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ABSTRACT

We calculate the nonlinear matter power spectrum using the third-order perturbation theory without ignoring
the pressure gradient term. We consider a semirealistic system consisting of two matter components with and
without pressure, and both are expanded into the third order in perturbations in a self-consistent manner, for
the first time. While the pressured component may be identified with baryons or neutrinos, in this paper we
mainly explore the physics of the nonlinear pressure effect using a toy model in which the Jeans length does
not depend on time, i.e., the sound speed decreases as a−1/2, where a is the scale factor. The linear analysis
shows that the power spectrum below the so-called filtering scale is suppressed relative to the power spectrum
of the cold dark matter. Our nonlinear calculation shows that the actual filtering scale for a given sound
speed is smaller than the linear filtering scale by a factor depending on the redshift and the Jeans length.
A ∼40% change is common, and our results suggest that, when applied to baryons, the temperature of the
intergalactic medium inferred from the filtering scale observed in the flux power spectrum of Lyα forests would
be underestimated by a factor of 2, if one used the linear filtering scale to interpret the data. The filtering mass,
which is proportional to the filtering scale cubed, can also be significantly smaller than the linear theory prediction
especially at low redshift, where the actual filtering mass can be smaller than the linear prediction by a factor
of 3. Finally, when applied to neutrinos, we find that neutrino perturbations deviate significantly from linear
perturbations even below the free-streaming scales, and thus neutrinos cannot be treated as linear perturbations.
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1. INTRODUCTION

Pressure plays an important role for the structure formation
in the universe. Pressure determines the Jeans scale, λJ , below
which the growth of structure slows down, and eventually stops
and oscillates: while fluctuations in the cold dark matter (CDM)
and the pressured component evolve in the same way above the
Jeans scale, their evolutions are significantly different below the
Jeans scale.

The dominant source of gravity is CDM, which is cold
and its velocity dispersion is negligible before the collapse
of halos. However, the subdominant matter components—
baryons and neutrinos—have significant velocity dispersions,
which should be included in the calculation when precision
is required. While the accurate calculations have been done
for the linear perturbations, the effects of the pressure on
the nonlinear evolution of matter fluctuations on cosmological
scales (∼10–100 Mpc) have not been studied very much in the
literature.

We address this issue by calculating the nonlinear matter
power spectrum using the third-order perturbation theory (3PT;
see Bernardeau et al. 2002, for a review), with the pressure
gradient term in the Euler equation explicitly included. This
enables us to study the effects of the pressure on the nonlinear
evolution of matter fluctuations in a self-consistent manner.

The rest of this paper is organized as follows. In Section 2,
we find the linear, second-order, and third-order solutions of
the coupled continuity, Euler, and Poisson equations for two
matter components with and without the pressure gradient. In
Section 3, we calculate the nonlinear matter power spectrum
from the solutions obtained in Section 2. In Section 4, we
compare our full 3PT calculation with the approximation used
by Saito et al. (2008) for the effects of massive neutrinos on

the matter power spectrum. Finally, in Section 5, we discuss
the implications of our results for a few practical astrophysical
and cosmological applications. In the appendices we give the
detailed derivations of the 3PT results used in the main body of
the paper.

2. THIRD-ORDER PERTURBATION THEORY WITH
PRESSURE

2.1. Basic Equations

The main goal of this paper is to find the perturbative solutions
for the CDM density contrast, δc, for which the pressure gradient
is ignored, and the density contrast of another matter component,
δb, for which the pressure gradient is retained. This component
may be identified with baryons (hence the subscript “b”) or
neutrinos, depending on the sound speed one uses in the Euler
equation.1

The equations that we are going to solve include two conti-
nuity equations

δ̇c(x, τ ) + ∇ · [(1 + δc(x, τ ))vc(x, τ )] = 0, (1)

δ̇b(x, τ ) + ∇ · [(1 + δb(x, τ ))vb(x, τ )] = 0, (2)

two Euler equations

v̇c(x, τ ) + [vc(x, τ ) · ∇]vc(x, τ ) = − ȧ

a
vc(x, τ ) − ∇φ(x, τ ),

(3)

1 While we use “b” to denote the pressured matter component throughout this
paper, we do not always mean baryons, but we always refer to a general matter
component with pressure.
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v̇b(x, τ ) + [vb(x, τ ) · ∇]vb(x, τ )

= − ȧ

a
vb(x, τ ) − ∇φ(x, τ ) − c2

s (x, τ )∇δb(x, τ )

1 + δb(x, τ )
, (4)

and one Poisson equation

∇2φ(x, τ ) = 4πGa2[ρ̄c(τ )δc(x, τ ) + ρ̄b(τ )δb(x, τ )], (5)

where δi ≡ (ρi − ρ̄i)/ρ̄i is the density contrast of a matter
component i = (c, b), ρ̄ is the background matter density, a
is the scale factor, vi is the peculiar velocity field of a matter
component i, φ is the gravitational potential, and cs is the sound
speed of the matter component with pressure. Here, the dots
denote the partial derivatives with respect to the conformal time,
τ , i.e., δ̇ = ∂δ/∂τ , and ∇ denotes the partial derivatives with
respect to the comoving coordinates.

We rewrite the Poisson equation as

∇2φ(x, τ ) = 6

τ 2
δ(x, τ ), (6)

where we have assumed an Einstein–de Sitter (EdS) universe
(we shall generalize the results to other cosmological models
later), for which the energy density of the universe is dominated
entirely by the matter density, and a ∝ τ 2. The background
Friedmann equation is given by

8πG

3
[ρ̄c(τ ) + ρ̄b(τ )]a2 = 4

τ 2
. (7)

We have also defined the total matter fluctuation, δ, which is
given by

δ(x, τ ) ≡ ρ̄c(τ )δc(x, τ ) + ρ̄b(τ )δb(x, τ )

ρ̄c(τ ) + ρ̄b(τ )
= fcδc(x, τ ) + fbδb(x, τ ), (8)

where fc ≡ ρ̄c/(ρ̄c + ρ̄b) = Ωc/Ωm, and fb ≡ ρ̄b/(ρ̄c + ρ̄b) =
Ωb/Ωm. For an EdS universe, Ωm = 1.

Taking the divergence of the Euler equations, we obtain the
equations for the velocity divergence fields, θi ≡ ∇ ·vi . Moving
nonlinear terms to the right-hand side of the equations and using
the Poisson equation, we obtain

δ̇c(x, τ ) + θc(x, τ ) = −∇ · [δc(x, τ )vc(x, τ )], (9)

δ̇b(x, τ ) + θb(x, τ ) = −∇ · [δb(x, τ )vb(x, τ )], (10)

θ̇c(x, τ )+
2

τ
θc(x, τ )+

6

τ 2
δ(x, τ ) = −∇·{[vc(x, τ ) · ∇]vc(x, τ )},

(11)

θ̇b(x, τ )+
2

τ
θb(x, τ )+

6

τ 2
δ(x, τ )

=−∇ · {[vb(x, τ ) · ∇]vb(x, τ )}−∇·
[
c2
s (x, τ )∇δb(x, τ )

1 + δb(x, τ )

]
.

(12)

Note that the second term on the right-hand side of Equation (12)
still contains the linear order term. All the other terms on the
right-hand side of the above equations are nonlinear.

We shall simplify the pressure term, the second term on the
right-hand side of Equation (12), as follows. First, we shall
assume that the sound speed is homogeneous, i.e., ∇c2

s = 0. See
Naoz & Barkana (2005) for the analysis of linear perturbations
with ∇c2

s �= 0. Second, we expand the pressure term to the third
order in perturbations:

∇δρb

ρb

= ∇δb

1 + δb

� ∇δb − δb∇δb + δ2
b∇δb + O

(
δ4
b

)
. (13)

Going to Fourier space, we obtain

˙̃
δc(k, τ ) + θ̃c(k, τ ) = − 1

(2π )3

∫ ∫
dq1dq2δD(q1 + q2 − k)

× k · q1

q2
1

θ̃c(q1, τ )δ̃c(q2, τ ), (14)

˙̃
δb(k, τ ) + θ̃b(k, τ ) = − 1

(2π )3

∫ ∫
dq1dq2δD(q1 + q2 − k)

× k · q1

q2
1

θ̃b(q1, τ )δ̃b(q2, τ ), (15)

˙̃
θc(k, τ ) +

2

τ
θ̃c(k, τ ) +

6

τ 2
δ̃(k, τ )

= − 1

(2π )3

∫ ∫
dq1dq2δD(q1 + q2 − k)

× k2(q1 · q2)

2q2
1q2

2

θ̃c(q1, τ )θ̃c(q2, τ ), (16)

˙̃
θb(k, τ ) +

2

τ
θ̃b(k, τ ) +

6

τ 2
δ̃(k, τ )

= − 1

(2π )3

∫ ∫
dq1dq2δD(q1 + q2 − k)

× k2(q1 · q2)

2q2
1q2

2

θ̃b(q1, τ )θ̃b(q2, τ )

− F
[
∇ ·

(
c2
s (τ )∇δb(x, τ )

1 + δb(x, τ )

)]
(k), (17)

where

F
[
∇ ·

(
c2
s (τ )∇δb(x, τ )

1 + δb(x, τ )

)]
(k)

≡ −k2c2
s (τ )

[
δ̃b(k) − 1

2(2π )3

∫ ∫
dq1dq2δ̃b(q1, τ )δ̃b

× (q2, τ )δD(q1 + q2 − k) +
1

3(2π )6

∫ ∫ ∫
dq1dq2dq3δ̃b

× (q1, τ )δ̃b(q2, τ )δ̃b(q3, τ )δD(q1 + q2 + q3 − k)

]
. (18)

In the subsequent subsections, we shall solve these coupled
equations perturbatively. Hereafter, we shall omit the tildes on
the perturbation variables in Fourier space.

