
Copyright

by

Samuel Rubin Barrett

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211386902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Samuel Rubin Barrett

certifies that this is the approved version of the following dissertation:

Making Friends on the Fly:

Advances in Ad Hoc Teamwork

Committee:

Peter Stone, Supervisor

Raymond Mooney

Risto Miikkulainen

Kristen Grauman

Sarit Kraus

Making Friends on the Fly:

Advances in Ad Hoc Teamwork

by

Samuel Rubin Barrett, B.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2014

In loving memory of my mother,

Ellen Lee Rubinstein Barrett

I will always remember you

Acknowledgments

Despite what the title page implies, completing a Ph.D. is far from a solitary task.

I have many people to thank for making this work possible. First and foremost, I

want to thank my advisor Peter Stone, whose advice has guided me through the

difficulties of research and graduate school. His guidance has helped me to explore

exciting ideas and avoid going down too many wrong paths while also helping me

to grow as a researcher. Without his ongoing help, my Ph.D. would have taken

a substantially longer time, if it were completed at all. I also want to thank my

committee: Ray Mooney, Risto Miikkulainen, Kristen Grauman, and Sarit Kraus.

I have collaborated with a number of brilliant collaborators. I especially

thank my coauthors on the papers that introduced the work described in this thesis:

Noa Agmon, Noam Hazon, Sarit Kraus, and Avi Rosenfeld. I have had many useful

and informative conversations with them that have guided my research.

In addition, I have to thank many of my fellow members of the Learning

Agents Research Group (LARG), with whom I have had many conversations, trav-

eled, played board games, gone rock climbing, played racquetball, and ran many

miles. They have helped me when I was stuck, listened when I needed to com-

plain, and given me support when I needed it. They include Noa Agmon, Tsz-

Chiu Au, Doran Chakraborty, Katie Genter, Matthew Hausknecht, Todd Hester,

Tobias Jung, Shivaram Kalyanakrishnan, Piyush Khandelwal, Brad Knox, Juhyun

Lee, Matteo Leonetti, Elad Liebman, Patrick MacAlpine, Jacob Menashe, Sanmit

v

Narvekar, Michael Quinlan, Adam Setapen, and Daniel Urieli. I especially thank my

fellow SPL RoboCup team members from over the years for their tireless efforts and

aid in dealing with complexities of robotic competitions. In addition, I would like

to thank the other computer science graduate students that I have spent countless

hours talking with, numbering too many to be named here.

I also want to thank Sarit Kraus for allowing me to visit her lab at Bar-Ilan

University to continue my research in the fall of 2012. All of the people I met there

made great efforts to help me adapt to living and working in Israel. I especially

want to thank Noam Peled for helping me find a place to live, his advice, and for

showing me around. I want to thank Moshe Bitan for his friendship and interesting

conversations. Also, I want to thank Noa Agmon and Noam Hazon for their many

productive conversations. In addition, Noa Agmon lending me a bicycle made my

life much easier.

I would like to thank my undergraduate research advisor, Jeffrey V. Nicker-

son, for his help in teaching me to be a researcher. In addition, my advisor at an

NSF REU, Xiaojun Qi, helped me to become the researcher I am today.

I would also like to thank the UTCS staff members that have helped me

over the years. I would especially like to thank Stacy Miller for her help countless

times, especially with figuring out travel rules to attend conferences. In addition,

I would like to thank Lydia Griffith for helping me navigate the bureaucracy of

graduate school. Furthermore, I appreciate the staff members’ help with the condor,

maintaining machines, and building the robot soccer field.

I want to thank my family for their continued support. My mother’s con-

stant encouragement for me to explore ideas that interested me has been invaluable

throughout my life. I want to thank my father for his continuing advice and en-

thusiasm. In addition, the support of my siblings and their spouses has helped me

become who I am. I would like to thank my flatmate, Wenke Li, for putting up

vi

with me for longer than he should have. Finally, I would like to thank my girlfriend,

Maya Liu, for her support and patience while I worked on this thesis.

Samuel Rubin Barrett

The University of Texas at Austin

December 2014

vii

Making Friends on the Fly:

Advances in Ad Hoc Teamwork

Samuel Rubin Barrett, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Peter Stone

Given the continuing improvements in design and manufacturing processes

in addition to improvements in artificial intelligence, robots are being deployed in

an increasing variety of environments for longer periods of time. As the number of

robots grows, it is expected that they will encounter and interact with other robots.

Additionally, the number of companies and research laboratories producing these

robots is increasing, leading to the situation where these robots may not share a

common communication or coordination protocol. While standards for coordination

and communication may be created, we expect that any standards will lag behind

the state-of-the-art protocols and robots will need to additionally reason intelligently

about their teammates with limited information. This problem motivates the area

of ad hoc teamwork in which an agent may potentially cooperate with a variety of

viii

teammates in order to achieve a shared goal. We argue that agents that effectively

reason about ad hoc teamwork need to exhibit three capabilities: 1) robustness to

teammate variety, 2) robustness to diverse tasks, and 3) fast adaptation. This thesis

focuses on addressing all three of these challenges. In particular, this thesis intro-

duces algorithms for quickly adapting to unknown teammates that enable agents to

react to new teammates without extensive observations.

The majority of existing multiagent algorithms focus on scenarios where all

agents share coordination and communication protocols. While previous research on

ad hoc teamwork considers some of these three challenges, this thesis introduces a

new algorithm, PLASTIC, that is the first to address all three challenges in a single

algorithm. PLASTIC adapts quickly to unknown teammates by reusing knowledge

it learns about previous teammates and exploiting any expert knowledge available.

Given this knowledge, PLASTIC selects which previous teammates are most similar

to the current ones online and uses this information to adapt to their behaviors.

This thesis introduces two instantiations of PLASTIC. The first is a model-based

approach, PLASTIC–Model, that builds models of previous teammates’ behaviors

and plans online to determine the best course of action. The second uses a policy-

based approach, PLASTIC–Policy, in which it learns policies for cooperating with

past teammates and selects from among these policies online. Furthermore, we

introduce a new transfer learning algorithm, TwoStageTransfer, that allows trans-

ferring knowledge from many past teammates while considering how similar each

teammate is to the current ones.

We theoretically analyze the computational tractability of PLASTIC–Model

in a number of scenarios with unknown teammates. Additionally, we empirically

evaluate PLASTIC in three domains that cover a spread of possible settings. Our

evaluations show that PLASTIC can learn to communicate with unknown team-

mates using a limited set of messages, coordinate with externally-created teammates

ix

that do not reason about ad hoc teams, and act intelligently in domains with continu-

ous states and actions. Furthermore, these evaluations show that TwoStageTransfer

outperforms existing transfer learning algorithms and enables PLASTIC to adapt

even better to new teammates. We also identify three dimensions that we argue

best describe ad hoc teamwork scenarios. We hypothesize that these dimensions

are useful for analyzing similarities among domains and determining which can be

tackled by similar algorithms in addition to identifying avenues for future research.

The work presented in this thesis represents an important step towards enabling

agents to adapt to unknown teammates in the real world. PLASTIC significantly

broadens the robustness of robots to their teammates and allows them to quickly

adapt to new teammates by reusing previously learned knowledge.

x

Contents

Acknowledgments v

Abstract viii

List of Tables xiv

List of Figures xv

Chapter 1 Introduction 1

1.1 Research Question . 5

1.2 Algorithm Overview . 7

1.3 Contributions . 9

1.4 Dissertation Overview . 11

Chapter 2 Problem Description 15

2.1 Ad Hoc Teamwork . 15

2.2 Evaluation Framework . 20

2.3 Dimensions of Ad Hoc Team Problems 22

2.4 Chapter Summary . 31

xi

Chapter 3 Background 33

3.1 Background . 33

3.2 Domain Descriptions . 45

3.3 Chapter Summary . 64

Chapter 4 Related Work 65

4.1 Multiagent Coordination . 65

4.2 Opponent Modeling . 68

4.3 Experimental Domains . 72

4.4 Ad Hoc Teamwork . 78

4.5 Summary . 96

Chapter 5 The PLASTIC Algorithms 97

5.1 Overview . 98

5.2 PLASTIC–Model . 100

5.3 PLASTIC–Policy . 108

5.4 Chapter Summary . 114

Chapter 6 Theoretical Analysis of PLASTIC 115

6.1 Model and Notation . 117

6.2 Known Teammates and Arms . 119

6.3 Teammates from a Finite Set . 119

6.4 Teammates from a Continuous Set 121

6.5 Unknown Arms . 124

6.6 Chapter Summary . 125

Chapter 7 Empirical Evaluation 127

xii

7.1 Multi-armed Bandits . 129

7.2 Pursuit . 137

7.3 Half Field Offense . 156

7.4 Chapter Summary . 168

Chapter 8 Discussion and Conclusion 169

8.1 Summary . 170

8.2 Contributions . 172

8.3 Discussion . 175

8.4 Future Work . 177

8.5 Conclusion . 189

Appendix A Hand-Coded Pursuit Teammates 190

Bibliography 195

List of Tables

3.1 Example of play in the bandit domain. 49

3.2 TeamK and Reactivity for various settings in the bandit domain. . . 53

3.3 TeamK and Reactivity for various settings in the pursuit domain. . . 57

3.4 Overview of the dimensions of the 3 domains used in this thesis. . . 64

4.1 Overview of related ad hoc teamwork research. 79

6.1 Summary of the theoretical analysis of the bandit domain. 117

7.1 Overview of empirical analysis of PLASTIC. 128

7.2 Features used to predict a teammate’s actions in the pursuit domain. 139

xiv

List of Figures

1.1 Foci of agent based research . 4

2.1 (Repeat)Foci of agent based research 18

2.2 Algorithm for evaluation ad hoc teamwork 23

3.1 How an RL agent interacts with its environment 35

3.2 The pursuit domain . 54

3.3 An overview of the HFO task in the simulated 2D RoboCup domain 59

3.4 Starting positions in the HFO task 60

5.1 Overview of PLASTIC . 98

5.2 Overview of PLASTIC–Model . 101

5.3 Overview of PLASTIC–Policy . 110

7.1 Evaluations in the bandit domain with hand-coded teammates . . . 132

7.2 Evaluations in the bandit domain with externally-created teammates 135

7.3 Evaluations in the bandit domain with unknown arms 136

7.4 Evaluations in the pursuit domain with known hand-coded teammates142

7.5 Evaluations in the pursuit domain with unknown hand-coded team-

mates . 144

xv

7.6 Evaluations in the pursuit domain with externally-created teammates

using expert-provided knowledge . 147

7.7 Evaluations in the pursuit domain with externally-created teammates

using learned models . 149

7.8 Out of set evaluations in the pursuit domain with externally-created

teammates using learned models . 150

7.9 Evaluations of transfer learning in the pursuit domain 153

7.10 Evaluations of TwoStageTransfer with various amounts of target data

in the pursuit domain . 154

7.11 Features in the HFO domain . 160

7.12 Evaluations in the limited HFO task 163

7.13 Beliefs of PLASTIC–Policy in the limited HFO task 164

7.14 Evaluations in the full HFO task . 166

7.15 Beliefs of PLASTIC–Policy in the full HFO task 166

A.1 World configurations in the pursuit domain 191

xvi

Chapter 1

Introduction

Robots are becoming cheaper and more durable as manufacturing processes im-

prove, and they are becoming useful for an increasing number of tasks as artificial

intelligence improves. These improvements are leading to robots being deployed in

more environments for longer periods of time, and we believe that this trend will

only grow. As this robotic proliferation continues, it is expected that robots will

encounter and interact with a growing variety of other types of robots. In many

cases, these interacting robots may share a set of common goals, in which case it

will be desirable for them to cooperate with each other. However, existing research

into getting multiagent teams to accomplish shared goals assumes that all of these

robots share common communication and coordination protocols, an assumption

that becomes increasingly unlikely given the rapidly growing number of companies

and laboratories designing robots. It is possible that some standards for coordina-

tion or communication will be created for all robots to support. We believe that

given the speed of changes in artificial intelligence and robotics, if these standards

are created, they will lag behind the state-of-the-art protocols and agents will need

1

to intelligently reason about their teammates in addition to the information that

these protocols provide. Therefore, in order to effectively cooperate with these new

teammates, it is desirable for these robots to observe and adapt to their teammates

to accomplish their shared goals.

For example, after a disaster, it is helpful to use robots to search the site

and rescue survivors. However, the robots may come from a variety of sources and

may not be designed to cooperate with each other, such as in the response to the

2011 Tohoku earthquake and tsunami [69, 99, 100, 107]. If these robots are not

pre-programmed to cooperate, they may not share information about which areas

have been searched; or worse, they may unintentionally impede their teammates’

efforts to rescue survivors. Therefore, it is desirable for robots to be designed to

observe their teammates and adapt to them, forming a cohesive team that quickly

searches the area and rescues the survivors.

This idea epitomizes the spirit of ad hoc teamwork. In ad hoc teamwork

settings, agents encounter a variety of teammates and try to cooperate in order

to accomplish a shared goal. In ad hoc teamwork research, researchers focus on

designing a single agent or subset of agents that can cooperate with a variety of

teammates. The desire is for agents designed for ad hoc teamwork to quickly learn

about these teammates and determine how they should act on this new team to

achieve their shared goals. Agents that reason about ad hoc teamwork will be

robust to changes in teammates in addition to changes in the environment.

In this thesis, the word “agent” refers to an entity that repeatedly senses

its environment and takes actions that affect this environment, shown visually in

Figure 1.1a. As a shorthand, the terms ad hoc team agent and ad hoc agent are

used in this thesis to refer to an agent that reasons about ad hoc teamwork. The

2

environment includes the dynamics of the world the agent interacts with, as well

as defining the observations received by the agent. We treat the other agents in

the domain as teammates because they share a set of common goals; they are fully

cooperative in the terminology of game theory.

Previous research has investigated multiagent teams and introduced a num-

ber of algorithms for coordinating teams [41, 58, 118, 124]. This view of multiagent

teams is shown in Figure 1.1b. However, these approaches require that all agents

in the team have shared coordination and communication protocols, so these ap-

proaches do not apply in all scenarios. Another approach is to treat other agents

as part of the environment. This approach permits the agent to apply single agent

learning algorithms to adapt to these teammates, as shown in Figure 1.1a. How-

ever, this view may prevent the team from completing tasks that require explicit

coordination, where performing only part of a coordinated action results in a poor

performance for the team. In addition, explicitly reasoning about the dynamics

of these other agents allows the ad hoc agent to factor the domain, significantly

reducing the complexity of the environment.

Rather than adopting either of these approaches, this thesis focuses on creat-

ing a single agent or small subset of agents that cooperate with teammates coming

from a variety of sources without directly altering the behavior of these teammates,

as shown in Figure 1.1c. This approach explicitly models that there are other intel-

ligent agents operating in the domain. In addition, rather than focusing on a single

task, these agents may face a variety of tasks.

This chapter presents the motivation and objectives for this thesis as well as

an overview of the entire thesis. Given the preceding motivation for this thesis, we

present the central research question in Section 1.1. Next, we present an overview

3

Agent

Environment

ActionState Reward

(a) A view of a single agent interacting
with its environment used by many rein-
forcement learning algorithms.

Environment

Joint
ActionState Reward

Agent

Agent

Agent

Team

(b) A standard view of a unified team in-
teracting with the environment.

(c) The ad hoc teamwork setting in which an agent cooperates with an ad hoc team of
agents to accomplish shared goals on a given environment where the teammates and the
environment are each drawn from diverse sets at the beginning of an episode.

Figure 1.1: Foci of agent based research

4

of the algorithm, PLASTIC, that we propose for solving this problem in Section 1.2.

In Section 1.3, we explain the six contributions of this thesis. Finally, Section 1.4

previews the remaining chapters of this thesis and gives a roadmap to reading this

thesis.

1.1 Research Question

In order to be responsive to different teammates and environments, a fully general

ad hoc agent needs two general classes of capabilities: 1) the ability to learn about

the environment and calculate the actions necessary to achieve its goal, and 2) the

ability to reason about teamwork and learn about its teammates. Previous work in

reinforcement learning has largely focused on how an agent should learn about the

dynamics of the environment, e.g. [76, 123]. Therefore, this thesis leverages such

past research about 1) and expand this work in the new direction of 2), reasoning

about the team and social knowledge required for effective teamwork. To this end,

this thesis identifies three classes of capabilities needed by ad hoc team agents:

1. Robustness to teammate variety. Ad hoc team agents should be able to

cooperate with a wide variety of teammates following unknown behaviors. To

this end, ad hoc agents should learn about their teammates and adapt to their

behaviors.

2. Robustness to diverse tasks. Ad hoc team agents should be able to cooper-

ate with the teammates to accomplish an array of diverse tasks. An algorithm

for ad hoc teamwork that is only applicable to a single task is insufficient for a

fully general ad hoc team agent. To be robust, an ad hoc team agent should be

able to adapt to new tasks, while additionally deciding when to take actions

5

to explore its teammates’ behaviors.

3. Fast adaptation. Ad hoc team agents should be adaptive without lengthy

observations of the current teammates or tasks; they should be able to quickly

adapt to these new problems and perform effectively with few interactions.

In real world settings, robots are unable to interact with their teammates in

the given environment for extended periods of time before attempting their

task. Therefore, ad hoc agents must be sample efficient, learning to cooperate

in few interactions with their teammates. Ideally, ad hoc agents should also

exploit any information they have learned about previous teammates and en-

vironments to speed up the learning process. This means that ad hoc agents

may not achieve optimal performance; instead they may need to compromise

by quickly converging to well-performing but suboptimal behaviors.

With these three capabilities in mind, the key question that this thesis ad-

dresses is:

How can an agent cooperate with teammates

of uncertain types on a variety of tasks?

Fully answering this question is a long-term challenge beyond the scope of a single

thesis. However, this thesis moves towards answering this question. Specifically,

we introduce an algorithm, PLASTIC, that satisfies the three desired capabilities

above. PLASTIC allows ad hoc agents to quickly adapt to a variety of unknown

teammates, and our analysis shows that PLASTIC is effective on 3 very different

domains, including a complex simulation of robot soccer.

6

1.2 Algorithm Overview

The primary algorithmic contribution of this thesis is the Planning and Learning to

Adapt Swiftly to Teammates to Improve Cooperation (PLASTIC) algorithm to ad-

dress the research question posed in the previous section. Rather than trying to “fit

in” with its team by copying their behavior, PLASTIC employs learning algorithms

that allow an ad hoc agent to improve over its teammates’ potentially subopti-

mal behaviors. However, learning about each teammate as if it is completely new

severely limits the speed that the ad hoc agent can adapt to its teammates. There-

fore, PLASTIC speeds up this learning by reusing information it has learned about

previous teammates. In addition, PLASTIC allows developers to provide expert

knowledge about potential teammates in order to speed up adaptation. PLASTIC

then tries to see which of the past teammates and expert-provided information best

represents the new teammates that it encounters. This approach allows PLASTIC

to quickly adapt to unknown teammates in a variety of domains. The full PLASTIC

algorithm is introduced in full detail in Section 5.1.

This thesis presents two instantiations of the general PLASTIC algorithm:

PLASTIC–Model and PLASTIC–Policy. When learning about previous teammates,

PLASTIC–Model represents its knowledge as models that map current world states

to its teammates’ actions, where one model is learned for each past teammate. Ex-

pert knowledge is similarly represented by models of potential teammates’ behav-

iors. When it encounters new teammates, PLASTIC–Model maintains its beliefs

over which model best represents these new teammates. Using its belief distribu-

tion over these models, PLASTIC–Model can plan the best actions to cooperate

with its teammates. In this thesis, we use decision trees to learn models of past

teammates [104], update the probabilities of models using the polynomial weights

7

algorithm [25], and plan using Upper Confidence bounds for Trees (UCT) [82]. We

present the full PLASTIC–Model algorithm in Section 5.2.

When the ad hoc agent has a limited number observations of its new team-

mates, it can also build new models of their behaviors while reusing information

about past teammates. Specifically, we introduce a new transfer learning algorithm,

TwoStageTransfer, that allows PLASTIC–Model to reuse information about many

previous teammates to create a model of the new teammates, exploiting the fact that

some teammates are more similar to the new teammates than others. TwoStage-

Transferis completely specified in Section 5.2.4.

In complex domains, planning algorithms may run into problems due to

inaccuracies in their models or due to limitations in computational power. There-

fore, directly learning policies for cooperating with various teammates may be more

effective. PLASTIC–Policy employs this approach, where knowledge about past

teammates is represented as the policies that are used to cooperate with these

teammates. Similar to PLASTIC–Model, one policy is learned for each past team-

mate. In PLASTIC–Policy, experts can provide policies for cooperating with other

teammates if they are available. Then, PLASTIC–Policy combines these policies,

determines which policies enable it to best cooperate with the current teammates,

and selects the actions specified by the most likely policy. In this thesis, we use

fitted Q iteration (FQI) [44] to learn policies for past teammates. To update the

probabilities of different teammate types, we build a nearest neighbor model of the

teammates’ behaviors using the samples collected for FQI and update the probabil-

ities of different teammate types using the polynomial weights algorithm [25]. We

present the complete PLASTIC–Policy algorithm in Section 5.3.

8

1.3 Contributions

This thesis provides the following six major contributions to the field:

1. PLASTIC : As described above, this thesis introduces the general PLASTIC

algorithm and its two instantiations: PLASTIC–Model and PLASTIC–Policy.

These algorithms are the first generally applicable algorithms that permit

ad hoc team agents to quickly adapt to a variety of unknown teammates

in many domains. These algorithms combine knowledge learned from past

teammates with any available expert knowledge to adapt to new teammates

much more quickly than existing approaches. PLASTIC is presented in full

detail in Chapter 5.

2. Theoretical Analysis: This thesis proves that PLASTIC–Model is computa-

tionally tractable in a number of scenarios in the bandit domain. We show

that the problem can be modeled as a POMDP and bound the complexity

of learning the ε-policy in several versions of the domain that vary in the

prior knowledge available to PLASTIC–Model. This theoretical analysis is

presented in Chapter 6.

3. Reasoning about Communication: The majority of prior work in ad hoc team-

work considers cases where communication is not available. However, as the

connectivity of devices grows, so does the chances of ad hoc team agents being

able to communicate some information with their teammates, though they may

not know how these teammates will interpret these messages. Therefore, this

thesis addresses this gap by considering a scenario in which communication is

available, namely the bandit domain described in Section 3.2.1. Theoretical

analysis of the bandit domain with communication are presented in Chapter 6,

9

and empirical analysis of it are given in Section 7.1.

4. TwoStageTransfer : This thesis introduces a new transfer learning algorithm,

TwoStageTransfer. TwoStageTransfer can efficiently incorporate knowledge

coming from many sources to the target setting, exploiting the knowledge

that some sources are more similar to the target than others. TwoStageTrans-

fer is a general transfer learning algorithm, but we only apply it to ad hoc

teamwork settings in this thesis. We empirically evaluate TwoStageTrans-

fer for quickly learning models of new teammates given observations of past

teammates. TwoStageTransfer is presented in full detail in Section 5.2.4, and

empirical results of it are presented in Section 7.2.7.

5. Empirical Evaluation: This thesis empirically evaluates PLASTIC in 3 differ-

ent domains, with varying amounts of knowledge about its teammates. This

evaluation considers scenarios not covered in the theoretical analysis. Specif-

ically, we focus on externally-created teammates, which are created by other

developers without considering ad hoc teamwork. Notably, this evaluation

also includes a complex ad hoc teamwork problem in the form of the half

field offense task in the 2D simulated soccer domain. All empirical results are

presented in Chapter 7.

6. Taxonomy of Ad Hoc Teamwork : This thesis identifies three dimensions that

we believe are the most informative for analyzing ad hoc teamwork domains

and teammates. We believe that domains with similar values along these

dimensions will be tractable for similar algorithms, while domains with signif-

icantly different values are more likely to be solved using different approaches.

These dimensions are presented in full detail in Section 2.3. In that section,

10

we also discuss how these dimensions describe the three domains used in this

thesis. In addition, we use these dimensions to analyze the related ad hoc

team research in Section 4.4.4.

These contributions are described in detail throughout the remainder of this thesis.

1.4 Dissertation Overview

The remainder of this thesis is organized as follows.

Chapter 2: This chapter motivates and describes the problem studied in this

thesis, namely the problem of ad hoc teamwork. Then, the chapter presents

the framework we use to evaluate ad hoc teamwork agents. Finally, the chapter

specifies three dimensions of ad hoc teamwork problems that are useful for

analyzing the similarity of problems as well as which algorithms apply to the

problems. These dimensions serve as the basis for Contribution 6.

Chapter 3: In this chapter, we present the background information required to

understand the remainder of the thesis. Specifically, we present an overview

of Markov Decision Processes (MDPs), Partially Observable Markov Decision

Processes (POMDPs), and the algorithms used to solve them in addition to an

overview of transfer learning. Then, the chapter describes the 3 domains used

to evaluate PLASTIC: the multi-armed bandit domain, the pursuit domain, and

the half field offense task in the simulated 2D robot soccer domain. In addition,

the chapter discusses the teammates used in these three domains, including

the externally-created teammates which were created by other developers. The

bandit domain is used to investigate communication (Contribution 3) and in

the theoretical analysis for Contribution 2. All three domains are used in the

empirical evaluation (Contribution 5).

11

Chapter 4: This chapter situates PLASTIC in the literature. We begin by dis-

cussing past work on multiagent coordination, where developers can control the

entire team instead of a single agent on the team. Then, we look at research on

opponent modeling, where agents learn to adapt to their opponents instead of

teammates. We follow this by an overview of some of the most relevant research

in each domain used in our evaluations. Finally, we discuss the current state

of the art research into ad hoc teamwork and describe how these papers relate

to the work presented in this thesis. We use the three dimensions of ad hoc

teamwork to analyze the related literature as part of Contribution 6.

Chapter 5: In this chapter, we specify the general PLASTIC algorithm and the two

instantiations of it used in this thesis: PLASTIC–Model and PLASTIC–Policy.

PLASTIC enables an ad hoc agent to quickly adapt to unknown teammates

on several domains. To accomplish this task, PLASTIC learns about previous

teammates and combines this knowledge with any expert knowledge the devel-

oper can encode about potential teammates. When encountering new team-

mates, PLASTIC determines which of the past teammates are most similar

to the current ones and reuses the information learned about them. Differ-

ent learning and action selection algorithms can be used depending on the do-

mains, but the general architecture remains the same. PLASTIC–Model adopts

a model-based approach that uses planning to discover effective actions, while

PLASTIC–Policy uses a policy-based approach and selects between these poli-

cies. This chapter also specifies our new transfer learning algorithm, TwoStage-

Transfer, that can aid PLASTIC in adapting to new teammates by combining

information coming from many past teammates, some of which are more sim-

ilar to the new teammates than others. This chapter presents PLASTIC for

12

Contribution 1 in addition to TwoStageTransfer for Contribution 4.

Chapter 6: This chapter presents a theoretical analysis of PLASTIC–Model.

Specifically, it analyzes the complexity of applying PLASTIC–Model to the

bandit domain. We model the bandit problem as a POMDP and investigate

the computational tractability of calculating the ε-optimal behavior in the re-

sulting POMDP. We consider several variations of the bandit domain, varying

in the knowledge the ad hoc agent has about its teammates and its environ-

ment. The theoretical analysis in this chapter is Contribution 2 as well as part

of Contribution 3.

Chapter 7: We present the empirical analyses of PLASTIC in this chapter. These

analyses cover the 3 domains described in Chapter 3: the bandit, pursuit,

and half field offense domains. Our tests evaluate both PLASTIC–Model and

PLASTIC–Policy on a range of tasks, varying the prior knowledge of the ad hoc

agent as well as the teammates it encounters. The results of these tests show

the effectiveness of PLASTIC for enabling ad hoc team agents to quickly adapt

to a variety of unknown teammates. This chapter presents the results that form

Contribution 5. In addition, this chapter looks at the empirical usefulness of

communication in the bandit domain as part of Contribution 3.

Chapter 8: This chapter summarizes the contributions of this thesis. In addition,

it identifies areas for future research into ad hoc teamwork.

Appendix A: This appendix presents the full behaviors of the hand-coded preda-

tors used in the pursuit domain described in Section 3.2.2. The results using

these predators as teammates are presented in Section 7.2.

While this thesis is written to be read from start to finish, some sections

can be omitted if only interested in a specific aspect of the work. Specifically, it is

13

possible to isolate the theoretical analyses from the empirical ones and to understand

the related work without reading most of the thesis. To understand the theoretical

analyses in Chapter 6, it is useful to understand the PLASTIC algorithm presented

in Chapter 5 as well as the problem definition in Chapter 2 as well as the discussion

of POMDPs in Section 3.1.5 and the bandit problem described in Section 3.2.1. The

empirical analyses in Chapter 7 depend on the reader understanding the PLASTIC

algorithm from Chapter 5 in addition to the problem definition (Chapter 2) and

the background (Chapter 3). The discussion of related work in Chapter 4 is largely

self-contained, but it does help to understand the problem definition and dimensions

that describe ad hoc teamwork presented in Chapter 2.

14

Chapter 2

Problem Description

This chapter describes the problem setting investigated in this thesis. Rather than

considering unified teams of agents designed by a single designer, we consider con-

trolling a single agent on a newly created team. The following sections describe

the problem in more depth as well as the evaluation framework used to measure

performance on this problem. In addition, this chapter investigates an approach for

describing the different dimensions of ad hoc team problems.

2.1 Ad Hoc Teamwork

Robots are becoming cheaper and more durable and are therefore being deployed

in more environments for longer periods of time. As robots continue to prolifer-

ate in this way, many of them will encounter and interact with a variety of other

kinds of robots. In many cases, these interacting robots will share a set of common

goals, in which case it will be desirable for them to cooperate with each other. In

order to effectively perform in new environments and with changing teammates,

1This chapter contains material from the publication: [16].

15

they should observe their teammates and adapt to achieve their shared goals. For

example, after a disaster, it is helpful to use robots to search the site and rescue

survivors. However, the robots may come from a variety of sources and may not be

designed to cooperate with each other, such as in the response to the 2011 Tohoku

earthquake and tsunami [69, 99, 100, 107]. These robots were used to investigate

the Fukushima Daiichi Nuclear Power Station, clear a fishing port, and find victims

trapped underwater. These robots were remotely controlled and therefore derived

any cooperation from their human operators. Robots that operate autonomously

will have to be designed for cooperation as they will not have human operators

providing cooperation. If these autonomous robots are not pre-programmed to co-

operate, they may not share information about which areas have been searched; or

worse, they may unintentionally impede their teammates’ efforts to rescue survivors.

Therefore, in the future, it is desirable for robots to be designed to observe their

teammates and adapt to them, forming a cohesive team that quickly searches the

area and rescues the survivors.

This idea epitomizes the spirit of ad hoc teamwork. In ad hoc teamwork

settings, agents encounter a variety of teammates and try to accomplish a shared

goal. Ideally, agents designed for ad hoc teamwork try to quickly learn about their

teammates and figure out how they should try to fit into the team. Agents that

reason about ad hoc teamwork will be robust to changes in teammates and the

environment. They must be adaptive and resourceful, learning how to accomplish

the team’s goals.

In this thesis, the word “agent” refers to an entity that repeatedly senses its

environment and takes actions that affect this environment. Robots are examples

of agents, as are software agents that bid for advertisements. As a shorthand, the

16

terms ad hoc team agent and ad hoc agent are used in this thesis to refer to an agent

that reasons about ad hoc teamwork. The environment includes the dynamics of

the world the agent interacts with, as well as defining the observations received by

the agent. In addition, the ad hoc agent will have to interact with teammate agents

that are attempting to accomplish the same goals as the ad hoc agent. This thesis

considers ad hoc agents that explicitly reason about the behaviors of their teammates

separately from the environment because this factoring significantly reduces the

complexity of the learning problem. Previous work has largely assumed that all

agents in the domain will act as a unified team and are designed to work with their

specific teammates [41, 58, 118, 124]. On the other hand, this thesis will focus on

creating a single agent that cooperates with teammates coming from a variety of

sources without directly altering the behavior of these teammates. This agent will

need to adapt to these different teammates and learn to cooperate with them on the

fly.

The differences of this thesis from prior work are presented visually in Fig-

ure 2.1. One existing area of research into how agents should behave is reinforcement

learning (RL). Generally, RL problems revolve around a single agent learning by in-

teracting with its environment. In RL problems, agents receive sparse feedback

about the quality of sequences of actions. Generally, RL algorithms model other

agents as part of the environment and try to learn the best policy for the single

agent given this environment. In addition, RL algorithms usually learn from scratch

in each new environment, ignoring information coming from previous environments.

However, there is a growing body of work on applying transfer learning to RL to

allow agents to reuse prior experiences [126]. Figure 2.1a shows the standard RL

view of an agent interacting with its environment. Figure 2.1b represents a com-

17

Agent

Environment

ActionState Reward

(a) A view of a single agent interacting
with its environment used by many rein-
forcement learning algorithms.

Environment

Joint
ActionState Reward

Agent

Agent

Agent

Team

(b) A standard view of a unified team in-
teracting with the environment.

(c) The ad hoc teamwork setting in which an agent cooperates with an ad hoc team of
agents to accomplish shared goals in a given environment where the teammates and the
environment are each drawn from diverse sets at the beginning of an episode.

Figure 2.1: Foci of agent based research

18

mon multiagent view of a unified team interacting with the environment where the

agents model their teammates as being separate from the environment. In this case,

the team is designed before being deployed to cooperate with these specific agents

to interact with a fixed environment. However, these agents rely on knowing their

teammates and usually require an explicit communication and/or coordination pro-

tocol to be shared among the whole team [85, 135]. On the other hand, this thesis

will focus on ad hoc teams drawn from a set of possible teammates, where the team

tackles a variety of possible environments as shown in Figure 2.1c. In this case, the

teammates are not programmed to cooperate with this specific ad hoc agent, and

they must be treated as fixed and given. Instead, this research focuses on enabling

the ad hoc agent to cooperate with a variety of teammates in a range of possible

environments.

In order to be responsive to different teammates and environments, a fully

general ad hoc agent needs two general classes of capabilities: 1) the ability to learn

how to act in an environment to maximize reward, and 2) the ability to reason

about teamwork and learn about its teammates. Previous work in reinforcement

learning has largely focused on how an agent should learn about the dynamics of

the environment [76, 123]. Therefore, this thesis will leverage such past research

about 1) and expand this work in the new direction of 2), reasoning about the team

and social knowledge required for effective teamwork.

Ad hoc teamwork problems can be encountered in a variety of real world

scenarios. As described in the example above, in search and rescue scenarios, robots

from different developers need to cooperate quickly. Furthermore, as more robots

enter society, their interactions will increase. In the near future, personal assistant

robots may need to interact with other service robots to accomplish their tasks. In

19

addition, the introduction of autonomous cars opens up an interesting area for ad

hoc teamwork: cooperating with human drivers. Cars on the road have the shared

goal of reaching their destinations quickly and safely, and they need to cooperate

with the other cars in order to accomplish these goals. These agents have very

limited observations of the other cars, and therefore must adapt quickly.

Another area where ad hoc teamwork comes into play is when robots need

to accomplish tasks in workplace settings with human teammates. These settings

include manufacturing jobs, where new robots are now able to work more closely

with humans, and using robots in warehouses for moving products. The robots are

likely to interact with a variety of humans, and therefore need to adapt quickly

to these new teammates. While the robots and humans share a common goal,

communication between them is limited; humans cannot quickly and fully specify

their intentions to the level used in existing multiagent coordination algorithms.

Therefore, it is desirable for the robots to reason about ad hoc teamwork.

Another interesting application of ad hoc teamwork is in the area of games.

Game-playing agents interact with humans and need to adapt to them with only

limited observations. These interactions are incredibly complex, and existing ap-

proaches rely heavily on heuristic approaches with only limited adaptations [98,

113, 32]. Reasoning about ad hoc teamwork would allow virtual agents in video

games to adapt to their human teammates.

2.2 Evaluation Framework

In an ad hoc team, agents need to be able to cooperate with a variety of previously

unseen teammates. Rather than developing protocols for coordinating an entire

team, ad hoc team research focuses on developing agents that cooperate with team-

20

mates in the absence of such explicit protocols. Therefore, we consider a single agent

cooperating with teammates that may or may not adapt to its behavior. In this

scenario, we can only develop algorithms for the ad hoc team agent, without having

any direct control over the other teammates.

However, directly measuring teamwork is difficult. In many cases, the only

easily measurable aspect is the overall performance of the team, which makes it

difficult to assign credit to each agent. By placing an agent on a variety of teams

and measuring those teams’ performances, we can estimate how good the agent is

at teamwork.

Therefore, we introduce an algorithm that evaluates an ad hoc team agent

while considering the teammates and domains it may encounter. This framework

is specified in Algorithm 1. According to this framework, the performance of the

ad hoc team agent a depends on the distribution of problem domains D and the

distribution of possible teammates A that it will cooperate with. For the team

B cooperating to execute the task d, s(B, d) is a scalar score representing their

effectiveness, where higher scores indicate better performance. The algorithm takes

a sampling approach to average the agent’s performance across a range of possible

tasks and teammates to capture the idea that a good ad hoc team player ought

to be robust to a wide variety of teamwork scenarios. We use smin as a minimum

acceptable reward for the team to be evaluated, because the ad hoc team agent may

be unable to accomplish a task if its teammates are too ineffective, regardless of its

own abilities. It is mainly used to reduce the number of samples required to evaluate

the ad hoc agents and reduces the noise in the comparisons. Metrics other than the

sum of the rewards can be used depending on the domain, such as the worst-case

performance.

21

Algorithm 1 Ad hoc agent evaluation

1: function Evaluate:
inputs:
a . the ad hoc agent
A . the set of possible teammate agents
D . the set of possible domains

outputs:
r
n . the average performance (reward)

params:
smin . the minimal acceptable performance of a team
n . the number of iterations

2: Initialize: r = 0
3: for i = 1 to n do
4: Sample a task d from D
5: Randomly draw a subset of agents B, from A such that E[s(B, d)] ≥ smin
6: Randomly select one agent b ∈ B
7: Create the new team C = {a} ∪B\{b}
8: r = r + s(C, d)

9: return r
n

10: If Evaluate(a0, A,D) > Evaluate(a1, A,D) and the difference is significant, we
can conclude that a0 is a better ad hoc team agent than a1 in domain d over
the set of possible teammates A.

2.3 Dimensions of Ad Hoc Team Problems

Section 2.2 specified the framework for evaluating ad hoc team agents, but this

evaluation depends on the specific domain and teammates that the ad hoc agent

may encounter. This section identifies three dimensions of ad hoc teamwork set-

tings that can be used to describe these domains and teammates. We hypothesize

that domains with similar values along these dimensions can be tackled by similar

algorithms, while domains with very different values will need different algorithms

for good performance. For this thesis, we use these dimensions as a way as classify-

ing problems, but a promising area for future work is to apply these dimensions to

22

Figure 2.2: A visual representation of the evaluation algorithm given in Algorithm 1.

predict which algorithms will be effective on different problems.

