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Abstract. This paper deals with numerical methods for high frequency wave scattering. It intro-
duces a new hybrid technique that couples a directional fast multipole method for a subsection of
a scattering surface to an asymptotic formulation over the rest of the scattering domain. The direc-
tional fast multipole method is new and highly efficient for the solution of the boundary integral
formulation of a general scattering problem but it requires at least a few unknowns per wavelength
on the boundary. The asymptotic method that was introduced by Bruno and collaborators requires
much fewer unknowns. On the other hand the scattered field must have a simple structure. Hy-
bridization of these two methods retains their best properties for the solution of the full problem.
Numerical examples are given for the solution of the Helmholtz equation in two space dimensions.

Keywords: High frequency scattering, Helmholtz equation, Boundary integral equation, Direc-
tional Fast multipole method, Hybrid method
PACS: 02.30.Rz, 02.60.Cb, 02.60.Nm, 02.70.Pt, 03.65.Nk

INTRODUCTION

In this paper, we consider the numerical solution of the time harmonic acoustic scattering
problem. Suppose thatΩ⊂R

d(d = 2,3) is a smooth impenetrable object with boundary
Γ = ∂Ω and exterior normal n(x) for x ∈ Γ. We assume that the wave number k is
very large and the incoming wave is given by uI(x) = eikα·x with |α|= 1. The scattered
wave field u(x) then satisfies the following Helmholtz equation with Dirichlet boundary
condition

Δu(x)+ k2u(x) = 0 for x ∈ R
2 \ Ω̄

u(x) =−uI(x) for x ∈ Γ (1)

lim
|x|→∞

|x|(d−1)/2
((

x
|x| ,∇u(x)

)
− iku(x)

)
= 0,

where the last condition is the Sommerfeld radiation condition and guarantees that the
scattered field u(x) propagates to infinity.

The numerical solution of this problem often starts by transforming it into a boundary
integral equation with an unknown density supported on Γ. The main advantage is that
now one works with a lower dimensional problem on a bounded domain. One possible

3
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approach [1, 2] is to write the scattered field u(x) as a single layer potential:

u(x) =−
∫
Γ
G(x,y)μ(y)ds(y) with G(x,y) =

{
i
4H

(1)
0 (k|x− y|) (d = 2)

1
4π

eik|x−y|
|x−y| (d = 3)

(2)

where G(x,y) is the Green’s function of the Helmholtz operator and μ(x) = ∂ (u(x)+uI(x))
∂n(x)

for x ∈ Γ is the normal derivative of the total field. It can be shown that the boundary
density μ(x) is the unique solution of the following combined field integral equation

1
2
μ(x)+

∫
Γ

(
∂G(x,y)
∂n(x)

− iγG(x,y)
)
μ(y)ds(y) =

∂uI(x)
∂n(x)

− iγuI(x) (3)

with γ > 0. To simplify the notation, we will denote the combined kernel(
∂G(x,y)
∂n(x) − iγG(x,y)

)
by K(x,y). By choosing γ ≈ k, this equation has a condition

number that is almost independent of k (see [3]). For high frequency scattering prob-
lems, k is typically very large and therefore the density μ(x) is often highly oscillatory.

In the past twenty years, there has been a substantial amount of research devoted to
the rapid solution of (3). Since μ(x) is often discretized numerically with a constant
number of unknowns per wavelength λ = 2π/k, the number of unknowns scales like
O(kd−1) and the discrete version of (3) has a dense O(kd−1)×O(kd−1) matrix. As a
result, iterative methods such as GMRES are the natural tools for the solution of (3). At
each step of the iterative solver, one needs to perform a matrix vector product that simply
takes O(k2(d−1)) operations in a naive implementation. One active line of research aims
to compute this matrix vector product in O(k logk) steps. Two examples are the high
frequency fast multipole method (HF-FMM) developed by Rokhlin et al. [4, 5, 6, 7, 8]
and the recently proposed directional fast multipole method [9, 10] by two of the authors
of this article. Combined with an accurate quadrature rule, these methods can offer
accurate and efficient algorithms for solving (3) with almost linear complexity in the
number of unknowns.