2.2. Linear Order Solution: Jeans Filtering Scale

In the linear order, one finds

δ̇1,c(k, τ ) + θ1,c(k, τ ) = 0, (19)
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δ̇1,b(k, τ ) + θ1,b(k, τ ) = 0, (20)

θ̇1,c(k, τ ) +
2

τ
θ1,c(k, τ ) +

6

τ 2
δ1(k, τ ) = 0, (21)

θ̇1,b(k, τ ) +
2

τ
θ1,b(k, τ ) +

6

τ 2
δ1(k, τ )

− k2c2
s (τ )δ1,b(k, τ ) = 0, (22)

where the subscripts “1” mean that these quantities denote the
first-order perturbations, and δ1 = fcδ1,c + fbδ1,b. We rewrite
Equation (22) as

θ̇1,b(k, τ ) +
2

τ
θ1,b(k, τ ) +

6

τ 2

[
δ1(k, τ ) − k2cs(τ )2τ 2

6
δ1,b(k, τ )

]
= 0,

θ̇1,b(k, τ ) +
2

τ
θ1,b(k, τ ) +

6

τ 2

[
δ1(k, τ ) − k2

k2
J

δ1,b(k, τ )

]
= 0,

(23)

where we have used the usual definition of the Jeans wavenum-
ber, kJ:

kJ (τ ) ≡
√

6

cs(τ )τ
. (24)

The Jeans wavenumber divides the solutions for δ1,b into two
classes: the growing solution for k 
 kJ , and the oscillatory
solution for k � kJ , when there is no CDM, i.e., fb = 1 and
δ1 = δ1,b. When δ1 �= δ1,b, the Jeans wavenumber does not
provide a dividing scale for the solutions of δ1,b.

The Jeans wavenumber depends on the temperature of the
matter component “b” as kJ ∝ T

−1/2
b τ−1; thus, kJ depends on

time in general, kJ = kJ (τ ). However, in order to simplify
the problem and obtain physical insights into the effects of
pressure on the nonlinear growth of structure, we shall assume
that kJ is independent of time, which requires that the matter
temperature evolves as if the matter were coupled to radiation,
Tb ∝ 1/a ∝ 1/τ 2. This is not a realistic assumption especially
in a low-redshift universe where baryons are decoupled from
the radiation background and neutrinos are nonrelativistic—in
both cases the temperature evolves as Tb ∝ 1/a2 ∝ 1/τ 4 and
thus kJ evolves as kJ ∝ τ ∝ a1/2, for the adiabatic evolution.

We shall solve the above coupled linear equations iteratively:
as CDM is always the most dominant source of gravity, the
zeroth-order iterative solution may be found by setting δ1 → δ1,c

(i.e., fc → 1). We find the solution for the ratio of the density
contrasts, which is often called the “Jeans filtering function”
(Gnedin & Hui 1998)

g1(k, τ ) ≡ δ1,b(k, τ )

δ1,c(k, τ )
, (25)

which should be a decreasing function of k due to the effect
of pressure. At the zeroth order of iteration, the CDM density
contrast grows as

δ
(0)
1,c(k, τ ) ∝ a ∝ τ 2, (26)

and thus the equation for g1 simplifies to

g̈
(0)
1 (k, τ ) +

6

τ
ġ

(0)
1 (k, τ ) +

6

τ 2

(
1 +

k2

k2
J

)
g

(0)
1 (k, τ ) = 6

τ 2
. (27)

The solution for g1(k, τ ) must be normalized such that
g1(k, τ ) → 1 as k → 0. We find

g
(0)
1 (k, τ ) = 1

1 + k2

k2
J

+ O(τm(k)), (28)

where

m(k) ≡ −5

2

[
1 ±

√
1 − 24

25

(
1 +

k2

k2
J

)]
. (29)

The second term is a decaying mode, whose amplitude is set
by the initial condition, e.g., at the epoch when the baryon
temperature was raised (by, say, cosmic re-ionization) to the
point where the pressure became important, or at the epoch
when the neutrinos became nonrelativistic.

Ignoring the decaying mode (although we shall come back to
this later), we have the zeroth-order solution:

g
(0)
1 (k) = 1

1 + k2

k2
J

. (30)

At the first-order iteration, we have the pressure feedback on
the growth of CDM. The evolution of δ

(1)
1,c depends on k, and is

given by

δ
(1)
1,c(k, τ ) ∝ τn(k), (31)

where

n(k) ≡ 1

2

[
−1 ± 5

√
1 − 24

25
fb

(
1 − g

(0)
1 (k)

)]

�
{

2 − 6
5fb

[
1 − g

(0)
1 (k)

]
−3 + 6

5fb

[
1 − g

(0)
1 (k)

] . (32)

The second equality is valid for fb[1 − g
(0)
1 (k)] 
 1. The

growing mode solution is given by

n+(k) = 2 − 6
5fb

[
1 − g

(0)
1 (k)

]
. (33)

As g(0)(k) → 1 and 0 for k → 0 and ∞, respectively, the large-
scale and small-scale limits of the growing mode solution is
(see, e.g., Section 8.3 of Weinberg 2008 for a recent review)

δ
(1)
1,c+(k, τ ) ∝ τ 2 ∝ a, k 
 kJ , (34)

δ
(1)
1,c+(k, τ ) ∝ τ 2− 6

5 fb ∝ a1− 3
5 fb , k � kJ . (35)

The growth of δ1,c on the spatial scales below the Jeans scale is
suppressed relative to that of the large-scale modes.

Taking the first-order iteration solution for δ
(1)
1,c+ into account,

the first-order iteration equation for g
(1)
1 is

g̈
(1)
1 (k, τ ) +

1

τ

[
1 + 5

√
1 − 24

25
fb

(
1 − g

(0)
1 (k)

)]
ġ

(1)
1 (k, τ )

+
6

τ 2

[
1 +

k2

k2
J

− fb

(
2 − g

(0)
1 (k)

)]
g

(1)
1 (k, τ ) = 6(1 − fb)

τ 2
, (36)
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whose growing mode solution (with the normalization that
g

(1)
1 → 1 for k → 0) is

g
(1)
1 (k) = 1 − fb

1 + k2

k2
J

− fb

[
2 − g

(0)
1 (k)

]
= 1 − fb

1 − fb + k2

k2
J

(
1 − fb

1 + k2/k2
J

) . (37)

This iteration converges quickly for fb < 0.5, and further
iterations are not necessary. The largest difference between
g

(0)
1 (k) and g

(1)
1 (k) occurs as k/kJ → ∞, and is 100% for

fb = 0.5. If the component “b” is identified with baryons,
fb � 1/6, and the difference is reduced to ∼20%. The difference
between g

(1)
1 (k) and g

(2)
1 (k) occurs at k ∼ kJ , and is ∼4% for

fb = 0.5, and 0.2% for fb � 1/6. The difference is much
smaller for neutrinos, whose fb are smaller for the modest
choices of the neutrino masses (mnu,i < 1 eV).

To simplify the subsequent analysis, we shall adopt the
zeroth-order iterative solution for the filtering function, g

(0)
1 =

1/(1 + k2/k2
J ), and the first-order iterative solution for the CDM

growth factor, Equation (33), as the solution at the first order
in perturbations. This solution is sufficiently accurate for our
obtaining the physical insights.

Let us comment on the decaying mode that we have ignored
in obtaining Equation (30). This decaying mode is an oscillatory
function at k/kJ > 1/(2

√
6) � 0.2, representing the acoustic

oscillation of the pressured component (Nusser 2000). While
this term is a decaying mode, it decays slowly, and is not quite
negligible even at low redshift. We show the decaying mode at
the zeroth-order iterative solution in Figure 1,

Δg
(0)
1 (k, τ ) ≡ g

(0)
1 (k, τ ) − 1

1 + k2

k2
J

, (38)

assuming that the pressure became important at z∗ = 10. This
figure shows that the decaying mode remains important even
until z ∼ 0; thus, technically speaking, ignoring the decaying
mode results in an inaccurate form of the filtering function.
Nevertheless, we shall ignore it and adopt g1(k) = 1/(1+k2/k2

J ).
The exact form of g1(k, τ ) is not so important for our pur-

poses. The main goal of this paper is to study how nonlinearities
affect this function. In other words, we are interested in how the
higher order filtering functions, gn(k, τ ), are related to the linear
one, g1(k, τ ). One may use any forms of g1(k, τ ) for a better
accuracy, depending on the problem (baryons or neutrinos).

