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ABSTRACT

We model the thermal effect of young stars on their surrounding environment in order to understand clustered star
formation. We take radiative heating of dust, dust–gas collisional heating, cosmic-ray heating, and molecular cooling
into account. Using DUSTY, a spherical continuum radiative transfer code, we model the dust temperature distribu-
tion around young stellar objects with various luminosities and surrounding gas and dust density distributions. We
have created a grid of dust temperature models, based on our modeling with DUSTY, which we can use to calculate
the dust temperature in a field of stars with various parameters. We then determine the gas temperature assuming
energy balance. Our models can be used to make large-scale simulations of clustered star formation more realistic.
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1. INTRODUCTION

Most of the stars in our Galaxy form in groups or clus-
ters (Lada & Lada 2003). Therefore, in order to understand
the star formation history, the shape of the mass function,
and the formation of massive (M � 5 M�) stars in our Galaxy,
the star formation process must be studied in its most common
environment—a cluster. As stars form from their initial reser-
voir of gas and dust, they interact with their environment and
heat the surrounding material, thus affecting future star forma-
tion. One of the first effects a protostar has on its environment
is radiative heating from the accretion luminosity, gravitational
contraction, and, subsequently, nuclear fusion. The radiation
efficiently heats the dust, which in turn heats the gas through
collisions. Young stars also affect their environment via strong
winds and ionization, but ionizing photons are significant only
when stars have grown to significant masses. We seek to isolate
the separate effects by considering the effects of the star heating
the gas via the dust.

Several groups use large-scale computer simulations to model
clustered star formation. This is a complicated process requiring
many assumptions in order to make the problem tractable.
Klessen et al. (1998) and Martel et al. (2006) assume that the
gas is isothermal. Bate et al. (2003) go beyond this assumption
by using a barotropic equation of state. However, until recently,
no one has included the effect of radiatively heating the dust
and gas by the stars formed in the simulation. Krumholz et al.
(2007) have included an approximate radiative transfer method,
which works well in optically thick regions. Their method
assumes that the gas temperature is equal to the dust temperature
throughout their simulation. This approximation is only valid at
high densities when the dust and gas are collisionally coupled.
The method we develop explores the density space between
isothermal and optically thick conditions. In this regime, we
probe the volume that is far enough from stars so that dust
grains have not been destroyed by the high temperatures close
to stars, yet is not so far that we are in the regime where the
external interstellar radiation field dominates heating.

In our method we include various heating and cooling
processes to calculate the dust and gas temperature fields around
young stars. Stars can heat dust grains more effectively than the
gas because dust grains have broadband absorption properties.

Although we will not be explicitly modeling the motion or
energy density of dust grains, we assume the dust and gas are
well mixed and the dust grains transfer energy to gas particles
through collisions using the energy transfer rate discussed in
Young et al. (2004). The gas is heated by collisions with hot dust
grains and cosmic rays. It can cool through carbon monoxide
(CO) and other molecular line emission. Our method does not
include direct gas heating from short wavelength stellar photons
(i.e., UV and higher) which will only affect regions very close
(�100 AU) to stellar sources or near the cloud edge, where
the interstellar radiation field is important. We consider a dense
region lying within a region of fairly high extinction due to the
parent molecular cloud.

In this paper, we use calculations of the dust and gas
temperature fields around individual stars to calculate the
dust and gas temperature fields in a field of stars. The dust
temperature around a single source is calculated using a look-
up table which we develop here. With this look-up table and
an approximation to the flux–temperature conversion, we can
calculate the dust temperature in a field of stars. Our look-
up table is needed since the calculation of a single dust
temperature distribution can take longer than a minute on current
desktops and would take a substantial fraction of a large-scale
simulation’s computations. Therefore, we outline a method that
can be used to decrease the time spent on the calculation
of the dust temperature in future studies of clustered star
formation.

With the calculated value of the dust temperature, we derive
the gas temperature for a distribution of stellar sources, as in a
young stellar cluster. The effect that protostars have on heating
their environment using a hydrodynamic and gravity simulation
will be addressed in a future paper.

In this paper, we first discuss the calculation of the dust
temperature for single and multiple sources (Section 2), then
we describe our gas temperature calculation (Section 3), and
finally, we show some dust and gas temperature distributions in
a field of sources (Section 4).

2. DUST TEMPERATURE CALCULATION

We consider two methods of calculating the dust tempera-
ture when there are multiple heating sources. The first approach

1341

http://dx.doi.org/10.1088/0004-637X/698/2/1341
mailto:aurban@astro.as.utexas.edu
mailto:nje@astro.as.utexas.edu
mailto:doty@denison.edu


1342 URBAN ET AL. Vol. 698

(Analytic) assumes radiative equilibrium after summing up the
flux of multiple sources heating a dust grain. This approach
makes simplifying assumptions about the dust absorption and
emission properties. The second approach (Numerical) uses
the one-dimensional spherical radiative transfer code DUSTY
(Nenkova et al. 2000) to calculate the dust temperature distribu-
tion around individual objects which have a variety of properties.
Using the results of DUSTY, we convert the temperatures around
individual objects to energy densities, which are then summed
together over all of the objects in the field, and finally converted
back to dust temperatures (assuming radiative equilibrium).
In the following sections, we discuss the Analytic approach
(Section 2.1) and the Numerical approach (Section 2.2) of cal-
culating the dust temperature. Then we compare and analyze
the two approaches (Section 2.3).

2.1. Analytic Dust Temperature Calculation

In order to analytically calculate the temperature of a dust
grain in a field of N stars we assume radiative equilibrium
between the energy emitted by the heated dust grain and the
energy absorbed by the dust grain from the radiation field of the
surrounding stars. We calculate the dust temperature analytically
using two methods and then compare them.

The rate of energy emitted by a single dust grain with radius
a is (

dE

dt

)
em

= 4π

∫ ∞

0
Bν(Td )σνdν, (1)

where σν is the effective cross section of the grain as a function
of frequency, Bν(Td ) is the Planck function, and Td is the
temperature of the dust grain. The rate of energy absorbed by
the dust grain in a field of N stars is(

dE

dt

)
abs

=
N∑

i=1

R2
∗i

(Δr∗i)2

∫ ∞

0
Sνiσνdν, (2)

where Sνi is the flux density at the stellar surface of star i
(which we assume is a blackbody at the stellar temperature, i.e.,
Sνi = πBν(T∗i)), R∗i is the radius of star i, and the separation
between star i and the dust grain is Δr∗i = |r∗i − r|, where
r∗i is the position of star i and r is the position of the dust
grain.