Another line of research leverages the asymptotic results from geometrical optics
[11] for convex scatterers and has recently experienced a lot of exciting developments
[12, 1, 13, 14, 15]. The main observation there is that when the scatterer is smooth
and convex, the density μ(x) can be decomposed as the product of a slowly varying
amplitude and an oscillatory term with the same phase as the incoming wave. As a
result, one only needs to solve for the amplitude function. In fact, for a fixed tolerance,
the amplitude can be approximated with a small set of basis functions with a cardinality
independent of k. The computation of the discrete linear operator can also been done
in O(1) operations with the help of novel integration schemes such as the localized
integrators [1] or the oscillatory quadrature rules [15]. However, such a approach works
mostly for convex scatterers, as for non-convex objects multiple reflections break the
simple decomposition of μ(x). Some recent developments on simple multiple scattering
cases are discussed in [16, 2].

In this paper, we focus on the two dimensional case where the scatterer can be
represented as a combination of a large convex object and a small structure (see Figure
1 for an example). A practical application can be an antenna on a large object as, for

4
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example a building or an airplane. For simplicity, we assume that the small structure
is of size O(k−1/2). For scatterers of this type, neither of the two aforementioned
methods are optimal. Here, we propose a hybrid integral equation method that combines
the advantages of the these two approaches and has an O(k1/2 logk) complexity. On
the one hand, we discretize the small structure densely with a constant number of
samples per wavelength and use the directional fast multipole method to speed up
the computation. On the other hand, the geometrical optics based approach discretizes
the large body sparsely. A smooth partition of unity merges these two representations
together seamlessly.

FIGURE 1. The scattering of an incoming plane wave uI from a smooth scatterer Ω. u is the scattered
field. The boundary Γ of the scatterer can be represented as a large convex part and a small structure
(inside the small circle).

The rest of this paper is organized as follows. First, we briefly review the directional
fast mutlipole method proposed in [9, 10] and also introduce some improvements. Then
we outline the geometrical optics based method, mostly following the presentation of
[1]. Next, we present the hybrid method, together with preliminary numerical results.
Finally, we conclude with a discussion of future directions.

THE DIRECTIONAL FAST MULTIPOLE METHOD

In this section, we briefly discuss the directional fast multipole method proposed in
[9, 10] in the two dimensional form. Let us assume that the integral equation (3) is
solved with a Nyström method. With a few unknowns per wavelength, the integral in
(3) is discretized with a set of N = O(k) equally spaced quadrature points {xi}1≤i≤N on
Γ. Let {μi} to be the approximations to {μ(xi)}. Then the discretized system takes the
following form:

1
2
μi +

N

∑
j=1

K(xi,x j)wi j ·μ j =
∂uI(xi)
∂n(xi)

− iγuI(xi) (4)

where wi j are the quadrature weights. Often we choose wi j so that, for a fixed i, the
weights wi j become i independent when |i− j| ≥C for a constant C independent of k.
As we mentioned earlier, this system is often solved with an iterative method such as
GMRES and the main computational task within each iteration is then to evaluate the
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potentials

ui =
N

∑
j=1

G(xi,x j) f j, 1≤ i≤ N (5)

for a given set of sources { f j}1≤ j≤N . Here, we consider only the kernel G(x,y), and the
treatment for ∂G(x,y)

∂n(x) is similar.
The directional fast mutlipole method proposed in [9, 10] evaluates all {ui}1≤i≤N in

O(N logN) = O(k logk) steps. It starts by building an adaptive quadtree for the whole
scatterer (see Figure 2(a)). The whole domain is partitioned dyadically and recursively
until that all of the leaf squares have side length equal to λ = 2π/k. Since the boundary
Γ is smooth and only a constant number of points is used per wavelength, each leaf
square contains only a small number of quadrature points xi. For a square B with side
length wλ , we define its far field FB to be the region that is O(w2λ ) away from B. The
complement of FB is called B’s near field and is denoted by NB. A square A of the same
side length is said to be in the interaction list of B if A is in B’s far field but not B’s
parent’s far field. The far field FB is further partitioned into a group of O(w) directional
wedges {WB,�}, each contained in a cone with center direction � and spanning angle
O(1/w) (see Figure 2(b)).

