
ZjEIt(Z)
wherexger is defined in/(5.4) and,. : T'x T'— R is a Mercer kernel that encodes
the parametric similarity between two SIFT descriptorsniir to the parametric

kernel definition for sequences, the decomposed element 3&for T; is defined
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asZ;(X) = {xi|T(x;) € T;}. The default value for the weighting facter,, is

1/|7y,|, whereZ,, = {Ti|T(x;) € T;}. | chosex.. as a radial basis function

T (x) = T(2)]?
ki (T(x),7(2)) = € V1037 , (5.8)

whereo.. € R and~,- € R are the width and the width control parameter.

In (5.7), SIFT descriptors match if their parameters fathithe same param-
eter range.

To suppress favoring large inputs and to penalize the pcesgfrunmatched

SIFT descriptors, (5.6) is normalized by the product of-setilarity of X and Z :

K(X, 2Z)

K(X, Z)= .
( ) VEX,X) x k(Z, Z)

(5.9)

5.2.3 Online Learning

In this section, | describe the online learning algorithradis this experiment. First
of all, I investigate the behavior of SIFT features in moréadeinder illumination
changes to show their limitations and motivate the onlimerieng algorithm used
in this work.

It is not surprising that the similarity between sets of StE&tures for im-
ages of thesameperson may be small if the poses are quite different. Howeger
shown in Figure 5.12, it may be so even if the pose does noigehtdrat much.

Such mismatches are due to the change of illumination wreepdke changes

rather than merely the change of pose. This is mainly bedfesehanges in illu-
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(a) sitting (b) standing (c) match result

Figure 5.12: The subject was sitting in (a) and standing Jmvytien the face images
were captured. Though the orientations of the face relatiibe camera are not
siginificantly different, there are no SIFT features matthetween (a) and (b) as
shown in (c). This is mostly due to the change in the direatibiine light.
mination result in significant changes in the facial texsueh as shadows or high-
lights. Figure 5.13 shows examples that manifest this elsien. The pose change
in Figure 5.13 (a) is not much different from that in Figur&%(c), while there is
much less of a pose change in Figure 5.13 (b). However, tmeré matched SIFT
feature descriptors in Figure 5.13 (a), while there are niofégure 5.13 (b). This
type of low similarity between instances of the same persaybserved when the
light is cast from different sides of the faces, such as inufgg.12 (c) and 5.13
(b). SIFT is relatively stable against pose changes butsemngitive to illumination
changes. This is inevitable because SIFT is based solelgeobrightness of the
pixels, which is sensitive to the lighting conditions, ahére is no abstraction of
the object of interest.

Without complete knowledge of the pose and illuminationimiyitraining
and testing, this type of limitation is inevitable with exiisg techniques. Therefore,
| take an online learning approach which learns and addptiyedates classifiers

from a series of examples supplied sequentially over time.
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(a) pose change (b) illumination change
Figure 5.13: In (a), the pose varies as the subject staraffenesht directions, but
the lighting conditions remain the same, while in (b), theg@oemains stationary
but the light is cast from right (left) side of the subjectlimteft (right) face. There
were 7 and 0 matched SIFT feature descriptors in (a) and €bpectively. This
clearly shows that SIFT is very sensitive to the illuminatanditions.

Let V be the number of known face classes and, without loss of gktyer
leti be the labels of a face clagé§fori =1,--- , N. For eachC;, a set of training
images/@" = {il, ... i’} is provided. The objective of training is to learn a multi-
class classifief : i — {0,---, N}, that maps an input face imadi¢o the correct
label of the face, if it is a known face, Or otherwise. In my learning framework,
| implementf as a set ofV one-versus-all classifierg; : i — sgnv; — 6;) for
i=1,---, N, which first computes a certainty € R that indicates how certaif}
is abouti € C; and maps td if ¥; > 6;, and—1, otherwise, for a thresholg] € R.
Since it is the set of SIFT descriptors computed from an ifigce image that the

algorithm eventually deals with, | instead legfin X — sgn(¥; — 6;), whereX' is

the set of SIFT descriptors computed frenThe final decision is made such that,
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forCy = {k| fu(X) >0fork=1,--- N},

arg maxv; if |Cy| >0,
f(X) =10+ (5.10)

0 otherwise.

During testing,f classifies a series of test examplésforn = 1,2,---,
each of which is labelled with the correct identityt,,). The classification of is
said to be correct whefi(X,,) = I(&,), for a test examplet,, of known identity
I(Xx,) € {1,--- N}, or f(X,) =0, if &, is the face of an unknown identity. The
proposed online learning algorithm updageduring the testing phase to adapt the
class boundaries as pose and illumination change over time.

To formally definef, we introduce a number of definitions. L&t =
{x!, ... X!} be the training set fo€;, where X} is the set of SIFT descriptors
computed from thé-th training face image of’;, andrn(X’, Z) be the similarity

metric between two sets of SIFT descriptdfsandZ. Then,f; is defined as

l
fi(X) = sgn( > afn(xtx) - 92-) : (5.11)
k=1

wherea! € R is a weighting factor that controls the contribution of thmitarity
betweenY and X* andd; is the threshold value. Learning or equivalentlyf;, is
thus finding the values off andd;, fork = 1,--- ,fandi =1,--- | N.

Actual learning first requires the determination of the &nity metric. In
this work, | experiment with the four similarity metrics rotluced in the previous

section,d, k, k, andx. Next, we need a learning algorithm. Independent of the
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similarity metric, | use an online learning algorithm thamnsists of two compo-
nents : learning the classifier from a static training set ashaptively maintaining
the training set during the progress of online classificatiote that the learning is
unsupervised sincg in (5.11) is solely represented using the training examples
C;. For learning the classifier, | use two different approackast, | propose a sim-
ple learning algorithm called Equal contribution Certaiotyoff (EC), which runs
fast enough to support at least near real-time online legrrin this algorithm, all
training examples contribute equally afds the cutoff value in the certainty dis-
tribution for a given error margin. Second, | apply supp@cter novelty detection
(SVND) to demonstrate the behavior of the proposed metadch@conduits to the
kernel-based learning paradigm. Note, however, that thiamice-ratio-based met-
ric d is not positive and semi-definite. Since it is not guarantéati kernel-based
learning algorithms, such as support vector machines,doaseonvex optimiza-
tion will find a unique optimal solution using, we do not learn a classifier based
on SVND withd. For adaptive maintenance of the training set, the propakgd
rithm evaluates a simple criterion for the determinatiomb&ther to add the input
example to the set of training examples or not using the iogytdistribution. In
summary, | learn a total of seven different classifiers asvshia Figure 5.14.