Using L∗i = 4πR2
∗iσSBT 4

∗i (L∗i is the luminosity of star i and
σSB is the Stefan–Boltzmann constant) and assuming radiative
equilibrium, Equations (1) and (2) combine to give

π

4πσSB

N∑
i=1

L∗i

T 4
∗i(Δr∗i)2

∫ ∞

0
Bν(T∗i)σνdν

= 4π

∫ ∞

0
Bν(Td )σνdν. (3)

The effective cross section of the grain, σν , can be written
in terms of the physical cross section of the grain, πa2, and an
efficiency factor, Qν that describes how well the grain absorbs
or emits light at a particular frequency: Q(ν) = σν/πa2.

Then, assuming

Q(ν) = Q(νo)

(
ν

νo

)β

, (4)

(where νo is a fiducial frequency) Equation (3) becomes

1

16πσSB

N∑
i=1

L∗i

T 4
∗i(Δr∗i)2

∫ ∞

0
Bν(T∗i)Q(νo)

(
ν

νo

)β

dν

=
∫ ∞

0
Bν(Td )Q(νo)

(
ν

νo

)β

dν. (5)

In the following subsections, we show an approximation
for Td that is often made for hot stars and then provide a
simple improvement that allows an analytic solution for cool
stars as well. The purpose is to provide convenient points of
comparison for the more correct calculations using radiative
transport, described later in Section 2.2.

2.1.1. Hot Stars

Hot stars emit most of their luminosity in the UV and if we
assume that grains absorb like graybodies in the UV, then β = 0
and Q(ν) = Q(UV) for the left-hand side of Equation (5).
(Q(UV) is the flux weighted average absorption efficiency in
the UV, which is discussed in greater detail later in this section.)
Equation (5) then becomes

1

16πσSB

Q(UV)

(νUV)0

2h

c2

N∑
i=1

L∗i

T 4
∗i(Δr∗i)2

(
kT∗i

h

)4+0

I4+0

= Q(νo)

ν
β
o

2h

c2

(
kT 4

d

h

)4+β

I4+β, (6)

where
I4+β = Γ(4 + β)ζ (4 + β) (7)

and the functions Γ(x) and ζ (x) are defined as the gamma and
Riemann zeta functions. Then solving Equation (6) for Td gives

Td (r) =
[

3.89 × 104K4

I4+β

Q(UV)

Q(νo)

(
hνo

k

)β

×
N∑

i=1

L∗i/1L�
(Δr∗i/1000 AU)2

]1/(4+β)

. (8)

Note that the dependence on stellar temperature cancels out
under these assumptions. From Equation (8), the form of the
dust temperature profile can be written as

Td = K(β)

[
N∑

i=1

L∗i/1L�
(Δr∗i/1000 AU)2

]1/(4+β)

, (9)

where K (in units of Kelvin) and β (dimensionless) are deter-
mined by the dust properties.

The value of K is determined by Q(UV)/Q(125 μm) and
β. Values of Q(UV)/Q(125 μm) from the literature are given
in Table 1. We can also calculate Q(UV)/Q(125 μm) from
an adopted dust model. Our adopted dust model, “OH5 dust,”
is a combination of dust from Ossenkopf & Henning (1994)
and Pollack et al. (1994) as described in Young & Evans
(2005; see Figure 1). For OH5 dust, we calculate the value of
Q(UV)/Q(125 μm) assuming a 10,000 K blackbody. Q(UV)
is calculated as the stellar flux weighted average absorption
efficiency of OH5 dust. Therefore,

Q(UV)

Q(125 μm)
=

(∑0.3 μm
λ=0.15 μm Fλσ (λ)∑0.3 μm

λ=0.15 μm Fλ

) /
σ (125 μm) = 253,

(10)
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Figure 1. OH5 dust properties. Dashed line shows the variation of cross section
with wavelength for OH5 dust. The solid lines show the different values of β

normalized at 125 μm that we consider in Table 1.

Table 1
Dust Parameters for Sections 2.1.1 and 2.1.2

Dust: Section 2.1.1 Q(UV)
Q(125 μm) K(1) K(1.8) K(2)

Hildebrand (1983) 4000 59.1 K 52.4 K 37.6 K
Makinen et al. (1985) 790 42.7 K · · · · · ·
OH5 (our dust model) 253 34.0 K 32.5 K 23.7 K

Dust: Section 2.1.2 T∗i K β

OH5 (our dust model) 5000 K 23.2 K 1.66
OH5 (our dust model) 10,000 K 28.7 K 1.66

where we take the range from 0.15 to 0.3 μm as a rough
representation of the UV range, which is relevant for a 10,000 K
blackbody.

In Figure 1, we compare OH5 dust to an analytic approxi-
mation of Q(ν) (see Equation (4)) normalized at 125 μm and
vary the value of β, the dust grain’s efficiency exponent. The
line with β = 1.8 fits well at long wavelengths but not at shorter
wavelengths. The opposite is true for β = 1.0. In Table 1, we
have listed all of the values of Q(UV)/Q(125 μm) that we con-
sider. Based on the analysis of Figure 1, we vary the value of β
to 1, 1.8, and 2. Then we calculate the values of K corresponding
to the different values of β (except in the case of Makinen et al.
1985 where β = 1 by definition).