There are many possible ways that ad hoc team domains can vary, such as

the size of the task’s state space and the stochasticity of the domain. But, for

differentiating among the algorithms in the existing literature, we find the following

three to be the most informative.

1. Team Knowledge: Does the ad hoc agent know what its teammates’ actions

will be for a given state, before interacting with them?

2. Environment Knowledge: Does the ad hoc agent know the transition and

reward distribution given a joint action and state before interacting with the

environment?

3. Reactivity of teammates: How much does the ad hoc agent’s actions affect

those of its teammates?

These dimensions affect the difficulty of planning in the domain in addition to how

much an ad hoc agent needs to explore the environment and its teammates. When

23

an ad hoc agent has good knowledge, it can plan without considering exploration,

but when it has incomplete knowledge, it must reason about the cost and benefits

of exploration. The exploration-exploitation problem has been studied previously,

but adding in the need to explore the teammates’ behaviors and the ability to affect

them considerably alters this tradeoff. Sections 2.3.1–2.3.3 provide further details

about each of these dimensions, how they are measured, and why they are important

for ad hoc teamwork.

To better illustrate the dimensions, we introduce a simple domain to evaluate

across each of the dimensions. The domain is described here, and it will be revisited

in the discussion of each dimension.

MatchActions: This domain is a typical coordination game with two agents,

each of which has two actions. If they select the same action, both receive a reward

of ri, where ri is randomly selected from {0.5, 0.75, 1.0} for i ∈ 1, 2, but fixed for

the episode. On the other hand, if both of the agents select different actions, they

receive a reward of 0. In addition, both agents can observe their teammates’ previous

actions. The ad hoc agent knows that its teammate is following one of two behaviors:

• FirstAction: the teammate always chooses the first action

• BestResponse: the teammate chooses the same action as the ad hoc agent

did previously

Therefore, the state can be represented as the previous action taken by the ad hoc

agent, called s0 if the ad hoc agent chose the first action, and s1 otherwise.

2.3.1 Team Knowledge

The ad hoc agent’s knowledge about its teammates’ behaviors gives insight into

the difficulty of planning in the domain. The agent’s knowledge can range from

24

knowing the complete behaviors of its teammates to knowing nothing about them.

Settings with partial information are especially relevant, because in many real world

problems, the exact behavior of a teammate may not be known, but some reasonable

guidelines of their behaviors exist. For example, when playing soccer, one can usually

assume that a teammate will not intentionally pass to the other team or shoot at

the wrong goal. If the behaviors are completely known, the agent can reason fully

about the team’s actions, while if the behaviors are unknown, the agent must learn

about them and adapt to find a good behavior.

To estimate the ad hoc agent’s knowledge about its teammates’ behaviors,

we compare the actions the ad hoc agent expects them to take and the ground truth

of what actions they take. Specifically, we compare the expected distribution of

teammate actions to the true distribution that the teammates follow. To compute

the difference between the distributions, we use the Jensen-Shannon divergence mea-

sure, which was chosen because it is a smoothed, symmetric variant of the popular

Kullback-Leibler divergence measure. Specifically, we denote the Jensen-Shannon

divergence by JS where

JS(P,Q) =
1

2
(KL(P,M) + KL(Q,M))

and M = 1
2(P +Q). The Kullback-Leibler divergence is given by

KL(P,Q) =
∑
i

P (i) log
P (i)

Qi

When the ad hoc agent has no information about a teammate’s action, we

assume that it uses the uniform distribution to represent its actions. Therefore, we

25

define the knowledge measure as

K(T, P) =

1 if JS(T, P) = 0

1− JS(T, P)

JS(T,U)
if JS(T, P) < JS(T,U)

− JS(P,U)

JS(U,Point)
otherwise

(2.1)

where T is the true distribution, P is the predicted distribution, U is the uniform dis-

tribution, and Point is a distribution with all weight on one point (e.g. [1, 0, 0, . . .]).

By this definition, K(T, T) = 1, so the knowledge is complete if the ad hoc agent

knows the true distribution. K(T,U) = 0, representing when the ad hoc agent has

no knowledge and relies on the uniform distribution. Finally, if the predicted dis-

tribution is less accurate than the uniform distribution, then K(T, P) is negative,

with a minimum value of -1. This measure captures the range [0,1] smoothly, but

can still be used for the range [-1,0].1 However, we generally expect the prediction

to be a higher entropy distribution than the true distribution as the ad hoc agent

ought to correctly model its uncertainty in its teammates’ behaviors rather than

being confident and wrong, which keeps the measure in the range [0,1].

We define the ad hoc agent’s knowledge about its teammates’ behaviors as

the average over the teammates and world states, specifically

TeamK =

n∑
s=1

k∑
t=1

K(TrueActiont(s),PredActiont(s))

nk

where 1 ≤ s ≤ n is the state, 1 ≤ t ≤ k specifies a teammate, TrueActiont(s) is the

ground truth action distribution for teammate t for state s, and PredActiont(s) is

1One slight anomaly of this measure is that when T is the uniform distribution (e.g. [.5,.5]), K
is either 1 when P is exactly correct at [.5 .5] or negative. For all other values of T, K smoothly
spans the range [-1,1].

26

the action distribution that the ad hoc agent predicts teammate t to select for state

s. Thus, if the ad hoc agent has better information about its teammates’ behaviors,

the distance between the distributions will be smaller and TeamK will be higher.

Let us now calculate the TeamK for the MatchActions domain. The ad

hoc agent has uniform beliefs over its teammate following either the FirstAction

or BestResponse behaviors. However, the teammate is actually following the Be-

stResponse behavior. With these beliefs, in s0, the ad hoc agent expects that its

teammate will always chose a0, so PredActions0 = [1, 0]. In s1, the ad hoc agent

thinks that the teammate will choose a0 with probability 0.5 and a1 with probability

0.5, while it actually chooses a1 with probability 1. Thus,

TeamK =
K([1, 0], [1, 0]) +K([0, 1], [12 ,

1
2])

2
=

0 + 1

2
= 0.5

This value indicates that the ad hoc agent is somewhat knowledgeable about its

teammate’s actions as it predicts its teammate’s actions half the time better than

random guessing.

2.3.2 Environmental Knowledge

Another informative dimension is how much knowledge the ad hoc agent has about

the effects of a joint action given a state, for example the transition and reward

functions. If the ad hoc agent has complete knowledge about the environment, it

can plan about what actions it should select more simply than if it must also consider

unknown effects of actions. However, if it has incomplete knowledge, it must explore

its actions and face the standard problem of balancing exploring the environment

versus exploiting its current knowledge.

Similarly to teammate knowledge, we formally define the ad hoc agent’s

27

knowledge about the environment’s transitions as

TransK =
1

nm

n∑
s=1

m∑
j=1

K(TrueTrans(s, j),PredTrans(s, j))

where 1 ≤ s ≤ n is the state, 1 ≤ j ≤ m is a joint action, K is taken from

Equation (2.1), TrueTrans(s, j) is the ground truth transition distribution from

state s given joint action j, and PredTrans is the ad hoc agent’s expected transition

distribution. If the agent has no information about the transitions, we assume

that PredTrans(s, j) is the uniform distribution. Intuitively, if the ad hoc agent

knows more about the transition function, then the distance between TrueTrans

and PredTrans will be smaller and as a result TransK will be higher. We define the

agent’s knowledge about the environmental rewards similarly

RewardK =
1

nm

n∑
s=1

m∑
j=1

K(TrueReward(s, j),PredReward(s, j))

We define the environmental knowledge as a 2-dimensional value given by EnvK =

(TransK,RewardK).

Revisiting the MatchActions domain, the ad hoc agent knows the true transi-

tion function, as it only depends on the ad hoc agent’s previous action, so TransK =

1. However, it only knows that the payoff for each action is uniformly drawn from

{0.5, 0.75, 1.0} and the reward is 0 if the agents’ actions do not match. There are

8 possible cases to count over, coming from 2 states, 2 actions for the ad hoc agent,

and 2 for its teammate, but the cases fall into 2 sets based on whether the actions

match, each set covering 4 cases. In addition, it does not matter which value each

matched action actually takes, so we can simplify the calculation. If the agents take

the different actions, the reward is correctly known to be 0. Note that there are four

28

reward values possible: {0, 0.5, 0.75, 1.0}. Therefore, the knowledge in this case is

K([1, 0, 0, 0], [1, 0, 0, 0]) = 1. On the other hand, if they take the same actions, the

ad hoc agent is unsure which of the three rewards {0.5,0.75,1.0} it will receive, so

the knowledge in this case is K([0, 1, 0, 0], [0, 13 ,
1
3 ,

1
3]) = 0.164. This leads to

RewardK =
4 ∗K([1, 0, 0, 0], [1, 0, 0, 0]) + 4 ∗K([0, 1, 0, 0], [0, 13 ,

1
3 ,

1
3])

8

=
4 ∗ 1 + 4 ∗ 0.164

8

= 0.582

Thus, EnvK = (1, 0.582). As the agent observes these payoffs, it can refine its knowl-

edge, but we are evaluating these properties prior to the ad hoc agent interacting

with its environment.

2.3.3 Teammate Reactivity

The optimal behavior for the ad hoc agent also depends on how much its teammates

react to its actions. If its teammates’ actions do not depend on the ad hoc agent at

all, the ad hoc agent can simply choose its actions to maximize the team reward, as if

it were a single agent problem. Considering the actions of its teammates separately

from that of the environment may still help computation by factoring the domain.

However, if the teammates’ actions depend strongly on the ad hoc agent’s actions,

the ad hoc agent’s reasoning should consider what its teammates’ reactions will be.

If the ad hoc agent is modeling its teammates and its teammates are modeling the

ad hoc agent, the problem can become recursive, as is directly addressed by Vidal

and Durfee’s Recursive Modeling Method [130].

A formal measure of the teammate reactivity needs to capture how different

the teammates’ actions will be when the ad hoc agent chooses different actions.

29

We measure the distance between the resulting distributions of the teammate joint

actions, using the pairwise Jensen-Shannon divergence measures. However, it is

desirable for the distance to be 1 when the distributions have no overlap, so we use

a normalizing constant of log 2. Thus, we define the reactivity of a domain in state

s as

Reactivity(s) =
1

m(m− 1) log 2

m∑
a=1

m∑
a′=1

JS(T (s, a), T (s, a′))

where JS is the Jensen-Shannon divergence measure, 1 ≤ a, a′ ≤ m is the actions

available to the ad hoc agent, and T (s, a) is the distribution of the teammates’ joint

actions given the state s and the ad hoc agent’s action, a. We use m − 1 in the

denominator because we exclude the case where a = a′; in the numerator, the JS

measure will be 0 in this case. For the overall reactivity of the domain, we average

over the states, resulting in Reactivity = 1
n

∑n
s=1 Reactivity(s). It is possible to

consider how an action affects the teammates’ actions further in the future, but we

restrict our focus to one step reactivity for this thesis. Note that all of the sums in

this formulation can be converted to integrals for continuous states or actions. This

formulation is similar to the empowerment measure used by Jung et al. [74], but

we consider the ad hoc agent’s ability to change the actions of its teammates rather

than the environment state.

Let us once again explore this dimension in the context of the MatchAc-

tions domain. Although the ad hoc agent is unsure of its teammate’s behavior, the

teammate is truly playing the BestResponse behavior. Thus, its actions are entirely

dependent on the ad hoc agent’s actions, so Reactivity = 1. If instead the teammate

played BestResponse with probability 9
10 and FirstAction with probability 1

10 , then

30

we would get

Reactivity =
JS([1, 0], [1

10 ,
9
10]) + JS([1

10 ,
9
10], [1, 0])

2 log 2
= 0.758

Therefore, we can conclude that the agent would still be very reactive, though not

as reactive as the BestResponse agent.

2.3.4 Applying the Dimensions

In theory, calculating the dimensions over every possible state is a promising ap-

proach. However, as the size of the state space grows, this approach rapidly be-

comes computationally ineffective. Therefore, it is desirable to approximate the

values along each dimension. Specifically, we approximate these values by randomly

sampling states and teammates and summing over these samples to calculate ap-

proximate values for each of the dimensions. In addition, in continuous state spaces,

the summations in the dimension definitions become integrals in the continuous case,

but we continue to sample states in these scenarios. Furthermore, the distributions

become continuous, but the JS measure can operate over continuous distributions.

Specifically, we approximate the JS measure using Monte Carlo sampling in this the-

sis. The domains used in this thesis are described in Section 3.2, where we discuss

the values of each domain along these dimensions.

2.4 Chapter Summary

This chapter introduces the type of situations this thesis focuses on: ad hoc team

problems. In ad hoc teams, agents must adapt to new and unknown teammates

without prior coordination, possibly without any explicit communication channels.

31

In addition, this chapter introduces the evaluation framework used to evaluate ad

hoc agents. This evaluation framework relies on sampling teams and tasks and then

replacing an agent on the team with the ad hoc agent. The resulting team performs

the task and receives a reward based on its performance, which is combined with

results with other teams and tasks. Finally, this chapter describes 3 dimensions for

categorizing ad hoc team problems that indicate which approaches are expected to

be effective. These dimensions are: 1) team knowledge, 2) environment knowledge,

and 3) team reactivity. This chapter provides the framework for how the rest of

the thesis investigates ad hoc teamwork scenarios. The next chapter will provide an

introduction to the algorithms that this thesis builds upon as well as a description

of the domains used to evaluate the proposed algorithm.

32

Chapter 3

Background

While the previous chapter describes the general problem investigated in this thesis,

this chapter describes the mathematical model used to analyze this problem. In

addition, this chapter presents the existing algorithms that our approach builds

upon. Then, the chapter grounds the general ad hoc teamwork problem in a number

of domains that the remainder of the thesis uses to evaluate the proposed approach.

Using the dimensions described in Section 2.3, we can analyze these domains as well

as the teammates that the ad hoc agent may encounter. Informally, we find that

similar algorithms are effective on problems with similar values, but we do not use

these values for further algorithm design or selection in this thesis.

3.1 Background

This section defines the models, Markov Decision Processes (MDPs) and Partially

Observable Markov Decision Processes (POMDPs) we use as the mathematical

frameworks for modeling ad hoc team problems. Then, this section presents several

existing algorithms used to learn how to act in MDPs. This section concludes with

33

a discussion of transfer learning algorithms, which can be used to efficiently learn

models of the teammates’ behaviors.

3.1.1 Markov Decision Process

In order to plan and learn in various ad hoc teamwork scenarios, it is helpful to pick

a way to model the problem. Agents that need to cooperate in ad hoc teams need

to handle sequential decision making problems; therefore, we choose to model these

problems as a Markov Decision Process. The Markov Decision Process (MDP) is

a standard formalism in reinforcement learning [123], generally used to describe an

agent interacting with its environment. A summary of this interaction is given in

Figure 3.1. An MDP is 4-tuple (S,A, P,R), where S is a set of states, A is a set

of actions, P (s′|s, a) is the probability of transitioning from state s to s′ when after

taking action a, and R(s, a) is a scalar reward given to the agent for taking action

a in state s. In the pursuit domain, s ∈ S corresponds to the current positions of

every agent and a ∈ A is the action that the ad hoc agent chooses (i.e. left, right,

up, down, or staying still). In this framework, a policy π is a mapping from states

to actions, which defines an agent’s behavior for every state. The agent’s goal is

to find the policy that maximizes its long term expected rewards. The long term

expected value from taking action a from state s is the value of the state-action and

is denoted Q(s, a). For every state-action pair, Q∗(s, a) represents the maximum

long term reward that can be obtained from (s, a) and is defined by the Bellman

equation

Q∗(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a) max
a′

Q∗(s′, a′)

where 0 < γ < 1 is the discount factor representing how much more immediate

rewards are worth compared to delayed rewards. The optimal policy π∗ can then

34

be derived by choosing the action a that maximizes Q∗(s, a) for every s ∈ S. The

goal of most reinforcement learning algorithms is to find this optimal policy.

Agent

Environment

ActionState Reward

Figure 3.1: A single agent interacting with the environment in reinforcement learning

3.1.2 Value Iteration

Once we model a problem as an MDP, it becomes clear what the agent’s objective

is: to maximize long term expected reward. In our setting this translates into the

ad hoc agent optimally cooperating with its teammates to accomplish their shared

goals. One way to calculate the optimal policy is by using Value Iteration (VI) [123].

VI requires a complete model of the environment, specifically the full transition and

reward functions. Given these models, VI can calculate the optimal value function

Q∗(s, a) and therefore the optimal policy π∗. Value iteration relies on dynamic

programming to solve for the optimal state-action values for all state-action pairs.

VI initializes the state-action values arbitrarily, and then improves these estimates

using an update version of the Bellman optimality equation given in Equation 3.1.1.

These updates are repeated iteratively until convergence, and the final calculated

state-action values are guaranteed to be optimal.

While VI provably converges to the optimal policy, this convergence may

take a substantial amount of time. VI has difficulties in scaling to large domains

as it requires visiting each state-action over many iterations. In ad hoc teamwork

35

scenarios, this problem is especially costly as the number of agents greatly increases

the state space. In many problems, the team’s state space becomes exponential

in the size of the domain, with a power proportional to the number of agents,

(# positions)(# agents). Given the symmetries of a specific problem, it is sometimes

possible to reduce the number of possible states, but the scaling is still poor. For

example, in initial tests into ad hoc teamwork in the pursuit domain (described in

Section 3.2.2), VI on a 5x5 world took approximately 12 hours on the University

of Texas Mastodon computing cluster. In a 5x5 world, there are 255 ≈ 1e7 states

to consider ignoring symmetries, given that there are 5 agents moving around the

25 world positions. Scaling up to a larger problem of a 20x20 world, there are

4005 ≈ 1e13 states of the entire team. Thus, there are more than a million times

more states than the 5x5 world, leading to this problem to be computationally

infeasible. Due to the exponential blowup of the size of the state space, many ad

hoc teamwork problems are not suitable for VI, even if the teammates’ behaviors

are fully known and the problem can be described as an MDP.

3.1.3 Monte Carlo Tree Search

Value Iteration is one approach for solving MDPs, and it would allow an ad hoc

agent to optimally cooperate with its teammates if were it to have a complete

model of its teammates and the environment. However, VI is often infeasible to run

in a reasonable time and requires a complex model. Rather than calculating the

exact optimal value of every state-action, it is much more computationally tractable

to instead learn an approximately optimal value for relevant state-actions. When

the state space is large and only small sections of it are relevant to the agent, it

can be advantageous to use a sample-based approach to approximating the values of

36

actions, such as Monte Carlo Tree Search (MCTS). Specifically, the MCTS algorithm

called Upper Confidence bounds for Trees (UCT) [82] is used as a starting point for

creating the primary planning algorithm used in this thesis.

MCTS does not require a complete model of the environment. Rather than

knowing the full probability distribution of next states and rewards resulting from

the transition and reward functions, MCTS only needs a model that allows sampling

these next states and rewards. Furthermore, rather than treating all of the state-

actions as equally likely, UCT focuses on only calculating the values for relevant

state-actions. UCT does so by performing a number of playouts at each step, starting

at the current state and sampling actions and the environment until the end of

the episode. It then uses these playouts to estimate the values of the sampled

state-action pairs. Also, it maintains a count of its visits to various state actions,

and estimates the upper confidence bound of the values to balance exploration and

exploitation. When selecting actions, UCT greedily chooses the action with the

highest upper confidence bound. UCT has been shown to be effective on domains

with a high branching factor, such as Go [50] and large POMDPs [111], so it should

be able to handle the branching factor caused by the number of agents.

In this thesis, UCT is modified to use eligibility traces and remove the depth

index to help speed up learning. The pseudocode of the algorithm can be seen

in Algorithm 2, with s being the current state. Similar modifications were made

by Silver et al., with good success in Go [112]. In addition, work by Hester and

Stone [64] show good results in a number of other reinforcement learning domains.

37

Algorithm 2 The modified version of UCT used in this thesis

1: function UCTSelect:
inputs:
s . the current state

outputs:
a . action selected by UCT

params:
γ . discount factor, parameter of the MDP
NumPlayouts . number of Monte Carlo playouts to perform
c . weight given to the confidence bound
λ . eligibility trace parameter - affects amount of backup
simulateAction(s, a) . an environment model that samples next states

2: for i = 1 to NumPlayouts do
3: Search(s)

4: return a = argmaxa Q(s, a)

5: function Search(s):
6: a = bestAction(s)
7: while s is not terminal do
8: (s′, r) = simulateAction(s, a)
9: a′ = bestAction(s′)

10: e(s, a) = 1
. Update the Q-values

11: δ = r + γQ(s′, a′)−Q(s, a)
12: for all s∗, a∗ do
13: Q(s∗, a∗) = Q(s∗, a∗) + e(s∗, a∗) ∗ δ

visits(s∗,a∗)
14: e(s∗, a∗) = λe(s∗, a∗)

15: s = s′; a = a′;

16: function bestAction(s):

17: return argmaxaQ(s, a) + c

√
ln visits(s)

visits(s, a)

38

3.1.4 Fitted Q Iteration

While UCT is effective for quickly computing an approximately optimal policy in

an MDP, it does require a model of the MDP that permits sampling from the

transition and reward functions. This model can either be given or learned given

enough data. VI requires a stronger model; a model that gives the full probability

distribution of next states and rewards for the transition and reward functions.

However, other approaches attempt to directly learn the values of state-actions

without a model of the transition function, and these approaches are called model-

free. Model-free approaches do not require building a model of the domain which

can be more tractable in hard to model domains. In addition, model-free algorithms

are often computationally simpler. In complex domains, it may be difficult for ad

hoc agents to compute the model of their environment and teammates, so it may be

useful for the ad hoc agent to employ a model-free learning method to find a good

policy for cooperating with its teammates.

In this work, our agent uses the Fitted Q Iteration (FQI) algorithm intro-

duced by Ernst et al. [44]. Similar to Value Iteration (VI), FQI iteratively backs up

rewards to improve its estimates of the values of states. Rather than looking at every

state and every possible outcome from each state, FQI uses samples of these states

and outcomes to approximate the values of state-action pairs. This approximation

allows FQI to find solutions for complex, continuous domains. Alternative policy

learning algorithms can be used, such as Q-learning [131] or policy search [42].

To collect samples of the domain, the agent first performs a number of ex-

ploratory actions. From each action, the agent stores the tuple 〈s, a, r, s′〉, where s

is the original state, a is the action, r is the reward, and s′ is the resulting state. An

advantage of the FQI algorithm is that this data can be collected in parallel from

39

a number of tests. At each iteration, the agent updates the following equation for

each tuple

Q(s, a) = r + γ ∗max
a′

Q(s′, a′)

where Q(s, a) is initialized to 0. Q is an estimate of the optimal value function, Q∗,

and this estimate is iteratively improved by looping over the stored samples. To

handle continuous state spaces, Q is not stored exactly in a table; instead, its value

is approximated using function approximation. In this paper, the continuous state

features are converted into a set of binary features using CMAC tile-coding [9, 8],

and the estimate of Q(s, a) is given by

Q̂(s, a) =
∑
i

wifi

where fi is the ith binary feature and wi is the weight given to the feature with

updates split uniformly between the active features. This approach uses a set of

overlapping tilings to cover the space with binary activations [123]. The advantages

of tile coding include simple computation, binary output, and good control over the

generalization of the model.

3.1.5 Partially Observable Markov Decision Process

Section 3.1.1 introduced the Markov Decision Process (MDP), and Sections 3.1.2–??

introduce methods for solving MDPs. However, not all problems can be modeled

as an MDP. Therefore, we also use an extended version of the MDP known as

the Partially Observable Markov Decision Process (POMDP) in our analysis. In

this model, the agent cannot directly observe its true state s. Instead, it receives

imperfect observations of the underlying state, Ω(s) = o ∈ O, where O is the set

40

of possible observations. The underlying states and transitions remain unchanged

from the original MDP, as does the agent’s goal of maximizing the reward. However,

the agent’s task is harder because it must reason about the true state.

The difficulty of solving a POMDP is bounded by the size of the δ-covering

of its belief space. A belief state is the probability distribution over states that the

agent may be in. The belief space is a combination of what the agent can directly

observe about the world and its beliefs about the hidden state of the world. For a

metric space A, a set B is a δ-covering if ∀a ∈ A ∃b ∈ B such that |a − b| < δ.

Intuitively, a δ-covering can be thought of as a set of multi-dimensional balls with

radius δ filling the space. The covering number is the size of the smallest δ-covering.

From Theorem 5 in [66], it is known that a policy that performs within ε of the

optimal policy for a POMDP can be found in polynomial time in terms of the size

of a given δ-cover set B where δ = poly(ε). This theorem shows this result for the

infinite horizon, discounted rewards case, chosen because the discount factor bounds

the expected total reward. However, these results extend to the finite horizon setting

of the bandit problem used in Chapter 6 given that the expected total reward is

bounded by the number of rounds and agents.

3.1.6 Partially Observable Monte Carlo Planning

As in an MDP, in a POMDP, the agent’s goal is to maximize its long term ex-

pected reward. This task is made more difficult by the partial observability of the

domain. However, there are existing algorithms for planning effective policies for

these problems, and Partially Observable Monte Carlo Planning (POMCP) is one

such algorithm [111]. POMCP is a Monte Carlo Tree Search (MCTS) algorithm

that is an extension of the Upper Confidence bounds for Trees (UCT) algorithm,

41

discussed in Section 3.1.3. While POMCP is guaranteed to find an optimal policy

for a POMDP given infinite time, it loses those guarantees in situations with limited

computation. Despite this lack of guarantees when computation is limited, POMCP

has been shown to be effective on a number of large POMDPs, scaling far beyond

existing approximate solvers.

Similar to UCT, POMCP relies on performing a number of simulations from

the current state until reaching the end of the problem. In the simulations, the

agent selects its actions using upper confidence bounds on its current estimates

of the available actions. However, rather than being given the true world state,

POMCP has to reason about the underlying world state given the observations the

agent receives. To handle this uncertainty, POMCP starts from the set of possible

initial world states and performs simulations to create a tree, where each node rep-

resents the possible observations received and edges are the actions. At each node,

POMCP stores counts of which underlying world states are reached that produce

these observations. POMCP uses these counts to estimate the probability of a se-

quence of observations having come from a sequence of states. This estimate allows

POMCP to quickly approximate the Bayesian update of beliefs while simultaneously

calculating an estimate of the values of each action.

3.1.7 Transfer Learning

While Sections 3.1.2 and 3.1.3 introduce methods for how the ad hoc agent can

compute a policy for cooperating with its teammates given a model of its teammates,

it does not specify where these models come from. An approach that we employ in

this thesis is to learn models of past teammates, treating it as a supervised learning

problem. When the ad hoc agent has a limited amount of experiences with its

42

current teammates in addition to extensive experiences with past experiences, it

may be able to learn models specific to the current teammates. Unfortunately, the

limited experiences with the current teammates makes learning a new model from

scratch infeasible. However, it may be able to reuse information it has learned about

past teammates in addition to what it knows of its current teammates to learn a

new model of its teammates. This idea leads us to transfer learning. In Transfer

Learning (TL), the goal is to reuse information learned on a source data set to

improve results on a target data set. For TL, only the performance on the target

data matters; the source data is only used for training. Following this terminology,

for ad hoc teamwork settings, we consider the current teammates to be the target

set, and the previously observed teammates are the source set. In this section,

we discuss three state of the art transfer learning algorithms: TrAdaBoost [39],

TwoStageTrAdaBoost [101], and TrBagg [78].

TrAdaBoost [39] is a boosting-based algorithm, in which the source and

target data sets are lumped together and then a model is learned via boosting. As

in many boosting algorithms, data points are weighted in TrAdaBoost, so that each

data point can have a different amount of influence in the learned classifiers. As in

standard boosting, errors made on the target data set are handled by increasing the

weights of points on which mistakes are made. On the other hand, errors on points

from the source data set are treated differently; specifically, misclassified points from

the source data set have their weights decreased. The intuition is to identify source

data points that are distributed similarly to the target data and decrease the effect

of irrelevant points.

TwoStageTrAdaBoost [101] was designed in response to problems of TrAd-

aBoost overfitting the training data. This problem is especially noticeable when

43

the source data set is much larger than the target data set, causing TrAdaBoost

to respond too much to irrelevant source data points before dropping their weights

sufficiently. Therefore, TwoStageTrAdaBoost first searches over a set of possible

weightings of the source data points, and determines which weighting is best us-

ing cross-validation. At each weighting, it fixes the weight of the source data and

performs boosting over the combined source and target data sets, only changing

the weights of the target data points. These models learned for each weighting are

tested via cross-validation before selecting the best weighting on which to train the

final model.

While the other transfer learning algorithms described here focus on using

boosting, bagging approaches have also shown promise, specifically in the form of

TrBagg [78]. The TrBagg algorithm combines the source and target data sets into a

single data set. From this combined set, TrBagg samples a number of smaller data

sets. Then, a model is learned on each data set, and these models then undergo a

filtering phase, using cross validation to determine which models are most helpful.

In the filtering phase, models are sorted in order of their performance on the target

data, and subsets of increasing size are tested against a fallback model, that prevents

negative transfer learning. The final model outputs the median of the models that

pass the filtering phase. This method has the advantage of being conceptually simple

and very easy to parallelize.

There has also been some research into transferring knowledge from multiple

sources. Yao and Doretto [137] introduced two transfer learning algorithms for han-

dling multiple sources. The first, MultiSourceTrAdaBoost, uses an instance-transfer

approach, reusing data from the source tasks for training the target classifier. Al-

ternatively, TaskTrAdaBoost employs a parameter-transfer approach where it is

44

assumed that the target data shares some parameters with some of the source data

sets. Another look at transfer with multiple source sets is the work of Huang et

al. [68]. They propose the SharedBoost algorithm to select the best features for

prediction from a small number of source data sets for text classification. Zhuang et

al. [140] investigate using autoencoders to determine a feature mapping that allows

them to train multiple classifiers from the source domain and apply them effectively

on the target domain. Similarly, Fang et al. [45] introduce an algorithm that deter-

mines a shared subspace among the labels for multiple sources, where each sample

is given multiple labels. Then, this subspace is used to transfer knowledge to the

target domain. Another approach was developed by Ge et al. [49]. The authors

introduce an online algorithm that transfers knowledge from multiple sources in a

principled way, achieving a no-regret guarantee compared to the offline algorithm.

These algorithms provide a promising step towards effectively handling multiple

sources.

3.2 Domain Descriptions

This section describes the domains that we use to evaluate approaches for cooper-

ating in ad hoc teams. Specifically, we use three domains, which we describe in the

order of simplest to most complex. These domains provide a spectrum of differ-

ent tasks and interactions between agents that allow us to effectively evaluate our

approach.

In addition, we also describe the teammates that are used as possible team-

mates in each of the domains. We use a number of hand-coded teammates to provide

a spread of possible teammates that our agent may encounter. However, in ad hoc

teamwork research, it is important to also use externally-created teammates to eval-

45

uate the various ad hoc team agents. Externally-created teammates are created by

developers other than the authors and represent real agents that are created for the

domain when developers do not plan for ad hoc teamwork scenarios. It is impor-

tant to use externally-created teammates because their development is not biased to

make them more capable of cooperating with ad hoc team agents. Therefore, they

are useful for analyzing how ad hoc agents can cooperate with teammates that are

not designed to work with them, which is the general case that ad hoc agents would

encounter in real world scenarios.

We also describe how these domains fit into the three dimensions described

in Section 2.3: teammate knowledge, environment knowledge, and teammate reac-

tivity. The exact values of these dimensions vary in the different tests performed in

this thesis. Therefore, tables of the values are specified for various settings at the

end of each domain description.

3.2.1 Multi-armed Bandit Problem

To investigate ad hoc teamwork in a simple domain, we use a problem that is

commonly used to model decision-making tasks, namely the multi-armed bandit

problem. The name of “multi-armed bandits” is derived from the informal name

of “one-armed bandit” given to slot machines. In the standard multi-armed bandit

setting, an agent has to decide between a number of arms to pull, each correspond-

ing to a slot machine with a different underlying payoff distribution. The agent’s

goal is to maximize its payoff by learning which arm has the highest payoff mean

and repeatedly pulling this arm. However, exploring the different arms has a cost

because the other arms may pay out less than the best known arm. Therefore, the

central problem for the multi-armed bandit setting is to balance exploration and

46

exploitation.

The multi-armed bandit setting is a fundamental problem in single agent

reinforcement learning [123], and a bandit setting without communication has been

used to study ad hoc teamwork in the past [117]. This thesis introduces a multiagent,

multi-armed bandit problem that allows limited communication. In this problem,

there are several agents that pull the arms simultaneously. After pulling an arm,

each agent can broadcast a set of messages to share knowledge with its teammates,

and each of these messages has a cost to send. This setting is chosen here to serve

as a minimal decision-making domain that exhibits the necessary properties for

investigating communication with unknown teammates.

The multi-armed bandit setting is a useful abstraction for many decision-

making scenarios. For example, consider a scenario in which a number of robots are

deployed to transport supplies following a disaster. These robots must repeatedly

carry supplies along one of a few possible routes which vary in their speed and safety.

In this setting, selecting a route corresponds to pulling an arm. It is desirable for

these robots to share their knowledge about the routes, but this communication takes

time and is limited to whatever messages their teammates understand. A robot that

is adept at reasoning about ad hoc teamwork should adapt to its teammates’ usage

of these routes and help the team select the best routes.

We formally define the bandit problem in this thesis as the tuple G =

(A,C,P, R) where A is a set of two arms {arm0, arm1} with Bernoulli payoff distri-

butions, returning either 0 or 1, C = {(ci, cost(ci))} is a finite set of possible com-

munications and their costs, P denotes the players in the problem with |P| = n+ 1

with n of the agents being a pre-designed team, and R is the number of rounds.

Each round in the problem involves two phases: (1) a communication phase fol-

47

lowed by (2) an action phase. In both phases, all agents act simultaneously. In

the communication phase, each agent can broadcast a message of each type to its

teammates:

• obs – Send the agent’s last selected arm and payoff

• meani – Send the agent’s observed mean and number of pulls for armi

• suggesti – Suggest that the teammates pull armi

These message types are understood by all of the agents. In the action phase, each

agent chooses an arm and receives a payoff. The team’s goal is to maximize the sum

of payoffs minus the communication costs. We use arm∗ to denote the arm with the

highest payoff. Note that the results in this thesis can be generalized to any number

of fixed arms, other discrete distributions, and other message types.

As a concrete example, consider a case with four agents playing for three

rounds with two Bernoulli arms with success probabilities of 0.75 and 0.25 respec-

tively. Their actions and payoffs are shown in Table 3.1. The team state shows the

combined knowledge of the team as given by the 4-tuple: (s0p0 ,
s1
p1
, r, sugg), where pi

and si are the number of pulls and successes for armi, r is the number of rounds

remaining, and sugg is the last suggestion. The rows specify the messages sent, arms

pulled, and observed payoffs of each agent on the team. Remember that each agent

can send a number of messages during each communication phase and pull one arm

during the action phase. The messages are used to keep the team’s knowledge of

all arms synchronized and encourage the teammates to pull the arm believed to be

best. At the end of the game, the team’s reward is 7−5 ·cost(obs)−cost(suggestion)

given that the team observes 7 successful pulls, sends 5 obs messages, and a single

suggestion message.

48

Round 0 Round 1 Round 2
Comm Action Payoff Comm Action Payoff Comm Action Payoff

team state (00 ,
0
0 , 2, none) (00 ,

0
0 , 2,none) (22 ,

1
2 , 1, none) (22 ,

1
2 , 1, sugg0) (45 ,

1
3 , 0, sugg0) (45 ,

1
3 , 0, sugg0)

agent0 {∅} arm0 1 {obs, sugg0} arm0 0 {∅} arm0 1

agent1 {∅} arm1 0 {∅} arm0 1 {obs} arm0 1

agent2 {∅} arm0 1 {obs} arm0 1 {obs} arm0 0

agent3 {∅} arm1 1 {obs} arm1 0 {∅} arm1 0

Table 3.1: Example of play in the bandit domain.

Teammate Overview

Given that the teammates form an existing team, we assume that they are tightly

coordinated. Specifically, this means that the team’s behavior can be described

as a function of the team’s total number of pulls and successes of each arm. The

teammates can pool this knowledge using the message types provided in the domain.

The team’s actions also rely on the ad hoc agent’s pulls and successes that it has

communicated, combining all of the team’s pulls and successes as well as the ad hoc

agent’s into a single estimate of the quality of each arm. While the assumption that

all of the knowledge is shared via communication may not always hold, it may hold in

many scenarios. This assumption simplifies the problem as representing each agent’s

knowledge of the numbers of pulls and successes can lead to an exponential blowup

of the state space, while maintaining the team’s knowledge is merely polynomial, as

shown in Chapter 6.

Each teammate’s behavior consists of an action function and a communica-

tion function. These functions specify the probability of the agent selecting arms

or sending messages. We denote the action function of each teammate by the func-

tion act, where the result of act is a probability distribution over the agent pulling

each arm. Let ari be the action chosen by agent i in round r, pk be the number

of times that armk was pulled by the team, sk be the number of times that armk

returned a value of 1, R − r be the number of rounds remaining, and sugg be the

ad hoc agent’s last suggestion. Then, act(p0, s0, p1, s1, R − r, sugg , i) = Pr(ari =

49

armj). The teammates’ communication function is denoted comm, where the re-

sult of comm is the probability of sending each possible message. In particular,

comm(p0, s0, p1, s1, R − r, sugg , i) = Pr(cj ∈ Cri) where Cri is the set of messages

broadcast by agent i in round r and cj ∈ C.

Going back to the example in Table 3.1, agent0 is the ad hoc agent. The team

state row summarizes the variables described for act and comm at the beginning of

the specified phase. In this scenario, for the remaining agents,

comm(c) =

1 if c = obs and the last payoff was 1

0 otherwise

Let us now describe the act function. When there have been no pulls yet, the

even numbered agents select arm0, and the odd numbered ones select arm1. In

later rounds, agent2 continues exploring the arms, and the other agents act greedily.

To examine one agent’s decision, in round 1, agent1’s action function is given by

act(2, 2, 2, 1, 1, sugg0, 1) = arm0 because arm0’s observed mean is higher than that

of arm1.

Hand-Coded Teammates

We consider two parameterized types of hand-coded teammates that select arms

using: 1) the ε-greedy algorithm and 2) confidence bounds in the form of UCB1 [13].

The value ε controls the exploration of the agent by specifying the chance of taking

a random action. In our setting, the teammates’ value of c can vary, unlike in the

original UCB1, so we call the algorithm UCB(c). The value of c similarly controls

exploration, but by specifying how much weight is given to the confidence bounds.

50

The ε-greedy algorithm specifies that the teammates’ action function is:

vi =
si
pi

act(armi) =

1− ε if vi = argmaxj vj

ε otherwise

(3.1)

The teammates using UCB(c) select actions using:

vi =
si
pi

+ c
√

ln(p0+p1)
pi

act(armi) =

1 if vi = argmaxj vj

0 otherwise

(3.2)

In some of our theoretical analysis, we consider teammates where ε = 0 and c = 1.