The proposed learning algorithm runs in two phases, trgiaimd testing.
During training, the initial classifier is learned from thetial training set, while
during testing, the test set is adaptively maintained. Whentiaining set is up-
dated, the classifier is re-learned with the updated trgis@t. | describe the algo-

rithms for EC and SVND, and adaptive training set mainteadetow.
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Similarity | Learning Algorithm
Metric EC SVND
d Jaec N/A
k Jxec JkSVND
k‘l' fk-,- EC fk-r SVND
K JrEC JrSVND

Figure 5.14: | learn classifiers for the combinations of gerhing algorithm and
the similarity metric, except faf and SVND sincel is not a Mercer kernel.
Equal contribution Certainty cutoff (EC) Learning  In EC learning, all training
examples contribute to the final outcome equally. Thatfs= 1, for all i andk.
Therefore, learning; in EC is just determining the certainty threshold vatue~or
this, | introduce a user-specified error ragec [0, 1]. The idea is to set the value
of 6; such that the probability of incorrectly classifying an ees example isy.
Finding #; can be implemented by first computing the probability disttion of
a random variabled; € R, which is the certainty value of an unseen examgle
with respect to the training s&f"@", and setting the cutoff value according:tpas
;. Unfortunately, it is not possible to compute the true disiion of ¥; using the
small number of examples iK"@", Instead, EC approximates it by computing the
the discrete distribution aof; from the training examples with respect g as
follows.

Let py, () be the probability mass function that evaluates to the hitiba

thaty; equalsd,

X e xran S~ myk o yny—9 forn=1,--- ¢
Pm(ﬁ):‘{z le’“ﬂ(“/) N ’H. (5.12)
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EC compute9y. () by evaluating the certainty” of the k-th training ex-
ample with respect t&@", Assume that < 9™, fork = 1,---,¢ — 1, which
can be easily satisfied by rearranging the order of the trgiexamples accordingly.

Then, the certainty threshold is determinedas 9%, where

K = argmin <Zp,9i(z9f) > 59). (5.13)
" k=1

9k

2

Figure 5.15: The true distribution of the certainty valueaof unseen example is
approximated by, (). 0; is determined as the cutoff valde according to the
user-specified error margip.

Support Vector Novelty Detection (SVND) Learning Support vector novelty
detection (SVND) is an unsupervised learning algorithmthar estimation of the
novelty of an example. This problem can be described aswslloGiven a set

of unlabelled examples drawn from an underlying probabditstribution P, we
estimate a subse&f of the input space such that the probability that a test point
drawn fromP lies outside ofS equals some a priori specified value between 0 and
1 [47]. This problem is solved by finding the boundary funetjowhich is positive

in S and negative on the complement in the support vector frameasfollows.
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Suppose we are given a set of unlabelled, in@rmal training examples

drawn from an input spac#

X ={xy, - ,x} C X, (5.14)

where/ is the training set size. For simplicity, suppokes a compact subset &

for some dimensiod. Consider the following boundary function

f(x) =sgn((w - x) — p), (5.15)

wherew € R? is the weight vector ang € R is the bias. We findv andp by

solving the following quadratic problem :

VI T
m|n|m|ze§||w\| + Z& —p

subject to(w - x;) > p — &;, (5.16)
& >0, fori=1,--- 4,

where¢; are the slack variables amde (0, 1] is a control parameter.

The dual of this problem is

.1
maximize Z o0 (X - X;)
(2¥)

. 1
subjectta) < a < i fori=1,--- ¢, (5.17)
14

£
E a,; = 1,
i=1
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where they; are the Lagrangian multipliers. dff solves the dual problem, then the
primal variables can be computedws= _'_, aix; andp = > oG {x; - x;), for

any support vector, i.e0 < «f < 1/(vf). A non-linear solution could be found
by substituting(x; - x;) in (5.17) with a non-linear Mercer kernel. The following

statements hold far if p # 0.

e v is an upper bound on the fraction of outliers.

e v is alower bound on the fraction of support vectors.

Sincer controls the upper bound on the fraction of outlierglays a similar role
asey in EC learning. Note that; andp in (5.17) correspond ta® andd; in (5.11).
Thus, the solution to (5.17) is actualfy. Pluggingk, k.., andx into (5.17) yields

fxswnps fx, svnps @and fsynp, respectively.

Online Learning The proposed online algorithm runs in two phases, trainnty a
testing. During the training, the initial multi-class dcdifger f in (5.10) is con-
structed by learning a one-versus-all classifiefrom the initial training set for
each clasg’;. One additional step is needed to finish the training phakehwill
be described later. Once the initial learning is finished algorithm switches to the
testing phase. During the testing phase, the input is assefigest examples pro-
vided sequentially over timey,,, forn = 1,2, - - -, which are individually classified
by f one after another.

Leti, be the classification result for a test examfle In addition to classi-
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fying X,,, the algorithm checks whether the certairity computed byf; satisfies

for threshold values;, andA; , which are determined according to user-specified

error rates:s, ea € [0, 1] in the same manner @&swas determined usingy, (7).
If (5.18) is satisfied, then we first remove a training exanipen the training set

X[ that is the most distant frorf,,,

arg minM(X", &,) (5.19)

Xf eXxlran
and then addv,, to it. This keepsX@" from growing arbitrarily large. In case of
a tie, we remove the oldest one. Finally, we retrain with thdated training set
and update;, andA; . Note that the initial values aof, andA, fori =1,--- | N,
must therefore be computed as the last step of the trainiagephrhe intuition of
using the criterion in (5.18) is to add a test example to thimitng set iff is certain
that it is not an outlier but, at the same time, not certainughato consider it as
a trivial example. Hence, in general, the error margins peeified such that that
g9 < €5 < ea. The algorithms for training and testing are describedwelchere

LEARNONEVERSUSALL CLASSIFIER(:) is either EC or SVND for clas§);.

Algorithm 1 Train

fori=1to N do
[fi,0:,0:, A;] < LEARNONEVERSUSALL CLASSIFIER(7)
end for
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Algorithm 2 Test

form=1,2,--- do
[i719] — f(Xn>
if i 0 and J; < ¥ < A, then
Xmin < arg min || X, — XF|
Xik:exirain
X}rain - {Xtrain _ {Xmin}} U {Xn}
[fi, 0:,0:, A;] <+ LEARNONEVERSUSALL CLASSIFIER(7)
end if
end for

Summarizing, the online learning algorithm performs atiahtraining and
classifies the stream of test examples iteratively. Certshdxamples are added
to the training set of the classified class to adapt to thegdmnof pose and illumi-
nation. Also, we remove an example that is the most distamt the newly added
example in the hope that it is least similar to the examplasuilil be observed in
the near future. Every time the training set is updated, tieesponding classifier
is retrained. In practice, however, we may retrain classifisuch less frequently
to save computation if a single update does not result in @mjfieant change in

the distribution of the certainty values.

5.3 Results

| begin by presenting the results of the preliminary work iB8.5 on the online
face recognition developed for the competition at Robocup/g@]. The system
was based solely on SIFT features and implemerfted as the face recognizer.

The behavioral analysis demonstrates the effectivenebgeafystem and presents
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guidelines for determining the parameter values. At theestame, this also shows
its limitations under dynamic illumination.

