
 

 

 

 

 

 

 

 

 

Copyright 

by 

Oscar Daniel Galvis Arce 

2017 

 

 



The Thesis Committee for Oscar Daniel Galvis Arce 
Certifies that this is the approved version of the following thesis: 

 

 

FRAMEWORK TO ESTIMATE THE BENEFIT-COST RATIO OF 

PAVEMENT SKID IMPROVEMENTS AT THE NETWORK LEVEL 

 

 

 

 

 

 

 

 

APPROVED BY 

SUPERVISING COMMITTEE: 

 

 

 
Zhanmin Zhang 

Michael R. Murphy 

 

  

Supervisor: 



FRAMEWORK TO ESTIMATE THE BENEFIT-COST RATIO OF 

PAVEMENT SKID IMPROVEMENTS AT THE NETWORK LEVEL 

 

 

by 

Oscar Daniel Galvis Arce, B.Sc. 

 

 

Thesis 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

MASTER OF SCIENCE IN ENGINEERING 

 

 

The University of Texas at Austin 

May 2017 



 Dedication 

 

To God, my parents, and my wife. 

 

 



 v 

Acknowledgements 

I would like to thank Dr. Zhanmin Zhang for all his support during these 

academic years. His guidance and counsel helped me to reach this goal in my life. 

Furthermore, his suggestions on this thesis were valuable for my professional growth. 

I would also like to thank Dr. Michael Murphy for his support. His feedback on 

this document has been beneficial for my learning process. Likewise, my experience 

working with him advanced my professional development. My sincere appreciation goes 

to Dr. Hui Wu for her insights in my research, and her help obtaining the data for the case 

study. Similarly, I thank Caitlan Zilligen for her valuable comments while writing the 

document.  

I would like to thank my parents Edgar Galvis and Patricia Arce for their support 

and motivation to pursue this degree. I would like to thank my wife, Marcela Guilombo, 

which is always there for me. Finally, I would like to thank God who made all things 

possible for me.  

 

 

 



 vi 

Abstract 

 

FRAMEWORK TO ESTIMATE THE BENEFIT-COST RATIO OF 

PAVEMENT SKID IMPROVEMENTS AT THE NETWORK LEVEL 

 

Oscar Daniel Galvis Arce, MSE 

The University of Texas at Austin, 2017 

 

Supervisor: Zhanmin Zhang 

 

Research has proven that low values of pavement skid increase crash risk. 

Minimum skid thresholds have been established in order to screen projects for further 

testing and improvements. Skid resistance values are used in addition to crash data, 

pavement condition data, and roadway features to select and prioritize skid improvement 

projects. Furthermore, skid resistance performance models have been developed in order 

to capture the skid deterioration over time. However, the aforementioned studies did not 

quantify the economic impact of skid improvements over a time period for a network. 

This thesis fills this information gap, by providing a framework that quantifies the 

Benefit-Cost Ratio (BCR) of skid resistance improvements at the network level. A skid 

deterioration model is developed using the Markov Chain process, in order to account for 

the base case scenario when no treatment is applied. Benefits are quantified as the 

reduction of expected crashes compared to the base case scenario, using the concept of 

Crash Rate Ratio (CRR). Costs are quantified as the costs of pavement resurface 

treatments that improve skid. A sample of highway sections that comprise 564 lane-miles 
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in Texas is evaluated to demonstrate the applicability of the proposed methodology. As a 

result, a Benefit-Cost Ratio curve was generated for different minimum skid thresholds. 
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Chapter 1: Introduction 

1.1 INTRODUCTION TO THE PROBLEM 

Research has proven that low values of pavement skid increase crash risk. Since 

1970s, different researchers have analyzed the effect of low pavement skid in crashes 

(specially wet crashes) in Europe and the United States. Multiple DOTs have established 

minimum skid thresholds as guidelines, in order to screen projects for further testing and 

improvements. Skid resistance values are used in addition to crash data, pavement 

condition data, and roadway features to select and prioritize skid improvement projects.  

Likewise, skid resistance performance models have been developed in order to 

capture the skid deterioration over time. These models analyze the long-term 

performance of skid and, some of them, account for the stochastic nature of the 

deterioration process. However, the aforementioned studies have not been used to 

quantify the economic impact of skid improvements over a time period for a network. 

This thesis fills this information gap by providing a framework that quantifies the 

Benefit-Cost Ratio (BCR) of skid resistance improvements at the network level. In order 

to predict the condition of the network if no treatment is applied, a skid deterioration 

model is developed using a finite-state time-discrete time-homogenous Markov Chain 

process. Benefits are quantified as the reduction of expected crashes compared to the base 

case scenario using the concept of Crash Rate Ratio (CRR). Costs are quantified as the 

cost of pavement resurface treatments that improves skid. A sample of highway sections 

that comprise 564 lane-miles in Texas is evaluated to demonstrate the applicability of the 

proposed methodology. As a result, a Benefit-Cost Ratio curve was generated for 

different minimum skid thresholds.  
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 1.2 RESEARCH MOTIVATION 

There is a significant interest in evaluating and understanding roadway 

conditions, including pavement skid resistance at crash locations, to help develop 

strategies to reduce crashes. Multiple studies have recommended thresholds for minimum 

skid resistance, but few have quantified the relationship between crashes and skid values. 

Likewise, there is a need to link skid deterioration models, skid conditions, and crashes in 

order to estimate the potential economic benefits of skid improvements for a network.  

1.3 RESEARCH OBJECTIVES 

The purpose of this thesis is to provide a framework to estimate, at the network 

level, the expected Benefit-Cost Ratio of skid improvement. In order to achieve this, four 

major objectives have been defined: 

1. Develop a reliable skid resistance deterioration model over time for 

pavements with asphalt concrete or other asphaltic resurfacing treatments 

such as seal coats or micro-surfacing;  

2. Incorporate, in the deterioration model, the maintenance impact of 

different asphaltic pavement resurfacing treatments and their costs at the 

network-level; 

3. Estimate the expected reduction in the number of crashes due to skid 

improvements (maintenance) at the network level; and  

4. Estimate the Benefit-Cost Ratio of these skid improvements. 

1.4 RESEARCH SCOPE 

The proposed framework focuses on the roadway network analysis; thus, the 

results should not be used to analyze the benefits of skid improvements at the project-

level. Likewise, the framework does not include project selection, treatment selection, or 
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scheduling optimization. The proposed framework is developed for flexible pavements 

only. Moreover,  the skid value is considered as the only criteria to decide whether or not 

to apply a pavement resurface treatment, while in the real decision processes, a 

combination of  factors may be considered. Finally, the proposed framework is developed 

over a four-year horizon and the analysis perform is applied both for dry and wet weather 

crashes.  

1.5 RESEARCH OUTLINE 

The following is the research outline of this thesis: 

Chapter 2 is the literature review of previous studies related to skid deterioration 

models, the relationship between crashes and skid, and economic analyses done for skid 

improvements. Chapter 3 presents an overview of the framework proposed in this thesis. 

Chapter 4 describes the Markov Chain principles and how this stochastic model can be 

applied for infrastructure deterioration. Chapter 5 describes the development of the 

Markov Chain (MC) deterioration model for pavement skid deterioration. Chapter 6 

describes the estimation of maintenance costs for different skid thresholds. Chapter 7 

describes the estimation of the economic benefits due to expected crashes reduction. 

Chapter 8 describes the estimation of the Benefit-Cost Ratio and subsequent analyses of 

the results. Chapter 9 presents the application of the framework in a case study. The 

analysis is done to a portion of the Austin District network, in Texas. Finally, Chapter 10 

presents the major findings and conclusions of the thesis.  
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Chapter 2: Literature Review 

2.1 RELATION BETWEEN CRASHES AND SKID RESISTANCE 

Globally, the United Nations, with the leadership of the World Health 

Organization (WHO), considers road safety as a public health challenge worldwide. 

WHO launched the Decade for Road Safety Action in 2010, an initiative aimed to reduce 

the expected number of fatalities by 50 percent in 2020 (World Health Organization, 

2016). In the United States, 35,092 people died and 2.44 million people were injured as a 

consequence of crashes in 2015. The percentage increase of fatalities between 2014 and 

2015 was 7.2 percent, which is the second largest after 1965 to 1966 (National Highway 

Traffic Safety Administration, 2016). In the case of Texas, the number of fatalities in 

crashes was 3,531 in 2015, which represents an estimated economic loss of almost $37.7 

billion (Texas Department of Transportation, 2016).  

Multiple factors are typically involved in traffic accidents, and pavement friction 

can be one of these contributing factors (Pratt, et al., 2014). The theory of the tire-

pavement interaction can be explained as a supply-demand problem, defined as the 

Margin of Safety. The Margin of Safety is the difference between the demand of friction 

and the supply of friction. The factors that contribute to the demand of friction are the 

precipitation, traffic volume, amount of trucks, posted speed, geometrics, and frequency 

of vehicle stops. The factors that contribute to the supply of friction are the cross slope, 

pavement design life, and macro texture and micro texture of the aggregates (Texas 

Department of Transportation, 2006). When the margin of safety is decreased, the risk of 

crashes increases (Pratt, et al., 2014). 

Worldwide, there have been multiple studies assessing whether there is a 

relationship between pavement friction and crashes. However, there are also multiple 
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methods to measure the pavement friction, which result in research analyses that are 

difficult to compare to each other (Fulop, Bogardi, Gulyas, & Csicsely-Tarpay, 2000) 

(Bustos, Echaveguren, Solminihac, & Caroca, 2006). In general, European countries 

measure the skid using the sideways force coefficient, while in the U.S., the skid is 

measured using the tractive force coefficient. The sideways force coefficient is measured 

with the Side-force Coefficient Routine Investigation Machine (SCRIM) test, while the 

tractive force coefficient is measured following the ASTM E274 skid test (Corsello, 

1993). The present study focuses on the tractive force coefficient as this method is 

commonly applied in the U.S.  

The  ASTM E274-06 “Standard Test Method for Skid Resistance of Paved 

Surface using a Full-Scale Tire” estimates an indicator called skid number (SN), which is 

an indirect estimation of the pavement friction. Theoretically, the SN can attain a value 

that ranges from 1 to 100. Multiple researchers have studied the relationship between skid 

resistance and crashes and have pointed out that skid resistance is a significant factor in 

roadway crashes. Milton et al. (2008) found that increasing skid resistance resulted in a 

decrease in the likelihood of possible injury and an increase in the probability of property 

damage crashes; in other words, increasing skid causes crash severity to reduce. 

Moreover, Kuttesh (2004) indicated that the risk of wet accident crashes increased as the 

skid number decreased, based on a dataset from the Virginia Wet Accident Reduction 

Program. In addition, Kuttesch recommended a SN(64)S (that is, a skid number measured 

at 64 kilometers per hour (40 miles per hour) with a smooth tire) between 25 and 30 for 

all sites, and a SN(64)S  of 40 for interstate highways. Similarly, Pardillo and Pina (2009) 

analyzed skid values from 1,750 kilometers (1,090 miles) of two-lane rural roads in Spain 

for a period of ten years. The researchers performed a before-after study on sections that 

improved the SCRIM value from below 50 to above 60, and found that skid improvement 
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yielded significant reduction in wet-pavement crash rates averaging more than 68 

percent. In recent years, the Federal Highway Administration (2014) compiled various 

instances where skid improvements caused crash reductions over time. These researchers 

suggested the importance of maintaining adequate levels of pavement friction to reduce 

wet weather crash risk.  

2.2 METHOD TO MEASURE SKID NUMBER 

The method to measure the skid number is specified by the ASTM E 274-06 

“Standard Test Method for Skid Resistance of Paved Surface Using a Full-Scale Tire” 

(ASTM International, 2015). There are two types of tires that can be used in the test, 

which are specified by the ASTM E501 (for the ribbed tire) and ASTM E524 (for the 

smooth tire). The test uses a locked-wheel skid trailer at a constant speed of 40 mph, 45 

mph, or 50 mph.  It is important to consider both the type of tire and the test speed when 

comparing skid results from different studies based on the ASTM test method because 1) 

skid numbers typically decrease with increasing speed, all other factors remaining 

constant; and 2) smooth tires result in lower skid numbers than ribbed tires, all other 

factors remaining constant (ASTM International, 2015). Though there are studies that 

considered the variation in SN due to different test parameters such as the ribbed and 

smooth tire (Choubane, Holzschuher, & Gokhale, 2006), as well as different speeds 

(Henry & Wambold, 1992), the conversion is not easy to establish nor suggested (ASTM 

International, 2015). These differences can lead to different thresholds, policies, and 

deterioration models.  

During the locked wheel trailer skid test, water is sprayed in front of the test tire 

to produce a water film thickness. After the application of the water film (0.5 seconds 

later), the test wheel brake is applied until the wheel is locked completely. The wheel 
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remains locked during a defined interval (between 1.0 s and 3.0 s) and then is released. 

The ribbed tire is relatively insensitive to the water film thickness, while the smooth tire 

is more sensitive to water film thickness (Choubane, Holzschuher, & Gokhale, 2006). 

The values that are obtained during testing include the test speed, the tractive force ‘F’ 

between the tire and the pavement surface, and meta-data about the test equipment, which 

is recorded to evaluate and identify possible equipment issues if questions arise about test 

values (ASTM International, 2015). TxDOT uses a one-channel skid trailer system which 

requires assuming that W, the dynamic vertical load on test wheel, is equal to 1,085 +/- 

15 lbs during skid testing (Zimmer & Fernando, 2013). The SN is estimated according to 

the following equation:  

 

𝑆𝑆𝑆𝑆(𝑉𝑉)𝑇𝑇 = 100 ∗ �
𝐹𝐹
𝑊𝑊
� 

 
(1) 

where,  
 𝑆𝑆𝑆𝑆 = Skid Number, which is a function of speed and the type of tire. 

𝑉𝑉 = Speed in which the test is conducted (in miles per hour or kilometer 

per hour). 

𝑇𝑇 = Indication of the tire used in this test (ribbed or smooth). 

𝐹𝐹 = Tractive horizontal force applied to the tire (in Pounds or Newton). 

𝑊𝑊 = Vertical load applied to the tire (in Pounds or Newton). 

The SN can be estimated in either International System of Units (SI) or Imperial 

System of Units. By default, the test parameters used for the test are in Imperial units. 

When reporting the values, the test speed in miles per hour is reported after the “SN” (for 

example, SN40 represents the skid number measured at a speed of 40 miles per hour). If 

the test is applied using SI, the speed is within parenthesis (for example, SN(64) 
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represents the skid number measured at a speed of 64 kilometers per hour – 40 miles per 

hour). Likewise, an R after the speed represents a test performed with a ribbed tire, while 

the smooth tire is indicated with an S (for example, SN40R vs SN40S).  

TxDOT conducts skid testing  using a locked-wheel skid trailer, specified by 

ASTM E274 (Texas Department of Transportation, 2008). The test is conducted at a 

speed of 50 mph with an average water film thickness of 0.5 mm (1/50 inch) and a 

smooth tire. TxDOT collects skid resistance data on approximately 50 percent of Texas 

Interstate Highway lane miles and 25 percent of the remaining Texas network lane miles 

annually. Skid data is primarily collected on the main lanes of roadways rather than on 

frontage roads (Long, Wu, Zhang, & Murphy, 2014).  

The ASTM E-274 Standard indicates an estimated standard deviation of 2 SN in 

the skid measured when the test is repeated. Furthermore, it was established that there is 

no significant correlation between the standard deviation and the arithmetic mean set of 

skid test values; that is, the standard deviation does not increase or decrease with the 

mean value of SN (ASTM International, 2015). TxDOT estimated a root mean square 

error of less than +/- 5 SN in their measurements (Texas Department of Transportation, 

2008). For the rest of the document, SN refers to SN at 50 mph and smooth tire, as it is 

applied in Texas, unless indicated otherwise. 

TxDOT uses a one-channel locked wheel system (which measures only the 

dynamic horizontal forces), while in other parts of the U.S. a two-channel locked wheel 

system (which measures both dynamic horizontal forces and vertical loads) is used. 

Zimmer and Fernando (2013) analyzed the difference in skid measurements between 

these two systems, and discussed how the TxDOT skid collection process could be 

improved. The researchers found differences in the measurements, especially in non-

tangent sections. The researchers recommended TxDOT to change the skid trailer fleet 
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from one-channel to two-channel skid trailers, following the trend in other parts of the 

United States. 

2.3 QUANTIFICATION OF IMPACT OF SKID RESISTANCE AND CRASH RISK AT THE 
NETWORK LEVEL 

 The impact of skid resistance on crash rates, at the network level, has been 

explored for the state of Texas. Pratt et al. (2014) developed a framework to assess the 

need for High Friction Surface Treatments (HFST) as a potential option for reducing the 

run-off-road (ROR) crashes on horizontal curves. This study analyzed the impact of skid 

using the concept of margin of safety; that is, the study quantified the difference between 

friction supply and friction demand. The variables included in the analysis were average 

daily traffic, curve radius, deflection angle, tangent speed, average lane width, average 

shoulder width, grade, crash history, super elevation rate, and skid number. The 

researchers developed an Excel-based software to estimate the margin of safety and 

expected crashes based on the aforementioned parameters. The study concluded that skid 

is a relevant factor in the run-off-road crashes for Texas on horizontal curves. 

In 2014, Long et al. conducted a study to establish the maintenance thresholds for 

skid resistance to reduce the potential impact on highway safety due to reduced funding. 

This study developed a quantitative relationship between crash risk and skid resistance 

using the concept of Crash Rate Ratio (CRR). The advantage of the CRR method is that it 

allows analysts to quantify the impact of skid resistance at the network level. 

The CRR is the ratio of the cumulated percentage of crashes and the cumulated 

percentage of total lane-miles below a given skid condition in the network. If crashes are 

independent of the pavement skid, this ratio would have a value varying  above or below 

one. Conversely, if there is a relationship between crashes and skid values, the ratio, 

plotted for a range of skid values, would show a trend of increasing crash risk for 
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decreasing skid values. Furthermore, the ratio provides a quantitative relationship 

between crashes and skid values. The CRR is estimated using Equation 2.  
 

𝐶𝐶𝐶𝐶𝐶𝐶 =  
𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆

𝑃𝑃𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆
 

 
(2) 

where: 

 𝐶𝐶𝐶𝐶𝐶𝐶  =  Crash Rate Ratio.  

𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆  =  Cumulative percentage of total crashes below a specific SN. 

𝑃𝑃𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆  =  Cumulative percentage of total lane-miles at or below a specific 

SN. 

Long et al. (2014) estimated the CRR curves using data from 2008 to 2011 for the 

entire state of Texas. Figure 1 presents the frequencies and cumulated crashes as a 

function of SN. Figure 2 presents the frequencies and cumulated pavement sections in the 

network as a function of SN. As can be seen from the two figures, the cumulative 

frequencies are different with higher frequencies of crashes in low skid sections: this 

means that lower skid sections have a higher cumulative number of crashes.  
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Figure 1: Distribution of Total Crashes as a Function of SN (2008-2011)  

Note: Reprinted from “Quantitative Relationship between Crash Risk and Pavement Skid 

Resistance”, by K. Long et al, 2014. Report FHWA/TX-13/06713-1. Copyright by the 

Center for Transportation Research.  
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Figure 2: Distribution of Lane Miles in the Network as a Function of SN (2008-2011)  

Note: Reprinted from “Quantitative Relationship between Crash Risk and Pavement Skid 

Resistance”, by K. Long et al, 2014. Report FHWA/TX-13/06713-1. Copyright by the 

Center for Transportation Research.  