(a) (b)

FIGURE 2. (a) The quadtree of a kite-shaped scatterer. (b) The square B and one of its wedges WB,�.
The points {eB,�

q }1≤q≤rε and {cB,�
p }1≤q≤rε are used in the separated approximation (6).

The main idea behind the directional fast mutlipole method is a directional low rank
property of the Helmholtz kernel between B and each wedgeWB,�. It can be shown that,
for any prescribed accuracy ε , there exists a rank-rε separated approximation of G(x,x′)
for x′ ∈ B and x ∈WB,�:∣∣∣∣∣G(x,x′)−

rε

∑
q=1

G(x,eB,�
q )

rε

∑
p=1

dB,�
qp G(cB,�

p ,x′)

∣∣∣∣∣≤ ε, (6)

with {eB,�
q }1≤q≤rε ⊂ B, {cB,�

p }1≤q≤rε ⊂WB,�. The points {eB,�
q }1≤q≤rε , {cB,�

p }1≤q≤rε , and
the matrix DB,� = (dB,�

qp )1≤p,q≤rε can be computed efficiently by a randomized procedure
proposed in [10]. It is important to point out that the rank rε is independent of w, i.e.,
the ratio between the size of B and the wavelength λ .

The separated approximation (6) allows us to construct a compact representation
for the potential in WB,� generated by the points in B. After applying the separated
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approximation in (6) to x′ = xi ∈ B and summing them up with weights fi, we obtain∣∣∣∣∣∑xi∈BG(x,xi) fi−
rε

∑
q=1

G(x,eB,�
q )

(
rε

∑
p=1

dB,�
qp

(
∑
xi∈B

G(cB,�
p ,xi) fi

))∣∣∣∣∣≤
(
∑
xi∈B

| fi|
)
ε.

This implies that by placing a set of sources
{
f B,�
q = ∑p d

B,�
qp

(
∑xi∈BG(cB,�

p ,xi) fi
)}

1≤q≤rε

at points {eB,�
q }1≤q≤rε we can approximate at any x ∈WB,� the potential generated by

the sources in B. We call
{
f B,�
q

}
1≤q≤rε

the directional outgoing equivalent sources of B

in direction �. In our setting, they play the role of the multipole expansions in the FMM
algorithm [17, 18]. It is clear from the definition that the computation of { f B,�

q }1≤q≤rε
uses only kernel evaluations and a matrix vector product with the rε × rε matrix DB,�.

Similarly, the approximation (6) also provides us with a compact representation for
the potential in B generated by the points inWB,�. SinceG(x,y) =G(y,x), summing over
xi ∈WB,� with weights fi leads us to∣∣∣∣∣ ∑
xi∈WB,�

G(x′,xi) fi−
rε

∑
p=1

G(x′,cB,�
p )

(
rε

∑
q=1

dB,�
qp

(
∑

xi∈WB,�

G(eB,�
q ,xi) fi

))∣∣∣∣∣≤
(
∑

xi∈WB,�

| fi|
)
ε.

This means that, from the potentials {uB,�
q = ∑xi∈WB,� G(eB,�

q ,xi) fi}1≤q≤rε at points
{eB,�

q }1≤q≤rε , we can compute at any x′ ∈ B the potential generated by xi ∈WB,� through
a matrix vector product with DB,� and kernel evaluations. These potentials {uB,�

q }1≤q≤rε
are called the directional incoming check potentials of B in direction �. In our algorithm,
they play the role of the local expansions of the FMM algorithm.