In the following sections, | present the results of using pheametric ker-
nel framework to overcome this limitation. In 5.3.3, | déberthe experiments
using a public face database NRC-IIT, which provides an obgaomparison
with existing techniques. In 5.3.4, | describe the expenitsavith the UT Austin
Villa dataset, which is constructed to exhibit strong vioia in the illumination
conditions. | show that using the meta information assediatith the features in
the parametric kernel framework shows the best results grttseven similar-
ity metrics. To clearly demonstrate the advantage of udnegparametric kernel
method, the experiments are designed to discriminate thigilsotions by each of

the components in my approach.

5.3.1 Face Recognition Under Known Illlumination

The goal of the Robocup at Home competition was to build a reafmbot that
recognizes faces in real-time. The first task was to learrfabes of a number of
people standing in a row during training and then to clagbiéytest faces of a row
of a possibly different number and combination of peopléuding unknown faces,
standing at the same location. The second task was to le#ine same manner as
in the easy task, but the test subjects were standing atdosatandomly scattered
around the room. At all times the subjects are assumed tdadaceds the camera.

Towards this goal, we started building the system in the fadrenment un-
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der two assumptions; 1) the lighting conditions of the labsmilar to those of the
real competition field and 2) the flighting conditions in thaining phase are sim-
ilar to those in the test phase, that is, the test lightingd@¢@ns are known during

the training phase. The lab is equipped with an uneven bligton of light sources,

e.g. daylight and light bulbs, where the light cast onto #eefcreates significantly
different patterns of shadow depending on the position aedtientation of the

faces of walking subjects.

The system runs in the following stages. First, to consthetnitial training
set, the robot follows the training subject by tracking tlkeéedted face and captures
a sequence dftraining face images per subject. The initial training ddeatures
is constructed by detecting face images, each of which iedda a fixed size,
24 x 24, and then extracting the SIFT descriptors. Then the systams the initial
classifier. Once the initial classifier is learned, the tegfihase begins immediately
in a setup identical to that used for training. | used the SdE3criptor set as the
feature set for the detected face images and adaejpaed EC as the similarity met-
ric and the learning algorithm, respectively. | implemehtesks 1 and 2 using this
face recognizer. The performance was quite satisfactomhéofirst task. However,
| observed a significant drop in the accuracy for the secosid tahis was mainly
because the illumination conditions of the test phase wigrafieantly different
from those used in training, thereby violating the secosdiaption. Nevertheless,
our team ended id" place out of 11 teams, since the illumination was forturyatel
omni-directional in the actual competition. This expedemnotivated the idea of

using meta information in the parametric kernel framework.

102



| present the result of this system as preliminary work. Thoi suffers
from the aforementioned limitations, it effectively denstmates the advantage of
the adaptive strategy in EC learning. Also an analysis obékavior provides
useful guidelines for optimizing the parameter values efldarning algorithm.

In the first set of experiments, | give an analysis of the raedam accuracy
of EC with respect to the varying parameters. First, | fix tlaning set siz¢ and
measure the true positive and the true negative rates, wdmjeng the error margin
gg. There are total four subjects, - - - , S4; an Asian male, an Asian female, and
two Caucasian males. For each subjggta set of¢ = 100 training imagesS'a"
are collected while the subject moves around the robot akimglspeed. After
training, fsec classifies a set aof = 300 face imagesS'®! for each subject in turn

and measures the true positive (TP) and the true negativé 1(diss defined as

follows :
Lo~ {5 € 8* f(s) = i}
P= Z - , (5.20)
and
Stest .
122; [{s € |f()7é2}‘ (5.21)

TP and TN are shown in Figure 5.16. TP start8@s87% and drops rapidly
asey gets higher. The true negative rate starts at ab@uR% and soon reaches and
remains at almosit00.00% for ey > 0.1. The rapid drop in TP is a direct indication

of the fact that the certainties of the majority of test irgpate slightly greater than
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the threshold);, which means that the boundary is tight. Also, this means that it is
more difficult to correctly classify positive examples than negative ones using our
method. This is mainly because EC learning is unsupervised. The most promising

value ofsy = 0.03, which is determined such that FPTN.

Accuracy
o
o
T

©
~
T

0.2

Figure 5.16: True positive and true negative rates for varyjn

In the second experiment, | analyze the speed and the accuracy of the al-
gorithm for varying/. ¢ is used as the control parameter because both the amount
of computation to evaluaté;zc and the accuracy are proportional to it. For this,
| measure the average number of frames processed per second and the true posi-
tive rate. This time, | train and test with only a single positive subject that moves
around while facing the camera. This is to measure the time cost of the classifier
that is independent of the number of classes. The result is shown in Figure 5.17. |
usee, = 0.03 and/ varies from10 to 100. We achieve> 95% of true positive rate

for ¢ > 40 but the frame rate gradually drops from about 8 Hz to about 5 Hz for
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¢ > 70. The frame rate increases &gets smaller, but the true positive rate drops
below90% for ¢ < 30. Therefore, we must choose a reasonably but not too large

training set. In this experiment, the acceptable range®about40 to 60.

Accuracy

Figure 5.17: Accuracy and speed of the classification foyiagr/.

In the third experiment, | analyze the effectiveness of tti@péive strategy
of EC learning under varying lighting conditions. For tHisneasure true positive
and true negative rates for the four different cases of mgyin(off) the adaptive
training set maintenance and moving(fixing) the robot. Rahecase, | trained with
a sequence af = 80 training examples. For testing, a sequence of a total of 1000
positive examples followed by 1000 negative examples isgred. Both training
and testing examples are captured in the same lighting tonsli Every time a
sequence of 50 positive examples is classified, | measueepwsitive rate. This
is repeated 20 times, and the average and the variance of tthee?positive rates

are computed. The following 1000 negative examples aresifled in the same
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manner, and | compute the average and the variance of the 2@egative rates.

The result is plotted in Figure 5.18. When the robot is moving, the true positive
rate increased frori5.2 + 7.31% to 97.3 + 2.72% and when the robot remained
stationary, the increase was frai0.2 + 3.32% to 97.0 + 1.26%. The decrease in

true negative rate when the robot was moving (stationary)3ngs(2.0%). These
results indicate that the adaptive strategy of EC learning improves the classification
accuracy over the cases when it is not used no matter whether the robot is moving
or remains still. Meanwhile, we achieve higher true positive and true negative rates
when the robot remains stationary than when it moves. This is due to the smaller

variation of pose and illumination than in mobile robot platforms.

1.0

Accuracy
o
0]
Accuracy
o
[0}

0.6 —6— true positive 0.6 —6— true positive
' @ - true negative ' @ - true negative
adaptive fixed adaptive fixed
Moving Stationary

Figure 5.18: The true positive and the true negative ratemasesured for the four
different cases of turning on(off) the adaptive strategy and moving(fixing) the robot.
| usedsy = 0.03,e5 = 0.4,ea = 0.7, and/ = 80 for all cases.