To model the effects of sending suggestions, the teammates are given a probability

of following the most recent suggestion received from the ad hoc agent, using the

probability 0 ≤ s ≤ 1.

Externally-Created Teammates

In addition to the set of hand-coded teammates, we also consider a number of

externally-created teammates. These agents represent a spread of possible team-

mates that the ad hoc agent may encounter. It is important to note that these

agents are not designed for ad hoc teamwork, so there are no guarantees about how

they will interact with the ad hoc agent. These agents were designed by undergrad-

uate and graduate students as part of an assignment for a course on agent design

taught by Sarit Kraus at Bar Ilan University in the fall of 2012. To prevent any

bias in the creation of the agents, the students designed the entire team without

51

considering ad hoc teamwork. These agents use the same three types of messages

available to the ad hoc agent. However, not all of the students’ agents employ all of

the message types available, so they may ignore some messages sent by the ad hoc

agent.

Dimension Analysis

Let us now describe where the multi-armed bandit domain falls on the dimensions

described in Section 2.3. All values are calculated using the sampling-based approach

specified in the same section. In our study of the bandit domain, the ad hoc agent’s

team knowledge (TeamK) varies based on the prior knowledge of the ad hoc agent

as well as the number of rounds and arms. In the simplest setting where the ad hoc

agent exactly knows its teammates’ behaviors, TeamK = 1. Values for TeamK and

Reactivity in a number of different scenarios in the bandit domain are summarized

in Table 3.2. In the majority of our tests, the ad hoc agents knows the true payoffs

of the arms. Therefore, the ad hoc agent has perfect environmental knowledge

in these settings, i.e. EnvK = (1, 1). However, we also consider the case where the

Bernoulli payoff probabilities are not known be the ad hoc agent. In these situations,

EnvK = (0.5, 0.5) given that the ad hoc agent’s prior is uniform for the acting phase,

EnvKact = (0, 0), and complete for the communication phase, EnvKcomm = (1, 1).

Given the high reactivity of the teammates, it is helpful for the ad hoc agent

to explicitly model its teammates’ mental state so that it can cooperate with them

effectively. However, the low reactivity of the externally-created teammates in the

unbiased scenario motivates our tests about whether the ad hoc agent can help

correct its teammates’ biased knowledge of the arms as described in Chapter 7.

The limited knowledge of its teammates’ behaviors means that the ad hoc agent

52

Teammate Type Num Arms Num Teammates TeamK Reactivity

Hand-coded 2 1 0.410 0.300

Hand-coded 2 2 0.391 0.410

Hand-coded 3 4 0.420 0.610

Hand-coded 7 1 0.484 0.508

Hand-coded 7 2 0.520 0.374

Externally-created 3 4 0.418 0.150

Table 3.2: TeamK and Reactivity for various settings in the bandit domain
given that the ad hoc agent believes that it’s teammates are drawn from {ε-
greedy,UCB(c)}.

needs to quickly learn about its teammates. In addition, the high environmental

knowledge allows the ad hoc agent to focus on learning about its teammates rather

than learning about the domain. However, when the payoff distributions of the arms

are not known by the ad hoc agent, it must balance exploring the domain as well

as its teammates. The bandit domain is investigated from a theoretical standpoint

in Chapter 6, and empirical results are presented in Chapter 7.

3.2.2 Pursuit Domain

While the previous section described a simple decision-making domain, this section

introduces a more complex sequential decision-making domain. Specifically, this

section describes the pursuit domain, also called predator-prey. The pursuit domain

is a popular problem in multiagent systems literature as it requires cooperation

between all of the teammates to capture the prey while remaining simple enough

to evaluate approaches well [118]. There are many versions of the pursuit domain

with different rules, but the pursuit domain revolves around a set of agents called

predators trying to capture an agent called the prey in minimal time.

In the version of the pursuit domain used in this thesis, the world is a rect-

angular, toroidal grid, where moving off one side of the grid brings the agent back

53

on the opposite side. Four predators attempt to capture the randomly moving prey

by surrounding it on all sides in as few time steps as possible. At each time step,

each agent can select to move in any of the four cardinal directions or to remain in

its current position. All agents pick their actions simultaneously, and collisions are

handled using priorities that are randomized at each time step. In addition, each

agent is able to observe the positions of all other agents. A view of the domain is

shown in Figure 3.2, and videos of the domain can be viewed online.1.

(a) Random starting position. (b) A valid capture position.

(c) A second valid capture position.

Figure 3.2: A view of the pursuit domain, where the rectangle is the prey, the ovals
are predators, and the oval with the star is the ad hoc predator being evaluated.

Hand-Coded Teammates

In order to meaningfully test the proposed ad hoc teamwork algorithms, four hand-

coded predator algorithms with varying and representative properties were used.

Short descriptions of these predators are below, and a full explanation of them can

be found in Appendix A. The greedy (GR) predator moves towards the nearest

1http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_Pursuit

54

http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_Pursuit

open cell that neighbors the prey, ignoring its teammates’ actions. On the other

hand, the teammate-aware (TA) predator considers its teammates, and allows the

predator that is farthest from the prey have the cell closest to it. In addition, the

teammate-aware predator uses the A* path planning algorithm to select its actions

while the greedy predator only considers immediate collisions. It is expected that

the differences between these teammates will require the ad hoc agent to adapt and

reason about how its actions will influence its teammates’ actions. In addition to

these two deterministic agents, two stochastic agents are used that each select an

action distribution at each time step. The greedy probabilistic (GP) predator moves

similarly to the greedy predator except that it has a chance of taking a longer path to

the greedy destination. Finally, the probabilistic destinations (PD) predator chooses

a new destination near the prey at every time step, slowly encircling the prey before

converging on it.

These behaviors were chosen to provide a spread of representative behaviors.

The deterministic GR predator largely ignores its teammates’ actions while the

deterministic TA predator tries to move out of the way of its teammates, but it

also assumes that they will move out of its way when needed. It is expected that

the ad hoc agent will need to cooperate differently with these two types of agents

based on their reactivity (0.855 for TA teammates and 0.655 for GR teammates).

In addition to these two deterministic agents, the stochastic GP and PD agents

provide behaviors that are harder for the agent to quickly differentiate. Therefore,

the ad hoc agent will be forced to reason about the uncertainty of its teammates’

behaviors for longer. Furthermore, these behaviors are significantly different from

the deterministic behaviors, and interacting with them requires reasoning about

noise in future outcomes.

55

Externally-created Teammates

While the set of hand-coded teammates attempts to be representative, this set is

limited and possibly biased as the agents were designed by someone planning for ad

hoc teamwork. Therefore, we also consider externally-created teammates to provide

a broader range of agents less biased towards cooperating with agents following other

behaviors. Specifically, we use two additional sets of teammates in this thesis, both

created by undergraduate and graduate computer science students. These agents

were created for an assignment in two workshops on agent design with no discussion

of ad hoc teams; instead, the students were asked to create a team of predators that

captured the prey as quickly as possible. The agents produced varied wildly in their

approaches as well as their effectiveness. Both sets of agents come from a workshop

taught by Sarit Kraus at Bar Ilan University, one taught in the spring of 2010, and

the other taught in the spring of 2011. The first set of agents contains the best 12

student agents taken from the first class of 41 students, filtered by their ability to

capture a randomly moving prey in a 5x5 world in less than 15 steps on average

(i.e. smin = 15 in Algorithm 1). This set of agents is called StudentSelected. The

second set of agents, StudentBroad, comes from a second offering of the course and

contains 29 agents from a class of 31 students. One student team was removed for

not capturing the prey at all and the second was removed for taking excessively long

times to calculate their actions. StudentBroad contains a wider range of performance

than StudentSelected as it is filtered less heavily. The better quality of agents in

StudentBroad is due to the improvements to the directions and architecture provided

to the second class of students based on the lessons learned from the first offering

of the course.

56

Dimension Analysis

Given the problem description, we can analyze how the pursuit domain is described

by the dimensions introduced in Section 2.3. As in the bandit domain, the ad hoc

agent’s knowledge about its team (TeamK) varies in the different tests, as does the

reactivity of the teammates. When the ad hoc agent knows its teammates’ behaviors,

TeamK = 1. A variety of other scenarios are summarized in Table 3.3, where we vary

the type of teammates as well as the prior knowledge the ad hoc agent has about its

teammates. The ad hoc agent completely knows the environment dynamics, leading

to EnvK = (1, 1).

Teammate Type Prior Knowledge World Size TeamK Reactivity

Hand-coded Hand-coded 5x5 0.719 0.717

Hand-coded Hand-coded 20x20 0.360 0.801

StudentSelected Hand-coded 20x20 0.156 0.801

StudentSelected Known Learned Set 20x20 0.318 0.801

StudentBroad Hand-coded 20x20 0.098 0.800

StudentBroad Known Learned Set 20x20 0.301 0.800

StudentBroad Leave-one-out Known Learned Set 20x20 0.280 0.800

Table 3.3: TeamK and Reactivity for various settings in the pursuit domain.

The high reactivity values for all teammate types implies that it is vital

to understand and model the ad hoc agent’s teammates. The lower values of team

knowledge for the student teammates shows the importance of quickly narrowing the

field of models to descriptive ones to allow for better planning. As these values are

generally similar to those of the bandit domain, we expect that similar approaches

should work in these two domains. This hypothesis and approaches to learning

about teammates are explored empirically in Chapter 7.

57

3.2.3 Half Field Offense in the 2D RoboCup Simulator

While the pursuit domain provides an interesting multiagent domain for testing

teamwork, it is still fairly simple compared to real world problems. In order to

test the scalability of our approach, it is important to also consider more complex

problems. Therefore, we also consider a simulated robot soccer domain used in the

2D RoboCup Simulation League.

The 2D Simulation League is one of the oldest leagues in RoboCup and is

therefore one of the best studied, both in competition and research. In this domain,

teams of 11 autonomous agents play soccer on a simulated 2D field for two 5 minute

halves. The game lasts for 6,000 simulation steps, each lasting 100 ms. At each of

these steps, these agents receive noisy sensory information such as their location,

the location of the ball, and the locations of nearby agents. After processing this

information, agents select abstract actions that describe how they move in the world,

such as dashing, kicking, and turning. The 2D simulation server and the full manual

that includes the perception and action models can be found online.2 This domain

is used as it provides a testbed for teamwork in a complex domain without requiring

focus on areas such as computer vision and legged locomotion.

Rather than use full 10 minute 11 on 11 game, this thesis instead uses the

quicker task of half field offense introduced by Kalyanakrishnan et al. [77]. In Half

Field Offense (HFO), a set of offensive agents attempt to score on a set of defensive

agents, including a goalie, without letting the defense capture the ball. A view of this

game is shown in Figure 3.3, and more information and videos can be found online.3

This task is useful as it allows for much faster evaluation of team performance than

running full games as well as providing a simpler domain in which to focus on ways

2http://sourceforge.net/projects/sserver/
3http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/

58

http://sourceforge.net/projects/sserver/
http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/

to improve ball control. In this thesis, we consider two versions of the HFO domain:

1) a limited version with two offensive agents and two defensive agents including

the goalie and 2) the full version with four offensive agents and five defensive agents

including the goalie. Videos of both versions of this domain can be viewed online.4.

Figure 3.3: A screenshot of half field offense in the 2D soccer simulation league.
The yellow agent number 11 is under our control, and remaining yellow players are
its externally created teammates. These agents are trying to score against the blue
defenders.

If the ball leaves the offensive half of the field or the defense captures the ball,

the offensive team loses. If the offensive team scores a goal, they win. In addition,

if no goal is scored within 500 simulation steps (50 seconds), the defense wins.

At the beginning of each episode, the ball is moved to a random location

within the 25% of the offensive half closest to the midline. Let length be the length

of the soccer pitch. Offensive players start on randomly selected vertices forming a

square around the ball with edge length 0.2 · length with an added offset uniformly

4http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_HFO

59

http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_HFO

Figure 3.4: A screenshot of a selection of random start positions in half field offense.

60

randomly selected in [0, 0.1 · length]. The goalie begins in the center of the goal, and

the remaining defensive players start randomly in the back half of their defensive

half. A variety of start conditions are shown in Figure 3.4.

Externally-created Teammates

Unlike in the multi-armed bandit and pursuit domains, we do not use hand-coded

teammates as it is difficult to define what a set of representative policies might

be in this domain. Instead, it is more productive to consider agents created for

the RoboCup competition. It is expected that these agents represent a far better

spread of possible behaviors than any hand-coded teammates, given the years of

improvements implemented for the competitions.

As part of the 2D simulation league competition, teams are required to re-

lease binary versions of their agents following the competition.5 Therefore, we use

the binary releases from the 2013 competition held in Eindhoven. These agents

provide an excellent source of externally-created teammates with which to test the

possible ad hoc team agents. Specifically, we use 6 of the top 8 teams from the 2013

competition, omitting 2 as they do not support playing games faster than real time.

In addition, we use the team provided in the code release by Helios [3], commonly

called agent2d. Therefore, there are a total of 7 possible teams that our agent may

encounter: agent2d, aut, axiom, cyrus, gliders, helios, and yushan.

In order to run some existing teams used in the RoboCup competition, it

is necessary to field the entire 11 player team for the agents to behave correctly.

Therefore, it is necessary to create the entire team and then constrain the additional

players to stay away from play, only using the agents needed for half field offense.

These additional players are moved to the other side of the field every time step.

5http://www.socsim.robocup.org/files/2D/

61

http://www.socsim.robocup.org/files/2D/

This approach may affect the players used in the HFO, but empirical tests have

shown that the teams still perform well and that our ad hoc team agent can still

adapt to these teams. We choose a fixed set of player numbers for the teammates,

based on which player numbers tended to play offensive positions in observed play.

In the limited HFO task, defensive players use the helios behavior, while in the full

HFO task, they use the agent2d behavior.

Dimension Analysis

In order to better understand the properties of the half field offense domain and

the teammates that the ad hoc agent may encounter, we can use the dimensions

described in Section 2.3. We approximate the Jensen-Shannon divergence measure

using Monte Carlo sampling. Recall from Chapter 2 that JS(P,Q) = 1
2(KL(P,M)+

KL(Q,M)) where M = 1
2(P +Q) and the Kullback-Leibler divergence is defined as

KL(P,M) =

∫
P (X) log

P (x)

M(x)

The Monte Carlo approximation is given by

K̂L(P,M) =
1

n

n∑
i

log
P (xi)

M(xi)

where M(xi) = 1
2(P (xi) + Q(xi)). As the number of samples goes to infinity, this

approximation converges to the true value of KL.

Given that the actions are also continuous, we need to consider an infinite

number of joint actions. In addition, the ad hoc agent does not directly observe the

actions of its teammates. Therefore, we use the resulting locations of the agents as

an estimate of their actions. We assume that the effects of these actions are noisy

62

modeled with a Gaussian distribution with standard deviation of 40 and 40◦ for

distances and angles respectively.

Applying this methodology with the calculation introduced in Section 2.3.1

leads us to an approximate value of 0.425 for TeamK in the limited HFO task. In

this task, the ad hoc agent knows that its teammate’s behavior is drawn from the

set of 7 potential behaviors. In the full HFO task, this methodology calculates that

TeamK ≈ 0.295.

We can similarly approximate the value of Reactivity by using the calculation

introduced in Section 2.3.3. Given that the 2D RoboCup simulator is open source

and all domain parameters are passed on to the players, the ad hoc agent completely

knows the environment dynamics. In addition, note that the opponents’ behaviors

are known by the ad hoc agent. Therefore, EnvK = (1, 1). However, it is worth

noting that it is complex to model the full domain, so in our tests, the ad hoc agent

does not explicitly model the HFO dynamics. The 7 possible teams that the ad hoc

agent may encounter have an average reactivity of Reactivity = 0.263 in the limited

HFO task and Reactivity = 0.507 in the full version of the task.

The fairly high reactivity means that the ad hoc agent can help its team

and should consider how its actions affect its teammates, especially in the full HFO

domain. In addition, the perfect environmental knowledge means that the agent

does not need to explore the environment. On the other hand, the lower teammate

knowledge means that it is helpful to explore the teammates’ behaviors, especially in

the full HFO domain, where the space of its teammates’ behaviors is larger. Notice

that these values are close to those arising from the bandit and pursuit domains.

Therefore, we once again expect that a similar approach should be effective in this

domain. However, the complexity of fully modeling the domain means that methods

63

applied to the other two domains may run into issues here. Therefore, we expect

that a model-free approach may be more effective, but using teammate knowledge

similarly should be effective. The model-free approach is analyzed in more depth

with empirical results in Chapter 7.

3.3 Chapter Summary

This chapter presents the Markov Decision Process model that we use to analyze

problems in this thesis. This model has been well analyzed in the past, resulting in

a number of effective algorithms for tackling learning how to act in domains that

fit the MDP model. Therefore, this chapter reports on the learning algorithms that

the remainder of the thesis builds upon. In addition, this chapter describes the

domains in which we explore ad hoc teamwork, as well as the teammates that our

ad hoc agent will encounter. Using these descriptions, we analyze each domain and

set of teammates using the dimensions presented in Section 2.3. A summary of

these values is given in Table 3.4. The values achieved through this analysis advise

the approach we use to tackle these problems, which is described in Chapter 5. To

better understand the problems tackled in this thesis, it is important to investigate

how the problems relate to existing research. Thus, the following chapter describes

the research relevant to this thesis.

Domain TeamK EnvK Reactivity

Bandit 0.391–1 (0.5,0.5)–(1,1) 0.150 – 0.610

Pursuit 0.156–1 (1,1) 0.717 – 0.801

Limited HFO 0.425 (1,1) 0.263

Full HFO 0.295 (1,1) 0.507

Table 3.4: Ranges of the dimensions for scenarios in the 3 domains used in this
thesis.

64

Chapter 4

Related Work

While the preceding sections discuss the research problem and the approach used

to tackle that problem, this section focuses instead on the problem of situating this

thesis in the literature. We first provide overviews of some areas that are closely

related to ad hoc teamwork, beginning with general multiagent coordination research

in Section 4.1 and then moving on to research into opponent modeling in Section 4.2.

In Section 4.3, we discuss selected works that use the domains discussed in this thesis.

Finally, we conclude with a more detailed discussion of current research on ad hoc

teamwork in Section 4.4. Any works that overlap between the other areas and ad

hoc teamwork are covered in the section on ad hoc teamwork.

4.1 Multiagent Coordination

There is a large body of research on coordinating multiagent teams, as multiagent

teams are considered an important topic for artificial intelligence research, especially

in the area of robotics. This field is too large to be surveyed completely in this

thesis, especially as the methods employed are only tangentially related to ad hoc

65

teamwork due to their strong assumptions. Instead, we discuss some methods that

best represent the core themes of research in this area.

One important algorithm for multiagent coordination is STEAM [124], which

builds upon the SharedPlans coordination algorithm [58] as well as the joint inten-

tions framework [87]. STEAM accomplishes a shared joint task using a flexible

architecture for representing team plans through a hierarchical decomposition tree.

Agents keep their beliefs consistent with the rest of the team through the use of com-

munication. In addition, agents monitor the progress of their plans, repairing these

plans as conditions change. STEAM allows developers to specify general rules as well

as domain specific rules, allowing it to be easily applied to new domains. STEAM

has been shown to be effective for a wide array of domains including RoboCup and

large-scale military simulations. STEAM represents a sophisticated approach for

coordinating multiagent teams through intelligent rules for task decomposition and

shared communication protocols. While this method are very effective for organized

teams, they require all of the agents to share the same rules and communication

protocols. Therefore, it is difficult to apply STEAM to ad hoc teams, where we

cannot assume that all agents will have this shared background.

Another approach to coordinating multiagent teams is the Generalized Par-

tial Global Planning (GPGP) framework [41]. GPGP allows for a number of modular

coordination mechanisms. Compared to STEAM, GPGP represents a more decen-

tralized, dynamic approach for team coordination. Agents in GPGP have a set of

individual plans that represent different ways that goals can be achieved. Agents

begin by ignoring their teammates and then use communication to figure out the re-

lationships between their tasks. Using these relationships, agents can build a model

of tasks and create a plan that accomplishes their goals. While GPGP builds plans

66

in a less centralized fashion than STEAM, it still requires all of the agents to share

a common communication protocol as well as a similar way of representing tasks

and plans. Therefore, GPGP is not directly applicable to ad hoc teams, where the

agents may not know how to communicate with one another and may model tasks

very differently.

STEAM and GPGP expect that agents know the team’s goal as well as the

tasks required to accomplish the goal. The difficulty arises from how to assign agents

to different tasks and how to order these tasks. However, another line of research

explores domains in which this information is not known; instead, agents must learn

the tasks required to accomplish their goals. Multiagent learning is a broad field,

including homogeneous and heterogeneous teams with and without communication.

Importantly, multiagent learning research covers fully cooperative, fully competitive,

and partially competitive settings. We discuss a representative publication in the

fully cooperative setting as it most closely compares to the fully cooperative setting

of ad hoc teamwork. The fully competitive setting is discussed in Section 4.2.

Lauer and Riedmiller’s work introduces Distributed Q-learning [85] for learn-

ing in multiagent, fully cooperative settings. The authors model the problem as a

multiagent MDP and adopt a model free approach. In Distributed Q-learning, each

agent maintains a local policy and Q-value function that depends only on its own

actions. The local Q-value function is only updated when the update leads to an

improvement, ensuring that the local Q-value maintains the maximum value of the

joint-actions. Using this approach, the agents’ policies converge to the optimal joint-

actions in deterministic domains. The distributed Q-learning approach is effective

for learning intelligent team behaviors, but, like many cooperative multiagent learn-

ing algorithms, it assumes that the whole team follows the same algorithm. If agents

67

deviate from this approach, the team’s performance will suffer. Thus, distributed

Q-learning is not directly applicable to ad hoc teamwork settings, where teammates’

behaviors may deviate significantly from that expected by distributed Q-learning.

Many other approaches take a similar high-level approach to learning in multiagent

systems [79, 47, 132, 125], and more information about multiagent reinforcement

learning can be found in Busoniu et al.’s work [33].

Multiagent coordination is a large and growing area of research. While this

section only presents a small number of papers, these publications represent some

core approaches to the problems faced in multiagent coordination. Methods for

coordinating multiagent teams largely rely on specifying standardized protocols for

communication as well as shared algorithms for coordination. These approaches

do not directly apply to ad hoc teams given their strong assumptions about this

sharing of prior knowledge. In comparison, PLASTIC does not require any shared

communication or coordination protocols and does not assume that the teammates

are necessarily adapting to the ad hoc team agent.

4.2 Opponent Modeling

The work discussed in the previous section assumes that the whole team is coop-

erative, trying to accomplish a shared goal. Another scenario that may occur in

multiagent teams is the fully competitive setting, where agents attempt to achieve

mutually exclusive goals. Opponent modeling research explores this problem, ex-

plicitly modeling the other agents in the domain. While research into cooperative

teams appears to be more similar to ad hoc teamwork given that agents are trying

to accomplish shared goals in both settings, opponent modeling is often more similar

to ad hoc teamwork. This similarity stems from the importance of understanding

68

and reasoning about the other agents in the domain in opponent modeling, which is

also necessary for robust ad hoc team agents. Rather than trying to represent the

entire field of opponent modeling, this section summarizes some of the major lines

of inquiry into the problem that are relevant to this thesis.

One such line of inquiry is theoretically motivated, exploring what can be

proven about interacting with opponents. An algorithm that shows this reasoning

is the AWESOME algorithm [38]. AWESOME is a learning algorithm for repeated

normal form games. When it plays against opponents that use the same algorithm,

the AWESOME agents will converge to playing the Nash equilibrium, the optimal

behavior if all agents are rational. When playing against stationary opponents, an

AWESOME agent learns to exploit them optimally. These results show that the

same algorithm can exploit simple opponents while still not getting exploited by

smart agents. In the same vein of theoretical analysis, Chakraborty and Stone de-

veloped the CMLeS algorithm [35]. CMLeS extends to exploiting memory-bounded

teammates while retaining the convergence to the Nash equilibrium in self play.

CMLeS reverts to playing a maximin strategy when playing adversaries that are

not memory-bounded, retaining good payoffs in the worst case scenario.

This style of theoretical approaches to opponent modeling leads to algorithms

that handle the worst case scenario of other agents very well. If the other agents in

the domain are fully competitive and are intelligent, this type of algorithm ensures

that our agent will not be exploited. However, in the ad hoc teamwork scenario,

we can treat the other agents in the domain as teammates. Rather than expecting

them to exploit any weakness our agent exhibits, we can assume that they are trying

to accomplish a shared goal. Therefore, we can reason more about the common

case rather than the worst case scenario, which allows us to design algorithms that

69

learn more quickly. This line of research in extended to the ad hoc team scenario

in a more recent paper by Chakraborty and Stone [36] discussed in Section 4.4.

Other researchers use a similar approach to theoretically analyze how to adapt to

opponents’ behaviors [26, 28, 67, 47].

Another exciting line of opponent modeling research is into using game the-

ory to solve real world security problems. For example, Korzhyk et al. [83] discuss

the use of the Stackelberg game model to design intelligent strategies. This work

has been applied for deploying security at the LAX airport as well as scheduling the

US Federal Air Marshals. In Stackelberg games, the leaders act first, and their op-

ponents can observe these actions before responding. The solution to this problem

is robust to the opponents’ actions, minimizing the risk. This paper shows that in

some scenarios, any Stackelberg strategy is also a Nash equilibrium strategy. Addi-

tionally, this paper shows that in other scenarios, Stackelberg and Nash strategies

differ. This line of research shows that game theoretic approaches can be applied to

real world problems with great effect, minimizing the resources required to protect

a resource while maximizing its safety. These assumptions differ from that of ad hoc

teamwork in that other agents are assumed to be opponents rather than teammates.

In addition, the authors generally assume that opponents are intelligent and observe

the agent’s actions (e.g. [72, 110, 136]), though they relax that assumption in this

work [83]. In ad hoc teamwork, there is no guarantee that the other agents are as

intelligent as the ad hoc agent, so expecting them to optimally adapt to the ad hoc

agent’s actions is not reliable.

One more avenue of research that combines theoretical analysis with empir-

ical results is in the area of computer poker. For example, Bard et al. [14] look at

how to adapt to an opponent’s strategy in heads-up limit Texas hold’em poker. The

70

authors approximate the Nash equilibrium strategy through the use of counterfac-

tual regret (CFR) [141], which limits the amount that their agent can be exploited.

In order to exploit weaknesses in other players, it is possible to compute the best

response strategy to their strategies. However, if the opponents’ strategies are not

completely known or if the opponents adapt, this best response strategy can in turn

be exploited. Therefore, it is desirable to limit the amount of adaptation that is per-

formed given the limited information about the opponents. Rather than explicitly

modeling the opponent’s behavior, Bard et al. use an implicit model that summa-

rizes its opponents with a portfolio of counter strategies that are computed offline.

These counter strategies are limited best responses, adapting to the opponents, but

not allowing this adaptation to add too much exploitability. Then, their agent se-

lects between these strategies online, treating this selection as a bandit problem. To

aid in this selection, their agent uses variance reduction to estimate the effectiveness

of the strategies and prunes the number of strategies in the portfolio. PLASTIC is

related to this approach. Instead of computing the Nash equilibrium, PLASTIC can

plan knowing that the other agents are trying to cooperate. Rather than limiting

the best response to teammates, PLASTIC can use the full best response given that

it does not need to worry about its teammates exploiting it. In addition, we improve

over using bandit selection algorithms, instead using updates based on Bayes’ rule.

Opponent modeling is closely related to ad hoc teamwork. Both areas revolve

around modeling and adapting to other agents in the domain. However, opponent

modeling expects that other agents are intelligent opponents that are trying to

exploit our agent. This assumption requires algorithms to focus on bounding the

worst case scenario and never make mistakes. Ad hoc teamwork is more forgiving,

given that the other agents are assumed to be teammates, so exploring more and

71

learning more quickly is considered safe.

4.3 Experimental Domains

In addition to seeing how this thesis relates to work on multiagent teams and oppo-

nent modeling, it is also helpful to see how it relates to prior research on the domains

used in the thesis. The three domains explored in this thesis are well studied do-

mains in research into artificial intelligence. This sections gives a brief overview of

the most relevant research on these domains.

4.3.1 Multi-Armed Bandits

The first domain used in this thesis is the multi-armed bandit (MAB) problem,

which has been studied extensively [23]. The bandit problem is interesting due to

its simplicity, while still modeling the trade-off between exploration and exploitation.

Many decision making problems can be modeled as bandit problems, leading it to be

an area of continued research. It is a well studied problem in economics in addition

to its presence in the artificial intelligence literature. While the vast majority of

research in this area focuses on the single agent setting, several variations have

been considered in which there are multiple agents that can observe the actions or

outcomes of each other. We discuss a selection of these multiagent bandit settings

here.

One multiagent version of the bandit domain was investigated by Keller and

Rady [80]. In this scenario, there are two arms: a predictable arm that returns a

small positive payoff and a risky arm that distributes lump-sum payoffs according

to a Poisson distribution. In this work, Keller and Rady construct an asymmetric

equilibrium in which the agents take turns pulling the risky arm. Their experiments

72

explore giving agents rewards for pulling the risky arm, finding that having too high

of a reward may decrease average payoffs in some cases. The focus of this work is in

designing the right incentives to encourage the agents to explore the riskier option.

This work differs from ad hoc teamwork in that the behaviors of both teammates

follow fixed policies and the focus is on how the problem designer can modify the

incentives to achieve good team performance.

Another line of research into multiagent teams in the bandit domain is the

work by Aoyagi [12]. Aoyagi focuses on a two-armed bandit problem with multiple

players that can only observe the actions of other players rather than the outcomes

of these actions. This information reveals some information about the other players’

beliefs about the payoffs of the arms. Under some restrictions of the arms’ payoff

distributions, he proves that all players will settle on the same arm. This work

shows that agents can coordinate without explicit communication, reaching the same

conclusions about the effectiveness of different actions. This work differs from the

work in this thesis in that the agents in Aoyagi’s formulation are not teammates

sharing rewards. In addition, we explore how explicit communication can help the

team’s performance.

Explicit communication in the bandit domain is investigated by Goldman et

al. [54]. In this work, the authors consider agents that are learning to communi-

cate and explore how to handle issues such as misinterpretation of messages. They

introduce a theoretical framework for analyzing the problem where agents learn to

communicate and maximize system performance simultaneously. Then, the authors

go on to show that solving the problem optimally is often intractable. Despite this

difficulty, the authors propose an approach that allows agents to converge on a

common language and empirically show the effectiveness of this approach. Given

73

that they assume very little about the meaning of messages, their approach needs

to learn over a long period of time compared to PLASTIC in our bandit domain.

This faster adaption is enabled by the assumption that all agents share a common

language for communicating, though the ad hoc agent does not necessarily know

how its messages will be used by its teammates.

In summary, the bandit domain is a well studied problem for investigating

decision making tasks. The majority of work in the bandit domain considers the

single agent case, but there is some work on the multiagent setting, e.g. [75, 91, 121].

However, these works differ from ours in whether the authors control the whole

team’s behavior and how communication is used. There has also been prior research

into ad hoc teamwork in the bandit domain, which is discussed in Section 4.4.

4.3.2 Pursuit Domain

The second domain explored in this thesis is the pursuit domain. Isaacs performed

seminal research on pursuit and evasion [70], and the problem was further explored

by Benda et al. [22]. Benda et al. explore varying the predators’ ability to com-

municate, even considering a central strategy, but with communication carrying a

cost. In this setting, communication may be limited or may lower the amount of

computation time taken per step. Many variants of the pursuit domain have been

investigated as it remains a useful domain for evaluating teamwork algorithms. This

section only covers a sampling of relevant research, but more research into the range

of research possibilities in the pursuit domain is explained in the survey paper by

Stone and Veloso [118].

Most previous research focused on developing coordinated predators before

deploying them, rather than learning to adapt to unseen teammates. Some of the

74

versions of the pursuit domain are increasingly difficult, due to noise and partial ob-

servability. One recent example of this type of research is the work by Undeger and

Polat [129]. The authors consider a version of the pursuit problem with a continu-

ous, partially observable environment that contains obstacles. In this work, the prey

intelligently plans its actions to avoid capture, requiring more intelligent coordina-

tion by the predators. To address this problem, Undeger and Polat introduce the

MAPS algorithm, which uses two coordination strategies to position the predators

in locations to cover possible escape directions of the prey. This work represents a

foray into the coordination required in complex versions of the pursuit domain. In

this thesis, we consider a simpler version of the pursuit domain, but do not assume

that the team shares a common coordination algorithm.

Another investigation of the pursuit domain is that of Ishiwaka et al. [71],

which considers heterogeneous agents in a continuous state-action world with partial,

noisy observations. In this work, the authors investigate how the predators can learn

online using Q-learning. The predators attempt to predict the locations of the other

agents as well as the movement of the prey. Similar to ad hoc teamwork, not all

of the agents use the same behavior. The predators start as homogeneous agents,

but diverge during the learning process, specializing in parts of the task. This work

presents one approach to incorporating agents with differing action policies that

learn to adapt to each other. Compared to this thesis, this learning takes place

over a much longer time, though it considers a more complex version of the pursuit

domain. In addition, while the agents learn different policies, they do employ the

same learning algorithm.

One work that investigates when agents have differing amounts of knowledge

about the domain was performed by Chakraborty and Sen [34]. These authors

75

examine a pursuit scenario in which experienced agents attempt to teach novice

predators. This work requires that the agents share a known training protocol,

where the expert selects example situations to train and teach the novice agent.

This framework allows the novice agents to have different learning algorithms and

knowledge representations from that of the experts. While this work investigates

how an agent can learn to adapt to its teammates, it is not directly applicable to

ad hoc teamwork due to its reliance on a shared training protocol.

In summary, the pursuit domain is commonly used to explore multiagent

coordination. Some of this work focuses on scaling these coordination algorithms

to more complex versions of the pursuit domain. Other work explores teams with

heterogeneous behaviors or how to teach and learn from other teammates. While

research on the pursuit domain pushes multiagent research in exciting directions, it

largely requires teams to share some kind of coordination protocols, which are not

available in ad hoc teamwork scenarios.

4.3.3 RoboCup

The final domain used to evaluate PLASTIC in this thesis is the 2D simulation

league from RoboCup. RoboCup is an annual robotics competition where teams

from around the world compete on a number of tasks. It serves as a common do-

main to test many artificial intelligence algorithms and pushes research in robotics.

RoboCup pushes research in a number of areas, including walking [21, 46, 55, 92], po-

sitioning [4, 95], and vision [30, 63]. Instead of discussing all research from RoboCup,

we discuss the most relevant papers on the multiagent aspects of it, specifically

looking at designing teamwork, analyzing teamwork, and modeling opponents in

RoboCup.

76

One early exploration of learning in the RoboCup simulation domain was

performed by Stone [116]. This book describes a flexible team structure as well as

a novel learning approach called layered learning. Furthermore, it introduces a new

multiagent reinforcement learning algorithm and describes the resulting complete

team. This work shows the complexity of the domain as well as the novel research

motivated by RoboCup. In particular, it introduces the concept of a “locker-room

agreement.” Locker-room agreements are pre-determined multiagent protocols that

define the flexible teamwork structure and the inter-agent communication protocols.

However, this work relies on the entire team sharing this locker-room agreement,

which cannot be assumed in ad hoc teamwork.

Another aspect of research in RoboCup is how to characterize the teams’

behaviors in these complex multiagent systems. Almeida et al. [10] explore this

problem in the RoboCup 2D simulated robotic soccer league, using logs of play as

their input information. The authors explore the complexity of team’s behaviors

as well as discovering guidelines for creating new plans for teamwork. This work

represents how one might characterize a team’s behaviors, similar to how an ad hoc

agent may wish to understand its teammates’ behaviors. However, the proposed

approach requires a substantial amount of observations of the team, which is not

usually available in ad hoc teamwork scenarios.

One set of online adaptations to other agents is from the Small Size League

(SSL) of RoboCup. Biswas et al. [24] explore how to plan about opponents’ strate-

gies. Their approach attempts to pull opponents out of position, leaving openings

that their strategy can then exploit. In addition, they detect potential threats based

on the positions of opponents and adapt to defend these threats. These online adap-

tations show that agents can adapt to other agents in the domain on the fly, in just

77

a single game. While this general approach could be applied to other multiagent

settings, the current version of it relies on strong assumptions about the domain.

For example, this work tries to encourage specific opponents to mark their players,

pulling them out of position for the planned play.

RoboCup encourages a substantial amount of research into multiagent sys-

tems in complex domains. The majority of this research focuses on coordinated

teams of agents and is thus not directly applicable to ad hoc teamwork.

4.4 Ad Hoc Teamwork

While previous sections explore different aspects of multiagent research, the most

relevant research to this thesis is in the area of ad hoc teamwork. Ad hoc team-

work has been explored under various names and methodologies over recent years.

However, the problem formulation and evaluation framework used in this thesis was

proposed by Stone et al. [119] in a 2010 AAAI challenge paper. This paper has

encouraged the growth of the field, leading to an increase in the amount of research

exploring this exciting area. The remainder of this section identifies and summarizes

work in this field.

The types of problems that these works address are summarized in Table 4.1.

We evaluated each of the works on a number of axes. The first axis is whether they

control an agent’s actions, i.e. whether the output of the ad hoc teamwork algorithm

is direct control decisions (a policy) for one or more agent’s behavior on the team.

Almost all algorithms surveyed do directly output a policy. The notable exception

along this axis is Liemhetcharat and Veloso’s work [89] where the task is to select a

team instead of control an agent acting on a team. Then, we look at whether these

approaches consider multiple teammates followed by whether these teammates are

78

unknown to the ad hoc agent prior to the beginning of the interaction. We continue

by looking at whether these papers evaluate their approaches in a domain more

complex than the bandit domain or matrix games. Next, we evaluate whether these

approaches are generally applicable or specific to the domain studied. Additionally,

we consider the speed that the ad hoc agent adapts: whether it can learn over the

course of a handful of interactions. Finally, we consider whether the approaches can

automatically reuse knowledge learned about previous teammates. As shown in the

table, this thesis is the first to address all of these issues using a single algorithm.