Another important component of our algorithm is the translation operators that trans-
form the compact representations introduced above. Following the convention in [4, 18],
we call them the M2M, L2L, and L2L translations. Since by definition the wedges of the
parent square and the child square are nested, for each square B and one of its directions
�, we can find a direction �′ such that WB,� ⊂WBc,�

′
for every child Bc of B. The M2M

translation then constructs the outgoing directional equivalent sources of { f B,�
q }1≤q≤rε

of B in direction � from the outgoing equivalent sources of B’s children in direction �′.
More precisely, it takes { f Bc,�

′
q′ }c,q′ located at {eBc,�

′
q′ }c,q′ as the true sources and performs

the following computation:

f B,�
q ⇐∑

p
dB,�
qp

(
∑
c
∑
q′

G(cB,�
p ,eBc,�

′
q′ ) f Bc,�

′
q′

)
. (7)

On the other hand, the L2L translation constructs the incoming directional check poten-
tials of B’s children at direction �′ from the the incoming directional check potentials
{uB,�

q }1≤q≤rε of B at directional �:

uBc,�
′

q′ ⇐ uBc,�
′

q′ +∑
p
G(eBc,�

′
q′ ,cB,�

p )

(
∑
q
dB,�
qp uB,�

q

)
. (8)
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Finally, the M2L translation is applied to all pairs of squares A and B that are in each
other’s interaction list. Suppose that B is in the wedge WA,�′ of A and that A is in the
wedgeWB,� of B. The M2L translation uses { f A,�′

q′ }1≤q′≤rε to update {uB,�
q }1≤q≤rε :

uB,�
q ⇐ uB,�

q +∑
q′

G(eB,�
q ,eA,�′

q′ ) f A,�′
q′ . (9)

Putting these components together leads us to the following directional fast multipole
method.

1. Construct the quadtree adaptively. The whole domain is partitioned dyadically and
recursively until that all of the leaf squares have side length equal to λ . Then each
leaf square contains a small number of points.

2. Travel up the quadtree. For each square B and each direction �, if B is a leaf,
construct { f B,�

q }1≤q≤rε using

f B,�
q ⇐∑

p
dB,�
qp ∑

xi∈B
G(cB,�

p ,xi) fi.

If B is not a leaf, construct { f B,�
q }1≤q≤rε using the M2M translation (7).

3. Travel down the quadtree. For each square B and each direction �, perform the
following two steps:
(a) For each A in B’s interaction list and in WB,� update {uB,�

q }1≤q≤rε using the
M2L translation.

(b) If B is not a leaf, perform the L2L translation (8) to transform {uB,�
q } to the

incoming check potentials for B’s children. If B is a leaf, perform for xi ∈ B

ui⇐ ui +∑
p
G(xi,cB,�

p )

(
∑
q
dB,�
qp uB,�

q

)
.

4. Nearby interaction. For each leaf square B, for each xi ∈ B, perform

ui⇐ ui + ∑
x j∈NB

G(xi,x j) f j.

It can be shown that, for the quadrature points {xi} distributed uniformly on Γ, this
algorithm takes at most O(k logk) steps (see [9] for the proof). As we mentioned earlier,
for a fixed scatterer, the iterative solution of (4) often converges after a constant number
of iterations that is independent of k. Therefore, the total number of steps for solving (4)
is also O(k logk).

THE GEOMETRICAL OPTICS BASED APPROACH

Before we present the geometrical optics (GO) based boundary integral method let us
discuss a few relevant aspects of general high frequency asymptotics.

8
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Classical geometrical optics

The simplest form of high frequency asymptotics for the Helmholtz equation (1) is
based on the assumption that the solution has the following form as k→ ∞,

u(x) = eikφ(x)A(x,k) = eikφ(x)
∞

∑
j=0

Aj(x)k− j, (10)

where φ(x) is the phase and A(x) the amplitude. When the Helmholtz operator is applied
to this expression we can derive the eikonal equation for the phase, (c(x) is the wave
speed)

|∇φ(x)|= 1/c(x) (11)

and the transport equations for the amplitudes Aj(x). The most common formulation of
GO is via the ray equations, which define the bicharacteristics of the eikonal equation,

dx
dt

=
c(x)p
|p|

dp
dt

=−|p|∇c(x).

As long as the solution has this simple form of a well defined phase and amplitude the
error in the geometrical optics approximation based on the leading term in the expansion
(11) is of order O(1/k).

