Generating Topological Information
from a “Bucket of Facets”

Stephen J. Rock
Michael J. Wozny

Rensselaer Design Research Center
Rensselaer Polytechnic Institute
Troy, New York 12180

Abstract

~ The STL de facto data exchange standard for Solid Freeform Fabrication represents
CAD models as a collection of unordered triangular planar facets. No topological
connectivity information is provided; hence the term “bucket of facets.” Such topological
information can, however, be quite useful for performing model validity checking and
speeding subsequent processing operations such as model slicing. This paper discusses
model topology and how to derive it given a collection of unordered triangular facets which
represent a valid model.

1 Introduction

Computer Aided Design (CAD) model data is frequently passed to various Solid
Freeform Fabrication processes using the STL polygonal facet representation [1]. Facet
models represent solid objects by spatial boundaries which are defined by a set of planar
faces. This is a special case of the more general Boundary Representation which does not
require object boundaries be planar [2]. In general, the term facet is used to denote any
constrained polygonal planar region being used to define a model boundary; however, in
the Solid Freeform Fabrication (SFF) community the term facet is typically understood to
mean triangular facet. Representing models using triangular facets has both good and bad
points [3]. Facets do provide a “greatest common denominator” geometrical form for data
exchange between many CAD systems and SFF processes. Non-CAD scalar field data,
such as that from CT imaging, can also be used to generate facet models [4]. However,
facet models are generally only an approximation of mathematically precise CAD models.

Precise CAD models must be tessellated, where defining model surfaces are
subdivided into planar facets, to create polygonal facet models [5]. As model precision
demands become more stringent, the number of facets required to adequately approximate a
model will increase. Model tessellation should yield a set of facets which define a closed
region representing the material boundary of a part. Unfortunately, many commercial CAD
system model tessellators are not robust, and sets of facets which do not define closed
regions result. This missing facet problem is particularly prevalent where surfaces intersect
in the original CAD models. A set of facets which, when assembled, forms a solid object
with holes in its surface is incomplete and is termed an invalid model. In addition to
missing facets, other causes of model invalidity exist. They include errors due to numerical
round-off, missing data, altered data, and sometimes the presence of extraneous or
redundant data.

The de facto industry standard STL model representation defines models as a set of
triangular facets [1]. Unfortunately, these facets are stored independently, as if each facet
were created and tossed into a bucket with no particular ordering and without information
relating a given facet to any other facets in the bucket. Since many CAD systems fail to
generate valid facet model tessellations, it is necessary to perform model validity checking
before subsequent processing operations are undertaken. Given only the data in an STL
file, performing model validity checking is computationally expensive. Attempting to

© 1992 RPI Rensselaer Design Research Center. All Rights Reserved.

251

determine the relationships, or topology, between model facets from the “bucket of facets”
is the first step in performing validity checking. The resulting topological information is
important for use in subsequent processing operations such as model repair, model slicing,
and finally during the scan conversion operation.

2 Topology

Topology describes the connectivity relationships between various geometric
entities [2]. A facet can reference the three edges which bound it. Each edge can reference
the two vertices which define it. Topological connectivity relationships are not limited to
individual facets. For instance, a facet can reference the three facets which share edges
with it. An edge can reference not only the two vertices which define it but also the two
facets which share it. Vertex points can contain connectivity information to all edges or
faces which share it. Such references are all examples of topological connectivity
information.

It is important to consider two topological classes of boundary representation
models: manifold (two-manifold) and non-manifold. A two-manifold is defined as a two-
dimensional, connected surface where each point on the surface has a neighborhood
topologically equivalent to an open disk [6]. In a two-manifold, every edge in the model is
shared by two and only two facets. This is the case for most facet models where only the
facets representing a part’s spatial boundaries exist. One side of a facet is directed toward
part material, and the other is directed away from it. The spatial boundaries of a facet
model are expected to have a distinct “inside” and “outside” which is consistent across all
facets defining the model boundary; such a model is termed orientable [2]. Non-manifold
conditions occur where, for example, two distinct enclosing volumes share one facet or a
set of facets as a common boundary [7]. In this case, the shared facet no longer has a clear
“inside” or “outside”. Both sides of the facet are surrounded by part material. This
typically occurs when facets representing multiple solids which are tangent along some
boundary are not properly delimited as belonging to individual solids in an STL file.

