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Abstract

Finite Element Analysis of Fitted Doubler Plate Attachments in Steel

Moment Resisting Frames

Alberto C. Marquez, MSE

The University of Texas at Austin, 2014

Supervisor: Michael D. Engelhardt

A number of recent research studies have investigated the performance of panel
zones in seismic-resistant steel Special Moment Resisting Frames (SMF). These recent
studies investigated various options for attaching doubler plates to the column at beam-
column joints in SMF for purpose of increasing the shear strength of the panel zone. This
previous work was primarily focused on doubler plates that extend beyond the top and
bottom of the attached beams, and considered cases both with and without continuity

plates.

As an extension to this previous research, this thesis explores the situation when a
doubler plate is fitted between the continuity plates. The objective of this research was to
evaluate various options for welding fitted doubler plates to the column and continuity
plates through the use of finite element analysis, and to provide recommendations for
design. The development and validation of the finite element model are described, along

with the results of an extensive series of parametric studies on various panel zone

Vi



configurations and attachment details for fitted doubler plates. Based on the results of these
analyses, recommendations are provided for design of welds used for attaching fitted

doubler plates in the panel zone of SMF systems.
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CHAPTER 1

Introduction

1.1 BACKGROUND

When designing a steel building for seismic resistance, one option for the lateral force
resisting system (LFRS) is the use of Special Moment Frames (SMF). Steel SMF are
designed to provide stiffness, strength and ductility when subject to lateral loads from
earthquakes. Current U.S. requirements for the design and detailing of SMF for earthquake
loading are specified in ASCE 7-10 Minimum Design Loads for Buildings and Other
Structures (ASCE 2010) and in AISC 341-10 Seismic Provisions for Structural Steel
Buildings (AISC 2010). SMF resist lateral loads through rigid frame action, resulting in
flexure and shear in the beams and columns, which are joined using moment resisting
connections. Under lateral load, large moments are developed at the ends of the clear span
portions of beams and columns. As described in AISC 341-10, the primary source of
ductility in SMF under severe earthquake loading is intended to be flexural yielding of the

beam ends, in the region near the beam-to-column connection.

The shear in the clear span portion of the beams and columns in SMF subject to lateral load
is generally quite small. However, the shear force in the portion of the column within the
beam-column joint region is generally quite high. Figure 1.1 qualitatively shows the
distribution of bending moment and shear force within the columns of an SMF. The portion
of the column within the beam-column joint region is referred to as the panel zone. High

shear in the column panel zone is the result of the high moment gradient within this region,



as illustrated in Figure 1.1. The high shear force in the panel zone region of columns can

result in shear yielding of the panel zone under earthquake loading.

As described in AISC 341-10, limited shear yielding of the panel under earthquake loading
is considered acceptable, although the primary yielding mechanism in an SMF is still
required to be flexural yielding of the beam ends. Consequently, AISC 341-10 requires that
the shear strength of the panel be adequate to resist the shear generated when the beam
ends have achieved there fully yielded and strain hardened flexural strength. In many cases,
the column by itself does not have adequate shear strength to satisfy this requirement.
When this is the case, the shear strength of the panel zone can be increased by welding a
doubler plate (DP) to the column in the panel zone region. The doubler plate serves to
increase the web area of the column and therefore increases the column shear strength

within the panel zone region.

Figure 1-2 shows a typical detail for a beam-column joint in an SMF. The beams are
attached to column using a moment resisting connection. AISC 341-10 specifies design
requirements for the beam-to-column connection in SMF, and a variety of different
connection types can be used, as described in AISC 358-10. Many of the commonly used
beam-to-column connection details employ complete joint penetration (CJP) groove welds
between the beam flange and the column flange, as shown in Figure 1-2. In some cases,
continuity plates (CP) are needed to locally reinforce the column flange or column web for
the concentrated forces delivered to the face of the column by the beam flanges. AISC 341-
10 specifies rules to determine when CPs are required, and rules to determine the size and

welding details for CPs.
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Figure 1.1: Typical Shear and Moment Diagrams in the Column of an SMF Under
Lateral Load

1.2 STATEMENT OF THE PROBLEM

Much of the research involving the PZs in SMFs has focused on the global behavior of
beam-column joints and overall performance of the SMF under earthquake loading with
varying design approaches for determining the shear strength of the PZ and the effect of
varying the relative strength of the PZ and the beams. However, less previous research has
investigated the details of attachment of the doubler plate to the column, and how these
details affect the performance of the PZ when subject to large shear forces and
deformations. Recently, however, a series of research studies conducted at the University
of Texas at Austin began to investigate the attachment details for DPs. This work is
reported by Shirsat (2011), Donkada (2012), and Gupta (2013), who have focused on
understanding the behavior of PZs reinforced by extended DPs. These three studies focused

primarily on cases where the doupler plate was extended above and below the connected
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beams, as shown in Figure 1-3(a), and investigated cases with and without continuity
plates. The research reported in this thesis is an extension of this previous work, and more
specifically will investigate the case where continuity plates are present, and the doubler

plate is fitted between the continuity plates, as shown in Figure 1-3 (b) and (¢).
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Figure 1.2: Typical Beam-Column Joint Region in an SMF

This thesis will describe the development of finite element models similar to those of the
previous researchers and discuss the results of the analysis performed. Much of the focus
will be placed on the effects that using a fitted DP has on the PZ and how forces flow
thorough this design configuration. It will also attempt to bring design recommendations

for the size and design of welds used to attach these fitted DPs.



1.3 RESEARCH OBJECTIVES

The objectives of this research include the following:

1) Gain a better understanding of the performance of different attachment details for
fitted DPs.

2) Study the effects that clipped corners on fitted doubler plates have in the PZ and
the welds attaching it and gain a perspective of the force flow through the panel
zone.

3) Report the forces and stresses that both horizontal and vertical welds transfer to
the fitted DP and determine if both welds are necessary. Obtain a range of forces

for which the welds attaching the plates should be designed for.

1.4 OUTLINE OF THE THESIS

The thesis will be composed of six chapters. In Chapter 2, a literature review of past
research and recent findings will be discussed. Modeling techniques and clear descriptions
of settings and parameters used in the FE Software, Abaqus, will be described in Chapter
3. Meshing parameters and contact properties can have great influence in the modeling of
any structural system. In addition, sources for the material models for the steel sections and

the welds will be reviewed and validation exercises will be presented.

Chapter 4 will discuss the results of analysis of various DP configurations for a shallow
column, specifically a W14x398. Chapter 5 will discuss similar results for analysis of a
deep column, specifically a W40x264. Chapters 4 and Swill have a detailed evaluation of
the models studied and assess how the results derived from these models impact the design

of welds in the panel zone. Chapter 6 will summarize all the results of this research, attempt



to provide explanation for what they mean and make recommendations intended to inform

design and provide future research ideas.

......

......

A) Extended DP B) Fitted DP C) Clipped Corners DP

Figure 1.3: Extended, Fitted (clipped and unclipped) DP

1.5 NOMENCLATURE

The following abbreviations are used throughout this thesis.

CJp Complete Joint Penetration Weld

CJpr1 Complete Joint Penetration weld between column flange and DP
CJP2 Complete Joint Penetration weld between column flange and CP
CJP3 Complete Joint Penetration weld between column web and CP
Cp Continuity Plate

DP Doubler Plate

EBF Eccentrically Braced Frames

FBD Free Body Diagram

FE Finite Element



FEM
LP
VMS
PEEQ
PZ
LFRS

Finite Element Method

Loading Plate

Von Misses Stress

Cumulative Equivalent Plastic Strain
Panel Zone

Lateral Force Resisting System



CHAPTER 2
Literature Review

2.1 OVERVIEW

This literature review will discuss previous research regarding the PZ region, including
how the strength and detailing of the PZ affects performance of previous research, which
investigated the overall response of the PZ will be presented first. This is followed by
research regarding the importance of stable ductile behavior in the PZ and how the
reinforcing DPs and CPs can improve performance and increase frame strength and
ductility. Other issues discussed will include how the local stress concentrations, strain
hardening of the web, and column flange contributions affect the overall behavior of the
PZ. Lastly, the work of Shirsat (2011), Donkada (2012) and Gupta (2013) will be discussed

in detail in order to provide the background for this thesis.

2.2 PREVIOUS LITERATURE DISCUSSED BY OTHERS

For research covering FEM analysis of PZs and pertinent design considerations, see
previous literature reviews of Mays (2000), Cutina and Dubina (2008), Slutter (1982) and
Ye et al (2005) in theses by Shirsat (2011), Donkada (2012) and Gupta (2013).

2.3 RESEARCH BY GRAHAM, J.D. ET AL (1959)

One of the earliest researchers of PZ behavior was Lehigh’s J.D. Graham. In the report
“Welded interior beam-column connections”, a range of tests performed on two-way setups
composed of two beams joined at the column, similar to Figure 1.2, and four-way setups

composed of four beams as seen in Figure 2.1, is discussed. These setups were loaded



monotonically, until the loading machine could no longer apply load or until failure by

weld fracture or buckling ensued.
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Figure 2.1: Four-Way Test in Progress at Lehigh’s Fritz Lab, (Graham, 1959)

Four sets of un-reinforced columns with web thickness ranging from 1/4” to 5/8” were
tested in the two-way beam-column setup. Figure 2.2 illustrates the results of the measured
column PZ rotation vs. moment due to lateral force. By determining the rotation capacity
relative to the amount of loading on the column, the performance and strength limits of the
connection can be measured. A column that requires more force to rotate to a certain level
can be said to be stiffer and stronger. This strength is necessary to resist the loads imposed
by earthquakes. Although they have high strength, this does not necessarily mean that the

specimens can withstand large deformations, or that they are ductile.



The results seen in Figure 2.2 show that thin webs, resulting in buckling of the column

web, are not desirable. The poor performance of specimens A-1 and A-4 demonstrates this

effect; because of a lack of reinforcement, the column webs buckled and the columns failed

due to instability. Unlike girders, where tension field action is desired, buckling of the PZ

proves ineffective in resisting lateral loads. Specimens A-2 and A-5 failed due to local

buckling of the flanges.
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Figure 2.2: A Series Specimens - Un-Reinforced Columns, (Graham, 1959)

Other tests performed included two columns with only continuity plates as the PZ

reinforcement. The results for these tests can be seen in the report, along with those of the
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setups that had a DP welded a distance away from the center of the column web or a T

shape with its stem welded directly to the PZ.

The specimens using CPs performed well despite slight plastic deformations seen in the
column flanges. The specimens with two DPs attached near the edge of the column flanges
did not perform as well. These assemblies, with a DP that was not welded up against the
column web, were not very effective in providing reinforcement. This setup can be used
when out of plane beams have to be framed onto the web of the column, but it places a
high shear demand on the column web. Despite the DP being as thick as the column web,
the column web buckled in all of the specimens using the DP spaced away from the center
line. This indicated that most of the shear resisted by the PZ went to the column web and
very little passed through the reinforcing DPs in this case. Failure of some the specimens
was initiated by column web buckling, followed by weld failure of the butt welds in the
tension flange. The case of the welded T-shape had similar results. If the intent of the design
is for the DP to equally share the shear load with the column web, the results indicate

performance improves when a DP is attached flush up to the column web.

Only one test with a DP, 5/16” thick, welded flush up against the column web and no CP,
was tested. The results are shown in Figure 2.3. The PZ was reinforced by a DP extended
beyond the bottom beam flanges. It can be surmised that the reason for not extending it
beyond the top beam flange is due to the monotonic loading of the specimen. These tests
show higher levels of rotation at the points of failure, an indication of higher ductility. The

test was stopped due to a failure of the weld between the east beam and the column.
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Figure 2.3: PZ Joint Rotation for Column with Extended DP, (Graham, 1959)

The work by Graham brought attention to the poor performance of thin column webs used
for moment frame joints and demonstrated the importance of CPs on the behavior of the
PZ. The results of the specimens reinforced by DPs demonstrated the improvement on the

capacity to develop very ductile behavior and sufficient shear capacity.

2.4 RESEARCH BY FIELDING & HUANG (1975)

Fielding and Huang conducted a series of tests in order to demonstrate that design

suggestions for the PZ used at the time were not accurate. The inelastic behavior of the PZ,
12



the point beyond first yield, was not being considered when determining the strength
capacity of the joint. The researchers also observed that, even though parts of the column
web had reached the strain hardening stage, other segments of the joint, the column flanges,
had not even yielded. This was determined to play an important role in global behavior.
The studies conducted also considered the impact of axial force, combined with high shear,

on moment frame joints.
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Figure 2.4: Test Setup, (Fielding & Huang, 1975)

The setup in Figure 2.4, a weak panel zone design, was sized so that failure would occur

in the panel zone rather than in the attached beam, which had a plastic moment capacity
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twice that of the column. Even though the specimen did not use a DP , continuity plates
were used. The CPs were welded to the inside of the column flanges using fillet welds
similar to Figure 2.5. The assembly was submitted to an axial load, along with anti-
symmetrical moment, moment force induced on one side of the assembly instead of both,

as in this thesis.

THROAT

TOE

(LEG) L
WELD SIZE

Figure 2.5: Fillet Weld Cross-Section

The procedure involved loading the column to an axial load of 819 kips, P/Py = .5, followed
by a loading of the end tip of the beam to the point of failure. These tests did not consider
failure of the welds attaching the stiffeners as the stopping point for the test. During testing,
one of the specimens failed due to the fracture of a fillet weld attaching the CP to the flange.
The specimen was unloaded and the weld replaced by a larger weld that allowed for the
full yield strength of the stiffener to be developed. Another specimen also showed failure
of the weld attaching the upper beam flange to the column. This is a region where weld
failures are likely due to the high curvature and stress concentrations. This weld was also
cleaned, replaced and tested to ensure performance. It is important to note that three
decades later, welds would prove one of the main points where fractures were initiated in

the failed moment connections of Northridge.
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The analysis of the data was performed in conjunction with the results from previous tests

completed at Fritz Lab by J.W. Peters and G.C. Driscoll (1967). Conclusions from the work

included:

1)

2)

Axial load on the column accelerated the yielding of the cross-section when
combined with forces from the attached beam. Ultimate failure of the assemblies
was not reached until the column flanges had completely yielded. Since moment
frames not only resist seismic forces but also gravity loads, this was very pertinent
to PZ behavior. It showed that the presence of axial load plays an important role in
the rotation limits of the panel zone. It also validated the pre-supposition that
yielding of the column webs was more important in the understanding of the global

behavior of the joint.

The researchers determined that the yield point of the column web was an important
point where stiffness of the connection began to decrease during testing. Along with
determining the importance of the yield point of the column web, the influence of
axial load needed to be considered when designing the PZ. Equations that would
more accurately predict joint capacities were developed using the Von Misses
criteria. These provide a better approach that considers the axial load from the

gravity loads and overturning moments in the building.
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2.5 RESEARCH BY BECKER (1975)

Becker tested three specimens fabricated with W14x61 W-shapes, to determine the effects
of the PZ on the strength and stiffness of steel moment frames. Two of these specimens
were reinforced with DPs that extended one inch beyond the plane of loading, defined by
the flanges of the members attached to the PZ. These were also reinforced by 5/8” thick
CPs, which were welded to the member flanges using full penetration welds and 1/4” fillet
welds on both sides attached to the web. The key difference between the two specimens
was the thickness of the DP and the types and sizes of welds attaching the DP to the PZ.
One specimen used a 1/2” DP attached by vertical butt welds and 7/6” horizontal fillet
welds. A thicker 5/8” web DP attached using 5/16” fillet welds all around was used in the

other specimen.
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Figure 2.6: Specimen 1 & 3 (Becker, 1975)
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The limits on how much capacity could be tested was determined by the limits on how
much load the testing machine could apply. It is for this reason that none of the specimens
failed in the sense that applying more displacement showed a decrease in load. The cyclic
load used for the tests was applied in incremental steps. The un-reinforced specimen
resisted the least amount of load and developed the highest strain levels. Of the three
specimens, it was the only one where the PZ buckled. Specimens one and three performed
similar to each other without any buckling of the panel zone or failure of welds. Specimen
one, with the thinner DP but stronger butt welds, had minor local buckling in the flanges

attached to these welds.

Becker’s work reinforced the conclusion that DPs can substantially increase the shear
capacity of PZs and the stiffness of the whole frame. It emphasized the importance of the
PZ in the global behavior. An important conclusion from his work was that the DP does
not resist the same amount of shear force as the column web until the strains in the PZ are
three to four times the yield strains. This indicates that the addition of a DP not only
becomes more important past the first yield point but its contribution to shear force
resistance increases as that of the column web decreases. The PZ is a key member of the
LFRS; it resists the shear force from lateral forces and in turn greatly determines the drift
magnitude up the first yield point, when the DP begins to contribute more. Becker also
commented on the importance of careful detailing of the welds in the PZ. In order for the
DP to effectively engage in shear resistance, the welds must be capable of transferring the

load from the web.
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2.6 RESEARCH BY KRAWINKLER (1978)

Krawinkler discusses the results of previous work, along with those of three specimens
loaded with monotonic and cyclic loads. Specimen A-2 was composed of a W8x24 column
with two beams of 10” depth and horizontal stiffeners, CPs. Two others were composed of
W8x67 columns, with one specimen using 13.72” deep beams (specimen B-2) and the other
with 11.98” deep beams without any reinforcement (specimen B-3). In order to consider

gravity loads, Specimen B-2 was loaded with an axial load of 40% Py.

Specimen A-2 with a web three times thinner than that of the other two specimens had the
lowest performance and developed diagonal buckling along the PZ. Between the other two
similar specimens, B-2 and B-3, the one with 40% Py axial load performed the worst. The
Von Misses stress criteria, which considers both shear and axial loads, explains why the

PZ yields faster and resulted in the lower performance seen in specimen B-2.
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The work describes how the shear stress is distributed throughout the PZ as the moment is
increased. The forces applied on the PZ and the resulting shear deformations can be seen
in Figure 2.7. Krawinkler commented on the important role that the PZ plays in the overall
performance of the moment frame and how the stiffness of the connection starts to decrease
when .75Fy of the column web is reached. This indicates that the point when the strength
capacity of the moment connection begins to decrease, falls within the range of 75-100%
of the yield capacity of the column web. Once the PZ has yielded, the stiffness of the joint
decreases gradually until it stabilizes in a second semi-constant stiffness, which the reader
is told, is due to the PZ going through strain hardening. Krawinkler’s conclusion is that the
column flanges and beam webs assist in resisting shear and influence the yield point of the
column web. This contribution from the PZ boundary elements explains the behavior that
can be seen in the two constant stiffness. As a result, Krawinkler developed Equation 2.2,

which considers how the “elements surrounding the PZ” influence shear capacity.

Krawinkler also makes the recommendation to design the panel zone for the shear produced
by the ultimate flexural capacity of the beams attached to the column instead of the lateral
forces specified in the building code. When the research was conducted, design
specifications for moment connections utilized expected lateral forces in order to determine
the shear capacity required from the PZ. Equation 2.1 reflects the use of these forces
amplified by 33%. The use of Equation 2.1, in conjunction with the expected lateral forces,
resulted in joints that were weak and had large rotations. The beams in these designs did
not contribute to energy dissipation and resulted in high drifts. It was concluded that a
better design approach, which distributes the inelastic deformations between the PZ and

the attached beams, has to consider the contributions from elements around the PZ and the
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maximum shear that the attached beams can transfer. Equation 2.2 does this, resulting in
greater ductility contributions from the beams and a closer prediction to the actual joint
shear capacity. Equation 2.3 listed below adds the contribution from the addition of a DP
as web reinforcement to Equation 2.2. The addition of a DP is an independent contribution

to the PZ shear strength from the column web; this is the reason for the addition.

Vinax = 0.53F,dt Equation 2.1
Viceory = 0.55F,d t(1 + (3.45bt%:/dpd,t)) Equation 2.2
Vu = u(col) + (Fy/ﬁ)(dc - tcf)ts Equation 2.3

b. = width of column
dp = depth of beam
d. = depth of column
t = thickness of web
t.s = thickness of column flange

ty = thickness of web stif fener (DP)

Krawinkler’s work discusses some of the details that affect the strength and stiffness of the
PZ and how the importance of its contribution to the resistance of drift and stability of the
LFRS is augmented after first yield. Comments throughout the writing specifically point
out the importance of weld quality in the regions where plastic deformations are expected.
His conclusions indicate that frame stiffness and strength greatly depend on the design of
the panel zone, specifically its yield point. Along with this, a recommendation is made for
a balanced design that requires the PZ to assist in force dissipation through inelastic
deformations. By not considering the elements around the PZ, the designers are

unintentionally forcing the deformations on the beams alone.
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2.7 RESEARCH BY Porov (1987)

E.P. Popov discusses the financial and practical benefits that very ductile LFRS provide
for structures subjected to wind or seismic loading. His work compares the load vs.
deflection results from two moment connections attaching a W12x106 column to either a
W18x50 or W24x76 beam. Two different specimens of both connections were tested, with
the only difference being how the web of the beams was attached to the column; shear tab
was welded or bolted. These joints were reinforced by continuity plates but lacked a

doubler plate.

The W18x50 beam with the welded connection had an ultimate load capacity .7% higher
and a panel zone rotation 40% higher than that of the one using bolts. Similar values were
seen in the W24x76 beam setup. Load capacity was 8.9% higher and the panel zone rotation
was 5.6% higher than the bolted connection. The researchers determined that the lower

performance of the connection using bolts was due to slippage in the bolts.
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Figure 2.9: Specimen PN3 (Popov, 1987)

The work also discusses a separate set of tests that were carried out in conjunction with the
previously discussed tests. Six subassemblies with varying combinations of doubler plates,
stiffeners and thickness were tested. Two particular joint specimens with columns of
similar depths and no CP stiffeners were tested. One of the two sub-assemblies used a
column with thicker flanges, web, and doubler plate. As expected, the results indicated that
the heavier assembly had a higher tip load capacity, the ability to resist moment capacity,
but very low ductility. This serves as an example of the complexity in balancing the
strengths and dimensions of the elements that make up the PZ while keeping the connection
ductile.

High ductility in the other assemblies was attributed mostly to panel zone deformation. The

results from the tests between the two setups (specimens 2 and 6), in which the difference
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was the presence of a doubler plate, can be seen below in the hysteretic performance of the

specimens. The results indicate that the lack of a DP in specimen 6 resulted in low ductility.
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Figure 2.10: Specimens 2 & 6 (Popov, 1987)

The work by Popov covers three joint design methods, one in which the panel zone is
designed to be so rigid that all the deformation and inelasticity is located in the beams
attached to the column. He also mentions the opposite design approach, the weak panel
zone method, in which most of the energy dissipation occurs in the column panel zone.
Lastly, he mentions the balanced design method, in which both beams and column panel

zone share the deformation and lateral force resistance.

2.8 RESEARCH BY EL-TAWIL ET AL (1999/2000)

El-Tawil et al conducted a set of FE studies on a specimen similar to PN3 from Popov
(1987) (see Figure 2.9). A model of a connection attaching a W36x150 beam to a W14x
257 column was made. Both beam and column were modeled using 4-node shell elements;
however, the joint area where the column and beam intersect was modeled using 8-node

brick elements. This combination of elements allowed for analysis of local stresses with
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lower computational demands. Material nonlinearities were considered in the material
definition of the members. Monotonic and cyclic loading of the sub-assemblies used
isotropic strain hardening rules. Performance indicators used to analyze the results included
the Pressure Index, PEEQ Index, Von Misses Stress, and Rupture Index. These all serve

as measures of stress levels and tendency to fracture.

The intent of the study was to better understand the inelastic behavior of the PZ and the
role it played in the fractures seen in the failed moment connections after the Northridge
earthquake. Three parameters were varied in the study: column web thickness, attached
beam depth, and column flange thickness. During the analysis, Equations 2.4-2.6 were used
to compare PZ shear capacity against analysis results, to determine how well they predicted

the shear forces.

Va1 = 0.55E,d.t Equation 2.4

Viceory = 0.55F,d t(1 + (3bts/dpd,t)) Equation 2.5
055 :

Vi(eory = (T)Fydct(l + (3bctff/dbdct)) Equation 2.6

The results of the analyses with varying column web thickness were compared. The
columns with weaker PZs due to thinner webs initially developed lower stresses than those
with the thicker webs. This, however, reversed as the loading and the PZ rotation increased.
At the end of the tests the principal stresses measured in the column with the weakest PZ
were 15% higher than those of the column with the thickest web. As mentioned in previous
work by Krawinkler, the plastic deformations in a weak PZ are much higher than those of
the beams attached to it. A thinner web also results in a decrease in plastic rotation

participation of the beams attached to the column. This is not only an ineffective use of
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materials but can result in frame instability by forcing the column to rotate to high levels.
Performance indicators indicated that, as a result of the weak PZ, the potential for fracture
grew in the area where the beam flanges meet the column. This is of importance since many
fractures seen in the Northridge earthquake connections occurred in the area where the

beam flanges met the column web.

In order to examine the effect that column flanges had on PZ performance, specimens with
decreasing column web thickness and increasing flange thickness were analyzed. By
decreasing the thickness of the web, the performance of the PZ became more dependent on
the flanges. The specimen with a column flange and web thickness of 1-5/16” was 12.7%
stronger than one with column flanges 3-1/4” thick and a web 11/16” thick. The results of
the fracture indicators seen in the specimen with the thickest flanges were similar to those
of the weaker panel zones. Initially, smaller principal stresses were recorded in the beam
flange-column interface of the thicker flanged specimens but rose by 28.6%, whereas the
column with the thinner flanges but thicker web rose only 4.6%. This seemed to indicate
that PZ performance was highly dependent on column web thickness and less dependent

on column flange thickness.

When evaluating the provisions listed in Equations 2.4-2.5, it was noted that Eq. 2.4 was
successful in defining the first yield point of the PZ. Determining the first yield point of
the PZ is important since the PZ and the elements surrounding it begin to strain-harden at
this point. It is during this stage that the role of the DP in dissipating energy increases
substantially compared to that of the column web. Once the strain hardening range has been
reached, Eq. 2.5 serves as more accurate method of determining the shear strength capacity

of the PZ. Eq. 2.5, previously covered in Krawinkler, considers the participation of
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elements surrounding the PZ. It is necessary to note that both the results of this research
and Krawinkler’s comment on the possible inaccuracies involved with using this equation
on columns with thick flanges. As seen in Figure 2.11, the PZ curvature resulting from
applied shear on a column with thicker flanges appears more evenly distributed. The
localized “kinks” developed in columns with thinner flanges were used to develop

Equation 2.5.

Reverse
curvature \L-+-H
bending

straight side = \ : =
1 Kink i \

| No kink
T
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a) Specimen CWTI1, Tw=15mm b) Specimen CWTS5 , Tw=56mm

Figure 2.11: Specimens with Different Web Thickness, (ElI-Tawil, 1999)

El-Tawil also discusses other factors that may have affected the performance of the failed
Northridge connections. Some of these include: the yield to ultimate stress ratio of the A36
steel that was used during that time period, access-hole geometry and continuity plates.
CPs are said to be beneficial in resisting local failures in the form of flange local bending,

web crippling, local yielding or compression buckling. The effectiveness of PZs to resist
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high levels of shear is interrupted by these lower strength modes of connection failure.
Other reports by Graham, Fielding and Becker alluded to the benefits of using CPs. Joints
with CPs were the most successful and had fewer connection failures during testing. El-
Tawil concludes that the thickness of CPs does not affect the performance of the PZ as
much as their presence does. The FE models in Figure 2.12 visibly show how the lack of
CPs resulted in higher local bending of the column flanges, along with an increase of 44%
in principal stresses and 53% higher PEEQ at the beam-column interface. El-Tawil
recommends a reduction of unrequired and conservative CP thickness requirements.
Economic benefits from less material consumption and possible detrimental effects were

mentioned in support of this recommendation.