When boundaries are present the simple form above is not valid any longer. Reflec-
tions determined by Snell’s law add other phases such that the solution becomes a su-
perposition of components of the form (10),

u(x) =
N

∑
n=1

eikφn(x)A(n)(x,k). (12)

Geometrical theory of diffraction (GTD) is an improvement of GO that includes diffrac-
tion terms in the expansion (12) for higher accuracy. Another form of high frequency
approximation is physical optics (PO), which is based on an integral representation of
type (2). The approximation in PO comes from the simple algorithm for computing μ(x),

μ(x) =

{
2∂u

I(x)
∂n(x) x in the illuminated region

0 x in the shadow region

These asymptotic formulas can sometimes be verified by rigorous mathematics and one
such case is the scattering of a harmonic plane wave off a convex object [19]. The
scattered field and the density μ(x) has essentially the form (10) where φ(x) is given
by the incident phase. This is the mathematical foundation of the GO based boundary
integral method.

9
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The GO based integral equation method

Motivated by the classical GO method, recently there has been a lot of activities
[12, 1, 13, 14, 15] in combining the asymptotic results with the integral equation for-
mulation. Here, our description follows the Nyström method proposed in [1]. The main
observation is that when the scatterer Ω is convex the density μ(x) can be decomposed
as a product of a slowly varying amplitude μs(x) and an oscillatory term with the phase
of the incoming wave, i.e.,

μ(x) = μs(x)eikα·x. (13)
Substituting this decomposition into (3) gives the following integral equation of the slow
density μs(x)

1
2
μs(x)+

∫
Γ
K(x,y)eikα·(y−x)μs(y)ds(y) = ikα ·n(x)− iγ. (14)

In the rest of this paper, we denote the new kernel kernel K(x,y)eikα·(y−x) by Ks(x,y).
Since the scatterer Ω is convex, for a fixed incoming plane wave there are exactly two

shadow points on the boundary. To describe the qualitative behavior of the slow density
μs(x), one decomposes the boundary into four disjoint parts [19]: the illuminated region
facing the incoming wave, the shadow region, and two boundary regions. Each of the
boundary region is centered around one shadow point and is of sizeO(k−1/3) (see Figure
3(a)).

(a) (b)

FIGURE 3. (a) The smooth convex scatterer is decomposed into four parts: illuminated region, shadow
region, and two boundary regions. (b) For a target point t, the localized integrator is applied at the three
stationary points s1, s2, and s3.

In both the illuminated and shadow regions, μs(x) varies on the scale of O(1).
Therefore, in order to approximate μs(x) in the illuminated and shadow regions, one only
needs to sample μs(x) in these two regions with a constant number of Nyström points.
In each boundary region, μs(x) is more oscillatory and varies on the scale O(k−1/3).
However, since each boundary region is of size O(k−1/3), we only need a constant
number of Nyström points to approximate the density μs(x) in these two boundary
regions as well. Therefore, the total number of Nyström points required to represent
μs(x) is independent of k for a prescribed accuracy. In [1], this is done by introducing
a smooth boundary parameterization with derivative of order O(k−1/3) in the boundary
regions and of order O(1) away from them. The boundary Γ is then sampled uniformly
according to this new parameterization with a constant number of Nyström points {xi}.

10
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The second component of the Nyström method is the approximation of the integral∫
Γ
Ks(x,y)μs(y)ds(y) =

∫
Γ

(
∂G(x,y)
∂n(x)

− iγG(x,y)
)
eikα·(y−x)μs(y)ds(y) (15)

for each x = xi, with μs(y) represented by its values at the Nyström points {xi}. Given
a fixed x, the asymptotic expansion of the Hankel functions shows that the phase of the
kernel Ks(x,y) for large values of k is given by

eik(|x−y|+α·(y−x))

when y �= x. Since μs(y) varies much slower, a stationary phase argument shows that the
main contribution of the integral (15) (away from y = x) comes from the neighborhoods
of the stationary points, i.e., the points y that satisfy

d
ds(y)

(|x− y|+α · (y− x)) = 0.

Therefore, in order to integrate (15) up to a fixed accuracy, it is sufficient to consider
only two types of contributions: (1) the integral localized near the target point x when
the kernel Ks(x,y) is singular and (2) the integrals localized near the stationary points. In
[1], this localization is done efficiently by using smooth window functions of appropriate
size:

• A smooth window function of width O(k−1) localizes the integral near the target
point x. Since the kernel oscillates on the scale O(k−1) near the target point x, a
constant number of sample points near x are sufficient to approximate it up to a
fixed accuracy.

