
 

 

 

 

 

 

 

 

 

Copyright 

by 

Kelly Rebecca Strickler 

2015 

 

 



The Report Committee for Kelly Rebecca Strickler 

Certifies that this is the approved version of the following report: 

 

 

Green Stormwater Infrastructure in an Informal Context:  

Feasibility and Potential Stormwater Impacts of Implementing Rain 

Gardens and Rain Barrels in Peri-Urban Santo Domingo 

 

 

 

 

 

 

APPROVED BY 

SUPERVISING COMMITTEE: 

 

 

 

Bjørn Sletto 

Matthew Hollon 

 

  

Supervisor: 



Green Stormwater Infrastructure in an Informal Context:  

Feasibility and Potential Stormwater Impacts of Implementing Rain 

Gardens and Rain Barrels in Peri-Urban Santo Domingo 

by 

Kelly Rebecca Strickler, B.S.; B.A.  

 

 

Report 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Master of Science in Community and Regional Planning 

 

 

The University of Texas at Austin 

May 2015 

  

 



 iv 

Acknowledgements 

I am indebted to my mentors, friends, and colleagues who supported me throughout 

this process. First and foremost, this entire project would have been impossible without the 

guidance and support of both Dr. Bjørn Sletto and Juan Torres. In addition enabling this 

project by providing an introduction to the community of Los Platanitos, Dr. Sletto’s high 

expectations and excellent example have helped me push out of my comfort zone and grow 

as a researcher and person. Juan Torres, my local contact and advisor, is simply the most 

helpful, generous, and knowledgeable person in Santo Domingo. I also want to thank the 

individuals that ignited my interest in green stormwater infrastructure, and who continue 

to broaden my horizons on this topic to this day. Dr. Sarah Dooling introduced me to its 

capabilities, while Matt Hollon, Erin Wood, and Tom Franke taught me the practicalities 

and nuances that were integral to the development of this project.  

I also want to thank the residents of Los Platanitos, Los Trinitarios, and Santa Cruz 

that gave their time to both ensure my safety and contribute to my research. I especially 

want to recognize the contributions of Elías Brito Reynoso, Juan Francisco Correa, Fani 

Moises, Aqulino Cueva (“Pica”), and Pedro Almonte, who were particularly helpful to this 

investigation. Furthermore, I am very grateful for my friends and colleagues at the 

University of Texas who participated in the 2014 research in Santo Domingo that 

proceeded the current effort. I want to thank my research partner Adam Torres, as well as 

my colleagues Sara McTarnaghan, Sam Siegal, Samantha Kattan, Sam Tabory, Rachel 

Nolley, Kendal Asuncion, and Rebecca Rinas. 

Lastly and most importantly, I want to thank Brett for his continual support and 

encouragement over my entire Master’s program. And of course, I would be lost without 

Queequeg, Bridget, and Leonard.  



 v 

Abstract 

 

Green Stormwater Infrastructure in an Informal Context:  

Feasibility and Potential Stormwater Impacts of Implementing Rain 

Gardens and Rain Barrels in Peri-Urban Santo Domingo  

Kelly Rebecca Strickler, MSCRP 

The University of Texas at Austin, 2015 

 

Supervisor:  Bjørn Sletto 

 

Latin America is the most urbanized region in the developing world, with much of 

this urbanization occurring informally. The pressure of increasing impervious cover 

without the provision of adequate stormwater infrastructure frequently leads to urban 

flooding in informal contexts. This study investigates the feasibility and potential benefits 

of implementing a network of decentralized green stormwater infrastructure controls in the 

subwatersheds of three channelized creeks that contribute to flooding in Los Platanitos, an 

informal settlement in Santo Domingo Norte, Dominican Republic. Through a mixed-

methods research design including interviews with institutional actors and residents, as 

well as detailed field mapping with local experts, a Stormwater Management Model 

(SWMM) model was developed to estimate the potential runoff and storage impacts of the 

construction of a network of rain gardens and rain barrels throughout the contributing 

subwatersheds. The model predicts a 20% reduction in flooding for a 5-year storm, and a 

lengthening of the time it takes for the system to start flooding. These benefits, albeit small, 

are substantial when floodwaters are highly contaminated and pose a significant health risk. 
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CHAPTER ONE: Introduction 

With 80% of its population living in cities, Latin America is the second most 

urbanized region after North America, and the most urbanized region in the developing 

world (IDB, 2012). Much of this urbanization occurs informally—nearly 15% of the 

population of the Dominican Republic lives in informal settlements, with more than half 

of the population lacking formal land titles (Torres, 2014; MEPyD, 2013). Due to 

neoliberal reforms that have devolved planning power to weak and underfunded local 

governments, large portions of the population do not have access to the most basic of 

services. Thirty-five percent of the population do not have access to clean tap water, 22% 

have no indoor plumbing, and only 11.4% are connected to adequate stormwater 

infrastructure. The pressure of increased informal urbanization and its concomitant 

addition of impervious surfaces without the provision of adequate stormwater 

infrastructure frequently leads to urban flooding problems (COPDES and UNCT, 2004). 

The informal settlement of Los Platanitos is located in Santo Domingo Norte, one 

of the five municipalities that compose Greater Santo Domingo, Dominican Republic. The 

community was founded by rural-to-urban migrants on land deemed unsuitable for formal 

development due to its steep slopes, proximity to a natural drainage way, and the fact that 

it was previously used as a landfill. A large portion of the neighborhood is situated in a 

steep canyon, traversed by three major channelized creeks that drain into the Yaguasa 

River. Due to the large volume of runoff originating from the upstream communities of 

Los Trinitarios, Santa Cruz, and the arterial Avenida Hermanas Mirabal, the channel 

frequently overflows during periods of heavy rainfall and floods the nearby homes. Nearly 

75% of structures adjacent to the channel have experienced flooding, and 58% had flooding 

severe enough to force residents to leave their homes. As the community has low incomes 
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and high levels of unemployment, underemployment, and informal employment, its 

residents are particularly vulnerable to these flood impacts (Sletto, ed. 2010). 

Stormwater professionals in the Dominican Republic, as well as many other 

developing countries, rely on the sanitary model to manage urban stormwater. Under this 

model, stormwater is piped as quickly as possible to outfalls to rivers or the sea, causing 

downstream flooding, erosion, and water quality degradation. Because these centralized 

systems are costly to construct and maintain, public entities are largely unable to expand 

the system—only 16% of the Distrito Nacional (the central municipality of Greater Santo 

Domingo) is served by the current system (Auding-Watson, 1997). The intersection of the 

hydrologic consequences of increased urbanization, informality, and neoliberal governance 

in Santo Domingo produces a situation in which those populations most vulnerable to flood 

impacts are also the most likely to live in flood-prone areas. At the same time, the overall 

lack of technical, administrative, and financial capabilities in local governments brought 

about by decentralization has greatly diminished the possibilities for effective flood 

mitigation in informal settlements. This combination of local, national, and global forces 

that exacerbate vulnerability in Los Platanitos are reproduced throughout the entire city. 