] TN T e AR

—

! / / il /’ /
Specimen With CP Specimen Without CP
Figure 2.12: Specimens With and Without CP (El-Tawil, 2000)

2.9 RESEARCH BY RICLES ET AL (2004)

Ricles et al conducted a series of studies of deep columns in order to develop seismic
guidelines for steel moment connections. Two different finite element models with

different mesh sizes and levels of accuracy were used to conduct the parametric studies.
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To capture the overall behavior of a reduced beam section, RBS moment connection, Ricles
used a global model composed of two W36x150 beams and either a W36x230 or W27x194
column using four node shell elements in Abaqus. The intent of the global model was to
capture torsional effects from unsymmetrical loading and buckling of plate elements such
as flanges and webs. A more “precise” sub model was used, which characterized the area
where the beam lower flange connects to the column flange. This area, which also includes
the K-zone of the column, required a smaller but more rigorous model since the geometries
of this region are complex. The elements that participate in PZ shear resistance and meet
at this point are CPs, Column Webs, DPs, and welds. This region has been studied
extensively due to the complex stresses that concentrate here. It is these tri-axial stresses
that increase the propensity to fracture and as a result, cracks are often initiated here. The
sub-model was made up of eight-node brick elements and a more refined mesh. The
resultant forces from the global model were applied to the sub-model in order to obtain
more accurate levels of stresses. Material inelasticities were considered in the model, as
well as strain hardening. The loading protocol was based on the 2002 AISC provisions
which were used in the SAC research. The results from the models were validated against

similar tests conducted at the lab.

Doubler plates have a large influence on the strength of the PZ. By varying the thickness
of the attachment and providing welds strong enough to transfer the forces, a designer can
determine the level of PZ performance which can range from weak, to balanced, to strong.
A measure that delineates the difference between these designs is panel zone strength to
panel zone shear capacity, Rv/Vpz, with values of 83, 1.09, and 1.34 for weak, balanced,
and strong designs, respectively. A weak PZ design will result in a concentration of the

plastic deformation in the column and almost none in the attached beams. This design
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approach also seems to increase the Rupture Index values measured in the joint. As seen
in Figure 2.13, a weak PZ provided strength values below the balanced or strong PZ designs
in this test. When connections are welded properly, deterioration in strength of balanced
and strong PZ designs results from local web and flange buckling of the attached beams.
This places a stronger dependence on the use of CPs to keep the column web from failing

due to the high levels of shear required to reach these failure modes.
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Figure 2.13: Hysteretic Response of Different PZ Strengths (Ricles, 2002)

Ricle’s work also compared two specimens in which the thickness of the CPs varied from
the same thickness of the column flange to Y4 of that value. The results indicated that the
fracture potential of the connection increases as the CP thickness is reduced. His research
and recommendations highlighted the dependence of PZ performance on the reinforcement
from DPs and CPs. When considering the level of performance expected from the column
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PZ, the reinforcement used in design plays a substantial role in attaining the capacities

required.

2.10 RESEARCH BY SHIRSAT (2011)

Shirsat conducted finite element analysis of a variety of column specimens using Abaqus.
Her models were composed of a W14x398 or a W33x263 column with two 17 thick loading
plates applying a monotonic load. Using loading plates is a common simplification that
simulates the flanges of beams, applying a lateral force on the PZ. This simplification
assumes that the contribution from the beam web is minimal when compared to that of the
beam flanges. As seen in Figure 2.14, a variety of parameters were changed with the intent
to obtain knowledge regarding the following questions.
1) Which welds attaching the DP to the column web are necessary? Are both vertical
and/or horizontal welds needed?
2) What are the benefits of using extended DP in moment frame connections and what
welds are necessary for these as well?
3) How effective is the substitution of two thin DPs on each side of a column web
instead of one thicker DP on one side as is typically seen? (See Figure 2.8-c)
4) Can we gain understanding on how and what levels of forces are transferred through

the welds in the different layouts?
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Figure 2.14: DP Arrangements Tested (Shirsat, 2011)

Twenty-one model variations were used in this work. Measurements for comparison of
results were made along the four points of the load application. One of the key observations
of his study was that the use of welds at the top and bottom of the DP alone were ineffective.

When used as the only method of attaching the DP to the PZ, these horizontal welds were
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unable to transfer the shear force from the column onto the DP. Therefore, the vertical
welds are deemed necessary in order to cause the DP to perform as designed. The results
also seemed to imply that horizontal welds were un-necessary for the DP to resist shear.
The data showed similar shear resistance by the DP when the vertical welds were used with
and without horizontal welds at the top and bottom. This was especially evident when the
DPs were extended beyond the loading plates. Despite the focus of the thesis not being on
how buckling of the DP affected its performance, Shirsat made an important observation.
Even though the results indicated that top and bottom welds were un-necessary, thinner
DPs would benefit from the use of both horizontal and vertical welds, in order to delay the

buckling which permits higher stiffness/strength of the joint.

The shallow column models also seemed to indicate that extending the DP beyond the
beam flanges did not provide a large benefit. However, the deeper column showed great
improvement in strength when the results of an extended DP were compared to those of

one without the extension. It is also worth noting that Shirsat’s models did not use CPs.

Better performance by two thinner DPs, instead of one, attached flush to the column web
failed to materialize in the analysis. Despite the possible economical and fabrication
benefits from using thinner web reinforcement, this particular study found no benefits. A
possible decrease in performance due to a higher propensity of the thinner DPs to buckle
was also mentioned. When a DP does not meet thickness requirements, the seismic design
code specifies the use of plug welds to prevent buckling of the reinforcement. In the case
of the use of narrower web reinforcement, when the DP was half as wide as the columns

depth, no benefits were found. The area where the DP overlapped the column web showed
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less shear stress, but the areas surrounding the DP yielded faster and had higher levels of

stress than that of the column without any reinforcement.

2.11 RESEARCH BY DONKADA (2012)

Donkada’s work was a continuation of the studies conducted by Shirsat. Her research
reported on the results of some FEA performed on two column models as well. Monotonic
displacement, strictly increasing movement of the loading plates, was applied to the
loading plates up to a PZ rotation of .05 radians. SMF systems must be capable of providing
a story drift angle rotation of .04 rad (AISC 341-10). The analysis performed on the shallow
column, a W14x398, and the deep column, a W40x264, had results which could be

reasonably expected in a SMF providing the level of rotation capacity required.

Substantial research following Northridge focused on the fracture potential that individual
elements of moment connections had on locations where high stresses accumulated.
Donkada’s work also emphasized the advantages and disadvantages that the tested aspects
had on fracture potential. Horizontal fillet welds attaching the DP to the column web,
extended doubler plates, continuity plates and flange thickness variations were some of the
factors varied in the analysis. The elements used in the Abaqus modeling of the specimen
were 8-node 6-sided solid brick elements. Similar to Shirsat, a tri-linear material model

developed by Okazaki was utilized to represent A992 steel.

One of the conclusions from Donkada’s work is that it may not be necessary to weld all
four sides of a DP. The data analysis indicated that there was little advantage to using

horizontal welds at the top and bottom on the DP. Even though stress and strain levels on
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the vertical welds attaching the DP to the K-zone went up, the fracture indices used

indicated properly made welds would not fracture.

Figure 2.15: Deep Column Specimen (Donkada, 2012)

Donkada also found the extension of the DP beyond the PZ to be inefficient in increasing
the strength of the PZ on the shallow column. However, one great benefit to extending the
DP was found: the fracture potential was reduced in this specimen. The results for the deep
column (Figure 2.15) were different. The extension of the DP increased the strength of the
PZ by 10% but no decrease in fracture potential was seen. Donkada also points out the
importance that a properly sized DP has on the overall behavior of the PZ. This was

especially evident in the performance of the deeper column.

The data suggested that CPs do not contribute to the overall shear capacity of the PZ but

do allow the joint to perform as designed, by keeping the column from failing in other
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modes such as local flange bending, local web yielding, web compression buckling and
web crippling. The attachment of continuity plates to the DP was also found to not increase
the stresses of the DP. The use of CPs was found to reduce the level of stresses on the
vertical welds attaching the DP to the PZ. It was assumed that the presence of the CP
allowed for some of the forces to flow from the flanges into the CP instead of going through
the DP. The presence of CPs was also found to be a critical element in both deep and
shallow columns with thin flanges. The target loading level for the tests was determined to
be at .05 radians. At target loading level, the load transferred through the CPs in the shallow
column with thin flanges was 60% of the load being applied. The value recorded in the
deeper column was 20-30% of load applied. The values recorded for the same specimens,
but with flanges more than twice as thick, were 10-20% from the shallow column, a
W14x398, and 20-30% from the deep column, a W40x264. The dependence of
performance on CPs rises in shallow columns as the flange thickness decreases. This same

dependence seems to be the same in deep columns with thick or thin flanges.

2.12 RESEARCH BY GUPTA (2013)

Gupta’s research continued to verify the benefits that extended DPs had on PZ performance
and how other factors had influence. Research objectives of his work included determining
the benefits from the horizontal welds that attach the DP to the column at the top and
bottom. Variations of the length of DP were considered for this. The benefits from using
CPs and how an extended DP affects the flow of forces through these, were also studied.
Other objectives were to gain knowledge on the effect on the weld stresses resulting from
the different setups and to gain a clearer definition of the limiting strength states in deep

and shallow columns used, as seen in Figure 2.16.
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Gupta’s work also used solid brick elements modeled in Abaqus, (Figure 2.16). However,
his work did not utilize the same inelastic monotonic material model that was used in
previous research. The non-linear kinematic material model, utilized for the definition of
A992 steel exposed to cyclic loads, was validated against existing lab results in similar
ways as the previous thesis. Cyclic material test data for weld metal was not available for
the modeling; hence a similar model was developed using considerable judgment (Gupta).
Cyclic loading of the specimens, a simplification of the motions expected on a structure
from an earthquake, were applied in the form of displacements with increasing amplitudes.
Data points selected for the data comparison were at .01, .02, .03 and .05 radians. These

were recorded at the last hysteretic cycle when the PZ rotation matched the rotation level.

Figure 2.16: FE model of shallow column, and deep column (Gupta, 2013)

The main parameters that were varied in Gupta’s work included: column flange thickness,
DP extension of 6 inches above loading plates and inclusion of CPs in the models. The
modeling of the PZ usually involves elements yielding and becoming inelastic due to the

forces being transferred. Once the material is in the strain hardening region, the increase in
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load resistance decreases substantially. As the material strain hardens, the rise in stress
levels also becomes smaller and the effects of load variance become less evident. It is at
this point that plastic equivalent strain, PEEQ, can be used to see how the PZ is locally
affected by the increase in load. The PEEQ parameter is the measurement of strain
equivalent that the Von Misses Stress is for stress measurements. Once the PZ has yielded,
the measured strains grow as the load applied is increased. The model used by Gupta is
loaded cyclically, which reduces the recorded PEEQ as the load is reversed. It is for this
reason that a different form of strain measurement was used - plastic strain magnitude, or
PEMAG. This measurement maintains a continuous accumulation of the strains as the PZ

goes back and forth.

Web and Dp/ Section A-A Section B-B
crippling

Figure 2.17: Web/DP Crippling Case 2B (Gupta, 2013)

The results from this modeling re-enforced the previous research by Donkada and Shirsat;

the shallow column showed no increase in panel zone strength when all four sides of the
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PZ were welded. The use of welds at the top and bottom of the DP also resulted in lower
stresses in the vertical welds. A strength gain of 10% in the deep column specimen was
obtained by the use of the horizontal welds along with vertical welds. It was suggested that
this gain in capacity was due to the propensity for the DPs in deeper columns to fail in
buckling modes. The attachment of DPs to a deep column PZ by horizontal welds, in
addition to vertical welds, seemed to prevent failure due to doubler plate/column web

crippling (see Figure 2.17).

Gupta’s results showed that the extension of the DP by 6 inches did not increase PZ strength
of the shallow column but did increase that of the deep column by 12-18%. The extension
of the DP also reduced the stresses throughout the vertical groove welds. This is likely due
to more weld material partaking in transferring the load to the DP. Gupta reports that the
vertical groove weld carries mostly horizontal normal stress. The extension of the DP was

also found to reduce the tendency of buckling and crippling by the DP.

The results also indicated that CPs do not increase the PZ strength of either shallow or deep
columns but do allow the columns to reach full shear strength, especially for columns with
thinner flanges. The attachment of CPs to the DP did not add significant stresses to the DP

but managed to reduce the stresses in the groove welds of the shallow column.

2.13 SUMMARY

This literature review covered research conducted in the 1950’s, when researchers began
testing the performance of moment resisting joints and the contributions the PZ made to

the overall connection. It was determined that the PZ is capable of resisting high levels of
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shear stress and had a large capacity to deform, meaning it was very ductile. These are
important properties of the PZ, since lateral forces applied by the beam flanges distribute
in the form of shear force. Ductility of the resisting member is necessary in any LFRS that
will be cyclically loaded. Thin column webs were found to reduce the strength of the
connection and result in early failure. The reinforcing/thickening of the column web, by
the addition of a DP, greatly improved performance of the connection. These tests were

early indications of how continuity plates can assist PZs in reaching full shear resistance.

It was later found that the stiffness of the joint began to decrease once the PZ had reached
its yield point. This meant that once most of the material in the column web had reached
the yield stress, the effectiveness of supporting any increasing load decreased. These results
made the importance of the PZ contribution to lateral force resistance more obvious.
Because the columns of the LFRS are also responsible for support of gravity loads, the
influence of axial load on the PZ was tested. The yielding of the PZ was expedited by the
presence of axial loads in the column, along with moment from a lateral force. Since
gravity loads are always present, it became more important to develop design
recommendations for these systems. The Von Misses yield criterion was found to be very
helpful in developing these recommendations. A good understanding of the behavior of the
panel zone was determined to be important since story drift levels are highly dependent on

the rotations experienced in the PZ.

When researchers looked closely at the range when the performance of the PZ began to
greatly influence global response of the LFRS, they found the turning point to be between
75 to 100% of the column web yield point. Once the PZ yielded, researchers also found

that contributions from elements surrounding the PZ were substantial and needed to be
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considered in design calculations. Determining ultimate load capacities and how these will
be managed by structural members in moment frames is particularly important in LFRS.

The resulting deformations, if not managed, can cause a structure to collapse.

As a way to reinforce the PZ, structural designers began to attach web doubler plates to
thin column webs in order to strengthen these column webs. The results from the testing
of the reinforced web showed that DPs were a very effective method of increasing the load
capacity of the PZ. The tests also revealed that once the column web had yielded and as a
result stiffness began to decrease, the DP contribution to shear resistance increased. Up to
the yield point, most of the shear had been resisted by the column web. Commonly used
steel shapes have typical sizes. When expected lateral forces are higher than what the

selected column web can handle, a DP can be effectively used to increase load capacity.

Three approaches to the design of moment connections and PZ were being researched. The
benefit of testing weak, balanced or strong PZs is understanding which one would provide
safer options. Their research turned to the benefits that possible design features such as
thinner webs, thicker flanges or thicker continuity plates could contribute. The result of a
thinner column web is a design in which the PZ is the weak point. Most of the deformations
are focused on this area and the attached beams do not contribute. Some research indicates
that weak panel zones can potentially increase the propensity of the welds at the beam
flange column web to fracture. When testing whether the use of thicker column flanges
could improve performance of the PZ, it was found that the performance did not improve
substantially. The use of thicker flanges did result in more complex stress conditions at the

column beam interface and an increased difficulty predicting shear capacity of the PZ.
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From the tests covered in this review, CPs were found to be extremely beneficial in
preventing buckling of the plate elements in the PZ. These modes of failure resulted in
lower design strength and early test failures. It was found that the use of CPs was far more
important than their thickness, although some researchers suggested that thinner CPs can
increase the fracture potential of the PZ. CPs were found to be especially useful when used
in shallow columns with thin flanges. The use of these in deep columns was most beneficial

in preventing buckling of the members.

The failed connections found after the Northridge earthquake brought a rise in research. In
these tests, much focus was centered on how the members in moment connections were
attached. One of the resulting observations from this was the realization that bolts were not
as effective in transferring lateral loads as were welds. The connections using bolts to attach
the beam webs to columns were observed to be less ductile as well. Other than buckling of
the members, a more characteristic form of failure that reduces the performance of PZ is
failure of the welds. Most of the research covered made comments regarding the need for

quality welding practices.

The elements that attach the beams, CPs, and DPs, welds and the forces are of great
importance. Welds are also very expensive and laborious. The panel zone’s complex
geometry makes it difficult to weld reinforcements onto it. Previous work attempted to find
out which welds were necessary and if there were other ways to reduce the number of
welds. Research by Shirsat, Donkada and Gupta has shown that one way to do this is by
extending the DP beyond the beam flanges. In shallow columns, this results in reduced
stresses in the vertical welds and seems to make the weld at the top and bottom of the

doubler plate unnecessary. In deep columns, the extended doubler plate resulted in an
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increase in PZ strength and reduction of buckling failure. The data also showed that the
extension of the DP promotes ductile behavior and reduces stresses overall, resulting in a
reduction of fracture potential. The necessity of the weld at the top and bottom of the un-

extended doubler plate was not made clear, since some benefits for it could be found.

As covered by this review, much research has been conducted regarding the overall
performance of the PZ and how individual parameters affect the stresses at the beam-
column interface. There is very little research regarding the attachments that reinforce the
PZ and allow it to reach its full shear capacity. Some of the latest research at the University
of Texas at Austin has considered the local effects that extended doubler plates, other
attachments and welds have on the PZ. The purpose of this research has been to make
recommendations for simpler, more effective PZ design configurations. It is for this reason
that this thesis covers the situation in which a doubler plate is fitted inside the PZ. No
information currently exists regarding this particular design configuration, which is

necessary at times.
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CHAPTER 3
Modeling Techniques

3.1 OVERVIEW

The purpose of this thesis is to investigate the behavior of panel zones reinforced by fitted
doubler plates and the attachments used to reinforce them. This was completed using the
finite element analysis package, Abaqus, to conduct the computational simulations of two
specimens. This chapter provides an overview of the modeling done in Abaqus and its
modules. The assembly of the models, the materials and the properties that define these
will be covered, along with key modeling techniques, assumptions, simplifications, and
data processing. A discussion of the validation of the models will also be covered, with
comparisons to lab tests performed previously. The modeling completed in this thesis is

similar to those previously done by Shirsat (2011), Donkada (2012), and Gupta (2013).

3.2 ABAQUS PROGRAM

When analyzing a structural problem, the finite element method is employed to take the
geometry and break it down, into smaller, simpler shapes, elements. After the
discretization, a load or displacement is applied to the model. The equations that model
their response are solved and the elements are then reassembled in order to define the
behavior over the entire problem. The software Abaqus Version 6.12-2 was used to model
two specimens of a W14x398 and a W40x 264 column and their attachments. Abaqus is a
general purpose finite element analysis program suite used by engineers in the automotive,
aerospace, industrial and structural engineering industries. It was initially developed to
address non-linear physical behavior and as a result, has an extensive material library with

pertinent constitutive laws and the ability to model their physical properties. Abaqus is
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composed of five different core products: Abaqus/CAE, Abaqus/Standard,
Abaqus/Explicit, Abaqus/CFD and Abaqus/Electromagnetic. The products used in this
thesis were the Abaqus/CAE, which served as a graphical interface for visual assembly,
job management and result visualization, and Abaqus/Standard, which uses the model input
to analyze problems with static or low-speed dynamic loads. Although earthquakes are a
dynamic load that involves inertial forces amplified by the structure, Abaqus/Standard can

be utilized to model the behavior and obtain the forces experienced by the PZ.

3.2.1 Stages

Every complete FE analysis consists of three stages: pre-processing/modeling,
processing/simulating and post-processing/result analysis (See Figure 3.1). In the modeling
stage individual elements (columns, stiffeners, plates and welds) are shaped using a variety
of geometric tools. Linear and nonlinear material properties are attached to the parts and
an assembly is put together. It is during this stage that the points and surfaces where data
will be collected, and the increments at which they are collected, are defined. During the
simulation stage, actual analysis of the model occurs; modeling assumptions and
simplifications determine the time period for the analysis. The analysis of a model can be
very computationally demanding and time-consuming relative to its complexity. The post-
processing stage displays the resulting stresses and strains of the model. The data can be

analyzed and manipulated in order to provide results for the structural problem.
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Pre-processing Evaluation and Post-processing
{Modeling) Simulation (Visualization)

Abaqus/CAE or Abaqus/Stondard ot Abaqus/CAE or
other products Abaqus/Explicit other products

Figure 3.1: Abaqus Stages of Analysis (Abaqus 6.12.2)

3.2.2 Modules

Abaqus/CAE is divided into 10 modules, 8 of which were used in this work. Some of the
aspects defined in the modules include geometry, material properties and the boundary
conditions. As the different modules are used to create the specimen to be analyzed, an

input file to be submitted in Abaqus/Standard is generated.

3.2.2.1 Part Module

This module is used to create or import the geometry of the individual parts. The elements
used for the model are selected from solids, shells, wires, or beam elements. Geometries
that will make up the parts are drawn and extrusions, fillets and profile definitions that will
help define the shapes can be applied to create the parts. These parts can be subdivided into
sections and the surfaces of these sections, whether internal or external, can be selected

and defined in order to be used for data collecting.

3.2.2.2 Property Module

The property module is used to define and attach material properties to the parts created.
Some of the extensive material properties that can be edited include material density

weight, ductility, damping, conductivity, and magnetic permeability. In general, this
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module allows for physical properties to be defined for the model. Although Abaqus has
its own material libraries and definitions, users are able to define their own materials using

data acquired from testing done at labs.

3.2.2.3 Assembly Module

In this module, the parts are assembled to create a model to be analyzed. Even if a model
is composed of one individual part, an assembly has to be completed in order for the part
to be used by the software. Each individual part, which has its own local coordinate system,
is brought in and positioned relative to each other in a global coordinate system. Some of
the tools that are available in this module include tools for: rotating, translating and

merging parts.

3.2.2.4 Step Module

It is in the step module where one selects the type of analysis that will run on the model.
Thermal analysis, dynamic analysis, static analysis and buckling analysis are some of the
choices that can be selected. Increments are set that will define the rate and sequence of
loading or data recording during the processing of the model. If time-dependent properties
were defined in the material module, the rate of loading would be specified in this module.
It is here that the Nlgeom option is turned on or off, which determines if non-linear
geometries are used by the equation solver. Linear geometry does not update the geometric
dimensions as the load changes. The Nlgeom feature captures instabilities and effects from
large displacements since it updates the element geometry at each load increment and has

the ability to recognize that the element size/shape/position is different than initially
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defined. Output requests of results for individual nodes, surfaces or parts can be defined

here, along with the frequency of the recording of these.

3.2.2.5 Interaction Module

An assembled model requires definitions for how and what its surfaces are attached to and
how they interact with each other. The interaction module is used to characterize
mechanical, thermal and other interactions between the parts of the model and their
surroundings, along with the methods connecting these. Two methods of defining how
surface in the model behave are constraints and interactions. Constraints partially or fully
eliminate degrees of freedom from selected groups of nodes or surfaces and their motion
is coupled to a master node. Interactions, which define the way other parts of the model
interact with each other, can also be defined in this module. These contact interactions are
very important for the analysis as they represent the actual behavior expected in a real life

specimen.

3.2.2.6 Load Module

Predefined fields, loads and boundary conditions are introduced and applied to the model
in this module. There is a variety of load conditions that can be applied to a system
including: pressure, gravity, thermal, heat flux, point and static loads. These are step
dependent, meaning the user must define when and how a load is applied, which is done

by the definition of an amplitude for rate of load application.

3.2.2.7 Mesh Module

In order to analyze a model it has to be subdivided into smaller sections. These sections
must be uniform and with similar ratios in order for the results to be accurate. These

subdivisions are done through the definition of a mesh that can be associated with the
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model in this module. A mesh must smoothly change in size near complex regions and in
sensitive spots. When meshing, holes, edges and other features of the geometry must be
accommodated in order for the results of the model to be accurate. One method of obtaining
accurate results is to decrease the size of the mesh, making it denser, which results in a
large number of smaller elements. This can quickly become computationally expensive and
can substantially increase the analysis time as well. A mesh refinement study can assist the
user in identifying the optimal size of the mesh. Abaqus has tools that allow for the user to

verify the quality of the mesh and define an optimal size for speed and accuracy.

3.2.2.8 Job Module

In the job module, the user can create and define a job. Important parameters as to how
many processors are used for the modeling can be defined here. As previously mentioned,
complex models can take a substantial amount of time to complete. By using
parallelization, symmetry and GPU acceleration, options in the job module, the time
required to complete an analysis can be reduced. This is also where the job manager, which

allows the user to monitor the process, is located.

3.2.2.9 Visualization Module

The visualization module provides a visual method for the user to query and review the
results of the analysis. Graphical representations of the deformations, stresses,
displacements, and forces experienced by the elements are displayed. Data output can also

be requested and plotted in this module.
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3.3 STRUCTURAL MODELING IN ABAQUS

The following section details a description of the specimens modeled in this thesis,

dimensions, simplifications, assumptions and other key parameters.

3.3.1 Element Type

Abaqus has a wide range of elements from which to select when modeling structural
analysis problems. Precedent research associated with this thesis used a C3D8R brick
element; this work will do the same. The Abaqus element designation stands for
Continuum 3-D 8-node Reduced Integration. This means that the model is composed of
solid (C), 3D elements made up of 8 nodes with 6 degrees of freedom each analyzed using
reduced integration. The reduced integration reduces the computing necessary for the
analysis. Some of the benefits associated with this element include: boundary conditions
of both forces and displacements can be more realistically modeled, and it visually
resembles the modeled system better than other models using different elements. One of
the issues involved in using these elements involves complex meshing issues in regions
with complex geometry such as tight radiuses or angles where a tetrahedral element might
fit better. Another issue typically encountered is high computing and post-processing effort
resulting from difficulties in converging of the equations. This is due to the cut in time step
that Abaqus automatically does in order to attempt to resolve the issues. As is the case with
smaller, more refined meshes, a model using solid elements has a higher likelihood of
encountering mesh penetration issues, resulting in longer analysis periods and aborts of
analysis. Node penetrations occur when the master surface mesh does not align with the
slave surface mesh and because of deformations incurred during the analysis, its nodes

penetrate the slave surface.

49



3.3.2 Model Parts

Two specimens were modeled in Abaqus (see Figures 3.2 — 3.3). The part module was
utilized to define the geometries of the individual parts before they were assembled; these

are as listed:

144"

(A)

Figure 3.2: (a) Column, (b) Loading Plate, (c) Doubler Plate, (d) Column Profile

e Column — Two 144 inch long column segments were used. A W14x398
represented the shallow column and a W40x264 represented the deep column. For
profile dimensions of these please refer to the AISC Steel Construction Manual

(AISC 2010)

e Loading Plate — Four 6” x 1” x .75br (Column Flange Width) steel plates were

used to represent the top and bottom flanges from the beams that would be attached
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to the column. These were placed 24” apart center to center on both sides of the
column. Loads were applied to the PZ through displacement increments of the

loading plates.

Doubler Plate (DP) — The PZ was reinforced by a fitted DP which ranged from
21” to 24> tall for both the shallow and deep column specimens. The DP used in
the shallow column was 10” wide and 1/2” thick and that of the deep column was
34” wide and 1” thick. Due to the congested region in the corners of the PZ, fitted
DPs have clipped corners. These clips were done with a corner cut of 1.5” both

ways, Figure 3.4.

Vertical Groove Welds that “filled” in the gap between the DP and the column
flanges (VGW1) were utilized in order to attach the doubler plate to the column.
The forces and resultant stresses in these welds are of particular interest since they
are indicative of the shear forces being applied on the DP. Because Abaqus will not
allow the job to run when a node is attached to two separate surfaces, the corner of
the weld where the edge of the DP and the K-Zone meet is chamfered, as seen
below. This chamfer must also be done with mesh quality in consideration, since
the clipping in this location will create a complicated section to be meshed. A
chamfer that is very small will result in very sharp corners where a uniform mesh
can’t be applied. It is better to apply a longer chamfer that matches the contour of

the exterior radius.
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Chamfered
Corner

Figure 3.3 Vertical groove welds between the DP and the column flanges

e Horizontal Fillet Welds between the DP and the column web are as thick as the
DP on both sides. The corner edge of the weld, where the top edge of the DP and the

column web meet, is chamfered for the same reason as that of the vertical groove weld.

e

te

Figure 3.4: Horizontal fillet welds between the DP and the column web

e Continuity Plates, (CP) were used for all the models that used DPs. The plates’
thickness is required to be no less than half the thickness of the attached beam’s
flange per AISC Seismic Provisions, (AISC 2010)de a reference to the 2010 AISC
Seismic Provisions) Hence, all CPs were 17 thick for the analysis to match the

thickness of the loading plates. The width of the continuity plates was selected to
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match the width of the loading plates as shown in Figure 3.4.T The clipped corners
in Figure 3.4 were dimensioned per the AISC Seismic Provisions (AISC 2010) For
a discussion on how CPs affect PZs of columns with varying column flange

thickness, see Donkada (2012).