 

As a result of the CRR analysis, it was found that the crash rate risk increases 

significantly when SN declines below SN 28. In addition, Long et al. (2014) quantified 

the relationship between the CRR and the skid resistance in terms of the SN. Figure 3 

presents the estimation of the CRR-SN curves, showing the general trend of increase of 

crash risk for low values of skid. As a result, the skid condition of the network can be 

linked to the expected number of crashes using this relationship.  
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Figure 3: CRR-SN Curve for Statewide Crashes  

Note: Reprinted from “Quantitative Relationship between Crash Risk and Pavement Skid 

Resistance”, by K. Long et al, 2014. Report FHWA/TX-13/06713-1. Copyright by the 

Center for Transportation Research.  

 

The function between CRR and the SN can be expressed as: 

𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑎𝑎 ∗  𝑒𝑒−𝑏𝑏∗ 𝑆𝑆𝑆𝑆50𝑠𝑠 + 𝑐𝑐 (3) 

where: 

𝑎𝑎, 𝑏𝑏, 𝑐𝑐  = Regression coefficients  

𝑒𝑒  = Base of the natural logarithm 

𝑆𝑆𝑆𝑆50𝑠𝑠 = Skid Number tested with smooth tire at 50 mph 

2.4 DEFINITION OF MINIMUM SKID THRESHOLDS 

In recent years, there has been a renewed interest in pavement resurface 

treatments: as part of the Wet Weather Crash Reduction Program, national and state 

agencies are analyzing improving skid as a potential strategy to reduce crashes (Federal 

Highway Administration, 2014). The maintenance thresholds at the network level are 
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established by each state independently, as well as the test parameters (such as test speed 

and units). To give an idea of these differences, Table 1 summarizes the skid thresholds 

established in four states in the U.S. (Federal Highway Administration, 2014b). 

Table 1: Summary of Skid Thresholds Established by California, Florida, Michigan and 
Virginia  

State Skid Threshold 

California 30 (SN40R) 

Florida Posted speed >45 mph = 30 (FN40R); 
Posted speed < 45 mph = 28 (FN40R) 

Michigan 30 (SN40R) 
Virginia 20 (SN40S) 

Note: FN stands for Friction Number, and it is equivalent to “Skid Number”, but it is 

used in Florida as FN for legal reasons (Jackson, 2008).  

In the case of Texas, McCullough and Hankins (1966) analyzed 517 rural sections 

to estimate the relationship between crashes and low skid values. The researchers 

recommended a minimum friction coefficient of 0.31 at a speed of 20 miles per hour, and 

0.24 at a speed of 50 miles per hour as the thresholds for Texas highways. Long et al. 

(2014), based on the quantification of the CRR-SN curves at the network level, proposed 

three thresholds based on these curves: Minimum SN (SN = 14), Vigilant SN (SN = 28) 

and Desirable SN (SN = 73). Below the Minimum SN, the crash rate increases 

significantly. Between the Vigilant and Minimum SN, conducting project-level testing is 

recommended. Between Desirable and Vigilant SN, continued network-level vigilance 

regarding the skid scores is recommended. Finally, the Desirable SN (and above) are 

considered to be the SN values where skid improvements will yield little reduction in 

crash rates (see Figure 3). 
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2.5 SKID DETERIORATION MODELS 

The deterioration of skid resistance is important in order to estimate the condition 

of the network when no pavement resurfacing treatment is applied. This is known as the 

base scenario. The different models that describe the long-term behavior of skid can be 

summarized into two categories: 1) models in which  skid deteriorates for some years 

until it reaches a final, constant value; and 2) models in which  the skid deterioration 

continues without reaching a final, constant value.  

In the first category, the deterioration models are based on the assumption that 

skid resistance drops from an initial value (at the beginning of the pavement life) to a 

final, constant value that is steady over time. The first model was proposed in the 1970s 

and later was refined by Diringer and Barros (1990). The researchers explained that 

pavement aggregates have a polishing state where the skid drops until it reaches an 

equilibrium state. Different modifications to this model have been proposed since then, 

with different formulations for the skid drop, but the principle of a constant final value is 

kept (McDonald, Crowley, & Turochy, 2006). At the beginning of the pavement life, the 

skid resistance decays exponentially, until it reaches a final value. Likewise, skid can 

experience an oscillation around the final value due to seasonal variation. Usually the 

final value is associated with the characteristics of the pavement aggregates, asphalt mix, 

and traffic (Echaveguren, de Solminihac, & Chamorro, 2010). For this reason, existing 

prediction models following this approach use project-level data, such as the aggregate 

characteristics, to estimate the final condition of skid (Awoke, 2011).  

Skid deterioration models in the second category include deterministic and 

stochastic methods. Deterministic models provide an approach for predicting the 

condition of skid based on multiple linear regressions of historical values and other 

parameters (such as traffic and aggregate characteristics). In contrast, stochastic models 



 16 

for skid have used the Markov Chain  and Artificial Intelligence  (Echaveguren, de 

Solminihac, & Chamorro, 2010). Stochastic models have the advantage of greater 

predictive power because the deterioration process is stochastic (Cavalline, Whelan, 

Tempest, Goyal, & Ramsey, 2015).  

Fulop et al. (2000) developed a Markov Chain model in order to predict the future 

friction condition of the network for Hungarian asphalt pavement highways. Based on 

network-level data from 1994 to 1997, a sample of the network without any treatment 

was used to estimate the deterioration from one year to another. The model successfully 

captured the deterioration of the pavement friction for a 4-year time period.  

The Markov Chain processes have advantages when modeling infrastructure 

deterioration. First, Markov Chains models have been used in modeling the deterioration 

of pavements and bridges (Kallen, 2007) (Yang, 2004) (Panthi, 2009) (Cavalline, 

Whelan, Tempest, Goyal, & Ramsey, 2015). Second, Markov Chain models are 

stochastic, and capture the stochastic nature of deterioration of pavements. Third, Markov 

Chains have the advantage of requiring less data than other models because the model 

can be applied with small time series, and it is not difficult to incorporate new data if 

required. However, as a limitation, Markov Chains do not take into account explanatory 

variables within the deterioration model; the only variable considered is time (Cavalline, 

Whelan, Tempest, Goyal, & Ramsey, 2015). The current framework uses the Markov 

Chain process to model the skid deterioration.   

Smith et al. (2016) used Utah data collected from 2005 – 2013 to evaluate the 

differences in deterioration trends of skid over time for different factors. An analysis of 

variance was performed to compare the effects of pavement age, month of testing, 

administrative region, AADT, and percentage of trucks on skid number deterioration 

rates. The researchers found that the deterioration variability of some pavements was 
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lower than others, but it could not be concluded that different pavements had different 

skid deterioration rates. 

In summary, different skid deterioration models have been developed in the 

previous decades. The main difference among them is the assumption of whether the skid 

reaches a final constant value or not. Some models use project-level data while others use 

network-level data. It is important to note that these models have not been used to link 

the impacts on road safety and the skid condition in a network.  

2.6 PREVIOUS BENEFIT-COST RATIO ANALYSES OF SKID IMPROVEMENTS 

There are different methods to estimate the economic benefits of a project, with 

the Benefit-Cost Ratio (BCR) being one of them. The BCR estimates the ratio between 

the value of benefits and the investment costs. Over the years, the BCR has been used to 

compare the impact of transportation projects (Transportation Economics Committee of 

TRB, 2016), and from 2010 to 2016, some studies have quantified the BCR of skid 

improvements, though with some limitations.   

The Federal Highway Administration (2014) compiled analyses of pavement 

resurfacing treatments (applied to increase skid) at specific locations in different states. 

The comparisons of the reduction of crashes were performed on a case-by-case basis. The 

value of the benefit were calculated as the economic savings due to crash reductions, 

while the cost was equal to the total costs of the application of High Friction Surface 

Treatments (HFST). South Carolina DOT obtained BCR values ranging from 24 to 1 on 

curved roadway sections, while the Kentucky Transportation Cabinet applied the 

treatment in 26 curved roadway sections and found BCR values ranging from 6.2 to 1.9.  

Brimley and Carlson (2012) analyzed the BCR of skid improvements for rural 

roads in Texas. This analysis included a sensitivity analysis of the potential crash 
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reductions. The BCR value ranged from 60 to 20, but these values may have limited 

applicability since they were determined based on assumed crash reductions and life 

cycle duration of the skid treatments.  

Finally, Long et al. (2014) performed an analysis of the Benefit-Cost ratio of skid 

improvements from an initial SN value of 14, 28, or 74 to a value of SN = 75. The results 

were a BCR of 39.6, 20.0, and 0.99 respectively. The study suggested that improvements 

of sections with low SN will yield a higher BCR compared to sections with higher SN. 

Likewise, the study suggested that improvements of sections with a SN value of 74 or 

above will have negligible impact on road safety. The study, however, had limitations 

because the life cycle of the skid treatment was assumed, and the skid deterioration over 

time (for the sections that are not treated) was not considered.  

2.7 SUMMARY OF LITERATURE REVIEW 

In summary, there is a proven relationship between crashes and low pavement 

friction. This relationship can be explained by the margin of safety factor, which is the 

difference between friction demand (given by the driving characteristics) and friction 

supply (given by the characteristics of the road). The expected crashes increase when the 

margin of safety decreases.  

There are different skid thresholds that has been established based on the margin 

of safety and crash criteria. Likewise, there are different methods to measure skid; in the 

case of Texas, the test is conducted according to the ASTM E274 test. Historical 

information has been used by Long et al. (2014) to quantify the relationship of skid 

values and crash risks for Texas highways, using the concept of Crash Rate Ratio (CRR).  

Different skid deterioration models have been developed in the last two decades, 

as well as Benefit-Cost Ratio analyses for skid improvements. However, the link between 
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the skid deterioration models and the quantification of crash risks has not been explored. 

Moreover, there is no quantification of the economic benefits of improving skid at the 

network-level. This thesis fills this research gap by providing a framework to: 1) model 

skid deterioration using the Markov Chain process; 2) quantify the maintenance costs at 

the network-level for a maintenance threshold; 3) quantify the expected benefits of skid 

improvements at the network-level for a maintenance threshold; and 4) quantify the 

Benefit-Cost Ratio for different skid maintenance thresholds.  
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Chapter 3: Proposed Framework 

The objective of this thesis is to develop a framework to estimate the Benefit-Cost 

Ratio of skid improvements in a network. The proposed framework is divided in three 

modules. The first module is the modeling of the skid resistance deterioration. In this 

module, historical skid data is used to predict future conditions using a Markov Chain 

model. The second module is the estimation of the maintenance cost. In this module, the 

different treatment types are analyzed in order to quantify the maintenance cost required 

for a specific skid threshold. The third module consists of the estimation of crash 

reduction by linking the skid improvements with expected crashes. Finally, the 

maintenance costs and crash reduction benefits are linked together in the Benefit-Cost 

Ratio analysis. The proposed framework is summarized in Figure 4. 
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Figure 4: Framework for Developing the Benefit-Cost Ratio of Skid Improvements 

The following is a summary of the chapters that discuss the modules that 

comprise  this framework. Chapter 4 describes the Markov Chain principles and how this 

stochastic model can be applied for infrastructure deterioration. This chapter includes the 

different types of existing Markov Chains, the definition of a Markov Chain process, the 

estimation of the parameters of the model, and the estimation of future conditions of the 

system.  

Chapter 5 describes the first module, that is, the development of the Markov 

Chain model. This chapter includes the data requirements for developing the model, the 

definition of the condition states, the estimation of the parameters for the Markov Chain 
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process, the process to minimize the error in the model, and the statistical validation of 

the deterioration model. 

Chapter 6 describes the second module, that is, the estimation of the maintenance 

costs. This chapter includes the definition of the maintenance policy and skid thresholds, 

the unit cost of the treatments, and the estimation of maintenance cost for different 

thresholds. 

Chapter 7 describes the third module, that is, the estimation of crash reduction 

benefits. This chapter includes the estimation of expected crashes in the network, the  

expected reduction of crashes, and the economic estimation of this reduction.  

Chapter 8 describes the development of the Benefit-Cost Ratio. Finally, Chapter 9 

presents a case study using a portion of the skid database of the Austin District and 

Chapter 10 presents the major findings and conclusions of this thesis.  
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Chapter 4: Markov Chain Principles 

Chapter 4 describes the Markov Chain principles and how this stochastic model 

can be applied for infrastructure deterioration. The chapter begins with the different types 

of existing Markov Chains and their advantages (4.1 – 4.2), and continues with the 

definition of a Markov Chain process (4.3), the estimation of the parameters of the model 

(4.4.), and the estimation of future skid condition of the network (4.5-4.6). The chapter 

finishes with recommendations for developing the deterioration model (4.7) and a 

summary (4.8). 

4.1 TYPES OF MARKOV CHAINS 

There are different types of Markov Chains (MC), which are categorized by how 

the MC incorporates the time (discrete or continuous), the space (finite or infinite), and 

the behavior of the process over time (homogenous or heterogeneous) (Kallen, 2007) 

(Grinstead & Sell, 2012).  

The difference between time-discrete and time-continuous MC is the amount of 

time elapsed between transitions. Time-discrete MC processes consist of the evolution of 

the condition state in the system over a set of discrete time-steps (or discrete-event steps). 

An example of a time-discrete MC is the evolution of pavement condition in the network 

from year to year. In contrast, time-continuous MC processes consist of the evolution of 

the condition state in the system over a set of continuous time. A theoretical example is 

the evolution of pavement condition measured instantaneously during a period of time.   

The description of the space also creates two categories of MC. A finite-space 

MC process occurs when the number of possible condition states to which the system can 

transition are finite. For example, the SN score is an integer number within the range 

[1,100], which is a finite range. Infinite-space MC processes consist of  an infinite 
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number of state spaces (countable and/or non-countable) which could describe the system 

(Serfozo, 2009).  

The changes in the transitions over time differentiates the time-homogenous MC 

from time-heterogeneous MC. Time-homogenous MC consists of processes where the 

probability of transition among condition states is constant over time; that is, the rate of 

‘change’ in the system is constant over time. In contrast, time-heterogeneous MC 

presents different transition probabilities among condition states over time; that is, the 

rate of ‘change’ in the system could increase, decrease, or varies over time (Serfozo, 

2009). For example, infrastructure deterioration can be considered as a time-

heterogeneous process because, in general, the deterioration rates are a function of the 

infrastructure age (Cavalline, Whelan, Tempest, Goyal, & Ramsey, 2015).  

In general, infrastructure deterioration has been modeled as a finite-state time-

discrete Markov chain process (Cavalline, Whelan, Tempest, Goyal, & Ramsey, 2015) 

(Fulop, Bogardi, Gulyas, & Csicsely-Tarpay, 2000) (Kallen, 2007) (Ortiz-Garcia, 

Costello, & Snaith, 2005) (Panthi, 2009) (Yang, 2004). The main reason is related to the 

condition data associated with the infrastructure. The measurements of the infrastructure 

condition (for example, indicators of pavement condition or bridge ratings) use a finite 

range that is usually countable. In the case of the SN, the score is an integer that ranges 

[1,100], being both countable and finite. Likewise, the data collection process results in a 

time-discrete MC. For example, the SN is not collected continuously but annually, and in 

some cases, the interval is bi-annual or longer (Wu, Zhang, Long, & Murphy, 2014). 

Specifically for pavement, it has been observed that deterioration models can be time-

homogenous up to six years; for longer periods of time, the process becomes time-

heterogeneous (Cavalline, Whelan, Tempest, Goyal, & Ramsey, 2015). Because the 
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current scope of the framework is over a 4-year period, the finite-state, time-discrete, and 

time-homogenous approach is selected. 

4.2 ADVANTAGES AND DISADVANTAGES OF FINITE-SPACE, TIME-DISCRETE, AND TIME-
HOMOGENOUS MARKOV CHAIN MODELS 

The Markov Chain process has some advantages and disadvantages when used for 

modeling pavement or skid deterioration (Cavalline, Whelan, Tempest, Goyal, & 

Ramsey, 2015) (Echaveguren, de Solminihac, & Chamorro, 2010) (Fulop, Bogardi, 

Gulyas, & Csicsely-Tarpay, 2000) (Kallen, 2007) (Ortiz-Garcia, Costello, & Snaith, 

2005) (Panthi, 2009) (Yang, 2004). The advantages of the Markov Chain processes are 

that: 

• MC accounts for the uncertainty of the deterioration process because it is a 

stochastic model, representing an advantage over deterministic models. 

• MC can incorporate new data easily. 

• MC can model the performance trend even when the deterioration may be 

a non-linear process. 

• MC depends only on the passage of time, minimizing the amount of data 

required for explanatory variables, which could be cumbersome for large 

networks. 

• MC models have been used effectively to predict the skid condition of a 

network. 

• MC predictions depend only in the current state of the system. This can be 

appropriate for skid modeling when the historical databases do not contain 

information about the age of the pavement or the date of last treatment 

applied. 
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The Markov chain process also has some disadvantages that are inherent to the 

method itself. Some of the potential advantages can be seen as limitations, too. The 

disadvantages of the Markov chain process are that: 

• MC models depend only on the passage of time, while other explanatory 

variables of the deterioration (for example, AADT per lane, or climate) are 

not considered. Therefore, the Markov Chain does not provide guidance 

regarding the impacts of other factors. 

• Time-homogenous MC models do not take into account the impact of the 

actual age of the pavement in the deterioration process.  

• MC that have finite and countable states simplify the latent process of 

describing skid deterioration. Condition states are considered finite and 

countable when, in fact, the deterioration process is a continuous process. 

The same challenge is present in the definition of the SN value, which is 

discrete. 

• MC do not consider the heterogeneity of the data collected; that is, the 

unobserved factors such as quality and repeatability of the measurements. 

In the case of the SN, the network-level test is collected for ½ miles on a 

75 feet segment; this test is stored in PMIS as representative for the entire 

½ mile section, though in fact, the SN value may vary due to flushing, 

raveling, patching changes in traffic and other factors. 

Some solutions have been proposed to overcome these limitations. First, different 

deterioration models can be developed for different homogenous groups that take into 

account the explanatory variables. For example, the model can be developed for different 

traffic groups: low traffic, medium traffic, and high traffic. The same principle is applied 

in order to solve the non-time-homogenous behavior: the model can be developed for 
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different groups with similar ages. As was previously stated, it has been established that, 

in general, the Markov chain process is time-homogenous for a period of 6 years for 

pavements; for that reason, the time-homogenous approach is used in this framework. 

Other approaches include the application of Poisson regressions to estimate the 

parameters or the development of ordered probit models (Cavalline, Whelan, Tempest, 

Goyal, & Ramsey, 2015), but these methodologies are out of the scope of the present 

framework.  