• A smooth window function of width O(k−1/2) localizes the integral near each sta-
tionary point. Since the kernel oscillates on the scale O(k−1/2) near the stationary
point, again only a constant number of samples are required.

Therefore, in order to integrate (14) for each x = xi, we only need to sample at a constant
number of points in total.

The situation is slightly more complicated when the target point x = xi is at (or close
to) the boundary point. In this case, the kernel Ks(x,y) as a function of y oscillates on
the scale O(k−1) on one side of the target point, while on the other side it has the phase
of a stationary point of order 2 (see Figure 4). In order to integrate this asymmetric
behavior, one solution is to place a half window function on each side of x. The window
function on the highly oscillatory side is of width O(k−1), while the one on the opposite
side is of width O(k−1/3). Within each window function, we use a generalized Gaussian
quadrature rule with a constant of points to approximate the integral.

In the above discussion, we make the assumption that one can sample the density
μs(x) freely at any point on the boundary. However, in the Nyström method, the density
μs(x) is only provided at the Nyström points {xi} and, thus, we need a method to
interpolate μs(x) at arbitrary points on Γ from its values at {xi}. The natural solution for
smooth scatterers is the the nonuniform fast Fourier transform [20, 21], which allows us
to sample at M arbitrary points in O(M logM) operations.

11
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FIGURE 4. The behavior of the kernel Ks(x,y) as a function of y when x is at the shadow point.

The GO based boundary integral equation method is often mentioned as a technique
that for a given geometry of a simple form, incident harmonic plane wave and given error
tolerance can generate a solution with a computational complexity that is independent
of the wave number k. With respect to k this would mean an O(1) complexity strategy.
This is not spectacular in itself since a simple combination of standard GO and MM
also achieves this goal. With given geometry, incoming field and error tolerance we
can choose a cut off frequency such that geometrical optics is accurate enough above
this frequency and then choose any boundary integral method for problems below this
frequency. Recall the O(1/k) error estimate above. The GO based boundary integral
method is however much more seamless and has the potential of higher efficiency.

If there are more phases involved in the solution (12) the boundary integral methods
require a GO pre-processing step in order to determine the phases in the boundary
potential [2]. This is why we are including GO in the name of the name of the method. In
our conclusions we suggest an alternative, which would make the technique even more
seamless.

THE HYBRID METHOD

In many applications that involve high frequency scattering, the scatterers can often be
represented as a combination of a large convex part and a complicated small structure
(see Figure 5(a)). One typical example is an antenna on a building. For an scatterer of this
type, the ansatz in (13) is often only valid for the large convex part, while the density
μ(x) can be arbitrarily oscillatory at the small structure. As a result, neither method
discussed in the previous two sections is optimal when k is very large and the small
structure is, for example, of size O(k−1/2). The method based on the directional fast
multipole method samples the whole boundary densely even though the density μ(x)
has an efficient representation for the most part of the boundary; on the other hand the
GO based integral equation method faces difficulty in handling the non-convex part. In
this section, we discuss a hybrid method that combines the advantages of both methods.
The main idea is simply to partition the boundary into two overlapping parts and then
use the appropriate representation for each part.

12
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(a) (b) (c)

FIGURE 5. (a) The boundary of the scatterer is represented as the union of Γ1 and Γ2. Γ1 contains the
small structure while Γ2 covers the large convex part. (b) The sample points P1 in the dense discretization
of Γ1. (c) The sample points P2 in the sparse discretization of Γ2.

Algorithm description

We start by introducing an open covering {Γ1,Γ2} of the boundary Γ (see Figure
5(a)). Γ1 covers the small structure and is of size O(k−1/2), Γ2 contains only the large
convex part, and the size of the overlapping region Γ1∩Γ2 is of order O(k−1/2). Next,
we construct a partition of unity {α1(x),α2(x)} subordinate to the covering {Γ1,Γ2},
i.e.,

α1(x)+α2(x) = 1, supp(α1)⊂ Γ1, supp(α2)⊂ Γ2.