.75 by

k,+0.5"

Figure 3.4: Column section cut with continuity plate dimensions

e Single Bevel Full Penetration Weld between the CP and the column flanges
(CJP2) and Single Bevel Full Penetration Weld between the CP and column web

(CJP3). The CP plates were attached by complete joint penetration groove welds
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as seen in Figures 3.4 and 3.5. These were formed by the 30 degree single bevel in

the CPs. The bottom corner of these was also chamfered.

Chamfered :
Corner B

Figure 3.5: CJP2 and CJP3 view without column in view

Abaqus allows for the definition of multiple iterations of the same model in one file. A
typical reason for this would be a change in geometry or an omission of a weld or part.
Some of the welds modeled had 60 different surface definitions that would have had to be
redefined every time a new iteration of the model was defined. Great time savings can be
accomplished by editing the existing lines defining the section sketch of the part, rather
than redefining a new one. This will keep all previously defined attributes and surfaces for

the new model.
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3.3.3 Material Model

Although Abaqus contains a vast library of material definitions, it provides the ability to
define any material using test data. This data input is in the form of a stress-strain curve
similar to those in Figure 3.6. These stress-strain curves define the elastic behavior up to
the yield point of the material, fy, and the plastic behavior afterwards. Two idealizations
were used for the behavior of its parts. To keep yielding within the PZ, the loading plates
used a continuously elastic material definition. This prevented local yielding in the loading
plate. All other parts used a multi linear material model approximated by a curve similar
to Figure 3.6(d), but composed of three segments. Different yield points and strain
hardening values were selected for the three types of steel used. It is important to note that
the thesis by Gupta (2013) used a material model curve similar to Figure 3.6(d), but the
results of the analysis of the PZ behavior were similar to those of Donkada (2012) and

Shirsat (2011), yet the analysis time was increased greatly.

~

b) Elastic Perfectly Plastic °

o

0 a) Elastic E

2 ¢) Bilinear £ g d) Multi-Linear €

Figure 3.6: Typical models of stress-strain curves, (Ho, 2010)
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The input of the material stress-strain curve is done in the Abaqus Material Module.
Abaqus does not have a built-in unit system and as a result, all input and output must be
specified using consistent units. In order to enter a material definition, the user must enter
the edit material tab where the elastic and plastic stress strain data can be entered. The
elastic range of the material is defined under the elasticity tab by Young’s modulus and
Poisson’s ratio. The plastic part of the material definition is entered in the plasticity option
under the mechanical tab. This is also the location where the user can define the type of
strain hardening that the material goes through, past the point of yielding. Some of the

types of rules available are kinematic, isotropic and combined.

In order to obtain a stress strain curve in a laboratory, a material coupon must be cut in a
standard shape and pulled by a machine at a certain rate. As the load increases, the change
in distance between two predefined points in the coupon is recorded. The difference
between the measurement, d/, and the original length, /,, is referred to as engineering strain.
The matching engineering stress is defined by the force being applied, F, divided over the
original cross-sectional area, A,. This stress 1s not necessarily accurate, since the cross-
sectional area of the coupon is decreasing, as explained by Poisson’s effect. It is because
of this that Abaqus does not utilize engineering stress and strain. The input must be in terms

of true (Cauchy) stress, O nom, and true (logarithmic) strain, €nem,as defined in the equations

below (from Abaqus User’s Manual, Section 20.1.1).

Relationships Between Engineering and True Stress, Strain Values:

Oy

! o :
or=0, (l+¢ el =&; _ET =In(l+¢

e, =In(l+e

JJ‘DM) HOH’J) nom) -
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Engineering Stress: O o =
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Engineering Strain: Epom = —
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F
True Stress: Oy = 1
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True Strain: & = | b L h,i - |

The material model utilized for this thesis is similar to that of Shirsat (2011), and Donkada
(2012), Figure 3.7. The inelastic material model was developed by Okazaki (2004) for the
A992 steel used in his FE modeling. Coupon tests were performed on the webs and flanges
of columns used in his experiments. Since the focus of the research is based on PZ behavior,

the data from the web tension coupon was used for the model.

Web (CW6)
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Figure 3.7: A992 Steel tri-linear model (Okazaki, 2004)
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Although Okazaki’s experiments were cyclic in nature, the “Okazaki Trilinear Steel”
material model was developed for monotonic loading of finite element models. The
“Okazaki” material curve for steel, as defined in the Abaqus job definition file on Figure
3.8, was used to define all of the W-shape columns and beams in this thesis. Due to the
similarities between A992 and A572 Gr. 50 steel, it was also used to define all plate
elements including stiffeners, continuity plates and doubler plates. All welds modeled in
this work used the material definition “Okazaki Trilinear Weld”, developed by Okazaki,
which is based on data reported by Kauffman (1997). Figure 3.8 displays the input
command lines, accessible in the “edit keywords” tab, that define the material models used

by Abaqus to model the specimens used in the research.

e d

** MATERIALS

£

Part of Model

J *Material, name="Elastic Steel"

*Elastic

Loading Plates
1 29000., 03

*Material, name="0kazaki Trilinear Steel"
*Elastic
Column 29000, 0.3
Doubler Plate 3 “Plastic
Continuity Plates 52.09 0.
69.94, 0.04808
\ 1257, 043508
"' *Material, name="0kazaki Trilinear Weld"
*Elastic
All Groove, 29000., 0.3
Fillet, and CJP at *Plastic
Welds 6515 0.
&3.65, 0.04804
\ 14591, 0.43467

e

Figure 3.8: Abaqus A992 Steel definition (Units = Ksi, in/in)
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To define a new material, the user must enter the “create a new material” feature and define
the elastic behavior of the material using the elastic modulus of 29,000 ksi and Poisson’s
ratio, 0.3. The individual values defining the inelastic part of the material definition are
recorded by the user. Notice the first strain point of the plastic definition of either
“Okazaki” materials lets the software know that once an element has reached the yield
stress point, its plastic strains start from zero and follow the defined curve. Because the
material model is based on monotonically loaded coupon tests, there is no information on
the type of cyclic strain hardening rules; therefore, an isotropic strain hardening rule is
assumed. Validation exercises are discussed at the end of this chapter, comparing FE results
to real lab experiments where specimens were loaded into the inelastic region in flexure
and shear. For a review of the development of a material model used for modeling of

specimens loaded in cyclic manner, read Gupta (2013), Chapter 3.

3.3.4 Meshing Techniques

Part Meshing Technique W14 X 398 Mesh | W40x264 Mesh
Seed Size (in) Seed Size (in)
Column (PZ region) Structured 0.3 0.5
Column (Outside PZ region)  |Structured 1.5 1.5
Continuity Plate, CP Sweep with medial axis algorythm 0.5 0.5
Doubler Plate, DP Structured 0.5 0.5
Fillet Welds Sweep with medial axis algorythm 0.1 01
Groove Weld, (CJP2) Structured 0.1 0.1
Groove Weld, (CTP3) Structured 0.1 0.1
Loading Plate Structured 0.25 0.25
Vertical Groove Weld (VGW1)} |Sweep with medial axis algorythm 0.1 0.1

Table 3.1: Part meshing techniques and sizes for specimens

As mentioned in section 3.2.2.7, the meshing of the model is one of the most important

aspects of the process. The types of elements selected, the density, and ability to smoothly
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define shapes not only determines if the job will be analyzed completely but also the speed
and accuracy of results. For the specimens modeled, a hexahedral mesh was selected
because these elements are robust and result in fewer convergence problems, which cause
the early termination of the job. Previous mesh refinement studies by Donkada (2012), as
well as work by Gupta (2013), influenced the mesh size for the individual parts seen in

Table 3.1.

Defined Part

Unaligned Nodes

Figure 3.9: Column K-Zone where complex geometries meet

The density of the mesh is not the only characteristic that makes an analysis more time
consuming; the errors that are encountered as the loads are applied also cause delays. As
pictured in Figure 3.9, many parts with complex geometries meet in the PZ, in particular
the K-zone of the column. Note that the user-defined groove weld, outlined by the red
perimeter lines, varies from the meshed geometry, which is what is analyzed by Abaqus.

The mesh sizes of the parts are not often identical to each other and because the Nlgeom
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option is selected, a denser mesh is able to penetrate the larger mesh. Where and how often
these penetrations occur is managed by the surface discretization method, along with the
Master-Slave surface definition used, Figure 3.12. When deep node penetrations occur,
Abaqus stops the analysis increment and begins a new iteration but cuts the time step in
half in an attempt to get a converged solution. If non-convergence continues, Abaqus will
continue to cut the time in half until convergence or it aborts the job after 10 tries. These
discretizations of analysis time, due to mesh issues increase time requirements

substantially.

A method used to improve the quality of the mesh while modeling of the specimens is the
use of partitions. Partitions can separate areas that need a denser mesh or special meshing
algorithms as well as define surfaces that can be used for the query of stresses. An example
of how subdividing improved the mesh of the model is pictured in Figure 3.10. Without
the partitions on the column, Figure 3.10 (A), the results of the analysis would have been
less accurate. Abaqus also provides a tool to check the quality of a mesh by determining
the aspect ratio, the maximum or minimum value of corner angles and other size metrics.

Once utilized, it will create a set highlighting the poor quality elements.
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Figure 3.10: (A) Mesh without partitions, (B) Partitioning, (C) Mesh with partitions
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Abaqus also provides different meshing techniques and algorithms which include medial
axis and advancing front algorithms. These can help define a mesh that will provide good,
accurate results; Table 3.1 and Figure 3.11 show the techniques and algorithms used for
the individual parts of the specimens modeled. Many difficulties in completing the jobs
were encountered in the deep column specimen. As mentioned previously, node
penetrations prevent the job from completing, an issue encountered mostly in the finishing
stages of the job progress. The larger DP is more prone to buckling issues, which cause
node penetrations on the welds and on the DP as well. Abaqus offers a Job Diagnostics

tool in the Visualization Module where these issues can be reviewed and resolved.

Sweep with
Medial Axis \
Algorithm o=

Structured

Figure 3.11: Mesh methods used on column attachments of W14x398

3.3.5 Assembly

Once the individual parts have been defined and appropriate physical and material
properties have been attached to the parts, the model is then put together in the assembly
module. Multiple copies of each element are brought in, rotated and translated into place

relative to the global axis of the model. All surfaces that come into contact must be defined
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as contact pairs and the nature of the interaction defined. A constraint is defined by
selecting a type of constraint and defining a master and slave surface. Figure 3.12
exemplifies the use of master and slave surfaces to define a constraint. One of the
recommendations for surface definition is to specify the part with the coarser mesh as the
“master surface” and the one with the denser mesh as the “slave surface” (from Abaqus
Analysis User’s Manual, Section 31.3.1). It should be noted that this is not always the case,
as can be seen in the difference of surface definition for the DP and the deep column web

between Gupta (2013) and this work.

The three types of constraint methods used for the model were: the tie constraint, hard
contact and rigid surface constraints. The tie constraint defines two surfaces that are
perfectly bonded and whose nodes are tied to each other. This constraint was used to model
the binding that would be expected from welds or parts that are welded together. Similar
to a real life weld, the joined parts behave in unison and stay “tied” through the whole
analysis. Another type of constraint used was the “hard contact” constraint, which was
defined by creating an interaction property and selecting the “Normal” behavior option in
the mechanical tab. The “allow separation after contact” option was also selected in order
to permit the surfaces to separate once the force between them was zero. This contact
definition was used to define the actual behavior between the doubler plate and the column
web (see figure 3.12). When loads are applied, the DP mesh deforms and attempts to
penetrate the surface of the column web. Because of the hard contact interaction, the
surfaces are prevented from penetrating each other and then are allowed to separate after
the load is removed. This behavior can and does cause mesh issues in the K-zone as well,
due to the complex geometry in the region. This is of particular importance to the deep

column specimen, since the DP in this specimen is more prone to buckling.
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Figure 3.12: Clipped DP onto W40x264 column (Part colors based on material definition)

Initial over-closure occurs when nodes in one surface are penetrating other surfaces without
any force being applied. Abaqus provides settings that can adjust the initial over-closure
and keep the job from aborting. As mentioned in the section covering the definition of
analysis steps, a short initial increment can help correct initial over-closure problems.
Along with good meshing techniques, another tool that can be employed in regions with
complex geometry is surface discretization. Two methods that Abaqus provides are: the
node-to-surface or surface-to-surface discretization methods. The node-to-surface method
defines contact conditions between each slave node and the master surface. The surface-
to-surface discretization method considers the shape of both the master and slave surfaces

when defining the constraints (from Abaqus Analysis User’s Manual, Section 12.4.3).
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Table 3.2 defines the master-slave surface definitions between the contact surfaces of the
W40x264, along with the type of constraints and surface discretization methods used. The
W14x398 specimen utilized the same settings except the discretization methods selected

for all surfaces was the analysis default, which is surface-to-surface.

The third type of constraint used is the “rigid body” constraint, which ties a selected surface
to the displacement and rotation of an individual node (4baqus 6.12 Analysis User’s
Manual, section 2.4.10). To define this constraint a reference point/node is defined on the
model and a “rigid body” constraint is tied to this node. This will enforce the same
displacement and rotation that the selected node exhibits onto the rest of the defined
surface. This type of constraint was used to model a boundary condition in which the ends
of a member are able to rotate and behave as one rigid surface. Both the pin and roller
boundary conditions of the specimens modeled used a rigid body constraint, pictured in

Figure 3.13.

Figure 3.13: A “rigid body constraint” defines the roller BC at the top of the column
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Master Surface Slave Surface Type of Constraint | Discretization Method
Column Flange |Loading Plate Tie Constraint Analysis Default
Column K-Zone |Vertical Groove Weld VGW1 Tie Constraint Node to Surface
Column Flange |Groove Weld CIP2 Tie Constraint Node to Surface
Cohumn Web Groove Weld CIP3 Tie Constraint Amnalysis Default
Column Web Horizontal Fillet Weld to DP Tie Constraint Node to Surface
Continuity Plate  |Groove Weld CIP2 Tie Constraint Amnalysis Default
Continuity Plate | Groove Weld CIP3 Tie Constraint Analysis Default
Doubler Plate Vertical Groove Weld VGW1 Tie Constraint Amnalysis Default
Doubler Plate Horizontal Fillet Weld (Top & Bott.) Tie Constraint Analysis Default
Doubler Plate Column Web Hard Contact Node to Surface

Table 3.2: Part constraints and contact surface discretization for W40x264 & W 14x398

Once a model is defined and assembled, the user can define the surfaces and nodes that
will be used to obtain data from the analysis. Although Abaqus provides a large amount of
data from the job once the analysis terminates, it is often necessary to define the rate, type
and location of data acquisition. Figures 3.14 and 3.15 illustrate the definition of the panel

zone and the nodes selected to calculate the PZ rotation as the specimen was being loaded.

Figure 3.14: Data points for checking PZ rotation on W40x264 column
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The reference points used to define the rigid surface boundary conditions as well as the
nodes defining the PZ were utilized for data collecting. The PZ rotation, yp, was calculated
by subtracting the difference in horizontal displacement of the top right node, H;, from the
bottom right node, Hr, and dividing the difference by the depth of the PZ (Equation 3.1).
Panel zone shear was calculated using Equation 3.2, with the reaction force data recorded

from the reference point at the top or bottom column rigid constraints.

H, —H
Vp=—( td r) Equation 3.1

Re(l—d
V, = M Equation 3.2

S
U

Vp = Panel zone shear

~p = Panel zone rotation

Rf= Reaction at bottom of column (from defined reference point)
L = Length of the column (144 inches)

d = Distance between the loading plates (24 inches)

Hr= Horizontal displacement of the bottom right node

Ht= Horizontal displacement of the top right node
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Figure 3.15: Data points used to define PZ rotation on a W14x398 column

The results from the analysis are presented in the form of stresses, but Abaqus offers the
option to define a surface and record the forces and moments on the surface on all three X,
Y, and Z axis. This option was utilized to obtain the normal and shear forces through the
column and DP as well as surface loads being transferred by the welds attaching the DP to
the column (Figure 3.16). The user defines a surface on the part, enters the edit keywords
option in the Model toolbar, and types the section force command under the “**OUTPUT
REQUEST” line (Figure 3.17). This command will not only provide the forces from all
principal global axis, if the “SOF” is typed, but also the moment forces summed about the
center of the surface cut by typing “SOM” also. Abaqus will record the sum of the forces
from all the nodes that define the selected surface for every increment of the load
application. The results are reported in large text and data files that can be parsed by a self-
written program routine. The Matlab code used to parse the section force data output from

the 60 different defined surfaces is attached at the end of this thesis.
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Figure 3.16: “Section Force” surface selections on W14x398 column specimen

3.3.6 Time Step

After assembly of the model and the definition of data collecting surfaces and nodes, a time
step is defined for the application of load. Abaqus defines an initial time step by default,
but the user must define another step for loading to occur. It is here that the use of nonlinear
geometry can be applied to the model by turning the “Nlgeom” option on. Time step, initial
increment size, as well as maximum and minimum time increment size for load application
have to be defined here. As will be discussed in section 3.3.7 the rate of loading of the
specimen was done using an amplitude definition. Because the loading amplitude used in
the modeling had 60 increments, the time period selected for the force step had to match
the amplitude with 60 increments also. The initial, minimal and maximum increment sizes
were: 1x107, 1x10" and 0.2, respectively. The job was allowed to run for 20000
increments allowing Abaqus to make as many discretizations as needed to complete the
analysis. Increment size boundaries for the time steps are important, since too large of an
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increment size results in fewer points of data acquisition, which can make it possible to
miss key events of the response of the model. The 0.2 max increment size defined in the
step module proved to show a clear definition of the behavior of the model. A too small
increment size definition will result in accurate but much longer analysis time. As covered
earlier in the discussion regarding meshing, a small initial increment size can help alleviate
initial over-closure issues, allowing for completion of the job and in some instances
preventing the job from aborting within the first increment; hence why a value of 1x107

was used.

= QUTPUT REQUESTS

R

*section print,name=D0DBL1, surface=DEL1
S0F

Figure 3.17: Surface “DBL1” section force output request

3.3.7 Loading and Boundary Conditions

To apply load on a model, Abaqus subdivides the load into increments and applies at this
rate. It is sometimes necessary to define a loading rate that is not only slower but will create
more data collection points in order to get a good idea of behavior. The load rate definition
is done through the use of the Amplitude option, which involves defining an amplitude
protocol and attaching it to the load. The amplitude protocol serves as a load multiplier,
which allows for a definition of many loading conditions such as ramp loading and cyclic
loading. The amplitude used in the analysis used 60 steps at .0125 amplitude increments to
reach the desired loading. Abaqus allows for two ways to apply loading to a model, the
displacement controlled method and the loading controlled method. When using the
loading controlled method a load is applied to a surface and the internal forces and resulting

moments are calculated along with the displacements. This approach can make the analysis
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of a complex model: difficult to complete. It is for this reason that the displacement
controlled method, was utilized in the modeling, with the load derived using Equation 3.3.
Since the PZ rotation of .05 radians was required and the PZ height of all models was 24
inches, the displacement applied at each of the loading plates was .6 inches. Notice that the
applications of the load on the top and bottom loading plates were opposite from each other

(Figure 3.14).

(Desired PZ Rotation (rad) — PZ Height (in))

Displacement Load = Equation 3.3

" Roller BC
Using Rigid
Constraint

Displacement
y Loading

Pin BC
Using Rigd
Constraint

Figure 3.18: Meshing, loading and boundary conditions for the W40x264 model
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The application of displacement or force loads can be completed using pressure, linear or
point loads as well as through the use of a “rigid body constraint”. The latter option can be
used to obtain an idea of the force being applied as well as to ensure that the load is evenly

applied throughout the surface.

3.3.8 Modeling of Welds

The welds were carefully meshed in order to obtain the best quality mesh that was possible.
As can be seen in Figure 3.19, sharp edges and radiuses can be difficult to properly
subdivide. Although a decrease in mesh size can assist in increasing the quality, this is not
the best solution. The use of a very dense mesh on the multiple welds of the specimen
would increase the analysis time substantially. A study of the welds alone would require
two models - a global model such as the one used, and a local model of the weld alone.

The forces from the global model could be applied to a weld with a much denser mesh.

Unaccurate Mesh Very D“_S(‘ Mesh
Computatiosally Expeasive

Sweep With Medial Structured Mesh
Axis Mesh

Figure 3.19: Meshing of the vertical groove weld, VGW1
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The forces reported were obtained using the Abaqus “section force” command. The section
surfaces were created using datum planes to subdivide the vertical groove weld and the
fillet welds used to attach the DP to the column web, in 32 evenly spaced segments. Each
segment of the surface was named and the global X, Y, and Z forces were requested using
the “section force” command. As mentioned, Abaqus obtains these forces by summing up
the reactions from each node that defines the selected surface. The summing of the nodes
can present an issue of inaccuracy, since it is possible to double count the nodes, when the
boundary dividing surfaces is counted in the summing of the forces, unless a smaller
subdivision is created between the subdivisions. This is done by dividing the weld
segments with two partitions relatively close to each other and not selecting the surface
between these. The surfaces will not share nodes and the forces reported will be only for

the nodes that define the selected surface.

_—~WELD
SURFACE

, NODES DEFINING
/ SURFACE

“ DATUM PLANE
USED TO
SUBDIVIDE
WELDS

Figure 3.19: Surfaces used to collect force data & nodes that define these
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To obtain the forces transferred to the DP, the weld surface of DP-weld interface was
subdivided. The forces were reported in the X, Y, Z or 1, 2, 3 axis respectively. As can be
seen in Figure 3.20, a force reported in the Y or 2 axis would be normal to the surface
between the DP and the groove weld. This force would also be parallel to that being applied
at the loading plates. A similar force on the Y axis, being reported at the top or bottom fillet

weld, would represent a shear force along the length of the weld and the surface of the DP.

Vertical Groove
Weld

Figure 3.20: Subdivided weld surface attached to DP

74



3.3.9 Post Processing

Once properly defined, as covered in section 3.3 of this chapter, the model can be run in
the Abaqus job module. The process of the analysis can be viewed from the job monitor as
well as a report of warnings and modeling errors. Once complete, the results can be viewed
in the Abaqus CAE and the forces from the “section force output” .DAT file can be parsed.
The Matlab routine utilized to parse the large data file is attached at the end of the thesis.
Another method of data collecting that was utilized after the analysis was complete was
the use of paths. A path definition of the Abaqus model is a selection of nodes in a particular
path. The paths defined for this thesis all ran along the center of the column from left flange
to right flange at different elevations along the PZ (Figure 3.21). The user can request data
values from the nodes that define the path such as: equivalent plastic strain (PEEQ,)

principal stress values, Von Misses stress values, strains and Rupture Index values.
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Figure 3.21: Path along the center of the column showing Von Misses stress
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3.3.10 Modeling Assumptions and Limitations

The model used in this thesis assumes that a 12 foot long column segment can represent
the boundary conditions of a PZ of a moment connection on a typical moment frame
column. The presumption that the points of inflection, where zero moment is expected to
occur between floors of a moment frame, is often made in design, although in reality this
is not exactly true. The model also utilized loading plates to apply the load on the PZ, when
in reality the beam’s web could influence the behavior because it is also attached to the
column’s web. Some of the limitations to the modeling of the specimens included the
ability to model fracture as a form of failure. Because the models were loaded past the
material yielding point, fracture, along with buckling of the stiffeners, often determines the
failure of the connection. As recommended by the researchers covered in the literature
review, good quality welds and weld material with proper strength can alleviate most of
the fracture issues. Monotonic loading was also utilized despite the fact that the nature of
seismic loading is cyclic. The intent of the modeling is to obtain an idea of how lateral
forces are transferred through a simplified model, in order learn about the behavior and
make design recommendations. The assumptions made are needed in order to make
multiple analyses of variations of a specimen more practical, instead of an extremely long

analysis of a whole frame system.

3.4 ABAQUS COMPARISONS

Material definitions and methods used in this and previous FE modeling were developed
and verified by modeling experiments. The following section will cover some of these
analysis and their results. For more information covering the experiments, please turn to

Engelhardt et al (2000), Ryu (2005), Shirsat (2011), Donkada (2012) and Gupta (2013).
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3.4.1 Modeling of a Tension Coupon Test

In order to develop understanding of proper material definitions in Abaqus, along with the
ability to model physical behavior, a tension coupon test was modeled. A 2 inch coupon
was generated using the ASTM A370 standard dimensions and gauge distance. Data was
obtained from a real tension coupon test, completed at the laboratory, and because it was
recorded using engineering stress and strain, it was converted into real stress and strain
values. Although the lab data had hundreds of data points, only 20 of these were used in
the plastic stress-strain definition for the steel material of the coupon. This was done in
order to keep Abaqus from aborting the project, since a definition of plastic behavior using

a large set of points would result in its termination.
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Figure 3.22: ASTM-A 370-08 Standard dimensions for tension coupon test
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3.4.1.1 Assembly & Test

The model of the coupon used the same C3D8R brick elements as discussed previously. A
fixed boundary condition was defined on one of the ends of the coupon while a 2 inch
displacement load was applied at the other end. A 50 increment load amplitude was used,
resulting in .04 inches of displacement application on the coupon per increment. Nonlinear
geometry was applied by turning the “Nlgeom” option on. The seed size for the mesh

definition used was .1 inches.

Figure 3.23: Tension coupon boundary conditions and resulting stresses

3.4.1.2 Results

The tension coupon test was modeled in order to develop the ability to model tension on a
member and to determine the ability of the software to model this physical behavior. A
steel material definition was attached on a coupon with standard geometry and dimensions.

bh

The material was defined using a “true” stress-strain curve converted from the
“engineering” values from the laboratory experiment. As seen in Figure 3.24, Abaqus was
able to use a defined material profile and reproduce stress-strain results that mirror those
measured in the lab. Notice that the results differ once the “real” tension coupon starts

necking, which is the reduction of the cross-sectional area. To model the coupon necking,

the user has to use element elimination techniques, which is not the intent of this work.
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Figure 3.24: Tension coupon laboratory test vs. Abaqus model comparison

3.4.2 Modeling of a Shear Link

Shear in the PZ is one of the most important aspects of the research; for this reason, the
ability to properly model it, was crucial. Lab experiments of a shear link performed by Ryu
(2005) were used to compare and validate the material model and techniques used. An

Abaqus shear link model was developed and a variety of loading protocols were applied to

it.

BC for the left end plate : Fixed
butfreeto translate inz direction | | Shearlink

U1=U2=UR1=UR2=UR3=0 —
u3#o

BC for the left end of =%
beam : Pinned
U1=U2=0
UR2=UR3=0 \
U3 &URT#0

BC for the column ends: Pinned
U1=U3=UR2=UR3=0
U2=Amp1;UR1#0

Figure 3.25: Abaqus boundary conditions for shear link model (Gupta, 2013)
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3.4.3.1 Assembly

The experiment was composed of a 200 inch long W18x76 beam, a 96 inch high W12x120
column and a 23 inch long W18x40 long reinforced link. As pictured in Figure 3.26, the
shear link was fabricated by attaching three 3/8 inch thick stiffeners to one side and spacing
them 5 3/4 inches on center. Two 2 inch by 26 inch deep plates were attached to each end

of the link beam.
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Figure 3.26: Shear link assembly 12 (Ryu, 2005)

The parts for the model were created and assembled in the part module using the
dimensions provided in Ryu (2005) for specimen 12. The C3D8R brick elements used for
the specimen were seeded and meshed using a “structured” mesh for all parts. In order to
speed up the model and because the focus of the analysis was the shear link, a coarse mesh
of 5 inches and 2.4 inches was used for the beam and column, respectively. The mesh size
used for the link itself was .4 inches and 1 inch for the stiffeners and the end plates on
either side of the link. It is important to note that Abaqus will not automatically subdivide
the thin edge in a thin plate and will define the stiffeners using a one element thick mesh.