Paper
Control Multiple Unknown Evaluated in a Generally Adapt Automatically
Agent Teammates Teammates Complex Domain Applicable Quickly Reuse Knowledge

Stone and Kraus (2010) [117] Yes No No No No Yes No

Barrett and Stone (2011) [15] Yes No No No No Yes No

Brafman and Tennenholtz (1996) [29] Yes No No No No No No

Stone et al. (2010) [120] Yes No No No No Yes No

Agmon and Stone (2012) [1] Yes Yes No No No Yes No

Agmon et al. (2014) [2] Yes Yes Partially No No Yes No

Chakraborty and Stone (2013) [36] Yes No Yes No No No No

Hao et al. (2014) [61] Yes Yes No No No No No

Wu et al. (2011) [134] Yes No Yes No Partially No No

Albrecht and Ramamoorthy (2013) [5] Yes Yes Partially Yes Yes Yes No

Wray and Thompson (2014) [133] Yes Yes No Yes No Yes No

Bowling and McCracken (2005) [27] Yes Yes Partially Yes No No No

Jones et al. (2006) [73] Yes Yes No Yes Partially Yes No

Su et al. (2014) [122] Yes Yes No Yes No Yes No

Han et al. (2006) [60] Yes Yes No Yes No Yes No

Genter et al. (2013) [52] Yes Yes No Yes No Yes No

Genter and Stone (2014) [51] Yes Yes No Yes No Yes No

Liemhetcharat and Veloso (2014) [89] No Yes Yes Yes Yes No No

This thesis Yes Yes Yes Yes Yes Yes Yes

Table 4.1: This table shows existing research into ad hoc teamwork and what types
of problems they address. None of these papers address the combination of problem
types that we address in this thesis.

We report the current state of research into ad hoc teamwork in Section 4.4.1

before exploring one area of research in more depth in Section 4.4.2, namely that of

the drop-in player challenge held at RoboCup. Then, Section 4.4.3 discusses other

models that can be used to formalize problems including ad hoc teamwork scenarios.

Finally, we describe where these domains lie on the dimensions of ad hoc teamwork

problems in Section 4.4.4.

79

4.4.1 Survey of Ad Hoc Teamwork

A significant portion of research on ad hoc teamwork takes a theoretical approach to

the problem. These approaches focus on simple settings such as the bandit domain

or matrix games and try to prove the optimality of their approach under certain

conditions. Other researchers focus on empirical approaches, showing that their

algorithms apply to ad hoc teamwork problems in practice. Let us first consider

theoretical contributions coming from analysis of ad hoc teamwork in the bandit

domain.

One example of the theoretical approach using the bandit domain is Stone

and Kraus’s research [117]. In this work, the authors consider a multiagent version

of the setting with a knowledgeable agent attempts to teach its novice teammate.

The knowledgeable agent knows the true distributions of the arms while the novice

agent starts with no initial knowledge about the arms. The authors only control the

knowledgeable agent, which is called the teacher. This work differs from existing

teaching literature in that the teacher is embedded in the domain, so its teaching

actions have an explicit cost. They consider the case where the agents know the

number of time steps remaining and have undiscounted rewards. We expanded this

work to the discounted reward setting with infinite pulls [15]. This line of research

proves that the ad hoc agent acting as teacher can optimally lead its teammate to

achieve the best team payoff. These papers differ from the work in this thesis in

that they assume that the novice teammate’s policy is known and their results are

only directly applicable to the bandit domain, while we consider domains that are

too large to be proven to be tractable in a similar fashion.

While the bandit domain allows for multiagent research, the majority of work

on it is single agent and therefore not focusing on the ad hoc teamwork problem.

80

A more common domain for looking at interactions between agents is in matrix

games, where agents act simultaneously and receive rewards. This domain allows

for multiagent interactions, but remains simple enough for theoretical analysis.

An early paper that looks into ad hoc teamwork in matrix games was that

of Brafman and Tennenholz [29]. In their paper, they investigate agents performing

a repeated joint task, where one agent attempts to teach a novice agent. The

authors could only affect the ad hoc agent, i.e. the agent acting as a teacher. In this

work, they use a game-theoretic framework and only consider teammates that either

maximize their expected utility or use reinforcement learning. Overall, they consider

a number of strategies for the agent to play, including a reinforcement learning agent

as well as some well established hand-coded policies. In different settings, they find

different approaches work better, and conclude that effective agents in this domain

need to reason about how to punish and reward their teammates to affect their

actions. This thesis explores more complex domains than those used in this work,

considers unknown teammates, and uses more types of teammates.

Building on this idea, Stone et al. [120] investigate ad hoc teamwork in matrix

games with a theoretical focus. They explore how an ad hoc agent should cooperate

with a best response teammate while maximizing the team’s shared rewards. Best

response agents choose the action that gives the highest payoff assuming that its

teammates continue playing their last observed action. In this work, the ad hoc

agent knows the payoff matrix as well as the teammate’s behavior, so the difficulty

is to plan the optimal path to lead the best response teammate to the best payoff.

This work was expanded by Agmon and Stone [1] to include more than one team-

mate. Agmon and Stone show that the best payoff is not always reachable when

the team is larger than two agents, but they come up with a way of describing the

81

optimal team payoff as the optimal steady cycle and show how to lead a team to that

cycle. This work was further expanded to the case where the teammates’ behaviors

are not fully known [2], instead assuming that the ad hoc agent knows that its team-

mates are using a behavior from a known set. A common approach to uncertainty

in matrix games is to assume the worst case scenario, which in this setting corre-

sponds to the teammates following the weakest behavior from the set. However,

this paper shows that incorrectly assuming that the teammates are following the

weakest behavior can lead to long term poor payoffs even after more information is

gathered. Therefore, the authors describe an algorithm, REACT, for balancing the

potential costs of different assumptions about the teammates’ behaviors and show

that REACT empirically performs well on a large number of matrices. This line

of research differs from that of this thesis due to its focus on theoretical analysis,

which limits the work to the simple matrix game setting. In addition, this thesis

considers a wider range of possible teammate behaviors as well as cases where the

ad hoc agent has less knowledge of its teammates.

Stone et al. [120] and Agmon and Stone [1] both assume that the teammates’

behaviors are known, though Agmon et al. [2] relax this assumption, instead assum-

ing that the teammates’ behaviors are drawn from a known set. Chakraborty and

Stone [36] further relax this knowledge of the teammates’ behaviors in ad hoc team-

work scenarios in matrix games. This work extends earlier work by Chakraborty and

Stone [35] for opponent modeling, as discussed in Section 4.2. The authors propose

a new algorithm, LCM, that tries to achieve optimal performance with teammates

that use a limited features derived from the history. With other teammates, LCM

ensures that the team receives the security value of the matrix game. LCM does

this by determining which features best explain its teammate’s behavior, and, if no

82

set of features explains its behavior, LCM reverts to playing the safety strategy.

This approach performs optimally with some teammates, but this form of learning

takes substantially longer than PLASTIC. Unlike PLASTIC, LCM does guarantee a

safety value with any teammates, but in practice this safety value is often low com-

pared to what the team could receive and ensuring a safety value in more complex

tasks requiring coordination is often impossible.

While Chakraborty and Stone’s work [36] performs very well, it requires

complex calculations and reasoning. An approach to simplifying ad hoc teamwork

in matrix games was explored by Hao et al. [61]. They explore how agents can

coordinate under the networked social learning framework. This research proposed

two types of learners: one that models its teammates as part of the environment and

one that considers the joint actions with its teammates. The authors explore how

the neighborhood size of the agents affects these two approaches. This work focuses

on how the other agents affect the learning process. As opposed to this thesis, this

work considers agents with a shared learning approach, instead investigating the

effects of network topology on learning.

While matrix games serve as a good testbed for looking at interactions be-

tween agents in ad hoc teamwork scenarios, they are limited to stateless interactions.

Wu et al. [134] scale theoretical analysis of ad hoc teamwork to some more complex,

though still theoretically tractable, domains. In this work, the authors investigate ad

hoc teamwork with few assumptions about the behaviors of the teammates. Their

ad hoc agent plans using MCTS and uses biased adaptive play to predict the ac-

tions of teammates. Biased adaptive play can be used to estimate the policies of

teammates from their previous actions. They test their agent on three domains:

cooperative box pushing, meeting in a 3 × 3 grid, and multi-channel broadcast.

83

They consider the case where the ad hoc agent knows the environment, but not

its teammates. These teammates are referred to as unknown teammates (UTM),

and two types of teammates are used in each domain: UTM-1 agents that follow

a fixed set of actions and UTM-2 agents that try to play the optimal behavior but

have partial observations. Their work shows that their approach can adapt to these

teammates to accomplish their tasks. While this work explores several domains,

all of the domains used are fairly simple. Additionally, their ad hoc agent is given

a large amount of expert knowledge and the set of possible teammates is limited

compared to this thesis.

Another approach to scaling ad hoc teamwork beyond only matrix games

is the work of Albrecht and Ramamoorthy [5, 6], though they also consider ma-

trix games in their work. In this work, they consider the case where the ad hoc

agent is given a set of possible types of its teammates and introduce a new formal

model to represent this problem. In their setting, the problem is for the ad hoc

agent to determine the type of its teammates. Their approach (HBA) combines

the idea of Bayesian Nash equilibria with the Bellman optimality equation. HBA

maintains the probability of each of the provided teammate types and maximizes its

expected payoffs according to the Bellman principle. In later research [7], Albrecht

and Ramamoorthy explore the convergence bounds of HBA. Specifically, they prove

convergence bounds when an ad hoc agent knows its teammates are drawn from

a known set and consider how accurate the expert-provided types need to be for

HBA to solve its task. This line of research is closely related to that of this thesis,

but differs in some notable ways. Given the similarity of HBA and PLASTIC, we

expect that much of their analysis could be generalized to PLASTIC. However, we

also consider scenarios where the ad hoc agent is not provided with expert knowl-

84

edge about possible teammates and uses PLASTIC to reuse knowledge learned from

previous teammates. Furthermore, we show that PLASTIC scales to more complex

domains than those used to evaluate HBA.

While theoretical analysis of problems can create exciting new algorithms for

ad hoc teamwork, an important question is how well these algorithms fare in more

complex empirical analyses. One line of research that considers a more complex ad

hoc teamwork scenarios is that of Wray and Thompson [133]. They look at a problem

with a continuous state space with limited observability. In this work, the authors

investigate a version of the pursuit domain, where a number of predators that have

to intercept an unknown number of prey without any explicit communication. The

key problem in the domain is for predators to avoid trying to capture the same

prey. Their solution employs fictitious play to dynamically assign predators to

prey despite the limited information. While the authors focus on a more complex

version of pursuit than is used in this thesis, their agents know more about their

teammates. Though they do not know the prey that these predators will try to

capture, they know how the other predators decide which prey to capture and employ

this information to prevent the predators from attempting to capture the same prey.

In addition, their work only explores how to match predators to prey as opposed to

the more complex coordination required in this thesis.

While Wray and Thompson [133] consider a more complex domain, the nec-

essary coordination between agents is limited to ensuring that the predators do not

pursue the same prey. A work that looks at more complex coordination in ad hoc

teams is that of Bowling and McCracken [27]. In the domain of robot soccer, Bowl-

ing and McCracken measure the performance of a few ad hoc agents, where each ad

hoc agent is given a playbook that differs from that of its teammates. In this paper,

85

a play refers to a team plan that specifies when the play applies, termination condi-

tions, and roles for the players. In this domain, the teammates implicitly assign the

ad hoc agent a role, and then react to it as they would any teammate. The ad hoc

agent analyzes which plays work best over hundreds of games and predicts the roles

that its teammates will play. This work explores a very similar setting to that used

in this work, though it learns over a significantly longer time scale. However, they

focus on agents that are similarly designed but have a different playbook, rather

than completely unknown teammates. In addition, their approach relies on having

a playbook of possible plays that specifies roles for all agents on the team. In many

domains, agents may not have such a playbook, so this approach cannot be directly

applied to these domains.

Jones et al. [73] also consider robotic ad hoc teams, but they expand their

analysis to heterogeneous robots. The authors explore ad hoc teams operating in

the treasure hunt domain and implement their algorithms on real heterogeneous

robots searching new environments for treasure. The authors focus on how agents

can allocate roles amongst a team in a decentralized fashion. However, they assume

that the agents share a communication protocol that they use to bid on different roles

in an auction as well as a shared coordination protocol for how to assign tasks given

this communication. This thesis explores scenarios in which these shared protocols

do not exist, as they may not always be present in ad hoc teamwork scenarios.

Another work that considers how to allocate roles or tasks on a team in a

decentralized fashion is that of Xing Su et al. [122]. The authors explore ad hoc

teamwork in disaster response scenarios. They look at how to allocate tasks under

spatial and communication constraints by having the agents elect leaders in a decen-

tralized system. This approach allows the agents to limit communication costs while

86

maintaining good allocations and allows the agents to adapt dynamically during task

execution. Unlike this thesis, they assume that the agents share a communication

and coordination protocol and focus on how a team can adapt without starting with

any structure to the team.

While the previous works mainly focus on small teams of agents, there is

also research into how to affect large teams of agents. Specifically, researchers have

investigated how to use a small number of agents under their control (ad hoc agents)

to affect the behavior of flocks of agents, such as flocks of birds or fish. The ad hoc

agents encourage the team to reach a specified goal. This work spans some of the

space between theoretical and empirical approaches. An early paper in this area was

written by Han et al. [60], prior to Stone et al.’s formulation of ad hoc teamwork.

This work focused on adding a “shill” agent to the flock, that corresponds to the

ad hoc team agent in our terminology. This agent was designed by the authors and

attempts to move the flock in a desired direction. Agents in the flock are based on

the Boid model [106]. in which each agent chooses its current heading by averaging

the heading of its neighbors located within some radius. Further research on this

line includes the work of Genter et al. [52] and Genter and Stone [51]. This research

proves bounds on the number of actions required to control the flock’s behavior. In

addition, they provide an algorithm that empirically outperforms other methods by

using short-term lookahead planning. The authors expand the problem to consider

multiple ad hoc agents. This line of research differs from this thesis in that it focuses

on scenarios in which the teammates’ behaviors are known, rather than needing to

learn about teammates. The difficulty of their problem is in planning the optimal

behavior rather than balancing exploring the teammates’ behaviors and exploiting

the current knowledge.

87

While the previous works all consider how an ad hoc agent should act to

improve the performance of its team, another consideration is how to choose agents

to form a new team given a much larger set of possible agents. Liemhetcharat and

Veloso [89] explore this idea, selecting which agents will form a new ad hoc team.

Given that different agents are better at performing different roles on the team, it

is important to select agents that fill the roles in a beneficial way. In addition, there

are synergies in the team, where some pairs of agents work better with each other

than with other agents. These complexities lead to interesting questions into how

to select teammates from this set of agents. The authors come up with a novel

representation of this problem, called a synergy graph, and show how to learn this

graph. While it also investigates ad hoc teamwork, this research focuses on the

problem of selecting agents for an ad hoc team rather than the question explored in

this thesis, how an agent should act on the ad hoc team.

In summary, this section presented a survey of the research on ad hoc team-

work that is relevant to this thesis. Table 4.1 gives an overview of these works,

describing where they fall on a number of axes. Table 4.1 shows that none of these

works address all of the problems tackled in this thesis. A large amount of these

works focus on simple domains and provide theoretical analyses. In addition, a

substantial number of them assume that they know their teammates or share some

communication or coordination protocols, but these works are still ad hoc teamwork

because not all agents are designed by the same developers and the provided proto-

cols are decentralized. However, these works do not consider the ad hoc teamwork

problems investigated in this thesis, where the teammates may be completely un-

known prior to the coordination. Finally, this thesis is the only work that we are

aware of that learns about previous teammates and reuses this knowledge to quickly

88

adapt to new teammates.

4.4.2 Drop-in Player Challenge

One especially relevant area of research into ad hoc teamwork is the drop-in player

challenge that was held in the 2013 and 2014 RoboCup competitions in the standard

platform league, the 3D simulation league, and the 2D simulation league [94]. The

Standard Platform League (SPL) involves teams of 5 humanoid Nao robots.1 These

robots play on a color-coded field that has no unique markers, and robots need to

figure out the locations of important objects using two cameras mounted in the

head. The 3D simulation league uses robot models based on the Nao robots in

a physics-based simulation called SimSpark.2 Games in this league involve teams

of 11 robots, where robots receive noisy observations of objects on the field. This

information allows developers to concentrate on higher level team coordination than

in SPL, while still retaining the complexity of humanoid robot control. The 2D

simulation league is described in Section 3.2.3 and involves teams of 11 robots on

a simulated 2D pitch. These robots receive noisy observations and act using higher

level movement commands, allowing teams to concentrate on team behaviors more

than in the 3D simulation league.

The drop-in player challenge involved having players from different teams

attempt to combine to form a coherent team without any prior coordination. These

teams then played other teams created in the same fashion, and the different players

were evaluated based on their contributions to the team. All leagues used the scor-

ing differential between teams containing each agent to measure their contributions,

which matches the evaluation paradigm presented in Section 2.2. The standard plat-

1http://www.aldebaran.com
2http://simspark.sourcforge.net

89

http://www.aldebaran.com
http://simspark.sourcforge.net

form league refined these scores by additionally including scores from human judges,

which rated agents based on their subjective perceived teamwork performance. Play-

ers were given a common format for communicating basic information such as their

location and that of the ball.

In the 2013 SPL competition, teams did not release any reports about their

behavior, so we can only report about the behaviors of the team in which we were

directly involved, UT Austin Villa. UT Austin Villa employed the same basic strat-

egy as in the main competition, where agents bid on chasing the ball and the other

players are assigned to field positions based on their current locations. In the drop-in

setting, our agent estimated the bids of its teammates and assumed that its team-

mates would move to the “assigned” positions. While this approach worked to some

degree, its effectiveness was limited by other agents’ problems with communication

and due to its strong assumptions.

The following year, in the 2014 competition, UT Austin Villa changed its

behavior to use a potential-based positioning system. Robots tried to avoid being too

close to their teammates while being attracted to the ball and a defensive position

between the ball and their own goal. The chaser was decided based on communicated

preferences as well as robots’ positions relative to the ball. This approach worked

adequately, but was limited by issues with the low level skills.

In the 2014 SPL competition, teams were required to compete in the drop-in

challenge and also to write a short description of their behaviors.3 The descriptions

indicate that most teams played a behavior similar to their behavior in the main

competition. Most teams listen to the other players and let the player closest to the

ball play a chasing role and otherwise play a field role. These roles vary based on the

team, either playing a defensive role to block shots or playing upfield to wait for a

3https://tzi.de/spl/bin/view/Website/DropinStrat2014

90

https://tzi.de/spl/bin/view/Website/DropinStrat2014

pass. Often these roles were selected statically, so any adaptation was performed by

the developers choosing which role their robot should play or based on dynamically

avoiding other players as obstacles. The B-Human team did additionally track the

trustworthiness of its teammates and used this information when deciding whether

to chase the ball. The majority of teams did not specially design behaviors and

strategies for the drop-in player challenge; there is still a substantial amount of

work to be explored in this domain.

For the RoboCup 2D simulation league in 2013, UT Austin Villa altered its

role assignment for the drop-in player challenge. Specifically, it used a dynamic role

assignment system [93] that minimizes the time for all agents to reach their target

positions while avoiding collisions. Given that teams communicated their positions,

this approach allowed UT Austin Villa’s agents to adapt to their teammates online,

based on their movements.

For the 2014 RoboCup 3D simulation drop-in player challenges, UT Austin

Villa used a simple role assignment scheme. If the agent was closest to the ball,

it played as chaser. Otherwise, it took up a position two meters behind the ball

as this position was found to be especially important [93]. In addition, the UT

Austin Villa player tracks the trustworthiness of other players’ information. To do

this, the UT Austin Villa player listens to the locations they report for themselves

and the ball. When it can observe these players or the ball, the UT Austin Villa

players compares its observed positions to the communicated positions, updating

the trustworthiness of the players’ based on the difference between these values.

When their trustworthiness drops below a threshold, the UT Austin Villa player

ignores their messages.

RoboCup’s drop-in player challenges serve as an exciting testbed for ad hoc

91

team research. However, current approaches in these challenges are still fairly simple

due to the relative youth of the challenge. Therefore, there is space to explore more

advanced techniques. This thesis presents one such technique, and we hypothesize

that PLASTIC could be applied successfully to these problems, but leave testing

that hypothesis for future work. We did not apply PLASTIC to this setting yet

because both PLASTIC–Model and PLASTIC–Policy require either some models

or policies of possible teammates, which can be learned or given by an expert. In the

SPL, not enough information has been stored to learn about existing teammates,

and there is no release of full agents, either via full source code releases or binary

releases. In addition, it is difficult to hand-code possible models or policies for

teammates’ behaviors given the complexity of the domain and the amount of changes

to teams’ strategies between competitions where their behaviors can be observed.

The experiments in this thesis show that using approximate hand-coded models

works well in some scenarios, but applying this approach to the drop-in player

challenges remains future work.

4.4.3 Alternative Models

While we model the ad hoc teamwork problem as either an MDP or a POMDP in this

thesis, there are alternative ways of modeling the problem. One such way is as an

Interactive POMDP (I-POMDP) [53]. I-POMDPs model adversarial interactions

of agents by examining what an agent believes about the other agents and these

agents’ beliefs. The graphical counterparts of I-POMDPs are known as Interactive

Dynamic Influence Diagrams (I-DIDs) [43]. I-DIDs provide concise representations

of the beliefs about other agents and allow for nesting I-DIDs to represent these

beliefs. Both I-POMDPs and I-DIDs could be used to model the problems studied

92

in this thesis. However, both have issues with the potential exponential blowup

of beliefs as the size of the problem grows. While work has been performed to

increase the efficiency of algorithms for these models [115, 138, 139], they remain

computationally intractable for the size of problems studied in this thesis.

An alternative approach to modeling multiagent problems is the Network

of Influence Diagrams (NID) model [48]. This model represents an agent’s mental

models as graphical structures. NIDs are representationally equivalent to Bayesian

games but are more compact. While NIDs perform well on some problems, they

also run into scalability issues as the size of the problem grows.

4.4.4 Dimension Analysis

For this related work in ad hoc teamwork, it may be helpful or informative to con-

sider where these problems fall on the dimensions described in Section 2.3. We

would like to calculate the exact values of the dimensions for each of the domains as

we did in Section 3.2, but this calculation requires more information about the exact

formulations of the domains and teammates than is typically available in the publi-

cations that are available to us. Therefore, we instead give some rough estimates of

where these problems lie on the dimensions. The three dimensions we consider are

team knowledge, environment knowledge, and the reactivity of teammates.

We begin by discussing the team knowledge (TeamK) of ad hoc agents in

these domains, which shows how much the ad hoc agent knows about its teammates

prior to cooperating with them. As shown in Table 4.1, the majority of the related

research considers cases where the teammates are known, so TeamK is 1 or close to

1. Notable exceptions of this include Liemhetcharat and Veloso’s work [89] as well as

Wu et al.’s work [134] which consider completely unknown teammates, where TeamK

93

is 0. Also, Agmon et al. [2] and Albrecht and Ramamoorthy [5] assume that their

teammates are drawn from a known set, so TeamK is between 0 and 1; we estimate

that TeamK lies in the range [0.3,0.7] for these works. Additionally, Bowling and

McCracken [27] consider situations with teammates that do not share a codebook

with the ad hoc agent. We estimate that TeamK is fairly high in these settings, in

the range [0.6,0.8], given that effective soccer plays are similar compared to random

movement of teammates. From this analysis, we can see that most existing works

focus on situations where the teammates are fairly well known; only a few consider

scenarios where the teammates are initially unknown.

Let us now consider the environmental knowledge (EnvK) of these domains,

where the environmental knowledge explains how much the ad hoc agent knows

about the transition and reward dynamics of the domain before beginning. The

majority of the works in this section assume that the ad hoc agent has full knowledge

of the domain, so EnvK = (1, 1) for these settings. While there may be noise in

these domains, the ad hoc agent is expected to know the level of noise and therefore

know the true distribution of next states. Exceptions to this include Jones et al. [73],

Liemhetcharat and Veloso [89], and Hao et al. [61] where the ad hoc agent does not

initially know the reward function and may have limited knowledge of the transition

function. We estimate that the knowledge of the transition function lies in [0.7,1.0]

for these works, and the reward knowledge lies in [0,0.5]. This analysis suggests

that research into ad hoc teamwork has not focused on learning about the domain.

Instead, agents are assumed to know the domain and instead focus on learning about

teammates and planning how to cooperate with them.

The reactivity of the teammates in these domains (Reactivity) covers a large

spread of values. All of the domains assume that the teammates are at least partially

94

reactive to the ad hoc agents, or it would not be worth considering the problem as a

multiagent setting. This reactivity varies significantly based on the domain. When

ideal actions are fairly obvious to teammates, interactions with the ad hoc agent are

unlikely to change the teammates’ behaviors, leading Reactivity to be close to 0. On

the opposite end of the spectrum, when the teammates have high uncertainty about

the best actions ahead of time, the ad hoc agent’s actions can significantly affect

their actions, leading to values of Reactivity close to 1. Our analysis of the bandit

domain in Section 3.2.1 shows how much the reactivity of teammates can vary in a

single domain. Given that so much research assumes that ad hoc agents know their

teammates and the domain well, the majority of focus has been on how to plan

to cooperate effectively with teammates. Exploring planning in ad hoc teamwork

encourages researchers to investigate settings with varying amounts of teammate

reactivity, as this dimension is the most influential on planning.

While calculating the exact values for each of the three dimensions (TeamK,

EnvK, and Reactivity) for each domain studied in the related work would be useful,

it is impossible to calculate these values without complete knowledge of the domain

and teammates. Even so, these rough estimates of the dimensions for these problems

lead to some interesting conclusions. Specifically, existing research has done a good

job of exploring how to plan to cooperate with teammates, covering the gamut of

teammate reactivity. On the other hand, ad hoc team research has focused largely

on problems with high team knowledge and high environmental knowledge, with less

work exploring how agents can learn about their teammates and the domain. Future

work in ad hoc teamwork should address this gap and explore settings in which the

ad hoc agent needs to learn more about its teammates and the domain. In real world

scenarios, robots will need to be constantly adapting to their changing environments

95

as well as new teammates they may encounter. Therefore, it is important for ad hoc

teamwork research to explore these settings, where agents must reason about the

tradeoff between exploring the domain, exploring their teammates, and exploiting

their current knowledge. We discuss this problem in more depth in the future work

presented in Section 8.4.

4.5 Summary

While there is a large amount of work related to ad hoc teamwork, this thesis brings

many new ideas to the table. Rather than requiring shared communication and

coordination protocols like past research on multiagent teams, this work describes

agents that can cooperate without these shared protocols. Compared to opponent

modeling, this work creates agents that adapt more quickly to other agents at the

price of making the stronger assumption that they are cooperating towards a shared

goal. With respect to ad hoc teamwork, this thesis moves ad hoc teamwork to an

empirical setting and tackles more complex problems than most studied previously.

However, the main differentiating factor of this work is that it considers how to

adapt to unknown teammates in a non-domain specific way that can be applied

generally.

96

Chapter 5

The PLASTIC Algorithms

This chapter introduces the Planning and Learning to Adapt Swiftly to Teammates

to Improve Cooperation (PLASTIC) algorithms that enable an ad hoc team agent

to cooperate with a variety of different teammates. One might think that the most

appropriate thing for an ad hoc team agent to do is to “fit in” with its team by

following the same behavior as its teammates. However, if the teammates’ behaviors

are suboptimal, this approach will limit how much the ad hoc agent can help its

team. Therefore, in this thesis, we adopt the approach of learning about different

teammates and deciding how to act by leveraging this knowledge. This approach

allows an ad hoc agent to reason about how well its knowledge of past teammates

predicts its current teammates’ actions as well as to convert this knowledge into the

actions it needs to take to accomplish its goals. If the knowledge of prior teammates

accurately predicts the current teammates and the ad hoc agent is given enough

time to plan, this approach will lead to optimal performance of the ad hoc agent,

helping its team achieve the best possible outcome. Note that this may not be the

1This chapter contains material from three publications: [17, 18, 19]. Note that some of Sec-
tion 5.2 is joint work with Sarit Kraus and Avi Rosenfeld in addition to Peter Stone [19].

97

optimal performance of any team, but it is optimal for the ad hoc agent given that

the behaviors of its teammates are fixed.

5.1 Overview

A visual overview of the PLASTIC is given in Figure 5.1. The short summary of the

approach is that the ad hoc agent either learns about a set of prior teammates or is

given some hand-coded information about possible teammates. Then, the agent uses

this prior knowledge to select its actions and updates its beliefs about its teammates

by observing their reactions to its behavior.

Environment

Agent

Agent

Team

Ad Hoc Agent

Action
Selection

Inference of
Teammate Type

Teammate
Knowledge

Updates

Used By

Joint
Action

State Reward

Learned
Knowledge of
Teammates

Hand Coded
Prior

Knowledge

Com
bin

eCombine

Ad Hoc
Agent’s
Action

Teammates’
Actions

Figure 5.1: Overview of using PLASTIC to cooperate with unknown teammates.

In this thesis, this general approach is realized in two algorithms. One algo-

rithm, PLASTIC–Model, focuses on a model-based approach. In this approach, the

98

ad hoc agent learns models of its past teammates, selects which models best predict

its current teammates, and then uses these models to plan how to act in order to

cooperate with the teammates. The second algorithm is called PLASTIC–Policy

and uses a model-free approach. In this variant, the ad hoc agent learns a policy to

cooperate with each of its past teammates, selects which policies best match how to

cooperate with its current teammates, and then selects actions using these policies.

These two algorithms are described in the remainder of the chapter. This general

approach is specified in Algorithm 3. The subroutines LearnAboutPriorTeammate,

SelectAction, and UpdateBeliefs are described for each of the two algorithms in the

following section.

Algorithm 3 Pseudocode of PLASTIC

1: function PLASTIC:
inputs:

PriorTeammates . past teammates the agent has encountered
HandCodedKnowledge . prior knowledge coded by hand
BehaviorPrior . prior distribution over the prior knowledge

. initialize knowledge using information from prior teammates
2: PriorKnowledge = HandCodedKnowledge
3: for t ∈ PriorTeammates do
4: PriorKnowledge = PriorKnowledge ∪ {LearnAboutPriorTeammate(t)}
5: BehaviorDistr = BehaviorPrior(PriorKnowledge) . initialize beliefs

. act in the domain
6: Initialize s
7: while s is not terminal do
8: a = SelectAction(BehaviorDistr, s)
9: Take action a and observe r, s′

10: BehaviorDistr = UpdateBeliefs(BehaviorDistr, s, a)

As shown in Algorithm 3, PLASTIC begins by initializing its knowledge us-

ing the provided prior knowledge and what it has learned about previous teammates

in Lines 2–5. LearnAboutPriorTeammate is defined differently for the two variants,

99

but in both algorithms it learns information about the prior teammate, encoding the

knowledge to be used in the SelectAction subroutine. Lines 6–10 show how PLAS-

TIC selects the agent’s actions. PLASTIC updates its beliefs over the teammate

models or policies by observing their actions and using the UpdateBeliefs function

implemented in the two variants.

5.2 PLASTIC–Model

When an agent has a good model of its environment, it can use this model to

plan good actions using a limited number of interactions with the environment.

For an ad hoc agent to plan, it also needs to model its teammates; therefore, it is

useful for the ad hoc agent to build models of its teammates’ behaviors. Given that

learning new models online takes many samples, it is useful to reuse information

learned from past teammates. This section describes PLASTIC–Model, a variant

of the PLASTIC approach that learns models of prior teammates and selects which

models best predict its current teammates. An overview of this approach is given

in Figure 5.2 and the specification of the LearnAboutPriorTeammate, SelectAction,

and UpdateBeliefs functions are given in Algorithm 4. These functions are described

in depth in the remainder of this section.

5.2.1 Model Selection

In Algorithm 4, it is also necessary to select from a set of possible teammate models

using SelectAction. Performing the simulations for the Monte Carlo rollouts or

other planners requires that the ad hoc agent has a model of how its teammates

behave. If there is a (presumably correct or approximately correct) single model

for this behavior, the planning is straightforward. On the other hand, if the ad

100

Environment

Agent

Agent

Team

Ad Hoc Agent

Planning

Model Selection Teammate
Models

Updates

Used By

Joint
Action

State Reward

Learned
Teammate

Models

Hand Coded
Teammate

Models

Com
bin

eCombine

Ad Hoc
Agent’s
Action

Teammates’
Actions

Figure 5.2: Overview of using the model-based approach of PLASTIC–Model to
cooperate with unknown teammates.

101

Algorithm 4 Instantiation of functions from Algorithm 3 for PLASTIC–Model.

1: function UpdateBeliefs:
inputs:

BehaviorDistr . probability distr. over possible teammate behaviors
s . the current environment state
a . previously chosen action

outputs:
BehaviorDistr . updated probability distr.

params:
η . bounds the maximum allowed loss

2: for m ∈ BehaviorDistr do
3: loss = 1− P (a|m, s)
4: BehaviorDistr(m)∗ = (1− ηloss)

5: Normalize BehaviorDistr
6: return BehaviorDistr

7: function SelectAction:
inputs:

BehaviorDistr . probability distr. over possible teammate behaviors
s . the current environment state

outputs:
a . the best action for the agent to take

params:
p . an MDP planner that selects actions, such as UCT

. simulateAction is derived from the known environment model and

. sampling from BehaviorDistr (the teammate behavior distribution)
8: a = p(s)
9: return a

10: function LearnAboutPriorTeammate:
inputs:
t . the prior teammate

outputs:
m . model of the teammate’s behavior

params:
learnClassifier . supervised learning algorithm

11: Data = ∅
12: repeat
13: Collect s, a for t
14: Data = Data ∪ {(s, a)}
15: m = learnClassifier(Data)
16: return m

102

hoc agent is given several possible models to choose from, the problem is more

difficult. Assuming that the ad hoc agent starts with some prior belief distribution

over which model correctly reflects its teammates’ behaviors, the ad hoc agent can

update these beliefs by observing its teammates. Specifically, it can update the

models using Bayes theorem:

P (model|actions) =
P (actions|model) ∗ P (model)

P (actions)

If the correct model is in the given set of models, then the ad hoc agent’s beliefs

will converge to this model or a set of models that are not differentiable from this

model.

On the other hand, if the correct model is not in the set, using Bayes rule

may drop a good model’s posterior probability to 0 for a single wrong prediction.

This update may punish generally well-performing models that make a single mis-

take, while leaving poor models that predict nearly randomly. Therefore, it may be

advantageous to update the probabilities more conservatively. Research in regret

minimization has shown that updating model probabilities using the polynomial

weights algorithm is near optimal if examples are chosen adversarially [25]. Since

it is expected that the ad hoc agent’s models are not perfect, the agent updates its

beliefs using polynomial weights:

loss = 1− P (actions|model)

P (model|actions) ∝ (1− η ∗ loss) ∗ P (model)

where η ≤ 0.5 is a parameter that bounds the maximum loss, where higher val-

ues converge more quickly. This scheme ensures that good models are not prema-

103

turely removed, but it does reduce the rate of convergence. In practice, this scheme

performs very well as the observed examples of the teammates may be arbitrarily

unrepresentative of the agent’s overall decision function.

5.2.2 Planning

This section describes the SelectAction function in Algorithm 4. When an ad hoc

agent has a model of both the environment and its teammates, it can use this model

to plan about the effects of its actions and how it should adapt to its teammates.

Specifically, the ad hoc agent uses UCT to quickly determine the effects of its actions

and plan a sequence of actions that will be most beneficial to the team. UCT is

used due to its speed and ability to handle large action and state spaces, allowing it

to scale to large numbers of teammates in complex domains. The modified version

of the UCT algorithm that is used in this thesis is explained in Section 3.1.3. Other

planning algorithms such as Value Iteration (VI) or other approximate planners can

also be used, but UCT is chosen here as it shows good empirical performance in

many large domains.

Given the current belief distribution over the models, the ad hoc agent can

sample teammate models for planning, choosing one model for each rollout similar

to the approach adopted by Silver and Veness [111]. Sampling the model once

per rollout is desirable compared to sampling a model at each time step because

this resampling can lead to states that no model predicts. Ideally, state-action

evaluations would be stored and performed separately for each model, but that would

require many more rollouts to plan effectively. Instead, the state-action evaluations

from all the models are combined to improve the generalization of the planning.

104

5.2.3 Learning Teammate Models

This section describes how teammate models are learned in the LearnAboutPriorTeammate

function of Algorithm 4. The previous sections described how the ad hoc agent can

select the most accurate model and use it for planning, but they did not specify the

source of these models. One option is that the ad hoc agent is given hand-coded

models from human experts, as shown in Line 2 of Algorithm 3 and in Figure 5.2.

However, there may not always be a source of these models, or the models may

be imperfect. Therefore, a more general solution is for the ad hoc agent to learn

the models. Learning allows the agent to gain a good set of diverse models over

its lifespan, allowing better performance with arbitrary new teammates. The ad

hoc agent builds models of past teammates’ behaviors offline and then selects from

these learned models online while cooperating with new teammates. It is expected

that the past teammates are representative of the distribution of future teammates,

though the future teammates have not yet been seen.

PLASTIC–Model treats building teammate models as a supervised learning

problem, where the goal is to predict the teammates’ actions using the features ex-

tracted from the world state. The model predicts the next action of each teammate;

when this teammate model is combined with a model of the domain, the ad hoc

agent can plan far into the future. In this thesis, our agent uses C4.5 decision trees

as implemented in the Weka toolbox [59] to learn these models. Several other clas-

sifiers were tried including SVMs, naive Bayes, decision lists, and nearest neighbor

approaches as well as boosted versions of these classifiers. However, decision trees

outperformed these methods in initial tests in a combination of prediction accuracy

and training time. All model learning is performed offline, reflecting past experience

in the domain, but the ad hoc agent updates its belief over the models online.

105

To capture the notion that the ad hoc agent is expected to have extensive

prior general domain expertise (as is assumed in the ad hoc teamwork setting),

though not with the specific teammates at hand, we pre-train the ad hoc agent with

observations of a pool of past teammates. We treat the observations of previous

teammates as experience given to PLASTIC prior to deploying the ad hoc agent.

5.2.4 Adapting Existing Teammate Models

The previous sections discuss how an ad hoc agent should cooperate with teammates

it has interacted with before as well as how the agent should cooperate with com-

pletely new teammates. However, in many cases, an ad hoc agent may have a limited

amount of time to observe its current teammates before it interacts with them. In

addition, it has extensive observations from past interactions with other teammates.

For example, in pickup soccer, this scenario corresponds to having past experience

in pickup soccer, showing up to a new game, and watching a couple minutes before

joining in. This scenario fits the transfer learning (TL) paradigm, but requires the

ability to leverage multiple sources of related data. In this section, we introduce a

new transfer learning algorithm (TwoStageTransfer) to leverage such information to

speed up learning about new teammates. TwoStageTransfer is a general algorithm

that can apply to ad hoc teamwork, and we will present it in general terms here. In

the ad hoc teamwork scenario, the observations of prior teammates correspond to

the source data sets and observations of the current teammates form the target set.

While the transfer learning algorithms discussed in Section 3.1.7 are effec-

tive on some problems, they do not directly address the problem of transferring

knowledge from multiple sources. In general, they lump all source data into a single

data set and expect the learning algorithms to handle this data. TwoStageTrans-

106

fer is inspired by the TwoStageTrAdaBoost algorithm [101], and it is designed to

explicitly leverage multiple source data sets. Specifically in this setting, the ad hoc

agent has observed many other agents, some of which are more similar to the target

teammate than others. Therefore, tracking the source of the data may be important

as it allows the ad hoc agent to discount data from agents that differ greatly from

it. Recent research into transfer learning has shown this information may improve

results [137, 68, 140, 45, 49]. These approaches are promising, but are not directly

evaluated here due to the complexity of applying them to our setting coupled with

the recency of these algorithms compared to TwoStageTransfer.