4.3 DEFINITION OF A FINITE-SPACE, TIME-DISCRETE AND TIME-HOMOGENOUS 
MARKOV CHAIN 

In order to develop the deterioration model using the Markov Chain process, it is 

necessary to define three components: condition states, transition, and time step. The 

condition states are discrete groups that describe the condition, and are used to estimate 

the stochastic transition of the deterioration (Grinstead & Sell, 2012). The condition 

states are a set of finite conditions defined as: S = {s1, s2,… , sr}.  

A transition is defined as the probability of changing from one state si to sj over 

time, and it is denoted as pij. Likewise, the probability of remaining in the same state is 

also a transition, and in this case represents the probability of not changing its state 

condition over time; it is denoted as pii.  

The time between transitions is denoted as the time grid or time step. For discrete-

time Markov processes, the time grid is discrete and, most of the times, equidistant; that 

is, the time grid has the same separation (Kallen, 2007). The time is represented as an 

ordered set τ = {t0, t1, …, tn} where t0< t1< …< tn. 

The Markov property condition states that the transition probability from one state 

to another depends only on the current condition and is independent of the previous 

condition states. Let Xt represent the stochastic process associated with the Markov chain, 
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where {X(t) | t ∈ 𝜏𝜏}, and let k represent the time t, where 0 < k < n . Formally, the Markov 

property condition can be stated as follows (Kallen, 2007): 
 

Pr{𝑋𝑋𝑘𝑘+1 = 𝑥𝑥𝑘𝑘+1|𝑋𝑋𝑘𝑘 = 𝑥𝑥𝑘𝑘 ,𝑋𝑋𝑘𝑘−1 = 𝑥𝑥𝑘𝑘−1, … ,𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋0 = 𝑥𝑥0} 
= Pr{𝑋𝑋𝑘𝑘+1 = 𝑥𝑥𝑘𝑘+1|𝑋𝑋𝑘𝑘 = 𝑥𝑥𝑘𝑘} (4) 

Where:  

Pr{𝑋𝑋𝑘𝑘+1 = 𝑥𝑥𝑘𝑘+1|𝑋𝑋𝑘𝑘 = 𝑥𝑥𝑘𝑘 ,𝑋𝑋𝑘𝑘−1 = 𝑥𝑥𝑘𝑘−1, … ,𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋0 = 𝑥𝑥0} = Probabil-

ity of reaching a condition state in the next step, given all the 

previous condition states of the system. 

Pr{𝑋𝑋𝑘𝑘+1 = 𝑥𝑥𝑘𝑘+1|𝑋𝑋𝑘𝑘 = 𝑥𝑥𝑘𝑘} = Probability of reaching a condition state in 

the next step, given the current condition of the system only. 

Time-homogenous MC are a special case of MC. Let i and j represent two 

condition states of S. The transition probability between condition states i and j in a time-

homogenous Markov Chain can be formally described as (Kallen, 2007): 
 

𝑝𝑝𝑖𝑖𝑖𝑖 = Pr{𝑋𝑋𝑘𝑘+1 = 𝑗𝑗|𝑋𝑋𝑘𝑘 = 𝑖𝑖} = Pr{𝑋𝑋1 = 𝑗𝑗|𝑋𝑋0 = 𝑖𝑖} (5) 

Where: 

𝑝𝑝𝑖𝑖𝑖𝑖 = Transition probability from state 𝑖𝑖 to state 𝑗𝑗. 

Pr{𝑋𝑋𝑘𝑘+1 = 𝑗𝑗|𝑋𝑋𝑘𝑘 = 𝑖𝑖} = Probability of reaching condition state 𝑗𝑗 at time 

𝑘𝑘 + 1, given that the condition state at time 𝑘𝑘 is 𝑖𝑖. 

Pr{𝑋𝑋1 = 𝑗𝑗|𝑋𝑋0 = 𝑖𝑖} = Probability of reaching condition state 𝑗𝑗 at time 1, 

given that the initial condition state is 𝑖𝑖. 

All the possible transitions among condition states can be arranged in a matrix 

called the Transition Probability Matrix (TPM) and denoted as P. The TPM is square 

with r number of columns and rows, and each entry 𝑖𝑖𝑖𝑖𝑖𝑖ℎ represents the 𝑝𝑝𝑖𝑖𝑖𝑖. Equation 6 

presents the structure of the TPM. 
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Because the entries of the TPM are the transition probabilities, the value of 𝑝𝑝𝑖𝑖𝑖𝑖 is 

0 ≤ 𝑝𝑝𝑖𝑖𝑖𝑖 ≤ 1. Likewise, the rows represent the probability of transitioning from or 

remaining at state 𝑖𝑖; thus ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 = 1𝑟𝑟
𝑗𝑗=1 . When all the values of the TPM are greater than 

zero, the TPM is called Regular MC. When at least one of the condition states has a 

transition probability of 1 (that is, if one of the transition probabilities 𝑝𝑝𝑖𝑖𝑖𝑖 = 1), the MC is 

denominated as absorbing MC. Likewise, the condition states with the transition 

probability of 1 are called absorbing states (Grinstead & Sell, 2012). Absorbing states 

represent condition states that, once the state is reached, will be impossible for the system 

to leave that condition.  

According to Kallen (2007), the Markov Chain should have, at least, the 

following two characteristics in order to model infrastructure deterioration. First, the 

condition states must represent the different conditions of the system, and they must be 

strictly ordered from the best condition to lower conditions. In other words, the condition 

states must be ordered to represent the deterioration in a logical way. Second, the 

condition of the system must progress through the condition states. This means that the 

overall system condition must deteriorate over time until the last state or failure is 

produced (Yang, 2004). 

Based on the two aforementioned characteristics, two types of MC have been 

commonly used to model deterioration: progressive MC and sequential MC. Progressive 

MC represents TPMs where there is no maintenance, and, thus, there are no transitions 

from low condition states to better states (Yang, 2004). Sequential Markov chains follow 
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the same principle of no improvement, but they impose an additional restriction: 

transitions from state to state must be sequential. In other words, condition states cannot 

be skipped (Kallen, 2007). Sequential Markov chains are special representations of the 

binomial distribution for each condition state. In both cases, the processes are not regular 

(that is, TPMs contain at least one zero) and have absorbing condition states in the worse 

condition. Equation 7 and Equation 8 present TPMs for a Progressive MC and Sequential 

MC respectively. 
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There is not a defined rule of whether Progressive MC or Sequential MC is the 

best model because the TPM depends on 1) the deterioration process and 2) the definition 

of the condition states. The best approach is to model the process using a Progressive MC 

(which is the general case), and if the data calibration follows Sequential MC, the TPM 

can be adapted. This approach is used in this framework. 

Another way of representing the Markov chain process is through the Markov 

Rate Diagrams (MRD). The MRD are graphical representations of the condition states, 

with arrows indicating the transition probabilities that are different than zero. Loops 

around a condition state represent the possibility to remain in the same condition state in 

one time step. Figure 5 presents examples of the MRD for a Regular, Progressive, and 

Sequential Markov chain with four condition states.  
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𝑷𝑷 = �

𝑝𝑝11 𝑝𝑝12
𝑝𝑝21 𝑝𝑝22

𝑝𝑝13 𝑝𝑝14
𝑝𝑝23 𝑝𝑝24

𝑝𝑝31 𝑝𝑝32
𝑝𝑝41 𝑝𝑝42

𝑝𝑝33 𝑝𝑝34
𝑝𝑝43 𝑝𝑝44

�             

 

 

a) Regular Markov Chain 

 

 

 

 

𝑷𝑷 = �

𝑝𝑝11 𝑝𝑝12
0 𝑝𝑝22

𝑝𝑝13 𝑝𝑝14
𝑝𝑝23 𝑝𝑝24

0    0
0   0

𝑝𝑝33 𝑝𝑝34
0 1

� 

b) Progressive Markov Chain 

 

 

 

𝑷𝑷 = �

𝑝𝑝11 1 − 𝑝𝑝11
0 𝑝𝑝22

0           0
1 − 𝑝𝑝22     0

0       0  
0       0  

   𝑝𝑝33      1 − 𝑝𝑝33
     0 1

� 

c) Sequential Markov Chain 

Figure 5: Example of a Markov Rate Diagram and Transition Probability Matrix for a 
Four-State a) Regular Markov Chain, b) Progressive Markov Chain, and c) 
Sequential Markov Chain. 
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4.4 ESTIMATION OF TRANSITION PROBABILITY MATRIX 

One method used to estimate the entries of the TPM is the “count proportions” 

method (Equation 9). It uses a sample of historical data as a statistical estimation of the 

real parameter 𝑝𝑝𝑖𝑖𝑖𝑖 for the TPM (Panthi, 2009). It is important to note that the value of 𝑝̂𝑝𝑖𝑖𝑖𝑖 

will tend to the real 𝑝𝑝𝑖𝑖𝑖𝑖 for larger samples, and for that reason, more data points will 

increase the capability of prediction of the model. 

 
𝑝̂𝑝𝑖𝑖𝑖𝑖 =

𝑛𝑛𝑖𝑖𝑖𝑖
∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑟𝑟
𝑗𝑗=0

 (9) 

Where: 

𝑝̂𝑝𝑖𝑖𝑖𝑖  = Estimated Transition probability from state 𝑖𝑖 to state 𝑗𝑗. 

𝑛𝑛𝑖𝑖𝑖𝑖  = The number of observed transitions from state 𝑖𝑖 to state 𝑗𝑗. 

𝑟𝑟  = The total number of condition states. 

∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑟𝑟
𝑗𝑗=0   = Total number of transitions originated from state 𝑖𝑖. 

 

4.5 ESTIMATION OF THE FUTURE CONDITION OF THE SYSTEM 

The future condition of the system depends of the initial (or current) condition of 

the system and the TPM. The condition of the system is denoted by the vector u which 

contains the probabilities of the system being in each condition state at a given time. The 

initial condition is denoted as 𝒖𝒖0. The vector u has r non-negative entries, and ∑ 𝑢𝑢𝑘𝑘 =𝑟𝑟
𝑖𝑖=0

1 (Grinstead & Sell, 2012). Equation 10 presents the estimation of the future condition of 

the system at time 𝑘𝑘 as a function of the initial condition and the transition probability 

matrix. 
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𝒖𝒖𝑘𝑘 = 𝒖𝒖0𝑷𝑷𝑘𝑘 (10) 

Where: 

𝒖𝒖𝑘𝑘  = Estimated system condition vector at time step 𝑘𝑘. 

𝒖𝒖0  = Initial condition vector. 

𝑷𝑷 = Deterioration Transition Probability Matrix. 

𝑘𝑘 = Time step.  

 

4.6 OPTIMIZATION OF THE TRANSITION PROBABILITY MATRIX 

In order to develop a model that is robust, different techniques have been 

developed in order to minimize the error between the prediction and the observed values. 

Non-linear programming has been used in order to estimate the parameters in 

deterioration models where the time is the explanatory variable and the state is the 

dependent variable (Cavalline, Whelan, Tempest, Goyal, & Ramsey, 2015). Likewise, 

non-linear programming has been used to minimize the differences between the 

prediction and observed values in MC processes for bridges and pavements (Yang, 2004) 

(Panthi, 2009) (Ortiz-Garcia, Costello, & Snaith, 2005). The objective function can be the 

sum of the absolute difference (Equation 11) or the squared difference (Equation 12). 

These objectives functions are minimized using non-linear programming techniques. 
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𝑀𝑀𝑀𝑀𝑀𝑀 ���𝒖𝒖𝑡𝑡,𝑖𝑖 − 𝒖𝒖�𝑡𝑡,𝑖𝑖�
𝑟𝑟

𝑖𝑖=1

𝑛𝑛

𝑡𝑡=1

 (11) 

Where: 

 𝑛𝑛 = Total number of transition periods. 

 𝑟𝑟 = Total number of condition states in the model. 

 𝒖𝒖𝑡𝑡,𝑖𝑖 = Observed frequencies in state i at time t.  

 𝒖𝒖�𝑡𝑡,𝑖𝑖 = Estimated frequencies in state i at time t. 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 ���𝒖𝒖𝑡𝑡,𝑖𝑖 − 𝒖𝒖�𝑡𝑡,𝑖𝑖�
2

𝑟𝑟

𝑖𝑖=1

𝑛𝑛

𝑡𝑡=1

 (12) 

Where: 

 𝑛𝑛 =  Total number of transition periods. 

 𝑟𝑟 =  Total number of condition states in the model. 

 𝒖𝒖𝑡𝑡,𝑖𝑖 = Observed condition of state i at time t.  

 𝒖𝒖�𝑡𝑡,𝑖𝑖 = Estimated condition of state i at time t. 

 

4.7 DEVELOP THE TRANSITION PROBABILITY MATRIX FOR HETEROGENEOUS GROUPS 

As previously discussed, Markov Chains do not take into account explanatory 

variables (besides time) explicitly. One of the solutions for overcoming this limitation is 

creating homogenous groups where the data has similar attributes. The purpose is to 

reduce the variability in the explanatory variables, allowing the TPM to capture the 

deterioration process for specific conditions. However, this requires more data and, at the 

same time, reduces the scope of the application of the model (Cavalline, Whelan, 

Tempest, Goyal, & Ramsey, 2015) (Yang, 2004). In general, the following categories 
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have been used to create groups of similar characteristics for skid deterioration and 

pavement deterioration (Cavalline, Whelan, Tempest, Goyal, & Ramsey, 2015) (Yang, 

2004) (Fulop, Bogardi, Gulyas, & Csicsely-Tarpay, 2000) (Wu, Zhang, Long, & Murphy, 

2014) (Rezaei & Masad, 2013) (Pratt, et al., 2014) (Smith, Knighton, & Guthrie, 2016). 

Depending on the data available and the scope of the analysis, these categories can be 

used to develop different TPMs that could lead to different Benefit-Cost Ratios: 

• AADT per lane, 

• Locality and/or climate, 

• Curves or non-tangent sections, 

• Age of the pavement, and 

• Quality of the aggregates used for construction, if available. 

4.8 SUMMARY 

Markov Chains are a stochastic processes aimed to capture the evolution of the 

system condition. There are different types of MC processes, but the most commonly 

used to model infrastructure deterioration are the finite-state, time-discrete and time-

homogenous MC; for that reason, this approach is used in this thesis. The main advantage 

of the MC is the predictive power using only historical data, but this also is a limitation 

because it does not incorporate other explanatory variables.  

At least two conditions are required in order to model the deterioration process 

properly: the condition states must be ordered from the best condition to the lowest 

condition, and the system must transition from the best condition to the lowest condition. 

Progressive TPMs and sequential TPMs are two types of TPMs that fulfill these 

conditions.  
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The estimation of the parameters of the TPMs can be obtained using historical 

data. After the estimation, non-linear optimization processes has been developed in order 

to reduce the error between the prediction and the observed values. Finally, one option to 

explore the impact of explanatory variables in the MC deterioration process is to group 

pavement segments with similar attributes and perform the analysis. However, this also 

creates the need for more data input.  
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Chapter 5: Model Skid Resistance Deterioration 

Chapter 5 describes the development of the Markov Chain (MC) deterioration 

model. This chapter begins with the data requirements for developing the model (5.1), the 

definition of the condition states (5.2), the estimation of the parameters for the Markov 

Chain process (5.3), and the statistical validation of the deterioration model (5.4). The 

chapter finishes with summary (5.5). The framework of the development of the skid 

resistance deterioration model is summarized in Figure 6. 

 

Figure 6: Framework for Developing the Skid Resistance Deterioration Model 
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As Figure 6 shows, the process starts with the skid database. Next, based on 

historical data and technical criteria, the skid condition states are defined. The states are 

the foundation of the MC process and are used through the rest of the analysis. 

The next step is the estimation of the Transition Probability Matrix (TPM) for the 

deterioration model. The output is an optimized TPM and a test set that is used to 

determine if the model is able to predict the future condition of the network or not. This is 

done through the Chi-Square Goodness-of-Fit statistical test. There are two possible 

outcomes of this test: the TPM is rejected (that is, the differences between the observed 

and predicted values are too large) or the TPM is accepted (that is, the TPM can predict 

the future condition of the network with an acceptable accuracy). If the TPM is rejected, 

it is necessary to return to the definition of the condition states and the selection of the 

data to develop the model. In contrast, if the TPM is accepted, the model can be used for 

the next modules of the analysis (estimation of the maintenance cost and expected crash 

reductions). 

5.1 SELECT SKID RESISTANCE PERFORMANCE MEASURE 

The objective of this step is to select and define the skid resistance data that is 

consistent in the database. In order to conduct the Benefit-Cost Ratio analysis, it is very 

important to define the method in which skid is measured, and be consistent with it 

through the analysis. As is presented in subchapter 2.2 Method to Measure Skid, there are 

different methods and parameters that could cause changes to the value of skid resistance. 

It is necessary to perform the analysis with consistent data; that is, skid data must be in 

the same units in the dataset. Likewise, if other sources of information are used to support 

the analysis, these must have the same performance measure as the dataset before being 

used in the analysis. 
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5.2 DEFINE SKID CONDITION STATES 

The objective of this step is to define the number of skid condition states and their 

boundaries. The definition of the number of condition states and their thresholds depend 

on the problem to be modeled; there are no strict rules to define them. However, based on 

previous experiences, the following recommendations have been used to define the 

condition states (Fulop, Bogardi, Gulyas, & Csicsely-Tarpay, 2000) (Yang, 2004) 

(Kallen, 2007) (Panthi, 2009): 

• Condition states must be ordered: The condition states represent the 

different conditions that the infrastructure could have. Thus, the condition 

states must be ordered to represent the deterioration in a logical way. This 

also means that the condition states need to have contiguous boundaries. 

• Local Standards: If an agency has established thresholds to define 

conditions, these thresholds can be used to describe the conditions. In the 

case of the skid, it is also important that thresholds have consistent 

measurement units and test parameters. 

• Availability of Data and Minimum Frequencies: The condition states 

must have enough data points  to estimate the TPMs properly; that is, all 

the condition states must have a minimum of skid observations 

(frequencies). If a condition state has relatively low frequencies (for 

example, a condition state with only 1 observation), the uncertainty of the 

transition probability estimation will increase. 

• Representativeness of the Deterioration Process: The condition states 

must represent conditions that are possible, and that are representative of 

the deterioration.  
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• Level of Disaggregation of the Analysis: In the case that the researcher 

has interest in specific phases of the deterioration, the condition states can 

be disaggregated in order to capture specific transitions with more detail. 

However, the limitation is the availability of data; it must be guaranteed 

that the minimum frequencies are achieved in each condition state. 

5.3 ESTIMATE DETERIORATION TRANSITION PROBABILITY MATRIX 

The objective of this step is to estimate the transition probabilities among the 

different condition states defined in the previous subchapter 5.2 Define Skid Condition 

States. The output is a TPM that is cross-validated with the Chi-Squared Goodness-of-Fit 

statistical test. 

5.3.1 Select the Data to Model the Deterioration 

In order to model the deterioration of the skid resistance, it is necessary to build a 

sample that is a subset of the complete network. The objective of this sample is to 

develop the deterioration model using relevant data that will capture the “natural” 

deterioration if no treatment is applied.  