The user must intentionally subdivide the stiffener and the link to match the subdivisions,
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in order to capture accurate buckling behavior expected from the high levels of shear. Due
to the expected buckling of the stiffeners and for accuracy of results, non-linear geometry
was utilized by applying the “Nlgeom” option. The material definition used for all elements
except for the link and stiffeners was an elastic one. The elastic modulus of 29,000 ksi,
along with Poisson’s ratio of .3, was used to define the material without a definition for a
yield point. Because the loading that would be applied to the link would be cyclic, the
material stress-strain curve used by Gupta (2013) was used to define the plasticity of the
shear link and stiffeners. As can be seen in Figure 3.27, the “combined” strain hardening
method was selected, as well as the option to define 6 back-stresses for Abaqus to consider.
These settings better approximate the strain hardening on a model that will be exposed to

cyclic loading.

[

“4 MATERIALS

*Material, name=Elastic steeal
*Elastic =
29000., 3
Material, name=Plastic steel
*Elasatic
29000 3
*Plastic, hardening=COMBINED, datatype=STABILIZED, number
backstresnses™s
0.001,
17.8433
03

.........

Figure 3.27: Shear link material definitions

No welds were explicitly modeled in this analysis and thus tie constraints were utilized to
connect all member surfaces. Rigid body constraints were used in the free ends of the beam
and column in order to define the boundary conditions and allow the surfaces to rotate as
they would in an experiment. These constraints were attached to reference points at the

center of those surfaces and loading protocols as well as boundary conditions were defined
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using these reference points. The roller at the left end of the beam was defined by placing
a zero value in the U1/X, U2/Y, UR2/(rotation about Y), and UR3/(rotation about Z) lines
and leaving the other lines of the boundary definition blank, as described in Figure 3.25. A
similar application of boundary conditions was utilized in the column ends, with the
exception that a displacement of 1 inch in the Y direction was applied to both top and
bottom reference points. Notice the boundary condition that was applied to the link end
attached to the beam. This boundary condition reflects the one used in the experiment to

keep the link from rotating in the out of plane axis.

3.4.3.2 Test

The experiment utilized several different loading protocols of the same specimen. Three
cyclic and one monotonic loading protocol were used to validate the modeling techniques
and material in this thesis. These loading protocols were expected to result in high localized
levels of shear and moment in the link beam (Figure 3.28). For a detailed explanation of

the loading protocols and other links tested, turn to Ryu (2005)
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Figure 3.28: Qualitative moment (A) and shear (B) diagrams (Ryu, 2005)

The loading protocols shown in figures 3.29 — 3.31 were applied at the reference points of
the column using a 1 inch displacement load. The direction and magnitude of the load

application was defined using negative or positive amplitude values that increased or
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decreased as necessary. The three cyclic loading protocols used for the validation exercises
were “12SEV’, ‘12RAN’ and ‘12AISC’ along with the ‘12MON’ monotonic loading
protocol, Figures 3.29 -3.32. Data collected for the results included a “History Output
Request” of the Y-axis reaction force, or “RF2”, of the top and bottom reference points.
These reaction forces were combined to determine the total force applied to the column
ends in order to obtain the forces applied. This force, which was the shear that the link had
to resist, was compared to the total rotation that the link experienced during the analysis.
This rotation, y, was determined by defining a node at the center of each end of the shear
link and asking Abaqus to record the Y displacements for these as the load is being applied.
Once the analysis was complete, the difference between the node displacements was
divided by the length of the shear link, 23 inches, to determine the total rotation, vy, of the
link.

3.4.3.3 Results

Comparisons of the results from Ryu (2005) and the Abaqus models are shown in Figures
3.29 — 3.32. The comparison plots of the shear vs. rotation experienced by the link show
that the models were able to capture the strain hardening behavior and ductility of the
overall specimen quite well, with the exception of the specimen with the random loading
protocol. The 12RAN Abaqus model underestimated the strength of the shear link by about
20%. This becomes an issue with loading protocols that are random in nature but the work
done uses monotonic loading. Many of the laboratory experiments failed due to fracture of
welds, something that was not part of the modeling of any specimens in this work. The

failure mode that occurred in the lab, and which the Abaqus models were able to capture,

&3



was buckling of the stiffeners (Figure 3.32). The monotonic loading of both the real and

computer specimens caused buckling in the stiffeners, flanges and link web.
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Figure 3.29: “Severe” loading protocol and Lab vs. Abaqus model results
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Figure 3.31: “AISC” loading protocol and Lab vs. Abaqus model results
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Figure 3.32: Lab vs. Abaqus model results using “MON” load protocol (Chart and
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3.4.4 Modeling of a DBBWWPZ Connection

As part of the research conducted after the Northridge earthquake, the SAC Joint Venture
program tested a variety of beam-to-column connections. One of the many tested was the
DBBWWPZ (Dog Bone Bolted Web Weak Panel Zone), which is discussed in Engelhardt
et al (2000). This experiment was modeled in Abaqus due to the similarities in testing and
data collecting that was done on the weak panel zone of the specimen. The nature of the
test, which focused the plastic deformations on the PZ, served as a perfect situation for the

validation of Abaqus modeling techniques used.

Ref. North Column Lateral Support
-~ &%&% - Hydraulic Loading Ram
W14x283 (Gr. 50)
Beam Lateral Su it n
) PPRo 130" &-1 ;{/ 3.0 BBBTI‘ILE!H—TW
L§ W38x150 (Gr. 50) L : §J
[ [ I |
| 126" ! 2% ;
Figure 3.33: DBBWWPZ Test setup (Engelhardt et al, 2000)
3.4.4.1 Assembly

The assembly was composed of two W36x150, 150 inch long beams attached with moment
connections to a 146 inch long W14x238 column section. These members were formed in

the Abaqus part module and meshed using a global seed size of 1.5 inches. The column PZ
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region was subdivided and meshed with a finer .8 inch seed size. The model also used CP
plates to reinforce the panel zone and the mesh for these was .3 inches. End plates for the
columns and beams were modeled using a mesh size of 1 inch. The “structured” mesh
algorithm was used for all parts of the model, and because no welds were modeled, all
these were joined using tie constraints. Columns and beams were subdivided in order to

define a quality mesh that would provide accurate results (see Figure 3.10).

Continuity
plates

/

150 inch

Column BC:
Top :Displacement Amplitude: Amp1
Bottom: Pinned

Beam BC:

Left : Roller

Right: Roller

* All the ends restrained to move out of
the plane in x direction.

73inch

Figure 3.34: DBBWWPZ Abaqus model (Gupta, 2013)

The material definition used for the beams, column and CPs was the same as that used for
all specimens with cyclic loading (see “Plastic Steel” Figure 3.27). All end plates were
modeled using a continuously elastic material definition. Geometric non-linearity was also
considered by activating the “Ngleom” option. As pictured in Figure 3.34, the left and right

roller ends’ boundary conditions of the model were set to have zero X, Y displacement as
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well as no rotations about the Y and Z axis. A rigid body constraint was used to model the

pin at the bottom of the column.

Name Amp-l
Type:  Tebndar
Time span: | Step time v

Smoothing: & Use solver default

Speciy:
Loading Protocol Ampirude Dets | Basebee Camection
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Cycle Number 15 15 0.3

16 16 3

17 ” 0.73

-
[
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Figure 3.35: DBBWWPZ loading protocol and first 18 steps of Abaqus amplitude

3.4.4.2 Test

A unit displacement load was applied at the top plate of the column. Although Figure 3.34
shows the load being applied at the edge of the plate, it can also be applied using a reference
point and a rigid surface constraint at the top end of the plate. Load was amplified and
given a direction by an amplitude definition, with the first 18 steps pictured next to the
loading protocol (Figure 3.35). The loading protocol used in the experiment is described in
section K2 of Seismic Provisions for Steel Structural buildings (AISC 2010b). The loading
is defined in incremental steps of drift angle, which were converted into displacements by
multiplying the column height by the drift angle. The time period used in the step definition

matched that of the steps required for the loading amplitude.
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The nodes at the top of the column to which the load was applied were grouped together
and the displacement and load magnitude were recorded with the “History Output Request”
tool. Panel zone gamma/rotations were calculated using nodes placed in the corners of the
column flanges as seen in Figure 3.14, and their horizontal displacements divided by the

PZ height (Equation 1).

3.4.4.3 Results

Although the overall load-deflection response of the Abaqus model matched that of the
experiment, some differences were noted. The hysteretic curve of the column tip
displacement vs. column tip load, Figure 3.36, indicates that the Abaqus model was weaker
than the real life specimen. This could possibly be due to the material definition of the FE
model. Coupon data from the SAC specimen was not available and an approximation of
the strain hardening behavior was carried out with the selected parameters. The column tip
load vs. panel zone rotation seemed to more closely match the laboratory results. Peak load
differences at a .04 rad. PZ rotation were within 5-10 kips. This seems to indicate that the
material definitions and modeling techniques can make acceptable approximations to lab
experiments. The experiments by Engelhardt et al (2000) reported fractures at the south
beam’s bottom flange between the column-beam interfaces at a PZ rotation of about .03
radians. Since fracture modeling is not part of any of the models covered, this failure was
not captured and as a result, the analysis had to be cut off at the point of failure of the real
specimen. Despite this, Abaqus was able to capture high stress levels at the expected
locations (Figure 3.38). The complete yielding of the PZ region, as well as the high stress
concentrations at the beam flange-column interface, were captured in the specimen at a PZ

rotation of .04 (rad).
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Figure 3.36: DBBWWPZ column tip displacement vs. column tip load
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Figure 3.37: DBBWWPZ column tip load vs. PZ rotation
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Figure 3.38: DBBWWPZ VMS values at .04 rad. inter-story drift

3.5 Chapter Summary

This chapter discussed the finite element analysis software, Abaqus, which was used to
model two column specimens in this thesis. Its modules, tools for assembly and methods
of analysis were covered as well as assembly details of the models used for the research.
Material definitions, modeling assumptions and simplifications used in the analysis were
also explained. Lastly, the chapter presented comparisons between model predictions and
experimental observations for model validation. Abaqus model input files, model batch

processing code and data parsing programs are included as appendices.
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CHAPTER 4

Parametric Studies on Attachment Details of Doubler Plates in a
W14X398 Column

4.1 INTRODUCTION

This chapter presents the results from the modeling of a W14x398 “shallow” column and
the attachments that were used to test the performance of the panel zone. The different
configurations of the PZ that were modeled used a “fitted” doubler plate, attached by
vertical groove welds. In order to determine the influence that a horizontal weld at the top
of the doubler plate had on the performance of the PZ and the stresses in the vertical groove
welds, a weld at the top of the DP was included in some of the analyses. Other variations
that were used to analyze the PZ included the use of continuity plates as well as DPs of

different dimensions.

The specimens were monotonically loaded through a displacement amplitude that would
cause a panel zone rotation of 0.1 radians. Because seismic loading is cyclic in nature and
the rotation requirements of the PZ in a special moment frame are 0.04 radians, the 0.1
radian value was assumed to be appropriate for the evaluation of forces at peak force
resisting limits of the PZ. As discussed in Chapter 3, the roller and pin boundary conditions
of the specimens were defined using a “rigid” constraint to which two reference points
were attached. From these points the reaction forces used for the analysis were obtained
and utilized to determine the PZ shear. The displacements of two corner nodes from the PZ
region were also used to determine the PZ rotation of the specimens. In order to compare
performance between specimens, five stage points of the analysis were selected. Similar to
Shirsat (2011), the first stage and third stage points selected were the first and second yield

point of the PZ rotation vs. PZ shear plots. The first stage point was defined by the first
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point in which the linear behavior in the curves ended. The third stage point was chosen as
the initial point where linear behavior resumed in the specimens, after the first yield point
in the same plot. Stage two and stage five points were defined by the PZ rotation values of
0.02 radians and 0.1 radians, respectively. A target loading point was selected for stage
four similar to that of Shirsat (2011). This peak loading point selected was based on
equation (J10-11) of the AISC Specification for Structural Steel Buildings (2010). The stage
four target value for the “shallow” column specimen was 1.25V,, for an unreinforced
column, as shown in the calculations below. This value provided a “relatively large panel
zone shear force that might be representative of the panel zone shear developed under

seismic loading” (Shirsat 2011).

3b,st?
V, = 0.6F,d,t, (1 + ﬂ)

dbdctw
Calculation of F for W14x398 with d= 24m
[ 3%16.6%2.85° .

V, =06%52*1825%1.7§ 1+ ————— | = 1522kips

‘ 24*18.25%1.75
V,. =125"1522 = 1903kips

1522*144
= = 2283kips

14424
Figure 4.1: Equation J10-11 (AISC 2010) and 1.25V,,, Calculations, (Shirsat, 2011)

Along with the reaction forces and displacements of the selected nodes, data used from the
output quantities that Abaqus provides included: S23, VMS, PEEQ, and Section Forces.
The S23 valued were utilized to report the shear stresses on the specimens, parallel to the
force being applied. Because the only forces being applied on the model were at the loading

plates, this quantity can be used to compare the response of the DP to the shear being
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imposed. The definitions for VMS and PEEQ are defined in section 4.2.1 of Abaqus 6.14

Analysis User’s Manual (2014) and can be seen in equations 4.1 and 4.2 below.

VMS, equivalent misses stress; VMS = % SijSij Equation (4.1)
PEEQ, cumulative equivalent plastic strain; PEEQ = &7 P!|o + fot ¢ P! Equation (4.2)
Sij = Deviatoric Stress Tensor

£7Pl|o = Initial Equivalent Plastic Strain

It should be noted that these two quantities were used with a holistic perspective of the
model. Although the meshing techniques and densities used were intended to be of good
quality, the complex geometries of the individual parts and a large “global” model with
many contact definitions make points of inaccurate high stress concentrations or plastic
strains possible. An example of how a simplification used in the modeling can make this
possible is the point where the loading plates apply force on the column. Because the
loading is being applied in such a concentrated area, the weld where the beam flanges and
column meet often experiences fracture issues. This was reported in many of the tests
covered in the literature review. However, the intent of the work is to understand how the
attachments would respond to the forces expected at levels of rotation up to 0.1 radians. It
is for this reason that VMS and PEEQ values will be based on the average value recorded
over the whole cross section. An example of this would be reporting the average VMS
value in a column web instead of the point on the outer flanges where the loading is being
applied, or the VMS average value in the welds instead of the concentrations that occur
when the geometry of the weld becomes sharp. Along with this, the center section cut of

the column will be used to report values in the column (Figure 4.2). The values seem to be

96



more indicative of the stresses and strains occurring in the PZ, since the flanges of the

column do not experience high shear stress parallel to the load being applied.
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Figure 4.2: PEEQ and VMS values reported from center of column

One main interest in the thesis is the understanding of forces through the welds into the
DP. For the “shallow” specimen, the top weld and vertical groove weld were subdivided
into 8 and 17 sections, respectively (Figure 4.3). The length of the individual sections was
of equal value but varied in the different cases since the lengths of the welds changed, due
to the dimension changes of the DP edges. It should be emphasized that the sections were
separated by smaller subdivisions that prevented the sections from sharing nodes, as
covered in Chapter 3. The forces used in the thesis were recorded using the “Section Force”
Abaqus command, which records the reaction force in all the nodes that make up a

predefined section. It is for this reason that the sharing or omission of nodes, in the

97



definition of the individual surfaces of the weld segments in the DP and weld interface, is
avoided. The sharing of nodes would result in the double counting of force, and omitting a
node would result in a smaller force than actual. The sum of the forces for each of the nodes
that make up a surface is then summed and reported as the force experienced by the
individual section. These forces are reported using the X/1, Y/2, Z/3 global axis definition.
As seen in Figure 4.3, the forces reported in the Y direction are parallel to the force being
applied by the loading plates and are especially important at the top and bottom of the
vertical groove welds because of the proximity to the loading plates. A force reported in
the X direction would likely be a result of the buckling of the DP or the column web. A

force in the Z direction would be a result from the rotation of the PZ.

Ly
x Fas Fus FUs

10 sup a2 e \
L “\ Horizontal Weld
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Vertical Groove
31|

Figure 4.3: Horizontal weld and groove weld attaching DP
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Previous studies on other works have reported the section forces at the edge surfaces of the
DPs. The intent of this work is to report the forces transferred by the welds into the DP.
Although the total force recorded at the edge surface of the DP is similar to that transferred
by the welds, it is not the same. This is due to the node that the edge surface of the DP and
the column web share, as shown in Figure 4.4. Because this node applies force on the DP,
particularly in the out of plane axis, when the web tries to buckle, the transferred forces do
not match the DP surface forces. The “hard contact” definition used between the DP and
the column web also allows for the transfer of force in the Y and Z planes as well. An
Abaqus requirement for parts that have two contact definitions such as the welds, is that a
chamfer be used between the surface attached to the DP and the surface attached to the
column web. This not only separates the different contact surfaces but also serves as a way

to differentiate the forces being transferred between the DP and the welds.

Nodes Shared by
DP and Column

Figure 4.4: Nodes shared by doubler plate and column web

Table 4.1 shows how the forces reported on the surface interface between the weld and the

DP vary between the sum of the weld segments and the entire edge of the DP. This table
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shows the difference between the values of the surface defining the total DP outer surface
and the sum of the forces of all the individual welds. The surface forces of the DP edges
were not reported in this work; however, they were used to verify that the DP was in
equilibrium and to validate that the sum of the forces of the individual weld segments was
consistent with that seen in the values reported by the total DP surface. The forces reported

in this work will be those from the individual surface definitions of the weld segments.

Stage 01 Stage 02 Stage 03 Stage 04
Case X Y z X Y z X Y Z X Y Z
DP Edge Section Force| 5.3 | -1.0 |-428.4| 10.6 | -4.0 |-567.0| 10.8 | -4.1 |-564.6] 21.3 | -26.3 |-710.8
Sum of Weld Forces | -11.6| 1.0 [426.4]-19.3| 35 |561.9|-19.8| 3.3 | 559.6 | -36.8 | 24.0 | 702.9

6A1

DP Edge Section Force| 8.7 | -3.3 |-563.9] 13.5 | -12.5|-652.1| 12.0 | -16.9 |-678.2] 13.5 [ -85.5|-872.8
Sum of Weld Forces | -17.0 [ 4.4 | 569.0] -29.9 | 13.6 [ 655.3| -26.6 | 18.5 | 680.6 | -28.3 [ 93.7 | 872.9

8Al

Table 4.1: Force difference between DP edge and weld segments

It should also be noted that the forces reported were not uniform, as one might expect. The
plots show jagged increases in forces being transferred by the welds. This can be explained
by the subdivisions used for the welds and the way the forces are summed up (Figure 4.5).
Although the force being applied to the specimens is vertical, this force does not seem to
increase or decrease uniformly throughout the different specimens. Hence the force
entering the doubler plate through the welds does not match the weld subdivisions,
resulting in the uneven jumps on the weld force plots. As seen in Table 4.1, the sum of the
forces transferred into the DP through the weld is close to that recorded on the DP surface
edges. This was used to validate the assumption that the individual welds were indeed
transferring the total force in the DP, but at varying values. These peaks in force and the
lack of a more refined “local” model of the weld were taken into consideration when

making recommendations for design.
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Figure 4.5: Stresses on groove weld and left side of DP

In order to express the force, results in stress from the individual forces reported in the
weld segment were divided by the surface area in contact with the DP. To determine the
surface area, the value of the total length of the weld, divided by the number of segments,
was multiplied by the thickness of the DP. In the case of the top weld, the length was
divided by 8 and in the vertical weld, it was divided by 17. Although the “true” area is
slightly smaller because of the “chamfer” that separates the surfaces on the weld, the area
used is a good approximation.

As covered in Chapter 3, node paths were utilized to report the Von Misses stress values
at the center of the column web through the different stages of loading (Figure 4.6). These
“paths” were defined +2 inches above the center of the loading plates where the load was

being applied to the specimen. Center of the loading plate was defined as the 0 value for
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the remaining paths. Other paths were defined -0.5, -1, -1.5, and 2 inches below the center
line of the loading plate. Paths were also defined in center of the column web and on the

DP at mid-height between the top and lower loading plates.

Figure 4.6: Paths defined through center of cross-section at different levels

The results from the analysis completed were helpful in completing the objectives of the

thesis, which are:

4) To gain a better understanding of the performance of different attachment details

for fitted DPs.

5) To study the effects that clipped corners on fitted doubler plates have in the PZ and

the welds attaching it and to gain a perspective of the force flow through the panel

zone.
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6) To report the forces and stresses that both horizontal and vertical welds transfer to
the fitted DP and to determine if both welds are necessary. To obtain a range of

forces for which the welds attaching the plates should be designed.

All outputs of the structural response are presented in the 5 stages selected, in the following
order: First yield point, Second yield point, .02 PZ rotation, PZ Shear Force=1903 Kips,
and PZ rotation of .01 radians. The result for each analysis case includes one or more of

the following outputs:

1. Details and dimensions of the model being analyzed

2. Shear, Vy,, versus Rotation, Y7, of the panel zone, up to 0.1 radians

3. The Von Mises Stress (VMS) and equivalent plastic strain ( PEEQ) in the column
center cross section and the doubler plate at the five selected stages.

4. The shear stress (S23) of the doubler plate at the five stages.

5. The VMS values reported on the node paths, defined by varying heights from PZ
mid-height to 2 inches above the top loading plates, in stages 1, 3 and 4.

6. The VMS values reported at mid-height of the DP in stages 1-5.

7. Forces and stresses reported on the weld segments of both vertical and horizontal
welds in the: X, Y, Z axis, Figure 4.7. “All” forces in this thesis use the same global

axis for the reporting of forces.
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X

Figure 4.7 Global Axis used for the forces on welds, Y is parallel to applied force
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4.2 ANALYSIS CASES

The following cases were performed in order to answer the objectives of the thesis. Details
of the different arrangements as well as plots of the FEA results are presented in the

following section. A discussion of the results is followed at the end of the chapter.

: i i Vertical Weld | Horizontal Weld
Case | tap (i) | lap (in) | bep (i) |- CP Length (in) Length (in)
1 - - - - - -
1A 1/2 25 - - 25 -
1A1 1/2 25 10 - 25 10
1C 1/2 25 10 - 25 -
1C1 1/2 25 10 - 22 7
2A1 1/2 25 10 Y 25 10
2C1 1/2 25 10 Y 22 7
3A 1/2 22 7/8 10 Y 22 7/8 -
3Al 1/2 22 7/8 10 Y 22 7/8 10
3C 1/2 | 227/8 10 Y 197/8 -
3C1 1/2 22718 10 Y 19 7/8 7
4A 1/2 21 10 Y 21 -
4A1 1/2 21 10 Y 21 10
4C 1/2 21 10 Y 18 -
4C1 1/2 21 10 Y 18 7
5A1 1/2 22 10 Y 22 10
5C1 1/2 22 10 Y 19 7

Notes

1) A"C" in case name indicates "clipped" doubler plate corners

2) A"1" after the letter designation indicates fillet welds were used at the top of DP
3) Cases 1-1C1 used no CPs

Table 4.2: Analysis cases for W14x398 ““shallow” column
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4.2.1 Analysis Case 1
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Figure 4.8: Analysis Case 1
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W14x398 Panel Zone Shear Force Vs. Panel Zone Rotation
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Figure 4.9: Panel zone shear vs. panel zone rotation Case 1
Applied Force/Loading | Panel Shear Panel Zone
Stage . . .
Plate (Kip) Force (Kip) Rotation (rad)
1 530 884 0.005
2 749 1,248 0.017
3 767 1,278 0.020
4 #N/A #N/A #N/A
5 989 1,649 0.100

Table 4.3: Panel zone shear and force on loading plate Case 1
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Figure 4.10: VMS and PEEQ in the column Case 1
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4.2.2 Analysis Case 1A
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Figure 4.11: Analysis case 1A
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W14x398 Panel Zone Shear Force Vs. Panel Zone Rotation
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Figure 4.12: Panel zone shear vs. panel zone rotation Case 1A

Stage Applied Force/Loading | Panel Shear % Higher than Panel Zone
Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 620 1,034 117% 0.005
2 869 1,449 116% 0.016
3 898 1,496 117% 0.020
4 1,140 1,900 0.091
5 1,158 1,930 117% 0.100

Table 4.4: Panel zone shear and force on loading plate Case 1A
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Figure 4.13: VMS and PEEQ in the column Case 1A
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Figure 4.14: VMS distribution in column web at different heights Stg. 01-04
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Figure 4.14: VMS distribution in column web at different heights Stg. 01-04
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Figure 4.15: VMS and PEEQ in the DP Case 1A
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Figure 4.16: Shear stress, S23 in the DP Case 1A
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Figure 4.17: VMS distribution at mid-depth of DP Case 1A
115



Groove Weld - Force (X)
—Stg0l «¢ Stg02 -X-Stg03 =x%=Stg04 =O=Stg 05
13

X

5

z

o]

s

[=2]

c

S

<

8

g -45 05 15

2

a

Force/Segment (Kip)
Groove Weld - Stress (X)
—Stg0l <> Stg02 -x-Stg03 =X=Stg04 =O=Stg 05
13
XK

€
z
]
=
[=2]
§ -6 1 2
<
8
j=
8
z

Stress (Ksi)

Figure 4.18: Forces and stresses in vertical weld (X)
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Figure 4.19: Forces and stresses in vertical weld (YY)
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Figure 4.20: Forces and stresses in vertical weld (Z)
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4.2.3 Analysis Case 1A1
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Figure 4.21: Analysis case 1A1
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Figure 4.22: Panel zone shear vs. panel zone rotation Case 1A1

S Applied Force/_Loading Panel She_ar % Higher than Pane_l Zone
Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 677 1,128 128% 0.006
2 865 1,442 116% 0.015
3 915 1,524 119% 0.023
4 1,142 1,904 0.089
5 1,167 1,945 118% 0.101

Table 4.5: Panel zone shear and force on loading plate Case 1A1
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Figure 4.23: VMS and PEEQ in the column Case 1A1
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Figure 4.24: VMS distribution in column web at different heights Stg. 01-04 Case 1A1
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Figure 4.24: VMS distribution in column web at different heights Stg. 01-04 Case 1A1
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Figure 4.25: VMS and PEEQ in the DP Case 1A1
124



$, 823
{Avg: 75%)
30
28
26
24
21
19

$, 823
{Avg: 75%)
34
32
30
28

10

Depth of Section (in)

N W s OO N 0 ©

=

50

5, 823
{Ava: 75%)
35
33
3
20
27
25
7
7
10
17
15
13
1

s,
{Avg: 75%)

ELREERENENEREL

5,823
{mg: TH%)

EhaEhkRBEERRAS

Figure 4.26: Shear stress, S23 in the DP Case 1A1
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Figure 4.27: VMS distribution at mid-depth of DP Case 1A1
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Figure 4.28: Forces and stresses in horizontal weld, (X) Case 1A1
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Figure 4.29: Forces and stresses in horizontal weld, (Y) Case 1A1
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Figure 4.30: Forces and stresses in horizontal weld, (Z) Case 1A1
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Figure 4.31: Forces and stresses in vertical weld, (X) Case 1A1
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Figure 4.32: Forces and stresses in vertical weld, (Y) Case 1A1
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Figure 4.33: Forces and stresses in vertical weld, (Z) Case 1A1
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4.2.4 Analysis Case 1C
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Figure 4.34: Analysis case 1C
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Figure 4.35: Panel zone shear vs. panel zone rotation Case 1C

Stage Applied Force/Loading | Panel Shear % Higher than Panel Zone
Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 617 1,028 116% 0.005
2 848 1413 113% 0.015
3 886 1A77 116% 0.020
4 1,141 1,901 0.098
5 1,147 1912 116% 0.101

Table 4.6: Panel zone shear and force on loading plate Case 1C
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Figure 4.36: VMS and PEEQ in the column Case 1C

134




Von Misses Stress Distribution in Column Web - Stg 01
+2" —0 - R s A -15"  =-2" —-Mid
10

60

Depth of Section (in)
o

Von Misses Stress (ksi)
Stg. 01

Von Misses Stress Distribution in Column Web - Stg 03
+2" —0 - S5t = et -15"  =-2" — Mid
10