2.3. Second- and Third-order Solutions

For the higher order (nth order) density perturbations and
velocity-divergence fields, we define the Jeans filtering func-
tions such that

gn(k, τ ) ≡ δn,b(k, τ )

δn,c(k, τ )
, (39)

hn(k, τ ) ≡ θn,b(k, τ )

θn,c(k, τ )
. (40)

Assuming that CDM dominates the gravitational potential,
we find the zeroth-order iteration ansatz in an EdS universe:

δb(k, τ ) =
∞∑

n=1

an(τ )δn,c(k)gn(k, τ ), (41)

Figure 1. Decaying mode solution for the linear filtering function at the zeroth-
order iteration (fc → 1), Δg

(0)
1 (k, τ ) ≡ g

(0)
1 (k, τ ) − 1/(1 + k2/k2

J ), where

g
(0)
1 (k, τ ) is the numerical solution of Equation (27), with the initial conditions

given by g
(0)
1 (k, τ∗) = 1 and ġ

(0)
1 (k, τ∗) = 0 where τ∗ is the conformal time at

z∗ = 10. The top and bottom lines at k/kJ ∼ 1 are at z = 8 and 0, respectively,
and the other lines correspond to the intermediate redshifts.

θb(k, τ ) =
∞∑

n=1

ȧ(τ )an−1(τ )θn,c(k)hn(k, τ ). (42)

Detailed derivations of the nonlinear filtering functions at the
second order, g2(k, τ ), and the third order, g3(k, τ ), are given in
Appendix B. The second-order solution is

g2(k, τ ) =
10
3 − 7

3

[
1 − δ′

2,c(k)
δ2,c(k)

]
10
3 + k2

k2
J

+ O(τ−9/2), (43)

where

δ2,c(k) = 1

(2π )3

∫
dqF

(s)
2 (q, k − q)δ1,c(q)δ1,c(k − q), (44)

δ′
2,c(k) = 1

(2π )3

∫
dq

[
F

(s)
2 (q, k − q) +

3

14

k2

k2
J

]
× g1(q)g1(k − q)δ1,c(q)δ1,c(k − q), (45)

and F
(s)
2 is a mathematical function given by Equation (A28).

The third-order solution is

g3(k, τ ) =
7 − 6

[
1 − δ′

3,c(k)
δ3,c(k)

]
7 + k2

k2
J

+ O(τ−13/2), (46)

where

δ3,c(k) = 1

(2π )6

∫ ∫ ∫
dq1dq2dq3δD(k − q1 − q2 − q3)

× F
(s)
3 (q1, q2, q3)δ1,c(q1)δ1,c(q2)δ1,c(q3), (47)

δ′
3,c(k) = 1

(2π )6

∫ ∫ ∫
dq1dq2dq3δD(k − q1 − q2 − q3)

× F (s)
3 (q1, q2, q3)δ1,c(q1)δ1,c(q2)δ1,c(q3), (48)
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and F
(s)
3 and F (s)

3 are mathematical functions given by Equa-
tions (A30) and (B27), respectively. One may check that these
functions are properly normalized, i.e., gn → 1 as k → 0, using
δ′

2,c → δ2,c and δ′
3,c → δ3,c as k → 0.

Ignoring the decaying modes, let us rewrite g2 and g3 as

g2(k) =
1 − 7

10

[
1 − δ′

2,c(k)
δ2,c(k)

]
1 + 3

10
k2

k2
J

, (49)

g3(k) =
1 − 6

7

[
1 − δ′

3,c(k)
δ3,c(k)

]
1 + 1

7
k2

k2
J

. (50)

These results may be interpreted as, roughly speaking, the
nonlinear filtering functions having smaller effective filtering

scales (larger filtering wavenumbers): kJ → k̃J =
√

10
3 kJ for

the second order, kJ → k̃J = √
7kJ for the third order, and

kJ → k̃J =
√

2
3n(n + 1

2 )kJ for the nth order perturbations.
In other words, the higher order solutions for δn,b are less
suppressed relative to the CDM solutions. In the following
section, we shall quantify this effect in more detail.

3. POWER SPECTRUM

In this section, we calculate the nonlinear matter power
spectrum using the results obtained in the previous section. The
total matter fluctuation, δ, is given by δ = fcδc + fbδb, and thus
the total matter power spectrum, Ptot(k), is given by the sum of
three contributions:

Ptot(k, τ ) = f 2
c Pc(k, τ ) + fcfbPbc(k, τ ) + f 2

b Pb(k, τ ), (51)

where Pc(k) and Pb(k) are the power spectra of the CDM
and another matter component with pressure, respectively, and
Pbc(k) is the cross-correlation power spectrum. Each term is
the sum of the linear part, P11(k, τ ), and the nonlinear parts,
P22(k, τ ) and P13(k, τ ):

Pi(k, τ ) = P11,i(k, τ ) + P22,i(k, τ ) + 2P13,i(k, τ ), (52)

where i = (c, b, bc).
The 3PT power spectrum of CDM has been found in the

literature (see Bernardeau et al. 2002, for a review)

P22,c(k, τ ) = 2
∫

dq
(2π )3

P11,c(q, τ )P11,c(|k − q|, τ )

× [
F

(s)
2 (q, k − q)

]2
, (53)

where F
(s)
2 is a mathematical function given by Equation (A28),

and

P13,c(k, τ ) = 2π

252
k2P11,c(k, τ )

∫ ∞

0

dq

(2π )3
P11,c(q, τ )

×
[

50
q2

k2
− 21

q4

k4
− 79 + 6

k2

q2

+
3

2

(q2 − k2)3(2k2 + 7q2)

k5q3
ln

k + q

|k − q|
]
. (54)

See Appendix A for the detailed derivations.

Here, we have implicitly generalized the results from an EdS
universe to general cosmological models, by writing

a2(τ )

a2(τi)
P11(k, τi) → P11(k, τ )

= D2(τ )

D2(τi)

(
δ

(1)
1,c+(k, τ )/δ(0)

1,c+(k, τ )

δ
(1)
1,c+(k, τ∗)/δ(0)

1,c+(k, τ∗)

)2

P11(k, τi), (55)

where τi is some arbitrary epoch, τ∗ is the epoch where the pres-
sure effect becomes non-negligible (i.e., re-ionization epoch for
baryons and the relativistic to nonrelativistic transition epoch
for massive neutrinos), and D(τ ) is the linear growth factor
appropriate to a given cosmological model. This simple gener-
alization has been shown to provide an excellent approximation
to the full calculation: see Bernardeau et al. (2002) for mod-
els with nonzero curvature and/or a cosmological constant, and
Takahashi (2008) for dynamical dark energy models with a con-
stant equation of state of dark energy.

The linear spectra of the other contributions, P11,bc and P11,b,
are given by

P11,bc(k, τ ) = g1(k)P11,c(k, τ ), (56)

P11,b(k, τ ) = g2
1(k)P11,c(k, τ ). (57)

The nonlinear terms, the main results of this paper, are given by

P22,bc(k, τ ) = 1
10
3 + k2

k2
J

[
P22,c(k, τ )

+
14

3

∫
dq

(2π )3
P11,c(q, τ )P11,c(|k − q|, τ )

× F
(s)
2 (q, k − q)F (s)

2 (q, k − q)

]
, (58)

P22,b(k, τ ) = 1(
10
3 + k2

k2
J

)2

[
P22,c(k, τ )

+
28

3

∫
dq

(2π )3
P11,c(q, τ )P11,c(|k − q|, τ )

× F
(s)
2 (q, k − q)F (s)

2 (q, k − q)

+
98

9

∫
dq

(2π )3
P11,c(q, τ )P11,c(|k − q|, τ )

× (
F (s)

2 (q, k − q)
)2

]
, (59)

P13,bc(k, τ ) = 1

2

[(
g1(k) +

1

7 + k2

k2
J

)
P13,c(k, τ ) +

18

7 + k2

k2
J

P11,c

× (k, τ )
∫

dq
(2π )3

F (s)
3 (q,−q, k)P11,c(q, τ )

]
,

(60)

P13,b(k, τ ) = g1(k)

7 + k2

k2
J

[
P13,c(k, τ ) + 18P11,c(k, τ )

×
∫

dq
(2π )3

F (s)
3 (q,−q, k)P11,c(q, τ )

]
. (61)

See Appendix C for the detailed derivations.
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Figure 2. Ratio of the total matter power spectrum, Ptot(k, z), to the CDM part,
Pc(k, z), at z = 0.1 (top), 1, 3, 5, 10, and 30 (bottom). Left: the input Jeans
wavenumber of kJ = 1 h Mpc−1. Right: kJ = 3 h Mpc−1. The dashed lines
(thin solid lines in the print version) show the ratios calculated from the linear
theory, whereas the dot-dashed lines (thin dotted lines in the print version) show
the linear calculations with kJ = 2 and 6 h Mpc−1 for the left and right panels,
respectively, to show that the actual filtering wavenumbers, predicted by the
3PT calculations, can be ∼40% as large as the linear filtering wavenumber at
low redshift.

(A color version of this figure is available in the online journal.)

How would Ptot(k) compare with the CDM part, Pc(k)?

1. In the linear limit, we should recover Ptot(k)/Pc(k) →
[fc + fbg1(k)]2, which approaches unity as k → 0.

2. In the very small scale limit (k → ∞), the pressured
component is completely smooth (δb(k) → 0) because
g1(k) → 0; thus, Ptot(k)/Pc(k) approaches a constant value,
f 2

c .
3. In the intermediate regime, especially at the transition

scale between the super-Jeans scale (k < kJ ) and the
sub-Jeans scale (k > kJ ), the shape of Ptot(k)/Pc(k) is
significantly distorted away from the linear prediction.
Nonlinear clustering of the pressured component adds
power at k ∼ kJ , which shifts the effective filtering scale
to smaller spatial scales as we go to lower redshifts.