2.1.2. Cool Stars

We also consider cooler stars with T∗ = 5000 K. For stars
at this temperature, most of the stellar light is not coming from
the UV, in contrast to the hotter stars discussed in the previous
section. To calculate the dust temperature in a field of cool stars
we start from Equation (3). We use the information in Figure 1
to derive the dust temperature profile in the form of Equation (9)
by solving the integrals in Equation (3) numerically. We can then
derive values of K and β for Equation (9). Since this method
makes no assumptions about the shape of the input spectra, we

Figure 2. Relationship of Td and L/Δr2 assuming a stellar temperature of
T∗ = 5000 K (dashed) or T∗ = 10,000 K (dotted). The dashed and dotted lines
show the value derived from solving Equation (3). The solid lines overplotted
on the dashed and dotted lines are the least-squares best fit to the respective
line between Td = 5 and 100 K. Fit parameters are given in the figure. For
T∗ = 5000 K (dashed), K = 23.2 K and β = 1.66. For T∗ = 10,000 K
(dashed), K = 28.7 K and β = 1.66. The units of L, Δr , and Td are 1L�,
1000 AU, and 1 K, respectively. For reference, for 1L�, 10,000 K blackbody at
a distance of 1000 AU, a dust grain’s temperature is 23.2 K. For a star of 103L�
with the same temperature at the same distance, the dust grain’s temperature is
approximately 80 K.

calculate K and β for T∗ = 5000 K and 10,000 K and list
them in Table 1. In Figure 2, we show the behavior of Td with
L/Δr2. We only fit the temperature regime between 5 K and
100 K since the behavior at higher temperatures is not linear in
log T − log (L/Δr2) space and dust temperatures below 5 K are
unrealistic.

2.1.3. Summary

We have calculated an analytic solution to the dust temper-
ature in a field of stars which depends only on the stellar tem-
perature and the properties of the dust. We have discussed two
methods of calculating the dust temperature. The first allows
only hot stars and the second permits any stellar temperature.
We do not find a large scatter in the values of K and β listed in
Table 1 considering the different assumptions made about the
dust properties. In particular, the agreement between the value
of K(1.8) = 32.5 K, which approximates the UV contribution,
and K = 28.7 K for T∗ = 5000 K, which uses exact integra-
tion, is worth noting. We cannot address how a range of stellar
temperatures would affect the dust temperature using the an-
alytic method we describe, i.e., variable T∗i in Equation (3).
Another assumption we have made in this section is the opti-
cally thin approximation. In order to calculate the temperature of
the dust we have assumed that all of the grains are isolated from
each other and are only heated by the stellar radiation field. In
reality, the presence of grains will alter the radiation field as the
grains process and re-emit the incident radiation. This will alter
the radiation field assumed in Equation (2). In order to compare
the analytic solutions described in this section to the numerical
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calculation in Section 2.2, we define the “Analytic Solution” as
Equation (9) with K = 23.2 K and β = 1.66 (T∗i = 5000 K)
throughout the remainder of the paper.

2.2. Numerical Dust Temperature Calculation

Our more correct method of calculating the dust temperature
uses DUSTY (Nenkova et al. 2000), a one-dimensional spherical
radiative transfer code. In order to calculate the dust temperature
in a field of stars, we use DUSTY to first calculate the dust
temperature around each star in the field as if it were isolated.
Then we use these results to calculate the temperature in the field
by assuming radiative equilibrium. Although it is more accurate
to use DUSTY to calculate the dust temperature around a young
star than the method described in Section 2.1, DUSTY can take
over 1 minute to run for low optical depths—with yet longer run
times for larger values of τ100 μm. Therefore, we calculate the
dust temperature profile for various combinations of luminosity,
outer radius, and density profile to create a look-up table. (The
parameters we consider are discussed in Section 2.2.1.) We use
OH5 dust opacities as described in Young & Evans (2005).

We approximate the dust temperature profile around a single
source, i, with the expression

Td (Δr∗i) = Ki

(
L∗i

(Δr∗i)2

)1/(4+βi )

(11)

where L is the input luminosity in units of L�, Δr∗i is the distance
from the star in units of 1000 AU, and K and β are functions of
the density profile and dust properties. (The units of L and Δr∗i
will remain L� and 1000 AU throughout the remainder of the
paper.) This simple profile is a valid assumption when the dust
is optically thin. Although the gas and dust are denser closer to
the central source and likely to be optically thick there, we are
mainly interested in the dust temperature distribution far from
the central source where the physical processes we consider
are dominant and the dust and gas are transparent to the cloud
exterior for long wavelength emission.

For each set of parameters, we run DUSTY and solve for
a value of K and β (see Section 2.2.1). Since we are only
interested in the dust temperature far from the source, we fit
the outer 25% of the dust temperature profile obtained from
DUSTY in log T − log r space using least-squares fitting in
order to determine the values of β and K in Equation (11). We
call these values of β and K our “Fit Solution.”

In order to calculate the dust temperature of a region heated
by more than one protostar, we add up the flux at the region of
interest using

F (r) =
N∑

i=1

L∗i

4π (Δr∗i)2
. (12)

Combining Equations (11) and (12), we derive

F (r) =
N∑

i=1

(Td (Δr∗i)/Ki)4+βi

4π
. (13)

In order to be able to convert to temperature later, we approxi-
mate Equation (13) by using averages and we assume

F (r) = (Td (r)/K̄)4+β̄

4π
(14)

where K̄ and β̄ are defined as the flux-weighted averages of the
K and β values that contribute to the flux at point r, i.e.,

β̄ =
∑

βiL∗i/4πΔr2
∗i∑

L∗i/4πΔr2∗i

(15)

and

K̄ =
∑

KiL∗i/4πΔr2
∗i∑

L∗i/4πΔr2∗i

, (16)

where the sums are from i = 1 to the total number of stars, N.
Therefore, equating Equations (13) and (14) and solving for

Td (r) gives

Td (r) = K̄

[
N∑

i=1

(
T (Δr∗i)

Ki

)4+βi
]1/(4+β̄)

. (17)

Using Equation (11), we obtain

Td (r) = K̄

[
N∑

i=1

L∗i

Δr2∗i

]1/(4+β̄)

, (18)

which is the equation we use to calculate the dust temperature
in a field of sources.