Depth of Section (in)
o

Von Misses Stress (ksi)
Stg. 03

Figure 4.37: VMS distribution in column web at different heights Stg. 01-04 Case 1C
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Figure 4.37: VMS distribution in column web at different heights Stg. 01-04 Case 1C
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Figure 4.38: VMS and PEEQ in the DP Case 1C
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Figure 4.39: Shear stress, S23 in the DP Case 1C
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Figure 4.40: VMS distribution at mid-depth of DP Case 1C
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Figure 4.41: Forces and stresses in vertical weld, (X) Case 1C
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Figure 4.42: Forces and stresses in vertical weld, (Y) Case 1C
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Figure 4.42: Forces and stresses in vertical weld, (Z) Case 1C
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4.2.5 Analysis Case 1C1
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Figure 4.43: Analysis case 1C1
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W14x398 Panel Zone Shear Force Vs. Panel Zone Rotation
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Figure 4.44: Panel zone shear vs. panel zone rotation Case 1C1
Stage Applied Force/Loading | Panel Shear % Higher than Panel Zone
Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 620 1,033 117% 0.005
2 880 1,467 118% 0.017
3 910 1517 119% 0.023
4 1,142 1,903 0.091
5 1,162 1,936 117% 0.101

Table 4.7: Panel zone shear and force on loading plate Case 1C1
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Figure 4.45: VMS and PEEQ in the column Case 1C1
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Figure 4.46: VMS distribution in column web at different heights Stg. 01-04 Case 1C1
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Figure 4.46: VMS distribution in column web at different heights Stg. 01-04 Case 1C1
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Figure 4.47: VMS and PEEQ in the DP Case 1C1
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Figure 4.48: Shear stress, S23 in the DP Case 1C1
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Figure 4.49: VMS distribution at mid-depth of DP Case 1C1
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Figure 4.50: Forces and stresses in horizontal weld, (X) Case 1C1
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Figure 4.51: Forces and stresses in horizontal weld, (Y) Case 1C1
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Figure 4.52: Forces and stresses in horizontal weld, (Z) Case 1C1
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Figure 4.53: Forces and stresses in vertical weld, (X) Case 1C1
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Figure 4.54: Forces and stresses in vertical weld, (Y) Case 1C1
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Figure 4.55: Forces and stresses in vertical weld, (Z) Case 1C1
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4.2.6 Analysis Case 2A1
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Figure 4.56: Analysis case 2A1
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W14x398 Panel Zone Shear Force Vs. Panel Zone Rotation
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Figure 4.57: Panel zone shear vs. panel zone rotation Case 2A1

Stage Applied Force/Loading | Panel Shear % Higher than Panel Zone
Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 662 1,104 125% 0.005
2 882 1,470 118% 0.016
3 909 1,515 119% 0.021
4 1,140 1,901 0.082
5 1,182 1,970 119% 0.101

Table 4.8: Panel zone shear and force on loading plate Case 2A1
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Figure 4.58: VMS and PEEQ in the column Case 2A1
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Figure 4.59: VMS distribution in column web at different heights Stg. 01-04 Case 2A1
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Figure 4.59: VMS distribution in column web at different heights Stg. 01-04 Case 2A1
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Figure 4.60: VMS and PEEQ in the DP Case 2A1
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Figure 4.61: Shear stress, S23 in the DP Case 2A1
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Figure 4.62: VMS distribution at mid-depth of DP Case 2A1
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Figure 4.63: Forces and stresses in horizontal weld, (X) Case 2A 1
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Figure 4.64: Forces and stresses in horizontal weld, (Y) Case 2A1
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Figure 4.65: Forces and stresses in horizontal weld, (Z) Case 2A1
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Figure 4.66: Forces and stresses in vertical weld, (X) Case 2A1
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Figure 4.67: Forces and stresses in vertical weld, (Y) Case 2A1
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Figure 4.68: Forces and stresses in vertical weld, (Z) Case 2A1
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4.2.7 Analysis Case 2C1
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Figure 4.69: Analysis case 2C1
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Figure 4.70: Panel zone shear vs. panel zone rotation Case 2C1

Stage Applied Force/Loading | Panel Shear % Higher than Panel Zone
Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 631 1,052 119% 0.004
2 899 1,498 120% 0.019
3 905 1,508 118% 0.020
4 1,141 1,902 0.083
5 1,178 1,963 119% 0.100

Table 4.9: Panel zone shear and force on loading plate Case 2C1
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Figure 4.71: VMS and PEEQ in the column Case 2C1
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Figure 4.72: VMS distribution in column web at different heights Stg. 01-04 Case 2C1
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Figure 4.72: VMS distribution in column web at different heights Stg. 01-04 Case 2C1
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Figure 4.73: VMS and PEEQ in the DP Case 2C1
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Figure 4.74: Shear stress, S23 in the DP Case 2C1
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Figure 4.75: VMS distribution at mid-depth of DP Case 2C1
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Figure 4.76: Forces and stresses in horizontal weld, (X) Case 2C1
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Figure 4.77: Forces and stresses in horizontal weld, (Y) Case 2C1
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Figure 4.78: Forces and stresses in horizontal weld, (Z) Case 2C1
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Figure 4.79: Forces and stresses in vertical weld, (X) Case 2C1
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Figure 4.80: Forces and stresses in vertical weld, (Y) Case 2C1
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Figure 4.81: Forces and stresses in vertical weld, (Z) Case 2C1
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4.2.8 Analysis Case 3A
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W14x398 Panel Zone Shear Force Vs. Panel Zone Rotation
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Figure 4.83: Panel zone shear vs. panel zone rotation Case 3A
Stage Applied Force/Loading | Panel Shear % Higher than Panel Zone
Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 627 1,045 118% 0.004
2 864 1,440 115% 0.016
3 893 1,488 116% 0.020
4 1,141 1,902 0.090
5 1,163 1,939 118% 0.100

Table 4.10: Panel zone shear and force on loading plate Case 3A
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Figure 4.84: VMS and PEEQ in the column Case 3A
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Figure 4.85: VMS distribution in column web at different heights Stg. 01-04 Case 3A
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Figure 4.85: VMS distribution in column web at different heights Stg. 01-04 Case 3A
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Figure 4.87: Shear stress, S23 in the DP Case 3A
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Figure 4.88: Forces and stresses in vertical weld, (X) Case 3A
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Figure 4.89: Forces and stresses in vertical weld, (Y) Case 3A
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Figure 4.90: Forces and stresses in vertical weld, (Z) Case 3A
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4.2.9 Analysis Case 3A1
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W14x398 Panel Zone Shear Force Vs. Panel Zone Rotation

2000
1800
1600
=
< 1400
8 1200
(@)
1000
3
< 80
(g i -- W14x398 Unreinforced Column
c 600 | —Case 3A1
'C\DI ]
= 400
C
$ 200
0
0 001 002 003 004 005 006 007 008  0.09 0.1
Panel Zone Rotation, Y (rad)
Figure 4.92: Panel zone shear vs. panel zone rotation Case 3A1
Stage Applied Force/Loading | Panel Shear % Higher than Panel Zone
g Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 663 1,104 125% 0.005
2 896 1493 120% 0.018
3 908 1513 118% 0.021
4 1,141 1,902 0.083
5 1,181 1,968 119% 0.101

Table 4.11: Panel zone shear and force on loading plate Case 3A1
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Figure 4.93: VMS and PEEQ in the column Case 3A1
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Figure 4.94: VMS distribution in column web at different heights Stg. 01-04 Case 3A1
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Figure 4.94: VMS distribution in column web at different heights Stg. 01-04 Case 3A1
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Figure 4.95: VMS and PEEQ in the DP Case 3A1
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Figure 4.96: Shear stress, S23 in the DP Case 3A1
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Figure 4.97: VMS distribution at mid-depth of DP Case 3A1
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Figure 4.99: Forces and stresses in horizontal weld, (Y) Case 3A1
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Figure 4.100: Forces and stresses in horizontal weld, (Z) Case 3A1
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Figure 4.101: Forces and stresses in vertical weld, (X) Case 3A1
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Figure 4.102: Forces and stresses in vertical weld, (Y) Case 3A1
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Figure 4.103: Forces and stresses in vertical weld, (Z) Case 3A1
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4.2.10 Analysis Case 3C
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Figure 4.104: Analysis case 3C
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W14x398 Panel Zone Shear Force Vs. Panel Zone Rotation
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Figure 4.105: Panel zone shear vs. panel zone rotation Case 3C
Stage Applied Force/Loading | Panel Shear % Higher than Panel Zone
g Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 622 1,037 117% 0.004
2 856 1427 114% 0.016
3 877 1,461 114% 0.020
4 1,144 1,906 0.099
5 1,146 1,909 116% 0.100

Table 4.12: Panel zone shear and force on loading plate Case 3C
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Figure 4.106: VMS and PEEQ in the column Case 3C
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Figure 4.107: VMS distribution in column web at different heights Stg. 01-03 Case 3C
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Figure 4.108: VMS and PEEQ in the DP Case 3C
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Figure 4.109: Shear stress, S23 in the DP Case 3C
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Figure 4.110: VMS distribution at mid-depth of DP Case 3C
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Figure 4.111: Forces and stresses in vertical weld, (X) Case 3C
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Figure 4.112: Forces and stresses in vertical weld, (Y) Case 3C
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Figure 4.113: Forces and stresses in vertical weld, (Z) Case 3C
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4.2.11 Analysis Case 3C1

. qll_
'_]":'_I'E_i

7

lll — E 3
Rl i ) )_5
" H

. [ ]

)

L 225 10x DOUBLER PL
W/ CLIFFED CORNERS
WA GROOVE WELDS

L— 10" —
TYP, AT I
STIFFENERS L

Ili—h Ak

NN

[
|
1
1
1
|
1
1
1
1
|
|
e

30 LA LD NS N N
b — b A -
pa— R b 1-10f
7 =y B [l
L N | Posrlel
—F '?,.o’ g 1 Hlatihthty
o e ZIRe
‘+‘P‘ I-+'I-"I L -
! e
< Nl N 22§ %10t DOUBLER PL
+ 1 + - - T TR O
LSRN W/ CLIPPED CORNERS
2*;*:1{'-:{*
+ LI R ]
R A — 193 GrOOVE
e rl-*i"l [3 h -
—Ix rir v, .ai rar 7= WELDS

7 T — L—T

ZI W A o
<
,, N

JII
2" v

|
|
| .
| il
o i #
i B
i L
|
|

-

=

Figure 4.114: Analysis case 3C1
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Figure 4.115: Panel zone shear vs. panel zone rotation Case 3C1

Stage Applied Force/Loading | Panel Shear % Higher than Panel Zone
Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 630 1,050 119% 0.004
2 877 1,462 117% 0.017
3 897 1,495 117% 0.020
4 1,141 1,902 0.086
5 1173 1,954 119% 0.101

Table 4.13: Panel zone shear and force on loading plate Case 3C1
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S, Mises S, Mises S, Mises S, Mises S, Mises
(Avg: 75%) (Avg: 75%) (Avg: 75%) (Aveg: 75%) (Avg: 75%)
58.4 59.7 76.3 8.8
53.6 54.8 70.1 723
488 499 63.8 65.8
44.0 45.0 57.5 50.4
39.2 40.1 51.3 529
344 352 45.0 46.4
20.6 30.3 38.7 40.0
24.8 254 324 335
20.0 205 26.2 27.0
15.2 15.6 199 205
104 10.7 13.6 14.1
5.7 58 74 7.6
0.9 0.9 11 11
\ I\~ Ty | | Sy
FIRST YIELD SECOND YIELD .02 (rad) PZ. ROT. PEAK LOAD .1rad) PZ ROT.
PEEQ PEEQ PEEQ PEEQ PEEQ
(Avg: 75%) (Avg: 75%) (Avg: 75%) (Avg: 75%) (Avg: 75%)
+3.9¢-04 +1.7e-02 +2.1e-02 +1.1e-01
+3.6e-04 +1.6e-02 A +1.0e-01
+3.3e-04 +1.4e-02 +9.1e-02
+2.9e-04 +1.3e-02 +8.2e-02
+2.6e-04 +1.1e-02 +7.3e-02
+2.3e-04 +1.0e-02 +6.4e-02
+2.0e-04 +8.5e-03 +5.5e-02
+1.6e-04 +7.1e-03 +4.6e-02
+1.3e-04 +5.7e-03 +3.6e-02
+9.8e-05 +4.3e-03 +2.7e-02
+6.5e-05 +2.82-03 +1.8e-02
+3.3e-05 +1.4e-03 +9.1e-03
+0.0e+00 +0.0e+00 +0.0e+00
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Figure 4.116 VMS and PEEQ in the column Case 3C1
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Figure 4.117: VMS distribution in column web at different heights Stg. 01-04 Case 3C1
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Figure 4.117: VMS distribution in column web at different heights Stg. 01-04 Case 3C1
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S, Mises S, Mises S, Mises S, Mises
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Figure 4.118: VMS and PEEQ in the DP Case 3Cl1
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Figure 4.119: Shear stress, S23 in the DP Case 3Cl1
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Figure 4.120: VMS distribution at mid-depth of DP Case 3C1
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Figure 4.121: Forces and stresses in horizontal weld, (X) Case 3C1
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Figure 4.122: Forces and stresses in horizontal weld, (Y) Case 3C1
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Figure 4.123: Forces and stresses in horizontal weld, (Z) Case 3C1
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Figure 4.124: Forces and stresses in vertical weld, (X) Case 3C1
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Figure 4.125: Forces and stresses in vertical weld, (Y) Case 3C1
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Figure 4.126: Forces and stresses in vertical weld, (Z) Case 3C1
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4.2.12 Analysis Case 4A
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Figure 4.127: Analysis case 4A
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W14x398 Panel Zone Shear Force Vs. Panel Zone Rotation
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Figure 4.128: Panel zone shear vs. panel zone rotation Case 4A
Stage Applied Force/Loading | Panel Shear % Higher than Panel Zone
g Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 654 1,089 123% 0.005
2 867 1,446 116% 0.018
3 886 1477 116% 0.021
4 1,141 1,902 0.096
5 1,150 1917 116% 0.100

Table 4.14: Panel zone shear and force on loading plate Case 4A
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S, Mises
(Avg: 75%)

S, Mises
(Avg: 75%)

S, Mises
(Avg: 75%)

S, Mises

(Avg: 75%)
77.6
71.2
64.8
58.4
521
45.7
393

S, Mises
(Avg: 75%)

oneRTRRBREBESEN
E D ERON M S S

FIRST YIELD SECOND YIELD .02 (rad) PZ. ROT. PEAK LOAD

PEEQ PEEQ PEEQ PEEQ

(Avg: 75%) (Avg: 75%) (Avg: 75%) (Avg: 75%)
+1.7e-02 +2.1e-02 +1.0e-01
+1.6e-02 +1.9e-02 +9.3e-02
+1.4e-02 +1.7e-02 +8.4e-02
+1.3e-02 +1.6e-02 +7.6e-02
+1.1e-02 +1.4e-02 +6.7e-02
+1.0e-02 +1.2e-02 +5.9e-02
+8.5e-03 +1.0e-02 +5.0e-02
+7.1e-03 +8.7e-03 +4.2e-02
+5.7e-03 +6.9e-03 +3.4e-02
+4.3e-03 +5.2e-03
+2.8e-03 +3.5e-03
+1.4e-03 +1.7e-03
+0.0e+00 +0.0e+00

I\

1lrad) PZ ROT.

PEEQ

(Avg: 75%)
+1.1e-01
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Figure 4.128: VMS and PEEQ in the column Case 4A
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Figure 4.129: VMS distribution in column wed at different heights Stg. 01-04 Case 4A
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Figure 4.129: VMS distribution in column wed at different heights Stg. 01-04 Case 4A
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Figure 4.130: VMS and PEEQ in the DP Case 4A
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Figure 4.130: Shear stress, S23 in the DP Case 4A
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Figure 4.131: VMS distribution at mid-depth of DP Case 4A
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Figure 4.132: Forces and stresses in vertical weld, (X) Case 4A
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Figure 4.133: Forces and stresses in vertical weld, (Y) Case 4A
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Figure 4.134: Forces and stresses in vertical weld, (Z) Case 4A
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4.2.13 Analysis Case 4A1
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Figure 4.135: Analysis case 4A1
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W14x398 Panel Zone Shear Force Vs. Panel Zone Rotation
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Figure 4.136: Panel zone shear vs. panel zone rotation Case 4A 1
Stage Applied Force/Loading | Panel Shear % Higher than Panel Zone
g Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 659 1,099 124% 0.005
2 891 1,485 119% 0.020
3 897 1,495 117% 0.021
4 1,141 1,902 0.089
5 1,164 1,940 118% 0.100

Table 4.15: Panel zone shear and force on loading plate Case 4A1
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Figure 4.137: VMS and PEEQ in the column Case 4A 1
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Figure 4.138: VMS distribution in column wed at different heights Stg. 01-04 Case 4A1
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Figure 4.138: VMS distribution in column wed at different heights Stg. 01-04 Case 4A1
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Figure 4.139: VMS and PEEQ in the DP Case 4A1
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Figure 4.140 Shear stress, S23 in the DP Case 4A1
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Figure 4.141: VMS distribution at mid-depth of DP Case 4A1
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Figure 4.142: Forces and stresses in horizontal weld, (X) Case 4A1
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Figure 4.143: Forces and stresses in horizontal weld, (Y) Case 4A1
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Figure 4.144: Forces and stresses in horizontal weld, (Z) Case 4A1
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Figure 4.145: Forces and stresses in vertical weld, (X) Case 4A1
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Figure 4.146: Forces and stresses in vertical weld, (Y) Case 4A1
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Figure 4.147: Forces and stresses in vertical weld, (Z) Case 4A1
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4.2.14 Analysis Case 4C
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W14x398 Panel Zone Shear Force Vs. Panel Zone Rotation
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Figure 4.149: Panel zone shear vs. panel zone rotation Case 4C
Stage Applied Force/Loading | Panel Shear % Higher than Panel Zone
g Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 617 1,029 116% 0.004
2 838 1,396 112% 0.015
3 872 1454 114% 0.021
4 1,141 1,902 0.104
5 1132 1,887 114% 0.100

Table 4.16: Panel zone shear and force on loading plate Case 4C
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Figure 4.150: VMS and PEEQ in the column Case 4C
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Figure 4.151: VMS distribution in column web at different heights Stg. 01-04 Case 4C
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Figure 4.151: VMS distribution in column web at different heights Stg. 01-04 Case 4C
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Figure 4.153: Shear stress, S23 in the DP Case 4C
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Figure 4.154: VMS distribution at mid-depth of DP Case 4C
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Figure 4.155: Forces and stresses in vertical weld, (X) Case 4C
257



Groove Weld - Force (Y)
—Stg0l «0+Stg02 =x-Stg03 <=x¢=Stg04 =O=Stg 05

10
05

o S 1)
6

S o

= .

L

= 2

[=2]

c

s .

g 0

2.60

I

2

o

-10
Force/Segment (Kip)

Groove Weld - Stress (Y)

—Stg0l +0+Stg02 -x-Stg03 <=¥=Stg04 =O=Stg 05
10

.:2 04

6
g 4
o
(<)
s 2
c
s
< 0
S110 90 140
2
[a)

Stress (Ksi)

Figure 4.156: Forces and stresses in vertical weld, (Y) Case 4C
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Figure 4.157: Forces and stresses in vertical weld, (Z) Case 4C
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4.2.15 Analysis Case 4C1
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Figure 4.158: Analysis case 4C1
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W14x398 Panel Zone Shear Force Vs. Panel Zone Rotation
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Figure 4.159: Panel zone shear vs. panel zone rotation Case 4C1
Stage Applied Force/Loading | Panel Shear % Higher than Panel Zone
J Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 626 1,043 118% 0.004
2 867 1,444 116% 0.017
3 887 1,478 116% 0.020
4 1,141 1,901 0.093
5 1,156 1,927 117% 0.100

Table 4.17: Panel zone shear and force on loading plate Case 4C1
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Figure 4.160: VMS and PEEQ in the column Case 4C1
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Figure 4.162: Shear stress, S23 in the DP Case 4Cl1
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Figure 4.163: VMS distribution at mid-depth of DP Case 4C1
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Figure 4.164: Forces and stresses in horizontal weld, (X) Case 4C1
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Figure 4.165: Forces and stresses in horizontal weld, (Y) Case 4C1
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Figure 4.166: Forces and stresses in horizontal weld, (Z) Case 4C1
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Figure 4.167: Forces and stresses in vertical weld, (X) Case 4C1
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Figure 4.168: Forces and stresses in vertical weld, (Y) Case 4C1
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Figure 4.169: Forces and stresses in vertical weld, (Z) Case 4C1
270



4.2.16 Analysis Case 5A1
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Figure 4.170: Analysis case 5A1
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Figure 4.171: Panel zone shear vs. panel zone rotation Case 5SA1
Stage Applied Force/Loading | Panel Shear % Higher than Panel Zone
g Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 611 1,018 115% 0.004
2 897 1,495 120% 0.019
3 904 1,507 118% 0.020
4 1,143 1,905 0.084
5 1,179 1,964 119% 0.100

Table 4.18: Panel zone shear and force on loading plate Case 5A1
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Figure 4.172: VMS and PEEQ in the column Case 5A1
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Figure 4.173: VMS distribution in column web at different heights Stg. 01-04 Case 5A1
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Figure 4.173: VMS distribution in column web at different heights Stg. 01-04 Case 5A1
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Figure 4.174: VMS and PEEQ in the DP Case 5A1
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Figure 4.175: Shear stress, S23 in the DP Case 5A1
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Figure 4.176: VMS distribution at mid-depth of DP Case 5A1

277



Top Fillet Weld - Force (X)
—Stg01  -0-Stg02  -x-Stg03  %-Stg04  =o=Stg 05
0.2

-5 5
=
<
5
S
e
@
(5]
e
o
LL
-1.2
Distance Along Weld (in)
Top Fillet Weld -Stress (X)
—Stg 01 +<+Stg 02 =x-Stg 03 =%=Stg 04 —o—-Stg 05
0.5
-5

g

[72}

S

n

-2.5
Distance Along Weld (in)
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Figure 4.178: Forces and stresses in horizontal weld, (Y) Case 5A1
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Figure 4.180: Forces and stresses in vertical weld, (X) Case 5A1
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W 14x398 Panel Zone Shear Force Vs. Panel Zone Rotation
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Figure 4.182: Panel zone shear vs. panel zone rotation Case 5C1
Stage Applied Force/Loading | Panel Shear % Higher than Panel Zone
g Plate (Kip) Force (Kip) | unreinforced Col. | Rotation (rad)
1 608 1,014 115% 0.004
2 869 1,449 116% 0.016
3 898 1,497 117% 0.020
4 1,142 1,903 0.087
5 1,170 1,950 118% 0.100

Table 4.19: Panel zone shear and force on loading plate Case 5C1
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Figure 4.183: VMS and PEEQ in the column Case 5C1
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Figure 4.184: VMS distribution in column web at different heights Stg. 01-04 Case 5C1
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Figure 4.184: VMS distribution in column web at different heights Stg. 01-04 Case 5C1
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Figure 4.185: VMS and PEEQ in the DP Case 5C1
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Figure 4.186: Shear stress, S23 in the DP Case 5C1
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Figure 4.187: VMS distribution at mid-depth of DP Case 5C1
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Figure 4.188: Forces and stresses in horizontal weld, (X) Case 5C1
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Figure 4.189: Forces and stresses in horizontal weld, (Y) Case 5C1
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Figure 4.190: Forces and stresses in horizontal weld, (Z) Case 5C1
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Figure 4.191: Forces and stresses in vertical weld, (X) Case 5C1
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Figure 4.192: Forces and stresses in vertical weld, (Y) Case 5C1
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Figure 4.193: Forces and stresses in vertical weld, (Z) Case 5C1
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4.3 DISCUSSION OF ANALYSIS RESULTS

VMS in Column . . . .. [Shear at mid-height| Total PZ Shear

Case Web (Ksi) VMS in DP (Kksi) S23in DP (ksi) of DP (kip) (Kip)
Stgol | Stgo4 | Stgor | Stgoa | Stgor [ Stgos| Stgor | Stgo4 | Stgor | Stgo4
1 53.0 78.0 - - - - - - 884 1,900
1A 52.6 76.2 52.7 78.6 30.4 43.8 149.9 212.7 1,034 1,904
1A1 53.0 76.0 53 77 30.4 43.8 151.8 211.8 1,128 1,901
1C 52.0 76.1 52.6 81.3 30.4 43.6 149.7 214.7 1,028 1,903
1C1 52.0 77.0 52 78 30.4 44.8 150.1 212.3 1,033 1,901
2A1 52.0 76.0 52 76 30.3 44.3 151.2 209.6 1,104 1,902
2C1 52.2 76.0 52 76 30 44 150.4 210.1 1,052 1,902
3A 52.4 76.7 52.3 83.5 30.2 43.7 150.0 212.6 1,045 1,902
3A1 52.3 75.8 52.4 76.2 30.3 43.7 151.2 210.0 1,104 1,906
3C 52.2 77.9 52.3 85.6 30.2 44.3 149.8 215.7 1,037 1,902
3C1 52.4 76.3 52.2 77.8 30.1 45 150.4 210.9 1,050 1,902
4A 52.4 77.6 52.8 81.2 30.3 43.8 151.2 214.8 1,089 1,902
4A1 52.2 76.4 52.4 76.9 30.3 44.1 151.2 212.2 1,099 1,902
4C 52.2 78.9 52.2 82.2 30.2 44.9 149.6 217.9 1,029 1,902
4C1 52.2 7.7 52.2 81.5 30.1 46.6 150.4 213.2 1,043 1,902
5A1 52.2 75.9 52.1 76.7 30.1 44.1 148.5 210.3 1,018 1,901
5C1 52.1 76.5 52.1 72 29.3 46.1 148.1 2111 1,014 1,905
Case 18 52.26 75.2 52 72 Not Reported 150.2 209.8 1,037 1,887
Case 5A 71.8 72.8 | 1,841

Notes:

Case 18 from Shirsat (2011) reported for same column, but no CPs and an 36" DP instead of 24"

Case 5A from Gupta (2013) reported for same column at .05 rad.of cyclic loading

Table 4.20: Summary of VMS stresses and forces on column web and DP at Stg. 01 and

Stg. 04.

As summary of the results from the analysis cases for the “shallow” W14x398 column

specimen can be seen on Table 4.20. Because all The VMS results for the specimens seem

to fall within close range, it might be assumed that most of the benefits in varying the

arrangements of the PZ attachments would likely be seen in the welds that attach the DP

to the column. This could be a result of the column being able to redistribute the load as

necessary to accommodate the force being applied. Five sets of configurations were

modeled in order to see what benefits each would have relative to performance of the PZ.
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Table 4.20 reports the average peak VMS values recorded in the column and DP at the
stages 1 and 4 of the analysis. The VMS values at peak load, stg. 4, in the column fall
below 78 ksi which was the value of the unreinforced column at 0.1 radians. One exception
to this was Case 4C which was supposed to determine what the effect of increasing the
space between the bottom of the CP and the top and bottom edges of the DP. Figure 4.194
shows Case 4C as the reinforced specimen that required the least amount of load for the
PZ to rotate up to 0.1 radians. Case 4 which did not use a fillet weld to attach the DP at the
top and bottom surface, had lower PZ rotation performance and higher stresses on both the

DP and the column.

W14x398 Panel Zone Shear Force Vs. Panel Zone Rotation
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Figure 4.194: PZ Shear vs. PZ Rotation comparison
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In order to evaluate the performance of the “fitted” DP relative to an “extended” DP, Case
18 from Shirsat (2011) was selected because it utilized the same column but no CPs, no
top weld and a similar DP that was extended 6 inches above the loading plates. When
comparing the reported VMS values for the DP and the column, no reduction in the values
of the specimens with the extended DP were seen. Case SA from Gupta (2013) was also
compared in order to see if there was much difference in the VMS values at peak load
levels. Case SA was exactly like that of Shirsat, but used a different material model and the
specimen was loaded cyclically. The peak loading point of .05 radians from Case 5A was
selected because the total rotation of the PZ was the closest to that of stage 4. Similar VMS
values were also reported in both the column and the DP. A comparison of the peak shear
stress values and the total shear force at mid-height of the DP also shows very little
difference between the specimens. This comparison would seem to indicate that both
extended and fitted DPs provide similar benefits to the “overall” performance of the PZ
and result in VMS stress values in the DP and the column web that are similar.