This study investigates the feasibility and potential benefits of implementing a 

network of decentralized green stormwater infrastructure controls in the subwatersheds of 

the three channelized creeks that contribute to flooding in Los Platanitos. The emerging 

paradigm of decentralized stormwater management is based on the dispersal of small 

stormwater controls throughout a watershed to manage stormwater quality and quantity at 

the source of runoff production. These source-control strategies attempt to restore natural 

hydrologic processes to the greatest extent possible. Instead of managing stormwater as a 

waste product that must be eliminated immediately, which is the current predominant 
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practice throughout the developing world, stormwater is seen as a resource that can provide 

multiple benefits to a watershed (Green et al. 2012; Thurston et al., 2003).  

A review of the green stormwater infrastructure literature suggests that a 

decentralized approach is potentially well-suited to informal settlements due to its ability 

to be implemented incrementally, at low cost, and utilizing the human and social capital of 

the community itself rather than relying on outside actors (Brewer & Fisher, 2004; 

ECONorthwest, 2007; Thurston et al., 2003, USEPA, 2007). In one notable study, the 

Environmental Protection Agency (EPA) evaluated the public participation and stormwater 

effects of an incentive-based approach to “citizen-based stormwater management” in an 

urbanized watershed in Cincinnati, Ohio (Green et al., 2012, p. 1669). After an education 

campaign and the establishment of local demonstration rain gardens and rain barrels, the 

researchers held reverse auctions in which eligible landowners placed bids on how much 

they desired to be paid to receive a rain garden or barrel. Overall, 81 rain gardens and 165 

rain barrels were installed on 75 properties within the 1.8 km2 watershed. The overall 

impact of the installations was a small, but statistically significant decrease in stormwater 

volume at the subcatchment scale (Shuster et al., 2013; Mayer et al., 2012). 

This project explores the following, related questions: 1) Would an incentive- or 

community-based provision model similar to that in the EPA’s Cincinnati, Ohio study be 

feasible in an informal context? 2) What are some resources to be leveraged or barriers to 

the implementation of such a program? 3) Given the predominant urban form of the 

channels’ subwatersheds, how many rain gardens and rain barrels can reasonably be 

expected to be installed throughout the community? 4) Taking into account the soils, 

regional rainfall patterns, the capacity of current stormwater infrastructure, and the 

percentage of impervious cover within the channels’ subwatersheds, what are the potential 

runoff and storage implications of the construction of these controls?  
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In order to investigate these questions, I employed a mixed-methods research 

design including a literature review, semi-structured interviews with institutional actors, 

structured interviews with neighborhood residents, detailed field mapping of the creeks’ 

subwatersheds with local experts, and field testing of soil infiltration rates. Finally, this 

information was used to develop a Stormwater Management Model (SWMM) model to 

estimate the potential stormwater impacts of rain garden and rain barrel implementation in 

the channels’ subwatersheds. This mixed-methods approach was chosen to both identify 

the geophysical parameters of the area that would inform the subsequent modeling of each 

intervention, but also to better understand the sociocultural, political, and economic 

realities that could facilitate or hamper implementation of those interventions.   

After estimating the total number of rain gardens and rain barrels that would be 

constructed given the number of households with sufficient space, coupled with the rate of 

adoption in the Cincinnati, Ohio study (230 rain gardens and 299 rain barrels), the model 

predicts a 20% reduction in flood volumes for a 5-year storm, and a lengthening of the time 

it takes for the system to start flooding. These benefits, albeit small, can have a substantial 

impact on human security and quality of life, given that floodwaters are highly 

contaminated and therefore pose a significant health risk. The community would see a 

small decrease in flood frequency, depth, and duration, meaning less exposure to 

contaminated floodwaters and more time to prepare for flooding.  

Given these findings, it is highly unlikely that the use of green stormwater 

infrastructure alone can meaningfully reduce flooding in Los Platanitos. This report 

recommends that the community adopt some combination of green and traditional “grey” 

infrastructure. While green infrastructure can handle small storms and provides multiple 

ancillary benefits, upgrades to “La Piscina” storage area are needed to protect vulnerable 

residents from larger storm events. In the short-term, the community can implement some 
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rain gardens and rain barrels immediately, but it will also need to collaborate with the local 

government to enact longer-term regulatory solutions that can influence the land-

development activities of upstream landowners. It is important to note that the existence of 

ready-made, well-developed social networks may make community-based stormwater 

management more viable in Los Platanitos than in the developed world.  The capacity and 

connections of existing community groups such as Mujeres Unidas and the Fundación Los 

Platanitos (FUMPLA) should be utilized to establish a green stormwater infrastructure 

demonstration site. This would introduce the concept to homeowners and serve as a 

training site for potential local technicians, building the human capital the community 

needs to ensure rain barrels and rain gardens are properly constructed and maintained. 

After this introduction, Chapter Two gives an overview of the current literature 

regarding green stormwater infrastructure, stormwater practices in developing countries, 

and the potential advantages of implementing green stormwater infrastructure in 

developing countries. Chapter Three explains the trajectory of planning in the Dominican 

Republic, including the move from a centralized to decentralized planning paradigm. 

Chapter Three also describes current stormwater practices in Santo Domingo, and the 

current state of stormwater, potable water, and sanitary services in Los Platanitos. Chapter 

Four documents the methods employed in this study, including model development 

procedures and the models input parameters. Chapter Five describes the results of modeled 

stormwater impacts of rain gardens and rain barrels, and discusses community capacity to 

implement a community-based service provision model. Finally, Chapter Six provides 

conclusions and recommendations for flood solutions.  
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CHAPTER TWO:  Decentralized Sustainable Stormwater Management 

in Developing Countries 

Green Stormwater Infrastructure: A New Paradigm for Stormwater Management 

Urbanization, and the associated increase in impervious surfaces in the form of 

rooftops, roads, and parking lots, is changing hydrological processes worldwide. The 

installation of impervious surfaces, soil compaction, and tree and vegetation removal 

involved in conventional land development practices alter the natural hydrology of the 

land. Instead of being intercepted by tree canopies, evapotranspirated by vegetation, or 

infiltrated into the soil to eventually feed stream baseflow, precipitation runs off 

impervious surfaces and is converted to overland flow. Runoff reaches streams faster and 

in greater volumes, causing higher peak flows that cause channel erosion and habitat 

alteration. While flood frequency and magnitude increases, less infiltration means less 

groundwater water is available to the stream during dry periods. This reduction in baseflow, 

coupled with the increased pollutant and sediment loadings from impervious surfaces, 

leads to a subsequent degradation of aquatic habitat. The benthic macroinvertebrates that 

form the building blocks for the entire riparian ecosystem cannot survive (Thurston et al., 

2003).  