The results from the first and the second experiments provide useful guide-
lines to determine the values of and/. The adaptive learning strategy shows

impressive results if the illumination conditions of the test examples are not signif-

106



icantly different from those of the training examples. Heoesr it suffers from a

rapid drop in accuracy if this condition does not hold.

5.3.2 Evaluation Metrics and Parameter Values

Prior to presenting the main results, | introduce the evadnametrics used through-
out the experiments and the scheme to determine the paravagtes. | borrowed
the evaluation metrics from Tangelder’'s work on face redagnusing the NRC-
[IT facial database [53]. They are discard rate (DR), recogmrate (RR), and false
acceptance rate (FAR). If a test face example is classifiedlasown, then itis said
to be “discarded”. Otherwise, it is said to be “recognizddhe test example is of
known identity, i.e.# 0. DR is defined as the ratio of the number of discarded test
examples to the total number of test examples of known itjerithis definition is
slightly different from the original definition by Tangeldia that | define DR over
test examples of known identity only, while Tangelder doatsatearly differentiate
it. Since it is correct (incorrect) to discard test examplegnknown (known) iden-
tity, | think my definition makes more sense. For test exasiplfknownidentity,
the recognition rate (RR) is defined as the ratio of correctiggified test examples
to the total number of test examples that are not discardedekt face example of
unknown identity is classified as known, then it is said tofaéstly accepted”. The
false acceptance rate (FAR) is defined as the ratio of the nuofifesely accepted
test examples to the total number of test examples of unkndemtity. Without

loss of generality and following the same experimentalgasiTangelder [53] and
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Gorodnichy [21], | use the training and test images of clasas “unknown” test
examples.

Since we deal with stored datasets, | do not provide an asalyghe classi-
fication speed. But | believe that the preliminary work pr@ae&nough understand-
ing of the real-time behavior. At the beginning, | assumd tha SIFT features
are already precomputed from the detected and preprocksseregions from the
training and the test video streams. The initial trainingiseconstructed using
cross validation on randomly selected subsets. Duringetstephase, examples are
provided in the same order as they appear in the originabvatieeams. However,
the adaptive strategy of the online learning algorithm delgeon the order of the
classes of the examples. A test example that is incorreldbsified in the previ-
ous step may be added to the training set of an incorrect cldss is unavoidable
unless the classification is perfect. To reduce such biasaming, the classifica-
tion takes place as follows. For each class, among the tast@es that have not
yet been classified, pick the earliest one in the order thegapin the test video
stream, if any are left. The set of test examples thus celteitbm the training sets
of each class are classified in a random order. Repeat thiswariést examples are
left.

In my experiments, | use the following scheme to determimepiérameter
valued. ¢ andey are found in a similar manner as in the preliminary woek.

ande, are set appropriately to satisfy < 5 < ea. For SVND, | usedr = 0.5

lparameters can be set freely in a number of different waysdivgy but not limited to the
scheme introduced here.
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based on Sablkopf's observation that a reasonably largeesults in classifiers that
do not overfit the data but, at the same time, cover isolatathples in the feature
space [47]. The second set of paramters is the widthgiin (5.4) ands- in (5.8)
and their control parameters. The default values for thehwedntrol parameters
arey = 0.5 and~, = 0.5. The width is computed differently for each of the classes
as follows.

For SIFT descriptor setd’ = {x, -+, xjx} andX” = {x|,--- . x[y,} €
X with | X| < |X’|, let the average distance between the matched SIFT descrip-

tors using the nearest neighbor matching be

, *x,, — X

wherex), = arg min|x, — x,[|. Then, the width ofiger for classC; is
x], €X’

et D 0
o = 16(6 —7&1) : (5.23)

o for k., is determined identically, except that the distance is ageghbe-
tween the combined feature vecters= (x, i, j) € R,

o ando, for k are determined as follows. For SIFT descriptor sets=
{x1, -+, xpafandX’ = {x}, -, x{p,} € X", with | X| < |x”], let the average
distance between the matched SIFT descriptors be

22
Xm0 2 xem(x) I = x|
XX D) . (5.24)

>z [T (O)NIZ(X7)]

g
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Then, the width ofkger for classC; is

L L
. Zn:l Zm;én anXm

o; T (5.25)

Similarly, let the average parametric distance betweemth&ched SIFT

descriptors be

o2 xez, () |IT(x) = T(x))|

XX X h) . (5.26)
> im0 | Ze(X)|[Ze(X7)]
Then, the width of - for classC; is

ag

l L
i Zn:l Zm;én Uanm

oL = -1 (5.27)

Although determining the values of these parameters is atettipnally de-

manding, this could be performed offline during the prepsso® stage.

5.3.3 Face Recognition Under Steady Illumination

In this section, | present the results of experiments wilNRC-1IT facial database.
The illumination remains steady throughout the entire lokeda, while other condi-
tions such as pose, expression, or occlusion vary signifycaktotal of seven dif-

ferent similarity metrics in Figure 5.14 are evaluated mmi of the three metrics,
RR, DR, and FAR. To isolate the performance gains due to the adeagitategy of
the online learning algorithm from those due to using thepeatric kernel, | run

two identical classifications for each similarity metricheve the adaptive training
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set maintenanace is turned on in one set and off in the otherpdfameter values
arel = 60,g9 = 0.03,e5 = 0.4, andep = 0.7.
RR, DR, FAR usindfsec, fxec: fisvnps fi ECs firsvaps fxec, @nd fisvnp

are showin in Figure 5.19, 5.21, and 5.22, respectively. For each metric, | show blue

and red bars that correspond to the peformance metric computed with the adaptive
training set maintenance feature of the online learning algorithm turned off (Fixed)

and on (Adaptive), respectively.

100 ;

I Fixed
I Adaptive

95

Recognition Rate (%)

f.EC fEC  fSVND f EC fo.SVND f.EC  f.SVND

Figure 5.19: The blue and red bars correspond to the pefoenamatric com-
puted with the adaptive training set maintenance feature of the online learning al-
gorithm turned off (Fixed) and on (Adaptive), respectively. Irrespective of the type
of similarity metric used, the adaptive learning strategy increases the recognition

rate. Meanwhilef.ec, along with the adaptive strategy, resulted in the highest RR
= 96.3%.

As shown in Figure 5.19, the strategy of adaptively maintaining the training
set results in an increase in RR of abdit ~ 5%, irrespective of the type of sim-

ilarity metric used. The increase is not as impressive as in the preliminary work.
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This is due to the characteristics of the NRC-IIT databaserevine lighting condi-
tions are steady throughout the entire set of examples.gUsig, | obtain the best
results 0f96.3% and91.5% with and without the adative strategy, respectively. This
is a competitive result compared to the RR9df%: by Tangelder [53], while RRs
for other similarity metrics are abowu®% lower. Comparing this against usirfgec
shows the advantage of using the meta information. In trasngte, RR increased
about10% on average. Itis also intersting to see thatc increases RR by at most
3% ~ 4%, which indicates that using meta information in the form déliéional
dimensions is not a very significant improvement under tlveselistions. This is
because the meta information does not add any significamniation if it is used
in this manner. See Figure 5.20 which shows the intra- ared-lass histograms
of different types of distances between the local featurtors in the left and the
right columns, respectively.