4.3.1 Case Series 1
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Figure 4.195: Stresses in Horizontal and Vertical Weld at 0.1 Rad for Case Series 1
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The case series 1A, 1A1, 1C, and 1C1 did not use CPs in order to evaluate the effect that
these have on the VMS values. Although an increase in VMS or shear stress values was
not seen, the lack of CPs revealed how the use of a weld at the top and bottom of the DP
helped reduce the stress levels on the vertical weld. Tables 4.21 and 4.22 report the total
forces transferred by both vertical and horizontal welds for all specimens in this chapter.
In Case 1A1 with the unclipped DP, at a PZ rotation of 0.1 rad., the vertical weld was able
to transfer 529 kips of force into the DP when a horizontal weld was used. This value was
11% higher than that of Case 1A which did not use a horizontal weld. When this
comparison is done between Case 1C which uses a DP with clipped corners the vertical
weld is able to transfer 16% more load into the DP. This increase in load transfer when a
weld is used at the top and bottom of the DP is not unique to this series but the lack of CPs
means that the increase in performance is due to the ability of the welds to transfer the
shear force to the DP alone. A look at the forces in the vertical weld will reveal that as
demand increases in the Y direction, because of the lack of a horizontal weld, the ability to
transfer force in the Z axis decreases. This is particularly evident in stages 4 and 5 of the

analysis when the highest loads are being applied.

As can be seen in weld force and stress plots, the outermost welds segments seem to
transfer the highest levels of force. To understand how much higher the demands on these
segments was the forces recorded in the two outermost segments was separated and an
average force for these outer weld segments was reported on, Tables 4.23 and 4.24. An
example of how these values reveal the benefits of a horizontal weld can be seen when
comparing the individual segment forces at 0.1 radians. In case series 1 which used no CPs,
the two outermost weld segments of the vertical weld had to transfer about 2.5 times more

load per segment. When no horizontal weld was present the force in each of the two
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outermost weld segments was 45 kips. This value was reduced to 17 kips when a horizontal
weld was used. One of the reasons for the high levels of force at the corner welds of the
DP seems to be the proximity to the points of loading. The applied shear enters the column

web and the weld segments in the extremities transfer much of the force into the DP.

4.3.2 Case Series 2
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Figure 4.196: Stresses in Horizontal and Vertical Weld at 0.1 Rad for Case Series 2

Case series 2 used a fitted DP that was extended the most from all the other specimens. It
terminated immediately behind the continuity plate at the same level as the top of the
loading plated. Unlike the other cases the continuity plate was welded to the DP instead of
being attached to the column web. Because the specimens in this case series required the
most force to rotate up to 0.01 radians, this arrangement was determined to be one of the
best performing ones. Similar to the benefits reported for the specimens with the extended
DPs in Shirsat (2011) and Donkada (2012), this series seemed to benefit for the same
reason; extra material and more edge surface area to transfer the load. The benefits from

increasing the amount of vertical weld can be seen when looking at the reduction of total
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force transferred in the direction parallel to the load application. The welds at the top of
the DP in cases 2A1 and 2C1 transferred 69.1 and 51.6 kips of force onto the DP at 0.1
radians. These values were more than 50% lower than the other specimens which showed

values ranging from 131-188 kips.
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Figure 4.197: Slightly higher VMS levels on Case 2C1

Figure 4.197 also shows a trend that was noticed in the specimens with the clipped DPs.
When comparing the VMS stress values at the center of the columns from a level 2 inches

above the center of the loading plane to the mid-height of the DP, slightly higher stresses
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were recorded in the columns with the “clipped” DPs. This effect decreased as the path

were the values were collected got closer to the mid-height level of the PZ.

4.3.3 Case Series 3

Groove Weld - Stress (Y) PZ rot 0.1 Rad Top Fillet Weld-Stress PZ rot 0.1 rad
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Figure 4.198: Stresses in Horizontal and Vertical Weld at 0.1 Rad for Case Series 3

Case series 3 used an arrangement in which the top and bottom edges of the DP were
welded to the CPs. As seen in Figure 4.198 the stress levels recorded in the cases without
horizontal welds at the top and bottom of the DP were substantially higher when the PZ
had rotated 0.1 radians. As reported on Table 4.24 this was more evident in the edge
segments of the vertical welds. When a horizontal weld was not used at the top of the DP,
the average force in each of the weld segments in the Y direction increased from 5.48 kips
to 44.61 kips in cases 3A and 3A1. Similar results can be seen in cases 3C and 3C1. This
is of particular interest since the total sum of the force transferred by all the vertical weld
segments reported on Table 4.22 is in the 30 kip range. These small discrepancies in

reported forces can be missed when looking at the entire surface rather than the segments.
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4.3.4 Case Series 4
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Figure 4.199: Stresses in Horizontal and Vertical Weld at 0.1 Rad for Case Series 4

Case series 4 was used to evaluate the benefits that increasing the space between the CPs
and the top and bottom edges of the DP. The intent of this was to allow more space for
filed welding but the 1 inch gap between the DP and the CPs resulted in a decrease of
performance of the PZ. As seen in Figure 4.200 the reduced cross-sectional area
experienced higher stresses and plastic strains at lower load levels than other specimens

which had the DP reaching up to the CPs.
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Figure 4.200: VMS and PEEQ values in the “gap” in Case series 4
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4.3.5 Case Series 5
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Figure 4.201: Stresses in Horizontal and Vertical Weld at 0.1 Rad for Case Series 5

Case series 5 used groove welds on all edges to attach the DP to the column. All other
specimens that used a weld at the top and bottom of the DP, used a fillet weld. Based on
the VMS stresses and the force required to rotate the PZ in this arrangement, it was
determined that this was also one of the best arrangements. In case 5Alat peak load levels
the groove weld transferred a total on 195 kips to the DP in the direction parallel to the
loading. This force was among the highest transferred by the top weld in all of the
specimens covered in this chapter. This resulted in a reduction in the contribution by the
vertical weld and better PZ performance. It should be noted that the recorded shear at the
mid-height of the DP was 210.3kips. Indicating that most of the load was applied by the
groove welds at the top and bottom of the DP. It should also be noted that the values for
the average force applied by each of the 2 outer welds was close to 25 kips. When compared
to the shear strength of a 1 inch segment of DP, these high values might indicate that a

fillet weld might not be appropriate for the attachment of the DP at the top of the DP.
.6F,(1/2")(1") = 15 kip
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4.3.6 Forces in the Welds

The total forces applied by both vertical and horizontal welds were divided by the DP shear

strength and presented in Tables 4.25 and 4.26.

1
S, =.6F typlay, = .6+ 50ksi = Einch * 24 inch = 360 kip

1
Sp =.6F,ty,la,n =.6 « 50ksi « Einch * 10 inch = 150 kip

Horizontal Weld Force in Y direction/DP shear strength, Sy,
Case
Stage 01 Stage 02 Stage 03 Stage 04 Stage 05
Y Y Y Y Y
1A
1A1 0.3 0.7 0.8 0.9 0.9
1C
1C1 0.3 0.7 0.7 0.9 0.9
2A1 0.1 0.3 0.3 0.5 0.5
2C1 0.0 0.2 0.2 0.4 0.3
3A
3A1 0.7 1.0 1.0 1.2 1.3
3C
3C1 0.5 0.8 0.8 1.0 1.1
4A
4A1 0.6 0.8 0.8 1.0 1.0
4C
4C1 0.5 0.7 0.8 1.0 1.0
5A1 0.6 1.0 1.1 1.3 1.3
5C1 0.6 0.9 0.9 1.2 1.2

Table 4.25: Relation between the horizontal force in the horizontal weld and shear
strength of DP

310



Vertical Weld Force in Z direction/DP shear strength, S,

Case Stage 01 Stage 02 Stage 03 Stage 04 Stage 05
Z Z Z Z Z
1A 0.8 1.0 1.0 1.3 1.3
1A1 0.9 1.1 1.2 14 1.5
1C 0.7 0.9 0.9 1.2 1.2
1C1 0.8 1.0 1.1 1.3 14
2A1 0.9 1.1 1.2 15 15
2C1 0.9 1.1 1.1 1.3 14
3A 0.8 0.9 0.9 1.2 1.2
3A1 0.9 1.1 1.1 1.3 14
3C 0.7 0.8 0.8 1.0 1.1
3C1 0.8 0.9 1.0 1.2 1.3
4A 0.7 0.8 0.8 1.1 1.1
4A1 0.8 1.0 1.0 1.2 1.3
4C 0.6 0.7 0.7 0.9 0.9
4C1 0.7 0.9 0.9 1.1 1.2
5A1 0.9 1.1 1.1 14 14
5C1 0.8 1.0 1.0 1.3 1.3

Table 4.26: Relation between the vertical force in the vertical weld and shear strength of
DP

The values on Table 4.25 would seem to indicate that the horizontal weld at the top and
bottom of the DP, should be designed to provide the full strength of the DP when using a
“fitted” DP. Cases 2A1 and 2C1 seem to require lower strengths but this is likely due to
the placement of the top horizontal weld. The top fillet weld sits at a 1 inch distance above
the center of the loading plate. As seen in all of the plots that show the VMS measured 2
inches above the PZ, the shear force is transferred “into” the PZ. Although cases 5A1 and
5C1 seemed to perform great the values reported on Table 4.25 at peak load levels and PZ

rotation of 0.1 radians are the highest of all other cases.
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4.3.7 Summary

Key observations from this chapter can be summarized as follows:

e The use of “fitted” DP in the “shallow” column does not seem to increase or
decrease the overall structural performance of the panel zone when compared to the
specimens from Shirsat (2011) and Donkada (2012) which used DPs extended 6

inches beyond the top and bottom loading plates.

e The use of the clipped corners did not result in substantial performance deficits and
only seemed to affect the stress levels within the first 2 inches away from the

loading plates slightly.

e One of the cases series that showed the best performance was case series 2. This
performance is assumed to be due to the longer DP which provided more

reinforcement and weld. It also used both vertical and horizontal welds.

e Case series 5 was also very effective in transferring forces to the DP. It is for this
reason that more force was required to cause a PZ rotation value of 0.1 radians. The
modeling of groove welds at the top and bottom of the DP, as well as on the sides
seemed to be the reason for the improvement in performance. The horizontal weld
transferred most of the shear force reported at mid-height of the DP. This reduced
the force requirement in the Y direction of the groove weld allowing it to provide

more force in the Z direction.
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The outer most segments of the welds transfer much higher forces than those near
the center of the weld. This was evident in all variations of the “fitted” DP
especially in the vertical weld when no weld was used to attach the top and bottom

of the DP.

Tables 4.25 and 4.26 would seem to indicate that a weld strength of 80% of the
shear strength of the DP is required for the weld to accommodate a PZ rotation of
0.02 radians and higher to reach PZ rotation of 0.1 radians. Based on the
performance of case series 5, the use of a groove weld to attach the top and bottom

of a “fitted” DP would seem to be more appropriate.
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CHAPTER 5

Parametric Studies on Attachment Details of Doubler Plates in a
W40X264 Column

5.1 INTRODUCTION

This chapter presents the results from analysis performed on a “deep” W40x264 column
specimen. The cases in this chapter are similar to those covered in Chapter 4 and the same
plots were reported. The points at which these were reported were reduced to four. The
four stages used for the reporting of values were in the following order, first yield point,
second yield point, PZ rotation of 0.02 radians and 0.1 radians. The previous chapter
reported the values at a peak load of 1.25 P,, similar to that used by Shirsat (2011). This

column was not modeled in that work and for this reason only four stages were used.

A DP thickness of 1 inch was used for the models in the “deep” W40x264. This was
determined using equation E3-7 from Provisions for Steel Structural Buildings (AISC

2010)
. d, +w,

90

dz = panel zone depth between continuity plates (in)

t = thickness of the doubler plate (in)

w:z = panel zone width between column flanges (in)

It should be noted that both horizontal and vertical welds in this chapter were divided into
32 segments each. This is a key difference from those modeled in Chapter 4 and the main
reason for this is the substantial increase in length of the horizontal weld. Another key

observation that was made in both “shallow” and “deep” column was the large variation in
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force transfer between segments. As explained previously, this is due to the misalignment
between the force flow through the welds and the way the welds were layered. This is
especially evident in the outer segments of the vertical groove weld which transfer some
of the highest levels of force into the DP because of the proximity to the loading force

entering the PZ.

5.2 ANALYSIS CASES

Analysis Cases For the W40x264

. . . Vertical Weld | Horizontal Weld
Case |tgp (in) | lyp (in) [by, (in) | CP Length (ir) Length (in)
6 - - - - - -
6A 1 25 34 - 25 -
6A1l 1 25 34 - 25 34
6C 1 25 34 - 22 -
6C1 1 25 34 - 22 31
TA1 1 25 34 Y 25 34
7C1 1 25 34 Y 22 31
8A 1 22 7/8 34 Y 22 7/8 -
8A1 1 22718 34 Y 22 7/8 34
8C 1 22 7/8 34 Y 19 7/8 -
8C1 1 22718 34 Y 197/8 31
9A 1 21 34 Y 21 -
9C 1 21 34 Y 18 -
10A1 1 22 34 Y 21 34
10C1 1 22 34 Y 18 31
Notes

1) A"C" in case name indicates "clipped” doubler plate corners
2) A"1" after the letter designation indicates fillet welds were used at the top of DP
3) Cases 1-1C1 used no CPs

Table 5.1: Analysis cases for W40x264 ““shallow” column
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5.2.1 Analysis Case 6

— ===
===

Figure 5.1:W40x264 Analysis case 6
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W40x264 Panel Zone Shear Force Vs. Panel Zone Rotation
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Figure 5.2: Panel zone shear vs. panel zone rotation Case 6
Stage Applied Force/Loading | Panel Shear Panel Zone
Plate (Kip) Force (Kip) | Rotation (rad)

1 582 970 0.005

2 678 1,130 0.013

3 712 1,187 0.020

4 927 1,545 0.100

Table 5.2: Panel zone shear and force on loading plate Case 6
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Stage 1

S, Mises
(Avg: 75%)
3.

S, Mises
(Avg: 75%)

PEEQ

(Avg: 75%)
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Figure 5.3: VMS and PEEQ in the column Case 6
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Figure 5.5: Panel zone shear vs. panel zone rotation Case 6A
Stage Applied Force/Loading | Panel Shear % Higher Than Panel Zone

g Plate (Kip) Force (Kip) Unreinforced Col. | Rotation (rad)

1 757 1,262 130% 0.005

2 1,124 1,873 166% 0.018

3 1,139 1,899 160% 0.020

4 1,348 2,246 145% 0.100

Table 5.3: Panel zone shear and force on loading plate Case 6A

320




Stage 1 Stage 2

. = 3,
1] 8, Mises ; -
v, 75%6) - (Avg: 75%) | | . .
% ‘“-;’ |
33 w3
] | 1539 ‘
C %3 + 480
322 421 ‘
322 362
303
ﬁ‘g 244 .
s i85
2% 126
f 1 6.7 |
—W . r

Stage 3 Stage 4

s — \
S, Mises - S, Mises 'r \
(Avg: T5%) h L . 328, |
Y (Avg: 75%)
6.7 102.5 - o
s 94.1 PN
e ‘ 856 | : '
I 387 L 771 | |
427 68,7
36.7 60,2 l
303 518 |
248 433
188 348
12 A |
65 179
os | oA
- ﬁ 10

Stage 1
Q
PEEQ
(Avg: T5%)
+9.50-03
+8.7e 03
e
! +7.1e-03
Pt 46303 -02
~£.5.03
4. %03
+4.0e-03
- +3.20-03 2
“24203
- +1.60.03
+7.9-04
“0.0e400

Stage 3 Stage 4

PEEQv o {Avg: 75%)
(Avg: 75%) +3.70-M
*llb-ﬂl +3.40-01
+0 lt—ﬂ: - +3.1e-01
Sien: - 123001
‘el Ve e
- 46.7e-02 +21e-01
+£.50-02 +1.8e-01
+5 De-12 +1.5e-01
| +4.20.02 +1.2e-01
+33e-02 :,"3"
+2%e-m2 +6.1e-02
+1.70-02 +31e-02
+83e-03 +0.0e+08
+01e~00

Figure 5.6: VMS and PEEQ in the column Case 6A
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Figure 5.7: VMS distribution in column web at different heights Stg. 01-04 Case 6A
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Figure 5.7: VMS distribution in column web at different heights Stg. 01-04 Case 6A
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Figure 5.8: VMS and PEEQ in the DP Case 6A
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Figure 5.9: Shear stress, S23 in the DP Case 6A
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Figure 5.10: VMS distribution at mid-depth of DP Case 6A
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Figure 5.11: Forces and stresses in horizontal weld, (X) Case 6A
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Figure 5.12: Forces and stresses in horizontal weld, (Y) Case 6A
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Figure 5.13: Forces and stresses in horizontal weld, (Z) Case 6A
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5.2.3 Analysis Case 6A1
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Figure 5.14: W40x264 Analysis case 6A1
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W40x264 Panel Zone Shear Force Vs. Panel Zone Rotation
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Figure 5.15: Panel zone shear vs. panel zone rotation Case 6A1

Stage Applied Force/_Loading Panel Shgar % Higher Than Pangl Zone
Plate (Kip) Force (Kip) Unreinforced Col. | Rotation (rad)
1 827 1,378 142% 0.005
2 1,188 1,979 175% 0.022
3 1,178 1,963 165% 0.020
4 1,498 2,497 162% 0.100

Table 5.4: Panel zone shear and force on loading plate Case 6A1
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Figure 5.16: VMS and PEEQ in the column Case 6A1
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Figure 5.17: VMS distribution in column web at different heights Stg. 01-04 Case 6A1
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Figure 5.17: VMS distribution in column web at different heights Stg. 01-04 Case 6A1
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Figure 5.18: VMS and PEEQ in the DP Case 6A1
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Figure 5.19: Shear stress, S23 in the DP Case 6A1
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Figure 5.20: VMS distribution at mid-depth of DP Case 6A1
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Figure 5.21: Forces and stresses in horizontal weld, (X) Case 6A1
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Figure 5.22: Forces and stresses in horizontal weld, (Y) Case 6A1
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Figure 5.23: Forces and stresses in horizontal weld, (Z) Case 6A1
338

20

20



Groove Weld - Force (X)
—Stg01 —=-Stg02 —*-Stg03 =-o- Stg04
14

S

=)

=1

(5]

=

(=]

c

=l

<5 3
e

8

2

a

d‘». _________
-14
Force/Segment (Kip)
Groove Weld - Stress (X)
—Stg01 =-Stg02 -*-Stg03 =-o-Stg04
14

=)

K=

(5]

=

(=)

c
S.7

<

3]

c

8
2

-14
Stress (Ksi)

Figure 5.24: Forces and stresses in vertical weld, (X) Case 6A 1
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Figure 5.25: Forces and stresses in vertical weld, (Y) Case 6A1
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Figure 5.26: Forces and stresses in vertical weld, (Z) Case 6A1
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5.2.4 Analysis Case 6C
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Figure 5.27: W40x264 Analysis case 6C
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Figure 5.28: Panel zone shear vs. panel zone rotation Case 6C
Stage Applied Force/Loading | Panel Shear % Higher Than Panel Zone

g Plate (Kip) Force (Kip) Unreinforced Col. | Rotation (rad)

1 717 1,195 123% 0.005

2 1,052 1,753 155% 0.019

3 1,062 1,770 149% 0.021

4 1,327 2,211 143% 0.100

Table 5.5: Panel zone shear and force on loading plate Case 6C
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Figure 5.29: VMS and PEEQ in the column Case 6C
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Figure 5.30: VMS distribution in column web at different heights Stg. 01-04 Case 6C
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Figure 5.30: VMS distribution in column web at different heights Stg. 01-04 Case 6C
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Figure 5.31: VMS and PEEQ in the DP Case 6C
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Figure 5.32: Shear stress, S23 in the DP Case 6C
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Figure 5.33: VMS distribution at mid-depth of DP Case 6C
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Figure 5.34: Forces and stresses in vertical weld, (X) Case 6C
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Figure 5.35: Forces and stresses in vertical weld, (Y) Case 6C
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Figure 5.36: Forces and stresses in vertical weld, (Z) Case 6C
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5.2.5 Analysis Case 6C1

e

OGSO
- P

N -

e tata et ata et
L N T R e N O )
PN TSR ki BN el B M BE LML RE I
£ v rr

+
o

EC )

]
4

AR b e A kA ko
L3 N |

*
Lo e i T Sl
. "

"

] +
L N

L]
[
4

+ +
+te
1
i
1
)
+ 4

+ kA
3
3
r
K
3

LALLM SR
ECC AR
B OO

*

-
LN NN IR )
*

ala
+
1t

1
1
1
1
1

»
3
Laa
»
»
.

3

-
+
+

et
Ok
LI

+
]
L]
)

++ 4

e
Pt L,
- -
T AT T T

+
+

"
F
[
.
F
r

*
4
AT T
aa aTaTe
4

k
E

—-34325X1 DOUBLER FL
W! CLIPPED CORMNEERS

—— GROOVE WELDS

labe bt b b r i

a Py
e e e T T L T
Pt ettt il b bt A b b b

* F

-
.,

12" GROOVE—

WELDS

r-1o”

F4x25x1 DOUBLEE FLA
WITH CLIPFED CORNERS

Figure 5.37: W40x264 Analysis case 6C1
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Figure 5.38: Panel zone shear vs. panel zone rotation Case 6C1
Stage Applied Force/Loading | Panel Shear % Higher Than Panel Zone
g Plate (Kip) Force (Kip) Unreinforced Col. | Rotation (rad)
1 771 1,285 132% 0.006
2 1,136 1,893 167% 0.025
3 1,092 1,820 153% 0.020
4 1427 2,378 154% 0.100

Table 5.6: Panel zone shear and force on loading plate Case 6C1
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Figure 5.39: VMS and PEEQ in the column Case 6C1
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Figure 5.40: VMS distribution in column web at different heights Stg. 01-04 Case 6C1

355



Von Misses Stress Distribution in Column Web - Stg 03

—2 =--0 =05 —-1 —-15 —-2 —Mid

Depth of Section (in)

0 10 20 30 40 50 60 70
Von Misses Stress (Kksi)

Von Misses Stress Distribution in Column Web - Stg 04
=2 ---0 =05 —-—-1 —-15 —--2 —Mid

40

35

30

25

Depth of Section (in)

> =
0 Semmsdmnmees oot T T,

20 30 40 50 60 70 80 90 100
Von Misses Stress (ksi)

Figure 5.40: VMS distribution in column web at different heights Stg. 01-04 Case 6C1
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Figure 5.41: VMS and PEEQ in the DP Case 6C1
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Figure 5.42: Shear stress, S23 in the DP Case 6C1
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Figure 5.43: VMS distribution at mid-depth of DP Case 6C1
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Figure 5.44: Forces and stresses in horizontal weld, (X) Case 6C1
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Figure 5.45: Forces and stresses in horizontal weld, (Y) Case 6C1
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Figure 5.46: Forces and stresses in horizontal weld, (Z) Case 6C1
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Figure 5.47: Forces and stresses in vertical weld, (X) Case 6C1
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Figure 5.48: Forces and stresses in vertical weld, (Y) Case 6C1
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5.2.6 Analysis Case 7A1
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Figure 5.50: W40x264 Analysis case 7A1

365

-~ 25x34x] DOUEBLER.

i GROOVE WELDS



3000

2500

2000

1500

Panel Zone Shear Force (kip)
S
8

a1
o
o

W40x264 Panel Zone Shear Force Vs. Panel Zone Rotation

-=-Unreinforced Column

—Case 7A1
0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Panel Zone Rotation, Y (rad)
Figure 5.51: Panel zone shear vs. panel zone rotation Case 7A1
Stage Applied Force/Loading | Panel Shear % Higher Than Panel Zone
Plate (Kip) Force (Kip) Unreinforced Col. | Rotation (rad)
1 1,042 1,736 179% 0.004
2 1,330 2,217 196% 0.014
3 1,381 2,302 194% 0.020
4 1,772 2,953 191% 0.100

Table 5.7: Panel zone shear and force on loading plate Case 7A1
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Figure 5.52: VMS and PEEQ in the column Case 7A1
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Figure 5.53: VMS distribution in column web at different heights Stg. 01-04 Case 7A1
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Figure 5.53: VMS distribution in column web at different heights Stg. 01-04 Case 7A1

369



Stage 2

Stage 4

15%)

i

ESRREASSRERR
DD AR08 A 00 S

=T
-

Stage 1

PEEQ
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Figure 5.57: Forces and stresses in horizontal weld, (X) Case 7A1
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Figure 5.58: Forces and stresses in horizontal weld, (Y) Case 7A1
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Figure 5.59: Forces and stresses in horizontal weld, (Z) Case 7A1
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Figure 5.60: Forces and stresses in vertical weld, (X) Case 7A1
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Figure 5.61: Forces and stresses in vertical weld, (Y) Case 7A1
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Figure 5.62: Forces and stresses in vertical weld, (Z) Case 7A1
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5.2.7 Analysis Case 7C1
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Figure 5.63:W40x264 Analysis case 7C1
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Figure 5.64: Panel zone shear vs. panel zone rotation Case 7C1
Stage Applied Force/Loading | Panel Shear % Higher Than Panel Zone
Plate (Kip) Force (Kip) Unreinforced Col. | Rotation (rad)
1 938 1,564 161% 0.004
2 1,319 2,198 194% 0.017
3 1,345 2,242 189% 0.020
4 1,725 2,876 186% 0.100

Table 5.8: Panel zone shear and force on loading plate Case 7C1
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Figure 5.65: VMS and PEEQ in the column Case 7C1
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Figure 5.66: VMS distribution in column web at different heights Stg. 01-04 Case 7C1
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Figure 5.66: VMS distribution in column web at different heights Stg. 01-04 Case 7C1
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Figure 5.68: Shear stress, S23 in the DP Case 7C1
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Figure 5.69: VMS distribution at mid-depth of DP Case 7C1
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Figure 5.70: Forces and stresses in horizontal weld, (X) Case 7C1
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Figure 5.71: Forces and stresses in horizontal weld, (Y) Case 7C1
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Figure 5.72: Forces and stresses in horizontal weld, (Z) Case 7C1
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Figure 5.73: Forces and stresses in vertical weld, (X) Case 7C1
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Figure 5.74: Forces and stresses in vertical weld, (Y) Case 7C1
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Figure 5.75: Forces and stresses in vertical weld, (X) Case 7C1
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5.2.8 Analysis Case 8A

34x22%x1 DOUBLER

PL

GROOVE WELDS

-2 5%

=)

-
/|
1/

T
S
h

N
A\

N
T

RI" |11
3.
Org

o

L)
Wl A W
Aii s 222

34

e e e N

e e o O e N S N

T T T L T T T T R Y

'

ik

Figure 5.76: W40x264 Analysis case 8A
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Figure 5.77: Panel zone shear vs. panel zone rotation Case 8A
Stage Applied Force/Loading | Panel Shear % Higher Than Panel Zone
Plate (Kip) Force (Kip) Unreinforced Col. | Rotation (rad)
1 926 1,544 159% 0.005
2 1,164 1,941 172% 0.017
3 1,184 1,974 166% 0.020
4 1,426 2,377 154% 0.100

Table 5.9: Panel zone shear and force on loading plate Case 8A
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Figure 5.78: VMS and PEEQ in the column Case 8A
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Figure 5.79: VMS distribution in column web at different heights Stg. 01-04 Case 8A
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Figure 5.79: VMS distribution in column web at different heights Stg. 01-04 Case 8A
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Figure 5.81: VMS distribution at mid-depth of DP Case 8A

397



Groove Weld - Force (X)
—Stg 01 —0-Stg 02 -%-Stg 03 -0 Stg 04
14

Distance Along Weld (in)

Force/Segment (Kip)

Groove Weld - Stress (X)
—Stg 01 —0=Stg 02 -%-Stg 03 -0-Stg 04
14

Distance Along Weld (in)