In the conventional centralized drainage systems common throughout the U.S., 

excess runoff is captured, conveyed, and discharged untreated into receiving water bodies 

through a separated municipal storm sewer system. In older communities, stormwater is 

combined with sanitary sewage, conveyed to a wastewater treatment facility, treated, and 

discharged into a receiving water body (Green et al., 2012). In municipalities that have the 

resources and desire to engage in watershed protection measures, the negative externalities 

of urbanization are ameliorated by control and treatment strategies that capture excess 

runoff to control downstream flooding, peak flow rates, and suspended solids 



 7 

concentrations before water is discharged into a water body. While these practices result 

in less risk of flooding, erosion, and pollutant loadings in urban streams, they do not 

address all the widespread and cumulative effects of hydrological modification. These 

“end-of-pipe” water quality and quantity solutions reduce the downstream impacts of 

excessive runoff, but they cannot fully mitigate upstream effects of the loss of sufficient 

infiltration. Even though such practices frequently occupy high-value community open 

space and require costly maintenance with heavy equipment to maintain functionality, 

urban streams continue to be turned into stormwater conveyances, largely losing their 

ecological function.  

While conventional stormwater conveyance practices have a high degree of 

reliability and acceptance by municipalities and consumers, such practices are not resilient 

to the uncertainties brought about by climate change, they damage the natural hydrological 

function of the land, and they require constant influxes of capital resources to maintain. In 

the past few decades, control and treatment strategies have had limited success in 

preventing further degradation of urban streams, but water quality and habitat degradation 

continue. A new paradigm has emerged in stormwater management, however, that 

promises to restore natural functioning to a watershed while also enhancing resiliency to 

climate change and drought, reducing energy costs, enhancing carbon sequestration, and 

improving quality of life for nearby residents (Kuo & Sullivan, 2001). Decentralized 

stormwater management is based on the dispersal of stormwater management practices 

throughout a watershed to manage stormwater quality and quantity at the source of runoff 

production. These source-control strategies attempt to restore, to the greatest extent 

possible, natural hydrologic processes. Instead of managing stormwater as a waste product 

that must be eliminated immediately, it is seen as a resource (Green et al., 2012) that can 

provide multiple benefits to a watershed.  
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Collectively, this emerging paradigm of stormwater practices that use soil and 

vegetation or engineered capture technologies to control runoff at its source by replicating 

natural drainage systems is referred to as sustainable stormwater management (Green et 

al., 2012). As a relatively new approach to stormwater management, various overlapping 

terms are used in the literature. While closely related and often used interchangeably with 

the terms Low Impact Development, environmental site design, or conservation design, 

which are more often used regarding greenfields development—this project sees 

sustainable stormwater management as a broader term that can apply to retrofits, the 

redevelopment of existing sites, and practices that stretch over multiple scales (MacMullan 

and Reich, 2007; Shaver, 2009). Green stormwater infrastructure is a collective term for 

the suite of stormwater control measures (SCMs) that support the control of runoff near its 

source. Named in opposition to conventional, unifunctional “grey” infrastructure, such 

practices are multifunctional, multiscalar, and provide multiple ancillary benefits. While 

the opportunities to integrate green stormwater infrastructure into new development and 

retrofits is almost endless, this project concentrates on the flood mitigation capability of 

those SCMs that can be easily deployed in an incremental fashion throughout a watershed: 

privately-maintained rain gardens to capture runoff from homes and businesses and 

rainwater harvesting systems. 

Aside from the ecological benefits of sustainable stormwater management, the most 

important advantage to this emerging approach is that green stormwater infrastructure has 

the unique ability to appreciate in ecological value and function over time (Green et al., 

2012). Although properly designed and maintained grey infrastructure can efficiently 

convey and store runoff, such systems are in a continual state of decay and depreciation 

after they are constructed. Green infrastructure approaches to stormwater management use 

soil pore space as an alternative volume for runoff storage. Because plant-soil systems 
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support their own ecosystem, they are by design inherently capable of responding to a range 

of climate conditions and may therefore exhibit enhanced resilience, compared to grey 

infrastructure systems. And while grey infrastructure only depreciates in value and 

functionality over time, this ecosystem dynamic actually can enhance a stormwater control 

measure’s functioning over time. For example, the soil ecosystem properties of a properly-

maintained rain garden can induce positive feedbacks that improve both plant health and 

soil structure. The soil macrofaunal activity that promotes nutrient cycling also creates 

large biopores, which allow water to flow more freely than through compacted soils. Along 

with structural porosity from seasonal soil heaving and ongoing root penetration, this 

growth of biopores enhances the infiltration capacity of the rain garden. As the rain garden 

ages and its ecosystem advances, it is able to infiltrate a broader range of rainfall depths 

and frequencies.   

A green stormwater infrastructure approach is of course not a panacea for urban 

flooding problems. The City of Austin Watershed Protection Department recently 

concluded a three-year study which modeled the large-scale application of decentralized 

green stormwater infrastructure in the Brentwood Neighborhood to assess the potential 

impacts on localized flooding caused by undersized drainage infrastructure. Overall, the 

study showed that even if a decentralized program achieved the maximum possible 

coverage of green stormwater controls throughout the neighborhood, these controls could 

only mitigate flooding up to a 7-year storm. A combination of green stormwater 

infrastructure and targeted traditional infrastructure improvements, however, completely 

eliminated local flooding up to 10-year storms, and significantly reduced the number of 

structures subject to flooding in somewhat larger storms. While these traditional 

infrastructure upgrades added approximately one million dollars to the projected costs, 
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bringing the total costs to $17 million, these projected costs were still significantly lower 

than the traditional infrastructure scenario ($190 million) (City of Austin, 2014). 

The green stormwater infrastructure approach is also not without its own distinct 

disadvantages. By their nature, dispersed stormwater systems are distributed throughout an 

entire watershed and over many properties, making continued monitoring and maintenance 

a monumental task for conventional top-down, command-and-control stormwater 

management strategies. Evidence and practice suggests that rain gardens also require more 

frequent maintenance than larger control and treatment structures, as smaller structures can 

easily become clogged with sediment or trash (Vesely et al., 2005). For infiltration-based 

SCMs, the soil is very vulnerable to disturbances—it needs to be cared for to ensure 

continued functionality and the soil also must be replaced periodically to prevent the 

accumulation of pollutants. But most maintenance does not have to be carried out with 

heavy equipment by professionals, nor are ongoing costs high. 