The intra-class histograms show the distances betweendtehed feature
vectors computed from the randomly chosen 150 training &0ddst examples for
Face 0, while the inter-class histograms show those cordgtgen randomly cho-
sen 150 training examples of Face 0 and Face 10, respectidedytop row shows
the distance distributions between the nearest neightsor &éscriptors. The two
distributions largely overlap, except that the intra-sldsstribution has a long left
tail. The long left tail corresponds to very close matchethanspace of SIFT de-
scriptors between examples of the same class. The secorshows the distance
distributions between the nearest neighbor combined featectorx’ = (x, 1, 7).

Adding the meta information has the effect of slightly shitthe distributions
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to the right hand side. On average, both distributions giitiut+0.1. The dis-

tributions look almost similar to those without the metaommhation. This partly
explains why the increase in RR By_gc compared tofixec is small. In addition,
combining the local feature vector and the meta informatiay not be numerically
appropriate since they may not be in comparable scale. \fittereful numerical
adjustment, the meta information will either dominate tffeat of local feature
vectors or add no extra meaning to them. The paramteric kisemeework solves
this problem by computing the normalized similarity betwége meta information
separately from that between the local feature vectors.

The third row shows the distance distributions between SIE3criptors
matched using the parametric kernel framework. Decompgdbkmparameter space
into smaller overlapping regions and enforcing matchingveen features that co-
occur in the same range prevents features far apart in theaéespace from match-
ing. At the same time, the co-occurring features may not bendarest neighbors.
Consequently, a large portion of the matched feature vettorthe historgrams
shown in the top two rows disappear, while the newly matcleatiire vectors are
sub-optimal, that is, further apart. There a4€00 matches in the histograms of top
two rows, while there are onl91735 and 14621 matches in the left and the right
histograms as shown in the third row, respectively. Thiscaes that the matched
local features are likely to be computed from far apart liocest within the face, if
the match is between images of different people rather thangde person. Also,
the sub-optimal matching explains the increase of the mesdarates in the third

row. Itis interesting to see that the long left tail still raims in the intra-class dis-
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tance distribution for the parametric kernel. This meaasithintra-class matching,
many SIFT descriptors that are close in the feature spaoeaisccur in the same
parameter range, while there are almost none in inter-afegshing. By favoring
these matches, the parametric kernel framework showsisuperformance over
other similarity metrics.

The DRs are computed withy for which the the RRs are computed as shown
in Figure 5.19. DRs decrease if the adaptive strategy is wesapt for f,.synp.
Compared to the DRs in Tangelder's wod6{), | achieve much smaller DRs.
My classifiers are empirically shown to correctly discargatere examples much
better than correctly recognizing positive examples. ldvel that this is closely
related to the unsupervised nature of learning one-vaaBusassifiers in the pro-
posed framework. In general, the lack of knowledge of th&ibistion of negative
examples tends to make the class boundary fuzzy and thus,eramples are clas-
sified as positive. This also explains in part why the RRs ardlyniasver than94%
in Tangelder’s work.

FARs for the seven similarity metrics are shown in Figure 5@2a8mpared
to Tangelder’s result using BH@Y%), the FARs of my approach are about twice as
high, but much less than those using SIEZ%). In addition, the adaptive strategy
does not help that much in lowering the FARs. This is mainlydose examples of
unknown identity are rarely added to any of the training,s®ten though they are

classified as positive by some of the one-versus-all classifi
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Figure 5.20: The intra- and inter-class distance distidingt are shown in the left
and the right columns, respectively. The top row shows tls&itdutions of dis-
tances between matched SIFT descriptors, while the secondhrows that of the
combined feature vectot = (x, 1, j). The distribution remains almost indentical,
which means that using the meta information in the form ofeegtmensions does
not make much difference. The histograms in the third romwnstiat matching
in the parametric kernel framework is sub-optimal in tha thodes shift to the
right hand side and a much smaller number of features matelanwhile, the long
left tail still remains in the intra-class distance disttibn for the parametric ker-
nel, which is missing in the inter-class distance distidout This means that, in
intra-class matching, many SIFT descriptors that are dloige feature space also
co-occur in the same parameter range. By favoring these emttte parametric
kernel framework shows superior performance over otheilailty metrics. The
last row shows the distribution of parameter distances éetvthe nearest neigh-
bor SIFT descriptors. The intra-class histogram showsgtomncentration around
[0, 5], which is missing in the inter-class histogram. This implilee importance of
using parameter distances.
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Figure 5.21:¢, for which the RRs are computed|in 5,19 are used to compute the
DRs. Except forf.svnp, DRS decrease if the adaptive strategy is used. The DRs
are much smaller than that of Tangelder’s appraz&li. However, | believe this

is because the boundaries of the one-versus-all classifiarg approach are loose
since no information about the distribution of negativeragées is used.
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Figure 5.22: FARs are about twice as high as those of Tangsldpproach using
BHG (4%) but much less than using SIFT (13%The adaptive strategy does not
help that much in lowering the FARs. This is mainly because examples of unknown
identity are rarely added to any of the training sets, even though they are classified
as positive by some of the one-versus-all classifiers.
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5.3.4 Face Recognition Under Dynamic lllumination

In this section, | present the results of experiments with the UT Austin Villa facial
database. The lighting conditions of the test examples are significantly different
from those of the training examples and unknown a priori, which makes the problem
very difficult to solve. In particular, SIFT is very sensitive to the lighting conditions,
as explained in 5.2.3. The experiments are set up much as in the work with the
NRC-IIT database. The parameter values f@are 80,y = 0.05,¢5 = 0.3, and

ea = 0.7.
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Figure 5.23: f.ec, along with the adaptive strategy, resulted in a maximum RR
of 71.2%, while f.synp resulted in a maximum RR df5.2%. Though the adap-

tive strategy is an important factor in increasing the RRs, we can still see that the
parametric kernel framework effectively utilizes the meta information.

As shown in Figure 5.23, adaptive training set maintenance increases the
RRs, irrespective of the type of similarity metric us¢ggc, along with the adaptive
strategy, resulted in a maximum RR7f.2%, while f,.synp resulted in a maximum

RR of 65.2% without the adaptive strategy.
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Figure 5.24:¢, for which the RRs are computed/in 5.19 are used to compute DRs.
f«ec and f.synp resulted in maximum DRs of7.2% and23%, with and without
the adaptive strategy, respectively.