In the case of skid, there are three ways to select only the sections that have a 

natural deterioration process (that is, sections that have not received any treatment). One 

way is by selecting a limited number of “experimental” sections in the network that will 

be monitored over a period of time and where treatments are not applied. The sections are 

divided in two groups in order to have a control of the deterioration (Fulop, Bogardi, 

Gulyas, & Csicsely-Tarpay, 2000). This method has the advantage of capturing, in an 

experimental setting, the deterioration of skid; however, this could be expensive for an 

agency. Another way is to exclude from the analysis the sections that have received a 

treatment. However, not all the pavement databases have available information about the 
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historical treatments applied in all the sections (Panthi, 2009). The last option is to use 

skid data itself: if the historical treatment information is not available, the researcher 

should select only the sections that have a natural trend of deterioration (that is, the SN 

drops continually). It is important to note that some increases in SN are due to uncertainty 

in the measurements and are not related to actual maintenance improvements (Corsello, 

1993); therefore, it is important to know the uncertainty of the skid measurements. For 

example, a pavement with an real SN of 41 during two consecutive years could have a 

measured SN of 40 in year 1, and SN of 42 in year 2. This increase of 2 SN does not 

correspond to surface improvements, but it is due to the variability in the measurements. 

In this framework, the standard deviation estimated by the ASTM for repeated SN 

measurements is used as the criterion to determine SN changes due to measurement 

variability (ASTM International, 2015).  

Commonly, sections with missing values are discarded for the analysis; however, 

if the missing values are not completely at random (that is, if there is correlation between 

the missing sections and the skid values), there could be a bias in the development of the 

model if the missing values are discarded (Raghunathan, 2015). For example, in the case 

of Texas, the skid resistance is collected annually from 50 percent of the Interstate 

Highways and 25 percent of other parts of the network (Long, Wu, Zhang, & Murphy, 

2014). It is likely that a higher amount of missing values are present in state roads 

compared to IH, creating a bias of the available information toward highways.  

An additional criterion that can be used to select the data is the homogeneity in 

explanatory variables of skid deterioration, as is described in subchapter 4.7 Develop the 

Transition Probability Matrix For Heterogeneous Groups. This could include AADT per 

lane, locality and/or climate, curves, age of the pavement, or quality of the aggregates 

used for construction, if available. 
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Finally, the attributes of the data available can influence the model development. 

The frequency of collection (for example, annual or bi-annual), quality of the data 

collected (for example, if data has different formats), and coverage of the data (for 

example, 20 percent of the network every year) determines the characteristics of the 

deterioration model and the representativeness of the network sample. For example, when 

only bi-annual data is available, the model would have a time step of two years.  

5.3.2 Select the Training and Test Sets 

The objective of this step is to select the training set and test set in order to test if 

the prediction is significantly accurate. The training set is data that is used to develop the 

model, while the test set is data that is used to validate the model. There are different 

methods to cross-validate the models, with the most commonly used being the holdout, k-

fold cross validation, random subsampling, and bootstrap (Kohavi, 1995) (Rai, 2011). 

Other methods have been developed in the last years, such as “information criteria based 

methods” and the Minimum Description Length (MDL) method; however,  high 

computational capabilities are required to develop them and are therefore not considered 

in the present framework.  

The holdout procedure consists of dividing the data set into two subsets, usually 

of 2/3 and 1/3 proportions. The largest subset is called the training dataset and is used to 

develop the model. The remaining set (test set) is used to validate the model developed 

(Figure 7). One of the advantages is that this method requires less computational time and 

is easy to implement, but the disadvantage is that the estimation is pessimist because the 

training set uses less data (a portion is used for the test set only). The k-fold cross 

validation uses the same principle of the holdout method, but instead of dividing the set 

once, the set is subdivided k times. Each subset is used for training and the remaining for 
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testing (Figure 8); thus, the whole dataset is used to develop and validate the model. 

Random subsampling consists of k subsamples (training sets and test sets) that are 

selected randomly. The size of the training sets is 𝛼𝛼𝛼𝛼 where 0 < 𝛼𝛼 < 1 and 𝑁𝑁 is the total 

sample set. Usually 𝛼𝛼 is 0.1 and k is 10. The model selected is the one with the smallest 

average validation error (Figure 9). The Bootstrap method is a modification of the 

Random Subsampling method. It selects a defined number of elements as “examples,” 

and any element of the dataset can be selected multiple times in different examples. Next, 

each example is used as a training set and the rest of the examples are used as the test set.   

 

 

Figure 7: Example of the Holdout Cross-validation 

 

Figure 8: Example of the K-Fold Cross-validation for k=3 
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Figure 9: Example of the Random Sampling Cross-validation for k Subsampling 

The selection of the training and test sets depends on the amount of data available 

and computer capabilities (Rai, 2011). Nevertheless, it is very important to perform the 

cross-validation using at least one of the aforementioned methods; this allows the 

researcher to corroborate the prediction of the network deterioration. The present 

framework uses the holdout method.  

5.3.3 Develop Transition Probability Matrix and Predict the Future Condition  

The training dataset is used to develop the Transition Probability Matrix (TPM). 

As explained in subchapter 4.4 Estimation of Transition Probability Matrix, the “Count 

Proportions” method can be used to estimate the parameters of the TPM (Equation 6). In 

the case of data from multiple time steps (for example, skid data for multiple years), the 

TPM of the time-homogenous MC can be estimated as the “counting proportions” of the 

transitions for all the time steps (Equation 13). This is possible because, for a time-

homogenous MC, the transitions probabilities are independent of time.  
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𝑝̂𝑝𝑖𝑖𝑖𝑖 =
∑ 𝑁𝑁𝑡𝑡,𝑖𝑖𝑖𝑖
𝑛𝑛
𝑡𝑡=1

∑ ∑ 𝑁𝑁𝑡𝑡,𝑖𝑖𝑖𝑖
𝑟𝑟
𝑗𝑗=0

𝑛𝑛
𝑡𝑡=1

 (13) 

Where: 
𝑝̂𝑝𝑖𝑖𝑖𝑖  = Estimated annual transition probability from the ith to the jth 

condition state. 
𝑁𝑁𝑖𝑖𝑖𝑖,𝑡𝑡  = The number of observed transition from the ith to the jth condition 

state, for year t. 
𝑛𝑛  = Total number of years observed. 
𝑟𝑟  = Total number of condition states. 

Subsequently, the TPM is used to estimate the future condition of the network, 

using as a base year the first year of available data. The estimation is done as described in 

subchapter 4.5 Estimation of the Future Condition of the System, Equation 10. 

5.3.4 Optimize the Transition Probability Matrix 

As  described in subchapter 4.6 Optimization of the Transition Probability Matrix, 

it is required to minimize the error of the TPM estimated in the previous step. This is 

done by non-linear programing reducing the differences between the observed (historical) 

values and the estimated prediction.  

For this framework, the objective function selected is the sum of squared errors 

(SSE) (Ortiz-Garcia, Costello, & Snaith, 2005). Equation 14 presents the formula to 

estimate the relative error, while Equation 15 presents the formula to estimate the Sum of 

Squared Errors (SSE) (Weiss, 2008).  
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𝐸𝐸𝐸𝐸𝑡𝑡,𝑖𝑖 =  
(𝒖𝒖𝑡𝑡,𝑖𝑖 − 𝒖𝒖�𝑡𝑡,𝑖𝑖)

𝒖𝒖𝑡𝑡,𝑖𝑖
 (14) 

Where: 

𝐸𝐸𝐸𝐸𝑡𝑡,𝑖𝑖 = Relative error for year 𝑡𝑡 and condition state 𝑖𝑖. 

𝑡𝑡 = Year 𝑡𝑡. 

𝑖𝑖 = Condition state 𝑖𝑖. 

𝒖𝒖𝑡𝑡,𝑖𝑖 = Observed number of sections in state 𝑖𝑖 at time 𝑡𝑡.  

𝒖𝒖�𝑡𝑡,𝑖𝑖 = Estimated number of sections in state 𝑖𝑖 at time 𝑡𝑡. 

 

 
 

𝑆𝑆𝑆𝑆𝑆𝑆 =  ��𝐸𝐸𝐸𝐸𝑡𝑡,𝑖𝑖

𝑟𝑟

𝑖𝑖=1

𝑛𝑛

𝑡𝑡=1

 (15) 

Where:  

𝑆𝑆𝑆𝑆𝑆𝑆 = Sum of Squared Errors of the prediction. 

𝐸𝐸𝐸𝐸𝑡𝑡,𝑖𝑖 = Relative error for year 𝑡𝑡 and condition state 𝑖𝑖. 

𝑛𝑛  = Total number of years observed. 

𝑟𝑟  = Total number of condition states. 

 

The SSE can be minimized using the non-linear optimization process with 

restrictions over the values of 𝑝𝑝𝑖𝑖𝑖𝑖. These restrictions are applied in order to comply with 

the properties of the MC TPMs; that is, 0 ≤ 𝑝𝑝𝑖𝑖𝑖𝑖 ≤ 1 and ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 = 1𝑟𝑟
𝑗𝑗=1 , where 𝑟𝑟 is the 

total number of condition states (see subchapter 4.3 Definition of a Finite-Space, Time-

Discrete and Time-Homogenous Markov Chain). The following are the restrictions of the 
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optimization for a Progressive Markov Chain TPM (Yang, 2004) (Kallen, 2007) (Panthi, 

2009): 

1. Values in the diagonal of the TPM (except for the lowest condition 

state) range [0,1):  

That is, 0 ≤ 𝑝𝑝𝑖𝑖𝑖𝑖 < 1. In the case that 𝑝𝑝𝑖𝑖𝑖𝑖 = 0, this means that in one time 

step all the frequencies move from condition state i to other condition 

states, which is possible. In contrast, 𝑝𝑝𝑖𝑖𝑖𝑖 ≠ 1 because this would mean the 

condition state i is an absorbing state, implying no deterioration; in other 

words, the system does not transition to a lower condition state after 

condition state i. 

2. The lowest condition state of the TPM is an absorbing state: 

That is, 𝑝𝑝𝑖𝑖𝑖𝑖 = 1 for the lowest condition state. This restriction implies that 

once the system reaches this condition state, the system does not transition 

to any other state. 

3. Values below the diagonal are zero:  

That is, 𝑝𝑝𝑖𝑖𝑖𝑖 = 0 for 𝑗𝑗 < 𝑖𝑖. All the values below the diagonal represent 

improvements in the condition of the system, which does not happen in a 

deterioration process  unless maintenance is applied. 

4. Values above the diagonal of the TPM range between [0,1]: 

That is, 0 ≤ 𝑝𝑝𝑖𝑖𝑖𝑖 ≤ 1 for 𝑗𝑗 > 𝑖𝑖. This restriction represents the fact that the 

system can deteriorate from condition state 𝑖𝑖 to lower condition states.  
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5. The sum of the rows of the TPM are equal to 1: 

That is, ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 = 1𝑟𝑟
𝑗𝑗=1  where 𝑟𝑟 represents the total number of states. This 

restriction enforces that 100 percent of the frequencies of the condition 

state 𝑖𝑖 either 1) remain in the same condition state, or 2) transition to 

another condition state. If the sum of the rows are not equal to 1, the TPM 

would no longer represent a MC process.  

The TPM can also be modeled as a Sequential Markov Chain TPM. As is 

explained in subchapter 4.3, Sequential TPMs are common in models in which the 

system must pass through all the condition states before reaching the lowest condition 

(for example, bridge ratings in which the bridge cannot skip a condition state; condition 

must transition through all of the states before failure) (Kallen, 2007). In the case of skid 

resistance this is not necessarily true; the skid deterioration is a function of the time step 

and the condition states defined (for example, aggregated condition states vs multiple 

condition states). For long time steps in data collection, it is possible that the system 

transitions through some states, but these transitions are not observed. Likewise, in the 

case of multiple condition states, it could happen that the deterioration is faster than the 

level of disaggregation of the condition states. Notwithstanding, a combination of these 

two factors could produce a Sequential process. The following are the restrictions for the 

optimization for a Sequential Markov Chain TPM (Yang, 2004) (Kallen, 2007) (Panthi, 

2009):  

1. Values in the diagonal of the TPM (except for the lowest condition 

state) range [0,1): 

That is, 0 ≤ 𝑝𝑝𝑖𝑖𝑖𝑖 < 1. Similar to Progressive TPMs, in the case that 𝑝𝑝𝑖𝑖𝑖𝑖 = 0 

this means that in one time step all the frequencies move from condition 

state i to other condition states, which is possible. In contrast, 𝑝𝑝𝑖𝑖𝑖𝑖 ≠ 1 
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because this would mean the condition state i is an absorbing state, 

implying no deterioration; in other words, the system does not transition to 

a lower condition  state after condition state i. 

2. The lowest condition state of the TPM is an absorbing state: 

That is, 𝑝𝑝𝑖𝑖𝑖𝑖 = 1 for the lowest condition state. Similar to Progressive 

TPMs, this restriction implies that once the system reaches this condition 

state the system does not transition to any other state. 

3. The transition probability of the next condition state is 1- p: 

That is, 𝑝𝑝𝑖𝑖𝑖𝑖 = 1 − 𝑝𝑝𝑖𝑖𝑖𝑖 for 𝑗𝑗 = 𝑖𝑖 + 1. This restriction represents the fact 

that, in a Sequential MC, the only possible transition is to the next state. 

Likewise, it ensures that the sum of the rows is equal to one.  

4. The transition probability is zero elsewhere: 

That is, 𝑝𝑝𝑖𝑖𝑖𝑖 = 0 for 𝑗𝑗 ≠ {𝑖𝑖, 𝑖𝑖 + 1}. This restriction represents the fact that   

1) there is no possibility that the system skips a condition state; and 2) the 

system cannot transition to better condition states unless maintenance is 

applied. 

5.4 PERFORM A STATISTICAL TEST OF THE PREDICTION 

The objective of this step is to perform a statistical test to determine whether the 

optimized TPM predicts the future condition of the network. The statistical test used is 

the Chi-Square Goodness-of-Fit Test (Weiss, 2008). The test is applied twice: first, it is 

applied for the training set, and then it is applied for the test set. Both tests must be 

successful before continuing to the next modules.  

The inferences of the Chi-Square test are based on the Chi-Square distribution. 

The Chi-Square value (𝜒𝜒2) measures the relative difference between the observed and 



 50 

expected frequencies for categorical or discrete quantitative variables with a finite 

number of possible values (which is the case of the finite-space Markov Chain). This 

distribution is composed of infinite curves that describe the probabilities of the values of 

the statistic 𝜒𝜒2. The distribution is a function of the Degrees of Freedom (DF), which is  

the number of variables involved in the analysis minus one. When the number of DF is 

large, the distribution of the 𝜒𝜒2 tends to a normal distribution (Weiss, 2008).  

The Chi-Square test has some restrictions because the exact distribution of 𝜒𝜒2 is 

continuous. Therefore, when the frequencies are low, there is an increased error between 

the exact distribution and the approximation for discrete variables. For that reason, it is 

recommended that all the frequencies are above zero (that is, there is no condition state 

with a zero observations at any time step), and no more than 20 percent of the expected 

frequencies is below five (Cochran, 1952) (Weiss, 2008). Equation 16 presents the 

formula to estimate the 𝜒𝜒2 for the skid deterioration model. 
 

𝜒𝜒2 =  ��
(𝒖𝒖𝑡𝑡,𝑖𝑖 − 𝒖𝒖�𝑡𝑡,𝑖𝑖)2

𝒖𝒖𝑡𝑡,𝑖𝑖

𝑟𝑟

𝑖𝑖=1

𝑛𝑛

𝑡𝑡=1

 (16) 

 

Where:  𝜒𝜒2 = Chi-Square value. 

𝑛𝑛  = Total number of years observed. 

𝑟𝑟  = Total number of condition states. 

𝑡𝑡 = Year t. 

𝑖𝑖 = Condition state i. 

𝒖𝒖𝑡𝑡,𝑖𝑖 = Observed number of sections in state i at time t. 

𝒖𝒖�𝑡𝑡,𝑖𝑖 = Estimated number of sections in state i at time t. 
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According to Weiss (2008), the following is the process of the Chi-Square Test: 

1. Select Null Hypothesis: Select the null hypothesis (𝐻𝐻0) and the 

alternative hypothesis (𝐻𝐻𝑎𝑎) for the test. The 𝐻𝐻0 is that the differences 

between the observed frequencies and the estimated frequencies with the 

model are not significant. 

2. Calculate the Expected Frequency: The expected frequency is the 

estimation of the condition for different years, using Equation 10. 

3. Check if the restrictions are not violated: All the frequencies must be 

above zero and no more than 20 percent of the expected frequencies is 

below five. 

4. Decide the significant value of 𝜶𝜶: The value of 𝛼𝛼 represents the 

probability of rejecting the null hypothesis when is true; usually its value 

is 0.05.  

5. Compute the value of 𝝌𝝌𝟐𝟐: The value of 𝜒𝜒2 is computed using Equation 

16. 

6. Compare results with the critical value: For a specific number of 

Degrees of Freedom (DF), the Chi-Square distribution has a critical value 

for the defined 𝛼𝛼. If 𝜒𝜒2 is higher than this value, it means that there are 

significant differences between the observed frequencies and the 

predictions, and thus the MC model does not predict the future condition 

of the network (and therefore, it did not capture the deterioration process). 

Another approach is to estimate the probability 𝑝𝑝 of obtaining the 𝜒𝜒2 

under the assumption that 𝐻𝐻0 is true. In this case, if 𝑝𝑝 ≤ 𝛼𝛼, it means that 

there are significant differences between the observed frequencies and the 
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predictions, and again, the MC model does not predict the future condition 

of the network (and therefore, it did not capture the deterioration process). 

The test must be applied to the training set first. If the null hypothesis (𝐻𝐻0) is 

rejected, it is necessary to develop the model again. If 𝐻𝐻0 is not rejected, the test is 

applied to the test set. This is done to estimate if the model predicts the future condition 

for a set of  new data. If 𝐻𝐻0 is rejected, it is necessary to build the model again. If 𝐻𝐻0 is 

not rejected, the deterioration model can be used to estimate the maintenance costs and 

benefits of improving skid.  

Low frequencies can affect the estimation of 𝜒𝜒2. To overcome this limitation, 

more data can be collected in order to increase the number of pavement sections in each 

of the defined condition states. Likewise, condition states with low frequencies can be 

aggregated in order to increase the expected frequencies in each state.  

It could happen that the data to be modeled does not follow a time-homogenous 

MC process, especially if the number of time steps cover more than five years (Cavalline, 

Whelan, Tempest, Goyal, & Ramsey, 2015). In this case, a shorter analysis period can be 

selected for the development of the TPM. Finally, the deterioration process can have high 

variability if it is a heterogeneous group with different attributes (Cavalline, Whelan, 

Tempest, Goyal, & Ramsey, 2015). In this case, a solution is to create specific groups 

with homogenous characteristics in order to reduce the variability in potential 

explanatory variables, as it is explained in subchapter 4.7 Develop the Transition 

Probability Matrix For Heterogeneous Groups.  