TwoStageTransfer’s goal is to find the best possible weighting for each set of

source data and create a classifier using these weights, as described in Algorithm 5.

TwoStageTransfer takes in the target data set T , the set of source data sets S =

{S1, . . . , Sn}, a number of boosting iterations m, a number of folds k for cross

validation, and a maximum number of source data sets to include b. We use the

annotation Sw to mean the data set S taken with weight w spread over the instances.

The base model learner used in this thesis is a decision tree learning algorithm that

handles weighted instances, but other learning algorithms can be used.

Ideally, TwoStageTransfer would try every combination of weightings, but

having n source data sets and m different weightings leads to mn possible combi-

nations (in the case considered in Chapter 7 there are 1028 combinations). Rather

than trying all of them, TwoStageTransfer first evaluates each data source indepen-

dently, and calculates the ideal weight of that data source using cross validation.

Then, it adds the data sources in decreasing order of the calculated weights. As it

adds each data set, it finds the optimal weighting of that set with the data that has

already been added. Finally, it adds the data with the optimal weight and repeats

107

the procedure with the next data set. This algorithm requires only nm+nm = 2nm

combinations to be evaluated (in the case from Chapter 7 there are 560 combina-

tions), with nm for the initial evaluations and then m when adding each n data

sets. To achieve this efficiency, this approach does not guarantee optimality.

TwoStageTransfer is a general transfer learning algorithm that can be used

in a variety of settings for learning from multiple source domains. For example,

when classifying the subject of text documents, you may have labeled data from a

variety of sources including newspapers, personal letters, and books. When trying

to build a classifier for a new magazine, it is useful to transfer information about

these other sources, bearing in mind that some sources such as newspapers may be

more similar to the magazine than letters. In this thesis, TwoStageTransfer is used

to learn models of teammates’ behaviors by transferring knowledge from previously

encountered teammates.

In order to integrate TwoStageTransfer with PLASTIC–Model, only a minor

change needs to be made to Algorithm 3. Specifically, after Line 4, we insert the

lines:

m = TwoStageTransfer(PriorKnowledge,Observations(Teammates))

PriorKnowledge = PriorKnowledge ∪ {m}

This alteration adds a new model to PriorKnowledge that is learned using TwoStage-

Transfer, combining the information from previous teammates as well as the limited

observations of the new teammates.

5.3 PLASTIC–Policy

In complex domains, planning algorithms such as UCT may perform poorly due to

the inaccuracies of their models of the environment. Therefore, it may be desirable

108

Algorithm 5 TwoStageTransfer: transfer learning from multiple sources
1: function TwoStageTransfer:

inputs:
T . target data set
S . source data sets

outputs:
c . learned classifier

params:
b . maximum number of source data sets to include

2: for all Si in S: do
3: wi ← CalculateOptimalWeight(T, ∅, Si,m, k)

4: Sort S in decreasing order of wi’s
5: F ← ∅
6: for i from 1 to b do
7: w ← CalculateOptimalWeight(T, F, Si,m, k)
8: F ← F ∪ Sw

i

9: Train classifier c on T ∪ F
10: return c

11: function CalculateOptimalWeight:
inputs:
T . target data set
F . fixed data set
S . source data set under consideration

outputs:
w∗ . best weighting of the source data set

params:
m . number of boosting iterations
k . number of folds for cross validation

12: for i from 1 to m do
13: wi = |T |

|T |+|S| (1−
i

m−1)

14: Calculate erri from k-fold cross validation on T using F and Swi as additional
training data

15: w∗ = wj such that j = argmini(erri)
16: return w∗

109

to directly learn a policy for acting in this environment rather than planning online.

Learning a policy directly prevents the ad hoc agent from learning to exploit actions

that work well in the model, but not in the real environment. Given that the policy

learned will depend heavily on the teammates that the agent is cooperating with,

it is desirable to learn a policy for each type of teammate. Then, the ad hoc agent

will try to pick which policy best fits new teammates it encounters. The remainder

of this section describes the PLASTIC–Policy algorithm that uses this approach,

summarized in Figure 5.3. The subroutines used in PLASTIC–Policy are specified

in Algorithm 6.

Environment

Agent

Agent

Team

Ad Hoc Agent

Action
Selection

Policy Selection PoliciesUpdates

Used By

Joint
Action

State Reward

Learned
Policies for
Teammates

Hand Coded
Policies

Com
bin

eCombine

Ad Hoc
Agent’s
Action

Teammates’
Actions

Figure 5.3: Overview of using the model-based approach of PLASTIC–Policy to
cooperate with unknown teammates.

110

Algorithm 6 Instantiation of functions from Algorithm 3 for PLASTIC–Policy.

1: function LearnAboutPriorTeammate:
inputs:
t . the prior teammate

outputs:
π . policy for cooperating with teammate t
m . nearest neighbors model of the teammate’s behavior

params:
Q-learning parameters: α, λ, and the function approximation

2: Data = ∅
3: repeat
4: Collect s, a, r, s′ for t
5: Data = Data ∪ {(s, a, r, s′)}
6: Learn a policy π for Data using Q-Learning
7: Learn a nearest neighbors model m of t using Data
8: return (π,m)

9: function UpdateBeliefs:
inputs:

BehaviorDistr . probability distr. over possible teammate behaviors
s . the previous environment state
a . previously chosen action

outputs:
BehaviorDistr . updated probability distr.

params:
η . bounds the maximum allowed loss

10: for (π,m) ∈ BehaviorDistr do
11: loss = 1− P (a|m, s)
12: BehaviorDistr(m)∗ = (1− ηloss)

13: Normalize BehaviorDistr
14: return BehaviorDistr

15: function SelectAction:
inputs:

BehaviorDistr . probability distr. over possible teammate behaviors
s . the current environment state

outputs:
a . the best action for the agent to take

16: (π,m) = argmax BehaviorDistr . select most likely policy
17: a = π(s)
18: return a

111

5.3.1 Learning the Policy

PLASTIC–Policy learns about its teammates using the LearnAboutPriorTeammate

function. Rather than explicitly modeling the MDP’s transition function as in

PLASTIC–Model, the agent directly uses samples taken from environment with

its current teammates. However, online learning is sequential and can take a long

time to learn a useful policy on complex domains. Therefore, it is desirable to use a

distributed approach that takes advantage of the ability to run many tests simulta-

neously. To this end, PLASTIC–Policy performs a number of interactions in which

it explores the available actions in parallel. It stores its experiences as the tuple

〈s, a, r, s′〉, where s is the original state, a is the action, r is the reward, and s′ is

the resulting state.

Using these observations, PLASTIC–Policy can learn a policy for cooperating

with its teammates using existing learning algorithms. In this thesis, the agent uses

Fitted Q Iteration (FQI) [44], as described in Section 3.1.4. Alternative policy

learning algorithms can be used, such as Q-learning [131] or policy search [42].

5.3.2 Selecting Policies

This section describes the UpdateBeliefs and SelectAction functions from Algo-

rithm 6. When an agent joins a new team, it must decide how to act with these

teammates. If it has copious amounts of time, it can learn a policy for cooperating

with these teammates. However, if its time is more limited, it must adapt more

efficiently.

We assume that the agent has previously played with a number of different

teams, and the agent learns a policy for each of these teams. When it joins a new

team, the agent can then reuse the knowledge it has learned from these teams to

112

adapt more quickly to the new team. One way of reusing this knowledge is to select

from these learned policies. If the agent knows its teammates’ identities and has

previously played with this team, the agent can directly used the learned policy.

However, if it does not know their identities, the agent must select from a set of

learned policies.

Many similar decision-making problems can be modeled as multi-armed ban-

dit problems when the problem is stateless. In this setting, selecting an arm corre-

sponds to playing one of the learned policies for an episode. Over time, the agent

can estimate the expected values (expected chance of scoring) of each policy by

selecting that policy a number of times and observing the outcome.

However, this type of learning may require a large number of trials as the

outcomes of playing each policy may be very noisy depending on the complexity of

the domain. Therefore, it is desirable to select from the policies more quickly. To this

end, PLASTIC–Policy employs an approach based on maintaining the probability

of the new team being similar to a previously observed team. These probabilities

are updated by observing the actions the team performs and using Bayes’ theorem.

However, Bayes’ theorem may drop the posterior probability of a similar team to

0 for a single wrong prediction. Therefore, as in Section 5.2.1, PLASTIC–Policy

adopts the approach of updating these probabilities using the polynomial weights

algorithm from regret minimization [25]:

loss = 1− P (actions|model)

P (model|actions) ∝ (1− η ∗ loss) ∗ P (model)

where η ≤ 0.5 is a parameter that bounds the maximum loss, where higher values

converge more quickly.

113

The learned policies do not directly give the probability of a past team taking

an action. However, the experiences (〈s, a, r, s′〉) used in learning the policies can

help because they provide estimates of the teams’ transition function. When the

agent observes a state s and the next state s′, it can update the probability of the

new team being similar to each old team. For each old team, the agent finds the

stored state ŝ closest to s and its next state ŝ′. Then, for each component of the

state, it computes the difference between s′ and ŝ′. We assume that the MDP’s

noise is normal, so each difference results in a probability that it was drawn from

the noise distribution. Multiplying these factors together results in a point estimate

of the probability of the previous team taking the observed action.

5.4 Chapter Summary

This chapter presents the PLASTIC algorithms used in the remainder of this thesis.

This approach is instantiated in two algorithms: PLASTIC–Model and PLASTIC–

Policy. These two algorithms allow an ad hoc agent to reuse knowledge learned from

past teammates in order to efficiently learn with new teammates. PLASTIC–Model

uses a model-based approach, where it learns a model of past teammates, updates

the probabilities of these models online, and then plans using the distribution over

models. PLASTIC–Policy is a model-free approach that attacks problems that are

less tractable for modeling. PLASTIC–Policy learns policies for cooperates with

past teammates, updates the probabilities of using each policy by observing its

teammates, and selects actions using the most likely policy. Given this approach,

we first look at its theoretical properties in the bandit domain in Chapter 6 and

then investigate its empirical performance in Chapter 7.

114

Chapter 6

Theoretical Analysis of

PLASTIC

Chapter 5 introduced the algorithms used in this thesis for solving ad hoc team-

work problems. Before moving on to the empirical analysis of these algorithms in

Chapter 7, it is useful to first investigate the theoretical attributes of PLASTIC.

Our analysis focuses on whether the multi-armed bandit domain described in Sec-

tion 3.2.1 is tractable for PLASTIC–Model. We chose to analyze the bandit domain

because of its simplicity, which lends itself to more complete theoretical analysis. In

addition, the bandit domain is interesting due to its use of communication, which is

an important aspect of ad hoc teamwork that is not explored in the other domains.

Note that we do not investigate the model learning aspect of PLASTIC–Model.

Instead, we analyze whether the PLASTIC–Model can select from a set of known

models (from HandCodedKnowledge) and plan its response to these models in poly-

1This chapter contains material from the publication: [20]. Note that all work presented in this
chapter is joint work with Noa Agmon, Noam Hazon, and Sarit Kraus in addition to my advisor
Peter Stone.

115

nomial time.

This analysis is performed in the context of the multi-armed bandit domain

described in Section 3.2.1. Recall that in this domain, several agents simultaneously

pull from one of two Bernoulli arms. These agents can broadcast three types of

messages to one another: their last observation, the number of pulls and successes

they have observed of an arm, or a suggestion to pull an arm. Sending these messages

has a cost, so the optimal behavior for the ad hoc agent is to send the minimal

amount of messages required to convince its teammates to pull the optimal arm.

Our analysis begins with the simplest version of the problem, in which the

ad hoc agent knows its teammates’ behaviors and the distributions of the arms. We

show that this version of the problem is tractable for PLASTIC–Model to compute

the optimal policy. Then, we relax the assumptions of the problem and analyze

whether PLASTIC–Model can still compute an optimal or ε-optimal policy for co-

operating with its teammates in polynomial time. Specifically, Sections 6.2–6.5 show

that a number of ad hoc team problems in the bandit setting are provably tractable,

as summarized in Table 6.1. The problems vary in how much the agent knows about

its teammates, whether its teammates are deterministic, and whether the agent has

prior knowledge of the environment in terms of the underlying payoff distributions of

the arms. As the agent’s knowledge of its teammates and the environment is reduced

and it encounters stochastic agents, the problem becomes more difficult. However,

the agent is still able to select the best messages and actions in polynomial time,

though these selections change from being optimal to only approximately optimal

as the problem becomes more difficult. These results prove that ad hoc team agents

can plan approximately optimal behaviors involving communication without taking

more than polynomial time. The empirical results in Chapter 7 show that commu-

116

Knowledge of Teammate Knowledge of Solution
Section

Teammates Type Environment Type

Known Stochastic Known Exact 6.2

Finite Set Deterministic Known Exact 6.3

Parameterized Set Stochastic Known Approx. 6.4

Parameterized Set Stochastic Unknown Approx. 6.5

Table 6.1: Problems that are solvable in polynomial time.

nication does improve the team’s performance, as well as investigating situations

not covered in the theoretical analysis.

6.1 Model and Notation

As discussed in Chapter 5, when the ad hoc agent knows its teammates’ behaviors,

it can model the bandit problem as an MDP. We now describe the resulting MDP

and introduce the notation used in the remainder of this chapter. The MDP’s

state is composed of the pulls and observations of the ad hoc agent’s teammates as

well as the messages it has sent. Let K = (p0, s0, p1, s1) be the knowledge about

the arms where pi and si are the number of pulls and successes of armi. Then,

the state is given by the vector (Kt,Ka,Kc, r, phase, sugg), where Kt is the team’s

knowledge from their pulls, Ka is the ad hoc agent’s knowledge from its pulls, Kc

is the knowledge that the ad hoc agent has communicated, r is the current round

number, phase is the phase of the round, and sugg is the ad hoc agent’s most recent

suggestion. As the n agents on the team are coordinated, their actions depend on

Kt and Kc and not directly on Ka. We split Kc from Kt to model how the ad hoc

agent’s messages will affect the team. For example, if the ad hoc agent already

communicated an observation, communicating its observations of the same arm will

replace its teammates’ memory of this observation.

117

Next, we reason about the number of states and actions of the resulting

MDP. Given that there are R rounds and n teammates, pi and si in Kt are each

bounded by nR, pi and si in both Ka and Kc are each bounded by R. The round

r is bounded by R, and there are 2 possible phases of a round. Finally, the most

recent suggestion sugg takes on one of 3 values (arm0, arm1, or none). Therefore,

the state space has at most (nR)4 ·R ·R4 ·R4 ·2 ·3 = 6n4R13 states. This polynomial

bound means that the problem is tractable and existing algorithms for solving the

MDP can be applied.

The actions of the MDP are the possible arms and the available messages.

Arms other than arm∗ are considered because their observations affect the messages

that the ad hoc agent can send to affect its teammates’ actions, so there are 2 actions

in the action phase. Let us now look at actions available in the communication phase.

In the communication phase, the ad hoc agent can send one message of each type.

For the last observation, the ad hoc agent can choose to send its last observation

or not, resulting in 2 options. For the observed arm mean, the ad hoc agent can

send the mean of either arm or choose to send no message, resulting in 3 options.

Finally, as a suggestion, the ad hoc agent can suggest either arm or choose not to

suggest an arm, resulting in 3 options. Therefore, there are 2 · 3 · 3 = 18 possible

actions in the communication phase, and 2 in the action phase.

The transition function P is composed of the act and comm functions, the

arms’ payoff distributions, and the effects of the ad hoc agent’s messages. Specif-

ically, act and the ad hoc agent’s chosen arms affect the pi values in Kt and Ka

respectively, while the arm distributions specify how these actions affect the si val-

ues in Kt and Ka. The ad hoc agent’s messages and Ka define the changes to Kc

and sugg . The reward function R is a combination of the rewards coming from the

118

arms and the costs of communication.

6.2 Known Teammates and Arms

Given this model, we first analyze the most straightforward setting. In this set-

ting, the ad hoc agent knows the true distributions of the arms and can observe

its teammates’ actions and the resulting payoffs. In addition, it knows the true

stochastic behavior (act and comm) of its teammates. Therefore, the ad hoc agent

has a full model of the problem described in Section 6.1. It is possible to find the

optimal solution to an MDP using DP in time polynomial in the MDP’s size, which

is polynomial in the number of rounds R and teammates n. Therefore, Proposition 1

directly follows.

Proposition 1. An ad hoc agent that knows the true arm distributions and its

teammates’ behaviors can calculate its optimal behavior for maximizing the team’s

shared payoffs in poly(R,n) time.

Proof. Using Dynamic Programming (DP), it is possible to find the optimal solution

to an MDP in polynomial time in terms of the number of states and actions [123]. As

shown in Section 6.1, the resulting MDP has a state space that has size polynomial

in R and n, and the number of actions is bounded by 18. Therefore, the ad hoc

agent can use DP to optimally plan its actions in poly(R,n) time.

6.3 Teammates from a Finite Set

In this section, we relax the constraint on knowing the teammates’ behaviors. Rather

than knowing the specific behavior of its teammates, the ad hoc agent instead knows

that the behaviors are drawn from a known, finite set of deterministic behaviors. In

119

addition, it still knows the true distributions of the arms. This case is of interest

because a finite set of behaviors can often cover the space of likely behaviors. For

example, analysis of bandit problems [97], ad hoc teamwork [19], and using machine

learning with psychological models [108] suggests that a small number of behaviors

can represent the spread of possible behaviors.

In general, this finite set of behaviors can vary, but in this analysis, we

consider two types of teammates: 1) greedy agents and 2) ones that choose arms

using confidence bounds in the form of UCB1 [13]. The UCB1 agents select actions

using

arm = argmax
i

si
pi

+ c
√

ln(p0+p1)
pi

(6.1)

where c = 1. The ad hoc agent is given a prior probability distribution over teams

following either of these behaviors. The teammates are assumed to use the ad hoc

agent’s communicated pulls when selecting their actions. Additionally, we assume

that these teammates share all information with each other and send messages

that the ad hoc agent can hear, but these messages do not reveal the teammates’

behaviors.

To analyze this problem, we add the ad hoc agent’s beliefs about its team-

mates into the state space that the agent plans over. As the teammates are de-

terministic, there are three possibilities for the belief space: both models are still

possible, only the greedy model is possible, or only the UCB1 model is possible.

Therefore, the combined belief and world state space is three times larger than the

world state space, and the resulting MDP has state space of size 18n4R13. In general,

the increase in size is 2k − 1 where k is the number of models, but we assume that

k is fixed and not a problem parameter. The transition function can be modified to

simultaneously update the ad hoc agent’s beliefs as well as the world state based on

120

whether a teammate model predicts the observed actions. Therefore, the MDP can

again be solved using DP in polynomial time. Proposition 2 follows directly from

this reasoning.

Proposition 2. An ad hoc agent that knows the true arm distributions and that its

teammates’ behaviors are drawn from a known set of two deterministic behaviors can

calculate its optimal behavior for maximizing the team’s shared payoffs in poly(R,n)

time.

Proof. Similar to Theorem 1, we know that the resulting MDP has a state space

that has size polynomial in R and n. In addition, using DP it is possible to optimally

solve an MDP in polynomial time with respect to the size of the state and action

spaces. Given that the MDP’s state space is polynomial in R and n and there are 18

actions, it is possible to find the optimal behavior in poly(R,n) time using DP.

6.4 Teammates from a Continuous Set

In this section, we further relax the constraints on the teammates’ behaviors, con-

sidering a continuous set of stochastic behaviors rather than the discrete set of

deterministic behaviors used in the last section. We still consider a small number of

possible behaviors, specifically ε-greedy and UCB(c). For these behaviors, ε is the

probability of taking a random action, and c is the scaling factor of the confidence

bound in Eq. 6.1. Therefore, the ad hoc agent must maintain a belief distribution

over values of ε, values of c, and p the probability of the teammates being ε-greedy.

The ad hoc agent is given the prior knowledge that ε, c are uniformly distributed

over [0, 1], and it starts with an initial estimate of p. While we use two models

for simplicity, this analysis can be extended for any fixed number of parameterized

121

models.

To analyze this problem, we model the problem as a POMDP as discussed

in Section 3.1.5. The transition function for the fully observable state variables

remains the same as in the original MDP. In this setting, the belief space has three

partially observed values: ε, c, and p the probability of the teammates being ε-greedy

versus UCB(c). The value of p is updated using Bayes’ rule given the probability

of the models predicting the observed actions, and the updates to the probability

distributions of ε and c are described in Lemma 1. The remainder of the POMDP

remains as defined above.

In Lemma 1 and Theorem 1, we show that in this expansion of the problem,

the ad hoc agent can perform within η of the optimal behavior with calculations per-

formed in polynomial time. This result comes from reasoning about the δ-covering

of the belief space, which defines the difficulty of solving the POMDP as discussed

in Section 3.1.5.

Lemma 1. The belief space of the resulting POMDP has a δ-covering with size

poly(R,n, 1/δ).

Proof. The resulting size of the δ-covering is a product of the contributing factors.

These factors come from the underlying MDP state s, ε, c, and p. Using Proposition

1 of Hsu et al.’s work [66], we know that the fully observed state variables result in

a multiplicative factor that is polynomial in R and n. Therefore, since the ad hoc

agent directly observes s, it only results is a factor of poly(R,n). The probability

of the two models p is a single real value in [0,1], resulting in a factor of 1/δ. The

parameter ε has a uniform prior, so the posterior is a beta distribution, relying

on two parameters, α and β. These parameters correspond to the (fully observed)

number of observed greedy and random pulls; thus, each are integers bounded by

122

nR. Therefore, the probability distribution over ε can be represented using a factor

of size (nR)2.

The parameter c has a uniform prior, and UCB agents select arms using

Eq. 6.1, combining the communicated and team’s pulls by setting pj = ptj + pcj and

sj = stj +scj . The teammates will only select the lower arm when c is above a certain

value and the higher arm when c is below a certain value. Therefore, the top and

bottom ranges of c can be updated using linear programming from observing their

actions. Note that the posterior remains uniform; only the range changes. Therefore,

the probability distribution over c can be represented using two real values in [0, 1]

that are the top and bottom of the uniform range of c, resulting in a factor of 1/δ2.

Multiplying all of these factors results in a δ-covering of size poly(R,n, 1/δ).

As discussed in Section 3.1.5, a POMDP can be solved approximately in

polynomial time given a covering set. Given this result and Lemma 1, Theorem 1

follows directly.

Theorem 1. Consider an ad hoc agent that can observe its teammates’ actions,

knows the true arm distributions, and knows that its teammates are drawn from a

known, continuous set of ε-greedy and UCB teammates. This agent can calculate

an η-optimal behavior in poly(n,R, 1/η) time.

Proof. From Theorem 1 in Kurniawati et al.’s work [84], it is known that a POMDP

can be solved in time polynomial in terms of the size of its covering number. While

this theorem applies to the infinite horizon, discounted rewards case, any finite

horizon POMDP can be converted into an infinite horizon POMDP by adding a

sink state that results in no rewards. In addition, the undiscounted rewards can

be converted to discounted rewards by multiplying by the inverse of the discount

factor. Therefore, a finite horizon POMDP can also be solved in polynomial time

123

with respect to the size of its covering number. From Lemma 1, we know that

the combined state and belief space of the POMDP has a proper δ-covering of

size polynomial in R,n, and 1/δ. Kurniawati et al. [84] showed that for the result

to hold, δ needs to be polynomial in terms of 1/η, the horizon, and the one step

reward, which is bounded by n. Therefore, the η-optimal behavior can be calculated

in poly(n,R, 1/η) time.

6.5 Unknown Arms

The previous sections assumed that the ad hoc agent already knew the underlying

distributions of the arms (i.e. the POMDP’s transition function), but in many cases

the ad hoc agent may not have this information. Therefore, it is desirable for the ad

hoc agent to reason about trading off between exploring the domain, exploring its

teammates, and exploiting its current knowledge. In this section, we prove that the

ad hoc agent can optimally handle this tradeoff while planning in polynomial time.

We again assume that the ad hoc agent knows its teammates’ pulls and results,

either by observing them directly or by listening to its teammates’ messages.

The belief space of the POMDP is increased to track two additional values,

one for the Bernoulli success probability of each arm. The probabilities of these

values can be tracked using a beta distribution similar to ε in Lemma 1, resulting

in an additional multiplicative factor of (nR)2. Therefore, the covering number has

size poly(R,n, 1/δ). Theorem 2 follows naturally from this result and the reasoning

in Theorem 1.

Theorem 2. Consider an ad hoc agent that does not know the true arm distribu-

tions, but has a uniform prior over their success probabilities, knows that its team-

mates’ behaviors are drawn from a continuous set of ε-greedy and UCB teammates,

124

and can observe the results of their actions. This agent can calculate an η-optimal

behavior in poly(n,R, 1/η) time.

Proof. We know that a POMDP can be solved in time polynomial in its covering

number. From Theorem 1, we know that the ad hoc agent’s beliefs about its team-

mates’ behaviors and the observed pulls can be covered in a polynomial number of

points. In this setting, the ad hoc agent must also track its beliefs about the success

probability of each arm. The reasoning proceeds similarly to the reasoning about ε

in Lemma 1. The agent starts with uniform beliefs about each arms’ success proba-

bility, which leads the posterior to be a beta distribution, which can be represented

using two integer parameters. These parameters correspond to the (fully observed)

numbers of successes and pulls observed; thus the integers can are be bounded by

(n + 1)R for each arm. Representing the probability distribution of the two arms’

success probabilities leads to a factor of size ((n+ 1)R)2. Therefore, the η-optimal

behavior can still be calculated in poly(n,R, 1/η) time.

6.6 Chapter Summary

This chapter presents theoretical analysis of the PLASTIC–Model algorithm in the

multi-armed bandit setting described in Section 3.2.1. These results show that

PLASTIC–Model can calculate an ε-optimal policy for the ad hoc agent to follow

in a variety of scenarios in polynomial time. The analysis proceeds by bounding the

number of states and actions in the resulting MDPs and POMDPs. When the ad hoc

agent is uncertain about its teammates’ behaviors or the true success probabilities

of the arms, it can efficiently represent its uncertainty about these beliefs. The

compactness of these beliefs and the size of the state space enables us to prove that

there are efficient ways to calculate the optimal behavior for the ad hoc agent. This

125

result suggests that empirical approaches for solving POMDPs will be effective in

this domain, a hypothesis which is explored in Chapter 7.

126

Chapter 7

Empirical Evaluation

While the previous chapter describes the theoretical analysis of the PLASTIC al-

gorithm, this chapter presents its empirical analysis. This empirical analysis covers

the three domains introduced in Section 3.2: the multi-armed bandit domain, the

pursuit domain, and half field offense in the 2D RoboCup simulator. An overview

of the experiments is presented in Table 7.1. This table lists the domains and

teammate types used in each experiment as well as whether the teammates have

been previously seen or provided in HandCodedKnowledge. Furthermore, for each

experiment, we describe whether the ad hoc agent knows the environment, how

many teammates it is cooperating with, whether it uses communication to coop-

erate with its teammates, and whether the domain provides continuous states and

actions. Finally, we specify whether we test PLASTIC–Model or PLASTIC–Policy

in each experiment. In the table, we bold the factors that result in extra complexi-

ties and show that PLASTIC is applicable to other complex domains. Specifically,

1This chapter contains material from four publications: [20, 17, 18, 19]. Note that the work in
Section 7.1 is joint work with Noa Agmon, Noam Hazon, and Sarit Kraus in addition to my advisor
Peter Stone [20]. In addition, Sections 7.2.1, 7.2.6, and 7.2.7 are joint work with Sarit Kraus and
Avi Rosenfeld in addition to Peter Stone [19].

127

Section Domain
Teammate Teammate Teammates Environment Number of Uses Continuous PLASTIC–Model

Type Knowledge Previously Seen Known Teammates Comm. State/Actions or PLASTIC–Policy

7.1.3 Bandit HC Param. HC Set Yes Yes 7 Yes No Model

7.1.4 Bandit Ext. Param. HC Set No Yes 1–9 Yes No Model

7.1.5 Bandit HC and Ext. Param. HC Set Yes and No No 1–9 Yes No Model

7.2.3 Pursuit HC Known Yes Yes 3 No No Model

7.2.4 Pursuit HC HC Set Yes Yes 3 No No Model

7.2.5 Pursuit Ext. HC Set No Yes 3 No No Model

7.2.6 Pursuit Ext. Learned Set Yes and No Yes 3 No No Model

7.2.7 Pursuit Ext.
Learned Set +

Briefly Yes 3 No No Model
TwoStageTransfer

7.3.4 Limited HFO Ext. Learned Set Yes Yes 1 No Yes Policy

7.3.5 Full HFO Ext. Learned Set Yes Yes 3 No Yes Policy

Table 7.1: An overview of the experiments described in this chapter. We denote
hand-coded by HC, Externally-created by Ext., and parameterized by Param.

we highlight when the teammates were externally created, when the teammates are

previously unseen or only seen briefly, when the domain has continuous states and

actions, when the environment in unknown, and when PLASTIC has to select from

a set of parameterized models.

This analysis tests the hypothesis that PLASTIC is effective for enabling

agents to quickly adapt to new teammates in a variety of possible ad hoc team-

work scenarios. In Section 7.1, we start by evaluating whether PLASTIC–Model

can efficiently communicate with teammates given a limited language as well as

whether it can select good models from a set of parameterized hand-coded mod-

els for HandCodedKnowledge including the case where these models do not cover

its teammates’ true behaviors. Then, in Section 7.2, we test the hypothesis that

PLASTIC–Model can use models it learned from previous teammates to adapt

quickly to new teammates. Furthermore, we assess whether TwoStageTransfer is

effective for learning models of new teammates while transferring knowledge about

past teammates. Specifically, we perform this evaluation by using the learned mod-

els in PLASTIC–Model for cooperating with these new teammates. Finally, we test

the hypothesis that PLASTIC–Policy allows ad hoc agents to quickly adapt to new

teammates in a complex domain (HFO) in Section 7.3.

128

7.1 Multi-armed Bandits

We start with the simplest domain studied in this thesis, specifically the multi-armed

bandit setting. The multiagent, multi-armed bandit setting used in this analysis

is described in depth in Section 3.2.1. While Chapter 6 showed that this bandit

problem can be modeled as a POMDP, and thus is theoretically tractable to solve

in polynomial time. Given this theoretical result, we expect that PLASTIC–Model

should be effective in this domain. Therefore, this section investigates whether

PLASTIC–Model is practical and shows that it enables an ad hoc agent to cooperate

with its teammates better than alternative approaches. In addition, we also consider

a number of scenarios that go beyond those handled in the theoretical analysis. The

results presented in this section show that modeling the problem as a (PO)MDP

and planning using this model significantly improves the performance of the team

compared to several intuitive baseline behaviors in several scenarios.

7.1.1 Methods

To cooperate effectively in the bandit problem, our agent uses the PLASTIC–Model

algorithm. We model the bandit problem as a POMDP, as discussed in Section 6.1.

Chapter 6 showed that calculating the approximately optimal behavior in the result-

ing POMDPs takes polynomial time, but the polynomial quickly becomes too large

for practical computation as the size of the problem grows. Therefore, PLASTIC–

Model uses Monte Carlo planning to find an inexact solution in a practical amount

of time. In addition, as the beliefs over the teammate parameters may be contin-

uous, PLASTIC–Model approximates the belief update for the sake of efficiency.

To this end, PLASTIC–Model uses Partially Observable Monte Carlo Planning

(POMCP) [111] to perform the planning and belief updates. POMCP is presented

129

in more depth in Section 3.1.6. Past research has shown that POMCP is effec-

tive for scaling to large POMDPs, producing effective policies for behaving in these

POMDPs. While POMCP is not guaranteed to find an optimal solution given lim-

ited computation, our results show that it plans an effective behavior in our setting.

In these tests, PLASTIC–Model is given prior knowledge in the form of

HandCodedKnowledge, a set of hand-coded behaviors of possible teammates. Specif-

ically, HandCodedKnowledge is composed of teammates following the ε-greedy or

UCB(c) algorithms, described in Section 3.2.1. This set provides a uniform distri-

bution of ε and c drawn from [0,1]. Similarly, the probability of the team following

the ad hoc agent’s suggestion s is also drawn from [0,1]. Therefore, the problem is

for PLASTIC–Model to determine which of these behaviors best fits the teammates

it encounters, as well as which actions to take based on these beliefs.

7.1.2 Evaluation Setup

In our evaluations, we compare four potential behaviors for the ad hoc agent to

follow:

• Match - Plays as if it were another agent of the team’s type, but can observe

all agents’ results

• NoComm - Pulls the best arm and does not communicate

• Obs - Pulls the best arm and sends its last observation

• PLASTIC–Model - Selects arms and messages using PLASTIC–Model

Match, NoComm, and Obs serve as baselines. Pulling the best arm and sending

other messages were tested, but generally produced worse results than either No-

Comm or Obs. Match is only used as a baseline when the arms’ payoffs are unknown.

130

In our theoretical analysis in Chapter 6, we prove that problems with 2

arms and teammates that are coordinated and use ε-greedy or UCB behaviors are

tractable. These tests will investigate scenarios with more arms and externally-

created teammates that are not coordinated and do not use ε-greedy or UCB be-

haviors. Unless otherwise specified, the version of the bandit problem used for the

evaluations has 10 rounds, 7 teammates, and 3 arms. The costs for sending mes-

sages are known by all agents and randomly selected for each run. These costs are

sampled from [0,m|c|], where |c| is the size of the message (3 for mean, 2 for obs,

and 1 for sugg) and m = 0.75 unless otherwise specified.

In all of the evaluations, we assume that the ad hoc agent can observe its

teammates’ actions and payoffs. The ad hoc agent knows the true distributions of

the arms except where otherwise noted (Figure 7.3). Our evaluations use 100 trials.

The randomness of the trials is fixed across the different ad hoc agent behaviors to

allow for paired statistical tests. The results are average team rewards normalized by

the average reward if all agents repeatedly pull the best arm with no communication

costs. Statistical significance is tested using a Wilcoxon signed-rank test with p <

0.05, denoted by “+” in the figures when comparing PLASTIC–Model to all other

methods.

7.1.3 Hand-Coded Teammates

In this first set of experiments, we test the hypothesis that PLASTIC–Model can ef-

fectively cooperate with unknown teams of coordinated ε-greedy and UCB(c) team-

mates. These experiments evaluate whether PLASTIC–Model can determine the

behaviors of its teammates and the parameters of these behaviors on the fly. We

hypothesize that PLASTIC–Model will outperform the baselines introduced above.

131

These evaluations are over 100 trials with teams where ε, c, s, and the arms’

success probabilities are selected randomly uniformly between 0 and 1. PLASTIC–

Model is initialized with the beliefs that both ε-greedy and UCB(c) teammates are

equally likely, so its prior beliefs include the correct behavior. Therefore, PLASTIC–

Model attempts to determine the correct teammate type and parameters for its

teammates. These hand-coded teammates are explained in detail in Section 3.2.1.

Figure 7.1 presents the results when the ad hoc agent encounters the problem

discussed in Section 6.4, cooperating with teams that are ε-greedy or UCB, with

varied message costs. Note that NoComm is unaffected by the message costs as it

does not communicate. The results indicate that the agent can effectively plan its

actions, significantly outperforming the baselines. The performance of PLASTIC–

Model diminishes as the cost of messages rises because affecting the teammates

becomes more costly. However, PLASTIC–Model will plan not to communicate

when the message costs get too high, so its performance never drops below that of

NoComm. The results are similar when the ad hoc agent knows its teammates’ true

behavior, rather than assuming that both types are possible.

0.08 0.16 0.32 0.64 1.28 2.56
Message Cost

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
ac

of
M

ax
R

ew
ar

d

PLASTIC-Model
NoComm
Obs

(a) ε-greedy teammates

0.08 0.16 0.32 0.64 1.28 2.56
Message Cost

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
ac

of
M

ax
R

ew
ar

d

PLASTIC-Model
NoComm
Obs

(b) UCB teammates

Figure 7.1: Normalized rewards with varied message costs with a logarithmic x-axis.
Significance is denoted by “+”

The results of these evaluations show that PLASTIC–Model can quickly learn

to cooperate with various teammates when it knows that its teammates’ behaviors

132

are drawn from a known, parameterized set. PLASTIC–Model efficiently uses com-

munication to improve the team’s performance, thus scaling its communication as

the cost of communicating grows.

7.1.4 Externally-created Teammates

The previous section presented results with a set of possible hand-coded teammates,

specifically the ε-greedy and UCB teammates. However, this set of teammates is

limited and may not represent the set of possible teammates the ad hoc agent may

encounter. Therefore, we also consider a number of agents that were not created by

the authors, denoted externally-created teammates. These teammates were created

by students for a class assignment and are presented in more depth in Section 3.2.1.

To prevent any bias in the creation of the agents, the students designed the entire

team without considering ad hoc teamwork. These agents serve as a sample of

the variety of teammates an ad hoc agent might encounter in real scenarios. We

hypothesize that PLASTIC–Model will use communication to cooperate effectively

with these teammates despite the inaccuracies of its expert-provided prior knowledge

(HandCodedKnowledge).

Section 3.2.1 specifies that the teammates are assumed to be tightly coor-

dinated and know each other’s actions and payoffs via communication. However,

the externally-created agents do not always choose to share this information, break-

ing this assumption. In addition, the externally-created agents follow a variety of

behaviors. Rather than being optimal, these agents represent a diverse set of im-

perfect agents that may be created by a variety of designers attempting to solve a

real problem. We specifically did not analyze their behaviors to prevent biasing the

design of our ad hoc agent.

133

Given that the externally-created teams quickly converge to the best arm,

all approaches perform similarly with these teammates. Therefore, we investigate

how well the ad hoc agent can correct its teammates’ knowledge if its teammates

have incorrect beliefs. To this end, we look at the worst case scenario for the team:

the best arm performs poorly early in the scenario, possibly misleading the team

into not pulling the arm later. To create this setting, we consider the case where in

the first 5 rounds, the teammates’ pulls of the best arm are biased to have a lower

chance of success. In this setting, both the teammates and the ad hoc agent are

unaware of the initial bias of the arm. Therefore, this test evaluates how well the ad

hoc agent can use its prior knowledge to correct the misinformation its teammates

have observed.

As in the previous tests, PLASTIC–Model is again provided with the same

prior knowledge, specifically HandCodedKnowledge is the set of ε-greedy and UCB(c)

hand-coded policies with their various parameters initialized uniformly randomly.