Since Γ1 ∩Γ2 is of size O(k−1/2), we can make α1(x) and α2(x) to vary on a scale of
O(k−1/2).

Similar to the two methods described in the previous two sections, we adopt a Nys-
tröm discretization for the solution of (3). Let us estimate how many samples are re-
quired in order to approximate μ(x) to a fixed accuracy. We first consider the restriction
of μ(x) to Γ1. The oscillation of μ(x) on Γ1 can be quite arbitrary, depending on the
shape of the small structure. However, since Γ1 is of size O(k−1/2), we only need to
sample μ(x) at a set of O(k−1/2/k−1) = O(k1/2) equally spaced samples P1 in Γ1 (see
Figure 5(b)). Second, μ(x) on Γ2 has a simple form μ(x) = μs(x)eikα·x. Therefore, in
order to approximate μ(x) on Γ2, we sample μ(x) on Γ2 with a small number of samples
P2 at a rate much lower compared to the Nyquist rate, compute μs(x) for x ∈ P2 by mul-
tiplying e−ikα·x, interpolate μs(x) for x ∈ Γ2 from its values at P2, and finally multiply
with eikα·x to obtain the approximation of μ(x) on Γ2. In practice, we set P2 to be a set of
O(k1/2) equally spaced samples with spacing O(k−1/2) (see Figure 5(c)). By putting P1
and P2 together, we see that one only needs O(k1/2) Nyström points to represent μ(x).

The second component of our Nyström method is the evaluation of the integral
∫
Γ
K(x,y)μ(y)ds(y) =

∫
Γ

(
∂G(x,y)
∂n(x)

− iγG(x,y)
)
μ(y)ds(y) (16)

13
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given the values of μ(x) at xi ∈ P1∪P2. Based on the partition of unity {α1(x),α2(x)},
we can represent μ(x) as a sum of two parts:

μ(x) = α1(x)μ(x)+α2(x)μ(x).

Using this decomposition to rewrite the integral (16) gives∫
Γ
K(x,y)μ(y)ds(y) =

∫
Γ
K(x,y)α1(y)μ(y)ds(y)+

∫
Γ
K(x,y)α2(y)μ(y)ds(y)

=
∫
Γ1

K(x,y)α1(y)μ(y)ds(y)+
∫
Γ2

K(x,y)α2(y)μ(y)ds(y)(17)

where in the last step we use the facts that support of αt(y) is Γt for t = 1,2.
To calculate the first integral, we discretize it using the quadrature points x j ∈ P1, i.e.,

∑
x j∈Γ1

K(x,x j)wi j ·α1(x j)μ(x j)

where wi j are the quadrature weights in (4). Evaluating the above quantities for all
xi ∈ P1∪P2 is exactly the problem addressed earlier, yet on a much smaller scale, since
the number of points in P1 ∪P2 is only of order O(k1/2) now. Therefore, by using the
directional fast multipole method, we can evaluate the first integral for all x= xi ∈P1∪P2
with at most O(k1/2 logk) operations.

To address the second integral, we substitute the ansatz μ(y) = μs(y)eikα·y for y ∈ Γ2:

eikα·x ·
∫
Γ2

K(x,y)eikα·(y−x)α2(y)μs(y)ds(y) = eikα·x ·
∫
Γ2

Ks(x,y) ·α2(y)μs(y)ds(y).

Since α2(y)μs(y) is a slowly oscillating function, we can resort to the localized inte-
gration discussed in the previous section. As a result, for each point x = xi ∈ P1 ∪P2,
we only need to sample at O(1) locations. Since there are at most O(k1/2) quadrature
points in P1∪P2, it takes at most O(k1/2) steps to the evaluating the second integral for
all quadrature points xi ∈ P1∪P2.

To summarize, it takes at most O(k1/2 logk) steps to evaluate (16) for all quadrature
points in P1∪P2. As we pointed out earlier, for a fixed scatter, the iterative solution of
(3) often converges after a constant number iterations. Therefore, the hybrid approach
has a total time complexity bounded by O(k1/2 logk) as well.