3 Benefits of Topological Information
The STL format represents facet models with nearly the minimal information
necessary to define a solid object. Each facet, along with its normal, is specified explicitly
and no topological connectivity information is provided. This “bucket of facets” approach
to model representation has many limitations, both with respect to ensuring valid models
and subsequent processing.

3.1 Validity Checking

When no topological information is provided, model validity checking involves
computationally expensive searching operations. If model topology were available, validity
checking would be a much simpler and efficient operation.

3.2 Model Repair

When invalid models are encountered, topological information is useful for
attempting to repair the models. Such information makes it readily apparent when greater
than two facets share a single model edge. In the case of model holes, it is important to
know how the facets surrounding a hole are connected and this too can be easily
determined given topological information.

3.3 Subsequent Processing

Facet model slicing performance can also benefit from topological information
which makes it possible to march from facet to neighboring facet performing simple
edge/plane intersection calculations [8]. This same topological information can be passed to
subsequent processing phases, such as scan conversion, which occur after slicing.

252

3.4 Model Representation

Finally, model topology generation capability has facilitated the development of a
richer facet model representation format [9]. Storing topological information with a facet
model, although increasing the information content of the model, reduces the volume of
data required when compared to an equivalent model represented in STL format. The net
result is a more robust representation with less data.

4 Topology Reconstruction Concepts

Reconstructing model topology given a “bucket of facets” is basically a searching
operation. Entity relationships must be found by searching the unordered model data.
These relationships, or topology, must then be stored for later use. The conceptual steps
for producing such topology will now be discussed; however, implementation details, such
as the searching algorithms or structures used, will be dealt with separately after the
topology reconstruction concepts are understood. »

4.1 Vertex Merging

Each facet is defined by three vertices whose coordinates are explicitly specified.
The first operation performed when reconstructing model topology is vertex merging.
Here, equivalent, explicitly specified vertices are replaced by a single entry in a list of
unique vertices. Each face then references three vertices in the list instead of being defined
by actual vertex values. This removes significant redundancy present in the model
representation. It also allows vertex comparisons to be made based on vertex references
without comparing actual floating point coordinate values. Figure 4.1 illustrates the
savings realized by using model topology and representing each vertex uniquely.

5 Vertices : 12 Vertices
(15 doubles, 12 pointers) : (36 doubles)

Figure 4.1 - Storage Reduction with Topological Information

Without topological connectivity information, the vertex shared by the four facets shown
would be represented four times. Assuming a vertex is specified by three double precision
values, and a double precision value requires eight bytes, the four facets shown could be
represented by 288 bytes (4 facets x 3 vertices/facet x 3 doubles/vertex x 8 bytes/double).
By using topological information, a unique definition of each vertex can be referenced by
the facets using pointers. If a pointer consumes four bytes, this will reduce the memory
required to represent the four facets shown to 168 bytes (5 vertices x 3 doubles/vertex x 8
bytes/double + 4 facets x 3 pointers/facet x 4 bytes/pointer). This figure shows a
significant storage savings where only four faces meet. However, in a real model which is
closed and likely more complex, many facets will share each single vertex. This will result
in even greater savings by using topology and representing each vertex uniquely,

253

The final benefit of vertex merging is that vertices within a predetermined numerical
round-off tolerance of each other can be easily merged, and this can be used to overcome
errors introduced by inconsistent numerical round-off. Such errors can occur when a
slightly different sequence of mathematical operations is used to calculate the same vertex
value. For example, given three finite precision binary numbers A, B, and C, the operation
A + B + C may not produce the same result as the operation A + C + B due to rounding or
chopping errors [10]. Figure 4.2 provides a two-dimensional example of how vertex
merging can also remove facets smaller than the size of the numerical round-off tolerance.

Merged
Vertex

P
]
i
1
i
]
1
i

Edge>

Degeneracies

L Numerical Roundoff
Equivalence Regions

Figure 4.2 - Facet Removal by Vertex Merging

The facet defined by the three vertices shown is smaller than the specified numerical
round-off tolerance. The squares drawn with dashed lines and centered on each of these
vertices indicate the equivalence regions defined by the numerical round-off tolerance
setting. Since the vertices are within the equivalence regions, they are considered
equivalent and should be merged into one vertex. This is illustrated by the three arrows
pointing toward the center of the left hand figure. Notice that as the three facet edges
collapse, the remaining edges of the three adjacent facets will approach each other.