Stormwater Management in Developing and Informal Contexts 

While developed countries are beginning to embrace the paradigm shift towards 

sustainable stormwater management as a way to restore runoff quantity and quality to that 

of natural land cover, lower income countries mostly still struggle with problems of excess 

runoff quantity due to uncontrolled urbanization. The immediate threat to lives and 

property that urban flooding poses lends itself to quickly-implemented and familiar 

solutions over untested ones, and the 19th century sanitary model of urban drainage is still 

the overwhelmingly predominant practice in developing countries. The object of the 

sanitary model is to convey excess stormwater as rapidly as possible away from settled 

areas to waterbodies via open channels and buried conduits. Even though stormwater is 

often mixed with sewage and solid waste, it is largely discharged directly into waterbodies 
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untreated (Goldenfum et al., 2007). While the sanitary approach causes a multitude of 

negative environmental consequences, it has the advantage of being simple to design and 

implement—it is concerned with one design goal and can be carried out by civil engineers 

alone. The prevalence and entrenchment of the sanitation model of urban drainage is one 

of many barriers facing the implementation of sustainable stormwater management in 

developing countries, but recent research has shown that the potential exists for the 

implementation of more sustainable stormwater management strategies (Armitage, 2011; 

Button et al., 2010; Goldenfum et al., 2007; Silveira, 2002) 

Academic and practitioner literature related to urban stormwater management in 

developing contexts is still relatively scarce and largely introductory. Most authors simply 

document the challenges to providing any sort of urban drainage, sustainable or otherwise, 

in a developing context. The root causes of these problems can be reduced to two main 

categories: 1) the rapid population growth of developing-world cities, and 2) the inability 

of governments to adequately respond to that population growth.   

The social and ecological problems associated with the rapid and uncontrolled 

urban expansion common to developing countries are many—including increased levels of 

air pollution, urban heat island effect, overcrowding, unemployment, noise pollution, and 

deforestation. Past research has demonstrated that the most hydrologically devastating 

effects of this migration to cities is the explosive expansion of impervious cover and 

incursion of vulnerable populations into areas unsuitable to land development (Silveira, 

2002; Reed, 2013; Tucci, 2001; Parkinson, Tayler, and Mark, 2007). As low-income rural 

migrants flow into developing-world cities, they frequently settle in areas of cities that have 

been deemed unsuitable to intensive land use because these areas are cheap, unoccupied, 

and close to job opportunities (Silviera, 2002; Reed, 2013). The site of these informal 

settlements are often areas of flow conveyance, floodplains, steep slopes, and unsuitable 
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soils; i.e. areas which are either at already at risk of flooding or highly sensitive to 

hydrological changes. These settlements are virtually always built without the consent of 

planning authorities and rarely conform to official planning guidelines, building 

regulations, and construction standards. Because these settlement are not part of the formal 

city, they have also not been provided services such as stormwater, household wastewater 

(greywater), and sanitary (blackwater) infrastructure (Tucci, 2001; Silveira, 2002). 

Furthermore, the use of the sanitary model of stormwater management in the formal city 

frequently exacerbates flooding problems in informal areas. The expansion of drainage 

works such as pipes and channels to increase conveyance of ever-expanding runoff 

volumes frequently just creates new flooding problems downstream. The combination of 

increased upstream impervious cover, incursions into flood-prone areas, and a lack of 

proper stormwater conveyance infrastructure produces a situation in which very vulnerable 

populations are frequently subject to the highest flood risk (Armitage, 2011). 

Past research has also demonstrated that multiple interrelated factors contribute to 

the tendency of local governments to largely ignore drainage problems in informal 

settlements. By far the most commonly mentioned limiting factor is the lack of adequate 

economic resources and technical skills to respond to the pressures that informal 

settlements place on local government, mostly due to small tax bases and lack of trained 

staff (Tucci, 2001; Silveira, 2002; Armitage, 2011). Local governments are also reluctant 

to extend services to illegal settlements, both because of their illegality and also because 

the residents of such settlements have a low percentage of rate payers for water-related 

services. Local governments and utilities are more inclined to make investments in formal 

neighborhoods with a higher percentage of rate payers (Tucci, 2001). Unfortunately, the 

increased pressure that informal settlement place on limited government resources often 

results in lower levels of maintenance of existing systems and reduced performance across 
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the entire municipality (Armitage, 2011). Most local governments also lack the legal 

instruments and enforcement capabilities necessary to effectively regulate development, so 

drainage problems caused by the private sector must be solved and paid for by the public 

sector (Goldenfum et al., 2007).  

Even when local governments do decide to extend stormwater services to informal 

settlements, Goldenfum (2007) and Armitage (2011) observed that local governments have 

a limited capacity to effectively address problems. Local governments in developing 

contexts frequently suffer from data deficiencies, an incomplete record of the existing 

drainage network, lack of records updating, and a lack of water quantity and quality 

monitoring of the natural or man-made drainage network. Armitage (2011) observed that 

local and national officials in developing countries also tend to focus on clientelistic, short-

term projects that can secure re-elections, rather than long-term projects that can better 

serve the populace (Armitage, 2011). This short-term mentality, coupled with a 

fragmentation of responsibility for water-related service delivery among various actors, 

frequently results in a piecemeal response to highly interrelated problems (Goldenfum et 

al., 2007). 

While middle income countries such as Chile and Malaysia have already begun to 

implement source-control methods for stormwater management (Parkinson and Mark, 

2005), there has been limited research into the potential for green stormwater infrastructure 

in developing countries other than Brazil. Having recognized that urban drainage must be 

integrated with planning, Brazil is transitioning towards a drainage paradigm that more 

closely resembles that of developed nations (Goldenfum et al., 2007; Silveira, 2002). 

Detention basins have been introduced in some Brazilian cities, but the widespread 

adoption of detention techniques has been limited due to resistance to new concepts and 

ideas on the part of stormwater engineers (Baptista et al., 2005; Goldenfum et al., 2007). 
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The lack of technical knowledge regarding infiltration, storage, or water quality also limits 

their use, and frequently leads to a lack of proper maintenance of ponds that are built 

(Goldenfum et al., 2007). Dense urban environments also provide limited space for larger-

scale practices such as detention basins. Planners and engineers are also understandably 

reluctant to install costly detention ponds given the real or potential threat of contamination 

with fecal matter and other forms of solid waste (Silveira, 2002). Attempts to bring smaller 

controls to developed contexts will likely face similar problems. 