IS
=}

I Fixed
L | I Adaptive

w w
=] 5l

N
3
T

i
o
T

False Acceptance Rate (%)
s 8
T T

o

fLEC REC  fSVND fi EC fi. SVND [f.EC  f.SVND

Figure 5.25:f.ec, which showed the highest RR, resulted in a FAR df%.
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Compared to the results for the NRC-IIT data, the best RR for UTtiAus
Villa is about25% lower. | think that this is impressive considering the sgeen-
stivity of SIFT features to illumination variations and thaeknown test lighting
conditions during the training phase. Though the adaptiategyy consistently in-
creases the RRs, the increase is smaller than for the NRC-IIT @aisiis mainly

due to the lower certainty values during testing. Lowerg@gande, may allow

more examples to be added to the training set, but this alsatsdore false posi

tive examples.

5.4 Conclusion

The parametric kernel framework has been applied to thelgmobf online face
recognition from video streams as part of effort for the Ralppat Home 2007
competition. Recognizing faces from online video streanssrbaently been much
studied due to the applicability to a wide spectrum of probtlomains. Compared
to traditional face recognition based on single-shot facage databases such as
FERET or BANCA, recognizing faces from video streams is a mucternhalleng-
ing problem due to strong variance in pose, expressionysicei, and illumination.
Especially changes in illumination make the problem vefftadilt to solve.
Representing an image as a set of local feature vectors hasheetive in
many computer vision tasks. This is particularly advantagef the global rep-
resentation of a given image changes considerably due iatieais in pose, view

points, occlusions, or other types of deformations. Thelarity between two im-
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ages could then be computed by matching their local featimehis work, | used
sets of SIFT descriptors as the feature representatiorhéodeétected faces. Un-
fortunately, using local features does not work that weldemsignificant changes
in the illumination. This resulted in a large number of maglbetween features
located at quite irrelevant regions within the face images.

Compared to images from other vision applications such ascbbptego-
rization or image retrieval, the global representationfaoé images change much
less dramatically. | take advantage of this characteristiadopting the geometric
relationship between the locations of local features apénameter in the param-
eteric kernel framework to suppress matching features atedpfrom irrelevant
regions. However, this strategy reduces bad matches batraidooost good ones.
To handle this, | proposed an online strategy that maintdiegraining set adap-
tively by adding examples during the test phase, which id useombination with
the parameteric kernels.

I demonstrated the efficacy of this approach through exmarismon two
datasets. On the NRC-IIT facial database, | achieved a RR®.8%; at a FAR of
9.9% using the parametric kernel and EC-learning. | comparedadhtise state-of-
the-art results using the same dataset produced by Tamg8]e Using BHG as
the feature, his approach achieved a RR4f at a FAR of4%. With SIFT, his
approach achieved a RR 85% but the DR and the FAR ar&7% and18%. My
approach shows a superior RR at the cost of a higher FAR conhpatbe result
using BHG. However, compared to the results using SIFT, liobtauch smaller

DR and FAR. Considering that he computes SIFT features afteaatg fiducial
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points from the face image, including nose, eyes, and mauttthat he constructs
the training set optimally using a greedy selection schameresults look quite
impressive.

The second sets of experiments with the UT Austin Villa fadatabase
are aimed at performance analysis under considerable @ambuwariation in the
illumination, since the illumination was steady in the NRC-tata. In particular,
the lighting conditions during the test phase are quitesdkifit from those during
the training phase and unknown a priori. | achieved a RR1dt% at a FAR of
3.4%. Though | cannot provide any comparison since the UT Austita \data
is a private dataset, | believe that my results are strongidering the significant
amount of variability in illumination.

Summarizing, | have applied parameteric kernels and antiadapnline
learning strategy to the face recognition task using thatlons of local features
as the parameters. The objective was to demonstrate theagjapplicability of the
parametric kernel framework to structures other than sspge The only change
required is extending the parameter space to a higher dioreignanifold and
applying an appropriate decomposition scheme within tbécs. This shows the
potential of the parametric kernel framework to provide sisgpnmatic approach to

learning structured data.
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Chapter 6

Sensor Data Analysis

In this chapter, | apply the parametric kernel frameworkgsiD parameterization
to the task of object detection from the sensor data captoyddser range find-
ers. The work demonstrates that the parameteric kernekfrank for handwritten
character recognition is directly usable in detecting cisjrom sensor data. This is
because the input patterns from both problem domains ateeséglly structured.
Laser range finders are often used in robot systems to semsednby en-
vironment. This is done by measuring the distance to theeséabject omni-
directionally in 2D plane at a certain frame rate. Analyziinig information, robots
take appropriate actions to achieve the goal such as lataliy, avoiding obstacles,
or approaching the destination. At each frame, the scarcerteseturned by laser
range finders is represented as an array or a sequence ofeistaues, where each
dimension is associated with a certain angle of the diradtiat the distance was

measured. The first step to analyze a scene is to remove mimaxdalues from
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the sequence and segment the remaining values into a setafmgéul subregions
called blobs. Object detection in this context is to taskmdifig a blob that corre-
sponds to the surface of the target object. If the robot otafrget object is moving
and/or due to the noise and error of the device, the blobshosame target object
look similar but are all different in terms of the sequenagglés and the distance
values. The parametric kernel framework with 1D manifoldgpaeterization intro-
duced in Chapter|4 is directly applicable to this task with enidifference in the
data normalization scheme and the parameter values. |ngpleed a soccer ball
detector to demonstrate the efficacy and the generalityegptbposed approach.
In section 6.1, | describe the setup of my experimentatiolipwed by the

results in section 6.2. | conclude this chapter with thewls®n in section 6.2.1.

6.1 Experimental Setup

6.1.1 Data Representation and Normalization

| used Hokuyo URG-04LX laser range finder which scans at 10dsaper second
in 2D plane. It is mounted on the front side of the Segway RMptrdat navi-
gates in the lab. The objective is to locate a region in a frafr@ensor data that
corresponds to a soccer ball. A frame is represented as arssgjof 768 distance
values measured from120° to 120° relative to the front direction. Each distance
is measured in millimeters, ranging from 20 to 4095 with maxin 1% error. See

Figure 6.1 (a) for a snapshot.
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150

(a) Raw Input (b) Segmented (c) Detected

Figure 6.1: Raw sensor input is shown in (a) and thick curvéb)rare the blobs
after segmentation. In (c), the thick round blob at angleudbo® and distanc®.2
is detected as the soccer ball.

Each frame is preprocessed as follows. First, a frame is alamenby di-
viding it by the maximum distance value and segmenting iei@sl meaningful
subregions called blobs. A blob is defined as a subregion i@rad where all dis-
tance values in the subregion ar€fn1) and every consecutive values are at ndost
apart. In this experiment, | uséd= 0.05 (about 20cm) and = 0.02 (about 8cm),
which are found after a number of trials. Excluding values ldhar? is necessary
to remove noise due to parts of the robot that are at the prtgxohthe sensor. Ex-
cluding value of 1 is also necessary to remove the empty splobs are further
normalized by scaling so that the min and max distance vafueach blob are 0
and 1.