The figure on the right shows what happens to the model after the three equivalent
vertices have been replaced, by merging, with one new vertex. The three facets which
were adjacent to the facet removed by vertex merging now have two identical vertices (the
vertex resulting from the merging operation). Note that this creates a degenerate condition
where three of the facets surrounding the merged facet have effectively collapsed to an
edge. The facet topology is still present; however, two facet vertices are the same in each
of the degenerate facets.

4.2 Face & Edge Creation

A face entity must be created to represent each facet in the model. Since vertices are
represented uniquely, each face maintains references to the three vertices which define it.
Each face entity also carries with it a facet normal. This aids in determining which side of
the face is inside the model; however, this information could also be computed if it were
not given, provided the right-hand rule for vertex definition is adhered to [1].

254

Similarly, it is possible to create edge entities to represent model edges. Each edge
can reference the two vertices which define it and the two faces which share it. Edge
information is not provided by STL format files, but it can have utility when slicing facet
models and can be represented using alternative file formats [3]. The following section will
show that it is appropriate to wait until face relationships have been determined before
creating model edges.

4.3 Determining Face & Edge Relationships

When face entities are created, they not only contain references to the defining
vertices and normal, but they also contain unassigned references to the three adjacent faces
and corresponding edges. Figure 4.3 provides a graphical depiction of adjacent face and
edge references .

R T K -——" ;
Ve

.
L 3

Figure 4.3 - Adjacent Face and Edge References

These references will be assigned as model topology is determined. After all face
relationships are determined, the relationships between model edges can be determined
using the face relationship information.

Face relationships are determined by searching. For each face in the model,
searching is performed to determine what other faces share two common vertices. The
existence of a pair of such faces defines an edge. When such a face is located, the adjacent
face references of each face corresponding to the shared edge are cross-referenced. This
establishes one topological relationship between two faces. This process is repeated until
all adjacent face references are set. Notice that this assumes each model edge is shared by
exactly two faces; invalid models exist where this is not the case.

After defining all face adjacency relationships, it is possible to define model edges.
The three vertices which define each face and the three adjacent faces of each facet are
known. Edge topology can be derived by using this information. The three edges of each
face, defined by the face’s vertex pairs, can be added to an edge list if they do not already
exist. When an edge is added, the vertices which define it are known, so its vertex
references can be set accordingly. One of the faces which shares the edge is immediately
known, as this is the face being used to reference the edge’s defining vertices. The other
face which shares the edge is also known after the face adjacency relationships have been
determined. By sequencing through all faces in the model after the face adjacency
relationships are known, complete edge topology can be created without additional
searching.

255

5 Data Structures & Algorithms

The fundamental operations used to reconstruct model topology have been
discussed, but few operational details were provided. If brute force approaches to vertex
merging and adjacent facet searching are used, computational cost will quickly become
prohibitive as model complexity increases. Consequently, care must be taken to ensure the
data structures and algorithms employed facilitate efficient searching.

Facets are read sequentially from a data file with no particular ordering. Each time
data representing a facet is read, a face entity is created. Three vertex entities, each of which
may already exist or need to be created, are referenced by each face entity. A linear list,
although a poor structure for sorting and searching, can be used to store the face entities
because they are not searched directly. Vertex entities must, before they are created, be
tested to ensure an equivalent vertex does not already exist. If it does, this equivalent
vertex should be referenced by the newly instantiated face entity instead of creating a new
vertex entity and referencing it. A searching operation is required to perform this
equivalence testing, and it is repeated for each model vertex. Repeatedly searching, and
maintaining in sorted order, a linear list of vertex entities is a costly proposition. An
alternative to the linear list data structure should be used.

5.1 The AVL Tree for Vertex Merging

With the goal of vertex merging in mind, a linear list is clearly an unacceptable
solution for storing the unique vertices. Each time a vertex entity is added, the complete list
would have to be sorted and/or searched. Recall that one requirement for vertex merging is
that all equivalent vertices be merged. This suggests that for a vertex entity to be added,
there must be no existing equivalent vertices. Consequently, a range of vertex values in the
neighborhood of the search key must be tested. This makes a hash table an unattractive
storage structure. A sorted array could be used, but because vertex data is continually
being added as each model facet is read, repeated insertions into the array and the block
moves which result make this an unattractive solution. A binary search tree could be used;
however, the input data ordering is unknown. In the degenerate case, this could be
equivalent in performance to searching a linear list of vertex values, and this is
unacceptable.