Despite this prior knowledge being incorrect, PLASTIC–Model is still able to deter-

mine which of these behaviors best fit its teammates and perform well. Figure 7.2

shows the results with externally-created agents, a problem not covered by any

theoretical guarantees, as the models do not match the true teammates. In these

evaluations, we test the sensitivity of the agent to various problem parameters, inves-

tigating under which conditions POMCP outperforms the baselines. Note that the

message costs are also applied to the externally-created teammates, which know the

current message costs, so the performance of NoComm is now affected by message

costs.

As the cost of communicating increases, NoComm becomes closer to the op-

timal behavior. As the number of rounds increases, communicating is more helpful

134

0.08 0.16 0.32 0.64 1.28 2.56
Message Cost

0.0

0.2

0.4

0.6

0.8

Fr
ac

of
M

ax
R

ew
ar

d

PLASTIC-Model
NoComm
Obs

(a) Message costs with
logarithmic x-axis.

10 20 30 40 50

Num Rounds
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Fr
ac

of
M

ax
R

ew
ar

d

PLASTIC-Model
NoComm
Obs

(b) Numbers of rounds.

2 3 4 5 6 7 8 9 10

Num Arms

0.4

0.5

0.6

0.7

Fr
ac

of
M

ax
R

ew
ar

d

PLASTIC-Model
NoComm
Obs

(c) Numbers of arms.

1 2 3 4 5 6 7 8 9

Num Teammates

0.3

0.4

0.5

0.6

0.7

0.8

Fr
ac

of
M

ax
R

ew
ar

d

PLASTIC-Model
NoComm
Obs

(d) Numbers of team-
mates.

Figure 7.2: Normalized rewards with varied parameters when cooperating with
externally-created teammates.

because there is more time to reap the benefits of better informing the teammates.

With more arms, it is harder to get the teammates to select the best arm, so commu-

nicating is less helpful. With more teammates, communicating is more likely to be

outweighed by other agents’ messages, which explains the decreasing performance

of PLASTIC–Model. However, communication can still encourage the teammates

to pull better arms, leading to PLASTIC–Model outperforming NoComm. Overall,

the results in these scenarios tell a similar story, specifically that reasoning about

communication helps an ad hoc agent effectively cooperate with various teammates,

even when its models of these teammates are incomplete or incorrect.

7.1.5 Unknown Arms

While the previous sections investigated how an ad hoc agent can cooperate with a

variety of teammates, the ad hoc agents were provided with prior knowledge about

135

the underlying distributions of the arms. This section investigates a scenario in

which the ad hoc agent is also uncertain about the true payoffs of the arms and must

simultaneously learn about the world and its teammates, as discussed in Section 6.5.

We still assume that the ad hoc agent observes the payoffs of its teammates’ actions,

for example by listening to their messages. These tests evaluate the hypothesis that

PLASTIC–Model can effectively cooperate with its team using communication while

learning about both its teammates and its environment.

Figure 7.3 shows the results for this scenario. When using PLASTIC–Model,

the ad hoc agent samples its initial beliefs of the underlying world state by randomly

selecting the payoff value of each arm. In the NoComm and Obs settings, the

ad hoc agent chooses arms ε-greedily, with ε = 0.1, because it does not know

the true best arm. To encourage more sharing, the base message cost is set to

m = 0.04. The results show that when the ad hoc agent is unsure of the arms’

payoffs, PLASTIC–Model enables it to learn about its environment while using

communication intelligently to cooperate with unknown teammates.

1 2 3 4 5 6 7 8 9

Num Teammates
0.60

0.65

0.70

0.75

0.80

0.85

Fr
ac

of
M

ax
R

ew
ar

d

PLASTIC-Model
NoComm
Obs
Match

(a) Mix of ε-greedy and
UCB teammates.

1 2 3 4 5 6 7 8 9

Num Teammates
0.65

0.70

0.75

0.80

0.85

Fr
ac

of
M

ax
R

ew
ar

d

PLASTIC-Model
NoComm
Obs
Match

(b) Externally-created
teammates.

Figure 7.3: Normalized rewards when dealing with unknown arms and varying num-
bers of teammates.

136

7.1.6 Summary

This section presented several evaluations of PLASTIC–Model in the bandit domain

that test PLASTIC–Model’s ability to use communication to cooperate with its

teammates. These results show that PLASTIC–Model is capable of reasoning both

about what actions to take and what messages to send to its teammates. The

first tests demonstrate that PLASTIC–Model can cooperate with a set of hand-

coded teammates while selecting from a set of parameterized hand-coded teammate

behaviors. In addition, PLASTIC–Model can successfully cooperate with externally-

created teammates, for which it has no theoretical guarantees and only imperfect

models. Finally, PLASTIC–Model can balance learning about the domain and its

teammates at the same time when the payoff distributions of the arms are unknown.

These results show that PLASTIC–Model can effectively use limited communication

to cooperate with unknown teammates.

7.2 Pursuit

The previous section focused on analyzing PLASTIC in a simple domain, specifi-

cally the multi-armed bandit domain. If we are interested in applying PLASTIC

to realistic scenarios, it is important to see how well it scales. Therefore, this sec-

tion looks at PLASTIC’s performance on a more complex domain in the form of

the pursuit domain introduced in Section 3.2.2. As in the bandit domain, we use

PLASTIC–Model in the pursuit domain.

7.2.1 Methods

To employ PLASTIC–Model, we model the pursuit domain as an MDP. States in the

MDP are the current positions of all agents, and the actions are to move in one of the

137

four cardinal directions or stay still. The transition function is deterministic except

for collisions, which are handled based on a random priority assigned each time step.

The reward function returns 1.0 when the prey is captured and 0 otherwise.

In Sections 7.2.6 and 7.2.7, PLASTIC–Model learns models of its teammates,

as discussed in Section 5.2.3. Learning allows the agent to gain a good set of diverse

models over its lifespan, allowing better performance with arbitrary new teammates.

The ad hoc agent builds models of past teammates’ behaviors offline and then selects

from these learned models online while cooperating with new teammates. It is

expected that the past teammates are representative of the distribution of future

teammates, though the future teammates have not yet been seen.

PLASTIC–Model treats building teammate models as a supervised learning

problem, where the goal is to predict the teammates’ actions using the features in

Table 7.2 with all positions being relative to the modeled teammate. The model

predicts the next action of each teammate; when combined with a model of the

domain, the ad hoc agent can plan far into the future. With its observations of past

teammates, the ad hoc agent learns a decision tree, implemented in the Weka tool-

box [59]. Several other classifiers were tried including SVMs, naive Bayes, decision

lists, and nearest neighbor approaches as well as boosted versions of these classifiers.

However, decision trees outperformed these methods in initial tests in a combination

of prediction accuracy and training time. All model learning is performed offline,

reflecting past experience in the domain, but the ad hoc agent updates its belief

over the models online.

The features in Table 7.2 are mostly the relative locations of other agents

in the domain. The features also include whether the predator is currently neigh-

boring the prey and whether each of the four cells around the prey are occupied by

138

Description Num. Features Values

Predator Number 1 {0, 1, 2, 3}
Prey x position 1 {−10, . . . , 10}
Prey y position 1 {−10, . . . , 10}

Predatori x position 3 {−10, . . . , 10}
Predatori y position 3 {−10, . . . , 10}

Neighboring prey 1 {true,false}
Cell neighboring prey is occupied 4 {true,false}

Previous two actions 2 {←,→, ↑, ↓, •}

Table 7.2: Features for predicting a teammate’s actions. Positions are relative to
the teammate.

predators, which gives information about which direction the predator may move

to fill the empty spots. Also, we include which of the four numbers the predator is

assigned in case agents on a team are specialized based on their number. Finally,

the previous two actions give a succinct, but imperfect summary of the predator’s

intentions; we expect that predators are likely to continue in their current direction,

but the learning algorithm figures out how this history predicts the next action.

To capture the notion that the ad hoc agent is expected to have extensive

prior general domain expertise (as is assumed in the ad hoc teamwork setting),

though not with the specific teammates at hand, PLASTIC–Model observes a num-

ber of past teammates. Specifically, it watches teams of four predators for 50,000

steps for each past teammate type, and builds a separate model for each type of

teammate. Preliminary tests show that less data can still be effective, but the fo-

cus of this research is about minimizing observations of the current teammates, not

the previous ones. We treat the observations of previous teammates as experience

prior to deploying the ad hoc agent. If some observations of the current teammates

are available, we can improve our results using transfer learning in the form of

139

TwoStageTransfer as discussed in Section 7.2.7.

7.2.2 Evaluation Setup

We evaluate how PLASTIC–Model compares to the baseline of directly copying

the teammates’ behaviors. Copying the teammates’ behaviors tests how the team

would perform if it had another teammate that matched the team rather than the

ad hoc team agent. We use the following performance metric: given 500 steps, how

many times can the predators capture the prey. Whenever the prey is caught, it is

randomly relocated and the predators try to capture the prey again. Results are

averaged over 1,000 trials, and statistical significance is tested using a Wilcoxon

signed-rank test with p < 0.01.

7.2.3 Cooperating with Known teammates

Before analyzing whether PLASTIC–Model is effective at cooperating with unknown

teammates, it is first informative to test whether it can cooperate with known team-

mates on a known task. Specifically, we test its performance with the hand-coded

teammates presented in Section 3.2.2. PLASTIC–Model is given the prior knowl-

edge in the form of the correct hand-coded policy of its teammates behaviors for

HandCodedKnowledge. Although the ad hoc team agent has a full model of its

teammates, this scenario is still an ad hoc teamwork setting because there is no

opportunity for the team to coordinate prior to starting the task: the agent must

determine its strategy online. We hypothesize that PLASTIC–Model will effectively

plan to deal with its known teammates and outperform matching their suboptimal

behaviors.

When both the teammates and the task are known, finding the optimal

140

behavior with PLASTIC–Model simplifies to a planning algorithm. As presented

in Section 3.1.2, Value Iteration (VI) is a planning algorithm that is guaranteed

to compute the optimal behavior for the ad hoc agent, but it is computationally

intensive to calculate. In order to scale to larger problems, it is desirable to use

more efficient, approximate methods such as Upper Confidence bounds for Trees

(UCT), which is discussed in Section 3.1.3. Ideally, the approximate solutions will

not lose too much compared to the optimal solutions. Therefore, we look at the

performance of these two different planning algorithms for PLASTIC–Model, as

well as the baseline of matching the teammates’ behaviors.

Results for three sizes of worlds are given in Figure 7.4. These results show

that the ad hoc agent can do much better than just copying the behavior of its

teammates by using PLASTIC–Model. In the 5x5 world, following the optimal

behavior found by VI captures the prey an average of 92.82 and 81.04 times respec-

tively when cooperating with Greedy and Teammate-aware teammates as opposed

to 67.77 and 63.88 times when mimicking their behavior. The improvements of

planning over mimicking the teammates increase as the worlds get larger, although

VI does not scale well enough computationally to calculate the optimal behavior for

these worlds. For example, on the 20x20 world, using PLASTIC–Model with UCT

allows the agent to capture the prey on average 15.07 times per 500 steps when

cooperating with Greedy Probabilistic teammates compared to 6.12 times when

mimicking the teammates’ behavior. Similarly, the agent using PLASTIC–Model

captures the prey 14.47 times rather than 2.60 times when paired with Probabilistic

Destinations teammates. All differences are statistically significant.

However, using the approximate planning of UCT in PLASTIC–Model is not

much of a compromise, since it performs nearly as well as VI despite using much

141

GR TA GP PD
Teammate Type

0

20

40

60

80

100

Ti
m

es
P

re
y

C
ap

tu
re

d

(a) 5x5 World

GR TA GP PD
Teammate Type

0

10

20

30

40

Ti
m

es
P

re
y

C
ap

tu
re

d

(b) 10x10 World

GR TA GP PD
Teammate Type

0

5

10

15

20

25

30

Ti
m

es
P

re
y

C
ap

tu
re

d

(c) 20x20 World

PLASTIC-Model(VI)
PLASTIC-Model(UCT)
Match

Figure 7.4: Results with known hand-coded teammates.

less computation time. In the 5x5 world, the agent captures the prey 91.68 and

80.45 times with Greedy and Teammate-aware agents when planning with UCT, as

opposed to 92.82 and 81.043 times with VI. The difference in performance could be

lowered by using more playouts in the UCT at the cost of more computation time.

Given the close approximation to optimal that UCT provides, the most important

difference between the methods is the time it takes to plan. On the 5x5 world, an

entire UCT episode takes less than 10 seconds compared to VI’s 12 hour computation

(although VI only needs to run once, rather than for each episode). Furthermore,

UCT is an anytime algorithm, so it can be used to handle variable time constraints

and can modify its plan online as the models change. Given the good performance

of UCT as well as its computational efficiency, we use it as the planning algorithm

for PLASTIC–Model for the remainder of this section.

142

In summary, these tests show that PLASTIC–Model is effective for coop-

erating with known teammates. In addition, they show that using UCT as the

planning algorithm for PLASTIC–Model leads to good performance of the team

while remaining computationally efficient.

7.2.4 Cooperating with teammates drawn from a known set

While Section 7.2.3 considers the case in which the ad hoc agent knows the be-

haviors of its teammates, the ad hoc agent may not always be this well informed.

Instead, ad hoc agents will need to adapt to new teammates on the fly. Therefore,

we now expand the problem, considering the case in which the ad hoc agent may

encounter any of the four hand-coded predators as teammates, but it does not know

which behavior its current teammates are using. The ad hoc agent does know that

these teammates are drawn from the set of hand-coded predators. In other words,

PLASTIC–Model receives all four hand-coded behaviors as HandCodedKnowledge

and needs to determine which one best represents its teammates online. This set-

ting is closer to the general ad hoc teamwork scenario, because it shows how well

an ad hoc agent can do if it only knows that its teammates are drawn from a larger

set A of possible teammates. These evaluations test whether PLASTIC–Model can

determine which type of teammates it encounters and adapt to them. We hypoth-

esize that PLASTIC–Model will outperform matching their behaviors and perform

only marginally worse than when PLASTIC–Model knows their behaviors before

interacting with them. In Sections 7.2.5–7.2.7, we explore a setting with a much

larger set of possible teammates.

If it has a set of possible models for its teammates, ideally PLASTIC–Model

should be able to determine which model is correct and plan with that model appro-

143

priately. In this setting, PLASTIC–Model uses the polynomial weights method de-

scribed in Section 5.2.1 to maintain its beliefs over the teammates’ types. PLASTIC–

Model is given a uniform prior over the teammate types for BehaviorPrior, but

PLASTIC–Model knows that the teammates are homogeneous; i.e. there were no

teams with some agents following the Greedy behavior and others following the

Teammate-aware behavior. The results for this scenario are displayed in Figure 7.5.

Differentiating the deterministic teammate behaviors is straightforward because as

soon as they take one action that is not expected by the deterministic behavior, the

incorrect model can be removed. However, the stochastic teammate behaviors are

more difficult to differentiate, as there is significant overlap in the actions that are

possible for them to take.

GR TA GP PD
Teammate Type

0

20

40

60

80

100

Ti
m

es
P

re
y

C
ap

tu
re

d

(a) 5x5 World

GR TA GP PD
Teammate Type

0

10

20

30

40

Ti
m

es
P

re
y

C
ap

tu
re

d

(b) 10x10 World

GR TA GP PD
Teammate Type

0

5

10

15

20

25

30

Ti
m

es
P

re
y

C
ap

tu
re

d

(c) 20x20 World

PLASTIC-Model(True)
PLASTIC-Model(All)
Match

Figure 7.5: Results with unknown hand-coded teammates.

We compare PLASTIC–Model being given the four hand-coded teammate

144

behaviors as HandCodedKnowledgeto a version of PLASTIC–Model that is given

only the correct model of its teammates as HandCodedKnowledge. We keep the

baseline of trying to fit into the teammates’ pre-designed team, denoted Match.

The results are shown in Figure 7.5. PLASTIC–Model is statistically significantly

better than Match in all scenarios. In the 5x5 world, PLASTIC–Model(All) is

statistically significantly worse that PLASTIC–Model(True) for GR, GP, and PD

teammates. In the 10x10 world, PLASTIC–Model(True) is significantly better than

PLASTIC–Model(All) only for GR teammates, and in the 20x20 world, PLASTIC–

Model(True) is significantly better than PLASTIC–Model(All) for the GR and PD

teammates. These results show that PLASTIC–Model is able to quickly determine

the behaviors of its teammates, losing only a small amount compared to when it

knows the correct teammate behavior ahead of time. In summary, these results

show that PLASTIC–Model can learn to cooperate with a number of unknown

teammates given prior hand-coded models of its potential teammates’ behaviors for

HandCodedKnowledge.

7.2.5 Unmodeled teammates

To this point, PLASTIC–Model has always had the benefit of having the correct

model of its teammates in HandCodedKnowledge, even when HandCodedKnowledge

includes incorrect models. However, PLASTIC–Model may not always be this for-

tunate. Therefore, we now consider the case where there are agents in A for which

PLASTIC–Model does not have a correct model in HandCodedKnowledge. We again

give PLASTIC–Model the four hand-coded teammate behaviors as HandCodedKnowledge,

but the ad hoc agent encounters teammates not drawn from this set. To make sure

we have not biased the creation of these agents, and that they truly are unknown, we

145

used the externally-created teammates described in Section 3.2.2 as StudentBroad.

Note that all the agents on each team used here are produced by the same student:

we did not mix and match agents from different students. However, on some of

the students’ teams, not all of the agents use the same behavior. For this and all

following tests, we focus on the 20x20 world because it is more complex and inter-

esting than the small worlds. We hypothesize that PLASTIC–Model will be able to

determine which models best fit its teammates and use them to plan to effectively

cooperate with its teammates. Our expectation is that PLASTIC–Model will out-

perform matching their behaviors and be outperformed by planning when their true

behavior is known.

As explained in depth in Section 5.2, PLASTIC–Model maintains the proba-

bilities of the four known models and samples from this distribution while planning.

While these models are not correct, PLASTIC–Model tries to determine which of

these behaviors best matches how its current teammates are behaving.

We compare 3 possible strategies for the ad hoc agent:

1. Match – match the teammates’ behaviors

2. PLASTIC–Model(True) – use PLASTIC–Model with the HandCodedKnowledge

initialized to the current teammates’ true behavior

3. PLASTIC–Model(HC) – use PLASTIC–Model with the 4 hand-coded mod-

els provided as HandCodedKnowledge

Strategies 1 and 2 require the ad hoc agent to know the true behavior of its current

teammates, which is not always possible. These two strategies therefore serve as

baselines to compare strategy 3, which represents the true ad hoc scenario of en-

countering previously unseen teammates. The results in Figure 7.6 show that the ad

146

hoc agents do quite well despite the incorrect models. All differences are statistically

significant. For example, the PLASTIC–Model agent captures the prey 13.36 times

per 500 steps rather than 9.97 times if it matched its teammate’s behaviors. This re-

sult is surprising because one would assume that planning using an incorrect model

would perform worse than playing the behavior of the student’s agent that the ad

hoc agent replaced. While there is some loss compared to if the ad hoc agent knew

the true behavior of its teammates, these 4 hand-coded models are representative

enough of these externally-created teammate to achieve good results.

StudentBroad
Teammate Type

0

2

4

6

8

10

12

14

16

Ti
m

es
P

re
y

C
ap

tu
re

d

PLASTIC-Model(True)
PLASTIC-Model(HC)
Match

Figure 7.6: Results with unobserved externally-created teams (StudentBroad) on a
20x20 world.

This experiment shows that it is possible for an agent to cooperate with

unknown teammates by using a set of known, representative models. In sum-

mary, these results demonstrate that PLASTIC–Model can cooperate with a va-

riety of previously unseen teammates given a set of good hand-coded models as

HandCodedKnowledge.

7.2.6 Learning About Teammates

In this section, we explore the scenario where the ad hoc agent has previously

observed a number of past teammates. These past teammates are expected to be

similar to the current teammates. Ideally, the ad hoc agent should be able to use the

147

observations of its past teammates to better cooperate with its current teammates.

To this end, this section evaluates how well PLASTIC–Model learns models of past

teammates and then selects between these models. Specifically, PLASTIC–Model

observes each past teammate for a total of 50,000 steps. Then, PLASTIC–Model

learns a decision tree to represent the behavior of each past teammate, as discussed

in Section 5.2.3. This section tests the hypothesis that PLASTIC–Model can learn

models of past teammates and reuse these learned models to cooperate with new

teammates. The results show that this approach only marginally loses compared to

knowing the teammates’ true behaviors and outperforms matching their behaviors.

The teammates used in this section are those from StudentBroad, described in

Section 3.2.2. These teammates are externally-created, being designed by students

for a class assignment. We consider 5 behaviors for the ad hoc agent:

1. Match – match the teammates’ behaviors

2. PLASTIC–Model(True) – use PLASTIC–Model with the HandCodedKnowledge

initialized to the current teammates’ true behavior

3. PLASTIC–Model(CorrectLearned) – use PLASTIC–Model with PriorTeammates

being only the current teammates

4. PLASTIC–Model(SetIncluding) – use PLASTIC–Model with PriorTeammates

including all 29 possible teammates from StudentBroad, including the current

ones

5. PLASTIC–Model(SetExcluding) – use PLASTIC–Model with PriorTeammates

including 28 possible teammates from StudentBroad, excluding the current ones

Once again, strategies 1 and 2 serve as baselines and require knowledge of the current

teammates true behaviors. PLASTIC–Model(CorrectLearned) evaluates the perfor-

148

mance of the learning algorithm, where PLASTIC–Model knows which teammates

the agent is cooperating with and uses its past observations of these teammates

to learn a model of them. PLASTIC–Model(SetIncluding) evaluates the more gen-

eral ad hoc teamwork scenario where the current type of teammate is unknown,

but the current teammates have been previously observed. Finally, PLASTIC–

Model(SetExcluding) shows the true ad hoc teamwork scenario, when the ad hoc

agent has never seen the current teammates, but uses PLASTIC–Model to reuse

knowledge it has learned from previous teammates.

StudentBroad
Teammate Type

0

2

4

6

8

10

12

14

16

Ti
m

es
P

re
y

C
ap

tu
re

d

PLASTIC-Model(True)
PLASTIC-Model(CorrectLearned)
PLASTIC-Model(SetIncluding)
PLASTIC-Model(SetExcluding)
Match

Figure 7.7: Results with PLASTIC–Model learning models of previously observed
teammates when encountering teams from StudentBroad on a 20x20 world.

Figure 7.7 shows the performance of these five approaches; all differences

are statistically significant. PLASTIC–Model(True) shows an unattainable level

of performance as it requires perfect knowledge of the current teammates. How-

ever, learning a model by observing the current teammates does not lose too much

performance, as shown by the PLASTIC–Model(CorrectLearned) line. Further-

more, having observed many teammates and needing to select from these past

teammates does not generate too much loss either, as shown by the PLASTIC–

Model(SetIncluding) line. Finally, PLASTIC–Model(SetExcluding) shows the per-

formance of PLASTIC–Model when encountering a previously unseen teammate.

Its performance shows that the models learned from previous teammates can do a

149

good job of capturing the behavior of new teammates. This problem is the true

ad hoc teamwork problem, when the ad hoc agent encounters teammates for which

it has no prior knowledge. The gap between PLASTIC–Model(SetExcluding) and

PLASTIC–Model(SetIncluding) shows that there is still room to improve for new

teammates.

It is possible that the agents created by the class are biased to be similar, so

all agents from StudentBroad may share some characteristics. Therefore, we would

also like to test how these learned models allow PLASTIC–Model to cooperate

with teammates drawn from another set. In this scenario, we never learn models

on the StudentSelected teammates. Instead, we evaluate how well PLASTIC–Model

performs when it is given StudentBroad for PriorTeammates, but then encounters

teammates from StudentSelected. Specifically, PLASTIC–Model learns 29 models,

one for each teammate behavior in StudentBroad, but then encounters a 30th team-

mate, drawn from StudentSelected.

StudentSelected
Teammate Type

0

5

10

15

20

25

Ti
m

es
P

re
y

C
ap

tu
re

d

PLASTIC-Model(True)
PLASTIC-Model(SetExcluding)
Match

Figure 7.8: Results with PLASTIC–Model learning models of previously observed
teammates when encountering teams from StudentSelected on a 20x20 world.

Figure 7.8 gives the results of these tests, with all differences being statis-

tically significant. Once again, PLASTIC–Model(True) shows the upper bound on

performance, when PLASTIC–Model is given information about the true behavior

of the teammates, which is not accessible in most scenarios. However, PLASTIC–

150

Model(SetExcluding) performs quite well, showing that the learned models are gen-

erally useful. This approach still far outperforms matching the teammates’ behav-

iors, despite the inaccuracies of the models. For visual comparison, videos of ad

hoc agents using PLASTIC–Model to adapt to its teammates and videos of ad hoc

agents using other strategies can be found online.1

In summary, these results demonstrate that PLASTIC–Model can effectively

learn models of past teammates and use these models to quickly adapt to unknown

teammates. Furthermore, the results show that PLASTIC–Model is effective even

when the new teammates are drawn from a substantially different set than its pre-

vious teammates.

7.2.7 Learning about New Teammates

The previous section assumes that PLASTIC–Model has observed previous team-

mates, but not the current teammates. If instead, PLASTIC–Model observes the

current teammates for a small number of steps, it can try to use this informa-

tion to learn a new model about these teammates. However, given that the learn-

ing is about the current teammates, we care about the speed of learning. There-

fore, PLASTIC–Model combines this information with that coming from previously

observed teammates to learn a better model. Specifically, this setting permits

PLASTIC–Model to use transfer learning to learn a better model of its current

teammates. These evaluations test the hypothesis that using TwoStageTransfer al-

lows PLASTIC–Model to narrow the gap between PLASTIC–Model(SetExcluding)

and PLASTIC–Model(CorrectLearned) seen in the previous section.

In our tests, we assume that the ad hoc agent has previously observed 50,000

training steps of each of the past 28 teammates from StudentBroad. In addition, it

1http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_Pursuit

151

http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_Pursuit

has seen 100 training steps of the current teammates. Note that this is significantly

less than the testing time of 500 steps, but once testing begins, PLASTIC–Model

is not learning online other than adapting its belief distribution over the possible

models. PLASTIC–Model could also improve its models, but we focus on evalu-

ating the transfer learning algorithms with a fixed amount of observations of the

current teammates. Both the past and current teammates in this test are taken

from StudentBroad.

To perform transfer learning, PLASTIC–Model uses the TwoStageTransfer

algorithm introduced in Section 5.2.4. TwoStageTransfer allows the PLASTIC–

Model to learn from a number of different past teammates (source data sets) com-

bined with a few observations of the current teammates (the target data set). The

goal of transfer learning is to produce a model that performs well on the target

data set by using the source data sets. The advantage of TwoStageTransfer is that

it considers that the data comes from several different types of past teammates,

some of which are more similar to the current teammates than others. Specifically,

TwoStageTransfer attempts to figure out the best weighting of data coming from

each past teammate, where data coming from more similar teammates is given a

higher weighting. In our tests, TwoStageTransfer considers 10 different weightings

for each of the 28 past teammates from StudentBroad. While considering every pos-

sible weighting for each teammate would result in a total of 1028 weightings to con-

sider. However, TwoStageTransfer approximates its search by choosing teammate

weightings greedily, instead considering only 2 · 10 · 28 ≈ 600 possible weightings.

This efficiency allows TwoStageTransfer to be computationally tractable on this

problem.

To evaluate the performance of TwoStageTransfer, we compare it to us-

152

ing TwoStageTrAdaBoost, TrAdaBoost, and TrBagg (discussed in Section 3.1.7)

in PLASTIC–Model. All of the transfer learning algorithms use decision trees as

their base learning algorithm. Each algorithm has some set of parameters that can

be tuned, and their values were chosen in preliminary tests based on their perfor-

mance and computational tractability. To make the evaluations as fair as possible,

for TwoStageTransfer and TwoStageTrAdaBoost, 10 different weightings were used.

In TrAdaBoost and TwoStageTrAdaBoost, 10 boosting iterations were used. For

TrBagg, a total of 1,000 sets were used for training classifiers, and a Naive Bayes

classifier served as the fallback model.

StudentBroad
Teammate Type

0

2

4

6

8

10

12

14

16

Ti
m

es
P

re
y

C
ap

tu
re

d

PLASTIC-Model(True)
PLASTIC-Model(CorrectLearned50,000)

PLASTIC-Model(TwoStageTransfer+SetExcluding)
PLASTIC-Model(SetExcluding)
PLASTIC-Model(TwoStageTransfer)
PLASTIC-Model(TrAdaBoost)
PLASTIC-Model(TwoStageTrAdaBoost)
Match
PLASTIC-Model(CorrectLearned100)

PLASTIC-Model(TrBagg)

Figure 7.9: Comparing different transfer learning algorithms in PLASTIC–Model to
improve results with ad hoc agents that have limited observations of their current
teammates. Tests are in a 20x20 world with StudentBroad teammates.

Figure 7.9 shows the results of the four transfer learning algorithms used

as subroutines of PLASTIC–Model, with all differences being statistically signifi-

cant. In PLASTIC–Model, all learning of the models is performed offline with only

model selection happening online during the evaluation. One baseline for compar-

ison is if PLASTIC–Model ignores the previously observed teammates and learns

a new model from just the observed 100 steps of the current teammates, shown

as PLASTIC–Model(CorrectLearned100). As an upper baseline, we compare to

the unattainable performance of using a version of PLASTIC–Model that observes

50,000 steps of the current teammate, shown as PLASTIC–Model(CorrectLearned50,000),

153

which represents the best performance attainable using models learned given large

amounts of data.

In these results, TwoStageTransfer statistically significantly outperforms the

other transfer learning algorithms. In addition, combining the models learned with

TwoStageTransfer with the models learned from representative teammates in the

PLASTIC–Model(TwoStageTransfer + SetExcluding) setting helps, reaching re-

sults that are statistically significantly better than PLASTIC–Model(SetExcluding).

TrBagg performed poorly in this setting, mis-transferring information, possibly due

to the fallback model used or the balance of target and source data. Several values

of these parameters were tested, but performance remained similar.

StudentBroad
Teammate Type

0

2

4

6

8

10

12

14

16

Ti
m

es
P

re
y

C
ap

tu
re

d

PLASTIC-Model(True)
PLASTIC-Model(CorrectLearned50,000)

PLASTIC-Model(TwoStageTransfer10,000)

PLASTIC-Model(TwoStageTransfer1,000)

PLASTIC-Model(TwoStageTransfer100)

PLASTIC-Model(TwoStageTransfer10)

PLASTIC-Model(CorrectLearned100)

Figure 7.10: Evaluating PLASTIC–Model using TwoStageTransfer with varying
amounts of target data. Tests are in a 20x20 world with StudentBroad teammates.

In addition, it is important to see how much target data TwoStageTransfer

needs to perform well. Therefore, we vary the order of magnitude of target data and

run PLASTIC–Model(TwoStageTransferi) where i is the amount of target data pro-

vided. Figure 7.10 shows results with varying amounts of target data, but constant

amounts of source data. The difference between the results with 1,000 steps of tar-

get data and 100 is statistically significant, but the differences between 10,000 and

1,000 or 100 and 10 are not. The results show that the performance of TwoStage-

Transfer does improve with more target data, but the improvement is not smooth.

154

These results show that as few observations as 10 steps of the current teammates are

sufficient for TwoStageTransfer to perform produce useful models in this scenario.

We used 100 steps in Figure 7.9 to give other transfer learning methods enough

data to perform adequately, though the results show that TwoStageTransfer still

significantly outperforms them.

In summary, TwoStageTransfer is effective for learning models of new team-

mates using only a small amount of observations of these teammate combined with

many observations of past teammates. Using TwoStageTransfer with PLASTIC–

Model allows an ad hoc agent to cooperate with a variety of unknown teammates,

outperforming only reusing previously learned models.

7.2.8 Summary

This section showed that PLASTIC–Model enables ad hoc team agents to cooper-

ate with a variety of hand-coded and externally-created teammates in the pursuit

domain. PLASTIC–Model gets good results when given a set of hand-coded be-

haviors as HandCodedKnowledge or when it has experienced a number of previous

teammates as PriorTeammates. PLASTIC–Model performs well even when it has

never seen the current teammates before. Furthermore, TwoStageTransfer is effec-

tive for creating improved models for PLASTIC–Model to plan with, outperform-

ing existing transfer learning algorithms. This result is due to TwoStageTransfer’s

exploitation of the knowledge that some past teammates are more similar to the

current teammates than others and weighting data coming from these past team-

mates accordingly. PLASTIC–Model allows for effective ad hoc teams in the pursuit

domain.

155

7.3 Half Field Offense

The previous section showed that PLASTIC allows ad hoc agents to cooperate with

a variety of teammates in the pursuit domain. However, while the pursuit domain

requires a number of agents to cooperate, it is still simple compared to many realistic

scenarios. Therefore, this section looks into scaling PLASTIC to a more complex

domain, namely that of half field offense (HFO), described in Section 3.2.3. All past

research on HFO has focused on creating full teams that are pre-coordinated, but

this section shows that PLASTIC can handle unknown teammates without prior

coordination. Given the complexity of HFO, planning using UCT requires many

samples and runs into issues with imperfect modeling of the environment. Therefore,

we evaluate PLASTIC–Policy in HFO. PLASTIC–Policy is more effective because it

avoids the complexity of modeling the domain and teammates. Instead, PLASTIC–

Policy directly learns policies for cooperating with previous teammates and then

selects between these policies online for the current teammates. PLASTIC–Policy

is described in depth in Section 5.3.

7.3.1 Grounding the Model

Before we discuss how to learn or act in HFO, it is important to understand how

we model the problem. Therefore, this section describes how we model the HFO

domain as an MDP.

State

A state s ∈ S describes the current positions, orientations, and velocities of the

agents as well as the position and velocity of the ball. In this thesis, we use the

noiseless versions of these values to permit for simpler learning.

156

Actions

In the 2D simulation league, agents act by selecting whether to dash, turn, or kick

and specify values such as the power and angle to kick at. Combining these actions

to accomplish the desired results is a difficult problem. Therefore, this thesis builds

on the code release by Helios [3]. This code release provides a number of high level

actions, such as passing, shooting, or moving to a specified point.

We use 6 high level actions when the agent has the ball:

1. Shoot – shoot the ball at the goal, avoiding any opponents

2. Short dribble – dribble the ball while maintaining control

3. Long dribble – kick ball and chase it

4. Pass0 – pass to teammate 0

5. Pass1 – pass to teammate 1

6. Pass2 – pass to teammate 2

Each action considers a number of possible movements of the ball and evaluates

their effectiveness given the locations of the agent’s opponents and teammates. Each

action therefore represents a number of possible actions that are reduced to discrete

actions using the agent2d evaluation function. While using these high level actions

restricts the possibilities that the agent can take, it also enables the agent to learn

more quickly and prune out ineffective actions, allowing it to select more intelligent

actions with fewer samples.

Additionally, the agent can select how it moves when it is away from the

ball. As the agent can take a continuous turn action or a continuous dash action

every time step, it is helpful to again use a set of high level actions, in this case 7:

157

1. Stay in the current position

2. Move towards the ball

3. Move towards the opposing goal

4. Move towards the nearest teammate

5. Move away from the nearest teammate

6. Move towards the nearest opponent

7. Move away from the nearest opponent

These actions provide the agent a number of possible actions that adapt to its

changing environment, while constraining the number of possible actions.

Transition Function

The transition function is defined by a combination of the simulated physics of the

domain as well as the actions selected by the other agents. The agent does not

directly model this function; instead, it stores samples observed from played games

as described in Section 7.3.2.

Reward Function

The reward function is 1,000 when the offense wins, -1,000 when the defense wins,

and -1 per each time step taken in the episode. The value of 1,000 is chosen to be

greater than the effects of step rewards over the whole episode, but not so great as

to completely outweigh these effects. Other values were tested with similar results.

158

7.3.2 Methods

PLASTIC–Policy learns policies for cooperating with each previously encountered

team. In this thesis, we use Fitted Q Iteration (FQI), introduced by Ernst et al. [44].

We treat an action as going from when an agent has possession of the ball until the

action ends, another agent holds the ball, or the episode has ended. Given that

we only control a single agent, the teammates follow their own policies. The agent

collects data about its actions and those of its teammates’ in the form 〈s, a, r, s′〉

where the a is our agent’s actions. The agent does not directly store the actions of

its teammates, instead storing the resulting world states, which include the effects

of its teammates’ actions. If we controlled all of the agents, we would also consider

the action from the teammates’ perspectives. The agent observes 100,000 episodes

of HFO with each type of teammate. These episodes contain the agent’s actions

when the agent has the ball as well as when it is away from the ball.

There are many ways to represent the state of a game of half field offense.

Ideally, we want a compact representation that allows the agent to learn quickly by

generalizing its knowledge about a state to similar states without over-constraining

the policy. Therefore, we select 20 features given that there are 3 teammates:

• X position – the agent’s x position on the field

• Y position – the agent’s y position on the field

• Orientation – the direction that the agent is facing

• Goal opening angle – the size of the largest open angle of the agent to the

goal, shown as θg in Figure 7.11

• Teammate i’s goal opening angle – the teammate’s goal opening angle

159

• Distance to opponent – distance to the closest opponent

• Distance from teammate i to opponent – the distance from the teammate to

the closest opponent

• Pass opening angle i – the open angle available to pass to the teammate, shown

as θp in Figure 7.11

θp

θg

Figure 7.11: Open angle from ball to the goal avoiding the blue goalie and the open
angle from the ball to the yellow teammate.

7.3.3 Evaluation Setup

Results are averaged over 1,000 trials, each consisting of a series of games of half

field offense. In each trial, the agent is placed on a team randomly selected from

the 7 teams described in Section 3.2.3. Performance is measured by the fraction of

the time that the resulting team scores.

In this thesis, we use two variations on the HFO task: 1) the limited version

with two offensive players attempting to score on two defenders (including the goalie)

and 2) the full version with four attackers attempting to score on five defenders. In

order to run some existing teams used in the RoboCup competition, it is necessary

to field the entire 11 player team for the agents to behave correctly. Therefore,

it is necessary to create the entire team and then constrain the additional players

160

to stay away from play, only using the agents needed for half field offense. This

approach may alter the behavior of the players used in the HFO, but our initial

tests suggested that the resulting teams still perform well on the task. We choose

a fixed set of player numbers for the teammates, based on which player numbers

tended to play offensive positions in observed play. The defensive players use the

behavior created by Helios in the limited version of HFO. In the full HFO, the

defense uses the agent2d behavior provided in the code release by Helios [3].

We compare several strategies for selecting from the policies learned by play-

ing with previously encountered teammates. The performance is bounded above

by the Correct Policy line, where the agent knows its teammate’s behavior type

and therefore which policy to use. The lower bound on performance is given by

the Random Policy line, where the agent randomly selects which policy to use. The

Combined Policy line shows the performance if the agent learns a single policy using

the data collected from all possible teammates, representing what an agent might

do if treating this as a single angle learning problem instead of an ad hoc teamwork

problem.