In Figure 2 we show the ratio, Ptot(k, z)/Pc(k, z) (solid lines in
the online version, thick lines in the print version), for different
redshifts (z = 0.1, 1, 3, 5, 10, and 30), and different kJ (kJ = 1
and 3 h Mpc−1 for the left and right panels, respectively). In the
linear regime (see the bottom lines, z = 30), the ratio agrees
with the linear prediction shown by the dashed lines in the
online version (thin lines in the print version). As we go to
lower redshifts, we find that the filtering wavenumbers continue
to shift to larger values, i.e., the filtering scales continue to shift
to smaller spatial scales as we go to lower redshifts. This effect
cannot be predicted from the linear theory, where all the modes
evolve in the same way.

4. COMPARISON WITH APPROXIMATE TREATMENT OF
SAITO ET AL. (2008)

The nonlinear power spectrum with a significant contribution
from a pressured component has not been studied very much in
the literature, with one exception. Saito et al. (2008; hereafter
STT) have studied effects of massive neutrinos on the nonlin-
ear matter power spectrum using 3PT (also see Wong 2008;
Lesgourgues et al. 2009). However, their treatment is not satis-
factory: they have entirely ignored nonlinearities in neutrinos,

but approximated the neutrino perturbations as linear pertur-
bations. More precisely, they calculated the nonlinear matter
power spectrum as

P STT
tot (k, z) = f 2

c Pc(k, z) + 2fcfνP11,νc(k, z) + f 2
ν P11,ν(k, z).

(62)
In our language this leads to

P STT
tot (k, z) = f 2

c Pc(k) +
[
2fcfνg1(k) + f 2

ν g2
1(k)

]
P11,c(k, z).

(63)
Here, we have replaced the subscript “b” with “ν” to avoid
confusion in notation.

How accurate is the STT approximation? To study this,
we compare Equation (63) to the full calculation given in
the previous section. Figure 3 shows the fractional difference
between our full calculation and STT’s approximation, [Ptot(k)−
P STT

tot (k)]/Ptot(k), for Ων/Ωm = 1/10, 1/20, and 1/100, which
correspond to the sum of neutrino masses of

∑
i mν,i � 1.3,

0.64, and 0.13 eV, respectively, where i = (e, μ, τ ). We find
that STT’s approximation clearly underestimates the power at
k ≈ kFS, where kFS is the neutrino free-streaming scale, or it is
the Jeans wavenumber computed with the velocity dispersion
of the neutrinos. More precisely,

kFS,i(τ ) ≡
√

6

σν,i(τ )τ
, (64)

in an EdS universe, where σ 2
ν,i(τ ) is the velocity dispersion of

neutrino species i (see, e.g., Appendix A.3 of Takada et al. 2006).
One may argue that STT’s approximation should be better

for a smaller neutrino mass: the errors in the total matter power
spectrum are 3.5%, 0.6%, and 0.003%

∑
i mν,i = 1.3, 0.64, and

0.13 eV, respectively, at z = 0.1; however, our results indicate
that their approximation is conceptually not correct: neutrinos
should not be treated as linear perturbations, as the neutrino
velocity dispersion has no effect in suppressing the neutrino
perturbations at and above the free-streaming scale. In other
words, the errors may happen to be small in the total matter
power spectrum for small neutrino masses because neutrinos
contribute only a tiny fraction of the total matter density anyway,
but the errors in the neutrino power spectrum are large. Figure 4
shows the fractional difference between the nonlinear neutrino
power spectrum, Pν(k), and the linear power spectrum, P lin

ν (k),
i.e., ΔP/P = [Pν(k) − P lin

ν (k)]/Pν(k). It is clear that neutrinos
are significantly nonlinear, even well below the free-streaming
scale, k � kFS. Nevertheless, the STT approximation may still
provide a convenient phenomenological tool for calculating the
nonlinear total matter power spectrum in the presence of massive
neutrinos.

5. DISCUSSIONS AND CONCLUSIONS

In this paper, we have obtained the second- and third-order
solutions for the density perturbations in a system consisting of
two matter components with and without the pressure gradient.
This is the first self-consistent analytical calculation, with
nonlinearities in the pressured component fully retained up to
the third order in perturbations.

As our study is focused on understanding the physics of the
nonlinear pressure effect on the matter power spectrum, we
have studied a toy model in which the Jeans wavenumber, kJ , is
independent of time. This is equivalent to the temperature of the
pressured component following that of radiation, i.e., T ∝ 1/a.
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Figure 3. Fractional difference between our full calculation and the approxi-
mation used by STT, [Ptot(k) − P STT

tot (k)]/Ptot(k), for Ων/Ωm = 1/100 (top),
1/20 (middle), and 1/10 (bottom), which corresponds to

∑
mν � 0.13, 0.64,

and 1.3 eV, respectively.

Nevertheless, we have found several results that have qualita-
tive implications for the practical applications. We have found
that nonlinearities in the pressured component shift the filtering
scale from the well known linear filtering scale (Gnedin & Hui
1998) to a smaller spatial scale (larger wavenumber) by a factor
depending on the redshift and the Jeans scale. In other words, the
actual filtering scale for a given sound speed (or temperature)
is smaller than the linear scale. Therefore, if one used the lin-
ear filtering scale to interpret the fall-off of, e.g., the flux power
spectrum of the Lyα forests (Zaldarriaga et al. 2001), one would
underestimate the temperature of the pressured component.

How important is this effect? For example, when the Jeans
wavenumber is kJ = 10 h Mpc−1, our calculation predicts
that the effective filtering wavenumber is �10, 12, 13, 13, and
14 h Mpc−1 at z = 30, 10, 5, 3, and 1, respectively. While we
do not expect 3PT to be valid at such high wavenumbers, our
results clearly indicate that the expected changes in the filtering
scale cannot be ignored. Table 1 summarizes the ratios of the
effective (actual) and the linear filtering wavenumbers. Note
that the linear filtering wavenumber is the same as the Jeans
wavenumber in our model; thus, we show kF,eff/kJ in Table 1.
We extracted the effective filtering wavenumber, kF,eff , by fitting
[fc + fb/(1 + k2/k2

F,eff)]
2 to Ptot(k, z)/Pc(k, z). We find that a

factor of 1.4 change in the filtering scale is quite common over
a wide range of redshifts and kJ .

A factor of 1.4 change in the filtering scale changes the
inferred temperature by a factor of 2; thus, one implica-
tion of our result is that the temperature of the intergalactic
medium (IGM) obtained from the Lyα forests at z = 3 by
Zaldarriaga et al. (2001) might have been underestimated by a
factor of 2.

Figure 4. Fractional difference between the nonlinear neutrino power spectrum,
Pν (k), and the linear power spectrum, P lin

ν (k), [Pν (k) − P lin
ν (k)]/Pν (k), for

Ων/Ωm = 1/100 (top), 1/20 (middle), and 1/10 (bottom), which corresponds
to

∑
mν � 0.13, 0.64, and 1.3 eV, respectively.

Table 1
Ratio of the Effective and the Linear Filtering Scales, kF,eff/kJ

kJ z = 0.1 1.0 3.0 5.0 10 30
(h Mpc−1)

0.1 1.08 1.04 1.01 1.00 1.00 1.00
0.5 1.37 1.21 1.07 1.03 1.01 1.00
1.0 1.43 1.32 1.14 1.08 1.03 1.00
3.0 1.41 1.38 1.28 1.20 1.08 1.01
5.0 1.40 1.39 1.32 1.24 1.12 1.02
10 1.41 1.40 1.35 1.29 1.16 1.03

Notes. This table shows the ratios of the effective (kF,eff ) and the linear (kJ)
filtering scales for different redshifts and kJ . The ratios are closer to unity at
higher redshifts because nonlinearities are weaker.

A factor of 1.4 change in the filtering scale gives a factor
of ∼3 change in the filtering mass. Our calculation shows that
the actual filtering mass is similar to the linear one only in
high redshifts, while the former is significantly smaller than
the latter in low redshift. This result is qualitatively similar
to those found in Okamoto et al. (2008) and Hoeft et al.
(2006); however, a quantitative comparison is not possible,
as our results apply only to the system with a constant Jeans
wavenumber.

What is next? As for baryons, we need to extend our for-
malism for incorporating a realistic thermal history of the
universe with a proper time dependence of kJ . As for neu-
trinos, we need to incorporate not only the pressure gradi-
ent but also the anisotropic stress in the Euler equation. To
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do this we need to solve the Boltzmann equation. Neverthe-
less, our results presented in this paper show that neutrinos
are significantly nonlinear, even well below the free-streaming
scale.

This material is based in part upon work supported by the
Texas Advanced Research Program under Grant 003658-0005-
2006, by NASA grants NNX08AM29G and NNX08AL43G,
and by NSF grant AST-0807649. E.K. acknowledges support
from an Alfred P. Sloan Research Fellowship.

APPENDIX A

3PT FOR CDM

The continuity, Euler, and Poisson equations of CDM are
given by

1. Continuity equation:

δ̇(x, τ ) + ∇ · [(1 + δ(x, τ ))v(x, τ )] = 0. (A1)

2. Euler equations:

v̇(x, τ ) + [v(x, τ ) · ∇]v(x, τ ) = − ȧ

a
v(x, τ ) − ∇φ(x, τ ).