Equation (18) is of course an approximation; full three-
dimensional radiative transport calculations are needed to pro-
duce a complete description, but this approximation captures
the essence of multiple sources. In Figure 3, we compare the
dust temperature calculated using our DUSTY Fit Solutions
around two single sources to the dust temperature calculated
using Equation (18) between the same two sources separated by
some distance. The distance is calculated by specifying neq, the
density at which the envelope density profiles of the two individ-
ual sources are equal. We compare two models (source 1: K =
19.5 K, β = 1.78 and source 2: K = 22.9 K, β = 1.78; see
Figure 3 for more details) that represent the average values in
our parameter space. We also compare an average model (source
1: K = 20.6 K, β = 1.72) to a model that has a low value of β
(source 2: K = 18.7 K, β = 1.17), but keep the luminosity the
same between the two (L = 102L�).

As expected, we find that the dust temperature at some
distance from the individual sources is greater using Equa-
tion (18) (“Flux Weighted” in Figure 3) which attempts to add
the individual fluxes than the temperature calculated around the
individual sources (“DUSTY-fit” in Figure 3). However, this
only occurs in a very small region between the two sources
and the temperature is underestimated by �30% in the majority
of the space between the sources. The largest difference between
the two temperatures is in the space very close to the sources.
But, as we discuss later in Section 2.3, we expect to incorrectly
model the temperature close to the sources using our method of
deriving K and β.

2.2.1. Parameter Space

We assume the dust and gas are well mixed and have the
same density profile, offset only by the dust-to-gas mass ratio
(ηdg) described in Section 3, i.e., ρdust = ηdgρgas. We assume
NH2/NHe = 5, which gives μ = 2.33. The density profile of the
gas is parameterized with no and α using

ngas = no

( r

1000 AU

)−α

. (19)
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Figure 3. Comparison of individual DUSTY Fit Solutions (dashed line) to Flux Weighted Solution of Equation (18) (solid line). For the Flux Weighted Solution, the
temperature between the two sources is calculated assuming a density distribution between them which meets at a density neq as quoted on the left-hand side of the
plot. At a given value of neq we show three horizontal plots of the same data from different perspectives. On the longer plot on the left we use a linear scale from the
perspective of source 1. The two smaller plots on the right use a logarithmic scale, from the perspective of source 1 (middle) and source 2 (right). This is done to show
structure close to the individual sources. The model parameters we list in the figures are described in more detail in Section 2.2.1. For the top two plots, the source
parameters are listed between them, similarly for the bottom two plots.

We model the entire parameter space listed in Table 2 with
two exceptions. First, we limit the density at the inner radius to
be less than 1010 cm−3, because at higher densities dynamical
effects may become important since the free-fall time becomes
small as the density increases. Second, we limit the mass of
the envelope to be less than ∼1000 M� since a larger envelope
would likely produce a cluster of stars (assuming a star formation
efficiency of 10% and a maximum stellar mass of 100 M�)
which would break the assumption of spherical symmetry.
Therefore, combinations of large/small α and large no (for inner
density limit/mass limit) may not be represented in our models.
Based on these restrictions, of the 5049 possible models in our
parameter space, we model 3231 or 64% of them. In Figure 4,
we show the envelope masses modeled in our parameter space.
Figure 5 shows the relationship between the values of τ100 μm,
α, and no for the models in our parameter space.

We chose the inner radius of the spherical dust–gas envelope
to be fixed at 30 AU. We have varied the inner radius by a
factor of 0.1 and 10 and the difference in the values of K and
β is less than 1%. Therefore, we conclude that the choice of
the inner radius does not significantly affect our results. We
also consider the possibility of dust destruction. The luminosity
required to reach a dust destruction temperature of 1500 K at 30

Table 2
Dust Model Parameters

Parameter Lower Limit Upper Limit Δa Nb

log (L/L�) −2 6 0.5 17
log (no/cm−3) 2.5 7.5 0.5 11
α 0 4 0.5 9
log (rout/1 pc) −1 0 0.5 3

Notes.
a Spacing of parameters.
b Number of parameters.

AU using the Analytic Solution is 4.93 × 106L�. This is outside
our sample range of luminosities; therefore, we can neglect the
effects of dust destruction. We also vary the outer radius, rout,
to obtain a range of values. We find that our values of K and β
do not strongly depend on rout.

In all cases, the stellar input spectrum is assumed to be a
blackbody with T∗ = 5000 K. This value does not strongly
influence the calculated temperature distribution at outer radii
since the radiation is quickly reprocessed by the dust to longer
wavelengths. Shirley et al. (2002) and van der Tak et al. (1999)
show that varying the input spectrum has little effect on the
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Figure 4. Histogram of envelope masses of models in our parameter space.

output spectrum. However, these authors have only modeled
a handful of cases. Since we are covering a much larger
range in parameter space, we investigate in greater detail the
possible differences that may be caused by a higher blackbody
temperature. We expect to see only differences in the extremes
of our parameter space based on the work of the previous
authors.

To test our prediction, we have modeled the entire parameter
space discussed above using a blackbody with T∗ =10,000 K.
We compare the results in Figures 6 and 7. These figures
show that the percentage difference between a model with a
10,000 K blackbody spectrum and the same model with a
5000 K blackbody is small (less than 10%) in most of our
parameter space. In Figure 6, we show that the models with
the largest percentage differences are at the extremes of our
parameter space at high density (no > 105 cm−3) and low
α. We find that among this group, the main parameter that
causes a model to have a high percentage difference is the outer
radius. Models with rout � 0.1pc have percentage differences
greater than 50%, as seen in Figure 7. This can be explained
by examining Figure 8 where an increase in density causes an
increase in the sphere of influence of the nonlinear (in log T –
log r space) region in the center of the model. Therefore, models
with small outer radii and high densities will have different
fractions of the nonlinear (or optically thick) region included in
their calculation of the Fit Solution (recall that this is calculated
using the outer 25% of the dust temperature profile in log T –
log r space) compared to models with larger outer radii but the
same density. Therefore, the largest difference in models with
two different input temperatures occurs mainly for models with
high densities, low α’s, and small outer radii.

2.3. Comparison of Dust Temperature Calculation Methods

Figures 8 and 9 compare the two methods of calculating the
dust temperature around a single source. The Analytic Solution
uses OH5 dust parameters as described in Section 2.1.3.