5.5 SUMMARY 

This chapter describes the framework to develop the Markov Chain model for 

skid deterioration. It is important to use consistent data through the analysis and define 
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the condition states using established thresholds and data available as criteria. The 

process of creation of the TPMs for the MC process is an iterative process. First, a 

portion of the data is selected for training the model, and the rest is used for testing the 

prediction. Then, the TPM is estimated and optimized in order to reduce errors in the 

prediction. Finally, the Chi-Square Goodness-of-Fit statistical test is applied to the 

prediction in order to corroborate that the model is capturing the deterioration. If this is 

not the case, the process of defining the TPMs starts again.  
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Chapter 6: Estimate Costs for Maintaining Skid Resistance 

Chapter 6 describes the process for estimating the maintenance costs for different 

minimum skid thresholds. This chapter begins with the definition of the maintenance 

policy and thresholds (6.1), and continues with the development of the Maintenance 

Transition Probability Matrix (6.2), the unit cost of the treatments (6.3), and the 

estimation of maintenance cost for different thresholds (6.4). Figure 10 presents the 

framework for estimating costs of maintaining the skid resistance. 

 

 

Figure 10: Framework for Estimating the Skid Resistance Maintenance Costs 

This module receives as an input the initial condition of the network (skid 

condition in the base year) and the TPM of the deterioration model. Based on a 



 55 

maintenance policy, the minimum skid thresholds are defined. These skid thresholds are 

used to create a Maintenance Transition Probability Matrix for each threshold. The 

Maintenance Matrix is used to estimate the future skid condition of the network under 

maintenance. Subsequently, the unit costs for the maintenance treatments are established, 

and the total maintenance costs are estimated. The estimated future condition of the 

network under maintenance is used in the next module.  

6.1 DEFINE SKID RESISTANCE MAINTENANCE THRESHOLDS 

The objective of this step is to define the minimum skid threshold that is applied 

to the network. Since there are different maintenance policies that can be applied, there 

could be different costs and different impacts to the network. However, as it is mentioned 

in the Scope of this framework, this study does not include the quantification nor the 

optimization of different maintenance policies. This framework selects one maintenance 

policy and estimates the associated costs based on the deterioration model developed.  

The following is an overview of the different maintenance policies that are 

applied on infrastructure systems (Uddin, Hudson, & Haas, 2013): 

• Do Nothing Policy: No maintenance is applied to the system, and the 

natural deterioration is allowed to occur (no maintenance is performed).  

• Routine Maintenance Policy: Maintenance is applied at a periodic 

frequency in order to keep the service level consistent. 

• Critical Maintenance Policy: Maintenance is applied to avoid imminent 

failures, and as a response to special events (for example, natural disasters 

or accidents). 
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• Scheduled M, R & R Policy: Maintenance, rehabilitation, and 

replacement are scheduled based on historical information that has been 

analyzed.  

• Condition-Responsive M, R & R Policy: Maintenance is triggered when 

the performance of the system (or of the components of the system) 

achieves a specified threshold. For example, a pavement section is treated 

if it has a SN below the maintenance threshold. 

 

In general, the management of infrastructure systems requires the combination of 

all the different policies. In this framework, the do-nothing and condition-responsive 

policies are used in order to model the base case (do-nothing policy) and the maintenance 

scenario (condition-responsive policy). The estimation of the number of crashes expected 

if the natural deterioration is allowed in the network is based on the do-nothing policy, 

while the estimation of crash reduction and maintenance costs are based on the condition-

responsive policy. 

For the condition-responsive policy, it is necessary to define the thresholds that 

will trigger the maintenance actions. In this framework, the thresholds are defined as the 

maintenance goals. The maintenance goal is defined as the minimum value of SN in the 

network during the analysis period. In other words, when a section reaches a SN below 

the goal, the section is treated in order to improve the SN.  

It is important to note that the condition-responsive policy is an idealization of 

skid management. First, it assumes that there are no economic constraints to treating all 

the sections that required treatment. Second, it assumes that the network-level skid is 

representative of the pavement section, which is not always true. In the case of Texas, 

network-level skid is measured at the beginning of pavement sections; therefore, the skid 
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condition in the rest of each section is not known. For these reasons, the current 

framework estimates the economic benefits at the network-level, and detailed analysis 

should be performed at the project level for specific cases.  

6.2 DEFINE A MAINTENANCE TRANSITION PROBABILITY MATRIX FOR EACH 
THRESHOLD 

The objective of this step is to integrate the policy previously defined in the 

estimation of the future condition of the network. This is achieved by developing the 

Maintenance Transition Probability Matrix, which is denominated M. The matrix M 

describes the transition probabilities among condition states after a treatment is applied. 

Different treatments can cause different transition probabilities and, by consequence, 

different values of M.  

The best way to estimate M is using historical quantitative data before and after a 

treatment is applied (Uddin, Hudson, & Haas, 2013). In the case of the skid, this is done 

by measuring the SN before and after a treatment. Next, as happens with the development 

of the TPMs, the “count proportions” method can be used to estimate the transition 

probabilities for M. Though the aforementioned procedure is a costly method for an 

agency (because requires them to measure the SN before and after a treatment), the 

“count proportions” method for treatments was used in the past with successful results 

(Panthi, 2009). Furthermore, the same process can be applied to identify the impacts of 

other non-skid treatments that have an impact on skid and that are applied on a regular 

basis. If this information is not available, historical data or assumptions about the 

improvement of the skid after a treatment are required (Brimley & Carlson, 2012).  

The matrix M is a square matrix, with the number of rows and columns being the 

total number of states of the MC. The inputs of M are also denominated performance 

jumps, because they represent the instantaneous “jumps” in the system after a treatment 
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(Panthi, 2009). In general, the maintenance matrix M has the following structure 

(Equation 17): 

 
 

𝑴𝑴 = �

0 0
𝑚𝑚21 0

⋯ 0
⋯ 0

⋮ ⋮
𝑚𝑚𝑟𝑟1 𝑚𝑚𝑟𝑟2

⋱ ⋮
⋯ 0

� (17) 

where: 

𝑚𝑚𝑖𝑖𝑖𝑖 = Probability of improving the condition state from 𝑖𝑖 to 𝑗𝑗 after a 

maintenance treatment. 

It is important to note that different goals yield different maintenance matrices M. 

For example, if the maintenance goal is SN 20, there are fewer sections to be treated 

compared to the case where the goal is SN 40 for the same network. In the first case, 

most of the 𝑚𝑚𝑖𝑖𝑖𝑖 will be zeros (fewer sections will experience the performance jump), 

while in the second case, most of the values below the diagonal are greater than zero. 

Therefore, the maintenance matrix not only depends on the treatment but also on the 

condition states defined in the model and the maintenance goal. The estimation of the 

future condition of the network, given a maintenance goal, can be estimated using 

Equation 18 (Panthi, 2009). 
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𝒖𝒖𝑘𝑘� = 𝒖𝒖𝟎𝟎 ∗ (𝑴𝑴 ∗ 𝑷𝑷)𝑘𝑘 (18) 

where: 

𝒖𝒖𝑘𝑘�  = Estimated condition of the network at year 𝑘𝑘 based on the 

maintenance goal and deterioration model.  

𝒖𝒖𝟎𝟎 = Initial condition vector. 

𝑴𝑴  = Maintenance Transition Probability Matrix. 

𝑷𝑷 = Deterioration Transition Probability Matrix. 

𝑘𝑘 = Year to estimate.  

Equation 18 reflects the fact that future conditions depend on the initial condition, 

the maintenance applied, the deterioration of the system, and the period of time between 

the initial condition and the year to estimate the condition. In this case, the term 𝑴𝑴𝑥𝑥𝑷𝑷 

means that the treatments are applied within one time step. For this framework, it is 

assumed that this is true; that is, all the skid treatments are applied within one year. This 

is not strictly required, and different formulations can be done to Equation 18 for 

different cases (for example, if the treatments are applied every two years) (Zhang, 

Augenbroe, & Vidakovic, 2005). 

6.3 SELECT UNIT COST OF SKID RESISTANCE TREATMENTS 

The objective of this step is to identify the treatments that can improve the skid 

resistance of the pavement and determine their respective costs. The different treatments 

provide a feedback to the maintenance matrix M defined in the previous step, and the 

costs impact the investment required for the maintenance policy selected.  

The maintenance treatments can be  defined as the “set of activities required to 

keep a component, system, infrastructure asset, or facility functioning as it was originally 

designed and constructed to function” (Uddin, Hudson, & Haas, 2013, p. 277). For the 
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purpose of the framework, the maintenance treatments are the set of activities that cause a 

performance jump in the skid condition. The main two parameters that are considered are 

the unit cost and life-cycle of the treatments (Uddin, Hudson, & Haas, 2013).  

The most common maintenance treatment in the case of Texas is the Seal Coat, 

which is one type of treatment applied to address wet weather crash locations based on 

the district’s Wet Surface Crash Reduction Program (WSCRP). The following is a list of 

treatments that are applied in different regions of Texas in order to increase skid 

resistance and to address other pavement condition needs (Brimley & Carlson, 2012) 

(Long, Wu, Zhang, & Murphy, 2014): 

• Milling to increase macro-texture: a short-term solution to address low SN 

until a construction project can be let. 

• Seal Coat: different aggregate classifications and asphalt binder grades are 

used. 

• Strip seals: seal coat in the wheel paths only to reduce costs associated 

with replacing pavement markings. 

• Thin Overlay – less than 2”: varies from Type D small top sized aggregate 

mixes to Type C Coarse mixes depending on district. 

• Structural overlays: Permeable Friction Course (PFC); Stone Matrix 

Asphalt (SMA); Coarse Matrix High Binder (CMHB); and Thicker Type 

C mixes with stiffer asphalt grades. 

• ACP overlay. 

 

Costs vary considerably among these treatments depending on multiple factors, 

including climate, type of roadway, and traffic volumes. Furthermore, in general, 

pavement resurface treatment projects are sometimes combined with safety projects that 
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may include road or culvert widening, safety treatment of culverts, rumble strips, 

additional stripping, and signalization. Further, mobilization and traffic control, which 

occur for any project, typically are estimated to be 20 percent of project costs, though this 

percentage can vary based on project location, traffic volume and total project cost. This 

makes the estimation of a unit cost of pavement resurface treatments difficult; likewise, 

small projects, remote projects, rural projects, and projects with low paving quantities can 

result in higher treatment unit costs. It is worth noting that this study focuses on the 

Benefit-Cost analysis at the network level. Therefore, network-level average costs should 

be used to conduct the Benefit-Cost Ratio. These costs should be gathered from 

transportation agencies’ pavement management systems or historical project costs.  

Likewise, the expected life of the skid improvement must also be determined as 

part of this component. Unfortunately, there is limited literature about the expected skid 

performance over time for different types of pavement resurface treatments. 

Internationally, there have been instances where High Friction Surface Treatments last 

from seven to twelve years (Federal Highway Administration, 2014). A period of three to 

seven years has been used as the skid improvement lifetime due to micro-surfacing and 

chip seal in a previous analysis (Long, Wu, Zhang, & Murphy, 2014). According to 

Brimley and Carlson (2012), five years is a conservative value of the service life of skid 

resistance improvements. Due to the limited information about the service life of 

pavement resurfacing treatments, it is assumed in this framework that treated sections 

exhibit the same rate of deterioration estimated for untreated pavement; that is, the skid 

values of treated pavement sections deteriorates at the same rate estimated for the 

network. Further research is required in this area. Meanwhile, an advantage of this 

assumption is that it holds the properties of the time-homogenous MC. 
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6.4 ESTIMATE POLICY COST 

The objective of this step is to estimate the cost for the condition-responsive 

maintenance policy. The process is divided in two steps: 1) the maintenance cost is 

estimated for a specific goal (skid threshold), and 2) the estimation is performed for 

multiple goals (skid thresholds) in order to obtain multiple costs.  

6.4.1 Estimation of Network Treatment Cost for a Specific Goal 

The total cost of a maintenance strategy is calculated based on: 1) the unit skid 

treatment cost, and 2) the percentage of the network being treated to achieve the skid 

goal. The latter provides the link between a maintenance strategy and its estimated cost. 

In order to quantify the length of the network being treated it is necessary to 

identify the cumulative distribution function of the frequencies in each condition state. 

The cumulative distribution function connects the goal with the expected frequencies for 

a specific condition state (Equation 19).  
 

𝑚𝑚𝑡𝑡,𝚤𝚤� = 𝐿𝐿 ∗ 𝒖𝒖𝑡𝑡,𝚤𝚤� ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖(𝑔𝑔) (19) 

where: 

𝑚𝑚𝑡𝑡,𝚤𝚤�  = Estimated number of lane-miles to be treated at year 𝑡𝑡 of condition 

state 𝑖𝑖. 

𝐿𝐿 = Total number of lane-miles in the network. 

𝒖𝒖𝑡𝑡,𝚤𝚤�  = Estimated percentage of the network in year 𝑡𝑡 that is in condition    

state 𝑖𝑖. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖(𝑔𝑔) = Cumulative percentage of the frequencies for condition state 𝑖𝑖 

that are below the goal 𝑔𝑔. 
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The cumulative distribution of the frequencies depends on the frequency 

distribution in each condition state. In the case of Texas, the distribution of skid 

frequencies is uniform for middle ranges of skid (SN 20s to 60s). For SN below 20 or 

above 70, the frequency distribution is different and must be analyzed case by case, 

depending on the network.  

Once the lane-miles that required treatment are estimated, the unit cost can be 

used to estimate the maintenance cost as is presented in Equation 20: 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀 ∗�𝑚𝑚𝑡𝑡,𝚤𝚤�
𝑟𝑟

𝑖𝑖=1

 (20) 

where: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = Nominal maintenance cost for year 𝑡𝑡. 

𝑀𝑀𝑀𝑀𝑀𝑀 = Maintenance Unit Cost. 

𝑚𝑚𝑡𝑡,𝚤𝚤�  = Estimated number of lane-miles to be treated at year 𝑡𝑡 for condition 

state 𝑖𝑖. 

𝑟𝑟 = Total number of condition states. 

 

The underlying assumption of Equation 20 is that the maintenance unit cost is 

independent of the skid condition 𝑖𝑖; however, this might not be true in some cases. For 

example, it is likely that pavements with low SN require more expensive treatments that 

are not related only to skid but also to other pavement problems. Due to limited 

information regarding the treatments cost at the network level, it is not possible to 

establish a relationship between the SN and treatment cost. However, if this information 

becomes available, Equation 20 can be rearranged as it is presented in Equation 21. 
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𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = �(𝑚𝑚𝑡𝑡,𝚤𝚤�
𝑟𝑟

𝑖𝑖=1

∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖) (21) 

where: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = Nominal maintenance cost for year 𝑡𝑡. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 = Maintenance Unit Cost for a specific condition state 𝑖𝑖. 

𝑚𝑚𝑡𝑡,𝚤𝚤�  = Estimated number of lane-miles to be treated at year 𝑡𝑡 for condition 

state 𝑖𝑖. 

𝑟𝑟 = Total number of condition states. 

In order to develop the Benefit-Cost analysis for multiple years, it is necessary to 

take into account the effect of the discount rate (Transportation Economics Committee of 

TRB, 2016). Each nominal maintenance cost can be converted for a base year using 

Equation 22. Once the net present value of all the maintenance costs are estimated, the 

total maintenance cost for a specific goal is estimated using Equation 23. 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 ∗ (1 + ℎ)𝑡𝑡−𝑡𝑡0 (22) 

where: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = Net present value of maintenance cost required for year 𝑡𝑡. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = Nominal maintenance cost for year 𝑡𝑡. 

ℎ = Discount rate. 

𝑡𝑡0 = Base year. 
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𝑇𝑇𝑇𝑇𝑇𝑇(𝑔𝑔) = �𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡

𝑛𝑛−1

𝑡𝑡=0

 (23) 

where: 

𝑇𝑇𝑇𝑇𝑇𝑇(𝑔𝑔)= Total maintenance costs for a specific maintenance goal 𝑔𝑔. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = Net present value of maintenance cost required for year 𝑡𝑡. 

𝑛𝑛 − 1  = Last year that treatments can be applied to the network in the 

analysis. 

 

6.4.2 Estimation of Network Treatment Cost for Multiple Maintenance Goals 

The compilation of the total maintenance cost for different goals is a function that 

expresses the relationship between the maintenance goal and the maintenance cost. This 

function is increasing; that is, when the goal increases, the maintenance cost increases. 

The minimum possible value is zero, which is equivalent to the Do-Nothing maintenance 

policy. In contrast, the highest possible value is when all of the network is treated every 

year, which, in other words, represents the case where the goal is so high that it requires 

that all of the network be treated every year. The actual shape of the function will depend 

on the network condition in the base year and the deterioration model obtained. 
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Chapter 7: Estimate Crash Reduction Benefits 

Chapter 7 describes the process for estimating the economic benefit of crash 

reductions. This chapter begins with the estimation of the expected crashes under current 

condition in the network (7.1). Next, the condition states are linked to the expected 

crashes through the Crash Rate Ratio (CRR) of SN (7.2). Subsequently, based on the 

estimated network condition under maintenance and without maintenance, the expected 

reduction of crashes is estimated (7.3). Finally, the reduction of crashes are monetarized 

(7.4). The aforementioned process is summarized in Figure 11. 

 

 

Figure 11: Framework for Estimating Crash Reduction Benefits 
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7.1 ASSESS CURRENT SAFETY CONDITION IN THE NETWORK 

The objective of this step is to estimate road safety indicators (such as number of 

crashes or fatalities) in the base year in order to set the initial road safety condition of the 

model. Because the CRR-SN curves for the case of Texas were developed using number 

of crashes, the present framework uses the same indicator. The historical number of 

crashes in the network analyzed can be used to set the initial condition. When this 

information is not available, the number of crashes can be estimated using Equation 24 

(Federal Highway Administration, 2011): 

 
 

𝐶𝐶 =  
𝑅𝑅 ∗  𝑉𝑉 ∗  365 ∗  𝑁𝑁 ∗  𝐿𝐿

100,000,000
 (24) 

 

Where: 

𝐶𝐶 = Total number of crashes expected in the base year. 

𝑅𝑅 = Crash Rate per 100 million VMT. 

𝑉𝑉 = Traffic volumes using Average Annual Daily Traffic (AADT) 

volumes. 

𝑁𝑁 = Number of years of analysis, which in this case is 1 (only the base 

year). 

𝐿𝐿 = Total length of the roadway segment in miles. 

In the case of the traffic volumes, the value must be consistent to the rest of the 

analysis. Because the AADT per lane is used to develop the TPMs in this framework, the 

volume used in Equation 24 is AADT per lane. 



 68 

7.2 LINK EXPECTED CRASHES WITH SKID RESISTANCE THROUGH CRR 

The objective of this step is to link the number of crashes in the network to the 

skid condition using the CRR-SN curves. The study developed by Long et al. (2014) 

presents a quantitative relationship between the Crash Rate Ratio (CRR) and the SN. The 

concept of CRR is based on the cumulated crash counts in a specific network (see 

subchapter 2.3 Quantification of Impact of Skid Resistance and Crash Risk). Equation 2 

presents the relationship between the cumulated percentage of crashes and the cumulated 

percentage of sections with a SN value below specific values. When this relationship is 

known in the network (with the calibration of the CRR-SN curves), the cumulated 

percentage of number of crashes can be estimated. Equation 25 presents the estimated 

cumulative percentage of crashes as a function of SN. 

 
 

𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 ∗  𝑃𝑃𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 (25) 

Where: 

𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 = Cumulative percentage of crashes below a specific SN. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 = Crash Rate Ratio for a specific SN. 