Blobs that corresponds to the soccer ball are roughly semiesi because
Hokuyo URG-04LX scans from only one side of it. However, sitizs is also

the case for all round objects such as human legs or beat@ysatll confuse the
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classifier. Without any extra information, there is no wayeib one from another.
For demonstration purposes, therefore, it is assumed thstich confusing objects

exist in the frame. Some of the ball and non-ball exampleslaoe/n in Figure 6.2.

160
Figure 6.2: Solid (dashed) curves are ball (non ball) exasyphhere vertical and

horizontal axis correspond to the normalized distance hachtimber of points in
blobs. Clearly, ball blobs are semi-circular, while otheesiaregular.

6.1.2 Parametric Kernels for Blobs

Let ¥ = [x,---,xx|| be a blob, where; € (6,1) are the normalized distance

values. The parameter fat is defined as

L% — xp if7>1,
0 otherwise.

Consider a decomposition of parameter sgageto N ranges

N-1
T=|JT. (6.2)
t=0
Given two blobsY = [x;,--- ,xx|] andZ = [z, - -- , 2z z|], the parametric
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kernel for blobs before normalization is defined as

N-1

KX, Z) =) (6(X)-6(2)), (6.3)

t=0
where

(O(X)-d(2)) = Y wewekep(xi,2))he(T(x:), T(2;),  (6.4)
X, EZ¢(X)
z;€L4(Z)
wherergp : (0,1) x (,1) — Randk, : T x T — R are Mercer kernels that
evaluates the similarity between two distance values iftkbles and their paramet-
ric similarity, respectively. The definition of the deconsed element s&f, and the
weighting scheme is identical as in Chapter 3.

To suppress favoring large inputs and to penalize the pcesgfrunmatched

points, [(6.3) is normalized by the produce of self simijadgf X and Z :

(6.5)

6.2 Results

The laser range finder is mounted at about 20cm from the groarte front side
of the mobile robot. The robot is controlled to slowly navwgaround the field
with a number of objects including the soccer ball, boxes, &alls. The frames
are captured at about fps for about 30 seconds. After prepsotg each of the

frames into normalized blobs, each of the blobs are manlsilled as either +1 if
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it is a ball, or -1, otherwise. The datasethusly constructed is composed of total
442 ball blobs and 2199 non-ball blobs. For learni§gs split into train and test
subsets. The train subset is constructed by randomly dga20rball blobs and 22
non-ball blobs fromS and the remainder is the test subset. | trained a soft-margin
support vector classifier (SVC) with a quadratic loss funcods in (6.5) as the
kernel function. The details of SVC has been described in @n@p See [47,49]
for an introduction to SVCs.

| used a regular overlapping parameter space decompositioeme as in
the handwritten character recognition with the range ledgt= 0.1 and the hop

lengthA /2 = 0.05. | chosexgp as a radial basis function

x— 2

Keo(x,z) =e 78D (6.6)

whereogp € R is the width, and: as a radial basis function

) — @)

ke(T(x),7(2)) =€ or , (6.7)

whereo, € R is the width. The widths are set tqsp = o, = 0.1. The SVC
parameter” is set to 1000. For a blol’ labeled ag € {—1, 1}, the classification
of the learned classifief is correct if f(X) = y, or incorrect, iff (X) # y.

The classification error is measured as the ratio of the recty classified
test blobs to the total number of the test blobs. On averageslassification error
was0.82% with 78.6% of the training data being the support vectors. Thus, with

only about1.2% of the total data, | achieved more tha’% of error rate. Each
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scene on average contained about 10 to 20 blobs, among whigloone corre-
sponds to a soccer ball. Our C++ implementation running oblatt&C with Intel
Pentium M 1.2 GHz processor on average required less thase0dhds to classify

blobs in each scene.

6.2.1 Discussion

A parametric kernel function is defined for blobs. It has besed in SVC to learn
a blob classifier for the task of object detection from las@ige finder sensor data.
With a few minor modification including the data normalinstiand other param-
eter values, the parametric kernel functions for handemittharacter recognition
using a 1D parameterization was directly applicable to tés& without resort to
any heuristic feature extraction. This scheme provides eersgstematic, flexible,
and intuitive way to build effective similarity measuresitltould be used in con-
junction with kernel machines. However, more work needset@dne in terms of
data normalization if the shape of the target object is moegular and complex
than just the balls. Since the ball was round, it is scale-ratation- invariant. A
possible approach for affine-invariant data normalizaisothhe shape context pro-

posed by Belongie [11].
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Chapter 7

Conclusion and Future Work

Input patterns in a variety of robotics and HCI learning tasks geometrically

structured. Making computers recognize the similaritiesveen physical patterns
is an extremely difficult task due to significant amount ofseoand change in the
physical conditions against which humans can reliablynigdrysical patterns. To
cope with this difficulty, a set of local features are extegctrom parts of the in-

put patterns that are locally invariant against such noisshange in the physical
conditions.

Unfortunately, such representation does not fit conveati@arning algo-
rithms and distance metrics. They assume fixed dimensi@wbrinputs but the
each physical pattern consists of a variable number of feadlires. Itis not easy to
represent the irregular structure into uniform length eeceither. Kernel functions
provide a flexible solution to this problem. However, neittefining such kernels

for a given type of structured inputs nor adopting existiegiels for other problem
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domains is straightforward.

The work in this dissertation presents a solution to ovednese limita-
tions, which is generally applicable to a diversity of gedmeestructures. | explore
the concept ofailoring kernelsto address the problem of defining the distance met-
rics between sets of geometrically related local featuiidse geometric structure

between the local features is embedded into the notikefel parameters

7.1 Contributions
We can summarize the major contributions of this dissentedis follows.

e Synthesizing Kernels

The parametric kernel framework provides a method to syatieaily syn-
thesize customized kernel functions for structured inpytaggregating ker-
nel functions for the local features. The fundamental idehased on the
concept of convolution kernels proposed by Haussler, whiak one of the
first instances of kernel functions on structured data [2633]. However,
in general, finding the definition of substructures and tfrt-of” relation-
ship with the composite objects for a specific problem isegdifficult [6].
The parametric kernel framework provides an important stepvercome
this limitation by providing a general framework to grougdbfeatures into

substructures based on their geometric relationship.
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e Structure Embedding via Parameterization
Representing complex geometric structure of local featectors in a form
that could directly be used as a distance metric suited to/roanventional
learning algorithms is a difficult task. The parametric lefinamework pro-
vides the ability to intuitively encode the geometric stcue underlying the
local feature vectors of physical patterns parameterization This scheme
imposes a manifold to represent the geometric structureaasociates each
of the local feature vectors to a point in this manifold. As froof of con-
cept, | synthesized and applied parametric kernels for\wetidn character
recognition and sensor data analysis by parameterizatianliD manifold,
and face recognition by parameterization in a 2D manifadgpectively. |

achieved competitive results on these tasks.

e General Applicability
Traditional approaches to handling structured data eddgaication-specific
feature vectors from the input patterns. Therefore, a featepresentation
that is effective for inputs with a certain structure is aftesuristic and not
generally applicable to inputs from other problem domairik similar struc-
tures. Since the parametric kernel function is not depemnoleany specific
context of certain problem domains, it is generally apjtliego inputs from
other problem domains as long as they have similar geonsdtricture. Us-
ing an identical framework with a minimum of changes limitedhe settings

for parameterization and values of the kernel parametexshieved compet-
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itive results on seemingly quite unrelated problem domains

Scalability

The parametric kernel function requires on average a neaauitime cost to
evaluate, depending on the parameter space decompositiems. There-
fore, it is scalable to inputs that consist of a large numbdocal feature

vectors. Also, since it is a Mercer kernel, the parametriné&ks can be ap-
plied to any learning algorithm based on convex optimizatio this disser-

tation, the parametric kernel functions defined for seqasrand unordered
sets have been successfully used in support vector leaatgmgithms for

classification and novelty detection.