(A2)
3. Poisson equation (for an EdS universe):

∇2φ(x, τ ) = 6

τ 2
δ(x, τ ). (A3)

First, we take the divergence of Equation (A2) and substitute
Equation (A3). Moving all the nonlinear terms to the right-hand
side of the equations, we find

δ̇(x, τ ) + ∇ · v(x, τ ) = −∇ · [δ(x, τ )v(x, τ )], (A4)

∂

∂τ
[∇ · v(x, τ )] +

ȧ

a
[∇ · v(x, τ )] +

6

τ 2
δ(x, τ )

= −∇ · {[v(x, τ ) · ∇]v(x, τ )}. (A5)

Let us take the Fourier transform of Equations (A4) and (A5)

˙̃
δ(k, τ ) + θ̃ (k, τ ) = − 1

(2π )3

×
∫∫

dq1dq2δD(q1 + q2 − k)
k · q1

q2
1

θ̃ (q1, τ )δ̃(q2, τ ),

(A6)

˙̃
θ (k, τ ) +

ȧ

a
θ̃ (k, τ ) +

6

τ 2
δ̃(k, τ ) = − 1

(2π )3

×
∫∫

dq1dq2δD(q1 + q2 − k)
k2(q1 · q2)

2q2
1q2

2

θ̃ (q1, τ )θ̃ (q2, τ ),

(A7)

where we have defined θ ≡ ∇ · v, and its Fourier transform is
given by

ṽ(k, τ ) = −i
k
k2

θ̃ (k, τ ). (A8)

One can decompose the solutions of the nonlinear continuity
and Euler equations, δ̃ and θ̃ , into the sum of infinite series of nth
order perturbations of density and velocity divergence fields:

δ̃(k, τ ) =
∞∑

n=1

an(τ )δn(k), (A9)

θ̃(k, τ ) =
∞∑

n=1

ȧ(τ )an−1(τ )θn(k), (A10)

respectively. Note that, strictly speaking, this particular decom-
position, a decomposition into a series with powers of a(τ ), is
valid only for an EdS universe. However, generalization to arbi-
trary cosmological models can be done in the end by replacing
a(τ ) with the appropriate growth factor, D(τ ) (Bernardeau et al.
2002; Takahashi 2008).

Now, let us solve Equations (A6) and (A7) at each order of
perturbations. The nth (n > 1) term of Equation (A6) is given
by

ȧ(τ )an−1(τ )[nδn(k) + θn(k)] = − 1

(2π )3

∫ ∫
dq1dq2δD

× (q1 + q2 − k)
k · q1

q2
1

n−1∑
m = 1

ȧ(τ )an−1(τ )θm(q1)δn−m(q2).

(A11)

Dividing both sides by ȧ(τ )an−1(τ ), one obtains

nδn(k) + θn(k) = An(k), (A12)

where

An(k) = − 1

(2π )3

∫ ∫
dq1dq2δD(q1 + q2 − k)

× k · q1

q2
1

n−1∑
m=1

θm(q1)δn−m(q2). (A13)

Similarly, from the Euler equation, Equation (A7), one obtains

3δn(k) + (1 + 2n)θn(k) = Bn(k), (A14)

where

Bn(k) = − 1

(2π )3

∫ ∫
dq1dq2δD(q1 + q2 − k)

× k2(q1 · q2)

q2
1q2

2

n−1∑
m=1

θm(q1)θn−m(q2). (A15)

The forms of Equations (A12) and (A14) indicate that the
nth order solutions are written in terms of the sum of first to
(n − 1)th order solutions, with δ1(k) = −θ1(k). By solving
Equations (A12) and (A14) for δn and θn, one obtains

δn(k) = (1 + 2n)An(k) − Bn(k)

(2n + 3)(n − 1)
, (A16)

θn(k) = −3An(k) + nBn(k)

(2n + 3)(n − 1)
, (A17)

which can be rewritten as

δn(k) = 1

(2π )3n−3

∫
dq1 . . . dqnδD(q1 + · · · + qn − k)

× Fn(q1, . . . , qn)δ1(q1) . . . δ1(qn), (A18)
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θn(k) = − 1

(2π )3n−3

∫
dq1 . . . dqnδD(q1 + · · · + qn − k)

× Gn(q1, . . . , qn)δ1(q1) . . . δ1(qn). (A19)

Here, the newly defined kernels, Fn and Gn, can be found from
the following recursion relations:

Fn(q1, . . . , qn) =
n−1∑
m=1

Gm(q1, . . . , qm)

(2n + 3)(n − 1)

×
[

(1 + 2n)
k · q1

q2
1

Fn−m(qm+1, . . . , qn)

× k2(q1 · q2)

q2
1q2

2

Gn−m(qm+1, . . . , qn)

]
,

(A20)

and

Gn(q1, . . . , qn) =
n−1∑
m=1

Gm(q1, . . . , qm)

(2n + 3)(n − 1)

×
[

3
k · q1

q2
1

Fn−m(qm+1, . . . , qn)

+ n
k2(q1 · q2)

q2
1q2

2

Gn−m(qm+1, . . . , qn)

]
,

(A21)

with the boundary conditions of F1 = 1 = G1. The second-
order solutions are

F2(q1, q2) = 5

7

k · q1

q2
1

+
k2(q1 · q2)

7q2
1q2

2

, (A22)

G2(q1, q2) = 3

7

k · q1

q2
1

+
2k2(q1 · q2)

7q2
1q2

2

, (A23)

where k = q1 + q2. The third-order solutions are

F3(q1, q2, q3) = 1

18

[
7k · q1

q2
1

F2(q2, q3)

+
k2(q1 · q23)

q2
1q2

23

G2(q2, q3)

]
+

G2(q1, q2)

18

×
[

7k · q12

q2
12

+
k2(q12 · q3)

q2
12q

2
3

]
, (A24)

where qij ≡ qi + qj and k = ∑
qi .

It is often convenient to have the symmetrized forms of the
above kernels. They are

F
(s)
2 (q1, q2) = 1

2 [F2(q1, q2) + F2(q2, q1)], (A25)

G
(s)
2 (q1, q2) = 1

2 [G2(q1, q2) + G2(q2, q1)], (A26)

F
(s)
3 (q1, q2, q3) = 1

6 [F3(q1, q2, q3) + F3(q1, q3, q2)

+ F3(q2, q1, q3) + F3(q2, q3, q1)

+ F3(q3, q1, q2) + F3(q3, q2, q1)]. (A27)

The explicit forms are

F
(s)
2 (q1, q2) = 5

7
+

2

7

(q1 · q2)2

q2
1q2

2

+
1

2

(q1 · q2)
(
q2

1 + q2
2

)
q2

1q2
2

, (A28)

G
(s)
2 (q1, q2) = 3

7
+

4

7

(q1 · q2)2

q2
1q2

2

+
1

2

(q1 · q2)
(
q2

1 + q2
2

)
q2

1q2
2

, (A29)

F
(s)
3 (q1, q2, q3) = 7

54
k ·

[
F

(s)
2 (q2, q3)

q1

q2
1

+ F
(s)
2 (q1, q3)

q2

q2
2

+ F
(s)
2 (q1, q2)

q3

q2
3

]
+

1

27
k2

[
G

(s)
2 (q2, q3)

q1 · q23

q2
1q2

23

+ G
(s)
2 (q1, q3)

q2 · q13

q2
2q2

13

+ G
(s)
2 (q1, q2)

q3 · q12

q2
3q2

12

]
+

7

54
k ·

×
[
G

(s)
2 (q2, q3)

q23

q2
23

+ G
(s)
2 (q1, q3)

q13

q2
13

+ G
(s)
2 (q1, q2)

q12

q2
12

]
.

(A30)

In order to calculate the next-to-linear-order density power
spectrum, one needs to use the solutions of the density fluctua-
tions up to the third order:

(2π )3P (k, τ )δD(k + k′) = 〈δ̃(k, τ )δ̃(k′, τ )〉

=
〈( ∞∑

m= 1

am(τ )δ̃m(k)

)( ∞∑
l = 1

al(τ )δ̃l(k′)
)〉

� a2(τ )

× 〈δ1(k)δ1(k′)〉 + a4(τ )〈δ1(k)δ3(k′)
+ δ2(k)δ2(k′) + δ3(k)δ1(k′)〉, (A31)

which yields

P (k, τ ) = a2(τ )P11(k)+a4(τ )[P22(k)+2P13(k)]+O(δ6). (A32)

Here, we have defined the quantity, Pij (k), given by

(2π )3Pij (k)δD(k + k′) = 〈δi(k)δj (k′)〉. (A33)

The nonlinear corrections, P22(k) and P13(k), are

P22(k) = 2
∫

dq
(2π )3

P11(q)P11(|k − q|)[F (s)
2 (q, k − q)

]2
,

(A34)

where

F
(s)
2 (q, k − q) = 5

7

+
1

14

[−10q4 + 20kq3μ − 10k2q2μ2 − 7k2q2 + 7k3qμ

q2(k2 + q2 − 2kqμ)

]
,

(A35)

and μ ≡ k̂ · q̂, and

P13(k) = 3P11(k)
∫

dq
(2π )3

F
(s)
3 (q,−q, k)P11(q). (A36)