A balanced binary search tree, termed an AVL search tree, overcomes these
limitations [11]. It never degenerates to the equivalent performance of searching a linear
list because its balance is maintained as each element is inserted in it. It also meets the
requirements for being able to traverse through the data and efficiently allow range
searching, which is used to determine equivalence within a set numerical round-off
tolerance after an initial search value if located.

As each vertex defining a face is read, it is added to an AVL search tree if an
equivalent vertex does not already exist in the tree. If the vertex is added, the
corresponding vertex reference for the face being added is set to this vertex element in the
AVL tree. If an equivalent face exists, the corresponding vertex reference for the face
being added is set to the equivalent vertex already in the AVL tree and the vertex data read
is discarded. The AVL search tree data structure works well to provide an efficient
equivalence detection mechanism for vertices being added. After vertex merging is
completed, face adjacency relationships must be determined.

5.2 Searching for Face Adjacencies

Face comparisons are performed in an attempt to locate face adjacencies. Recall that
face adjacencies are determined for each face in the model by sequentially stepping through
a list of model faces, searching for adjacent faces, and cross-connecting references when
adjacencies are located. A linear list of faces provides the ability to sequentially process
faces, but it is clearly not the solution for an efficient searching structure.

256

The structure imposed to effect efficient adjacency searching is simply a list of face
pointers attached to each vertex in the model. As new vertices are created or existing
vertices are referenced by a given face, the reference value of this face is added to a list of
face references for each vertex which defines the face. Consequently, each vertex knows
of every face which references it after all model faces have been read from the data file.
Searching for adjacencies is greatly simplified using this structure. Instead of searching
every face in the model for a face which shares two vertices with a test face, now only the
faces contained in the face lists corresponding to the three vertices defining a test face need
to be searched.

If for each edge of a test face, all other model faces in a list structure were searched
to determine adjacency relationships, this would be of order O(3n%) where n denotes the
number of facets in the model. However, by maintaining for each vertex a list of faces
which share it, searching complexity is reduced to an order O(3nk?) problem where n is
again the number of facets in the model and k is the average number of faces sharing each
model vertex. Figure 5.1 depicts the data available for a given face and is useful in
understanding how adjacencies are determined.

V1 L -°" E
s 13
Eq3
d s,
LY
L Y
n Fh ¥
=g | P15 Fyq | =
Fb Fb V2 Fa
5 F Fo
List of Face E
References Fa e
Fn

Figure 5.1 - Face Data Used for Adjacency Searching

Consider the searches necessary to locate the facet adjacent to face F, which shares
edge E13. Instead of searching all facets in the model, the search is confined to the lists of
face pointers maintained by vertices V1 and V3. The reference to face Fy should appear in
the three vertex lists; however, there should be one and only one other identical face
reference contained in both the face lists for V1 and V3. This should reference the face
which shares edge Ej3 with the facet F, under test and is labeled F;3 in the figure. This
provides a useful way to bound the search space which must be traversed each time an
adjacency must be sought. Since in most cases, the number of facets in a model far
exceeds the number of facets sharing a particular model vertex, this provides a significant
reduction in the number of elements which must be searched throughout the adjacency
determination process. It is also important to note that only face references, not actual
vertex coordinate triples, must be tested during searching. This too contributes to the
efficiency of this algorithm.

6 Results & Conclusions

There is a definite up-front cost associated with generating topological information
from a “bucket of facets” model representation such as the STL de facto standard.

257

However, an investment in such pre-processing adds information which can be used to
realize a healthy dividend in later model processing operations.

6.1 Results
Topology generation, given only a “bucket of facets”, can be computationally
prohibitive if a brute force approach is taken. Appropriate data structures and algorithms
must be used to make topology generation an profitable exercise. An important lesson
illustrated by this work is that a marginal increase in storage requirements can effect a
significant increase in processing performance.
Storing additional face reference lists for each vertex increases memory
requirements; however, it provides a very necessary performance increase. By using an

O(3nk?2) algorithm instead of an O(3n2) algorithm, processing time for model topology
generation is significantly reduced. For a model with approximately 82,500 facets, 8.6
CPU hours on a Sun SPARCstation2 were required to generate its topology when the brute
force O(3n2) algorithm was employed. However, the O(3nk?2) algorithm performed the
same task in only 9.1 CPU minutes on the same machine. It is important to note that these
performance figures are for an ASCII format STL file. Preliminary evaluation of an
optimized version of the parser for binary format STL files suggests that the contrast
between the brute force and AVL tree approaches is even larger because parse time
contributes significantly to the 9.1 CPU minute figure cited above[12].