Figure 8 shows that the Analytic Solution captures the
shape of the DUSTY temperature profile, but at high τ100 μm it

Figure 5. Relationship between α, τ100 μm, and no. This figure shows how
τ100 μm varies with α, no, and rout for our models. At a fixed value of no and
as α increases (and α > 1), τ100 μm increases as well due to the sharp density
increase in the center of the density profile. For lower values of α (α < 1),
τ100 μm begins to increase again, but this increase is due to the increase in the
amount of material included in the profile at the edge, i.e., the value of rout.

overestimates the magnitude. If we only vary the luminosity (see
Figure 9), then all solutions (DUSTY, Analytic, and Fit) produce
an increase in temperature, due to the increased luminosity.
However, as seen in Figure 8, if we change other parameters, no,
α, and rout, we cannot predict the effect on the Analytic Solution
because it is independent of these parameters. The Fit Solution is
a compromise between the Analytic and DUSTY Solutions. The
Analytic Solution ignores the density profile and is unreliable
when the optical depth is high. The DUSTY Solution takes too
long to calculate. The Fit Solution, as described in Section 2.2,
also provides the best fit at outer radii, compared to the analytic
solution, as shown in Figures 8 and 9.

Figure 10 shows histograms of K and β derived from our Fit
Solution for our parameter space. While most models cluster
around the Analytic Solution, there is a spread that is dependent
on some of the input parameters. In Figure 11, we show how
the values of K and β depend on the α parameter. Models with
low values of α tend to have K and β values that are far from
the Analytic Solution (i.e., K > 30 K, β < 1).

In Figures 12 and 13, we show how different parameters deter-
mine the values of K and β. Figure 12 shows that luminosity and
the value of K are positively correlated. Although we have ex-
plicitly removed the luminosity dependence from Equation (11),
there is still some dependence of K on luminosity. This can be
understood in terms of radiative trapping. For high luminosities,
more photons at shorter wavelengths exist farther from the star,
which increases the size of the region of high optical depth and
leads to an increase in the value of K. (This can also be seen in
the values of K listed in Figure 9). Also, as α increases, then
K decreases. Increasing α shrinks the size of the region of high
optical depth due to the buildup of material close to the star.
Figure 13 shows that as α decreases and luminosity increases,
then β decreases. The drastic drop of β at high luminosities can
be understood by comparing the two models shown in Figure 9.
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Figure 6. Dust temperature percent difference for T∗ = 5000 K and T∗ =10,000 K models in no (cm−3) and α space. The distance that the dust temperature is sampled
at is given in the box in the bottom left-hand corner of the individual figures and ranges from 100 AU to 100,000 AU. The key to the percent difference is given at the
top of the figure, with larger circles indicating a larger percent difference. Models at low α with high values of no are not in our sample due to the maximum mass
criterion. Models missing in the top right corner of the figures at high no and high α are missing due to the criterion which sets the maximum density at the inner
radius.

In the two models, the radius at which the dust temperature
turns up (i.e., when the material changes from optically thin
to optically thick) moves out in radius as the luminosity in-
creases. Since we model the value of β using only the outer
25% of the material, we expect to be considering only the op-
tically thin material. However, as the luminosity increases, the
radius at which the transition from optically thick to optically
thin material moves outward. Therefore, at higher luminosities,
our calculation of β becomes influenced by the optically thick
region. This is the reason that β decreases and moves away from
the optically thin Analytic Solution as luminosity increases.

In order to calculate values of β and K that are not modeled
in our parameter space, we interpolate between known values in
our look-up table. We use the method for interpolating in two or
more dimensions described in chapter 3 of Press et al. (1992).
This method involves solving successive one-dimensional in-
terpolations. We modified the POLIN2 subroutine to interpolate
in four dimensions. The actual method of interpolation that
we used was the polynomial interpolation method over three
known quantities from the subroutine POLINT in Press et al.

(1992). We tested our interpolation method by running extra
models through DUSTY which were at intermediate points in
our parameter space. Then we compared the results between the
DUSTY Solution and solution from our interpolation method.
For three of these intermediate models, we fix no, α, and rout and
vary the luminosity in order to explore how luminosity affects
the interpolation method. We also explore the effect of vary-
ing rout and we study the behavior of the intermediate models
near the edges of the no–α parameter space. We find that our
interpolation method is quite accurate, with median differences
of 0.55% and 0.09% for K and β, respectively. The differences
in K and β are all less than 2%. The largest differences are for
models with very high luminosities near ∼106 L�. This is likely
to be due to the rapid change of the value of β with luminosity
(see Figure 13).

Based on the previous discussion in this section, we use
the Fit Solution described in Section 2.2 to calculate the dust
temperature in the remainder of the paper. Since we are primarily
interested in the dust temperature far from the luminosity source,
we find that we can model the shape and magnitude of the dust
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Figure 7. Dust temperature percent difference for T∗ = 5000 K and T∗ = 10,000 K models in log (L/L�) and log (rout/pc) space. Similar to Figure 6 but for log
(L/L�) and log (rout/pc).

Figure 8. Comparison between temperature distributions for two different models with a low and high fiducial density. For both models, L = 1L�, α = 2, and
rout = 0.1 pc. The figure on the left has log no = 2.5 and τ100 μm = 2.894 × 10−4. The fit parameters are K = 23.0 K and β = 1.78. For this case, the Fit and Analytic
Solutions lie nearly on top of the DUSTY Solution which makes them difficult to distinguish from the DUSTY Solution. The figure on the right has log no = 5.5 and
τ100 μm = 2.894 × 10−1 with K = 15.6 K and β = 1.81. Although both of these models are optically thin (at most radii) as assumed in the Analytic Solution, it is
clear that the Analytic Solution is not a good description of the dust temperature for both cases.
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Figure 9. Comparison between temperature distributions for two different models with a low and high luminosity. For both models, α = 3, and rout = 0.1 pc, log
no = 2.5. The figure on the left has log L/L� = −1. The fit parameters are K = 22.2 K and β = 1.82 The figure on the right has log L/L� = 3 with K = 22.5 K
and β = 1.71. These models show how increasing the luminosity increases the overall dust temperature as well as making the optically thick region near the center
extend farther out.