We then compare two more intelligent methods for selecting models, as de-

scribed in Section 5.3.2. Specifically, our agent must decide which of the 7 policies to

follow as it does not know its new teammate’s behavior type. The Bandit line rep-

resents PLASTIC–Policy that uses an ε-greedy bandit algorithm to select policies.

Other bandit algorithms were tested as were other values of ε, but ε-greedy with

ε = 0.1 linearly decreasing to 0 over the length of the trial outperformed these other

methods. The PLASTIC–Policy line shows the performance of our approach, us-

ing loss-bounded Bayesian updates to maintain probabilities over which previously

learned policy to use. We set η = 0.1 for updating the probabilities of the models

161

in Equation 5.1. We model the noise in predicting actions using a normal distri-

bution. This noise affects the loss function by controlling the probability function

P (actions|model). For differences in distance predictions, we use σ = 4.0, and, for

orientation differences, we use σ = 40◦.

7.3.4 Limited Half Field Offense

Our first set of results are in the limited version of the HFO game which uses 2

offensive players competing against 2 defenders (including the goalie). Therefore,

the agent only needs to adapt to a single teammate. This limited version of the

problem reduces the number of state features to 8 and the number of actions while

holding the ball to 4, while the number of actions away from the ball stays at 7.

These evaluations test the hypothesis that PLASTIC–Policy can quickly converge to

selecting the best policy, losing only a small amount compared to the correct policy.

In addition, we hypothesize that PLASTIC–Policy will converge much faster than

the bandit-based approach and will also outperform combining the data from all of

the agents to learn a single, combined policy. The results are shown in Figure 7.12,

with the error bars showing the standard error.

The difference between the Correct Policy and Random Policy lines shows

that selecting the correct policy to use is important for the agent to adapt to its

teammates. The gap between the Correct Policy and Combined Policy shows that

knowing the correct teammate is better that grouping all teammates together. While

the Bandit line does not show much learning in Figure 7.12, it does continue learning

over time. Its performance converges to scoring 0.418 of the time after approximately

10,000 episodes, though it does score approximately equal to the combined policy

(0.382) after 1,750 episodes. Its slow speed is due to the fact that its observations

162

0 5 10 15 20 25
Episode

0.34

0.36

0.38

0.40

0.42

0.44

Fr
ac

tio
n

S
co

re
d

Correct Policy
PLASTIC-Policy
Combined Policy
Bandit
Random Policy

Figure 7.12: Scoring frequency in the limited half field offense task.

are noisy estimates of the policies’ effectiveness and are only received after each

game of HFO. In addition, the scoring fractions of the different strategies are fairly

close, so determining the best one given the amount of noise is difficult.

On the other hand, the PLASTIC–Policy line shows fast improvement, con-

verging to the performance of the Correct Policy line. This quick adaptation is due

to two factors: 1) the better estimations of which policy fits the teammates and 2)

the frequency of the updates. The estimations of the probabilities are better as they

measure how each agent moves, rather than only using a noisy estimate of how the

policy performs. The updates are performed after every action rather than after

each episode; so updates are much more frequent. These two factors combine to

result in fast adaptation to new teammates using PLASTIC–Policy. The differences

between the performance of PLASTIC–Policy and Combined Policy and Bandit

are statistically significant using a two population binomial test with p < 0.01 for

all episodes shown in Figure 7.12. Videos of the performance of PLASTIC–Policy

compared to other strategies can be viewed online.2

2http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_HFO

163

http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_HFO

To understand the learning of PLASTIC–Policy, it is useful to look at its

beliefs, shown in Figure 7.13. This graph shows the probability of the correct model

of the current teammates as well as the probability that correct model has the highest

probability (with ties contributing a probability of 1
#tied). While the probability

of the correct model takes over 15 episodes to reach above 90% probability, the

correct model becomes the maximal model 90% of the time after just 5 episodes.

This result explains why taking the maximal model gives such good performance in

PLASTIC–Policy. Note that choosing the maximal model does not create premature

convergence because each action the teammates take allows PLASTIC–Policy to

update the probability of those teammates.

0 5 10 15 20 25
Episode

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

lit
y

Prob that correct model is max
Prob of correct model

Figure 7.13: Belief of the probability of the correct model (P (m∗|s, a)) and prob-
ability of the correct model having the highest probability (P (p∗ = max pi|s, a))
calculated by PLASTIC–Policy in the limited HFO task.

In summary, the results in this section show that PLASTIC–Policy is effec-

tive for cooperating with unknown teammates on a complex domain with continuous

state and continuous actions. PLASTIC–Policy is able to learn policies for cooper-

ating with previous teammates and quickly select from these policies to efficiently

cooperate with new teammates.

164

7.3.5 Full Half Field Offense

Our second set of results are in the full HFO game with 4 offensive players ver-

sus 5 defenders (including the goalie). In this setting, our agent needs to adapt

to its three teammates to score against the five defenders. This setting tests the

hypothesis that PLASTIC–Policy can learn intelligent policies for cooperating with

its three teammates and quickly select between these policies when cooperating with

unknown teammates. We expect that PLASTIC–Policy will outperform selecting

policies using a bandit-based approach or learning a single policy to cooperate with

all teammates. In addition, we hypothesize that PLASTIC–Policy will only lose

marginally compared to the gold standard of knowing the best policy before inter-

acting with its teammates.

The results for this setting are shown in Figure 7.14. As in Section 7.3.4,

the upper bound on performance is given by Correct Policy and the lower bound is

given by Random Policy. The Bandit setting learns slowly, reaching a performance

of 0.357 after approximately 20,000 episodes. It outperforms the combined policy

(0.350) after 12,000 episodes. Once again, PLASTIC–Policy quickly converges to

the correct policy’s performance, outperforming the Bandit and Combined lines.

These results show that PLASTIC–Policy quickly learns to cooperate with unknown

teammates. Using a two population binomial test with p < 0.05, PLASTIC–Policy’s

performance is stastically significantly better than Combined Policy and Bandit from

episode 3 on. For visual comparison, videos of ad hoc agents using PLASTIC–Policy

and other strategies to cooperate with its teammates can be viewed online.3

We again look at PLASTIC–Policy’s beliefs over time in Figure 7.15. In this

figure, we can see that PLASTIC–Policy takes several episodes to be convinced that

3http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_HFO

165

http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_HFO

0 5 10 15 20 25
Episode

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

Fr
ac

tio
n

S
co

re
d

Correct Policy
PLASTIC-Policy
Combined Policy
Bandit
Random Policy

Figure 7.14: Scoring frequency in the full half field offense task.

0 5 10 15 20 25
Episode

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

lit
y

Prob that correct model is max
Prob of correct model

Figure 7.15: Belief of the probability of the correct model (P (m∗|s, a)) and proba-
bility of the correct model having the highest probability (P (p∗ = max pi|s, a)) by
PLASTIC–Policy in the full HFO task.

166

the correct model is the true model of the current teammates because of the noise

of the whole team’s actions. However, greedily selecting the highest probability

model’s corresponding policy performs well because the correct model is maximal

90% of the time after just 5 episodes. This result shows that PLASTIC–Policy

learns quickly and can take advantage of its continuing exploration of its teammates

despite only selecting what it believes in the current best policy.

In summary, the results in this section demonstrate that PLASTIC–Policy

can scale to complex domains requiring coordinating with many teammates, con-

tinuous states, and continuous actions. PLASTIC–Policy can efficiently select good

policies for cooperating with its current teammates from a set of policies learned for

cooperating with past teammates.

7.3.6 Summary

The results in this section show that PLASTIC–Policy is effective for ad hoc team

agents in the HFO domain. Our tests evaluate PLASTIC–Policy with teams that

competed in the 2013 RoboCup 2D Simulation League and are complex, being

developed over several years. Despite this complexity, PLASTIC–Policy is able to

learn policies about each type of teammate, and the results show that these policies

are specialized to the teammate type. Therefore, PLASTIC–Policy’s approach of

maintaining the probabilities of each teammate type and selecting the best policy

significantly outperforms the other approaches. This section shows that PLASTIC

can scale to complex domains.

167

7.4 Chapter Summary

This chapter presents the empirical analysis of PLASTIC in the bandit domain,

the pursuit domain, and half field offense in the 2D RoboCup domain. The results

reported here show that both PLASTIC–Model and PLASTIC–Policy enable ad

hoc team agents to cooperate with a variety of teammates. Our tests focus on

whether PLASTIC can cooperate with externally-created teammates, which are not

pre-designed for ad hoc teamwork.

An overview of the experiments can be seen in Table 7.1. The results in

Section 7.1 show that PLASTIC can plan how to effectively communicate with its

teammates in the bandit domain. These results also show that PLASTIC can op-

erate effectively with parameterized hand-coded models for HandCodedKnowledge.

Section 7.2 shows that PLASTIC can learn models of past teammates and use these

models to quickly adapt to new teammates. In addition, the results in Section 7.2.7

show that TwoStageTransfer significantly outperforms other transfer learning al-

gorithms for learning models of new teammates because it takes advantage of the

fact that some past teammates are more similar to the current teammates than

others. Finally, Section 7.3 describes the results in the HFO domain. These results

show that PLASTIC can scale to complex domains, where teams of developers work

for years to develop smart agents. This chapter shows that PLASTIC can reason

about communication, select from a set of parameterized hand-coded models for

HandCodedKnowledge, learn models of its past teammates, use transfer learning to

improve the models it learns, and perform well in complex domains.

168

Chapter 8

Discussion and Conclusion

Past research on multiagent teams assumes that the agents share common commu-

nication and coordination protocols, and research on other multiagent systems focus

on the case where the agents’ goals are diametrically opposed and other agents are

treated as opponents. This thesis instead looks at a multiagent system where agents

are brought together to form a new team without prior coordination. This setting

is known as ad hoc teamwork and addresses the case where agents need to adapt

to teammates that they do not know. We believe that this problem is important

for deploying robots into real world scenarios because they may encounter robots

from other companies or research laboratories that may not share a communication

or coordination protocol. For agents to act intelligently in this setting, they need

to learn and adapt to their teammates quickly. We believe that this problem is

of growing importance due to the increasing durability, increasing capabilities, and

decreasing cost of intelligent robots.

Specifically, we believe that to enable ad hoc agents to be viable for real

world scenarios, their algorithms must be robust to their teammates’ behaviors, ro-

169

bust to diverse tasks, and adapt quickly. Therefore, this thesis presents an algorithm,

PLASTIC, that addresses all three of these requirements. PLASTIC reuses knowl-

edge learned from past teammates and combines this knowledge with any advice

provided by domain experts. This approach allows PLASTIC to quickly adapt to

new teammates on the fly. We show that PLASTIC performs well on three disparate

domains with a variety of teammates and differing amounts of knowledge about its

teammates. In addition, we introduce a transfer learning algorithm, TwoStageTrans-

fer, that improves the speed of adaptation, outperforming existing transfer learning

algorithms. Furthermore, we analyze the ad hoc teamwork problem in the bandit

domain that includes communication and show that it is theoretically tractable as it

takes only polynomial time to calculate an ε-optimal behavior. Finally, we identify

three dimensions that we believe describe ad hoc teamwork problems in an infor-

mative way. We hypothesize that these dimensions will allow researchers to identify

which algorithms to use on new problems. In this thesis, we use these dimensions

to analyze existing research and identify areas for future research.

This chapter summarizes the thesis and identifies avenues for future research.

We begin by summarizing the PLASTIC algorithm and the rest of the thesis in Sec-

tion 8.1. Section 8.2 presents the contributions of this thesis. Then, Section 8.3

discusses the applicability of PLASTIC as well as its limitations, and Section 8.4

presents directions for future work that address these limitations. Finally, Sec-

tion 8.5 provides some concluding remarks.

8.1 Summary

This thesis introduces the PLASTIC algorithm for cooperating with unknown team-

mates in ad hoc teamwork scenarios. PLASTIC exploits any prior knowledge it has

170

learned about previous teammates in addition to any expert-provided knowledge to

speed up its adaptation. PLASTIC is described in detail in Chapter 5. Our tests

show that reusing this knowledge allows PLASTIC to quickly adapt to new team-

mates. We show that two versions of PLASTIC are effective: PLASTIC–Model, a

model-based approach, and PLASTIC–Policy, a policy-based approach. We discuss

which algorithm is expected to be more effective on new domains in Section 8.3.

In summary, PLASTIC–Policy is more effective when the domain or teammates are

difficult to model and plan about, and PLASTIC–Model is preferred in other sce-

narios due to being able to plan over a distribution of beliefs about the teammates’

behaviors.

In Chapter 7, we empirically test PLASTIC–Model and PLASTIC–Policy on

three very different domains while varying the amount of information that is avail-

able about the current teammates. These domains provide a variety of interesting

problems including communicating with unknown teammates, requiring coordinated

actions, and having continuous state and action spaces. We consider a wide vari-

ety of externally-created teammates that are not designed for ad hoc teamwork.

These results show the effectiveness of PLASTIC; PLASTIC quickly adapts to new

teammates and significantly outperforms existing approaches.

In addition, we analyze the computational complexity of applying PLASTIC–

Model on the bandit domain that includes communication. These theoretical anal-

yses are presented in Chapter 6, and they show that the bandit domain is compu-

tationally tractable, i.e. ε-optimally solvable in polynomial time.

Furthermore, we introduce a transfer learning algorithm, TwoStageTransfer,

and show that it helps PLASTIC–Model adapt more quickly to new teammates.

TwoStageTransfer allows the agent to transfer knowledge from many past teammates

171

while exploiting the idea that some past teammates are more similar to the current

teammates than others. TwoStageTransfer is a general transfer learning algorithm,

and we empirically test it for learning models of new teammates that are used by

PLASTIC–Model on the pursuit domain. These results show that TwoStageTransfer

is computationally efficient and outperforms existing transfer learning algorithms.

The full TwoStageTransfer algorithm is presented in Section 5.2.4 and results with

it can be found in Section 7.2.7.

After describing the general ad hoc teamwork problem and the evaluation

framework used to analyze ad hoc team agents in the beginning of Chapter 2, we go

on to introduce three dimensions in Section 2.3 that we believe best describe ad hoc

teamwork problems. These dimensions describe the ad hoc agent’s knowledge of the

team, its knowledge about the environment, and the how reactive its teammates are

to its actions. We believe that domains with similar values along these dimensions

can be solved by similar algorithms, and we apply these dimensions to analyze the

problems explored in this thesis in Section 3.2. In addition, we use these dimensions

to analyze related ad hoc teamwork research in Section 4.4.4. We also discuss other

prior related multiagent research in the rest of Chapter 4.

8.2 Contributions

In summary, this thesis provides the following six major contributions to the field:

1. PLASTIC : This thesis introduces the PLASTIC algorithm and instantiates

it in a model-based approach called PLASTIC–Model and a policy-based ap-

proach called PLASTIC–Policy. These algorithms are the first algorithms for

ad hoc teamwork that allow ad hoc agents to learn about previous teammates

and reuse this knowledge to cooperate with new, unknown teammates on a

172

variety of domains. In addition, these algorithms allow domain experts to

provide information about potential teammates to speed up adaptation.

2. Theoretical Analysis: We provide theoretical analysis of PLASTIC–Model in

the multi-armed bandit domain described in Section 3.2.1. This analysis proves

that ε-optimally selecting between a parameterized set of models of team-

mates’ behaviors and planning reactions to these teammates takes polynomial

computation even when the distributions of the arms are unknown. Note

that this analysis includes communication with known messages, including

the case where the ad hoc agent is uncertain about how its teammates will

react to messages.

3. Reasoning about Communication: Past research in ad hoc teamwork focuses

either on the case where there is no communication or the case where there

are completely shared protocols for coordination and communication. How-

ever, this thesis considers the case where messages’ meanings are known, but

the other agents’ reactions to these messages is unknown. This thesis proves

that reasoning about this type of communication using PLASTIC–Model is

computationally tractable on the bandit domain described in Section 3.2.1.

In addition, the thesis shows that PLASTIC–Model empirically outperforms

other approaches on the bandit domain, using this communication in an effi-

cient manner.

4. TwoStageTransfer : In this thesis, we introduce TwoStageTransfer, a new

transfer learning algorithm. TwoStageTransfer improves over existing trans-

fer learning algorithms because it efficiently transfers information from many

different source data sets, while using the information of which source set data

173

came from. This approach allows TwoStageTransfer to consider how similar

each source data set is to the target data set and transfer information from

these sets accordingly. TwoStageTransfer is a general transfer learning algo-

rithm, and we empirically test it in the area of ad hoc teamwork. We test

whether TwoStageTransfer can transfer knowledge about previous teammates

to quickly build new models of the current teammates.

5. Empirical Evaluation: We empirically test PLASTIC on the three domains

presented in Section 3.2, namely the bandit domain, the pursuit domain, and

the half field offense task in the 2D simulated soccer domain. These domains

are significantly different, showing that PLASTIC can perform well in domains

that provide communication, require coordinated multiagent actions, and have

continuous state and action spaces. We show that PLASTIC outperforms

other approaches. Combining information learned from previous teammates

with expert-provided information allows PLASTIC to quickly adapt to new

teammates, using both the PLASTIC–Model and PLASTIC–Policy versions

of the algorithm.

6. Taxonomy of Ad Hoc Teamwork : We present what we believe are the three

most important dimensions for describing ad hoc teamwork problems. We

believe that domains with similar values along these dimensions can be solved

using similar approaches, while domains with very different values may be

best solved using different approaches. This thesis analyzes where the three

domains we use fall along these dimensions. Furthermore, we analyze the

related ad hoc teamwork research to identify areas for future research, which

we discuss further in Section 8.4.

174

8.3 Discussion

The empirical evaluations in Chapter 7 show that PLASTIC is effective in a variety

domains. However, there are limitations to where it can be effectively applied.

One such limitation is that if there is a complete, shared communication protocol

that allows agents to schedule their tasks and negotiate, PLASTIC is not the best

approach. In these settings, standard multiagent team coordination algorithms (e.g.

STEAM [124] and GPGP [41]) will serve better because they are designed to handle

this scenario. In Section 7.1, we show that PLASTIC performs well when there

is limited communication, but with full communication there are more applicable

approaches.

PLASTIC–Model is only performs well in situations in which it can effectively

model the domain. In complex domains, errors in the models can lead to issues with

using planning algorithms to calculate the best responding behavior. This issue

may be addressed by using a more robust planning algorithm, but in preliminary

tests in the HFO domain, PLASTIC–Model performed poorly. However, this poor

performance may also be due to the computational costs of PLASTIC–Model. Given

that the implementation of PLASTIC–Model used in this thesis relies on Upper

Confidence bounds for Trees (UCT) for planning, the computational costs may be

high. Running UCT requires running many forwards simulations, and, if these

simulations are expensive to calculate, it is expensive to run enough simulations to

calculate which actions perform best. However, PLASTIC–Policy performs well on

these more complex domains.

Another constraint of PLASTIC is that it relies on either knowledge about

past teammates or expert knowledge about potential teammates. Relying on this

initial knowledge also means that PLASTIC may not perform well with teammates

175

that differ greatly from previous teammates. In this case, the best approach might

be to throw away any knowledge about previous teammates and learn about the

problem using existing learning algorithms such as Q-learning [131], Fitted Q Iter-

ation [44], or policy search [42]. Albrecht and Ramamoorthy [7] look at the perfor-

mance of an algorithm that is similar to PLASTIC and prove constraints about the

performance of their algorithm given errors in their teammate models. We believe

that in most cases, there will be similarities between previous teammates and the

current teammates, so reusing this information via PLASTIC will be effective. How-

ever, there are scenarios in which this will not be the case, for example if there are

two very different approaches to solving the task and only agents using one approach

have been encountered previously.

Fortunately, we believe that PLASTIC does apply in most scenarios. PLAS-

TIC allows an ad hoc agent to quickly adapt to new teammates by reusing in-

formation about previous teammates or expert knowledge. We believe that this

information will be available in many scenarios. PLASTIC will perform especially

well when there are a limited number of useful behaviors that teammates may fol-

low. When it has complete prior knowledge about potential teammates, PLASTIC

can calculate the optimal behavior rather than just trying to fit into the team and

copy its teammates’ behaviors. When this prior knowledge is limited but good,

PLASTIC can still perform effectively.

Another important consideration in PLASTIC is whether to use a model-

based approach (PLASTIC–Model) or a policy-based approach (PLASTIC–Policy).

PLASTIC–Model is effective when online planning algorithms like Upper Confidence

bounds for Trees (UCT) [82] perform well. Using PLASTIC–Model allows an agent

to calculate the best response to its current beliefs over its teammates behavior. On

176

the other hand, PLASTIC–Policy only allows the agent to use the most likely policy

because combining a weighted set of policies into a single policy does not have a

clear online solution. It is possible to pre-calculate an effective behavior for a specific

set of beliefs, but it is too expensive to pre-calculate policies for all possible beliefs.

Therefore, we believe that it is desirable to use PLASTIC–Model where possible.

Applying PLASTIC–Model is not effective when the domain is complex to

model or very noisy. Complex models take a significant amount of computation

time, which limits the effectiveness of online planners such as UCT. Similarly, having

noise in the effects of actions, observations, or teammates’ behaviors leads to more

complexity in planning. Online planners need to consider the range of possible

outcomes to determine the best behavior. In addition, imperfect models can lead

planners to calculate behaviors that do not work well in practice. In these scenarios,

we expect PLASTIC–Policy to be more effective because it directly learns policies

for cooperating with teammates in the domain and does not rely on building a model

of the world and its teammates. Testing this hypothesis remains an area for future

research.

The following section describes ways to extend PLASTIC, ensuring good

performance in even more scenarios. These extensions apply to both PLASTIC–

Model and PLASTIC–Policy.

8.4 Future Work

The research in this thesis leads to many interesting directions for future research.

This section discusses five of these directions. The first is to investigate ad hoc

teamwork in complex robotic tasks, discussed in Section 8.4.1. Analyzing the re-

lated ad hoc team research in Section 4.4.4 using the dimensions introduced in

177

Section 2.3 leads us to observe that past ad hoc team research focuses on the case

where the domain is known. Therefore, Section 8.4.2 discusses an important area

for future research: considering ad hoc team agents that simultaneously learn about

the domain and their teammates. Section 8.4.3 explains how to extend ad hoc

teamwork research towards cooperating with both human and artificial teammates

interchangeably. Then, Section 8.4.4 explores approaches to handling ad hoc team-

work with ambiguous communication, where the language itself must be learned.

Finally, we discuss how ad hoc teamwork motivates more advances in transfer learn-

ing in Section 8.4.5.

8.4.1 Robotic Tasks

The most immediate area for future work on PLASTIC is trying it on larger, more

complex domains. While half field offense in the simulated 2D RoboCup domain is

complex, it still abstracts away many issues that arise on robots. Dealing with robots

requires dealing with a large amount of noise in both perception and actuation.

Furthermore, the action space of robots is higher than that of the 2D simulated

robots.

Given the complexities of these domains, we expect that using a policy-based

approach, such as PLASTIC–Policy, will work better than a model-based approach.

However, instead of learning policies with algorithms such as fitted Q iteration as

we did in the HFO domain, it may be more effective to use policy search. Research

on robotics has shown that policy search techniques can perform well, scaling to

complex domains [42]. We expect that similar approaches can determine intelligent

policies for interacting with teammates, though the difficulties of these problems

may require high level abstractions such as those used in Section 7.3.

178

Given these policies, it is still complex to select between them. While bandit

approaches can be used to select between policies (as described in Section 5.3.2),

these noisy domains will make determining the mean performance of the policies

difficult. Instead, we still recommend using a Bayesian-based approach, such as

the polynomial weights approach described in Section 5.3.2. However, building a

model of the teammates’ behaviors is difficult, so using an approximate, nearest

neighbors algorithm to represent the expected next states may be more effective as

in Section 7.3.3.

Unfortunately, due to noisiness of actions and perceptions, the probability

updates will also be significantly noisier. This issue will slow the convergence to the

best policy. In order to compensate for this issue, it may be necessary to take actions

to specifically differentiate which type of teammate that the ad hoc agent is dealing

with. This idea corresponds to reasoning about the value of information [65]. For

example, Dearden et al. [40] investigated the value of information for controlling ex-

ploration in reinforcement learning. However, their methods were computationally

intensive and could only be applied to small domains. On the other hand, Ross et

al.’s work [109] on POMDPs provide a more efficient approach to tracking beliefs

about the environment through particle filtering. Reasoning about the value of in-

formation should allow the ad hoc agent to more quickly understand its teammates’

behaviors.

In summary, future research into ad hoc teamwork should include work on

scaling ad hoc teamwork to complex robotic domains. We expect that policy-based

approaches, like PLASTIC–Policy, will perform well in these settings, especially

when using policy search algorithms to build effective policies for cooperating with

teammates and reasoning about the value of information to decide which policy to

179

use with new teammates.

8.4.2 Learning about the Environment

Our analysis of the dimensions of the related ad hoc teamwork research in Sec-

tion 4.4.4 indicates that most research has focused on the case where the ad hoc

agent knows the full dynamics of the domain it is in. This thesis includes a small

exception to that in the theoretical and empirical analysis in the bandit domain in

Sections 6.5 and 7.1.5. However, much more research on handling unknown environ-

ments is necessary for ad hoc agents to be ready to handle the changing, unknown

environments encountered in the real world. We expect that models of the environ-

ment will not be good enough to directly plan on, so the ad hoc agent will have to

at least perform some learning to adapt their models or possibly learn new ones.

To simultaneously learn about unknown tasks and unknown teammates, an

ad hoc team agent will need to balance the trade-off between exploiting its current

knowledge, exploring the dynamics of the task, and exploring the behavior of its

teammates. In many ways, this situation is similar to only trying to learn about

the teammates. If the ad hoc team agent knows the task and its teammates, the

problem can be viewed as a Markov Decision Process (MDP).

On the other hand, if the ad hoc agent knows the task, but not its team-

mates, the problem can be viewed as a Partially Observable Markov Decision Process

(POMDP) where the unobserved variable is behavior of its teammates. Rather than

directly observing its teammates’ behaviors, the ad hoc agent must reason about

these behaviors from the actions it observed. In effect, the ad hoc agent is trying

to select the correct MDP from a set of possible MDPs, where the difference in the

MDPs is the behavior of its teammates.

180

When the ad hoc team agent also does not know the dynamics of the task, the

set of possible MDPs increases, expanding along another dimension, but the problem

remains fundamentally the same. Therefore, similar methods should allow the ad

hoc agent to simultaneously reason about exploring both the task and its teammates,

but they must be able to scale to larger problems. The addition of another dimension

will greatly increase the number of possible worlds that the ad hoc agent may be

inhabiting. Thus, the biggest challenge of this potential contribution is to create

algorithms that scale to large POMDPs. It is hopeful that work on scaling the ad hoc

team algorithms discussed above to more complex domains will also aid in progress

towards reasoning about a larger space of possible worlds. The theoretical analysis

in Chapter 6 showed that some versions of the ad hoc team problem can be solved

in polynomial time, but if the ad hoc agent needs to simultaneously learn about

the domain, the problem becomes much more complex. In general, ε-optimally

solving POMDPs takes exponential time in terms of the number of actions and

observations. However, approximate methods for planning in POMDPs can achieve

good results [84, 103, 111, 114].

In addition, there may be ways to limit the complexity of the problem. If the

domain is drawn from a limited set, the ad hoc agent may determine which possible

world it is in using a Bayesian-based method, similar to the one from Section 5.3.2

used to determine with which teammate the ad hoc agent is cooperating. Some

research has looked into how to select which MDP an agent is in [31], but combin-

ing this with determining the teammates’ behavior simultaneously is an interesting

problem that is necessary for ad hoc team agents to be ready for deployment into

the real world.

181

8.4.3 Human Interactions

In this thesis, we consider ad hoc team agents that cooperate with a variety of

autonomous agents. However, another type of teammate that agents should be

robust to is humans. Ideally, in the future, robots and other agents will be able

to quickly adapt to human teammates to accomplish shared tasks. Robots should

be able to cooperate with new human teammates as they do with other artificial

agents. There is current research into human-agent interactions such as Peled et al.’s

work [102]. Peled et al. use machine learning techniques to determine which social

factors affect the human players’ behaviors and combine these predictions with a

decision-theoretic approach to negotiate with humans. However, these approaches

commonly only consider dealing with humans, rather than also considering other

artificial agents. We would like agents to be able to cooperate with both humans and

artificial agents interchangeably, cooperating with both whenever they are present.

The main additional difficulty of cooperating with humans compared to other

agents is the humans’ relative lack of predictability. Autonomous agents are likely

to select the same actions or choose from the same distribution of actions when the

repeatedly visit the same state. Humans do not necessarily follow this assumption;

instead, they change their behaviors as the learn, explore, or get bored. In addition,

in many situations it is possible for humans to supply a wider range of behaviors

than those explored in this thesis. Each human is unique, and therefore may exhibit

a unique behavior.

We expect humans’ unpredictability to mainly be a problem for learning

models of human teammates, as it is difficult to collect many trials of humans fol-

lowing the same behavior. Instead, it is likely that they will present a spread of

possible behaviors during the learning process, making any learned models very

182

noisy. Furthermore, humans are often impatient when dealing with automated sys-

tems, which places higher importance of ad hoc agents adapting quickly to their

human teammates. In summary, there is no fundamental difference in interacting

with humans instead of autonomous agents, but we expect that learning models or

policies for cooperation will be more difficult. In addition, we expect that learning

quickly will be even more important.

In this thesis, we propose the approach of learning about past teammates

and reusing this information to learn more quickly with new teammates in the from

of PLASTIC. We present two instantiations of PLASTIC: PLASTIC–Model that

learns models of previous teammates and PLASTIC–Policy which learns policies to

cooperate with previous teammates. We expect that this general approach will apply

well to dealing with humans despite the wide range of behaviors that humans can

exhibit. This expectation is supported by research showing that a small number of

behaviors captures the majority of human behaviors in certain tasks [108]. Similarly,

research on bandit problems suggests that only a limited number of strategies are

viable in social settings [97]. Therefore, learning a small number of teammate models

and adapting them to new teammates should allow ad hoc agents to cooperate with

a wide variety of humans.

In order to use this approach for cooperating with humans, it is necessary

to identify which models are most representative of the spread of possible behaviors

that humans might exhibit. In this thesis, we learn a model for each previous

type of teammates and then select from these models when encountering a new

teammate. However, human behaviors will have small differences, so the number

of possible models that fully represent these past human teammates may quickly

grow too large to select from effectively. Therefore, it may be necessary to employ

183

a clustering approach to discover a small number of behaviors that represent all

observed behaviors with minimal errors.

One promising approach for solving this problem is that of Mahmud et

al. [96]. Mahmud et al. present algorithms to cluster Markov Decision Processes

(MDPs), representing these MDPs with a smaller set of MDPs. Their approach

relies on looking at the optimal policies that have been learned for each MDP and

looking at the cost of reusing these policies on the other MDPs. This analysis re-

sults in a cost function that can then be used as an input into a clustering algorithm

based on the Metropolis-Hastings algorithm. This approach could be directly ap-

plied to PLASTIC–Policy to calculate a smaller subset of policies for cooperating

with humans. However, their approach then relies on using a bandit algorithm to

update which policy to use in a new setting, which our results in Section 7.3 show is

much slower than the Bayesian approach adopted by PLASTIC–Policy. Therefore,

it would be advantageous to build a rough model of the teammates in the cluster to

allow PLASTIC–Policy to use Bayesian updates to quickly determine which policy is

best for cooperating with the current teammates. How to build this combined model

remains an open question. In addition, other approaches for clustering policies may

prove to be more effective than the one proposed by Mahmud et al. [96]. Alterna-

tively, clustering teammates in the model space may prove to be more tractable,

enabling PLASTIC–Model to scale well with humans.

Whatever approaches are eventually adopted, it is also important to con-

sider how to test these approaches. Running large scale human experiments is time

consuming. In addition, automatically perceiving human actions at a high level

is difficult, although research in activity recognition is making significant progress

(for example, see Chen and Grauman’s work [37]). Therefore, one place to start is

184

by using human-controlled agents. Rather than directly interacting with humans,

ad hoc agents can interact with other agents that are being remotely controlled.

This approach greatly reduces the perception problem. In addition, this approach

allows large scale tests to be run in simulation, using online services to find human

participants, such as Amazon Mechanical Turk1.

We suggest using remote-controlled agents over peer designed agents (PDAs) [90]

because using PDAs reduces the unpredictability and adaptations of the agents. We

expect that methods that are similar to PLASTIC will perform well with humans,

but these methods may need to be adapted. Testing this hypothesis remains future

work. Future research should then expand these approaches to real human tests by

handling the greater uncertainty of the humans’ actions.

8.4.4 Learning to Communicate

In Section 3.2.1, we describe an ad hoc teamwork scenario that involves communica-

tion. In this scenario, the teammates’ responses to messages may be unknown, but

the meaning of the messages is clear. However, this assumption is not always true;

ad hoc agents should also be able to learn about ambiguous messages. They should

be able to learn new languages and learn the meanings of unknown messages.

Past work has looked at methods for evolving a common language over

time. One early investigation of learning about communication was performed by

Levin [88]. Levin demonstrates that a simulated population can converge to a single

scheme for coding and decoding messages. Further work by Kirby explored how

artificial life approaches could be applied to learning languages and the meaning of

messages [81]. In addition, Rawal et al. [105] look at evolving communication in the

pursuit domain. The authors look at a version of the pursuit domain where preda-

1http://www.mturk.com

185

http://www.mturk.com

tors can send real valued signals to each other. The results show that without any

initial meaning to these signals, the predators are able to evolve a messaging code

that improves the performance of the team. Tuci et al. [128] also consider evolving

simple communication for a group of robots equipped with different sensors. These

papers show that it is possible to evolve meaningful languages without providing an

initial language to the agents. Similar methods could allow agents on ad hoc teams

to learn a language to communicate with each other.

Another promising line of work looks at how to interpret ambiguous mes-

sages [56, 57]. In these works, Grizou et al. considers the case where one party

knows the meaning of the messages, and the goal is for the other agent to learn

what these messages mean. In addition, they show that agents can simultaneously

determine what task they should be considering. This type of reasoning would al-

low ad hoc agents to learn the languages of their teammates, if these agents already

have a language. Importantly, these approaches could also allow agents to quickly

determine the meaning of any human feedback when interacting with people.

8.4.5 Improvements in Transfer Learning

To reuse information from past teammates when cooperating with new teammates,

ad hoc agents can employ transfer learning algorithms. In this thesis, we intro-

duce the TwoStageTransfer algorithm for transferring knowledge from many source

data sets (past teammates) to build models of the target data set (new teammate).

However, we believe that improvements can be made on this approach. TwoStage-

Transfer is an improvement over existing transfer learning algorithms in that it

considers how similar each source data set is to the target data and weights data

coming from these sets accordingly. However, in ad hoc teamwork scenarios, these

186

past teammates may be more similar to the current ones in specific parts of the

state space. Therefore, it would be helpful to also consider the weightings of differ-

ent parts of the state space separately, though this does increase the complexity of

the problem.

One approach for solving this problem is to adopt an approach similar to

TwoStageTransfer. TwoStageTransfer determines the weighting of each source data

set using cross validation. Unfortunately, when considering the many partitions of

a source data set, calculating a model and then cross validating it may become too

computationally intensive. Therefore, a more computationally efficient approach is

to treat this problem as a hierarchical Bayesian model, where a source data set has

some base similarity distribution to the target data, partitions of this set have sim-

ilarities drawn from the source data’s similarity distribution, and further partitions

draw their similarities from the partitions above. This approach allows for fast and

simple inference of the similarities of different parts of the state space. However,

how to choose these partitions remains an open problem. It is not clear whether this

approach will outperform TwoStageTransfer, given that TwoStageTransfer uses a

more empirical approach of determining the weighting of each source data set using

cross validation, but the approach is promising.

Another approach to applying transfer learning to ad hoc team problems is

to transfer policies rather than models. In this thesis, we directly reuse policies

using PLASTIC–Policy, but it is possible to improve on this approach. As above,

it is possible in certain areas of the state space, a past teammate is more similar to

the current teammate than others. Therefore, it may be possible to combine several

different policies to cooperate with a new teammate by using different policies in

different parts of the state space. One promising approach for performing this

187

type of transfer is to reuse data of the form 〈s, a, r, s′〉 from previous domains [86].

Reusing this information allows the agent to learn a policy more quickly on the

target domain. Another approach to transferring instances from previous domains

is the TIMBREL algorithm introduced by Taylor et al. [127]. TIMBREL transfers

saved instances of the transition and reward function that will be used immediately

by the agent, ignoring states that are for from the current state. Alternatively,

recent research has discovered methods for automatically mapping transfer between

tasks [11]. A promising approach is to extend this approach to consider transferring

from different parts of the state space rather than considering different mappings.

How to perform this transfer is an interesting open problem.

8.4.6 Summary

This section describes five areas of future research that are motivated by this the-

sis. One extension of this work is to apply PLASTIC to complex robotic domains.

Another area for future research is to enable ad hoc agents to efficiently learn about

its environment while cooperating with unknown teammates, which Section 4.4.4

identifies as an open problem using the dimensions introduced in Section 2.3. Next,

expanding ad hoc teamwork to cooperating with noisy humans in addition to artifi-

cial agents is an exciting problem. In addition, enabling ad hoc agents to learn about

ambiguous messages and learn new languages will allow them to act effectively in

many more situations. Finally, more advanced transfer learning methods can speed

up learning and improve the behaviors learned for ad hoc team agents cooperating

with unknown teammates.

188

8.5 Conclusion

This thesis presents the PLASTIC algorithm, which is the first to allow agents to

quickly adapt to new teammates by reusing knowledge about previous teammates.

PLASTIC fulfills the three desiderata for an ad hoc team agent algorithm: it is

robust to a variety of teammates, it is effective on several different domains, and it

allows fast adaptation to its teammates. Therefore, PLASTIC is applicable to many

complex ad hoc team problems, allowing agents to quickly learn and adapt to their

teammates. We demonstrate the effectiveness of PLASTIC on three domains with a

variety of teammates and prior knowledge. Thus, this thesis represents an important

step towards intelligently handling ad hoc team problems in the real world.

189

Appendix A

Hand-Coded Pursuit

Teammates

While Section 3.2.2 briefly introduces the hand-coded teammates used in the pursuit

domain, it leaves out many of the details of the implementations. This appendix

addresses this gap, giving more information about the hand-coded teammate types.

To more accurately describe these hand-coded predators, some additional

notation is helpful. Assume that a predator is at position (x, y) and is trying to

move to a destination (x′, y′) on a world of size (w, h).

∆x = (x′ − x) modw ∆y = (y′ − y) modh

dimmin = argmin (∆x,∆y) dimmax = argmax (∆x,∆y)

mi = argmin moves ∆i

Thus, mi is the move that minimizes the difference to the destination for dimension

i, and mi is the move in the opposite direction. The stochastic agents use the

190

softmax activation function, which assigns probabilities to a set of values, favoring

the higher values. The temperature, τ , controls the amount of this bias, with values

closer to 0 resulting in higher probabilities of the maximum value. If v(i) is the

value of option i, the probability of option a is

p(a) =
exp(v(a)/τ)∑n
i=1 exp(v(i)/τ)

To clarify the predators’ behaviors, examples of their action selection on the

cases shown in Figure A.1 are discussed, looking at the actions taken by the starred

agent. The letters in the figure indicate the destination of the agent after taking

one step. Note that none of the hand-coded predators ever choose to stay still, so

that action is not labeled.