We would like to point out that the classical geometrical optics methods applied to
a sub domain of the scattering object have been hybridized in the literature with full
numerical boundary integral techniques applied to the remaining part of the scattered.
The name method of moments (MM) or (MoM) is often used instead of numerical
boundary integral methods. Examples of the coupling GTD-MM and of PO-MM are
given in [22, 23]. The new aspects of the hybrid method in this paper are that two very
recent and highly efficient methods are involved and also that the technique naturally
allows for a full two way coupling.

14
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Numerical illustration

In this section, we present some preliminary numerical results for the hybrid method
described above. Our test example is the object displayed in Figure 5 and its boundary
is parameterized by

x = (r(θ)cosθ ,r(θ)sinθ), with r(θ) = 1− 8
k
e−k(π−(θ+0.9) mod (2π))2 (18)

for θ ∈ [0,2π). Here, we set k = 100.
Figure 6 shows the true solution μs(x), computed using a direct solver with dense

discretization and Figure 7 shows the absolute value of the difference between the
true solution and the approximated solution computed using the hybrid method. In this
example, we use 6

√
k Nyström points both for the dense and sparse regions (Γ1 and

Γ2). The integration in the dense region is computed by using the trapezoidal quadrature
rule and the integration in the sparse region is computed by the localized integration
technique with 150 discretization points for each localized integrator. Our GMRES
solver for this hybrid method converges after 13 iterations to an approximated solution
with an L2 error of 0.003.
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FIGURE 6. The real and imaginary parts of μs(x). The scatterer is given by the formula in (18) and
k = 100. μs(x) is smooth in the convex part and is highly oscillatory in the small non-convex structure.

0 1 2 3 4 5 6

1

2

3

4

5

6

7

8

9
x 10

�3

FIGURE 7. The absolute value of the difference between the true solution and the solution computed
using the hybrid method.

If the small structure is of a size smaller than O(k−1/2), the partition of unity function
α2(x) will be too sharp in the region Γ2. Hence, we cannot use a sparse representation for
α2(x)μs(x) in this region. To overcome this problem, one can use a change of variable
to strech α2(x) so that we can represent α2(x)μs(x) by a constant number of Nyström
points.
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We can further speed up the computation of the second integral of (17) significantly
when the small structure in Γ1 is relatively smooth. In the current form, our hybrid
method performs the localized integration for each Nyström point xi ∈ P1. Instead, we
can perform the localized integrator at few points in Γ1 and then use Fourier or spline
interpolation to obtain the values at the Nyström points xi ∈ P1.

CONCLUSIONS

Two efficient existing numerical techniques for high frequency wave scattering and
their hybridization have been presented. The directional fast multipole method can
handle general geometries and general scattered fields but require a positive number
of unknowns per wavelength. The geometrical optics based boundary integral method
by Bruno and collaborators requires much fewer unknowns but only applies to simpler
geometries and scattered fields.

Our analysis and simple two-dimensional numerical model problem show the poten-
tial for hybridization of the two methods into a technique that exploits the best prop-
erties of both methods. The low computational complexity of the geometrical optics
based method can essentially be retained even if the geometry locally requires a fine
discretization.

A natural next step is to allow for more than one phase in the geometrical optics based
technique in order to incorporate a full two-way interaction in the hybridization. An-
other extension will be to problems in three dimensions. The directional fast multipole
method already exists as general three-dimensional software, [1] and the geometrically
based technique have been applied to simple but nontrivial geometries also in three di-
mensions, [24, 25].

One problem with the geometrical optics based boundary integral method is the
necessary ray tracing pre processing. If we do not have the simple case of a plane wave
field scattered by a convex body, we must first solve the geometrical optics problem
for the phases of all relevant waves in the asymptotic form. It is possible to integrate
the detection of the relevant phases into the algorithm by finding the phases directly
from the integral formulation. The field at any point in space can be calculated from
the surface potential. This field can then be decomposed into a finite number of plane
wave fields, see [26]. The implementation of such a process would generate a more
seamless algorithm and be of value in itself and, in particular, in a hybridization of the
form discussed in this paper.
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