Like most research covering urban drainage in developing countries, Goldenfum et 

al. (2007) and Silveria et al.’s (2002) contribution to the literature is largely focused on 

documenting the barriers to implementation of more environmentally sound stormwater 

management practices. While they do cite general solutions such as institutional 

integration, long-range planning, implementation of laws to enforce the construction and 

proper maintenance of detention basins, and the education of designers, legislatures, and 

the general public (Goldenfum et al., 2007), the timeframe of potential gains from these 

solutions is long-term. The large-scale control and treatment strategies they examine also 

continue to ignore the root causes of excess runoff—impervious cover and inadequate 

infiltration capacity. Research into short and medium range solutions is needed to 

immediately improve the quality of life of the most vulnerable residents of developing 

countries—those living in informal settlements. 

Potential Advantages of Green Stormwater Infrastructure in Developing Countries 

Potentially lower retrofit and lifecycle costs 

Due to the limited resources available to local governments, cost considerations are 

frequently the driver of local government decisions in developing contexts. This is 

especially true for the costs of upgrades to informal communities—while informal 
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settlements place a great strain on existing infrastructure and services, they typically do not 

contribute a high proportion of taxes or rates to pay for the expansion of those services. 

Grey infrastructure investments are costly for all governments, especially those that are 

chronically overextended by unplanned development. Local governments in a developing 

context also must consider the potential relocation costs incurred due to the displacement 

of residents that is often necessary to make room for large grey infrastructure projects in 

dense informal communities. Any strategy that could reduce costs while retaining 

functionality could greatly enhance local government’s ability to address flood risk in 

informal communities. Decentralized approaches to stormwater retrofits have been shown 

to remedy the negative consequences of stormwater runoff more cost-effectively than 

upgrading traditional centralized systems (Thurston et al., 2003), and they can be 

implemented without disrupting large tracts of land. The multifunctional nature of green 

stormwater infrastructure also adds to its efficiency, potentially reducing public 

expenditures on other infrastructure such as potable water, water treatment, and sanitary 

sewers.  

In an EPA (2007) review of 17 projects that include Low Impact Development 

Practices (LID), the total capital cost of construction savings ranged from 15 – 80%, with 

one exception in which costs were greater for the LID development. Because the current 

study investigates the feasibility of installing green stormwater infrastructure LID in a 

densely urban context, the costs associated with retrofits are more relevant to the current 

study. While the case studies predominantly compared the costs of implementing LID 

versus conventional development practices on an undeveloped tract, three cases compared 

the costs of retrofitting an existing urbanized area with LID practices versus upgrading the 

existing conventional stormwater infrastructure. While Vancouver, Canada’s Crown Street 

redevelopment cost an estimated 9% more than upgrading the existing conventional 



 16 

system, Seattle’s Street Edge Alternative (SEA) redesign of a residential block cost 25% 

less while retaining an impressive 99% of surface runoff. Another notable retrofit is the 

case study of two parking lot retrofits in Bellingham Washington, in which installing rain 

gardens saved an estimated 77% over installing conventional underground vaults. Because 

underground vaults are frequently used in dense urban contexts common to developing 

countries, and are used throughout Santo Domingo, such a drastic cost reduction suggests 

that LID retrofits could be viable in developing contexts as well. A separate review of 

installation costs associated with LID development conducted by ECONorthwest (2007) 

found modest cost savings across the board for retrofit projects.  

From the perspective of a private developer, the up-front installation costs 

associated with a particular development approach are far and away the most important 

cost metric. From the perspective of the municipal decision-makers that would carry out a 

retrofit project in a developing context, however, such an examination excludes key 

considerations of cost-effectiveness and operations and maintenance costs over time. The 

existing literature suggests that these lifecycle costs are also smaller or comparable to 

conventional stormwater systems. Brewer and Fisher (2004) modeled the cost-

effectiveness of installing LID stormwater controls in varying contexts. Their analysis 

found that while the LID scenario cost more for the school and commercial context, all 

four of the modeled scenarios managed a larger volume of stormwater than the 

conventional design scenario, extending the useful life of the infrastructure. Using data on 

the national average of construction costs per cubic feet of stormwater detention, 

ECONorthwest (2007) further analyzed the Brewer and Fisher’s results to calculate the 

future construction costs avoided due to the LID scenarios’ additional storage capacity. In 

both the school and commercial development models, the LID scenario’s future cost 

savings surpassed its up-front cost overruns by a margin of at least $38,000. While the 



 17 

Brewer and Fisher study did not include future operations and maintenance costs in its 

analysis, Vesely et al. (2005) conducted an analysis comparing the life cycle costs of a 

conventional versus low impact retrofit of a residential development experiencing frequent 

localized flooding due to inadequate drainage infrastructure in North Shore City, New 

Zealand. The LID retrofit consisted of an engineered system of gravel ditches, trenches, 

bioswales, and rainwater cisterns. Their analysis concluded that the cisterns and pumps 

must be replaced more frequently than pipes, leading to 6% higher lifecycle costs than a 

conventional system upgrade. Notably, this analysis also found that maintenance costs 

associated with the gravel trenches and channels was considered insignificant, suggesting 

that LID approaches relying solely on such systems could see considerably lower life cycle 

costs.   

Human capital can be leveraged immediately for short- and medium-term gains 

In the absence of large investments of physical capital from overstretched local 

governments, a decentralized approach is also advantageous in that it can be implemented 

more or less immediately and by communities themselves. Individual SCMs can be 

constructed incrementally as time, space, and availability of materials allows. Many 

infiltration-based SCMs can be constructed of cheap and commonly-found materials such 

as sand, gravel, compost, and PVC pipe, and no special equipment is needed. What is 

needed, however, is the human and social capital necessary to construct and ensure the 

continuing functionality of a large number of individual small-scale stormwater controls. 

Human capital is the knowledge, skill, and experience of an individual, whereas social 

capital is when individuals share and bring these capabilities to coordinated activity 

(Coleman, 1988). In informal communities, human and social capital is often the only form 

of capital readily available—as a result, these communities often have robust networks of 
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formal and informal social ties that can be leveraged for a community-based, decentralized 

stormwater management system. 

While Reed (2013) found that delegating the maintenance of traditional grey 

infrastructure to community groups was rarely successful, a decentralized approach differs 

from traditional approaches in that each SCM contributes to runoff retention largely 

independently of other SCMs in the network. Whereas a centralized network must be 

managed as a whole in order to preserve function, a failure in one decentralized SCM does 

not affect the functioning of the other parts of the network. Because of the dispersed nature 

of the urban runoff problem, in fact, sustainable stormwater solutions are significantly 

hamstrung without the engagement of private landowners. Such a bottom-up, incremental 

stormwater management program is also advantageous in that it can operate within the 

extant legal framework, without the need for new governmental authority or regulatory 

action.  