Using∫ 1

−1
dμF

(s)
3 (q,−q, k) = 1

756

[
50 − 21

q2

k2
− 79

k2

q2
+ 6

k4

q4
+

3

2

× (q2 − k2)3(2k2 + 7q2)

k3q5
ln

k + q

|k − q|
]
,
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one obtains (Makino et al. 1992)

P13(k) = 2π

252
k2P11(k)

∫ ∞

0

dq

(2π )3
P11(q)

[
50

q2

k2
− 21

q4

k4
− 79

+ 6
k2

q2
+

3

2

(q2 − k2)3(2k2 + 7q2)

k5q3
ln

k + q

|k − q|
]
. (A37)

APPENDIX B

3PT WITH PRESSURE

In this appendix, we shall derive the higher order filtering
functions. We shall solve Equations (14)–(17) perturbatively,
up to the third order in perturbations. The density contrasts and
velocity divergence fields of CDM and the matter with pressure
are all expanded into the infinite sum of nth order perturbations
as

δ̃c(k, τ ) =
∞∑

n=1

an(τ )δn,c(k), (B1)

θ̃c(k, τ ) =
∞∑

n=1

ȧ(τ )an−1(τ )θn,c(k), (B2)

δ̃b(k, τ ) =
∞∑

n=1

an(τ )δn,c(k)gn(k, τ ), (B3)

θ̃b(k, τ ) =
∞∑

n=1

ȧ(τ )an−1(τ )θn,c(k)hn(k, τ ), (B4)

where gn(k, τ ) and hn(k, τ ) are the filtering functions for the
density and velocity divergence fields, respectively, at the nth
order.

With the above series expansion, Equations (15) and (17)
yield

∞∑
n=1

[(nȧ(τ )an−1(τ )gn(k, τ ) + an(τ )ġn(k, τ ))

× δn,c(k) + ȧ(τ )an−1(τ )hn(k, τ )θn,c(k)]

= − 1

(2π )3

∫ ∫
dq1dq2δD(q1 + q2 − k)

k · q1

q2
1

∞∑
m=1

×
∞∑
l=1

ȧam+l−1hm(q1, τ )gl(q2, τ )θm,c(q1)δl,c(q2), (B5)

∞∑
n=1

[(ä(τ )an−1(τ ) + ȧ2(τ )an−2(τ )(n − 1))hn(k, τ )θn,c(k)

+ ȧ(τ )an−1(τ )ḣn(k, τ )θn,c(k) +
2

τ
ȧ(τ )an−1(τ )hn(k)(k, τ )θn,c

× (k) +
6

τ 2
an(τ )(fc + fbgn(k, τ ))δn,c(k)] = − 1

(2π )3

×
∫ ∫

dq1dq2δD(q1 + q2 − k)
k2(q1 · q2)

2q2
1q2

2

∞∑
m=1

∞∑
l=1

ȧ2(τ )

× am+l−2(τ )hm(q1, τ )hl(q2, τ )θm,c(q1)θl,c(q2) + k2c2
s (τ )

×
∞∑

n = 1

an(τ )gn(k, τ )δn,c(k) − 1

2(2π )3
k2c2

s (τ )
∫ ∫

dq1dq2δD

× (q1 + q2 − k)
∞∑

m=1

∞∑
l=1

am+l(τ )gm(q1, τ )gl(q2, τ )δm,c

× (q1)δl,c(q2) +
1

3(2π )6
k2c2

s (τ )
∫ ∫ ∫

dq1dq2dq3δD

× (q1 + q2 + q3 − k)
∞∑

m=1

∞∑
l=1

∞∑
p=1

am+l+p(τ )gm(q1, τ )gl

× (q2, τ )gp(q3, τ )δm,c(q1)δl,c(q2)δp,c(q3). (B6)

From now on, we shall write the sound speed, cs, in terms of
the usual Jeans wavenumber, kJ , as cs = √

6/(kJ τ ). We shall
ignore the inhomogeneity in cs (i.e., spatial dependence of cs)
throughout this paper. For the linear analysis for ∇cs �= 0, see
Naoz & Barkana (2005).

B.1. Second-order Solutions

We have derived the linear filtering function, g1(k), in
Equation (30). For n = 2, the continuity and Euler equations
are given by

δ2,c(k)ġ2(k, τ ) +
4

τ
δ2,c(k)g2(k, τ ) +

2

τ
θ2,c(k)h2(k, τ )

= 2

τ

1

(2π )3

∫ ∫
dq1dq2δD(q1 + q2 − k)

× k · q1

q2
1

δ1,c(q1)δ1,c(q2)g1(q1)g1(q2) ≡ 2

τ
A2(k), (B7)

10

τ 2
θ2,c(k)h2(k, τ ) +

2

τ
θ2,c(k)ḣ2(k, τ ) +

6

τ 2
δ2,c(k)

− 6

τ 2

k2

k2
J

δ2,c(k)g2(k, τ ) = 4

τ 2

1

(2π )3

∫ ∫
dq1dq2δD

× (q1 + q2 − k)

[
− 3

4

k2

k2
J

− k2(q1 · q2)

2q2
1q2

2

]

× δ1,c(q1)δ1,c(q2)g1(q1)g1(q2) ≡ 4

τ 2
B2(k). (B8)

Here, θ1,c(k) = −δ1,c(k). Combining Equations (B7) and (B8),
we get the second-order inhomogeneous partial differential
equation:

g̈2(k, τ ) +
10

τ 2
ġ2(k, τ ) +

1

τ 2

[
20 + 6

k2

k2
J

]
g2(k, τ )

+
1

τ 2

[
− 6 − 10A2(k)

δ2,c(k)
+

4B2(k)

δ2,c(k)

]
= 0, (B9)

where δ2,c(k) is given by

δ2,c(k) = 1

(2π )3

∫
dqF

(s)
2 (q, k − q)δ1,c(q)δ1,c(k − q). (B10)

Solving the above differential equation, we have

g2(k, τ ) =
6 + 10A2(k)

δ2,c(k) − 4B2(k)
δ2,c(k)

20 + 6 k2

k2
J

+ O(τ−9/2), (B11)
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where the oscillation component,

O(τ−9/2) ∝ τ
− 9

2

(
1±

√
1− 4

81

(
20+6 k2

k2
J

))
, (B12)

decays for any choice of 0 � k/kJ . The second-order filtering
function for the velocity divergence field, h2(h, τ ), is given by

h2(k) = 1
θ2,c(k) [A2(k) − 2δ2,c(k)g2(k)], (B13)

where we have ignored the decaying term.
Using the explicit forms of A2(k) and B2(k) given by

Equations (B6) and (B8), respectively, we obtain

g2(k, τ ) =
10
3 − 7

3

[
1 − δ′

2,c(k)
δ2,c(k)

]
10
3 + k2

k2
J

+ O(τ−9/2), (B14)

where δ′
2,c is

δ′
2,c(k) = 1

(2π )3

∫
dqF (s)

2 (q, k − q)δ1,c(q)δ1,c(k − q), (B15)

where

F (s)
2 (q1, q2) ≡

[
F

(s)
2 (q1, q2) +

3

14

k2

k2
J

]
g1(q1)g1(q2). (B16)

In the limit where kJ → ∞, F (s)
2 (q1, q2) = F

(s)
2 (q1, q2), and

thus g2 → 1. For the velocity divergence filtering function, we
find

h2(k)= 1

θ2,c(k)

[
1

(2π )3

∫∫
dq1dq2δD(q1 + q2 − k)δ1,c(q1)δ1,c

× (q2)(2F
(s)
2 (q1,q2)− G

(s)
2 (q1,q2))g1(q1)g1(q2)

− 2δ2,c(k)g2(k)

]
= 1

θ2,c(k)

[
1

(2π )3

∫∫
dq1dq2δD

× (q1 + q2 − k)δ1,c(q1)δ1,c(q2)

(
1+

(q1 · q2)(q2
1 + q2

2 )

2q2
1q2

2

)

× g1(q1)g1(q2)

]
− 2

δ2,c(k)

θ2,c(k)
g2(k), (B17)

where we have used 2F2(q1, q2) − G2(q1, q2) = k · q1

q2
1

. This
expression also converges to h2 = 1 as we take the limit of
kJ → ∞.