𝑃𝑃𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 = The cumulative percentage of total lane-miles at or below a specific 

SN. 

The relationship presented in Equation 25 estimates the value of cumulated 

crashes for the whole range of SN. However, the condition states for the MC 

deterioration model aggregates the SN in groups. Therefore, the researcher must 

approximate the relationship by assigning a CRR value to each condition state. In this 

framework, a weighted average of the CRR value for each condition state is used. The 

result is the weighted average of improving a section from one state to another state. In 
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order to diminish the difference due to this approximation, the researcher should 

disaggregate the states to the maximum extent possible (see subchapter 5.2 Define Skid 

Condition States). The CRR-SN curves approach one for large values of SN; therefore, 

the condition states can be aggregated for large values of SN without significantly 

increasing the differences due to this approximation. In contrast, middle and low values 

of SN require higher disaggregation of the conditions states in order to capture the CRR 

differences. Equation 26 presents the estimation of the cumulative percentage of crashes 

for each condition state. 
 

𝑃𝑃𝐶𝐶𝐶𝐶𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ∗  𝑃𝑃𝐿𝐿𝐿𝐿𝑖𝑖  (26) 

Where: 

𝑃𝑃𝐶𝐶𝐶𝐶𝑖𝑖  = Cumulative percentage of total crashes for condition state 𝑖𝑖 and 

below. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = Crash Rate Ratio associated with condition state 𝑖𝑖. 

𝑃𝑃𝐿𝐿𝐿𝐿𝑖𝑖  = The cumulative percentage of total lane-miles at or below a condition 

state 𝑖𝑖. 

It is important to note that the best condition state must have a CRR-SN of one. 

This restriction represents the fact that 100 percent of the network contains 100 percent of 

the crashes. However, the definition of the states could lead to a CRR different than one 

for the best condition (for example, if the best condition state ranges from SN 50 to 100, 

the weighted average CRR for this condition state will be above one). Therefore, the 

CRR associated with each condition state needs to be normalized by the value of the 

CRR associated with the best condition state.  

The next step is to find the percentage of crashes in each condition state using the 

cumulated percentage of crashes. In the case of the lowest condition state, the percentage 
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of crashes is estimated using Equation 26. For the rest of the condition states, the 

percentage of crashes is estimated using Equation 27. The expected number of crashes for 

each condition state is estimated using Equation 28. 

 

𝑃𝑃𝑐𝑐𝑖𝑖 = 𝑃𝑃𝐶𝐶𝐶𝐶𝑖𝑖 − 𝑃𝑃𝐶𝐶𝐶𝐶𝑖𝑖−1 
 

(27) 

Where: 

𝑃𝑃𝑐𝑐𝑖𝑖 = Percentage of crashes for condition state 𝑖𝑖. 

𝑃𝑃𝐶𝐶𝐶𝐶𝑖𝑖  = Cumulative percentage of crashes of condition state 𝑖𝑖 and below. 

𝑃𝑃𝐶𝐶𝐶𝐶𝑖𝑖−1 = Cumulative percentage of crashes of the previous condition state      

(𝑖𝑖 − 1) and below. 
 
 
 

𝐶𝐶𝑖𝑖 = 𝑃𝑃𝑐𝑐𝑖𝑖 ∗ 𝐶𝐶 (28) 

Where: 

𝐶𝐶𝑖𝑖 = Expected number of crashes in condition state i. 

𝑃𝑃𝑐𝑐𝑖𝑖 = Percentage of crashes for condition state 𝑖𝑖. 

𝐶𝐶 = Total number of crashes expected in the base year. 

Finally, with the expected crashes in each condition state, the researcher can 

estimate the crash rate per lane-mile for each condition state, as presented in Equation 29 

(Federal Highway Administration, 2011). It is assumed that the crash rate per lane-mile is 

fixed during the study period (four years), which is a realistic assumption because the 

safety rates do not have dramatic changes within small periods of time (Texas 

Department of Transportation, 2016).  
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𝑅𝑅𝑖𝑖 =
𝐶𝐶𝑖𝑖

𝒖𝒖0,𝑖𝑖 ∗ 𝐿𝐿
 (29) 

Where: 

𝑅𝑅𝑖𝑖 = Crash rate per lane-mile for condition state i. 

𝐶𝐶𝑖𝑖 = Expected number of crashes in condition state i. 

𝒖𝒖0,𝑖𝑖 = Percentage of the network with a condition state 𝑖𝑖 in the base year. 

𝐿𝐿 = Total length of the roadway segment in miles. 

 

As a result, there is a quantitative link between the crashes in the network and the 

skid condition in the network. This information is used in subsequent steps to estimate 

the crash reduction benefit. 

7.3 ESTIMATE EXPECTED CRASHES WITH AND WITHOUT MAINTENANCE 

The objective of this step is to quantify the expected crashes for the Do-Nothing 

policy and the condition-responsive policy. Once the future condition of the network is 

known for the two policies (using the deterioration model), the expected number of 

crashes can be estimated under different scenarios. Equation 30 presents the relationship 

between crashes in the network and the crash rate per lane-mile for each condition state.  
 

 
𝐶𝐶𝑡𝑡 = �𝒖𝒖𝑡𝑡,𝚤𝚤� ∗ 𝐿𝐿 ∗ 𝑅𝑅𝑖𝑖 (30) 

Where: 

𝐶𝐶𝑡𝑡 = Expected crashes in the network for a specific year 𝑡𝑡. 

𝒖𝒖𝑡𝑡,𝚤𝚤�  = Estimated percentage of the network with condition state 𝑖𝑖 at year 𝑡𝑡. 

𝐿𝐿 = Total length of the roadway segment in miles. 

𝑅𝑅𝑖𝑖 = Crash rate per lane-mile for condition state i. 
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It is important to remember that the CRR-SN quantifies the relationship of crash 

risk and skid at the network level (Long, Wu, Zhang, & Murphy, 2014). This means that 

the result of Equation 30 is the overall expected number of crashes at the network level, 

and not the exact number of crashes, which can be a function of different factors and not 

only skid (Pratt, et al., 2014).  

7.4 ESTIMATE MONETARY BENEFIT FROM CRASH REDUCTION 

The objective of this step is to quantify the economic value of the reduction of 

crashes due to skid improvements. This can be achieved by estimating the weighted 

average cost per crash. The weighted average cost takes into account the fact that 

different severities of crashes produce different economic impacts (for example, a 

property damage crash has less economic impact than a fatality). Equation 31 presents the 

formula to estimate the unit cost per crash. 
 

𝑈𝑈𝑈𝑈𝑈𝑈 =
∑𝑈𝑈𝑠𝑠 ∗ 𝐾𝐾𝑠𝑠

𝐶𝐶
 (31) 

where: 

𝑈𝑈𝑈𝑈𝑈𝑈 = Average unit cost per crash. 

𝑈𝑈𝑠𝑠 = Unit cost of a type of crash severity 𝑠𝑠. 

𝐾𝐾𝑠𝑠 = Number of people killed or injured by crash severity 𝑠𝑠, or number of 

crashes in case of non-injured crash type. 

𝐶𝐶 = Total number of crashes. 

 

The annual benefits can be estimated using Equation 32, using unit cost per crash 

and the expected crashes per year. It is important to note that the exact number of crashes 

in the network is a stochastic process that depends on multiple factors. The benefits are 
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based on the expected reduction of crashes but not the actual reduction in the number of 

crashes. 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = 𝑈𝑈𝑈𝑈𝑈𝑈 ∗ (𝐶𝐶𝑡𝑡,𝐷𝐷𝐷𝐷−𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) (32) 

Where: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = Nominal benefit of crash reduction for year 𝑡𝑡. 

𝑈𝑈𝑈𝑈𝑈𝑈 = Average unit cost per crash. 

𝐶𝐶𝑡𝑡,𝐷𝐷𝐷𝐷−𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑖𝑖= Expected number of crashes in year 𝑡𝑡 if no treatment is 

applied. 

𝐶𝐶𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = Expected number of crashes in year 𝑡𝑡 if treatments are 

applied to achieve a specific goal. 

 

In order to develop the Benefit-Cost analysis for multiple years, it is necessary to 

take into account the effect of the discount rate on the benefits (Transportation 

Economics Committee of TRB, 2016). Each nominal benefit can be converted for a base 

year using Equation 33. The sum of the net present value of the benefits is the total 

benefit for a specific goal, and it is estimated as is presented in Equation 34. 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = 𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 ∗ (1 + ℎ)𝑡𝑡−𝑡𝑡0 (33) 

where: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = Net present value of economic benefits for year 𝑡𝑡. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = Nominal economic benefit for year 𝑡𝑡. 

ℎ = Discount rate. 

𝑡𝑡0 = Base year. 
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𝑇𝑇𝑇𝑇(𝑔𝑔) = �𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡

𝑛𝑛

𝑡𝑡=1

 

 
(34) 

where: 

𝑇𝑇𝑇𝑇(𝑔𝑔)= Total economic benefit for a specific maintenance goal 𝑔𝑔. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 = Net present value of economic benefits for year 𝑡𝑡. 

𝑛𝑛  = Total number of years analyzed. 

The compilation of the total economic benefit for different goals is a function that 

expresses the relationship between the maintenance goal and the benefits. This function is 

increasing: when the goal increases, the number of sections treated increases, while the 

expected number of crashes in the sections treated decreases. The minimum possible 

value is zero, which is equivalent to the Do-Nothing maintenance policy (and therefore, 

no crash reduction nor economic benefit is produced). The highest possible value is 

achieved when additional skid improvements have negligible reductions in crashes. The 

actual shape of the function depends on the network condition in the base year, the 

deterioration model obtained, and the crash rates of the network.  

 

 

 



 75 

Chapter 8: Benefit-Cost Ratio Analysis 

Chapter 8 describes the process for the estimation of the Benefit-Cost Ratio 

(BCR). This chapter begins with the explanation of the Benefit-Cost Ratio concept (8.1), 

and continues with the development of scenarios to account for uncertainty (8.2). Figure 

12 presents the framework for the estimation of the BCR.  

 

 

Figure 12: Framework for the Benefit-Cost Ratio Analysis 

 

8.1 ESTIMATION OF BENEFIT-COST RATIO FOR MULTIPLE MAINTENANCE GOALS 

The objective of this step is to estimate the Benefit-Cost Ratio (BCR) for multiple 

goals. As is mentioned in subchapter 2.6 Benefit-Cost Ratio Analyses, the BCR has been 

used in the last decade to evaluate transportation investments (World Bank, 2010) 

(Transportation Economics Committee of TRB, 2016). The BCR analysis is 

recommended when two alternatives are compared; in the case of the present framework, 

the comparison is between the Do-Nothing maintenance policy and the Condition-
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Responsive maintenance policy. The BCR is estimated as the ratio of the benefits and the 

costs, as is presented in Equation 35. 
 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐵𝐵𝐵𝐵𝐵𝐵) =  
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 (35) 

 

In the case of the present framework, the BCR is not a single value but a vector of 

multiple ratios for the different maintenance goals (Equation 36). Each maintenance goal 

will yield a different maintenance cost and a different crash reduction, and by 

consequence, a different BCR. 

 
 

𝐵𝐵𝐵𝐵𝐵𝐵𝑔𝑔 =
𝑇𝑇𝑇𝑇(𝑔𝑔)
𝑇𝑇𝑇𝑇𝑇𝑇(𝑔𝑔) (36) 

Where: 

𝐵𝐵𝐵𝐵𝐵𝐵𝑔𝑔= Benefit-cost ratio for a specific maintenance goal 𝑔𝑔. 

𝑇𝑇𝑇𝑇(𝑔𝑔)= Total economic benefit for a specific maintenance goal 𝑔𝑔. 

𝑇𝑇𝑇𝑇𝑇𝑇(𝑔𝑔)= Total maintenance costs for a specific maintenance goal 𝑔𝑔. 

 

The BCR as a function of the maintenance goal is a decreasing function (that is, 

when the goal increases, the BCR decreases). This is because the reduction of crashes is 

higher in low skid sections than in middle or high skid sections when a treatment is 

applied, based on the CRR-SN curves. The actual shape of the function is determined by 

those parameters defined in the previous chapters; these parameters can be summarized in 

the deterioration model, treatment costs, the initial skid condition of the network, and the 

road crashes in the network in the base year. 
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8.2 DEVELOPMENT OF ONE-VARIABLE SCENARIOS  

The objective of this step is to develop scenarios where the impact of variability 

in the parameters of the model is analyzed. The BCR analysis must include explicitly the 

uncertainties in the model (World Bank, 2010). One of the ways to do this is to develop 

one-variable scenarios where the impact of the variability of one parameter is analyzed. 

The final output is a matrix where, for the different goals, there is a band of low extreme 

values, average values, and high values of the parameter analyzed (Transportation 

Economics Committee of TRB, 2016). In the present framework, parameters with 

uncertainty that can be included in this analysis are: 

• Period of time between the assessment and the treatment: that is, if 

treatments are applied within one time step or  not. For example, a 

pavement section that has a SN below the threshold can be treated within 

year, or can be treated after two years. 

• Maintenance unit cost. 

• CRR-SN curve parameters. 

• Crash rates. 

• Unit cost of crashes. 

• Discount rate. 

One of the limitations is that the one-variable scenario can be applied only to 

linear processes. For that reason, the parameters of the MC deterioration model cannot be 

analyzed with this methodology. Likewise, the AADT cannot be included because it is a 

potential explanatory variable of the skid deterioration; that is, a different AADT could 

potentially have a different TPM. In this case, sections in the network with similar AADT 

can be grouped in order to capture the deterioration process for each group, as is 

explained in subchapter 4.7 Develop the Transition Probability Matrix For 
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Heterogeneous Groups. Another limitation is that, at the most, the analysis can only be 

done to two variables at the same time (Transportation Economics Committee of TRB, 

2016). 

There are other techniques that can be developed in order to account for 

uncertainty, such as analytical distributions analysis (if all the variables are linear) or 

Monte-Carlo Simulation (that can be applied for all variables: linear and non-linear). The 

advantage of these techniques is that they allow for the analysis of a combination of 

multiple uncertainties; however, these techniques are out of the scope of the present 

framework. 
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Chapter 9: Case Study 

This chapter presents the development of the Case Study, using data from the 

Austin District in Texas. The case study presents an example of each of the modules 

exposed in the previous chapters. 

9.1 DESCRIPTION OF INITIAL SKID DATABASE 

Information from the Austin District is used as the case study to build the 

deterioration model and perform the Benefit-Cost Analysis. The Austin District is located 

in Central Texas and is composed of 11 counties: Mason, Llano, Gillespie, Burnet, 

Blanco, Williamson, Travis, Hays, Lee, Bastrop, and Caldwell. The District is 

responsible for the management of 3,454 center line miles of roads, divided in 8,320 

PMIS sections of approximately 0.5 miles (Texas Department of Transportation, 2015). 

Flexible Pavement is the most common pavement type in the District, which constitutes 

95 percent of the center line miles; 46 percent of the center line miles consist of Asphaltic 

Concrete Pavement (ACP) (Type 5 surface thickness 2.5” – 5.5” and Type 6 surface 

thickness < 2.5”) and 49 percent consist of Surface Treated pavements (Type 10) which 

also include pavements with seal coat surfaces. The remaining 5 percent of center line 

miles is Continuously Reinforced Concrete Pavement (CRCP) (Type 1). The skid 

database contains data from 2012 to 2015. 

9.2 MODEL SKID RESISTANCE DETERIORATION 

9.2.1 Define the Skid Resistance Performance Measure 

The Austin District collects skid information using the locked-wheel skid trailer, 

specified by ASTM E274. The test is conducted with a smooth tire at a speed of 50 miles 
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per hour. The SN is estimated using Equation 1 described in subchapter 2.2 Method to 

Measure Skid.  

9.2.2 Define Skid Condition States 

The condition states for the case study are defined based on literature and the 

availability of data. The worse condition state (SN from 1 to SN 20) is defined taking into 

account that, for the case of Texas, there are instabilities in the CRR-SN curves below a 

SN of 15 (Long, Wu, Zhang, & Murphy, 2014). In order to avoid these instabilities, this 

condition state includes the SN up to 20. In addition to this, the Austin District monitors 

pavement sections that have an SN below 20. For these reasons, the upper bound of the 

worse condition state is defined as SN 20. The best condition state (SN from 61 to 100) is 

defined taking into account the minimum data points required to perform the analysis. 

Values of skid above 70 are infrequent (approximately 4.5 percent of the total data). 

Thus, if the upper value of SN 74 estimated by Long et al. (2014) is used, it will result in 

a condition state with few counts and instability in the MC model. By aggregating the SN 

from 61 to 100 there are enough data points in this condition state to continue the 

analysis. The condition state with SN from 41 to 60 is defined taking into account that in 

general, improvements of skid result in increases of SN that are above 40; skid 

improvements after micro-surfacing generally ranged between low 60s and high 40s 

(Pratt, et al., 2014) (Federal Highway Administration, 2014). Therefore, this condition 

state is defined between these two ranges (SN 41 and 60). Finally, the condition states in 

the middle (SN from 21 to 40) are defined in groups of 5 SN and 10 SN in order to have a 

more detailed evaluation of the benefits. Table 2 summarizes the six condition states 

defined for the case study. 
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Table 2: Condition States Used to Model Skid Resistance 

Condition States Lower Bound Upper Bound 
1 61 100 
2 41 60 
3 31 40 
4 26 30 
5 21 25 
6 1 20 

9.2.3 Estimate Deterioration Probability Matrix 

The deterioration model selected for the case study is the Markov Chain process 

described in Chapter 4: Markov Chain Principles. This model has the advantage of 

capturing the stochastic behavior of the skid deterioration requiring network level data in 

order to predict future condition.  

9.2.3.1 Select the Data to Model the Deterioration  

The following is the criteria used to select the sample to model skid deterioration: 

• Sections with Flexible Pavement: Only the sections with flexible 

pavement are considered in the analysis. This is because the Crash Rate 

Ratio (CRR) curves were estimated only for flexible pavements in Texas 

(Wu, Zhang, Long, & Murphy, 2014). 

• Historical Data Availability: Sections with missing values for some of 

the years 2012-2015 are discarded. It is assumed that the missing data 

follows the MCAR (Missing Completely at Random) and thus does not 

affect the sample.  

• Sections without Treatments Applied from 2012 to 2015: Only the 

sections without treatments applied during the study period are considered. 
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For the last criteria, there is no complete information readily available about the 

sections with or without treatment applied in the study period in the network. 

Furthermore, there is no quantification in the literature of the SN improvements when 

pavement treatments are applied. Therefore, it is required to use a criterion to find the 

sections without treatment. In this case study, the sections with annual increases in SN 

are considered to have a treatment in the study period. However, not all the increases in 

SN are due skid improvements, but might  be due to uncertainties in the skid 

measurements. In this framework, the standard deviation of 2 SN, estimated by the 

ASTM for repeated SN measurements, is used (ASTM International, 2015). A threshold 

of +6 SN of annual improvement in the SN is selected (that is, three standard deviations 

above the average or 99% of the cases for a normal distribution). In other words, if a 

section experiences an annual increase in the SN of 6 or below, it is assumed that is 

because of the measurement uncertainty around the real value.  If a section experiences 

an annual increase in the SN of 7 or above, it is considered that the section received a 

pavement resurface treatment, and thus, cannot be used to model the natural deterioration 

of skid. The sample obtained consists of a total of 1,161 sections, and a length of 564 lane 

miles.  