Stress (Ksi)

Figure 5.82: Forces and stresses in vertical weld, (X) Case 8A
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Figure 5.83: Forces and stresses in vertical weld, (Y) Case 8A

399



Groove Weld - Force (Z)
—>Stg 01 =0=Stg 02 —%-Stg 03 =0=Stg 04

Distance Along Weld (in)

Force/Segment (Kip)

Groove Weld - Stress (Z)
—Stg 01 =o=Stg 02 —%-Stg 03 -0=Stg 04

Distance Along Weld (in)

Stress (Ksi)

Figure 5.84: Forces and stresses in vertical weld, (Z) Case 8A
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Figure 5.86: Panel zone shear vs. panel zone rotation Case 8A1

Stage Applied Force/Loading | Panel Shear % Higher Than Panel Zone
Plate (Kip) Force (Kip) Unreinforced Col. | Rotation (rad)
| 941 1,568 162% 0.005
2 1,300 2,167 192% 0.015
3 1,340 2233 188% 0.020
4 1,711 2851 185% 0.100

Table 5.10: Panel zone shear and force on loading plate Case 8A1
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Figure 5.87: VMS and PEEQ in the column Case 8A1
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Figure 5.88: VMS distribution in column web at different heights Stg. 01-04 Case 8§A1
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Figure 5.88: VMS distribution in column web at different heights Stg. 01-04 Case 8§A1
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Figure 5.90: Shear stress, S23 in the DP Case 8A1
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Figure 5.91: VMS distribution at mid-depth of DP Case 8A1
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Figure 5.92: Forces and stresses in horizontal weld, (X) Case 8A1
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Figure 5.93: Forces and stresses in horizontal weld, (Y) Case 8A1
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Figure 5.94: Forces and stresses in horizontal weld, (Z) Case 8A1
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Figure 5.95: Forces and stresses in vertical weld, (X) Case 8Al
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Figure 5.96: Forces and stresses in vertical weld, (Y) Case8Al
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Figure 5.97: Forces and stresses in vertical weld, (Z) Case 8A1
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5.2.10 Analysis Case 8C
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Figure 5.99: Panel zone shear vs. panel zone rotation Case 8C
Stage Applied Force/Loading | Panel Shear % Higher Than Panel Zone
g Plate (Kip) Force (Kip) Unreinforced Col. | Rotation (rad)
1 889 1481 153% 0.005
2 1,067 1,779 157% 0.015
3 1,099 1831 154% 0.020
4 1411 2,351 152% 0.100

Table 5.11: Panel zone shear and force on loading plate Case 8C
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Figure 5.100: VMS and PEEQ in the column Case 8C
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Figure 5.101: VMS distribution in column web at different heights Stg. 01-04 Case 8C
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Figure 5.101: VMS distribution in column web at different heights Stg. 01-04 Case 8C
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Figure 5.102: VMS and PEEQ in the DP Case 8C
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Figure 5.104: VMS distribution at mid-depth of DP Case 8C
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Figure 5.105: Forces and stresses in vertical weld, (X) Case 8C
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Figure 5.106: Forces and stresses in vertical weld, (Y) Case 8C
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Figure 5.107: Forces and stresses in vertical weld, (Z) Case 8C
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Figure 5.109: Panel zone shear vs. panel zone rotation Case 8C1
Stage Applied Force/Loading | Panel Shear % Higher Than Panel Zone
g Plate (Kip) Force (Kip) Unreinforced Col. | Rotation (rad)
1 918 1,530 158% 0.005
2 1,269 2,115 187% 0.016
3 1,306 2177 183% 0.020
4 1,662 2,770 179% 0.100

Table 5.12: Panel zone shear and force on loading plate Case 8C1
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Figure 5.110: VMS and PEEQ in the column Case 8C1
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Figure 5.111: VMS distribution in column web at different heights Stg. 01-04 Case 8C1
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Figure 5.111: VMS distribution in column web at different heights Stg. 01-04 Case 8C1
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Figure 5.112: VMS and PEEQ in the DP Case 8C1
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Figure 5.113: Shear stress, S23 in the DP Case 8Cl1
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Figure 5.114: VMS distribution at mid-depth of DP Case 8C1
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Figure 5.115: Forces and stresses in horizontal weld, (X) Case 8C1
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Figure 5.116: Forces and stresses in horizontal weld, (Y) Case 8C1
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Figure 5.117: Forces and stresses in horizontal weld, (Z) Case 8C1
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Figure 5.118: Forces and stresses in vertical weld, (X) Case 8C1
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Figure 5.119: Forces and stresses in vertical weld, (X) Case 8C1
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Figure 5.120: Forces and stresses in vertical weld, (Z) Case 8C1
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Figure 5.122: Panel zone shear vs. panel zone rotation Case 9A

Stage Applied Force/Loading | Panel Shear % Higher Than Panel Zone
Plate (Kip) Force (Kip) Unreinforced Col. | Rotation (rad)
1 893 1,492 154% 0.005
2 1.114 1.8356 164% 0.019
3 1,122 1,870 158% 0.020
4 1,396 2326 151% 0.100

Table 5.13: Panel zone shear and force on loading plate Case 9A
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Figure 5.124: VMS distribution in column web at different heights Stg. 01-04 Case 9A
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Figure 5.124: VMS distribution in column web at different heights Stg. 01-04 Case 9A
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Figure 5.128: Forces and stresses in vertical weld, (X) Case 9A
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Figure 5.129: Forces and stresses in vertical weld, (Y) Case 9A
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Figure 5.130: Forces and stresses in vertical weld, (Z) Case 9A
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5.2.13 Analysis Case 9C
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Figure 5.131: W40x264 Analysis case 9C
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Figure 5.132: Panel zone shear vs. panel zone rotation Case 9C
Stage Applied Force/Loading | Panel Shear % Higher Than Panel Zone
g Plate (Kip) Force (Kip) Unreinforced Col. | Rotation (rad)
1 830 1,384 143% 0.005
2 1,026 1,709 151% 0.017
3 1,049 1,748 147% 0.021
4 1,346 2,243 145% 0.101

Table 5.14: Panel zone shear and force on loading plate Case 9C
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Figure 5.133: VMS and PEEQ in the column Case 9C
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Figure 5.134: VMS distribution in column web at different heights Stg. 01-04 Case 9C
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Figure 5.134: VMS distribution in column web at different heights Stg. 01-04 Case 9C
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Figure 5.135: VMS and PEEQ in the DP Case 9C
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Figure 5.137: VMS distribution at mid-depth of DP Case 9C
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Figure 5.138: Forces and stresses in vertical weld, (X) Case 9C
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Figure 5.139: Forces and stresses in vertical weld, (Y) Case 9C
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Figure 5.140: Forces and stresses in vertical weld, (Z) Case 9C
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5.2.14 Analysis Case 10A1
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Figure 5.141: W40x264 Analysis case 10A1
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Figure 5.142: Panel zone shear vs. panel zone rotation Case 10A1
Stage Applied Force/Loading | Panel Shear % Higher Than Panel Zone
g Plate (Kip) Force (Kip) Unreinforced Col. | Rotation (rad)
1 913 1522 157% 0.005
2 1,308 2,181 193% 0.018
3 1,327 2,212 186% 0.020
4 1,693 2,821 183% 0.100

Table 5.15: Panel zone shear and force on loading plate Case 10A1
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Figure 5.143: VMS and PEEQ in the column Case 10A1
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Figure 5.144: VMS distribution in column web at different heights Stg. 01-04 Case 10A1
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Figure 5.144: VMS distribution in column web at different heights Stg. 01-04 Case 10A1
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Figure 5.146: Shear stress, S23 in the DP Case 10A1
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Figure 5.147: VMS distribution at mid-depth of DP Case 10A1
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Figure 5.148: Forces and stresses in horizontal weld, (X) Case 10A1
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Figure 5.149: Forces and stresses in horizontal weld, (Y) Case 10A1
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Figure 5.150: Forces and stresses in horizontal weld, (Z) Case 10A1
466



Groove Weld - Out of Plane Shear Stress (X)

—Stg 01 ~0-Stg 02 -x-Stg 03 -o--Stg 04
14

-15 15

Distance Along Weld (in)

Stress (Ksi)

Groove Weld - Out of Plane Shear Force (X)

—Stg01  —-Stg02  -%Stg03  -o--Sty 04
14

Distance Along Weld (in)

-14

Force/Segment (Kip)

Figure 5.151: Forces and stresses in vertical weld, (X) Case 10A1
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Figure 5.152: Forces and stresses in vertical weld, (Y) Case 10A1
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Figure 5.153: Forces and stresses in vertical weld, (Z) Case 10A1
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5.2.15 Analysis Case 10C1
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Figure 5.155: Panel zone shear vs. panel zone rotation Case
Stage Applied Force/Loading | Panel Shear % Higher Than Panel Zone
g Plate (Kip) Force (Kip) Unreinforced Col. | Rotation (rad)
1 856 1,426 147% 0.004
2 1,270 2,117 187% 0.017
3 1,296 2,161 182% 0.020
4 1,653 2,755 178% 0.101

Table 5.16: Panel zone shear and force on loading plate Case 10C1
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Figure 5.157: VMS distribution in column web at different heights Stg. 01-04 Case 10C1
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Figure 5.157: VMS distribution in column web at different heights Stg. 01-04 Case 10C1
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Figure 5.158: VMS and PEEQ in the DP Case 10C1
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Figure 5.160: VMS distribution at mid-depth of DP Case 10C1
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Figure 5.161: Forces and stresses in horizontal weld, (X) Case 10C1
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Figure 5.162: Forces and stresses in horizontal weld, (Y) Case 10C1
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Figure 5.163: Forces and stresses in horizontal weld, (Z) Case 10C1
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Figure 5.164: Forces and stresses in vertical weld, (X) Case 10C1

480



Groove Weld - Force Transfered Normal to Surface Interface (Y)
—Stg 01 -0-Stg 02 —x-Stg 03 —o—Stg 04
10

€
k=
(5]
=
2
°
<
8-110  -90 -70 50 -30 70
2
a
-8
03 04
02 -10
Force/Segment (Kip)
Groove Weld - Shear Stress Transfered Normal to Surface Interface ()
—Stg 01 =0=Stg 02 —Stg 03 =0=Stg 04
10

€

=1

(5]

=

2

£-125 -75 -25

<

3

c

8

@

[a)

03~ 02 04 10

Stress (Ksi)

Figure 5.165: Forces and stresses in vertical weld, (Y) Case 10C1
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Figure 5.166: Forces and stresses in vertical weld, (Z) Case 10C1
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5.3 DISCUSSION OF ANALYSIS RESULTS

Case |VMSIn g(‘;'i‘)’m” Webl \/\1s in DP (ksi) Shear;’giz })523 in Shei;ass"ziizs ight | Total Pz shear (kip)
Stg 01 Stg 04 Stg 01 Stg 04 Stg 01 Stg 04 Stg 01 Stg 04 Stg 01 Stg 04
6 53.8 79.1 970 1,545
6A 54.8 85.6 54.0 70.9 22.1 40.9 563 1,098 1,262 2,246
6A1 56.2 80.8 53.5 81.9 26.9 38.5 674 1,259 1,378 2,497
6C 55.0 87.0 54.1 81.6 22.6 38.5 493 1,122 1,195 2,211
6C1 56.3 89.7 53.3 85.0 271.2 38.2 618 1,200 1,285 2,378
AL | 563 8.7 528 53 290 | 425 80 | 1391 | L7%6 | 2,953
7C1 55.0 84.5 52.7 84.3 28.7 42.8 738 1,376 1,564 2,876
8A 54.9 76.6 55.1 97.6 23.0 40.8 1,035 1,075 1544 2377
8A1 54.7 82.2 52.6 75.7 27.8 41.7 943 1,430 1,568 2,851
sC | 546 82.0 5.1 0.1 2.7 206 se9 | 100 | 1481 | 2351
8C1 54.5 87.1 52.7 76.2 29.1 42.9 707 1,336 1,530 2,770
9A 54.6 83.0 55.0 83.0 22.3 42.6 525 1,138 1,492 2,326
9C 53.8 80.4 54.1 86.6 21.8 40.0 439 1,097 1,384 2,243
10A1 54.5 84.6 52.4 75.9 28.4 41.6 729 1,356 1522 2,821
10C1 53.7 81.2 52.4 81.0 28.8 44.3 671 1,333 1,426 2,755

Table 5.17: Summary of VMS stresses and forces on column web and DP at Stg. 01 and
Stg. 04

This chapter reports the results from a variety of analysis performed on a “deep” W40x264
column. Table 5.17 is a summary of the peak forces and stresses from the results. It should
be noted that peak stress values for this column are not the best indicators of performance
of the different cases. Large forces were applied by the loading plates due to the large size
of the column and the 1 inch thickness of the DP. As expected this resulted in areas of high
stress concentrations near the point where the loading is being applied on the column. An
attempt was made to report stress values that represented the overall cross section better
than these localized stress levels. A key observation that can be seen in Table 5.17 is the
higher levels of shear force recorded at the mid-height cross section of the DPs with
horizontal welds at the top. Shear values for the DPs with horizontal welds at stg 4, (PZ
rotation of 0.01), ranged from 1200 to 1430 kips whereas those without ranged from 1070-
1122 kips, an average 20% difference between these. This can also be observed in the

values for the total PZ shear required to rotate 0.1 radians.
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W40x264 Panel Zone Shear Force Vs. Panel Zone Rotation For all Cases
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Figure 5.167: PZ Shear force vs PZ rotation plots for cases using a “deep” W40x264 column
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Five different case series were modeled in order to see how different arrangements of the
PZ attachments improved overall performance. Some of the values that were considered
when evaluating the performance of the different cases included: stresses on the column
and DP, PZ rotation vs. PZ shear force comparisons, and weld force transfer. Figure 5.167
is a plot of the PZ shear force vs. PZ rotation for all the models considered in Chapter 5.
The values for an unreinforced column are also plotted in order to show the improved
performance that these arrangements have on the performance of the PZ. Case 5 from
Donkada (2012) is also plotted in order to provide another source for comparison. Case 5
can be used to compare the difference in performance between a “fitted” DP an “extended”
DP since the main difference between the cases in this chapter and Case 5 is the use of a
DP that is extended 6 inches above and below the beam flanges. It should be noted that
Case five does not use welds at the top of the column. Although the values reported only
reached 0.05 radians of PZ rotation a comparison between Case 5 and all other cases in this
chapter might indicate that a PZ with an extended DP is both stronger and stiffer. It should
be noted that almost all the stress values reported at a height of 2 inches above the loading
plates are far lower than those inside the PZ. This is due to the shear stress traveling “into”
the PZ rather than away. This might explain why Case 5 which does not use a weld at the
top of the DP outperforms all cases modeled in this chapter. Plot 5.167 also shows the
improvement that using a horizontal weld to attach the top and bottom of the DP provides.
In order to make this observation obvious all cases with a weld at the top were plotted using

dashed lines.

Attention should also be brought to the 6A1 and 6C1 in this plot. Case series 6 did not have
CPs but 6A1 and 6C1 differed in that they were welded all around. This seems to point to

an increase in performance of the whole specimen due to the addition of CPs. Donkada
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(2012) concludes that “Continuity plates appear to contribute to panel zone strength in
columns with thinner flanges by resisting local flange bending, local web yielding, web
compression buckling and web crippling which result in lower design strengths”. Figure
5.168 is a plot of the principal stress flow in a column with continuity plates and one
without at a PZ rotation close to 0.1 radians. Notice that not only does the lack of a CPs
result in local buckling of the flanges but also affects how the stresses are distributed in the
entire column once this “kinking” of the flanges occurs. Another observation that cases
6A1 and 6C1 help point out is that that all the other specimens which used CPs but no

horizontal weld performed similarly to the cases that were welded all around but used no

CPs.
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Figure 5.168: Principal stress flow in column with and without CPs, near 0.1 PZ rotation
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Figure 5.167 also showed that the differences in performance of the different specimens
can be seen before the yield point of the curve, stg. point 01. For this reason case
comparisons of were done at the first two stage points selected rather than at peak load 1
rotation levels. A sum of the weld forces for the different cases is reported on Tables 5.18

—5.21, and were used in the comparisons between the different arrangements.

5.3.1 Case Comparisons
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Figure 5.169: PZ and PZ shear force vs PZ rotation between Case 6A and 6A1
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Figure 5.170: PZ and PZ shear force vs PZ rotation between Case 6C and 6C1
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Figure 5.171: PZ and PZ shear force vs PZ rotation between Case 8A and 8A1
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Figure 5.172: PZ shear force vs PZ rotation between Case 8C and 8C1
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When looking at the performance of case series 6, 8 and 9 for the deep column specimen
no insightful observations were seen besides the obvious improvement that the use of a
weld at the top of the DP provided, Figures 5.169 — 5.72. Case series 6 was used to
determine how the performance of the PZ would vary when no CPs were used. A small
increase in performance can be seen relative to the amount of force required for a PZ
rotation of 0.1 radians when welds are used at the top and bottom of the DP. Table 5.19
shows that the use of a fillet weld at the top of the DP increased the vertical forces
transferred by more than 100 kips. This did not improve the performance of the PZ
drastically. As mentioned above the large DP used in the deep W40x264 buckles when no
welds are used all the way around. Figure 5.174 illustrates the shear stress in the DPs of
specimens with and without welds at the top. It can be seen that the entire area of the DPs
that were welded all the way around is effectively being used to resist the PZ shear.
Whereas the ones without a weld at the top used about a third of the DP and once the 0.1
PZ rotation was reached the area resisting shear had substantially decreased due to buckling

of the DP.

Stage 2 Stage 2 Stage 4

All cases with vertical
welds only

il
S23 in the DP Case 6Al $23 in the DP Case 8A1l

Figure 5.174 Difference in shear stresses in DPs with horizontal welds and without
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Figure 5.175: Buckling of DPs at 0.1 radians (scaled 3 times)

Figure 5.173 which compares the performance of a DP that was welded all the way around
to that of one that used vertical welds alone but CPs, shows that the use of continuity plates

does not improve the performance of the DP when resisting PZ rotation.
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Case series 7 which used a doubler plate that was extended all the way to the same height
of the loading plates and had the continuity plates welded onto them were the specimens
that showed the greatest PZ strength. Cases 7A1 and 7C1, required 2,953 and 2876 kips of
PZ shear respectively, to reach a rotation of 0.1 radians. The benefits of this arrangement
were also seen in the “shallow” column discussed in Chapter 4. The increased in stiffness
is likely due to the same reasons that an extended DP substantially increases performance
in a deep column. One key observation that mirrors that of Donkada (2012) is the decrease
in force requirement from horizontal welds as the DP extends away from the PZ. The
benefit of an extension of %2 inch above the center of the loading plate is shown in Figure
5.176. Cases 7 required an average of 20% more force to rotate 0.1 radians than cases 6A 1
and 6C1 which were welded all around, even though the welds at the top of the plated

transferred less force.
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Figure 5.176: Weld stresses on case series 6 and 7
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Figure 5.177: Stress distributions for cases with highest PZ strength

With the exception to case series 7 which seems to benefit from a slight extension of the
DP, the other two case series which showed the highest PZ strength were case series 8
(with horizontal welds) and 10. Figure 5.177 illustrates the observation that as long as a
weld is provided at the top of the doubler plate the DP will effectively increase the PZ shear
orce. When looking at the VMS stress levels in the DP in cases 8 (with horizontal welds)

and 10, the values are the same by stg. 02 of the loading which is PZ rotation of .02 radians.
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Even though the weld modeled in case 10 was a groove weld and in case 8 a fillet weld,
Figure 5.178 shows that the force transferred parallel to the weld at the top is almost the
same. In cases 8A1, 8C1, 10A1 and 10C1 the weld at the top transferred 59%, 69%, 66%
and 70% of the shear force at mid-height of the DP.
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Figure 5.178: Stress on horizontal weld segments due to horizontal forces

Case 9A and 9C were determined to provide no benefits to the strength of the PZ. The DP
height was decreased to accommodate a 1 inch gap between the DP and the CPs. This case
resulted in high stress concentrations and plastic strains column web area were the gap was.
Clearly the reduction of area of the DP, results in lower performance in both “shallow” and

“deep” column specimens.

5.3.2 Forces in the Welds

The total forces applied by both vertical and horizontal welds were divided by the DP shear
strength and presented in Tables 4.25 and 4.26. The average segment weld forces were also

reported for the two outer most segments of weld on tables 5.20 and 5.21. Unlike the
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W14x398 column the outer segments of the vertical welds in the W40x264 column did not
show a substantial decrease in force in the Y direction when a weld was used at the top of
the doubler plate. Figure 5.179 illustrates the how the horizontal load being applied by a
vertical weld in cases without a weld at the top and bottom of the DP is more linear than
that of the smaller column. This could be due to the use of the larger vertical weld used for

the inch thick doubler plate.
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Figure 5.179: Vertical weld transfer of forces for “deep” (Left) and “shallow” (Right)
columns

The forces transferred onto the DP by either weld were similar in all the cases modeled
with the exception of the case were the DP was extended 2 inch beyond the center of the
loading plate. A substantial reduction of force in the outer segments of the vertical weld
was not seen in the cases when a horizontal weld was used in conjunction, which was an
obvious observation in the W14x398. The use of a horizontal weld allowed an increase in
vertical load that the vertical weld applied to DP which resulted in a stronger PZ. This also

kept the DP from buckling.
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In order to understand the forces that the welds attaching the DP to the column must provide
the total force transferred by the welds in each case was divided by the shear strength of
the DP. Although key observations were seen for case series 6, this arrangement is
impractical since no CPs were used. Case 7 also shows low force requirements on 30% to
40% of DP strength, Table 5.22. This however is believed to be due to the length of the DP
and the fact that the fillet weld at the top of the DP sits at a height of about 1 inch above
the center of the loading plate. Case series 8 and 10 show that for the top weld 80% to
100% of the DP shear strength is required at PZ rotation levels of 0.1 radians. This

observation was also seen in the “shallow” column cases.

Sy =.6F tgplap, = .6+ 50ksi « linch « 24 inch = 720 kip
Sp=.6F,ty,lgpn =.6 x 50ksi « linch * 34 inch = 1020 kip

Horizontal Weld Force in Y direction/DP shear strength, Sy
Case
Stage 01 Stage 02 Stage 03 Stage 04
Y Y Y Y
6
6A
6A1 0.2 0.3 0.3 0.3
6C
6C1 0.2 0.4 0.3 0.5
7A1 0.1 0.2 0.2 0.3
7C1 0.2 0.3 0.3 0.4
8A
8A1 0.5 0.6 0.7 0.8
8C
8C1 0.4 0.7 0.7 0.9
9A
9C
10A1 0.5 0.7 0.7 0.9
10C1 0.5 0.7 0.8 1.0

Table 5.22: Relation between the horizontal force in the horizontal weld and shear
strength of DP
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A similar comparison was conducted in the vertical weld for all cases including the ones
not using a horizontal weld. It can be seen that when the DP is welded onto the column
using both horizontal and vertical welds, the vertical load being applied by the vertical
weld increases substantially. The values reported on tables 5.22 and 5.23 might seem to
indicate that the welds used to attach a DP should be designed for the full shear strength of
the DP. This assumes that the DP sized properly and that the thickness is enough to keep it
from buckling. An appropriate recommendation and one that case 10 seems to verify is the

use of a groove weld for both vertical and horizontal edges of a DP.

Vertical Weld Force in Z direction/DP shear strength, S,
Case
Stage 01 Stage 02 Stage 03 Stage 04
Z Z Z Z
6
6A 0.4 0.7 0.7 0.7
6A1 0.6 0.8 0.8 1.0
6C 0.4 0.5 0.5 0.7
6C1 0.5 0.7 0.7 0.9
TA1 0.7 0.9 0.9 1.2
7C1 0.6 0.8 0.9 11
8A 0.6 0.7 0.7 0.6
8A1 0.8 0.9 0.9 1.2
8C 0.5 0.5 0.6 0.6
8C1 0.6 0.8 0.8 1.1
9A 0.3 0.5 0.5 0.6
9C 0.2 0.4 0.4 0.5
10A1 0.6 0.8 0.8 11
10C1 0.5 0.8 0.8 1.0

Table 5.23: Relation between the vertical force in the vertical weld and shear strength of
DP
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5.3.3 Summary

Key observations from this chapter can be summarized as follows:

The “deep” column specimen had a higher propensity to have buckling issues. It is
due to this that continuity plates assisted in the increase of PZ strength. By keeping
the flanges and web from buckling the shear force was effectively transferred to the
DP by the welds.

The use of a weld at the top and bottom of the DP increased the strength of the PZ
substantially. This was due to two separate reasons. One of them was that it kept
the DP from buckling at PZ rotations lower than 0.1 radians. Figure 5.175 shows
some of these buckling issues for the various models which did not use a weld at
the top of the flange. It should also be mentioned that this issue increased the
complexity of the modeling substantially.

Except for case series 7 the weld at the top and bottom of the DP transferred
between 60 to 70 % of the shear force reported at mid-height of the DP at a PZ
rotation of 0.1 radians. This reduced the demand on the vertical weld and as a result
the vertical weld was able to transfer more vertical load to the DP. Poisson’s effect
might help explain this observation.

Besides case series 7 no particular arrangement was clearly observed to be the best
performance wise. Some of the plots presented, might indicate that as long as welds
are provided and DP is thick enough the performance of the different arrangements
would be similar. This could be due to the length of the welds being used. The
horizontal welds at the top and bottom of the DPs in the “deep” column were more

than 3 times the length of those in the “shallow” column.
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Because the intent of the thesis was to understand the behavior of “fitted” DPs case
series 7 bordered the definition of such. The top of the DP was at the same level as
that of the top of the loading plate. The benefits from this arrangement were
substantial and the force requirements of the fillet weld at the top of the DP were
lower. Unlike the comparison of an extended DP in the “shallow” column, the PZ

shear strength reported in Case 5 from Donkada (2012) was the highest.
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CHAPTER 6
Summary and Conclusions

6.1 SUMMARY

One of the methods used to resist seismic loads in steel structures is the use of special
moment frames. These systems are exposed to large lateral forces resulting from seismic
events. In cases when the column cannot provide adequate shear strength to resist the high
levels of shear in the panel zone, a doubler plate is used to increase strength by increasing
the area of the PZ. This thesis focused in the case where a “fitted” doubler plate is used to
increase the PZ strength. The program Abaqus was used to analyze two simplified models
of a W14x398 shallow column and a W40x264 deep column. The objectives of the analyses

were as follows:

1) Gain a better understanding of the performance of different attachment details for

fitted DPs.

2) Study the effects that clipped corners on fitted doubler plates have in the PZ and
the welds attaching it and gain a perspective of the force flow through the panel

zone.

3) Report the forces and stresses that both horizontal and vertical welds transfer to
the fitted DP and determine if both welds are necessary. Obtain a range of forces

for which the welds attaching the plates should be designed for.
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6.2 CONCLUSIONS

The following conclusions were drawn from the results of this study:

e The use of “fitted” DPs in the “shallow” column does not appear to affect the
overall load-deformation response of the panel zone compared to the case where
the doubler plate is extended 6-inches above and below the panel zone,. Extended
doubler plates were investigated by Donkada (2012). This study on fitted doubler
plates showed essentially the same panel zone load-deforamtion response as that

reported by Donkada.

e The use of the clipped corners did not result in performance deficits for either the
“shallow” or “deep” column specimens. A slight increase in force levels in the
welds within the first 2 inches away from the loading plates was noticed in the

W14x398 column.

e In the W14x398 “shallow” column, the outermost segments of the welds transfer
much higher forces than those near the center of the weld. This was evident in all
variations of the “fitted” DP especially in the vertical weld when no weld was used
to attach the top and bottom of the DP. The use of a weld at the top of a “fitted” DP
seems to alleviate the demand on the vertical groove weld reducing these stresses

substantially.

e The reduction in load that the use of a horizontal weld provides to a vertical weld

results in an increase of the force applied to the DP in the direction parallel to the
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weld. This results in higher PZ strengths on both “shallow” and “deep” column

cases

e Because a the DP in a deep column has higher propensity to buckle when no
horizontal weld is used to attach the DP, the use of horizontal welds at the top and

bottom of the fitted DP are recommended

e Tables 4.25, 4.26, 5.22, and 5.23 which show the relation between the forces
transferred by the welds and the shear strength of the DP would seem to indicate
that the top weld in a “fitted” DP should be designed to provide more than 80% of
the shear strength of the DP. This does not mean that a weld designed for lower
strength will necessarily fail but that if properly sized, the performance of a “fitted”
DP would likely improve with an increase in strength capacity in the welds used.
Based on this, the use of groove welds to attach all sides of a “fitted” DP is

recommended.