B.2. Third-order Solutions

For n = 3, the continuity and Euler equations are given by

3ȧ(τ )a2(τ )g3(k, τ )δ3,c(k) + a3(τ )ġ3

× (k, τ )δ3,c(k) + ȧ(τ )a2(τ )h3(k, τ )θ3,c(k)

= ȧ(τ )a2(τ )
1

(2π )6

∫ ∫ ∫
dq1dq2dq3δD

× (q1 + q2 + q3 − k)δ1,c(q1)δ1,c(q2)δ1,c(q3)

×
[

k · q1

q2
1

g1(q1)g2(q23)F (s)
2 (q2, q3)

+
k · q12

q2
12

h2(q12)g1(q3)G(s)
2 (q1, q2)

]
≡ ȧ(τ )a2(τ )A3(k),

(B18)

[ä(τ )a2(τ ) + 2ȧ2(τ )a(τ )]h3(k, τ )θ3,c(k) + ȧ(τ )a2(τ )

× ḣ3(k, τ )θ3,c(k) +
2

τ
ȧ(τ )a2(τ )h3(k, τ )θ3,c(k)

+
6

τ 2
a3(τ )δ3,c(k) − 6

τ 2

k2

k2
J

a3(τ )δ3,c(k)

= ȧ2(τ )a(τ )
1

(2π )6

∫ ∫ ∫
dq1dq2dq3δD

× (q1 + q2 + q3 − k)δ1,c(q1)δ1,c(q2)δ1,c(q3)

×
[

− k2(q1 · q23)

2q2
1q2

23

g1(q1)h2(q23)G(s)
2 (q2, q3)

− k2(q12 · q3)

2q2
12q

2
3

h2(q12)g1(q3)G(s)
2 (q1, q2)

− 3

4

k2

k2
J

g1(q1)g2(q23)F (s)
2 (q2, q3) − 3

4

k2

k2
J

g2(q12)g1(q3)F (s)
2

× (q1, q2) +
1

2

k2

k2
J

g1(q1)g1(q2)g1(q3)

]
≡ ȧ2(τ )a(τ )B3(k). (B19)

In an EdS universe, a(τ ) = τ 2

9 , we have

δ3,c(k)ġ3(k, τ ) +
6

τ
δ3,c(k)g3(k, τ ) +

2

τ
θ3,c(k)h3(k, τ )

= 2

τ
A3(k), (B20)

14

τ 2
h3(k, τ )θ3,c(k) +

2

τ
ḣ3(k, τ )θ3,c(k) +

6

τ 2
δ3,c(k)

− 6

τ 2

k2

k2
J

δ3,c(k)g3(k, τ ) = 4

τ 2
B3(k). (B21)

Combining Equations (B20) and (B21), we have the second-
order differential equation:

g̈3(k, τ ) +
14

τ
ġ3(k, τ ) +

1

τ 2

(
42 + 6

k2

k2
J

)
g3(k, τ )

+
1

τ 2

(
− 6 − 14A3(k)

δ3,c(k)
+

4B3(k)

δ3,c(k)

)
= 0. (B22)

Solving this, we obtain

g3(k, τ ) =
1 + 7A3(k)

3δ3,c(k) − 2B3(k)
3δ3,c(k)

7 + k2

k2
J

+ O(τ−13/2), (B23)

where the oscillation component,

O(τ−13/2) ∝ τ
−13/2

(
1±

√
1− 24

169

(
7+ k2

k2
J

))
, (B24)

decays for any 0 � k
kJ

. The velocity divergence filtering function
at the third order is

h3(k) = 1

θ3,c(k)
[A3(k) − 3δ3,c(k)g3(k)], (B25)

where we have ignored the decaying term.
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Let us rewrite 7A3(k) − 2B3(k) in Equation (B23) as
7A3(k) − 2B3(k)

= 1

(2π )6

∫ ∫ ∫
dq1dq2dq3δD(q1 + q2 + q3 − k)δ1,c

(q1)δ1,c(q2)δ1,c(q3)

×
[

7k · q1

q2
1

g1(q1)g2(q23)F (s)
2 (q2, q3)

+
7k · q12

q2
12

h2(q12)g1(q3)G(s)
2 (q1, q2)

+
k2(q1 · q23)

q2
1q2

23

g1(q1)h2(q23)G(s)
2 (q2, q3)

+
k2(q12 · q3)

q2
12q

2
3

h2(q12)g1(q3)G(s)
2 (q1, q2)

+
3

2

k2

k2
J

g1(q1)g2(q23)F (s)
2 (q2, q3)

+
3

2

k2

k2
J

g2(q12)g1(q3)F (s)
2 (q1, q2)

− k2

k2
J

g1(q1)g1(q2)g1(q3)

]

≡ 18

(2π )6

∫ ∫ ∫
dq1dq2dq3δD(q1 + q2 + q3 − k)F3

× (q1, q2, q3)δ1,c(q1)δ1,c(q2)δ1,c(q3)

≡ 18δ′
3,c(k). (B26)

The new kernel, F3(q1, q2, q3), can be symmetrized as

F (s)
3 (q1, q2, q3)

= 1
6 [F3(q1, q2, q3) + F3(q1, q3, q2)

+ F3(q2, q1, q3) + F3(q2, q3, q1)

+ F3(q3, q1, q2) + F3(q3, q2, q1)]

= 7

54
k ·

[
F

(s)
2 (q2, q3)

q1

q2
1

g1(q1)g2(q23)

+ F
(s)
2 (q1, q3)

q2

q2
2

g1(q2)g2(q13)

+ F
(s)
2 (q1, q2)

q3

q2
3

g1(q3)g2(q12)

]

+
1

27
k2

[
G

(s)
2 (q2, q3)

q1 · q23

q2
1q2

23

g1(q1)h2(q23)

+ G
(s)
2 (q1, q3)

q2 · q13

q2
2q2

13

g1(q2)h2(q13)

+ G
(s)
2 (q1, q2)

q3 · q12

q2
3q2

12

g1(q3)h2(q12)

]

+
7

54
k ·

[
G

(s)
2 (q2, q3)

q23

q2
23

g1(q1)h2(q23)

+ G
(s)
2 (q1, q3)

q13

q2
13

g1(q2)h2(q13)

+ G
(s)
2 (q1, q2)

q12

q2
12

g1(q3)h2(q12)

]

+
1

18

k2

k2
J

[
g1(q1)g2(q23)F (s)

2 (q2, q3)

+ g1(q2)g2(q13)F (s)
2 (q1, q3)

+ g1(q3)g2(q12)F (s)
2 (q1, q2)

− g1(q1)g1(q2)g1(q3)

]
. (B27)

In the limit of kJ → ∞, F3 → F3, and g3(k) = 1. Using δ′
3,c(k)

introduced above, we write g3 as

g3(k) =
7 − 6

[
1 − δ′

3,c(k)
δ3,c(k)

]
7 + k2

k2
J

. (B28)

APPENDIX C

3PT TOTAL POWER SPECTRUM

We calculate the power spectrum of the total matter fluctua-
tions, δ = fcδc + fbδb = fcδc + (1 − fc)δb, which is given, up
to the third order in perturbations, by

δ(k, τ ) = fcδc(k, τ ) + fbδb(k, τ )

= fc[δ1,c(k, τ ) + δ2,c(k, τ ) + δ3,c(k, τ )]

+ (1 − fc)[δ1,b(k, τ ) + δ2,b(k, τ ) + δ3,b(k, τ )]

= fc[δ1,c(k, τ ) + δ2,c(k, τ ) + δ3,c(k, τ )]

+ (1 − fc)[g1(k)δ1,c(k, τ ) + g2(k)δ2,c(k, τ )

+ g3(k)δ3,c(k, τ )]. (C1)

The power spectrum is

(2π )3Ptot(k)δD(k + k′) = 〈δ(k)δ(k′)〉
= 〈{fcδc(k) + (1 − fc)δb(k)}{fcδc(k′)

+ (1 − fc)δb(k′)}〉
= f 2

c 〈δc(k)δc(k′)〉 + 2fc(1−fc)〈δb(k)δc

(k′)〉 + (1 − fc)2〈δb(k)δb(k′)〉
≡ (2π )3[f 2

c Pc(k) + 2fc(1 − fc)Pb,c(k)

+ (1 − fc)2Pb(k)]δD(k + k′), (C2)

where Pc, Pb,c, and Pb are

(2π )3Pc(k)δD(k + k′) = 〈δc(k)δc(k′)〉
= 〈{δ1,c(k) + δ2,c(k) + δ3,c(k)}{δ1,c(k′)

+ δ2,c(k′) + δ3,c(k′)}〉
= 〈δ1,c(k)δ1,c(k′)〉 + 2〈δ1,c(k)δ3,c(k′)〉

+ 〈δ2,c(k)δ2,c(k′)〉
≡ (2π )3[P11,c(k) + 2P13,c(k) + P22,c(k)]

× δD(k + k′), (C3)

(2π )3Pbc(k)δD(k + k′) = 〈δb(k)δc(k′)〉
= 〈{g1(k)δ1,c(k) + g2(k)δ2,c(k)

+ g3(k)δ3,c(k)}{δ1,c(k′)
+ δ2,c(k′) + δ3,c(k′)}〉

= g1(k)〈δ1,c(k)δ1,c(k′)〉
+ g1(k)〈δ1,c(k)δ3,c(k′)〉
+ 〈g3(k)δ3,c(k)δ1,c(k′)〉
+ 〈g2(k)δ2,c(k)δ2,c(k′)〉

≡ (2π )3[P11,bc(k) + 2P13,bc(k)

+ P22,bc(k)]δD(k + k′), (C4)
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Figure 5. Dimensionless power spectra, Δ2(k) ≡ k3P (k)/(2π2), for a matter component with pressure (i.e., baryon, neutrino, etc.) are shown for several redshifts
(z = 0.1, 1.0, 3.0, 5.0, 10, and 30). We show the nonlinear calculations with 3PT in the solid and dotted lines for kJ = 1.0 and 3.0 h Mpc−1, respectively. We also
show the linear calculations in the dashed and dot-dashed lines for kJ = 1.0 and 3.0 h Mpc−1, respectively.