Figure 10. Figures show the range of K and β for the chosen parameters in Table 2. K is given in units of Kelvin. The vertical line marks the values of K and β in the
Analytic Solution.

temperature distribution most accurately with the Fit Solution.
There might be some error in the calculation of K and β for
models with large luminosities or small α’s. However, we do
not expect very small values of α to be common in future star
formation simulations based on observations of similar regions
(Mueller et al. 2002; Shirley et al. 2002; Young et al. 2003).

3. GAS TEMPERATURE CALCULATION

After the dust temperature as a function of distance from
luminosity sources is derived for positions near stars in a cluster
using the look-up table and Equation (18), the gas temperature

can be calculated assuming gas energetics balance. We calculate
the gas temperature using a gas–dust energetics code which
includes energy transfer between gas and dust via collisions,
heating by cosmic rays, and molecular cooling (see Doty &
Neufeld 1997 and the appendix in Young et al. 2004 for a more
detailed description). We assume that the dust-to-gas mass ratio
is ηdg = 4.86 × 10−3 (Hollenbach & McKee 1989) and the
grain cross section per baryon is 6.09 × 10−22 cm2 (Young et al.
2004). The cosmic ray ionization rate is 3.00 × 10−17 s−1 (van
der Tak & van Dishoeck 2000) and the energy deposited per
cosmic ray ionization is 2.00 × 101 eV (Goldsmith 2001) in
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Figure 11. Range of K and β for the chosen parameters in Table 2 as a function of α. K is given in units of Kelvin. The vertical line marks the values of K and β in the
Analytic Solution. Histograms for α = 0 have been multiplied by 2 for clarity.

our models. We take the fractional abundance of CO relative
to H2 to be X(CO) = 1.0 × 10−4 from Figure 8(a) of Lee et al.
(2004).

The model-dependent input parameters are Td, local density,
column density, and local velocity dispersion (b). Td is calcu-
lated with the procedure described in Section 2.2. Local density
and column density can be derived from our input density pro-
file. The column density is calculated radially from the point
of interest to the edge of the system. The edge of the system
is defined as either the point at which the density is lowest
or some fiducial value (as discussed later in Section 4). The
velocity-spread parameter, b, is defined for a Maxwellian ve-
locity distribution as b = (2kT /m)1/2 (Spitzer 1998) and is
assumed to be 1 km s−1 throughout this paper. The stellar radi-
ation temperature is not a direct input parameter; it is only used
to calculate the dust temperature. For the rest of the paper we
use the dust models calculated with T∗ = 5000 K to determine
the dust and gas temperature fields.

We assume that the cluster (defined as a group of small
cores which can each be modeled using a set of the parameters
defined in Table 2) that we study is deeply embedded within
a larger molecular cloud. Therefore, there is no interstellar
radiation field impinging on the outer bounds of the cluster and
the photoelectric effect on polycyclic aromatic hydrocarbons
(PAHs) is not present. Although we have chosen T∗ = 5000 K
and there is little UV radiation, it is also possible to use a
higher stellar temperature, i.e., T∗ = 10,000 K, which will
lead to photoelectric heating of the gas near the inner edge
of the envelope surrounding each source. If this higher stellar
temperature is used, then our gas temperature calculation is no
longer accurate for a subset of our models with low τ100 μm, low
α, and low no. Also, even at low stellar temperatures, the UV
flux from the star may still compete with the dust in heating the
gas very close to the star before all the UV has been absorbed by
dust. Therefore, we do not claim to correctly calculate the gas
temperature within a radius of ∼100 AU of each star. In the rest

of the paper, we may show the gas temperature for regions closer
than 100 AU to a star, however, our calculations do not include
photoelectric heating and as such, the actual gas temperature
may be higher in this region.

Figure 14 shows the variation of dust and gas temperature
fields with distance from a stellar heating source for two values
of X(CO). Close to the source, the dust and gas temperature
fields are coupled due to collisional interactions of the dust
with the gas. As the density decreases, collisions between the
dust and gas become less frequent and the gas is able to cool
via molecular (mainly CO) rotational transitions. Then as the
density continues to drop and there is less CO to cool the gas,
cosmic ray heating becomes the dominant heating source and
the gas temperature increases. For a gas with less CO (X(CO) =
5 × 10−5), the cooling is not as efficient and the temperature
is larger. As various other parameters change in our models,
different heating and cooling terms dominate and the minimum
and maximum temperatures vary. We discuss this in more detail
in the following section (Section 4).

As seen in Figure 14, the gas temperature falls below 10 K
when gas collisions are the dominant cooling method. Our gas
cooling rate calculations are based on the work of Neufeld &
Kaufman (1993) and Neufeld et al. (1995) which only extend
down to 10 K because the H2–CO collisional rates were not de-
fined below 10 K at the time of their work. We expect the cool-
ing rate (Λ) to drop drastically as the temperature approaches
zero and we have attempted to adjust our cooling rate calcula-
tion to account for this. We modify our method of calculating
the rate of change of the cooling rate with temperature, d(log Λ)/
d(log T), by using the Large Velocity Gradient (LVG) model.
We extrapolate the CO rate coefficients from Flower & Lau-
nay (1985) from 10 K to 5 K. Then we calculate d(log Λ)/
d(log T) between 10 K and 5 K using the LVG model.
We apply the new values of d(log Λ)/d(log T) between 10
K and 5 K to improve our gas energetics model at low
temperatures.
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Figure 12. Horizontal line marks the value of K in the Analytic Solution. Individual models are plotted as circles of various sizes. The size of the circle indicates the
value of the α parameter as noted in the top of the plot. The nine separate plots each show K as a function of no (cm−3) for nine different luminosity regimes. In the
top-left box, log L/L� is −2 or −1.5, as indicated at the top-right corner in the box. The bottom-right box shows models with the highest luminosities. K is given in
units of Kelvin.

4. GAS AND DUST TEMPERATURE WITH MULTIPLE
SOURCES

The goal of our paper is to calculate the dust and gas
temperature fields in a field of stars that are forming. In such
an environment, individual stars are surrounded by an envelope
of dust and gas which feeds their growth. In this section we
describe the dust and gas temperature fields in a field of two
(Section 4.1) and three (Section 4.2) sources to illustrate our
method. With our method, we can solve for the gas and dust
temperature in a field of many sources.