6.2 Conclusion

Model topology is clearly important for successful model processing, and
generating it can be a costly endeavor. Unfortunately, the SFF community’s STL de facto
standard for representing facet models does not support the definition of model topology.
It must instead be reconstructed from an unordered “bucket of facets” provided by the STL
representation. This requires significant searching through model facet data which is
typically very voluminous for real part models. The approach presented in this paper
realized better than an order of magnitude performance improvement when contrast to a
brute force topology generation approach.

Ideally, topological information should be generated during model tessellation
which is most likely performed by a CAD system. This would not only prevent the need to
reconstruct it later, but it would also make data transfer more robust and concise. The RPI
format demonstrated a significant redundancy reduction while increasing the information
content in a file by utilizing topological information [9]. While facet models may fade as
the primary representation for future SFF data exchange, topological information and some
of the lessons learned from this work will remain important for higher-order geometrical
entities such as parametric surface patch models.

Acknowledgments

This research was supported by NSF Grant DDM-8914212 as a subcontract
through the University of Texas Solid Freeform Fabrication program, the New York State
Center for Advanced Technology, the Office of Naval Research, and other grants of the
Rensselaer Design Research Center (RDRC) Industrial Associates Program. Any
opinions, findings, conclusions, or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the National Science
Foundation, the New York State Center for Advanced Technology, the Office of Naval
Research, or any of the industrial sponsors.

We would like to thank Dick Aubin, Pratt & Whitney (a division of United
Technologies), for providing a number of industrial STL models. A special thanks to
James Miller for all the valuable comments and ideas on early drafts of this paper, and to
Jan Helge Bghn for his review and helpful comments.

258

W DN =

10.
11.

12.

References

“Stereolithography Interface Specification,” 3D Systems, Inc., June 1988.
Michael E. Mortenson, Geometric Modeling, John Wiley & Sons, Inc., 1985.

Stephen J. Rock, “Solid Freeform Fabrication and CAD System Interfacing,” M.S.
Thesis, Rensselaer Polytechnic Institute, Troy, NY, Dec. 1991.

James V. Miller, “On GDM'’s: Geometrically Deformed Models for the Extraction of
Closed Shapes from Volume Data,” M.S. Thesis, Rensselaer Polytechnic Institute,
Dec. 1990.

Donald Hearn and M. Pauline Baker, Computer Graphics, Prentice-Hall, Inc., 1986.
Kevin Weiler, “Edge-Based Data Structures for Solid Modeling in Curved-Surface
Environments,” IEEE Computer Graphics and Applications, Vol. 5, Num. 1, pp. 21-
40, Jan. 1985.

Kevin Weiler, “The Radial Edge Structure: A Topological representation for Non-
Manifold Geometric Boundary Modeling,” in: Geometric Modeling for CAD
Applications, M. J. Wozny, H. W. McLaughlin, J. L. Encarnacao (eds.), North-
Holland, pp. 3-36, 1988.

Stephen J. Rock and Michael J. Wozny, “Utilizing Topological Information to
Increase Scan Vector Generation Efficiency,” in: Solid Freeform Fabrication
Symposium Proceedings, H.L.. Marcus, J. J. Beaman, J.W. Barlow, D.L. Bourell,
and R.H. Crawford (eds.), The University of Texas at Austin, Aug. 1991.

Stephen J. Rock and Michael J. Wozny, “A Flexible File Format for Solid Freeform
Fabrication,” in: Solid Freeform Fabrication Symposium Proceedings, H.L.. Marcus,
J.J. Beaman, J.W. Barlow, D.L. Bourell, and R.H. Crawford (eds.), The University
of Texas at Austin, Aug. 1991.

Kendall Atkinson, Elementary Numerical Analysis, John Wiley and Sons, Inc., 1985.

Daniel F. Stubbs and Neil W. Webre, Data Structures with Abstract Data Types and
Pascal, Brooks/Cole Publishing Company, 1989.

Jan Helge Bghn, Personal Communication, June 30, 1992.

259