Since 1999, the EPA has recognized that community engagement is particularly 

important to decentralized stormwater management because issues of private property 

rights, land access, and community acceptance of an unfamiliar technology pose significant 

barriers to implementation and long-term functionality of the program (USEPA, 2007). 

Since that time, requirements for municipalities that discharge stormwater directly into 

receiving water bodies have included public education and outreach and public 

participation and involvement among the menu of measures that communities must use to 

reduce the discharge of polluted stormwater (Green et al., 2012). For example, as part of 

their compliance with the EPA’s Combined Sewer Overflows (CSO) regulations, the City 

of Portland implemented a Downspout Disconnection Program (City of Portland, 2015). 

The program gave homeowners in selected neighborhoods the opportunity to disconnect 

their downspout from the combined sewer system, allowing their roof runoff to drain to 
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gardens and lawns. Residents earned $53 per downspout if they did the work themselves, 

or community groups or local contractors performed the disconnection—community 

groups earned $13 for each downspout. When the program was ended in 2011, over 56,000 

downspouts had been disconnected, removing more than 1.3 billion gallons of stormwater 

annually from the combined sewer system. (USEPA, 2007; City of Portland, 2015). 

In order to investigate the effectiveness of a decentralized, public-engagement 

focused stormwater management strategy, the EPA conducted a six-year study on the 

public participation and stormwater effects of an incentive-based approach to “citizen-

based stormwater management” in an impaired urbanized watershed in Cincinnati, Ohio 

(Green et al., 2012, p. 1669). After a direct mailing education campaign and the 

establishment of demonstration rain gardens and rain barrels at the local arboretum, the 

researchers held reverse auctions in which eligible landowners placed bids on how much 

they desired to be paid to receive a 16 m2 rain garden or 75 gallon rain barrel. This reverse 

action quantifies the homeowner’s valuation of the opportunity cost of losing the portion 

of their yard occupied by the SCM. In two rounds of reverse auctions in 2007 and 2008, 

81 rain gardens and 165 rain barrels were installed on 75 properties within the 1.8 km2 

watershed. The overall impact of the installations was a small, but statistically significant 

decrease in stormwater volume at the subcatchment scale—resulting in an estimated 360 

m2 (360,000 liters) increase in detention capacity for excess stormwater runoff (Shuster et 

al., 2013; Mayer et al., 2012). In one micro-watershed area of around 50 houses with 

particularly high participation rates, this increase in detention was enough to decrease 

stormwater quantity relative to pre-management conditions at the neighborhood outfall for 

smaller rain events. It is also notable that over half of the bids were for $0, meaning that 

many property owners were willing to participate in the program for no financial 

compensation.  
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Another potential mechanism for an increased suitability of this model for informal 

contexts is seen in Woodward, Hunt, & Hartup’s (2008) evaluation of the North Carolina 

Backyard Rain Garden Program, in which the homeowner’s reasons for adopting the rain 

garden appeared to correlate with how well the rain garden was functioning two years later. 

The program conducted a series of “How to Rain Garden” training workshops to avid 

gardeners, environmentalists, school groups, homeowners who lived on the lake that the 

rain gardens were intending to protect, and homeowners who were required by law to build 

a rain garden; the program then shared the costs of constructing the rain garden with the 

homeowner. The rain garden sites were revisited two years after installation to evaluate 

their condition. Good condition meant the rain garden was functioning as designed, had 

been maintained, and adequate storage volume had been maintained. Fair rain gardens had 

not received maintenance, but retained at least some functionality. Both the avid gardeners 

and the homeowners that lived within sight of the lake had high levels of maintenance, 

with 93% and 100% of rain gardens in good or fair condition after two years, while the 

other groups maintained only 67% in good or fair condition.  

This increased attention to maintenance for avid gardeners and households with a 

direct connection to the resource suggests that rain garden adopters in Los Platanitos may 

also be, on average, more conscientious caretakers of rain gardens and rain barrels. As 

documented in Sletto ed. (2014), the residents of Los Platanitos have a high level of 

household plant production, and take great pride in their green spaces. Most households in 

Los Platanitos, Los Trinitarios, and Santa Cruz also have a direct connection to someone 

that lives abajo, or in the lower portion of Los Platanitos that is susceptible to flooding. 

Perhaps as a result of this daily engagement with those affected by flooding, any potential 

rain garden adopters with be more likely to keep them in working condition. 
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Given the limited capacity of many developing countries to provide adequate 

stormwater infrastructure to all of its citizens, this model of providing small incentives 

and/or support to private landowners to construct and maintain green stormwater 

infrastructure deserves attention. Especially in informal settlements that are facing 

immediate flooding problems, such a community-based provision of decentralized 

stormwater infrastructure could serve as a way to quickly leverage limited resources and 

human capital for short- and medium-term gains. In fact, the existence of ready-made, well-

developed social networks and the lack of adequate public infrastructure may make 

community-based stormwater management more viable in informal contexts than in the 

developed world.  
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CHAPTER THREE: Planning, Urban Governance, and Stormwater 

Management in Santo Domingo 

Planning and Urban Governance in Santo Domingo 

Urban drainage problems in Santo Domingo are primarily the result of rapid 

population growth due to massive rural-to-urban migration during the mid to late twentieth 

century (Torres, 2014). The pressure that rural-to-urban migration puts on growing 

municipalities, and the stress that this population growth puts on environmental systems, 

is compounded by the consequences of the shift to neoliberal forms of governance in the 

1990s. 

The history of urban planning—and by extension stormwater management 

planning—in the Dominican Republic (DR) has been largely driven by national political 

and economic developments. During the administration of the dictator Rafael Trujillo from 

1930 to 1961, planning was characterized by a highly modernist and centralized approach. 

The country saw a rapid economic growth under Trujillo, and with it, the construction of 

the major street grid, government complexes, housing complexes for evicted residents of 

informal communities, and the expansion of the highway system (Torres, 2014). Trujillo’s 

planners also oversaw the construction of centralized stormwater system. With less 

population and the city covering less area, the system functioned with 6 inch connection 

tubes and 1 meter by 1 meter storm sewers (colectores), using gravity to send the water to 

the Rio Osama or the sea (A. Miceli, personal communication, August 2014). In the words 

of Alfonzo Miceli, a stormwater engineer for Santo Domingo Distrito Nacional: 

In the era of Trujillo there was less population…Trujillo never thought 

that there would be trucks carrying soft drinks, plantains, concrete, 

etc., and the streets functioned very well—the drainage functioned well. 

