
1
9
8
0
A
p
J
.
.
.
2
3
9
.
.
8
8
0
S

THE ASTROPHYSICAL JOURNAL, 239:880---881, 1980 August 1 
© 1980. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

POTENTIAL IN THE CENTRAL BAR STRUCTURE 

VICTOR SzEBEHELY, 1 JOHN LUNDBERG, AND WILLIAM J. McGAHEE 

The University of Texas, Austin 
Received 1979 August 3; accepted 1980 February 4 

ABSTRACT 

The figure-eight orbits obtained by Miller and Smith inside the central bar structure of galaxies 
are used to establish possible potential functions which result in such orbits. It is shown that ,- 6 

type potentials are special cases of distance and angle-dependent potential functions. 
Subject headings: galaxies: internal motions - galaxies: structure - stars: stellar dynamics 

I. INTRODUCTION 

In a recent paper Miller and Smith (1979) computed 
stellar orbits in a prolate bar and found that "about 
25'70 of all orbits show clean or phase-shifted figure 
eights." The period of rotation of the bar is about 6 
times larger than the period of the orbit; therefore, in 
the first approximation the rotation of the system may 
be neglected. This is especially true in the (z, x)-plane 
where the orbits show remarkable likeness to lemnis
cates (see Fig. 5 of Miller and Smith 1979, where the x 
axis is along the bar and the body rotation axis is along 
z). If we consider motion only in the (z, x)-plane, 
neglect the rotation of the system, and assume "clean" 
figure-eight orbits, an analytical solution may be 
obtained for the potential function which results in 
such orbits. 

It should be noted that in the (y, x)-plane Miller and 
Smith (1979) show that the centrifugal effects distort 
the clean figure eights and asymmetric loops appear. 
Our method is two-dimensional and sidereal (appli
cable in a fixed system); therefore, only motion in the 
(z, x)-plane is analyzed. Extension of our method to 
more general cases present fundamental analytical 
difficulties. Treatment in the synodic frame requires 
the solution of a nonlinear partial differential equa
tion, while in the fixed system the pertinent partial 
differential equation is linear allowing an explicit 
analytic description of the general solution. 

II. FORMULATION OF THE INVERSE PROBLEM 

The inverse problem of dynamical astronomy may 
be defined as follows. For a given family of orbits find 
the force field which results in the orbits. It was shown 
before (Whittaker 1904) that this problem in general 
has no unique solution. In fact when conservative force 
fields are assumed the solution for the potential is 
obtained from a first-order linear partial differen
tial equation (Szebehely 1974). Modifications and 
examples are offered by Broucke and Lass (1977) 
and by Morrison (1977). 

This paper presents the general solution of the above 
1 L. B. Meaders Professor of Engineering. 

880 

mentioned partial differential equation for figure-eight 
orbits or lemniscates given by the equation 

r 2 = a2 cos ne ' (1) 

where r and (} are polar coordinates, a is a scale factor, 
and n is related to the angle (oc) of the tangent to the 
lemniscate at the origin (oc = ± n/2n). Figure 1 shows a 
family of lemniscates with a = land n = 1, 2, 3, and 4. 
The figure-eight orbits of Miller and Smith (1979) 
correspond to n > 2. 

The partial differential equation which gives the 
potential function ( V) for a given orbit/(x, y) = c may 
be written as (Szebehely 1974) 

2(V+h) 2 2 f 2 + J, 2 Uxxh - 2fxyfx/y + fyyfx ) + Vxfx + Vyfy = 0 , 
x y a) 

where his the constant of energy or the total energy per 
unit mass of the body moving in the field given by 
V(x, y). Subscripts denote partial derivatives. 

The same equation in polar coordinates becomes 

2(V+h) ( 2 2 f, 3 2/. r 2 ) 
fe 2 +r2J,.2 f..Je -2/..fef..e+feef.. + r r +-;:- rJe 

le + V,f,. + 2 Ve= 0 , (3) 
r 

1.00 

-1.50 

-1.00 

Fm. 1.-Family of lemniscates for a= 1 and n = l, 2, 3, 4 
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where the orbit is given by f(r, (}) = c and the potential 
function is V(r, (}). 

III. SOLUTIONS FOR THE POTENTIAL 

Substituting r2 - a2 cos ne = f(r, (})in equation (3), 
the partial differential equation for the determination 
of the potential becomes 

4(V + h)</J + 2rV, + nV8 tan n(} = 0, (4) 
where 

r4 (4 - n2) + 3n2a 4 

<P = r4 (4 - n2 ) + n2a4 · 
(5) 

The general solution of this equation may be 
obtained by the method of characteristics using 

dr d(} dV 

2r n tan n(} 4</J(V + h) 

From this system, the solution of equation ( 4) becomes 

(6) 

where s = sin n(} and Fis an arbitrary function of its 
argument. Since a is a scale factor, we may normalize 
the result by considering r/a instead of r or simply 
using a = 1. Note that the signs of the two terms in the 
numerator are opposite when n > 2, i.e., for Miller and 
Smith (1979) type orbits. 

IV. SPECIAL CASES 

1. When F(x) = l, we have 

n2 4 - n2 

V+h=-+--· r6 r2 

From this we may conclude that a reduction in the 
potential (as well as in the radial force) occurs when 
n 2 2. The near-field effects (n2 /r6 ) and the far-field 
effects [(4 - n2)/r2 ] operate in the same direction for 

broad (n = l) lemniscates. But the forces are in the 
opposite direction for flat lemniscates when n is large, 
as is the case for the figure eights of Miller and Smith 
(1979). 

2. When F(x) = x, the potential function becomes 

V h - r4(4 - n2) + n2 ( . (J)2/n2 + - 7 smn , 
r 

(8) 

which shows angular dependence as well as depen
dence on r. 

3. The Newtonian gravitational component ap
pears when F(x) = x- 1 is selected. This field is com
plicated with singularities occurring at the extremes of 
the loops of the lemniscates ((} = 0, n/n), in addition to 
the singularities at the origin. The potential in this case 
is 

v + h = ( 4 ~ n2 
+;:)<sin ne)- 21n2

• 

The Newtonian potential term (r- 1) is present as 
long as n #- 2. 

A number of other possibilities may be studied 
concerning equation (6) which is not a unique solution 
(as expected since it is the solution of a partial 
differential equation), and it contains an arbitrary 
function. In fact equation (4) may also be formulated 
in several different ways, which naturally influences the 
solution. Nevertheless, the approach is rather straight
forward, and the results are not uninteresting. 
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