4.1. Two Sources

In order to calculate the gas temperature between two sources,
we must first calculate the dust temperature. We do this using
the method described in Section 2.2. Once we have determined
the dust temperature, we can use our energetics algorithm to
calculate the gas temperature. Around each source we place a
density profile. In order for this to be realistic, we choose a
density, neq at which we have the two density profiles meet. The
value of neq sets the distance between the sources, i.e., smaller
values of neq place the sources farther apart.

Figure 15 shows the dust and gas temperature profile for
increasing values of neq, i.e., smaller separations. An interesting
feature of this plot is that if we only look at the region between
the two sources, we find a large variation in the gas temperature.
This is due to the higher densities sampled as the sources move
closer together. The top panel shows sources that are far apart
and we see that the maximum gas temperature between the
two sources is ∼20 K and the minimum gas temperature is
∼7 K. Cosmic ray heating, though relatively weak, can warm the
material sufficiently far from luminous sources. As the sources
move closer together, cosmic rays become less important until
the temperature between the sources ceases to increase, whereas
dust heating becomes more important and the gas is not able
to cool efficiently and the minimum temperature between the
sources rises.

4.2. Three Sources

In this section, we calculate the gas and dust temperature
distribution around three sources. The three sources were placed
on three of the corners of a square with sides of length 1000 AU.
The least luminous source was placed on the corner between the
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Figure 13. Horizontal line marks the value of β in the Analytic Solution. Same plot details as Figure 12 except β is plotted rather than K.

Figure 14. Gas temperature distribution and comparison of difference in CO
abundance. Solid line shows Fit Solution to dust temperature. The model
parameters are log (L/L�)= 1, log (rout/1pc) = −0.5, log (no/cm−3) = 4.5,
and α = 2.5. Dotted and dashed lines show gas temperature for X(CO) =
1 × 10−4 and X(CO) = 5 × 10−5, respectively.

Table 3
Source Parameters

Source Luminosity (L�) no(cm−3) α rout (pc) K (K) β x (AU) y (AU)

1 1 103 2 0.1 22.9 1.78 500 1500
2 100 105 2 0.1 19.6 1.76 1500 1500
3 10 104 2 0.1 21.9 1.78 500 500

other two sources. For simplicity, we only calculate the dust and
gas temperature fields in the plane occupied by all three sources.
The same method of calculating the temperature in the plane can
be used to calculate the temperature at any point above or below
the sources.

The positions (on a 2000 AU × 2000 AU grid), luminosities,
and density profiles of each source are given in Table 3. The
density profiles of the sources are not consistent with each other;
each point in the grid has three density values associated with
it, one for each of the three sources. We choose to calculate the
density in this manner because this is how we expect our dust/
gas temperature algorithm to be used in a large-scale simulation.
For each source in the simulation, the spherical density profile
surrounding that source will be calculated and used to find the
dust temperature and, using the method described in this section,
the gas temperature.

We calculate the dust temperature using the method described
in Section 2.2 and show the results in Figure 16. In order to
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Figure 15. Gas and dust temperature distribution between two sources. Plots show dust (thick line) and gas (thin line) temperature as a function of distance between
two stellar sources. From top to bottom, distance between sources is decreasing, such that the gas density surrounding the two sources agrees with the value, neq quoted
on the left. The source on the left (1) has the parameters L = 1L�, no = 103 cm−3, and α = 2. The right source (2) has L = 102L�, no = 105 cm−3, and α = 2.
The three horizontal plots for the different values of neq show the same data from different perspectives. On the longer plot on the left we use a linear scale from the
perspective of source 1. The two smaller plots on the right use a logarithmic scale, from the perspective of source 1 (middle) and source 2 (right). This is done to show
structure close to the individual sources.

Figure 16. Surface plots of dust temperature (K). Sources are labeled according
to the parameters listed in Table 3.

determine the gas temperature, we first calculate the density (ρ)
and column density (Ncol) at each point on the grid due to all
three sources; every point on the grid has three possible values
of ρ and Ncol. The values of density are calculated from the three
different input density profiles. Ncol is calculated by integrating
the three different density profiles from the point of interest
radially away from the source to the edge (the edge is defined in
the next paragraph). Then, at each point we choose the source
which gives the highest value of Ncol at that point and use that
source to calculate Ncol, ρ, and the gas temperature for that
specific point on the grid. We choose the highest column density
because that value is most likely to represent the column density
at that point on the grid. The lower values of column density are
likely to come from calculating the column density from the tail
of the density profile of another, more distant source. Figure 17
demonstrates visually the method that we use to select density
and column density and then calculate the gas temperature. This
figure shows that near source 1 (x = 500), the density calculation
is dominated by the profile of source 2, until the region very close
to source 1 is considered.

As mentioned before, we calculate Ncol by integrating from
the point of interest to the “edge” in the direction radially
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Figure 17. Horizontal cut through the space shown in Figure 16 along y = 1500 AU. The thin solid and dotted lines correspond to the two methods used to calculate
the gas temperature; dotted lines represent the LSM and solid lines represent the ESM. The top plot shows which source was used to calculate the density and column
density at each point, as seen in the two plots below it. The dust temperature was calculated using the method in Section 2.2. Using the density, column density, and
dust temperature, the gas temperature is calculated and plotted in the bottom plot.

away from the source. We tested two methods of defining
the “edge.” Our first method, the “Length of Square Method
(LSM),” integrates from the point of interest to 2000 AU from
each source (Figures 18 and 19). The value of 2000 AU was
chosen arbitrarily to equal the length of the side of the square
in which we placed our sources. Our second method, the “Edge
of Square Method (ESM),” integrates from the point of interest
to the edge of the 2000 AU × 2000 AU grid (Figures 18 and
20). Using this method, the integration length depends on the
direction of integration.

In both cases, we find that the gas and dust temperature
become equal to one another in regions of high density close to
a luminosity source as seen in Figure 18 at T = 100 K. In these
high density regions, the dust and gas temperature fields are
coupled through collisions. As the density decreases, the gas
temperature drops rapidly, compared to the dust temperature,
due to the ability of the gas to cool through molecular transitions.
Another interesting feature of these plots is the visibility of
source 1, the dimmest source in the region, even though it is
close to source 2, the brightest source in the region.