But the population grew, with a lack of awareness, and the people 

began to take the tops off the sewers. 
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After Trujillo’s assassination in 1961 and the ensuing years of instability, Joaquín 

Balaguer’s election and establishment as a “strongman”(caudillo) in 1966 largely marked 

a return to the centralized, modernist planning carried out by Trujillo. Balaguer’s 

administration established a National Planning Office (Oficina Nacional de Planificación) 

and continued to expand the highway system, construct new public administration 

complexes, and build 5,000 new public housing units. During this time period, rural-to-

urban migration greatly increased due to rural underdevelopment and expulsions by foreign 

landowners to accommodate more sugar plantations (Torres, 2014; Muraya, 2006). With 

an inadequate supply of formal housing despite the construction of public housing units, 

many rural migrants settled on the edges of the Ozama River. Following the common trend 

of establishing informal settlements in areas that are publicly owned, unoccupied, and close 

to job opportunities, this area became site of the first large-scale informal settlements in 

the city. Other informal settlements developed in other parts of the city, many of which 

were similarly unsuitable for intensive land development due to flood risk. Situated at the 

confluence of two major rivers, Santo Domingo is home to hundreds of natural 

drainageways, known in Santo Domingo as cañadas. With 55 urban creeks throughout 

Santo Domingo Norte alone and numerous other creeks draining to the Rivers Osama and 

Isabela from the other districts of the metropolitan area, there are countless flood-prone 

informal settlements throughout Santo Domingo. By 1977, informal settlements contained 

74% of the city’s population (Muraya, 2006). 

The 1970’s also saw the rise of neoliberal economic theory as well as the issuance 

of loans to the DR through the International Monetary Fund (IMF). The consequences of 

these two developments would result in an eventual shift in the national governance and 

planning paradigm towards a decentralized, horizontal approach. The beginning of this 

shift was prompted by the “Volker Shock” in 1981, when the Federal Reserve raised US 
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interest rates to over 20% in order to curb high inflation. Because much of Latin American 

external debt, including that of the DR, had been contracted at floating interest rates, this 

shock led many Latin American countries to the brink of default, setting off what is now 

known as the “third world debt crisis.” (Ocampo, 2014). In response to this crisis, President 

Salvador Jorge Blanco approved an IMF package in 1984 that renegotiated the DR’s 

external debt, but this renegotiation was contingent on several structural adjustments aimed 

at deregulating and opening the Dominican economy to foreign markets (Torres, 2014). 

Through the 1990s and 2000s, the Dominican government was pressured to undertake 

fiscal reform aimed at cutting government spending and borrowing, increasing tax 

revenues, cutting public works projects, dismantling subsidies on staples, and lowering 

trade barriers (Greenberg 1997).  

The emergence and eventual embrasure of this neoliberal economic model has 

resulted in a “rollback” of investment in the provision of basic services, as well as a 

decentralization of planning authority to underfunded local governments. With the 

restructuring of the Comisión de Asuntos Urbanos (Urban Issues Commission, CONAU) 

into a consultant role as the Dirección General de Ordenamiento y Desarrollo Territorial 

(DGODT) within the Ministerio de Economía, Planificación, y Desarollo (Ministry of 

Economy, Planning, and Development, MEPyD), planning power has effectively devolved 

from national to local governments. At the same time, public spending cutbacks have led 

to a persistent lack of technical, administrative, and financial capabilities in local 

governments (Sletto, 2014), as well as a privatization of many basic services such as solid 

waste removal and potable water. In 2001, the decentralization effort resulted in the 

creation of the new municipality of Santo Domingo Norte, in which Los Platanitos is 

located, as part of the division of Santo Domingo into five municipalities (Sletto ed., 2014; 

SDN, 2013). As a completely new public entity lacking technical and economic resources, 
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Santo Domingo Norte faced significant challenges in governing the primarily informal and 

new residential development. 

The privatization of most basic services, coupled with spending cutbacks, has 

largely left the poorest segments of society out of the recent economic rebound. Although 

the DR is now classified as an upper-middle income country by the World Bank, 40% of 

the population lives below the poverty line while 20% of the population account for fully 

half of the nation’s income (World Bank, 2013; Torres, 2014). Nearly 15% of the 

population lives in informal settlements, and more than half of the population lacks land 

titles (Torres, 2014; MEPyD, 2013). This unemployed, underemployed, and informally 

employed segment of society largely live in inaccessible areas and provide little in the way 

of tax revenues. As a result, they are largely ignored by private service providers and local 

governments alike (Sletto, 2014). Large portions of the population do not have access to 

the most basic of services—35% of the population does not have access to clean tap water, 

22% have no indoor plumbing, and only 11.4% are connected to adequate stormwater 

infrastructure. From 1990 to 2000, the portion of urban residents with sustainable access 

to safe drinking water actually decreased by 2.5% (COPDES and UNCT, 2004).  

In the 1990s and 2000s, public discontentment with neoliberal policies grew, and 

protest was loudest in those sections of the populace most affected by inadequate provision 

of public services. The public protested, at times violently, about lack of security in public 

places, inadequate access to education, lack of waste collection services, and poor 

preparation in the face of hurricanes. Especially after the DR joined the Central American 

Free Trade Agreement, civil society groups and intellectuals called for improved public 

administration and greater attention to the needs of the urban poor (Torres, 2014). In 2009, 

the government responded to growing criticism by adopting the Law of Participatory 

Budgeting, which gave further autonomy to municipalities and required them to dedicate a 
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certain percent of their tax revenues to projects developed through a participatory process. 

Ostensibly, participatory budgeting both reduces the clientelism that has characterized 

politics in the DR since Trujillo and directly satisfies needs of the public. And while this 

model seems to be functioning well in the Distrito Nacional, very few other municipalities 

comply with the law’s requirements (Chantada, 2014). According to Juan Torres, a former 

Senior Planner who was responsible for the participatory budgeting process in the Distrito 

Nacional until March 2015, “the relevance of the participatory budgeting process and the 

extent of local influence depend to a large degree on the capacities and commitments of 

the mayors and city councils.” (Torres, 2014, p. 572). In other words, those municipalities 

that are already weakened due to a lack of technical and economic capacity are rarely able 

to effectively wield the tool of participatory budgeting. In Santo Domingo Norte, the 

process has been described as “opaque” (Sletto et al., 204, p. 576), “haphazard, politicized, 

or not implemented at all” (Torres, 2014, p. 572). 

In response to the devolution of planning authority to local municipalities and the 

increased availability of resources for civil society groups through the participatory 

budgeting process, new types of planning actors have emerged in Santo Domingo. Civil 

society groups that initially protested neoliberal reforms have taken advantage of the 

participatory budgeting process to present alternative, community-based planning 

solutions to urban problems. For example, the Fundación de Saneamiento Ambiental de la 

Zurza (Fundsazurza) has partnered with the Distrito Nacional to conduct household solid 

waste collection their community, a service that was not previously provided by the 

municipality. As a part of an agreement that provides US$25 to the organization for each 

ton of solid waste collected, Fundsazurza is also responsible for other services such as tree 

trimming, maintenance of street lighting, removal of animal carcasses, and the cleaning 
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and beautification of public places (Mendoza, 2014). This community-based service 

provision model could potentially be replicated for stormwater management.  