6.3 FUTURE WORK

This work used simplifications in order to reduce computing expense, an example of this
is the use of loading plates to represent the beam flanges. Monotonic and cyclic loading
was utilized in this and the previous work by Shirsat, Donkada, and Gupta. Some
recommendations for furthering the understanding of the panel zone region of special

moment frames and the attachments that reinforce it include:
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The results from the series of thesis with extended and fitted DPs should be
reworked in a detailed study using beams instead of loading plates, Figures 6.1 and
6.2. Because beams of different depths are often attached to in SMFs, a study of a
model using these might be insightful.

Shell elements are often used along with brick elements. A verification study that
explores the results from this and the previous studies might reveal that using shells
might speed up analysis while producing the same results.

The stresses and plastic strains reported in this thesis might be reported more
accurately if a local model of the welds alone with a dense mesh was used.
Buckling of the DP greatly influenced the time spent analyzing the “deep” column
modeled in this thesis. Additional work is needed to investigate the stability of
doubler plates and validate E3-7 from Provisions for Steel Structural Buildings

(AISC 2010).

Figure 6.1: Abaqus PZ model with one beam attached
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Figure 6.2: Abaqus PZ model with two beams attached
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Appendix A: Sample Abaqus Input File for W40x264 Column Case 8C1

s

** PARTS

o

*Part, name=CJP-CPFlange

*Element, type=C3DER

** Section: Okazaki Trilinear Weld

*Solid Section, elset=_PickedSetl2, material="C0kazaki Trilinear Weld"

-

*End Part

*Part, name=CIP-CPWeb

*Element, type=C3DER

** Section: Okazaki Trilinear Weld

*Solid Section, elset=_PickedSetl2, material="0kazaki Trilinear Weld"

-

*End Part

*Part, name="Continuity Plate”
*Element, type=C3DER

** Section: Okazaki Trilinear Steel

*Selid Section, elset=_PickedSet25, material="0kazaki Trilinear Steel”

-

*End Part

*Part, name=Doubler

*Element, type=C3DER

** Section: Okazaki Trilinear Steel

*Solid Section, elset=_PickedSet3, material="0kazaki Trilinear Steel"

-

*End Part

x

*Part, name=Fillet

*Element, type=C3DER

** Section: Okazaki Trilinear Weld

*Selid Section, elset=_PickedSetld, material="0kazaki Trilinear Weld"

-

*End Part

*Part, name="Groove Weld"

*Element, type=C3DER

** Section: Okazaki Trilinear Weld

*Solid Section, elset=_PickedSetld, material="C0kazaki Trilinear Weld"

-
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*End Part

*Part, name="Loading Plate"
“Elernent, type=C3DER

** Section: Elastic

*Solid Section, elset=_Picked5eth, material="Elastic Steel"

[

*End Part

*Part, name="W40x264

*Elernent, type=C3DER

** Section: Okazaki Trilinear Steel

*Solid Section, elset=_Picked5et39, material="0kazaki Trilinear Steel”

[

*End Part

i

i

= ASSEMELY

i

*Assembly, name=Assembly

“Instance, name=W40X264-1, part=W40x264

*End Instance

“Instance, name="Loading Plate-TL", part="Loading Plate"
*End Instance

“Instance, name="Loading Plate-TR", part="Loading Plate"
*End Instance

“Instance, name="Loading Plate-BR", part="Loading Plate"
*End Instance

“Instance, name="Loading Plate-BL", part="Loading Plate"
*End Instance

“Instance, name=Doubler-1, part=Doubler

*End Instance

i
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*End Instance

*Instance, name="Groove Weld-2", part="Groove Weld"
“End Instance

*k

*Instance, name=Fillet-1, part=Fillet

*End Instance

*k

*Instance, name=Fillet-2, part=Fillet

*End Instance

*Instance, name=CJP-CPFlange-1, part=CIP-CPFlange
*End Instance

*Instance, name=CIP-CPWeb-1, part=CIP-CPWeb
*End Instance

*k

*Instance, name="Continuity Plate-1", part="Continuity Plate"
*End Instance

*k

*Instance, name=CJP-CPFlange-2, part=CJP-CPFlange
*End Instance

*Instance, name=CJP-CPFlange-3, part=CJP-CPFlange
*End Instance

*Instance, name=CIP-CPWeb-2, part=CIP-CPWeb
*End Instance

*Instance, name="Continuity Plate-2", part="Continuity Plate"
“End Instance

*k

*Instance, name=CJP-CPFlange-4, part=CJP-CPFlange
*End Instance

*k

*Instance, name=CJP-CPFlange-5, part=CJP-CPFlange
*End Instance

*Instance, name=CIP-CPWeb-3, part=CIP-CPWeb
*End Instance

wH
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*Instance, name=CJP-CPFlange-6, part=CIP-CPFlange
*End Instance

*Instance, name=CJP-CPFlange-7, part=CJP-CPFlange
*End Instance

*Instance, name=CJP-CPWeb-4, part=CJP-CPWeb

*End Instance

i

*Instance, name="Continuity Plate-4", part="Continuity Plate”

*End Instance

*Instance, name=CJP-CPFlange-8, part=CJP-CPFlange
*End Instance

*Mset, nset=BLDisp, instance=W40x264-1
*Mset, nset=BRDisp, instance=W40X264-1
*Mzet, nset=FollerReact

*Mset, nset=TLDisp, instance=W40X264-1
*Mset, nset=TRDisp, instance=W40X264-1
*Meet, nset=TieReact

*Surface, type=ELEMENT, name=ColBott
*Surface, type=ELEMENT, name=ColMid
*Surface, type=ELEMENT, name=ColTop
*Surface, type=ELEMENT, name=DBL1
*Surface, type=ELEMENT, name=DBL2
*Surface, type=ELEMENT, name=DBL3
*Surface, type=ELEMENT, name=DBL4
*Surface, type=ELEMENT, name=DBL5
*Surface, type=ELEMENT, name=DBL6
*Surface, type=ELEMENT, name=DBL7
*Surface, type=ELEMENT, name=DBLS
*Surface, type=ELEMENT, name=FL1
*Surface, type=ELEMENT, name=FL2
*Surface, type=ELEMENT, name=FL3
*Surface, type=ELEMENT, name=FL4
*Surface, type=ELEMENT, name=FL5
*Surface, type=ELEMENT, name=FL&
*Surface, type=ELEMENT, name=FL7
*Surface, type=ELEMENT, name=FL8
*surface, type=ELEMENT, name=FL9
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*Surface, type=ELEMENT, name=FL10
*Surface, type=ELEMENT, name=FL11
*Surface, type=ELEMENT, name=FL12
*Surface, type=ELEMENT, name=FL13
*Surface, type=ELEMENT, name=FL14
*Surface, type=ELEMENT, name=FL15
*Surface, type=ELEMENT, name=FL16
*Surface, type=ELEMENT, name=FL17
*Surface, type=ELEMENT, name=FL18
*Surface, type=ELEMENT, name=FL19
*Surface, type=ELEMENT, name=FL20
*Surface, type=ELEMENT, name=FL21
*Surface, type=ELEMENT, name=FL22
*Surface, type=ELEMENT, name=FL23
*Surface, type=ELEMENT, name=FL24
*Surface, type=ELEMENT, name=FL25
*Surface, type=ELEMENT, name=FL26
*Surface, type=ELEMENT, name=FL27
*Surface, type=ELEMENT, name=FL28
*Surface, type=ELEMENT, name=FL29
*Surface, type=ELEMENT, name=FL30
*Surface, type=ELEMENT, name=FL31
*Surface, type=ELEMENT, name=FL32
*surface, type=ELEMENT, name=_GR1
*Surface, type=ELEMENT, name=_GR2
*Surface, type=ELEMENT, name=GR3
*Surface, type=ELEMENT, name=GR4
*Surface, type=ELEMENT, name=GR5
*Surface, type=ELEMENT, name=_GRG
*Surface, type=ELEMENT, name=GR7
*Surface, type=ELEMENT, name=GRE
*Surface, type=ELEMENT, name=GR9
*Surface, type=ELEMENT, name=GR10
*Surface, type=ELEMENT, name=GR11
*Surface, type=ELEMENT, name=_GR12
*Surface, type=ELEMENT, name=_GR13
*Surface, type=ELEMENT, name=GR14
*Surface, type=ELEMENT, name=GR15
*Surface, type=ELEMENT, name=GR16
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*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
“Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
“Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,
*Surface, type=ELEMENT,

name=GR11
name=0GR12
name=0GR13
name=GR14
name=GR15
name=GR16
name=GR1T
name=GR18
name=GR19
name=GR20
name=GR21
name=GR22
name=GR23
name=GR24
name=GR25
name=GR26
name=GR27
name=GR28
name=GR29
name=GR30
name=GR31
name=0GR32
name=5tffll
names= 5tiffl2
names= 5tiffl3
names= 5tiffl4
names= 5tiffl5
names= 5tiffla

name=_Picked5urfl8, internal

name=_Picked5urfl2, internal

name=_Picked5urf20, internal

name=_Picked5urfZl, internal

*Surface, type=ELEMENT, name=_PickedSurf22, internal
*Surface, type=ELEMENT, name=_Picked5urf23, internal
*Surface, type=ELEMENT, name=_PickedSurf24, internal
*Surface, type=ELEMENT, name=_Picked5urf25, internal
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** Constraint: BL Load

*Tie, name="BL Load", adjust=yes
_Picked5urf23, _Picked5urf22

** Constraint: BLPO1

*Tie, name=BLP01, adjust=yes
_PickedSurf219, PickedSurf218

** Constraint: BLPO2

*Tie, name=BLP02, adjust=yes
_PickedSurf221, _PickedSurf220

** Constraint: BLPO3

*Tie, name=BLP03, adjust=yes
_PickedSurf223, _PickedSurf222

** Constraint: BLPO4

*Tie, name=BLP04, adjust=yes, type=NODE TO SURFACE
_Picked5urf225, _PickedSurf224

** Constraint: BLPOS

*Tie, name=BLP05, adjust=yes, type=NODE TO SURFACE
_Picked5urf227, _PickedSurf226

** Constraint: BLPOG

*Tie, name=BLP06, adjust=yes
_Picked5urf229, _PickedSurf480

** Constraint: BLPO7

*Tie, name=BLP07, adjust=yes
_PickedSet282_CN5_ _PickedSurf278

** Constraint: BLPOS

*Tie, name=BLP0E, adjust=yes
_PickedSet281_CMN5_ _PickedSurf280

** Constraint: BLP21

*Tie, name=BLP21, adjust=yes
_Picked5urf262, _PickedSurf261

** Constraint: BLP22

*Tie, name=BLP22, adjust=yes
_Picked5urf264, _PickedSurf263

** Constraint: BLP23

*Tie, name=BLP23, adjust=yes
_PickedSurf266, _PickedSurf265

** Constraint: BLP24

*Tie, name=BLP24, adjust=yes
_PickedSurf268, _PickedSurf267

** Constraint: BLP25

*Tie, name=BLP25, adjust=yes
_PickedSurf270, _PickedSurf269

** Constraint: BLP26

*Tie, name=BLP26, adjust=yes
_Picked5urf272, _PickedSurf271

** Constraint: BLP27
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_Picked5urf270, _PickedSurf208
** Constraint: BLP26

*Tie, name=BLP26, adjust=yes
_PickedSurf272, PickedSurf271

** Constraint: BLP27

*Tie, name=BLP27, adjust=yes
_PickedSet284_CNS_, _PickedSurf283

** Constraint: BLP28

*Tie, name=BLP28, adjust=yes
_PickedSet?91_CNS_, _PickedSurf285

** Constraint: BR. Load

*Tie, name="BR Load", adjust=yes
_PickedSurf25, _PickedSurf24

** Constraint: Ceolll

*Tie, name=Col01, adjust=yes, type=NODE TO SURFACE
_PickedSurf438, _PickedSurf471

** Constraint: Col02

*Tie, name=Col02, adjust=yes, type=MNODE TO SURFACE
_Picked5urf433, PickedSurfl76

** Constraint: Col03

*Tie, name=Coll3, adjust=yes, type=MNODE TO SURFACE
_PickedSurf440, PickedSurf472

** Constraint: Col04

*Tie, name=Colld, adjust=yes, type=MNODE TO SURFACE
_PickedSurfddl, PickedSurf473

** Constraint: DbIBott

*Tie, name=DhblBott, adjust=yes
_PickedSurfd42, PickedSurf474

** Constraint: DblLeft

*Tie, name=DblLeft, adjust=yes
_PickedSurf444, PickedSurf458

** Constraint: DbIRight

*Tie, name=DblRight, adjust=yes
_PickedSurf445, _PickedSurf460

** Constraint: DblTop

*Tie, name=DblTop, adjust=yes
_PickedSurf443, PickedSurf475

** Constraint: Roller
*Rigid Body, ref node=_Picked5Setf, tie nset=_PickedSet?
** Constraint: TL Load

*Tie, name="TL Load", adjust=yes
_PickedSurfl9, _PickedSurfls

** Constraint: TLPO1

*Tig, name=TLP01, adjust=yes
_Picked5urfl91, PickedSurfl190

** Constraint: TLPO2
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*Tie, name=TLP0Z, adjust=yes
_PickedSurfl93, _PickedSurfl92

** Constraint: TLPO3

*Tie, name=TLP03, adjust=yes
_PickedSurfl95, PickedSurfl94

** Constraint: TLP04

*Tie, name=TLP04, adjust=yes
_PickedSurfl97, _PickedSurfl96

** Constraint: TLPOS

*Tie, name=TLP05, adjust=yes
_PickedSurfl93, PickedSurfl98

** Constraint: TLPOG

*Tie, name=TLP0G, adjust=yes
_PickedSurf201, _PickedSurf479

** Constraint: TLPO7

*Tie, name=TLPO7, adjust=yes
_PickedSet203_CNS_, _PickedSurf202

** Constraint: TLPO8

*Tie, name=TLP0E, adjust=yes
_PickedSet205_CNS_, _PickedSurf204

** Constraint: TLP21

*Tie, name=TLP21, adjust=yes
_PickedSurf241, PickedSurf240

** Constraint: TLP22

*Tie, name=TLP22, adjust=yes
_PickedSurf243, PickedSurf242

** Constraint: TLP23

*Tie, name=TLP23, adjust=yes
_PickedSurf245, PickedSurf244

** Constraint: TLP24

*Tie, name=TLP24, adjust=yes
_PickedSurf247, _PickedSurf245

** Constraint: TLP25

*Tie, name=TLP25, adjust=yes
_PickedSurf249, PickedSurf248

** Constraint: TLP26

*Tie, name=TLP26, adjust=yes
_PickedSurf251, PickedSurf252

** Constraint: TLP27

*Tie, name=TLP27, adjust=yes
_PickedSet288 CNS_, _PickedSurf287

** Constraint: TLP28

*Tie, name=TLP28, adjust=yes
_PickedSet?92_CNS_, _Picked5urf289

** Constraint: TR Load

*Tie, name="TR Load", adjust=yes
_PickedSurf2l, _Picked5urf20
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*Tie, name="TR Load", adjust=yes

_PickedSurf2l, _PickedSurf20

** Constraint: Tie

*Rigid Body, ref node=_PickedSetd, tie nset=_Picked5etd

*End Assembly
*Amplitude, name=Amp-1
a., 0., 1,
4, 0. 5.
a., 0., 9.
12, 0., 13,
15, 0., 17.,
20, 0., .,
24, 0., 25,
28, 0. 29,
3z, 0. 33.
36., 0., 3.
40, 0., 1.,
44, 0. 45,
48, a. 49,
52, 0., 53.
56, 0., 5.
60, 0. 6l.,
64., a. 65.,
68., 0., 6.,
12, 0., 13,
76, 0. 1.,
0., 0., 8.,
a4, 0., 5.,
85, 0., 839,
9z, 0. 93.,
98., 0., 97.
100., 0., 101.,
104, 0., 105,
108., 0. 109,
112, 0. 113,
*Amplitude, name=Amp-2
0., 0., 1,
4, 01, 5.,
&., 0.2, 9,
12, 0.3, 13,
16, 0.4, 17.,
20, 0.5, 1.,
24, 0.6, 25,
28, 0.7, 2,
32, 0.8, 33.
36., 0.a, 3.
40, 1., 4.,
a4, 11, 45,
45, 1.2, 43,
52, 13, 53.,
56, 1.4, 5.,
60., 15

0.045,
0.045,
0.045,
0.045,
0.045,
0.045,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.09,
0.08,
0.08,
0.08,
0.09,
0.08,
0.1z,
0.1z,
012,
0.1z,
0.18,
0.18,
0.24,
0.24,
0.38,
0.38,
0.48,

0.025,

0.125,

0.225,
0.325,
0.425,
0.525,
0.625,
0.725,
0.825,
0.925,
1.025,
1.135,
1.225,
1.325,
1.425,

10,

102,
106,
110,
114,

10,

=

=

P P P P P R P e R R R P P P P

cooo”

0.05,
015,
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0.25,
0.35,
045,
0.55,
0.65,
0.75,
0.85,
095

1.05,
115,
1.25,
1.35,
145,

(]

3.,
1.,
1,
15,
18,
23,
27
31,
35,
39,
43
47
51,
55,

v
v

"

v
v
"

"

v

99,
103.,
107.,
111.,
115,

11,

-0.045
-0.045
-0.045
-0.045
-0.045
-0.045
-0.06
-0.08
-0.06
-0.06
-0.06
-0.08
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-012
-012
-012
-012
-018
-018
-0.24
-0.24
-0.36
-0.36
-0.48

0.075
0175

0.275
0.375
0.475
0.575
0.675
0.775
0.875
0.975
1.075
1.175
1.275
1.375
1.475



£

** MATERIALS

£

*Matenial, name="Elastic Steel"

*Elastic
29000, 0.3

*Matenial, name="0kazaki Multi Steel"

*Elastic
29000, 0.3

*Plastic, hardening=COMBIMNED, datatype=5TABILIZED, number backstresses=6
0.001, 0.

17,8433, 0.00135927

37.2603, 0.00410534

552118, 00131522
64.5, 0.0358959
70.2, 0.07492

*Material, name="0kazaki Multi Weld"

*Elastic

29000, 0.3

*Plastic, hardening=COMBIMNED, datatype=5TABILIZED, number backstresses=6
0.001, 0.

19,7558, 0.000463528
49,5417, 0.0036715
71.54, 0.0154504
76.23, 0025441
86.32, 00743642

*Material, name="0kazaki Trilinear 5teel”

*Elastic
29000.,0.3

*Plastic

5209 0.
6994, 0.04808
125.7, 0.43508

*Material, name="Ckazaki Trilinear Weld"

*Elastic
29000, 0.3

*Plastic
6515, 0.
8365, 0.04804
14591, 0.43467

£

** INTERACTION PROPERTIES

£

*Surface Interaction, name=IntProp-1
1.

*Surface Behavior, pressure-overclosure=HARD

£



** BOUMDARY COMNDITIOMS

ok

** Mame: Roller Type: Displacement/Rotation

*Boundary
_PickedSetl?4, 1,1
_PickedSetl?4, 2, 2
_PickedSetl?4, 5,5
_PickedSetl?4, 6,6

v

e

** Mame: Tie Type: Displacement/Rotation

*Boundary
_PickedSet173,1,1
_PickedSet173, 2, 2
_PickedSetl73, 3, 2
55
6,6

_Picked5etl73, 5,
_Picked5etl73, 6,

ok

** INTERACTIONS

i

** Interaction: Int-1

*Contact Pair, interaction=IntProp-1, type=5URFACE TO SURFACE, adjust=0.0
_PickedSurf489, _PickedSurfl71

T

** STEP: Loading

i

*Step, name=Loading, nlgeem=YES, inc=70000
*Static
1e-08, 60, 1e-35, 01

** BOUMDARY COMNDITIOMS

** Mame: BotDisp Type: Displacement/Rotation
*Boundary, amplitude=Amp-2

_PickedSet120,1,1
PickedSet120, 2, 2, -3,

** Mame: TopDisp Type: Displacement/Rotation

*Boundary, amplitude=Amp-2
_PickedSet118,1,1
_PickedSetl18, 2, 2, 3.

T

= QUTPUT REQUESTS

i

*section print,name=DBL1, surface=DBL1
SOF

*section print,name=DBL2, surface=DBL2
SOF

*section print,name=DBL3, surface=DBL3
SOF

*section print,name=DBLY, surface=DBL4
SOF

*section print,name=DBL5, surface=DBLS
SOF

519



** OUTPUT REQUESTS

i

*section print,name=DBLL, surface=DBL1
SOF

*section print,name=DEL2, surface=DBL2
SOF

*section print,name=DBL3, surface=DBL3
SOF

*section print,name=DELY4, surface=DEBL4
SOF

*section print,name=DBL5, surface=DBLS
SOF

*section print,name=DBL6, surface=DBLG
SOF

*section print,name=DBL7, surface=DBL7
SOF

*section print,name=DBLE, surface=DBLS
SOF

*section print,name=FL1, surface=FL1
SOF

*section print,name=FL2, surface=FL2

SOF

*section print,name=FL3, surface=FL3
SOF

*section print,name=FL4, surface=FL4

SOF

*section print,name=FLS, surface=FL5
SOF

*section print,name=FL6, surface=FL&
SOF

*section print,name=FL7, surface=FL7
SOF

*section print,name=FLE, surface=FL&
SOF

*section print,name=FLY, surface=FL9

SOF

*section print,name=FL10, surface=FL10
SOF

*section print,name=FL11, surface=FL11
SOF

*section print,name=FL12, suface=FL12
SOF

*section print,name=FL13, surface=FL13
SOF

*section print,name=FL14, surface=FL14
SOF

*section print,name=FL15, surface=FL15
SOF

*section print,name=FL16, surface=FL16
SOF
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*section print,name=5tiff01, surface=5tiff01
SOF

*section print,name=5tiff02, surface="5tiff02
SOF

*section print, name=5tiff03, surface=S5tiffd3
SOF

*section print,names=5tiff04, surface=5tiff04
SOF

*section print,namex=5tiffd5, surface=5tiff05
SOF

*section print, names=S5tiff0s, surface=Stiffda
SOF
*Restart, write, frequency=0

** FIELD QUTPUT: F-Output-1

wH

*Output, field, variable=PRESELECT

wH

" HISTORY OUTPUT: BL

wH

*Output, history
*Mode Output, nset=BLDisp
UL, uz, us

" HISTORY OUTPUT: BR

wH

*Mode Output, nset=BRDisp
UL, uz, us

i

** HISTORY QUTPUT: Roller

wH

*Mode Qutput, nset=RollerReact
RF2,

i

" HISTORY QUTPUT: TL

wH

*Mode Qutput, nset=TLDisp
U1, uz, u3

i

= HISTORY QUTPUT: TR

i

*Mode Qutput, nset=TRDisp
U1, uz, us

= HISTORY QUTPUT: Tie

i

*Mode Output, nset=TieReact
RF2,

*End Step
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Appendix B: Matlab Code for Parsing of Large Section Force Data File

B Editor - D:\Abaqus\Alberto Thesis\20140314_Models 14, 2A\One Inch_14\New folder\AlbertMew2.m

| AlbertMew2.m '| + |
1= clec;clear all;
2 - filename='7TC1E.dat';
3
4 = fid=fopen (filename) ;
= nLines=0;
[ while (fgets(fid) ~= -1},
o= nlines = nLines+l;
B = end
Cil= felose (£id)
10 — fid=fopen (filename); Abaqus File with
11 Requested Section
14 |= i=0; Forces. Place this
13 - while ~feof(fid) Matlab File in same
14 — line = fgetl( fid ): directory as Abaqus
15 — if length{line)>30 .dat file
16 — if length(line)==55%
17 — if strcmp(line (33:41),'INCREMENT')
18 — inc=strZznum(line (44:47)):
19 = end
20 — end
21
22
23
24 — if stremp (line (3:9),"SECTION")
25 — i=i+l;
26 — Section{i,1l}=line (33:40);
27 — increment (i, 1l)=inc;
28 — for 4=1:14
29 — line=fgetrl (£id):
30 — end
31 = if =ztremp (line, ")
32 - data(i,1l)=0;
33 — data (i, 2)=0;
34 - data (i, 3)=0:
35 — data (i, 4)=0:
36 — else
37 = data{i,l)=strZ2Znum(line (8:19)):
38 — data{i,2)=strZ2num(line (20:31)):
39 — data{i,3)=strZ2num(line (32:43)):
40 — data{i,4)=strZ2Znum(line (44:end)) ;
41 — end
42 — end
43 — end
44 — end
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m

name

SOF 3, 7 axis

T ans
DATA H data
H fid
(=] filename
oo
R e
I j
|zoc| line
1] nLines
Section E Section
|
S0OF1, Xaxis SOF 2, Y axis
| data [
0 51759 double
1 3 4
1 -37184e-10, -6.0937e-06  8.1353e-12
2 4.0175e-07  -3.8259e-08  -3.5179e-07 1.9022e-07
3 6.3709e-06 -1.0494e-10 6.3709e-06 -1.4220e-11
4 4.0180e-07  3.818%e-08 -3.5188e-07 -1.9018e-07
5 6.2822e-07  1.3114e-08 -21832e-07 -5.8892e-07
b 2.2331e-06  -2.464%9e-09 -7A4828e-07  2.1040e-06
7 7.8675e-06 -1.2919e-10 -7.8675e-06  7.7406e-10
8 6.0913e-06 -4.0756e-10 6.0913e-06  2.6268e-10
9 2.7991e-07  5.89369e-08 -27078e-07 3.8807e-08
10 2.6566e-07  7.2582e-09 -2.5586e-07 7.1116e-08
11 2.3308e-07  -13858e-09 -2.2983e-07  3.8803e-08
12 20916e-07 -1.8726e-09 -20736e-07  2.7360e-08
13 1.9153e-07  -1.5281e-09 -18073e-07 1.7474e-08
14 1.789%e-07 -7.2417e-10 -1.7849e-07  1.2925e-08
15 1.6953e-07 -2.9904e-10 -1.05929e-07  B.8881le-09
16 1.6266e-07 -1.0002e-10 -1.6253e-07  6.5553e-09
17 1.5732e-07 1.3387e-10 -1.5725e-07  4.5820e-09
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value 1N v1ax

0 0 0

517594 double -1440 1595

3 3 3

‘7C1B.dat'

51759 51759 51759

639 639 639

5175%1 double 1 639

14 14 14
WALLCLOCK TL...

396665 896665 896665

517591 cell



Appendix C: Abaqus Batch Job Instructions

Instructions:

1)

2)

3)

Write the following text file in notepad
And save as .bat file. Job= filename
Save this file in the same directory as that

which Abaqus saves input files for analysis.

Write input file for all jobs you request and double
click .odb notepad file. Abaqus CAE does not
need to be open to run jobs, and job monitor will
not show progress but DOS prompt will show start

and stop of each analysis case.

Remove any other job files other than the .imp file

otherwise DOS prompt will ask if they should be

deleted and will not start analysis on its own.
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r

Mj Batchlob - Motepad

File Edit Format View Help

IC
abaqus job=4A interactive
abaqus job=4Al interactive
abaqus job=4C interactive
abaqus job=4Cl interactive
abaqus job=3A interactive
abagus Jjob=5Cl interactive

)

Original
~A Annotations
is Analysis
=8 Jobs (14)
1A_W40B (Check Completed)
1C_W40B (Check Completed)
248 Wa0B
2C_W40B
341 W40B
3A_W40B
3C1_W40B
3C_W40B
10
4A W
4c1w  Bdit
4cwa Copy..
TALE (¢ Rename...
TJC1B (1 Delete... Del
Y s T
B Co-ex Data Check
B optim  Supmit

Switch Context Ctrl+5pace

Monitaor...

Results

Export 3
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