Two differences in the gas temperature between the two
methods of calculating Ncol are evident in Figure 18. The first is
the square shape of the contours near the edges when using the
ESM. This is an artifact of a square grid. The second difference
is the increasing discrepancy between the two methods at large
distances from the sources (or at locations where the density
is low). This difference is due to the different methods of

Figure 18. Contour plot of dust and gas temperature fields using the LSM and
the ESM. Sources are labeled according to the parameters listed in Table 3. Inset
box shows detail of region near source 1. As discussed in Section 3, the gas
temperature values within 100 AU of each source may not be correct.

(A color version of this figure is available in the online journal.)
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Figure 19. Surface plots of gas temperature (K) using the LSM. The gas
temperature values within 100 AU of each source may not be correct as discussed
in Section 3.

Figure 20. Similar to Figure 19 except for the ESM.

calculating the column density, which depends on the local
density. At positions near the edge of box and also far away
from a source, the calculation of the column density will be
the most different between the two methods. This is because
the LSM will integrate the density to 2000 AU in order to
determine the column density, but the ESM will only integrate
to the edge of the square which can be as little as 10 AU. This
leads to gas temperatures that are most different near the edge,
i.e., the gas temperature calculated with the LSM is greater than
the gas temperature determined using ESM. Throughout the rest
of this paper, we use the LSM to calculate the gas temperature.
However, it is important to remember that both of these methods
only provide an approximation of the gas temperature and are
used because they are quick and easy to calculate.

In Figure 21, we compare the gas and dust temperatures far
from the sources when we remove two of the three sources,
leaving only source 2. The similarity of the dust and gas

Figure 21. Contour plots of dust and gas temperature fields with three sources
(thick lines) and one source (thin lines). Contours of Td (K) are shown as dashed
lines, while contours of gas temperature (K) are shown as solid lines.

temperature contours illustrates the difficulty in determining
the number of sources responsible for heating the gas and
dust and highlights the need for adequate spatial resolution in
observations.

In Figure 22, we have zoomed out of the region of interest.
Note that the dust temperature steadily decreases as the distance
from the central three sources increases. Yet, the gas temperature
slowly begins to rise, because of the decreased effectiveness of
CO cooling at low densities.

5. CONCLUSION

We have presented a method for calculating the dust and gas
temperature fields between stellar sources. The analytic method
that we investigated for calculating the dust temperature was
not accurate enough. Instead, our chosen method of calculating
the dust temperature uses a simple radiative transfer code which
we use to create a look-up table. Once we have derived the
dust temperature, we are able to calculate the gas temperature
by balancing various energy processes. We include dust–gas
collisional heating, molecular cooling, and cosmic-ray heating.
When we have balanced the energies, we are able to derive the
gas temperature.

We plan to use the method described in this paper to
model a region of clustered star formation with the three-
dimensional hydrodynamics code discussed in Martel et al.
(2006). Klessen et al. (1998) simulate a low density region
and assume that the gas is isothermal. At higher densities,
Krumholz et al. (2007) assume that the dust and gas temperature
fields are coupled. In order to model regions of intermediate
densities, neither approach is valid. In Figure 23, we show the
temperature difference between the gas and dust temperatures
as a function of the density and dust temperature for the
sources discussed in Section 4.2, excluding regions within
100 AU. The branches extending to the right in this figure
show the behavior of the temperature and density close to
the two brightest sources in the region, Sources 2 and 3. We
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Figure 22. Surface plots of dust and gas temperature fields. The left plot shows dust temperature (K). The right plot shows gas temperature (K). Area sampled is
50,000 × 50,000 AU. The LSM is used here.

Figure 23. Difference in dust and gas temperature fields plotted for the region
shown in Figures 16–19, excluding the volume within 100 AU of each source.
The top plot shows temperature difference as a function of dust temperature.
The bottom plot shows temperature difference as a function of density.

find that the dust and gas temperature fields are nearly equal
at very high densities (n > 107 cm−3). However, at n ∼
105 cm−3 the difference between the dust and gas temperature
fields is >20 K with a considerable spread. (The previous two
statements are only valid for the gas and dust temperatures
around low luminosity protostars since UV heating will become
important for the gas around high luminosity protostars.) The
spread shows that the gas temperature is not only determined
by the local density, but also by other factors such as nearby
stellar sources and the surrounding density field. Therefore,
in the intermediate density regime we show in the figure, a
formulaic method of calculating the dust and gas temperature
fields is inappropriate. Our method of calculating the gas and
dust temperature distribution in a field of young stars will enable

us and others to more accurately model clustered star formation
in future simulations.

A.U. would like to thank the NASA GSRP for providing
support and Chad Young and Jeong-Eun Lee for help with
DUSTY and the gas energetics code. N.E. would like to thank the
NSF for grants AST-0307250 and AST-0607793. This work was
partially supported by a grant from The Research Corporation
(SDD).

REFERENCES

Bate, M. R., Bonnell, I. A., & Bromm, V. 2003, MNRAS, 339, 577
Doty, S. D., & Neufeld, D. A. 1997, ApJ, 489, 122
Flower, D. R., & Launay, J. M. 1985, MNRAS, 214, 271
Goldsmith, P. F. 2001, ApJ, 557, 736
Hildebrand, R. H. 1983, QJRAS, 24, 267
Hollenbach, D., & McKee, C. F. 1989, ApJ, 342, 306
Klessen, R. S., Burkert, A., & Bate, M. R. 1998, ApJ, 501, L205
Krumholz, M. R., Klein, R. I., & McKee, C. F. 2007, ApJ, 656, 959
Lada, C. J., & Lada, E. A. 2003, ARA&A, 41, 57
Lee, J.-E., Bergin, E. A., & Evans, N. J., II. 2004, ApJ, 617, 360
Makinen, P., Harvey, P. M., Wilking, B. A., & Evans, N. J., II. 1985, ApJ, 299,

341
Martel, H., Evans, N. J. II, & Shapiro, P. R. 2006, ApJS, 163, 122
Mueller, K. E., Shirley, Y. L., Evans, N. J. II, & Jacobson, H. R. 2002, ApJS,

143, 469
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