9.2.3.2 Select the Training and Test Sets 

The method used for the selection of the training and test sets is the holdout 

method (see section 5.3.2 Select the Training and Test Sets), because does not require 

specialized software. The dataset is randomly subsampled in two groups, one with 70 

percent of the data (training set) and the other with the remaining 30 percent (validation 

set). The TPMs are estimated using Equation 9 with the training set, while the validation 

set is used to perform the statistical test of the prediction.  
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9.3.2.3 Develop the Transition Probability Matrix and Prediction of the Future 
Condition  

The sample data covers from year 2012 to 2015; thus, three different annual 

TPMs can be estimated (TPMs for years 2012-2013, 2013-2014, and 2014-2015). These 

TPMs are combined in order to have a time-homogenous TPM for the three years as is 

described in subchapter 5.3.3 Develop Transition Probability Matrix and Predict the 

Future Condition.  

Using Equation 10, the future condition of the network can be estimated using the 

TPM and the vector of the initial condition. For the case study, the initial condition is the 

condition in 2012. Table 3 summarizes the number of sections observed and predicted 

using the TPM, while Table 4 summarizes the relative error of the prediction using 

Equation 14.  

Table 3: Number of Sections Observed (and Predicted) in Each Condition State 2012- 
2015 for the Training Set with Non-Optimized TPM 

 Condition States 
Year 1 2 3 4 5 6 

2012 (Base 
Year) 259 (NA) 266 (NA) 125 (NA) 70 (NA) 52 (NA) 59 (NA) 

2013 210 
(220.4) 

247 
(253.9) 

157 
(140.2) 

74 
(70.7) 

65 
(69.9) 78 (75.9) 

2014 165 
(190.9) 

257 
(237.1) 

128 
(147.1) 

78 
(77.6) 

96 
(83.6) 107 (94.7) 

2015 179 
(167.4) 

205 
(218.9) 

153 
(149.6) 

83 
(83.9) 

97 
(96.7) 

114 
(114.5) 

Note: Values in parenthesis are the predicted values using the TPM. 
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Table 4: Relative Error of Prediction for the Training Set with Non-Optimized TPM 

 Condition States 
Year 1 2 3 4 5 6 
2013 4.9% 2.8% -10.7% -4.4% 7.6% -2.7% 
2014 15.7% -7.7% 14.9% -0.5% -12.9% -11.5% 
2015 -6.5% 6.8% -2.2% 1.1% -0.4% 0.5% 

9.3.2.4 Optimize the Transition Probability Matrix 

The TPM matrix is optimized by minimizing the objective function of the square 

error, which is described in Equation 12. The optimization is performed with the 

restrictions described in subchapter 5.3.4 Optimize the Transition Probability Matrix, 

using the generalized reduced gradient nonlinear optimization code incorporated as an 

add-in to the software Microsoft Excel (Microsoft Excel, 2013). Table 5 presents the 

TPM after the optimization process, while Table 6 summarizes the number of sections 

observed and predicted using the optimized TPM. Table 7 presents the relative error of 

the prediction, where it can be seen that the optimization decreases the relative error as 

compared to Table 4.  

Table 5: Transition Probability Matrix Optimized for the Training Set 

Condition States 1 2 3 4 5 6 
1 84.8% 2.6% 12.5% 0.0% 0.0% 0.0% 
2 0.0% 91.6% 0.0% 4.8% 0.0% 3.7% 
3 0.0% 0.0% 85.2% 0.0% 14.8% 0.0% 
4 0.0% 0.0% 0.0% 89.3% 10.0% 0.7% 
5 0.0% 0.0% 0.0% 0.0% 84.3% 15.7% 
6 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 
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Table 6: Number of Sections Observed (and Predicted) in Each Condition State 2012-
2015 for the Training Set with the Optimized TPM 

 Condition States 
Year 1 2 3 4 5 6 

2012 (Base 
Year) 259 (NA) 266 (NA) 125 (NA) 70 (NA) 52 (NA) 59 (NA) 

2013 210 
(219.6) 

247 
(250.4) 157 (139) 74 (75.2) 65 (69.4) 78 (77.5) 

2014 165 
(186.2) 257 (235) 128 (146) 78 (79.2) 96 (86.6) 107 

(98.1) 

2015 179 
(157.8) 

205 
(220.1) 

153 
(147.7) 83 (81.9) 97 

(102.6) 
114 

(120.9) 

Note: Values in parenthesis are the predicted values using the optimized TPM. 

Table 7: Relative Error of Prediction for the Training Set with Optimized TPM 

 
Condition States 

Year 1 2 3 4 5 6 
2013 4.6% 1.4% -11.5% 1.7% 6.7% -0.7% 
2014 12.8% -8.6% 14.0% 1.5% -9.8% -8.3% 
2015 -11.8% 7.4% -3.5% -1.3% 5.7% 6.0% 

 

The optimized TPM (Table 5) provides a valuable insight about the skid 

deterioration in this network. For the condition states 2 and 3, the annual transition due to 

deterioration is greater than for other condition states, which is represented in the 

percentages from state 2 to 4, and 3 to 5. This means that the deterioration occurs at a 

faster rate in these condition states compared to state 1 (the best condition) and condition 

states 4, 5, and 6 (low conditions). In addition, the TPM is closely approximates a 

Progressive MC process and not a Sequential MC; for this reason, the Progressive MC is 

used for the next steps of the analysis. 
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9.2.4 Perform a Statistical Test of the Prediction 

In order to validate the deterioration model, the χ2 is conducted to evaluate if the 

difference in the prediction and observed values is significant or not. A value of 𝛼𝛼 = 0.05 

is used for this test. The null hypothesis is that there are no significant differences 

between the prediction and the observed values. The test is applied to the training set, and 

the results are summarized in Table 8. Because the value of 𝑝𝑝 (0.09) is higher than the 

value of 𝛼𝛼 (0.05), it can be concluded that the differences between the observed and 

predicted values are not statistically significant; therefore, the optimized TPM can be 

used to predict the condition of the training set.  

Table 8: Results of the Chi-Square Test for the Training Set 

Item Value 
Degrees of Freedom (m-1) x (n-1) 10 
Probability to Reject Null Hypothesis (α) 0.05 
Right Tail Critical Value with 10 Degrees of 
Freedom 18.307 
X2 Value 16.205 
Probability of the X2 Test (p) 0.09 

 

In order to cross-validate the results of the model, the remaining 30 percent of the 

data (test set) is used to estimate the deterioration using the same optimized TPM. Next, 

the result is tested with the χ2 test. Table 9 summarizes the number of sections observed 

and predicted using the optimized TPM for the test set, and Table 10 presents the relative 

error of each of these predictions. Table 11 presents the result of the χ2 for the test set.  
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Table 9: Number of Sections Observed (and Predicted) in Each State 2012-2015 for the 
Test Set with the Optimized TPM 

 
Condition States 

Year 1 2 3 4 5 6 
2012 (Base Year) 113 (NA) 91 (NA) 51 (NA) 28 (NA) 20 (NA) 27 (NA) 

2013 92 (95.8) 91 (86.3) 51 (57.6) 36 (29.4) 30 (27.2) 30 (33.7) 
2014 73 (81.2) 88 (81.5) 59 (61.1) 27 (30.3) 35 (34.4) 48 (41.4) 
2015 77 (68.9) 79 (76.8) 53 (62.3) 37 (31) 34 (41.1) 50 (50) 

Note: Values in parenthesis are the predicted values using the optimized TPM. 

Table 10: Relative Error of Prediction for the Test Set with Optimized TPM 

 
Condition States 

Year 1 2 3 4 5 6 
2013 4.1% -5.2% 13.0% -18.5% -9.3% 12.3% 
2014 11.3% -7.4% 3.6% 12.4% -1.6% -13.8% 
2015 -10.6% -2.8% 17.5% -16.2% 20.9% 0.0% 

 

Table 11: Results of the Chi-Square Test for the Test Set 

Item Value 
Degrees of Freedom (m-1) x (n-1) 10 
Probability to Reject Null Hypothesis (α) 0.05 
Right Tail Critical Value with 10 Degrees of 
Freedom 18.307 
X2 Value 11.02 
Probability of the X2 Test (p) 0.36 

Table 11 shows that the value of 𝑝𝑝 (0.36) is higher than the value of 𝛼𝛼 (0.05), 

meaning that the differences between the observed and predicted values are not 

statistically significant. Thus, even with new data, the optimized TPM (Table 5) can be 

used to predict the future condition of the skid in the network. In subsequent steps, the 

Case Study applies the framework by taking as the base year the data from 2015, and 

predicting the condition of the network for 2016, 2017, and 2018. 
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9.3 ESTIMATE COSTS FOR MAINTAINING SKID RESISTANCE 

9.3.1 Define Skid Resistance Maintenance Threshold 

In this case study, the maintenance policy selected is the Condition-Responsive 

policy: a pavement section is treated if, at any given year, it has a SN below a specific 

SN. It is important to note that the condition-responsive policy is an idealization of skid 

management; in the real process, a pavement resurface treatment is selected as a 

combination of multiple factors such as SN, crash history, AADT, and others (see 

subchapter 6.1 Define Skid Resistance Maintenance ). In this case study, the term goal is 

used as the minimum SN allowed in the network (minimum threshold); in other words, 

the goal is the minimum SN that a section can have before being treated. The Benefit-

Cost analysis is performed for different goals, from a SN of 15 to 100. 

9.3.2 Define a Maintenance Transition Probability Matrix for Each Threshold 

Once the goals have been defined, it is necessary to associate a Maintenance 

matrix (M) with each goal. For the case study, each matrix M is defined according to the 

following criteria: 

The performance jump of skid is up to condition state 2: This means that the 

sections treated increase their SN enough to reach state 2 (SN from 41 to 60). Different 

treatments can be associated with different skid improvement. Public agencies such as the 

Florida DOT (FDOT) have quantified the Maintenance matrix and the improvements of 

different parameters after a treatment (Panthi, 2009), but this is not the case for Austin 

District. However, in general, the new values of skid can be assumed to be to above 40 

and below 60 after a treatment (Pratt, et al., 2014) (Federal Highway Administration, 

2014).  
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Number of sections treated in each state is proportional to the goal: 

Depending on the goal, a different number of sections will need a treatment for each 

condition state. The number of sections to be treated is a function of the cumulative 

distribution of sections in each condition state. Condition states 2, 3, 4, and 5 have a 

uniform distribution of the pavement frequencies. Exceptions are made for condition 

states 1 and 6, where the cumulative frequency distribution of the number of sections is 

not uniform. This is shown in Figure 13 and Figure 14. 

 

 

Figure 13: Cumulative Frequency of the Number of Sections for Each Skid Number for 
State Condition 1 
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Figure 14: Cumulative Frequency of the Number of Sections for Each Skid Number for 
State Condition 6 

For the condition state 1, almost 90 percent of the data ranges from 60 to 70. 

Therefore, the frequencies are modeled as two uniform distributions: first, from SN 61 to 

SN 70 for 90 percent of the frequencies, and the second from SN 71 to SN 100 for the 

remaining 10 percent of the frequencies. For example, a goal of SN 66 means that 45 

percent of the sections of condition state 1 are treated. 

For the state 6, almost 100 percent of the data is in the range from SN 12 to 20. 

Therefore, the frequency distribution for this condition state is modeled as a uniform 

distribution from SN 12 to SN 20. 

All sections are treated within one step (one year): For this case study, all the 

sections that need treatment are assumed to receive the treatment in the same year. 

Once the Maintenance Matrix M is defined for each goal, the future condition of 

the network for each maintenance goal can be obtained using Equation 18.  
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9.3.3 Select Unit Cost of Skid Resistance Treatments 

As explained in subchapter 6.3 Select Unit Cost of Skid Resistance Treatments, 

different treatments can improve skid such as thin overlay, seal coats, microsurfacing, or 

chip seals; however, these treatments usually are applied in conjunction with other 

projects, causing difficulty in quantifying a specific unit cost. The High Friction Surface 

Treatment (HFST) unit costs are not considered because they are usually applied in small 

sections of the network (Federal Highway Administration, 2014). In the case of Austin, 

the most common treatment is the Thin Friction Course Overlay (TFCO).  

Specific pavement resurfacing treatments in Texas range from $11,000 to $47,000 

per lane mile (Long, Wu, Zhang, & Murphy, 2014) (Broughton & Lee, 2012). In this case 

study, instead of using the unit cost of one treatment, the preventive maintenance cost 

from the TxDOT 4-Year Management Plan is used (Liu, Jaipuria, Murphy, & Zhang, 

2012). This cost includes the transportation and mobilization of equipment to the 

treatment location, but does not include any congestion cost associated with the 

construction work zone.  

The cost is indexed to 2014 using the Texas Highway Construction Index (Texas 

Department of Transportation, 2016b). The updated Preventive Maintenance cost is 

$42,000 per lane mile. In this paper, a standard deviation (SD) of $5,000 is assumed, and 

three scenarios are developed: 1) a high cost scenario with a cost 2 SD above the average, 

2) an average cost scenario, and 3) a low cost 2 SD below the average. These scenarios 

are reflected in the BCR analysis. 

9.3.4 Estimate Policy Costs 

Once the future condition of the network is estimated for each maintenance goal, 

the number of lane-miles to be treated (Equation 19) and the total maintenance cost per 

year (Equation 20) can be estimated. Figure 15 presents the results of the maintenance 
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costs for different goals for the three scenarios defined previously: 1) a high cost scenario 

with a cost 2 SD above the average, 2) an average cost scenario, and 3) a low cost 2 SD 

below the average. The costs are almost linear from SN 15 to 70 due to the initial 

condition of the network in 2015, which is almost uniform from SN 20 to SN 70. The 

number of sections with a SN above 70 is small, and even with a high maintenance goal, 

there is a slight increase in the cost because there are fewer additional sections to treat. 

 

 

Figure 15: Maintenance Costs for Different Maintenance Goals in the Network 

9.4 ESTIMATE CRASH REDUCTION BENEFITS 

9.4.1 Assess Current Road Safety Condition 

The number of crashes in the base year (2015) can be estimated using Equation 

24. Table 12 summarizes the safety parameters used in the estimation of crashes in this 

network (Texas Department of Transportation, 2016). The expected number of crashes in 

the network is 535. 
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Table 12: Safety Parameters Used to Estimate the Expected Number of Crashes in the 
Network in the Base Year (2015) 

Parameter Value 
Annual Crashes per 100 Million Miles Traveled in Texas in 2015 210.3 
N 1 
Total Mileage  564 
AADT per Lane (median) 1,200 
Expected Crashes 2015 in the Network 535 

9.4.2 Link Expected Crashes with Skid Resistance Through CRR 

In this step, the expected number of crashes per lane-mile for each state are 

estimated using the CRR-SN for Texas. Each condition state will have an associated 

value of CRR that depends on the SN in their range. The value of the CRR is associated 

with the middle point of each condition state, except for condition states 1 and 6 where 

the frequency of SN is not uniform. In these two cases, a weighted average is used to 

define the “middle point” of condition states 1 and 6.  

The study developed by Wu et al. (2014) estimated the CRR curves for all crashes 

and wet weather crashes in Texas. In this case study, the “all crashes” curves is used for 

two reasons: first, it is more appropriate to the case study where the expected crashes are 

not only related to the wet crashes, but also to total crashes. It is important to mention 

that skid improvements can reduce both wet and dry weather crashes (Hosking, 1986). 

Second, it is more conservative (the increase of Crash Rate Ratio for low values of SN is 

lower for the “all crashes” curve than to the “wet crashes”). Equation 37 presents the 

parameters used in the estimation of the CRR for each condition state. 
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𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑆𝑆𝑆𝑆 = 𝑎𝑎 ∗ 𝑒𝑒𝑏𝑏∗𝑆𝑆𝑆𝑆 + 𝑐𝑐 

 (37) 

Where: 

 𝑎𝑎 = 3.894 

 𝑏𝑏 = -0.04605 

 𝑐𝑐 = 0.9205 

As it is explained in subchapter 7.2 Link Expected Crashes with Skid Resistance 

Through CRR, the CRR may need to be normalized to the value of the best condition 

state. In this case study, since the condition state 1 has its middle point below 72, the 

CRR associated with this condition state is not 1.0., causing the cumulated percentage of 

crashes to be above 100 percent. For that reason, the values of CRR are normalized based 

on the value of CRR of the condition state 1.  

Table 13: CRR-SN Associated For Each Condition State 

Condition 
States 

Lower 
Bound 

Upper 
Bound 

Middle Point of 
Condition States 

CRR-SN for Each 
Condition State 

6 1 20 16 2.53 
5 21 25 23 2.07 
4 26 30 28 1.81 
3 31 40 36 1.51 
2 41 60 51 1.18 
1 61 100 67 1.00 

Note: In order to obtain a CRR-SN of 1.0 for condition state 1, the values of the CRR-SN 

for each condition state have been normalized based on the CRR-SN value for condition 

state 1. 

The next step is the estimation of the crash rate per lane-mile, using Equation 25, 

Equation 27, and Equation 29 as it is presented in subchapter 7.2 Link Expected Crashes 
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with Skid Resistance Through CRR. It is assumed that the crash rates for each condition 

state are fixed during the period of analysis (four years), which is a realistic assumption 

because crash rates per mile do not vary dramatically in a four-year period. Table 14 

presents the network condition in the base year (2015) of the case study, and Table 15 

presents the crash rate estimated for each state. 

Table 14: Network Condition in 2015 

State Lane-Miles 

Percentage of the 
Network in Each 
Condition in 2015 

Cumulated 
Percentage of the 
Network for Each 
Condition State 

6 79.7 14.1% 14.1% 
5 63.6 11.3% 25.4% 
4 58.3 10.3% 35.7% 
3 100.0 17.7% 53.5% 
2 138 24.5% 78.0% 
1 124.4 22.0% 100.0% 

Table 15: Percentage of Crashes and Crash Rate per Lane-Mile Per Year for Each  
Condition State 

Condition 
State 

Cumulated 
Percentage of 
the Network 

for Each 
Condition 

State 

Percentage of 
Crashes 

Considering 
Increase of 
Crash Risk 
Due to SN 

Percentage 
of Crashes 

in Each 
Condition 

State 

Expected 
Crashes 
Per Year 
in Each 

Condition 
State 

Crash 
Rate Per 
Lane -

Mile Per 
Year 

6 14.1% 35.8% 35.8% 191.6 2.3 
5 25.4% 52.5% 16.7% 89.5 1.4 
4 35.7% 64.9% 12.3% 66.0 1.1 
3 53.5% 81.0% 16.1% 86.1 0.8 
2 78.0% 91.7% 10.8% 57.6 0.4 
1 100.0% 100.0% 8.3% 44.4 0.3 
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9.4.3 Estimate Expected Crashes With and Without Maintenance 

Using Equation 30 and the number of lane-miles for each condition state, the 

expected number of crashes on the network can be estimated. Figure 16 presents the total 

crash reduction estimated for the network for years 2015-2018.  