(2π )3Pb(k)δD(k + k′) = 〈δb(k)δb(k′)〉
= 〈{g1(k)δ1,c(k) + g2(k)δ2,c(k)

+ g3(k)δ3,c(k)} × {g1(k′)δ1,c(k′)
+ g2(k′)δ2,c(k′) + g3(k′)δ3,c(k′)}〉

= g2
1(k)〈δ1,c(k)δ1,c(k′)〉

+ 2g1(k)〈δ1,c(k)g3(k′)δ3,c(k′)〉
+ 〈g2(k)δ2,c(k)g2(k′)δ2,c(k′)〉

≡ (2π )3[P11,b(k) + 2P13,b(k) + P22,b(k)]

× δD(k + k′), (C5)

respectively.
Now, P11,c(k), P13,c(k), and P22,c(k) can be numerically

calculated with the corresponding kernels, F
(s)
2 and F

(s)
3 :

(2π )3P11,bc(k)δD(k + k′) = 〈δ1,b(k)δ1,c(k′)〉
= g1(k)〈δ1,c(k)δ1,c(k′)〉, (C6)

(2π )3P13,bc(k)δD(k + k′) = 1
2 [〈δ1,b(k)δ3,c(k′)〉
+ 〈δ1,c(k)δ3,b(k′)〉]

= 1
2 [g1(k)〈δ1,c(k)δ3,c(k′)〉
+ 〈δ1,c(k)g3(k′)δ3,c(k′)〉]

= 1

2

[(
g1(k) +

1

7 + k2

k2
J

)

× 〈δ1,c(k)δ3,c(k′)〉 +
6

7 + k2

k2
J

× 〈δ1,c(k)δ′
3,c(k′)〉

]
, (C7)

(2π )3P22,bc(k)δD(k + k′) = 〈δ2,b(k)δ2,c(k′)〉
= 〈g2(k)δ2,c(k)δ2,c(k′)〉
= 1

10
3 + k2

k2
J

[
〈δ2,c(k)δ2,c(k′)〉

+
7

3
〈δ′

2,c(k)δ2,c(k′)〉
]
, (C8)

(2π )3P11,b(k)δD(k + k′) = 〈δ1,b(k)δ1,b(k′)〉
= g2

1(k)〈δ1,c(k)δ1,c(k′)〉, (C9)

(2π )3P13,b(k)δD(k + k′) = 〈δ1,b(k)δ3,b(k′)〉
= g1(k)〈δ1,c(k)g3(k′)δ3,c(k′)〉
= g1(k)

7 + k2

k2
J

[〈δ1,c(k)δ3,c(k′)〉

+ 6〈δ1,c(k)δ′
3,c(k′)〉], (C10)

(2π )3P22,b(k)δD(k + k′) = 〈δ2,b(k)δ2,b(k′)〉
= 〈g2(k)δ2,c(k)g2(k′)δ2,c(k′)〉
= 1(

10
3 + k2

k2
J

)2

[
〈δ2,c(k)δ2,c(k′)〉

+
14

3
〈δ2,c(k)δ′

2,c(k′)〉

+
49

9
〈δ′

2,c(k)δ′
2,c(k′)〉

]
. (C11)
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The ensemble averages of the products involving δ′
n,c(k) are

given by

〈δ1,c(k)δ′
3,c(k′)〉 = 3δD(k + k′)P11,c(k)

×
∫

dqF (s)
3 (q,−q, k)P11,c(q)

= 6πδD(k + k′)P11,c(k)
∫ ∞

0
dq q2P11,c(q)

×
∫ 1

−1
dμF (s)

3 (q,−q, k), (C12)

〈δ2,c(k)δ′
2,c(k′)〉 = 2δD(k + k′)

×
∫

dqP11,c(q)P11,c(|k − q|)F (s)
2

× (q, k − q)F (s)
2 (q, k − q), (C13)

〈δ′
2,c(k)δ′

2,c(k′)〉 = 2δD(k + k′)
∫

dqP11,c(q)P11,c(|k − q|)

× [
F (s)

2 (q, k − q)
]2

. (C14)

Here, the term,
∫

dq
(2π)3 F3(q,−q, k)P11,c(q), in Equation (C12)

is given by∫
dq

(2π )3
F (s)

3 (q,−q, k)P11,c(q)

=
∫

dq
(2π )3

{
7

54
k ·

[
F

(s)
2 (−q, k)

q
q2

g1(q)g2(k − q)

−F
(s)
2 (q, k)

q
q2

g1(q)g2(k + q)

]

+
2

27
k2

[
F

(s)
2 (−q, k)

q · (k − q)

q2(k − q)2
g1(q)g2(k − q)

−F
(s)
2 (q, k)

q · (k + q)

q2(k + q)2
g1(q)g2(k + q)

]

+
14

54
k ·

[
F

(s)
2 (−q, k)

k − q
(k − q)2

g1(q)g2(k − q)

+ F
(s)
2 (q, k)

k + q
(k + q)2

g1(q)g2(k + q)

]

− 1

27
k2

[(
1 +

(−q · k)(q2 + k2)

2q2k2

)
q · (k − q)

q2(k − q)2
g2

1(q)g1(k)

−
(

1 +
(q · k)(q2 + k2)

2q2k2

)
q · (k + q)

q2(k + q)2
g2

1(q)g1(k)

]

− 7

54
k ·

[(
1 +

(−q · k)(q2 + k2)

2q2k2

)
k − q

(k − q)2
g2

1(q)g1(k)

+

(
1 +

(q · k)(q2 + k2)

2q2k2

)
k + q

(k + q)2
g2

1(q)g1(k)

]

+
1

18

k2

k2
J

[
g1(q)g2(k − q)F (s)

2 (−q, k)

+ g1(q)g2(k + q)F (s)
2 (q, k)

− g2
1(q)g1(k)

]}
P11,c(q), (C15)

where we have used Equation (B17) and F
(s)
2 (q,−q) =

G
(s)
2 (q,−q) = 0. We then calculate the angular average of

F (s)
3 , i.e.,

∫
dμF (s)

3 , for the linear filtering function of g1(k) =
1/(1 + k2/k2

J ):

∫ 1

−1
dμF (s)

3 = 1

612360r8s(1 + r2)(r2 + s2)2

[[
30r2s3[−14000s6

+ 810r10(1 + s2) + 900r2s4(−7 + 5s2)

+ 60r4s2(105 − 125s2 + 78s4)

+ 9r8(321 − 248s2 + 159s4)

+ 27r6(126 − 87s2 + 70s4 + 9s6)]

− 243r8(−7 + 5s2 + 2s4)[5(r4 + s2)(−1 + s2)2

+ r2(5 − 5s2 − 19s4 + 5s6)] ln
1 + s

|1 − s|
+ [10s2 + 3r2(1 + s2)][−35s2

+ 3r2(−7 + s2)][−2000s6 + 135r8(−1 + s2)2

+ 240r4s2(3 − 4s2 + 3s4) + 300r2(s4 + s6)

+ 27r6(5 + 5s2 − 9s4 + 5s6)]

× 1

2
ln

[
10s2 + 3r2(1 + s)2

10s2 + 3r2(1 − s)2

]]]
, (C16)

where r ≡ k/kJ and s ≡ k/q. We find that the calculation of
F3 is numerically unstable as k/kJ → 0 (r → 0). The exact
limit of F3 is limk/kJ →0 F3 → F3, and thus one may replace F3
with F3 for a sufficiently small value of k/kJ .

Finally, we generalize the above results from an EdS universe
to general cosmological models, by writing

a2(τ )

a2(τi)
P11(k, τi) → P11(k, τ ) = D2(τ )

D2(τi)

×
(

δ
(1)
1,c+(k, τ )/δ(0)

1,c+(k, τ )

δ
(1)
1,c+(k, τ∗)/δ(0)

1,c+(k, τ∗)

)2

P11(k, τi), (C17)

where τi is some arbitrary epoch, τ∗ is the epoch where the pres-
sure effect becomes non-negligible (i.e., re-ionization epoch for
baryons and nonrelativistic transition for massive neutrinos),
and D(τ ) is the linear growth factor appropriate to a given
cosmological model. We obtain Equation (58) from combining
Equations (C8), (C13), and P22,c given by Equation (A34). Simi-
larly, we obtain Equation (59) from combining Equations (C11),
(C13), (C14), and P22,c, Equation (60) from combining
Equations (C7), (C12), and P13,c given by Equation (A36), and
Equation (61) from combining Equations (C10), (C12),
and P13,c.

Figure 5 shows the dimensionless 3PT and linear power
spectra, Δ2(k) = k3P (k)/(2π2), for a matter component with
pressure at different redshifts (z = 0.1, 1.0, 3.0, 5.0, 10, and
30) with kJ = 1.0 and 3.0 h Mpc−1. The 3PT and linear
power spectra are similar at the highest redshift, whereas the
3PT has significantly more power than the linear spectrum at
larger wavenumbers as we go to lower redshifts. As a result, the
filtering scale for a given linear filtering scale migrates toward
larger wavenumbers in lower redshifts.
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Bernardeau, F., Colombi, S., Gaztañaga, E., & Scoccimarro, R. 2002, Phys. Rep.,
367, 1

Gnedin, N. Y. 2000, ApJ, 542, 535

http://dx.doi.org/10.1016/S0370-1573(02)00135-7
http://adsabs.harvard.edu/cgi-bin/bib_query?2002PhR...367....1B
http://adsabs.harvard.edu/cgi-bin/bib_query?2002PhR...367....1B
http://dx.doi.org/10.1086/317042
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...542..535G
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...542..535G


No. 1, 2009 3PT WITH NONLINEAR PRESSURE 719

Gnedin, N. Y., & Hui, L. 1998, MNRAS, 296, 44
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