(a) Configuration 1 (b) Configuration 2

Figure A.1: World configurations that differentiate the teammates’ behaviors.

Greedy Predator (GR) The greedy predator selects the nearest unoccupied

cell neighboring the prey, and tries to move towards it while avoiding immediate

obstacles. It follows the succeeding rules in order.

• If already neighboring the prey, try to move onto the prey so that if it moves,

the predator will follow.

• Choose the nearest unoccupied cell neighboring the prey as the destination.

• Let d = dimmax. If md is not blocked, take it.

191

• Let d = dimmin. If md is not blocked, take it.

• Otherwise, move randomly.

For example, using the configurations shown in Figure A.1 and taking actions as

the starred agent, if the starred agent were a Greedy predator, it chooses the move

taking it to cell C in configuration 1, and B in configuration 2. On average, a team

of all Greedy predators captures a randomly moving prey in 7.74 steps on a 5x5

world.

Teammate-aware Predator (TA) The teammate-aware predator considers its

teammates’ distances from the prey when selecting its destination and uses A*

path planning (an optimal heuristic search algorithm) [62] to avoid other agents,

treating them as static obstacles. In contrast to the greedy predator, a teammate-

aware predator that is already neighboring the prey may move towards another

neighboring cell to give its spot to a farther away teammate. It is implemented as

follows.

• Calculate the distance from each predator to each cell neighboring the prey.

• Order the predators based on worst shortest distance to a cell neighboring the

prey.

• In order, the predators are assigned the unchosen destination that is closest to

them (without communication), breaking ties by a mutually known ordering

of the predators.

• If the predator is already at the destination, try to move onto the prey so that

if it moves, the predator will follow.

192

• Otherwise, use A* path planning to select a path, treating other agents as

static obstacles.

For the configurations shown in Figure A.1, a Teammate-aware predator in the

position of the starred predator chooses the move taking it to cell D in configuration

1, and C in configuration 2 (note that since the world is a torus, this is a single

move). A team of Teammate-aware predators captures the prey in 7.41 steps on a

5x5 world.

Greedy Probabilistic Predator (GP) The greedy probabilistic predator moves

towards the nearest cell neighboring the prey, but does not always take a direct path

there. The predator favors minimizing dimmax and prefers mdim over mdim.

• If already neighboring the prey, try to move onto the prey so that if it moves,

the predator will follow.

• Choose the nearest unoccupied cell neighboring the prey as the destination.

• Given a destination, choose a dimension, d, to minimize using the softmax

function with temperature 0.5 using the distance as v.

• Choose either md or md using the softmax function with temperature -0.5,

using the distance after the move as v, but penalizing moves that are currently

blocked.

On configuration 1 from Figure A.1, the predator is deterministic, choosing the

action taking it to position C. On configuration 2, it selects a distribution of actions,

specifically the moves taking it to cells A, B, C, and D with probabilities 0.000, 0.879,

0.119, and 0.002. On a 5x5 world, a team of Greedy Probabilistic predators captures

the prey in 12.88 steps.

193

Probabilistic Destinations Predator (PD) The probabilistic destinations preda-

tor attempts to tighten a circle around the prey. It favors destinations that are both

nearer to the prey and to itself, but may choose farther destinations to prevent

getting stuck on other predators and dealing with a moving prey.

• If already neighboring the prey, try to move onto the prey so that if it moves,

the predator will follow.

• Select a desired distance from the prey using the softmax function with tem-

perature -1 using the distance as v.

• Select a destination at the chosen distance using the softmax function with

temperature -1 weighted by the distance of the destination to the predator’s

current position.

• Let d = dimmax, and select md.

• If the destination or the next position is occupied, repeat.

For the configurations in Figure A.1, a Probabilistic Destinations predator would

select the move ending in C in configuration 1. On configuration 2, it would select

actions taking it to cells A, B, C, and D with probabilities 0.007, 0.596, 0.388, and

0.009. A team of predators following the Probabilistic Destinations behavior capture

in 9.19 steps on a 5x5 world.

194

Bibliography

[1] Noa Agmon and Peter Stone. Leading ad hoc agents in joint action settings

with multiple teammates. In Proceedings of the Eleventh International Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS), June 2012.

[2] Noa Agmon, Samuel Barrett, and Peter Stone. Modeling uncertainty in leading

ad hoc teams. In Proceedings of the Thirteenth International Conference on

Autonomous Agents and Multiagent Systems (AAMAS), May 2014.

[3] Hidehisa Akiyama. Agent2d base code release, 2010.

http://sourceforge.jp/projects/rctools.

[4] Hidehisa Akiyama and Itsuki Noda. Multi-agent positioning mechanism in the

dynamic environment. In Ubbo Visser, Fernando Ribeiro, Takeshi Ohashi, and

Frank Dellaert, editors, RoboCup 2007: Robot Soccer World Cup XI, volume

5001 of Lecture Notes in Computer Science, pages 377–384. Springer Berlin

Heidelberg, 2008. ISBN 978-3-540-68846-4. doi: 10.1007/978-3-540-68847-1

38. URL http://dx.doi.org/10.1007/978-3-540-68847-1_38.

[5] S.V. Albrecht and S. Ramamoorthy. A game-theoretic model and best-

response learning method for ad hoc coordination in multiagent systems (ex-

tended abstract). In Proceedings of the Twelfth International Conference on

195

http://dx.doi.org/10.1007/978-3-540-68847-1_38

Autonomous Agents and Multiagent Systems (AAMAS), St. Paul, Minnesota,

USA, May 2013.

[6] S.V. Albrecht and S. Ramamoorthy. A game-theoretic model and best-

response learning method for ad hoc coordination in multiagent systems.

Technical report, School of Informatics, The University of Edinburgh, United

Kingdom, February 2013.

[7] S.V. Albrecht and S. Ramamoorthy. On convergence and optimality of best-

response learning with policy types in multiagent systems. In Proceedings of

the 30th Conference on Uncertainty in Artificial Intelligence (UAI), Quebec

City, Canada, July 2014.

[8] J. S. ALBUS. A new approach to manipulator control cerebellar model ar-

ticulation control (CMAC). Transactions on ASME, J. of Dynamic Systems,

Measurement, and Control, 97(9):220–227, 1975.

[9] James S. Albus. A theory of cerebellar function. Mathematical Biosciences,

10(12):25 – 61, 1971.

[10] Fernando Almeida, Pedro Henriques Abreu, Nuno Lau, and LusPaulo Reis.

An automatic approach to extract goal plans from soccer simulated matches.

Soft Computing, 17(5):835–848, 2013.

[11] Haitham Bou Ammar, Decebal Constantin Mocanu, Matthew E. Taylor, Kurt

Driessens, Karl Tuyls, and Gerhard Weiss. Automatically mapped transfer

between reinforcement learning tasks via three-way restricted boltzmann ma-

chines. In Proceedings of the European Conference on Machine Learning and

Principles and Practice of Knowledge Discovery in Databases (ECML PKDD),

September 2013.

196

[12] Masaki Aoyagi. Mutual observability and the convergence of actions in a

multi-person two-armed bandit model. Journal of Economic Theory, 82:405–

424, 1998.

[13] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of

the multiarmed bandit problem. Machine Learning (MLJ), 47:235–256, May

2002.

[14] Nolan Bard, Michael Johanson, Neil Burch, and Michael Bowling. Online im-

plicit agent modelling. In Proceedings of the Twelfth International Conference

on Autonomous Agents and Multiagent Systems (AAMAS), pages 255–262,

2013.

[15] Samuel Barrett and Peter Stone. Ad hoc teamwork modeled with multi-armed

bandits: An extension to discounted infinite rewards. In AAMAS Workshop

on Adaptive Learning Agents Workshop (ALA), May 2011.

[16] Samuel Barrett and Peter Stone. An analysis framework for ad hoc teamwork

tasks. In Proceedings of the Eleventh International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), June 2012.

[17] Samuel Barrett and Peter Stone. Cooperating with unknown teammates in

robot soccer. In AAAI Workshop on Multiagent Interaction without Prior

Coordination (MIPC 2014), July 2014.

[18] Samuel Barrett, Peter Stone, and Sarit Kraus. Empirical evaluation of ad hoc

teamwork in the pursuit domain. In Proceedings of the Tenth International

Conference on Autonomous Agents and Multiagent Systems (AAMAS), May

2011.

197

[19] Samuel Barrett, Peter Stone, Sarit Kraus, and Avi Rosenfeld. Teamwork

with limited knowledge of teammates. In Proceedings of the Twenty-Seventh

Conference on Artificial Intelligence (AAAI), July 2013.

[20] Samuel Barrett, Noa Agmon, Noam Hazon, Sarit Kraus, and Peter Stone.

Communicating with unknown teammates. In Proceedings of the Twenty-First

European Conference on Artificial Intelligence, August 2014.

[21] S. Behnke. Online trajectory generation for omnidirectional biped walking.

In Proceedings of the IEEE International Conference on Robotics and Au-

tomation (ICRA), pages 1597–1603, May 2006. doi: 10.1109/ROBOT.2006.

1641935.

[22] M. Benda, V. Jagannathan, and R. Dodhiawala. On optimal cooperation

of knowledge sources - An empirical investigation. Technical Report BCS–

G2010–28, Boeing Advanced Technology Center, Boeing Computing Services,

July 1986.

[23] D. Bergemann and J. Valimaki. Bandit problems. Technical report, Cowles

Foundation Discussion Paper, 2006.

[24] Joydeep Biswas, Juan P. Mendoza, Danny Zhu, Benjamin Choi, Steven Klee,

and Manuela Veloso. Opponent-driven planning and execution for pass, attack,

and defense in a multi-robot soccer team. Proceedings of the Thirteenth In-

ternational Conference on Autonomous Agents and Multiagent Systems (AA-

MAS), January 2014.

[25] A. Blum and Y. Mansour. Algorithmic Game Theory, chapter Learning, regret

minimization, and equilibria. Cambridge University Press, 2007.

198

[26] Michael Bowling. Convergence and no-regret in multiagent learning. In Ad-

vances in Neural Information Processing Systems 18 (NIPS), pages 209–216.

MIT Press, 2005.

[27] Michael Bowling and Peter McCracken. Coordination and adaptation in im-

promptu teams. In Proceedings of the Twentieth Conference on Artificial

Intelligence (AAAI), pages 53–58, 2005.

[28] Michael Bowling and Manuela Veloso. Multiagent learning using a variable

learning rate. Artificial Intelligence (AIJ), 136(2):215 – 250, 2002.

[29] Ronen I. Brafman and Moshe Tennenholtz. On partially controlled multi-

agent systems. Journal of Artificial Intelligence Research (JAIR), 4:477–507,

1996.

[30] James Bruce, Tucker Balch, and Manuela Veloso. Fast and inexpensive color

image segmentation for interactive robots. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), volume 3,

pages 2061–2066. IEEE, 2000.

[31] Emma Brunskill. Bayes-optimal reinforcement learning for discrete uncer-

tainty domains (extended abstract). In Proceedings of the Eleventh Interna-

tional Conference on Autonomous Agents and Multiagent Systems (AAMAS),

2012.

[32] Mat Buckland and Mark Collins. AI Techniques for Game Programming.

Premier Press, 2002.

[33] L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of

199

multiagent reinforcement learning. Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on, 38(2):156–172, March 2008.

[34] Doran Chakraborty and Sandip Sen. Teaching new teammates. In Proceedings

of the Fifth International Conference on Autonomous Agents and Multiagent

Systems (AAMAS), pages 691–693, 2006.

[35] Doran Chakraborty and Peter Stone. Convergence, targeted optimality and

safety in multiagent learning. In Proceedings of the Twenty-Seventh Interna-

tional Conference on Machine Learning (ICML), June 2010.

[36] Doran Chakraborty and Peter Stone. Cooperating with a markovian ad hoc

teammate. In Proceedings of the Twelfth International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS), May 2013.

[37] Chao-Yeh Chen and K. Grauman. Efficient activity detection with max-

subgraph search. In Proceedings of the Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1274–1281, June 2012.

[38] Vincent Conitzer and Tuomas Sandholm. AWESOME: A general multia-

gent learning algorithm that converges in self-play and learns a best response

against stationary opponents. Machine Learning (MLJ), 67, May 2007.

[39] Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Boosting for transfer

learning. In Proceedings of the Twenty-Fourth International Conference on

Machine Learning (ICML), pages 193–200, 2007.

[40] Richard Dearden, Nir Friedman, and David Andre. Model-based Bayesian

exploration. In Proceedings of the 15th Conference on Uncertainty in Artificial

Intelligence (UAI), pages 150–15, 1999.

200

[41] Keith S. Decker and Victor R. Lesser. Designing a family of coordination

algorithms. In International Conference on Multi-Agent Systems (ICMAS),

pages 73–80, June 1995.

[42] Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy

search for robotics. Foundations and Trends in Robotics, 2(1-2):1–142, 2013.

[43] Prashant Doshi and Yifeng Zeng. Improved approximation of interactive dy-

namic influence diagrams using discriminative model updates. In Proceedings

of the Eighth International Conference on Autonomous Agents and Multiagent

Systems (AAMAS), 2009.

[44] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode

reinforcement learning. In Journal of Machine Learning Research (JMLR),

pages 503–556, 2005.

[45] Min Fang, Yong Guo, Xiaosong Zhang, and Xiao Li. Multi-source transfer

learning based on label shared subspace. Pattern Recognition Letters, 51(0):

101 – 106, 2015. ISSN 0167-8655. doi: http://dx.doi.org/10.1016/j.patrec.

2014.08.011. URL http://www.sciencedirect.com/science/article/pii/

S0167865514002712.

[46] Alon Farchy, Samuel Barrett, Patrick MacAlpine, and Peter Stone. Humanoid

robots learning to walk faster: From the real world to simulation and back.

In Proc. of 12th Int. Conf. on Autonomous Agents and Multiagent Systems

(AAMAS), May 2013.

[47] Felix Fischer, Michael Rovatsos, and Gerhard Weiss. Hierarchical reinforce-

ment learning in communication-mediated multiagent coordination. In Pro-

ceedings of the Third International Conference on Autonomous Agents and

201

http://www.sciencedirect.com/science/article/pii/S0167865514002712
http://www.sciencedirect.com/science/article/pii/S0167865514002712

Multiagent Systems (AAMAS), pages 1334–1335, Washington, DC, USA,

2004. IEEE Computer Society.

[48] Y. Gal and A. Pfeffer. Network of influence diagrams: Reasoning about agents’

beliefs and decision-making processes. Journal of Artificial Intelligence Re-

search (JAIR), 33:109–147, 2008.

[49] Liang Ge, Jing Gao, and Aidong Zhang. Oms-tl: A framework of online mul-

tiple source transfer learning. In Proceedings of the 22Nd ACM International

Conference on Conference on Information & Knowledge Management,

CIKM ’13, pages 2423–2428, New York, NY, USA, 2013. ACM. ISBN 978-

1-4503-2263-8. doi: 10.1145/2505515.2505603. URL http://doi.acm.org.

ezproxy.lib.utexas.edu/10.1145/2505515.2505603.

[50] Sylvain Gelly and Yizao Wang. Exploration exploitation in Go: UCT for

Monte-Carlo Go. In Advances in Neural Information Processing Systems 19

(NIPS), December 2006.

[51] Katie Genter and Peter Stone. Influencing a flock via ad hoc teamwork.

In Proceedings of the Ninth International Conference on Swarm Intelligence

(ANTS), September 2014.

[52] Katie Genter, Noa Agmon, and Peter Stone. Ad hoc teamwork for leading a

flock. In Proceedings of the Twelfth International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), May 2013.

[53] Piotr J. Gmytrasiewicz and Prashant Doshi. A framework for sequential

planning in multi-agent settings. Journal of Artificial Intelligence Research

(JAIR), 24(1):49–79, July 2005.

202

http://doi.acm.org.ezproxy.lib.utexas.edu/10.1145/2505515.2505603
http://doi.acm.org.ezproxy.lib.utexas.edu/10.1145/2505515.2505603

[54] Claudia V. Goldman, Martin Allen, and Shlomo Zilberstein. Learning to

communicate in a decentralized environment. Autonomous Agents and Multi-

Agent Systems (JAAMAS), 15(1), 2007.

[55] Colin Graf and Thomas Röfer. A closed-loop 3d-lipm gait for the robocup

standard platform league humanoid. In Enrico Pagello, Changjiu Zhou, Sven

Behnke, Emanuele Menegatti, Thomas Röfer, and Peter Stone, editors, Pro-

ceedings of the Fifth Workshop on Humanoid Soccer Robots in conjunction with

the 2010 IEEE-RAS International Conference on Humanoid Robots, Nashville,

TN, USA, 2010.

[56] Jonathan Grizou, Manuel Lopes, and Pierre-Yves Oudeyer. Robot Learning

Simultaneously a Task and How to Interpret Human Instructions. In Joint

IEEE International Conference on Development and Learning and on Epige-

netic Robotics (ICDL-EpiRob), Osaka, Japan, 2013.

[57] Jonathan Grizou, Iñaki Iturrate, Luis Montesano, Pierre-Yves Oudeyer, and

Manuel Lopes. Interactive learning from unlabeled instructions. In Proceedings

of the 30th Conference on Uncertainty in Artificial Intelligence (UAI), 2014.

[58] B. Grosz and S. Kraus. Collaborative plans for complex group actions. Arti-

ficial Intelligence (AIJ), 86:269–368, 1996.

[59] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-

mann, and Ian H. Witten. The WEKA data mining software: an update.

SIGKDD Explorations, 11:10–18, November 2009.

[60] Jing Han, Ming Li, and Lei Guo. Soft control on collective behavior of a

group of autonomous agents by a shill agent. Journal of Systems Science and

Complexity, 19:54–62, 2006.

203

[61] Jianye Hao, Dongping Huang, Yi Cai, and Ho-Fung Leung. Reinforcement so-

cial learning of coordination in networked cooperative multiagent systems.

In AAAI Workshop on Multiagent Interaction without Prior Coordination

(MIPC 2014), July 2014.

[62] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minimum cost paths. Systems Science and Cybernetics, IEEE

Transactions on, 4(2):100 –107, July 1968.

[63] Alexander Härtl, Ubbo Visser, and Thomas Röfer. Robust and efficient object

recognition for a humanoid soccer robot. In RoboCup 2013: Robot Soccer

World Cup XVII, Lecture Notes in Artificial Intelligence. Springer, 2013.

[64] Todd Hester and Peter Stone. Texplore: real-time sample-efficient reinforce-

ment learning for robots. Machine Learning (MLJ), 90(3):385–429, 2013.

[65] R.A. Howard. Information value theory. Systems Science and Cybernetics,

IEEE Transactions on, 2(1):22 –26, August 1966.

[66] David Hsu, Wee Sun Lee, and Nan Rong. What makes some POMDP problems

easy to approximate? In Advances in Neural Information Processing Systems

20 (NIPS). 2007.

[67] Junling Hu and Michael P. Wellman. Nash q-learning for general-sum stochas-

tic games. Journal of Machine Learning Research (JMLR), 4:1039–1069, De-

cember 2003.

[68] Pipei Huang, Gang Wang, and Shiyin Qin. Boosting for transfer learning from

multiple data sources. Pattern Recognition Letters, 33(5):568 – 579, 2012.

204

[69] Ya-Wen Huang, Y. Sasaki, Y. Harakawa, E.F. Fukushima, and S. Hirose.

Operation of underwater rescue robot anchor diver III during the 2011 Tohoku

earthquake and tsunami. In OCEANS 2011, pages 1 –6, sept. 2011.

[70] Rufus Isaacs. Differential Games: A Mathematical Theory with Applications

to Warfare and Pursuit, Control and Optimization. Dover Publications, 1965.

[71] Yuko Ishiwaka, Takamasa Sato, and Yukinori Kakazu. An approach to the

pursuit problem on a heterogeneous multiagent system using reinforcement

learning. Robotics and Autonomous Systems, 43(4):245 – 256, 2003.

[72] Albert Xin Jiang, Zhengyu Yin, Chao Zhang, Milind Tambe, and Sarit Kraus.

Game-theoretic randomization for security patrolling with dynamic execution

uncertainty. In Proceedings of the Twelfth International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS), pages 207–214, Rich-

land, SC, 2013. International Foundation for Autonomous Agents and Multi-

agent Systems.

[73] Edward Jones, Brett Browning, M Bernardine Dias, Brenna Argall,

Maria Manuela Veloso, and Anthony (Tony) Stentz. Dynamically formed het-

erogeneous robot teams performing tightly-coordinated tasks. In Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA),

pages 570 – 575, May 2006.

[74] T. Jung, D. Polani, and P. Stone. Empowerment for continuous agent-

environment systems. Technical Report AI-10-03, The University of Texas

at Austin Computer Science Department, 2010.

[75] D. Kalathil, N. Nayyar, and R. Jain. Multi-player multi-armed bandits: De-

centralized learning with iid rewards. In Communication, Control, and Com-

205

puting (Allerton), 2012 50th Annual Allerton Conference on, pages 853–860,

Oct 2012. doi: 10.1109/Allerton.2012.6483307.

[76] Shivaram Kalyanakrishnan and Peter Stone. Characterizing reinforcement

learning methods through parameterized learning problems. Machine Learning

(MLJ), 84(1–2):205–247, July 2011.

[77] Shivaram Kalyanakrishnan, Yaxin Liu, and Peter Stone. Half field offense

in RoboCup soccer: A multiagent reinforcement learning case study. In

RoboCup-2006: Robot Soccer World Cup X, volume 4434 of Lecture Notes

in Artificial Intelligence, pages 72–85. Springer Verlag, Berlin, 2007.

[78] T. Kamishima, M. Hamasaki, and S. Akaho. TrBagg: A simple transfer learn-

ing method and its application to personalization in collaborative tagging.

In Ninth IEEE International Conference on Data Mining (ICDM), pages 219

–228, Dec. 2009.

[79] Spiros Kapetanakis and Daniel Kudenko. Reinforcement learning of coordina-

tion in cooperative multi-agent systems. In Eighteenth National Conference on

Artificial Intelligence, pages 326–331, Menlo Park, CA, USA, 2002. American

Association for Artificial Intelligence.

[80] Godfrey Keller and Sven Rady. Strategic experimentation with poisson ban-

dits. Technical report, Free University of Berlin, Humboldt University of

Berlin, University of Bonn, University of Mannheim, University of Munich,

2009. Discussion Papers 260.

[81] Simon Kirby. Natural language from artificial life. Artificial Life, 8(2):185–

215, 2002.

206

[82] Levente Kocsis and Csaba Szepesvari. Bandit based Monte-Carlo planning.

In Prooceedings of the Seventeenth European Conference on Machine Learning

(ECML), 2006.

[83] Dmytro Korzhyk, Zhengyu Yin, Christopher Kiekintveld, Vincent Conitzer,

and Milind Tambe. Stackelberg vs. nash in security games: An extended

investigation of interchangeability, equivalence, and uniqueness. Journal of

Artificial Intelligence Research (JAIR), 41(2):297–327, May 2011.

[84] Hanna Kurniawati, David Hsu, and Wee Sun Lee. SARSOP: Efficient point-

based POMDP planning by approximating optimally reachable belief spaces.

In Proceedings of Robotics: Science and Systems, 2008.

[85] Martin Lauer and Martin Riedmiller. An algorithm for distributed reinforce-

ment learning in cooperative multi-agent systems. In Proceedings of the Seven-

teenth International Conference on Machine Learning (ICML), pages 535–542.

Morgan Kaufmann, 2000.

[86] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Transfer of sam-

ples in batch reinforcement learning. In Proceedings of the Twenty-Fifth Inter-

national Conference on Machine Learning (ICML), pages 544–551, New York,

NY, USA, 2008. ACM.

[87] Hector J Levesque, Philip R Cohen, and José HT Nunes. On acting together.

In Proceedings of the Eighth Conference on Artificial Intelligence (AAAI),

volume 90, pages 94–99, 1990.

[88] Michael Levin. The evolution of understanding: A genetic algorithm model

of the evolution of communication. Biosystems, 36(3):167 – 178, 1995. ISSN

207

0303-2647. doi: http://dx.doi.org/10.1016/0303-2647(95)01557-2. URL http:

//www.sciencedirect.com/science/article/pii/0303264795015572.

[89] Somchaya Liemhetcharat and Manuela Veloso. Weighted synergy graphs for

effective team formation with heterogeneous ad hoc agents. Artificial Intelli-

gence (AIJ), 208(0):41 – 65, 2014.

[90] Raz Lin, Sarit Kraus, Yinon Oshrat, and Ya’akov (Kobi) Gal. Facilitating the

evaluation of automated negotiators using peer designed agents. In Proceedings

of the Twenty-Fourth Conference on Artificial Intelligence (AAAI), 2010.

[91] Keqin Liu, Qing Zhao, and B. Krishnamachari. Decentralized multi-armed

bandit with imperfect observations. In Communication, Control, and Com-

puting (Allerton), 2010 48th Annual Allerton Conference on, pages 1669–1674,

Sept 2010. doi: 10.1109/ALLERTON.2010.5707117.

[92] Patrick MacAlpine, Samuel Barrett, Daniel Urieli, Victor Vu, and Peter Stone.

Design and optimization of an omnidirectional humanoid walk: A winning

approach at the RoboCup 2011 3D simulation competition. In Proceedings

of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI), July

2012.

[93] Patrick MacAlpine, Francisco Barrera, and Peter Stone. Positioning to win: A

dynamic role assignment and formation positioning system. In RoboCup-2012:

Robot Soccer World Cup XVI. Springer Verlag, Berlin, 2013.

[94] Patrick MacAlpine, Katie Genter, Samuel Barrett, and Peter Stone. The

RoboCup 2013 drop-in player challenges: Experiments in ad hoc teamwork. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), September 2014.

208

http://www.sciencedirect.com/science/article/pii/0303264795015572
http://www.sciencedirect.com/science/article/pii/0303264795015572

[95] Patrick MacAlpine, Eric Price, and Peter Stone. SCRAM: Scalable collision-

avoiding role assignment with minimal-makespan for formational positioning.

In AAMAS Autonomous Robots and Multirobot Systems Workshop (ARMS

2014), May 2014.

[96] MH Mahmud, Majd Hawasly, Benjamin Rosman, and Subramanian Ra-

mamoorthy. Clustering markov decision processes for continual transfer. Tech-

nical report, School of Informatics, The University of Edinburgh, United King-

dom, 2013.

[97] Conor Mayo-Wilson, Kevin Zollman, and David Danks. Wisdom of crowds

versus groupthink: learning in groups and in isolation. International Journal

of Game Theory, 2012.

[98] Ian Millington and John Funge. Artificial Intelligence for Games, Second

Edition. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd

edition, 2009.

[99] R.R. Murphy, K.L. Dreger, S. Newsome, J. Rodocker, E. Steimle, T. Kimura,

K. Makabe, F. Matsuno, S. Tadokoro, and K. Kon. Use of remotely oper-

ated marine vehicles at minamisanriku and rikuzentakata japan for disaster

recovery. In Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE Inter-

national Symposium on, pages 19 –25, November 2011.

[100] K. Nagatani, S. Kiribayashi, Y. Okada, S. Tadokoro, T. Nishimura,

T. Yoshida, E. Koyanagi, and Y. Hada. Redesign of rescue mobile robot

quince. In Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE Inter-

national Symposium on, pages 13 –18, November 2011.

209

[101] David Pardoe and Peter Stone. Boosting for regression transfer. In Proceed-

ings of the Twenty-Seventh International Conference on Machine Learning

(ICML), June 2010.

[102] Noam Peled, Yaakov(Kobi) Gal, and Sarit Kraus. A study of computational

and human strategies in revelation games. Autonomous Agents and Multi-

Agent Systems (JAAMAS), pages 1–25, 2014.

[103] Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-based value it-

eration: An anytime algorithm for pomdps. In The 18th International

Joint Conference on Artificial Intelligence (IJCAI), pages 1025–1030, San

Francisco, CA, USA, 2003. Morgan Kaufmann Publishers Inc. URL http:

//dl.acm.org/citation.cfm?id=1630659.1630806.

[104] John Ross Quinlan. C4.5: programs for machine learning, volume 1. Morgan

Kaufmann, 1993.

[105] Aditya Rawal, Padmini Rajagopalan, Risto Miikkulainen, and Kay Holekamp.

Evolution of a communication code in cooperative tasks. In Artificial Life

(13th International Conference on the Synthesis and Simulation of Living Sys-

tems), East Lansing, Michigan, USA, 2012.

[106] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral

model. In Proceedings of the 14th Annual Conference on Computer Graphics

and Interactive Techniques, SIGGRAPH ’87, pages 25–34, New York, NY,

USA, 1987. ACM.

[107] D.K. Richardson. Robots to the rescue? Engineering Technology, 6(4):52 –54,

May 2011.

210

http://dl.acm.org/citation.cfm?id=1630659.1630806
http://dl.acm.org/citation.cfm?id=1630659.1630806

[108] Avi Rosenfeld, Inon Zuckerman, Amos Azaria, and Sarit Kraus. Combining

psychological models with machine learning to better predict people’s deci-

sions. Synthese, 189:81–93, 2012.

[109] S. Ross, B. Chaib-draa, and J. Pineau. Bayesian reinforcement learning in

continuous POMDPs with application to robot navigation. In Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA),

pages 2845–2851, May 2008.

[110] Eric Shieh, Bo An, Rong Yang, Milind Tambe, Craig Baldwin, Joseph Di-

Renzo, Ben Maule, and Garrett Meyer. Protect: A deployed game the-

oretic system to protect the ports of the united states. In Proceedings of

the Eleventh International Conference on Autonomous Agents and Multiagent

Systems (AAMAS), pages 13–20, Richland, SC, 2012. International Founda-

tion for Autonomous Agents and Multiagent Systems.

[111] David Silver and Joel Veness. Monte-Carlo planning in large POMDPs. In

Advances in Neural Information Processing Systems 23 (NIPS). 2010.

[112] David Silver, Richard S. Sutton, and Martin Müller. Sample-based learning

and search with permanent and transient memories. In Proceedings of the

Twenty-Fifth International Conference on Machine Learning (ICML), 2008.

[113] Jouni Smed and Harri Hakonen. Algorithms and Networking for Computer

Games. John Wiley & Sons, Ltd, 2006. doi: 10.1002/0470029757.fmatter.

[114] Trey Smith and Reid Simmons. Heuristic search value iteration for pomdps.

In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence

(UAI), pages 520–527, Arlington, Virginia, United States, 2004. AUAI Press.

211

ISBN 0-9749039-0-6. URL http://dl.acm.org/citation.cfm?id=1036843.

1036906.

[115] Ekhlas Sonu and Prashant Doshi. Generalized and bounded policy itera-

tion for finitely-nested interactive pomdps: Scaling up. In Proceedings of

the Eleventh International Conference on Autonomous Agents and Multiagent

Systems (AAMAS), pages 1039–1048, Richland, SC, 2012. International Foun-

dation for Autonomous Agents and Multiagent Systems.

[116] Peter Stone. Layered Learning in Multiagent Systems: A Winning Approach

to Robotic Soccer. MIT Press, 2000.

[117] Peter Stone and Sarit Kraus. To teach or not to teach? Decision making

under uncertainty in ad hoc teams. In Proceedings of the Ninth International

Conference on Autonomous Agents and Multiagent Systems (AAMAS), May

2010.

[118] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a ma-

chine learning perspective. Autonomous Robots, 8(3):345–383, July 2000.

[119] Peter Stone, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosenschein. Ad hoc

autonomous agent teams: Collaboration without pre-coordination. In Proceed-

ings of the Twenty-Fourth Conference on Artificial Intelligence (AAAI), July

2010.

[120] Peter Stone, Gal A. Kaminka, and Jeffrey S. Rosenschein. Leading a best-

response teammate in an ad hoc team. In AAMAS Workshop on Agent Me-

diated Electronic Commerce (AMEC). November 2010.

[121] Ruben Stranders, Long Tran-Thanh, Francesco M. Delle Fave, Alex Rogers,

212

http://dl.acm.org/citation.cfm?id=1036843.1036906
http://dl.acm.org/citation.cfm?id=1036843.1036906

and Nicholas R. Jennings. Dcops and bandits: Exploration and exploita-

tion in decentralised coordination. In Proceedings of the Eleventh Interna-

tional Conference on Autonomous Agents and Multiagent Systems (AAMAS),

pages 289–296, Richland, SC, 2012. International Foundation for Autonomous

Agents and Multiagent Systems. ISBN 0-9817381-1-7, 978-0-9817381-1-6. URL

http://dl.acm.org/citation.cfm?id=2343576.2343617.

[122] Xing Su, Minjie Zhang, Dayong Ye, and Quan Bai. A dynamic coordina-

tion approach for task allocation in disaster environments under spatial and

communicational constraints. In AAAI Workshop on Multiagent Interaction

without Prior Coordination (MIPC 2014), July 2014.

[123] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-

duction. MIT Press, Cambridge, MA, USA, 1998.

[124] Milind Tambe. Towards flexible teamwork. Journal of Artificial Intelligence

Research (JAIR), 7:81–124, 1997.

[125] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative

agents. In Proceedings of the Tenth International Conference on Machine

Learning (ICML), volume 337. Amherst, MA, 1993.

[126] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learn-

ing domains: A survey. Journal of Machine Learning Research (JMLR), 10

(1):1633–1685, 2009.

[127] Matthew E. Taylor, Nicholas K. Jong, and Peter Stone. Transferring instances

for model-based reinforcement learning. In Machine Learning and Knowledge

Discovery in Databases, volume 5212 of Lecture Notes in Artificial Intelligence,

pages 488–505, September 2008.

213

http://dl.acm.org/citation.cfm?id=2343576.2343617

[128] Elio Tuci, Christos Ampatzis, Federico Vicentini, and Marco Dorigo. Oper-

ational aspects of the evolved signalling behaviour in a group of cooperat-

ing and communicating robots. In Paul Vogt, Yuuya Sugita, Elio Tuci, and

Chrystopher Nehaniv, editors, Symbol Grounding and Beyond, volume 4211

of Lecture Notes in Computer Science, pages 113–127. Springer Berlin Hei-

delberg, 2006. ISBN 978-3-540-45769-5. doi: 10.1007/11880172 10. URL

http://dx.doi.org/10.1007/11880172_10.

[129] Cagatay Undeger and Faruk Polat. Multi-agent real-time pursuit. Autonomous

Agents and Multi-Agent Systems (JAAMAS), 21(1):69–107, 2010.

[130] Jose M. Vidal and Edmund H. Durfee. Recursive agent modeling using limited

rationality. In International Conference on Multi-Agent Systems (ICMAS),

1995.

[131] Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards.

PhD thesis, King’s College, Cambridge, UK, May 1989.

[132] Gerhard Wei. Distributed reinforcement learning. In Luc Steels, edi-

tor, The Biology and Technology of Intelligent Autonomous Agents, vol-

ume 144 of NATO ASI Series, pages 415–428. Springer Berlin Heidelberg,

1995. ISBN 978-3-642-79631-9. doi: 10.1007/978-3-642-79629-6 18. URL

http://dx.doi.org/10.1007/978-3-642-79629-6_18.

[133] Kyle Wray and Benjamin Thompson. An application of multiagent learning in

highly dynamic environments. In AAAI Workshop on Multiagent Interaction

without Prior Coordination (MIPC 2014), July 2014.

[134] Feng Wu, Shlomo Zilberstein, and Xiaoping Chen. Online planning for ad

214

http://dx.doi.org/10.1007/11880172_10
http://dx.doi.org/10.1007/978-3-642-79629-6_18

hoc autonomous agent teams. In The 22th International Joint Conference on

Artificial Intelligence (IJCAI), 2011.

[135] Ping Xuan, Victor Lesser, and Shlomo Zilberstein. Communication decisions

in multi-agent cooperation: model and experiments. In Proceedings of the

Fifth International Conference on Autonomous Agents (AGENTS), 2001.

[136] Rong Yang, Benjamin Ford, Milind Tambe, and Andrew Lemieux. Adaptive

resource allocation for wildlife protection against illegal poachers. In Proceed-

ings of the Thirteenth International Conference on Autonomous Agents and

Multiagent Systems (AAMAS), pages 453–460, Richland, SC, 2014. Interna-

tional Foundation for Autonomous Agents and Multiagent Systems.

[137] Yi Yao and G. Doretto. Boosting for transfer learning with multiple sources.

In Proceedings of the Conference on Computer Vision and Pattern Recognition

(CVPR), June 2010.

[138] Yifeng Zeng and Prashant Doshi. Exploiting model equivalences for solving

interactive dynamic influence diagrams. Journal of Artificial Intelligence Re-

search (JAIR), 43(1):211–255, January 2012.

[139] Yifeng Zeng, Yingke Chen, and Prashant Doshi. Approximating model equiva-

lence in interactive dynamic influence diagrams using top k policy paths. Web

Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM International

Conference on, 2:208–211, 2011.

[140] Fuzhen Zhuang, Xiaohu Cheng, SinnoJialin Pan, Wenchao Yu, Qing He, and

Zhongzhi Shi. Transfer learning with multiple sources via consensus regular-

ized autoencoders. In Toon Calders, Floriana Esposito, Eyke Hllermeier, and

215

Rosa Meo, editors, Machine Learning and Knowledge Discovery in Databases,

volume 8726 of Lecture Notes in Computer Science, pages 417–431. Springer

Berlin Heidelberg, 2014.

[141] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione.

Regret minimization in games with incomplete information. In Advances in

Neural Information Processing Systems 20 (NIPS), pages 905–912, 2008.

216

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Research Question
	Algorithm Overview
	Contributions
	Dissertation Overview

	Chapter Problem Description
	Ad Hoc Teamwork
	Evaluation Framework
	Dimensions of Ad Hoc Team Problems
	Chapter Summary

	Chapter Background
	Background
	Domain Descriptions
	Chapter Summary

	Chapter Related Work
	Multiagent Coordination
	Opponent Modeling
	Experimental Domains
	Ad Hoc Teamwork
	Summary

	Chapter The PLASTIC Algorithms
	Overview
	PLASTIC–Model
	PLASTIC–Policy
	Chapter Summary

	Chapter Theoretical Analysis of PLASTIC
	Model and Notation
	Known Teammates and Arms
	Teammates from a Finite Set
	Teammates from a Continuous Set
	Unknown Arms
	Chapter Summary

	Chapter Empirical Evaluation
	Multi-armed Bandits
	Pursuit
	Half Field Offense
	Chapter Summary

	Chapter Discussion and Conclusion
	Summary
	Contributions
	Discussion
	Future Work
	Conclusion

	Appendix Hand-Coded Pursuit Teammates
	Bibliography