 

 

Figure 16: Estimated Crash Reduction in the Network for Years 2015-2018 for Different 
Maintenance Goals 

As Figure 16 shows, there is a higher marginal reduction for lower values of SN 

goals. When the goal approaches condition state 2 (SN 41-60), the reduction of crashes 

due to increased skid resistance becomes zero, reflecting the fact that additional 

treatments will not increase the SN (as was formulated in the creation of the Maintenance 

Matrix). 

9.4.4 Estimate Monetary Benefit from Crash Reduction 

The crash information for the Austin District in 2015 is used to estimate the unit 

cost of a crash. The CRIS database, which contains the crash information for the Austin 
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District, uses the KABCO scale. The different unit costs are obtained from the National 

Highway Traffic Safety Administration (2015) updated report in 2015 for the economical 

and societal costs of crashes. 

Table 16: Summary of Crash Data for the Austin District in 2015 

Description Equivalent 
Letter 

Unit Cost 
(2010 USD) 

Count 
People Cost (2010 USD) 

Killed K $9,145,998 276 $2,524,295,448 
Incapacitating 

Injury A $1,001,206 1,410 $1,411,700,460 

Non-
incapacitating 

Injury 
B $276,010 7,412 $2,045,786,120 

Complain of 
Pain C $127,768 9,164 $1,170,865,952 

No Injury 
(Number of 

Crashes) 
O $42,298 18,849 $797,275,002 

Unknown 
Injury NA NA 3,418 NA 

Notes: 1) The unit cost for categories A, B, C, and O are obtained from the Appendix D: 

KABCO Unit Costs of the report The Economic and Societal Impact of Motor Vehicle 

Crashes, 2010 (Revised), NHTSA, 2015. 2) The unit cost for category K is obtained from 

the “Table 1-9 Summary of Comprehensive Unit Costs, Reported and Unreported 

Crashes, 2010 Dollars” in The Economic and Societal Impact of Motor Vehicle Crashes, 

2010 (Revised), NHTSA, 2015 3) The O category (No Injury) counts the number of 

crashes instead of the number of people. 

 

Using Equation 31, the unit cost per crash can be estimated (National Highway 

Traffic Safety Administration, 2015). According to the NHTSA, the categories K and A 
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are reported always, while for lower severities there are unreported cases. Therefore, the 

unit cost of the “Unknown Injury” is estimated as the weighted average of categories B, 

C, and O. Finally, the unit cost per crash is indexed to 2014 USD using the inflation rate 

of the Bureau of Labor Statistics (2016). The result is a unit cost per crash of $223,000 

(in 2014 USD). 

9.5 BENEFIT-COST RATIO ANALYSIS 

The final step is the estimation of the BCR for different maintenance goals. Three 

scenarios are developed following the different treatment costs established in section 

9.3.3 Select Unit Cost of Skid Resistance Treatments: 1) a high cost scenario with a cost 

2 SD above the average, 2) an average cost scenario, and 3) a low cost 2 SD below the 

average. Figure 13 presents the BCR results. The table with the results is in Appendix A. 

 

  

Figure 17: Benefit-Cost Ratio for Different Maintenance Goals 
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Figure 17 presents some discontinuities around the boundaries of the different 

condition states defined for the MC. This is due to the association of a CRR for each 

condition state, meaning that the change in CRR is not continuous from one condition 

state to the other. In order to have a smoother graph, it is necessary to create more 

condition states; however, this would require more data in order to model the 

deterioration properly.  

The marginal Benefit-Cost Ratio can also be estimated, but only as a weighted 

average for each condition state due to the aggregation of the SN in groups. The marginal 

benefit represents the theoretical BCR of improving one section from condition state i to 

condition state 2. Table 17 and Figure 18 illustrate the marginal BCR trend.  

Table 17: Marginal Benefit-Cost Ratio for Each Condition State with Average 
Maintenance Costs 

Condition 
Group 

Marginal Benefit-
Cost Ratio with 
Average 
Maintenance Cost 

6 (SN 1-20) 10.8 
5 (SN 21-25) 4.8 
4 (SN 26-30) 4.3 
3 (SN 31-40) 2.5 
2 (SN 41-60) 0.0 
1 (SN 61-100) 0.0 
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Figure 18: Marginal Benefit-Cost Ratio for Each Condition State with Average 
Maintenance Costs 

9.6 POLICY RECOMMENDATIONS  

In general, the BCR curves follow the same trends as the CRR-SN curves 

estimated by Long et al. (2014). This means that, for low values of SN, an improvement 

has a higher Benefit-Cost Ratio compared to improvements of other condition states. 

Likewise, it can be observed that the BCR decreases until the maintenance goal reaches 

the condition state 1 (SN 61-100). This is because, according to the CRR-SN curves, 

treating sections with SN above 70 will have a negligible reduction in crash risk. 

The results show BCR values above 6 for skid thresholds below 30 for the 

average maintenance cost scenario. Similarly, the BCR for all the analyzed thresholds is 

above 2.5, even if the threshold is a SN of 60. These results suggest that improving 

pavement sections with low skid number could yield a positive economic benefit. 

However, this thesis considered maintenance costs for SN treatments that increase skid 

up to low 60s. Therefore, the estimation of the BCRs for skid thresholds above 60 must 
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be estimated with the adequate maintenance cost. Finally, the order of magnitudes of the 

BCRs obtained is comparable with other studies that suggested high BCRs for skid 

treatments (Federal Highway Administration, 2014; Federal Highway Administration, 

2014b) (Long, Wu, Zhang, & Murphy, 2014) (Brimley & Carlson, 2012).  
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Chapter 10: Summary of Findings and Topics for Future Research 

This thesis focuses on the development of a framework to that could assist 

decision makers in their process of establishing policies for skid maintenance. The 

current framework can be used to estimate the quantitative benefits of improving skid 

resistance at the network level. The following are the major findings as a result of the 

development of the current framework. 

10.1 SUMMARY OF RESEARCH FINDINGS 

• There is a proven relationship between the crashes and low skid numbers. 

Moreover, agencies at the state and national level have identified 

pavement resurface treatments as cost-effective alternatives to reduce 

cashes.  

• Though there are multiple studies that analyze the relationship between 

crashes and low skid scores, there are fewer studies that have quantified 

this relationship. It is in this context that the development of the Crash 

Rate Ratio (CRR) curves have been proven as a successful way to quantify 

the relationship between crashes and low skid scores at the network level.  

• There is a generalized interest for friction treatments in the last five years, 

as reported by the Federal Highway (2014). However, analyses of the 

benefits have been performed in a case-by-case basis. The present 

framework could provide an alternative to quantify these benefits at the 

network level. 

• The availability of skid data is a challenge. Skid is usually collected, but is 

not incorporated with other pavement indicators; therefore, the frequency 
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and coverage of the skid data is limited. This is a challenge for those 

responsible for managing skid. 

• Markov Chain processes can be used to model the deterioration of skid. 

As is found in the literature and the case study, Markov Chains are able to 

predict the future condition of the network in a time frame of three to four 

years. 

• Markov Chains are a good alternative for characterizing skid deterioration 

over other alternatives. Markov Chains have advantages over deterministic 

models because the Markov Chain model takes into account the stochastic 

nature of the deterioration process. Likewise, Markov Chains have the 

advantage of requiring less data than other models (for example, it does 

not require project level data of the pavement aggregates or long series of 

time). Markov Chains can be modeled with small time series, and it is not 

difficult to incorporate new data if required. In a sense, the Markov Chains 

are in the middle between deterministic models and more complex models 

that require more data (both for the network and project level). At the 

same time, the logic and the process of the Markov Chains are easy to 

explain, which makes the concept easy to share with decision makers and 

top management.  

• Another advantage of the Markov Chains model is the flexibility to adapt 

to different circumstances. For example, if few data is available for some 

condition states, the states can be combined and preliminary analyses can 

be performed until new data is introduced in the model. Likewise, if 

maintenance policies change, the condition states can be modified and a 

new analysis can be perform reflecting the policy changes. 
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• There is a challenge in obtaining quality information for skid treatments. 

On one side, there is limited knowledge of the quantitative impact of 

treatments in the skid scores. Likewise, costs are not readily available, 

especially because few projects address skid only and usually are mixed 

with others improvements. More research can be done in this aspect. 

10.2 LIMITATIONS 

The following are the limitations of the current study: 

• The current framework is only applicable at the network level. Thus, 

project level analysis is required when analyzing specific cases. Crashes 

occur due to a combination of multiple factors, and the increase of skid 

can cause a reduction of crashes that can be lower or higher than the 

average value for the network. The BCR estimated should be understood 

as the expected average benefit at the network level if a given skid 

threshold is established, and it should not be used as a BCR for a specific 

project. 

• The current framework, which is based on the Markov Chain process, 

does not take into account explanatory variables within the deterioration 

model. This is a disadvantage inherited from the Markov chain. Though 

one of the alternatives to overcome this challenge is the creation of 

multiple groups of homogenous attributes, this assumes that researchers 

know beforehand the explanatory variables of skid deterioration. 

Likewise, it is not possible, in the current framework, to assess the impact 

of the different explanatory variables on the skid deterioration. If more 
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skid data becomes available, new models at the network-level can be 

developed to address this aspect.  

• The indicator used in the current framework, the BCR, generally by itself 

is not a complete metric that indicates the benefits, but it is a complement 

of other measures. This is a limitation because, in the public sector, the 

economic benefit is not the only goal to be achieved. In the case of road 

safety, it can be accompanied by the reduction of crashes and fatalities in 

the network.  

• The current framework does not include congestion costs due to 

maintenance works. If this information is available, congestions costs can 

be included in order to have a more precise estimation of the BCR. 

• Finally, the applicability or limitation of this framework depends largely 

on the data available. For example, in the case study, the treatments and 

costs were limited to those related to preventive maintenance. If more 

information becomes available related to this aspect, it can be included in 

the estimation of the BCR. This is not a limitation of the framework itself, 

but of the availability and quality of the data used as input.  

10.3 TOPICS FOR FUTURE RESEARCH 

The following are the topics that can be developed in future research: 

• If more skid data becomes available, there is the possibility to perform 

more analysis at the network-level. Topics that can be explored are the 

quantitative impact of explanatory variables to the skid deterioration 

process. 
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• There is a need more for information on pavement resurface treatments. 

The cost and the quantitative impact of these treatments in the skid score 

can be explored in more detail in new research. Furthermore, it can be 

assessed if the skid condition impacts the treatment cost. For example, low 

skid condition pavements maybe have a higher treatment cost. Likewise, 

there is a need for more research related to the service life of these 

treatments. 

• Finally, the framework could be expanded to analyze more maintenance 

policies. The current framework applies the do-nothing and condition-

responsive maintenance policy in the analysis.  
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Appendix A - Results of the BCR Analysis 

Table 18. Results of the BCR analysis. 

 

SN 
Goal 

Low Cost 
(Average 

-2SD) 
(Million 

USD) 

Average 
Cost 

(Million 
USD) 

High 
Cost 

(Average 
+2SD) 

(Million 
USD) 

Benefit 
(Million 

USD) 
BCR 

Low Cost 

BCR 
Average 

Cost 

BCR 
High 
Cost 

Reduction 
of Crashes 

15 2.9 3.8 4.8 47.0 16.1 12.2 9.9 206.6 

16 3.9 5.1 6.3 58.6 15.0 11.4 9.2 257.6 

17 4.9 6.4 7.9 68.5 14.0 10.7 8.6 301.0 

18 5.8 7.7 9.5 76.8 13.2 10.0 8.1 337.7 

19 6.8 8.9 11.1 83.8 12.3 9.4 7.6 368.5 

20 7.8 10.2 12.6 89.7 11.5 8.8 7.1 394.2 

21 8.7 11.5 14.2 94.6 10.8 8.3 6.7 415.8 

22 10.1 13.3 16.4 106.9 10.6 8.1 6.5 469.8 

23 11.5 15.0 18.6 116.6 10.2 7.8 6.3 512.7 

24 12.8 16.8 20.8 124.3 9.7 7.4 6.0 546.2 

25 14.2 18.6 23.0 130.1 9.2 7.0 5.7 572.0 

26 15.5 20.3 25.2 134.6 8.7 6.6 5.3 591.7 

27 16.6 21.8 27.0 141.6 8.5 6.5 5.3 622.2 

28 17.7 23.2 28.7 147.1 8.3 6.3 5.1 646.4 

29 18.7 24.6 30.4 151.4 8.1 6.2 5.0 665.3 

30 19.8 26.0 32.2 154.7 7.8 5.9 4.8 679.8 

31 20.9 27.4 33.9 157.2 7.5 5.7 4.6 690.8 

32 21.8 28.6 35.5 160.9 7.4 5.6 4.5 707.4 

33 22.7 29.9 37.0 164.3 7.2 5.5 4.4 722.1 

34 23.7 31.1 38.5 167.2 7.1 5.4 4.3 735.1 

35 24.6 32.3 40.0 169.8 6.9 5.3 4.2 746.5 

36 25.5 33.5 41.4 172.1 6.7 5.1 4.2 756.5 

37 26.4 34.7 42.9 174.1 6.6 5.0 4.1 765.2 

38 27.4 35.9 44.4 175.8 6.4 4.9 4.0 772.7 

39 28.3 37.1 45.9 177.3 6.3 4.8 3.9 779.2 

40 29.2 38.3 47.4 178.5 6.1 4.7 3.8 784.8 
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Table 18, cont.  

SN 
Goal 

Low Cost 
(Average 

-2SD) 
(Million 

USD) 

Average 
Cost 

(Million 
USD) 

High 
Cost 

(Average 
+2SD) 

(Million 
USD) 

Benefit 
(Million 

USD) 
BCR 

Low Cost 

BCR 
Average 

Cost 

BCR 
High 
Cost 

Reduction 
of Crashes 

41 30.1 39.5 48.9 179.6 6.0 4.5 3.7 789.6 

42 30.7 40.3 49.9 179.6 5.8 4.5 3.6 789.6 

43 31.3 41.1 50.9 179.6 5.7 4.4 3.5 789.6 

44 31.9 41.9 51.9 179.6 5.6 4.3 3.5 789.6 

45 32.5 42.7 52.8 179.6 5.5 4.2 3.4 789.6 

46 33.1 43.5 53.8 179.6 5.4 4.1 3.3 789.6 

47 33.7 44.3 54.8 179.6 5.3 4.1 3.3 789.6 

48 34.3 45.0 55.8 179.6 5.2 4.0 3.2 789.6 

49 34.9 45.8 56.7 179.6 5.1 3.9 3.2 789.6 

50 35.5 46.6 57.7 179.6 5.1 3.9 3.1 789.6 

51 36.1 47.4 58.7 179.6 5.0 3.8 3.1 789.6 

52 36.7 48.2 59.7 179.6 4.9 3.7 3.0 789.6 

53 37.3 49.0 60.6 179.6 4.8 3.7 3.0 789.6 

54 37.9 49.8 61.6 179.6 4.7 3.6 2.9 789.6 

55 38.5 50.5 62.6 179.6 4.7 3.6 2.9 789.6 

56 39.1 51.3 63.5 179.6 4.6 3.5 2.8 789.6 

57 39.7 52.1 64.5 179.6 4.5 3.4 2.8 789.6 

58 40.3 52.9 65.5 179.6 4.5 3.4 2.7 789.6 

59 40.9 53.7 66.5 179.6 4.4 3.3 2.7 789.6 

60 41.5 54.5 67.4 179.6 4.3 3.3 2.7 789.6 

61 43.0 56.4 69.9 179.6 4.2 3.2 2.6 789.6 

62 43.9 57.6 71.3 179.6 4.1 3.1 2.5 789.6 

63 44.8 58.8 72.8 179.6 4.0 3.1 2.5 789.6 

64 45.7 59.9 74.2 179.6 3.9 3.0 2.4 789.6 

65 46.5 61.1 75.6 179.6 3.9 2.9 2.4 789.6 

66 47.4 62.3 77.1 179.6 3.8 2.9 2.3 789.6 

67 48.3 63.4 78.5 179.6 3.7 2.8 2.3 789.6 

68 49.2 64.6 80.0 179.6 3.6 2.8 2.2 789.6 

69 50.1 65.8 81.4 179.6 3.6 2.7 2.2 789.6 

70 51.0 66.9 82.9 179.6 3.5 2.7 2.2 789.6 

71 51.0 66.9 82.9 179.6 3.5 2.7 2.2 789.6 
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Table 18, cont.  

SN 
Goal 

Low Cost 
(Average 

-2SD) 
(Million 

USD) 

Average 
Cost 

(Million 
USD) 

High 
Cost 

(Average 
+2SD) 

(Million 
USD) 

Benefit 
(Million 

USD) 
BCR 

Low Cost 

BCR 
Average 

Cost 

BCR 
High 
Cost 

Reduction 
of Crashes 

72 51.0 67.0 82.9 179.6 3.5 2.7 2.2 789.6 

73 51.0 67.0 83.0 179.6 3.5 2.7 2.2 789.6 

74 51.1 67.1 83.0 179.6 3.5 2.7 2.2 789.6 

75 51.1 67.1 83.1 179.6 3.5 2.7 2.2 789.6 

76 51.2 67.1 83.1 179.6 3.5 2.7 2.2 789.6 

77 51.2 67.2 83.2 179.6 3.5 2.7 2.2 789.6 

78 51.2 67.2 83.2 179.6 3.5 2.7 2.2 789.6 

79 51.3 67.3 83.3 179.6 3.5 2.7 2.2 789.6 

80 51.3 67.3 83.4 179.6 3.5 2.7 2.2 789.6 

81 51.3 67.4 83.4 179.6 3.5 2.7 2.2 789.6 

82 51.4 67.4 83.5 179.6 3.5 2.7 2.2 789.6 

83 51.4 67.5 83.5 179.6 3.5 2.7 2.2 789.6 

84 51.4 67.5 83.6 179.6 3.5 2.7 2.1 789.6 

85 51.5 67.5 83.6 179.6 3.5 2.7 2.1 789.6 

86 51.5 67.6 83.7 179.6 3.5 2.7 2.1 789.6 

87 51.5 67.6 83.7 179.6 3.5 2.7 2.1 789.6 

88 51.6 67.7 83.8 179.6 3.5 2.7 2.1 789.6 

89 51.6 67.7 83.9 179.6 3.5 2.7 2.1 789.6 

90 51.6 67.8 83.9 179.6 3.5 2.7 2.1 789.6 

91 51.7 67.8 84.0 179.6 3.5 2.6 2.1 789.6 

92 51.7 67.8 84.0 179.6 3.5 2.6 2.1 789.6 

93 51.7 67.9 84.1 179.6 3.5 2.6 2.1 789.6 

94 51.8 67.9 84.1 179.6 3.5 2.6 2.1 789.6 

95 51.8 68.0 84.2 179.6 3.5 2.6 2.1 789.6 

96 51.8 68.0 84.2 179.6 3.5 2.6 2.1 789.6 

97 51.9 68.1 84.3 179.6 3.5 2.6 2.1 789.6 

98 51.9 68.1 84.3 179.6 3.5 2.6 2.1 789.6 

99 51.9 68.2 84.4 179.6 3.5 2.6 2.1 789.6 

100 52.0 68.2 84.5 179.6 3.5 2.6 2.1 789.6 
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