Handwritten Character Recognition

As the first set of experiments, | applied the parametric &efiramework to
the task of recognizing handwritten characters. | desigr@dmetric ker-
nel functions for sequences of points using 1D manifold petarization. |
achieved results that are superior to a number of statkes&dtt techniques
that are specifically designed to recognize digits, Engllphabets, and some
mathematical symbols. With just minor changes in the kepaehmeter val-
ues, the same kernel function has been applied to the taskcofinizing
known objects from the sensor data captured by a laser ramgger.fi With
an appropriate choice of local feature representations as¢he shape con-
text [11], it is straightforward to extend this applicatito perform critical

robotics tasks such as localization or navigation.
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e Face recognition under varying illumination

Face recognition under varying illumination is an extreyrgifficult task to
solve. This is all the more so if we are to recognize faces flmmqual-
ity video streams captured by commodity webcams that aenafsed in
robotics. As part of the work for Robocup at Home competitibibuilt
a real-time system that learns to identify faces from vidgeasns. Using
SIFT as the feature representation, | achieved excellsntteeunder steady
or known illumination conditions. However, the performardropped sig-
nificantly when the test illumination condition is unknowuarihg training.
| designed a parametric kernel for face images represestedsat of SIFT
descriptors, using the position of each SIFT descriptotsgsarameter in 2D

manifold. This greatly improved the recognition rate.

7.2 Applications

The series of problems solved in this thesis provides tygixamples of using my
method. | design the parameter space and construct cugidmitnilarity metrics
as parametric kernel functions following the proposed s@heln this section, |
discuss the application of the parametric kernel technigwe¢her problem domains
that | have not addressed in this work. The primary goal of thécussion is to
provide an analysis of the proposed method which may proaidseful insight
into issues such as when and how one could use the parametnel kechnique

to solve the problem at hand, what must be considered to nmakenethod work
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well, and what its limits are.

The parametric kernel technique allows for an easy andysitfarward adap-
tation to sequences. In particular, if one needs to corissioglarity metrics for
varying length sequences of feature vectors that could bd wsthin a state-of-
the-art kernel learning framework such as support vectarthinas, my approach
yields an effective and efficient solution. In comparisoth@®well known sequence
matching technique based on dynamic time warping (DTW), mpatac kernels
take much less time and memory to evaluate. The parametniekechnique
works well with sequence data where not only the order but @is relative dis-
tances between the consecutive feature vectors convaynafmn that defines the
data characteristics. For instance, consider handwitieracters for the same let-
ter that consist of varying numbers of points. This may hapgpeeal handwritten
character systems due to differences in the speed they wittenwIf the characters
look similar to humans, then my method yields quite stabialarity metrics that
are less dependent on how dense or sparse the distributibie pbints is. How-
ever, my method may be weak when the characters contain ooike shapes for
the same characer vary dramatically. For instance, if aenmént is introduced in
the middle of a stroke, then this will shift the parameterthefremaining points in
the stroke. In comparison, DTW yields similarity metricathre much more stable
than my method in such cases since such noisy points areesk{pmrped) during
optimization without interfering with matching the remiaig points in the stroke.

We can apply the parametric kernel technique to structuata types with

no specific notion of order between the elements as welledasttheir positioning
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in the input physical space provides similar informatioar Fastance, consider the
face recognition problem. | used the normalized coordmatehe positions within
an image where SIFT features are computed as their paranétesome sense, |
would like to argue that the positioning could be consideaag@n extended notion
of ordering. My reasoning is as follows. Parameters for sagas encode the order
and the relative distances in terms of their positions alarid> parametric axis.
Elevating parameters to a higher dimension yields a notiendering that supports
the kind of parameters used in my work on face recognitiore Fdrametric kernel
technique in higher dimensions works well if the relativesitioning of feature
vectors conveys information that defines the data charatitst For instance, in
my face recognition work, the relative positions of fidugalnts in the face such
as eyes, nose, and mouth within the face do not vary dranigtiaéile the SIFT
features varied very sensitively due to the changes in tamithation condition.
However, my method may be weak if there is a significant ameodiraicclusion
or distortion of the objects. Therefore, my method will nairkwell with image

categorization partial matching for image retrieval.

7.3 Future Work

The work in this dissertation entails some challengingdasor future research.

e Automated and flexible parameter space decompositiomhis dissertation
made heavy use of an overlapping regular parameter spacengesition

scheme. However, determining the size of each range anathkehgth was

136



somewhat arbitrary and heuristic. If the decompositiorocs fine-grained,
there will be no local features that match, while, with a cosipon that
is too rough-grained, we will be swamped by bad matches [R3)ill be

challenging but very helpful to be able to automaticallyedetine the optimal

size of the ranges.

Also, regular decomposition may be less effective than rfiexgble manual
decompositions and not even work for certain problem domairhere has
been some similar work to find irregular decomposition ofgspace of local
features for local matching, e.g. vocabulary-guided utagpyramid match
kernels [23]. Finding an optimal decomposition schemegiaimy other use-
ful pieces of information from the context of a given problsma challenging
and important step to enhance the quality of the technigesgoted in this

dissertation.

Computational efficiency

Though the evaluation of parametric kernels requires alivesar time cost,

it still means that the kernel functions that compute theéadises between
the local feature vectors and between their parametersheuwstaluated that
many times. Moreover, overlapping the ranges increasesdimputational

cost even further. Therefore, reducing the computation isoalso a very

important enhancement to the current technique. Variongpotationally

efficient approximation techniques may be applicable, anddfunctions that

are computationally efficient than those used in this worky lba chosen
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instead.

Application to a broader range of problems

This dissertation demonstrates the general applicabilitlye parametric ker-
nel framework by applying it to three seemingly quite uniedigproblem do-
mains. However, the structure that underlies the inpuepadtof those tasks
is limited to just 1D or 2D manifolds. It will be very inter@sg to see how
this technique works in a broader range of problem domaidsagre com-
plex input structures. A problem domain to which we can imiaedly apply
parametric kernels using 1D manifold parameterizationnglyzing audio

streams.
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