The intersection of the hydrologic consequences of increased urbanization, 

informality, and neoliberal governance in Santo Domingo produces a situation in which 

those populations most vulnerable to flood impacts are also the most likely to live in flood-

prone areas. At the same time, the overall lack of technical, administrative, and financial 

capabilities in local governments brought about by decentralization has greatly diminished 

the possibilities for effective flood mitigation in informal settlements. This combination of 

local, national, and global forces that exacerbate vulnerability in Los Platanitos are 

reproduced throughout the city.  

City-wide Stormwater Management Practices 

As discussed above, high rates of rural-to-urban migration to informal settlements 

and the devolution of planning authority to local governments has produced a situation in 

which virtually all natural drainageways pose a flood hazard to vulnerable residents, and 

municipalities are ill-equipped to effectively deal with this hazard. The stormwater 

management practices reflected in the following section are derived from interviews with 

stormwater engineers from the Distrito Nacional, which, as the seat of the capital, is by far 

the most well-funded and technically advanced municipality in the country.1 These 

strategies and opinions that follow, therefore, represent the best practices of the Dominican 

Republic as a whole, rather than practices particular to Santo Domingo Norte where Los 

Platanitos is located. However, in conversations with the Director of Planning it became 

clear that the stormwater management practices of the Distrito Nacional represented the 

                                                 
1 The stormwater engineers and planning professionals all gave their consent for their names to be used in 

this document. The resident interviewee have been given a pseudonym to protect their privacy and 

confidentiality. 
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model for Santo Domingo Norte. Because Santo Domingo Norte has a much smaller 

workforce and technical capacity than the Distrito Nacional, drainage concerns are 

typically handled by the Public Works Department as a part of road construction or a 

participatory budgeting project (J. De la Cruz, personal communication, August 2014). 

Without a stormwater engineer dedicated specifically to drainage infrastructure, Santo 

Domingo Norte’s stormwater approach draws heavily on the practices in the Distrito 

Nacional described here. 

Like many developing countries, stormwater managers in Santo Domingo are too 

preoccupied with problems of excess runoff quantity to consider water quality and stream 

health a top priority. The immediate threat to lives and property that urban flooding poses 

occupies most of their time, leaving little time to question the preeminence of the sanitary 

model of urban drainage. As discussed earlier, the object of the sanitary model is to convey 

excess stormwater as rapidly as possible away from settled areas to waterbodies via open 

channels and buried conduits. The absolute acceptance of this institutional philosophy was 

reinforced many times in my conversations with stormwater engineers and planners 

throughout the Distrito Nacional and Santo Domingo Norte. Numerous interviewees 

spontaneously cited the massive tunnel that was built to ensure that the Metro does not 

flood as the ideal urban drainage solution (J. Torres, A. Miceli, Y. Batista, J. De la Cruz, 

personal communication, August 2014). Besides this overarching stormwater paradigm, 

the other main drivers of stormwater decisions include a desire to keep roads clear of 

flooding (J. De la Cruz, personal communication, August 2014), as well as a preference for 

avoiding the relocation of residents (J. Torres, personal communication, August 2014).  

Even though the Distrito Nacional is the best-equipped to deal with urban 

stormwater problems, the decentralization of power without the allocation of sufficient 

resources to effectively wield that power has resulted in a highly reactive approach to 
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stormwater management. The aging infrastructure built during Trujillo’s administration 

only covers the old city center, with 59 km of storm sewers serving 16% of the area between 

the Haina River, Arroyo Guzman, Arroyo Manzano, the Isabela River, Ozama River and 

Avenida Charles de Gaulle. While a consultant completed a stormwater plan in 1997, it has 

not been implemented by the municipality. Unsurprisingly, it is a traditional plan composed 

of centralized system of covered sewers that discharge stormwater directly into a river or 

the sea (Auding-Watson, 1997; J. Diaz Anderson, personal communication, August 2014). 

Rather than implement a comprehensive stormwater plan, stormwater engineers respond 

to complaints from citizens and implement projects that emerge out of the participatory 

budgeting process. Far from proactively providing a network of stormwater solutions that 

serves current needs and future population growth, this reactive approach can barely keep 

up with acute flooding problems, nor can it prevent stormwater systems from negatively 

impacting influencing other water systems such as natural water bodies, potable water 

systems, and sanitary disposal systems (Y. Batista, personal communication, August 

2014).   

The technologies that are used to implement this reactive approach include sewers, 

inlet filters, oil/grit separators, and inlet registers aimed at preventing trash from entering 

and clogging the drainage system. Sewers are built and maintained by the city, but larger 

tunnels are outside of the financing capabilities of the municipality (Y. Batista, personal 

communication, 2014). With over 2,400 installed in Distrito Nacional alone, one common 

practice in the DR that is not widely used in the US is filtrantes (filters). Filtrantes, known 

as infiltration boreholes in the US, consist of simple 4 – 8 inch boreholes that perforate the 

aquifer (60  ft – 170 ft). Stormwater then directly recharges the aquifer and eventually 

reaches the sea. Filtrantes can be bored directly into the ground wherever there are ponding 

problems, or the Distrito Nacional will also drill them under inlet filters or oil/grit 
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separators to alleviate pressure on the undersized sewer system. This use of filtrantes, 

widespread in Santo Domingo because of its low cost, only resolves localized ponding. 

They are only effective when the receiving soils have a high permeability and the well is 

properly preserved during its lifetime. These conditions are rarely met—filtrantes 

frequently clog with debris, trash, and sediments, and many households also use them to 

dispose of human waste. Fecal matter not only clogs the filtrantes, but this practice has led 

to contamination of the aquifer (Auding-Watson, 1997).  

 

According to the stormwater engineers I interviewed, by far the most pressing 

challenge to effective stormwater management in Santo Domingo is trash accumulation in 

the streets and gutters. Far from being a problem only in marginal communities such as 

Figure 1 Two-Chambered Trash and Oil-Grit Separator 
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Los Platanitos, trash inhibits the free flow of stormwater throughout the capital. Even in 

areas where household trash is collected regularly, bags of trash are often simply left on 

the side of the road until the truck comes to pick them up because there is no alternative 

location or facility such as a dumpster. In a climate characterized by short periods of intense 

rainfall, these bags are rapidly carried into the stormwater system during storm events. 

Furthermore, public trash bins are rare outside of tourist areas and people frequently throw 

trash into the street. All of this trash eventually obstructs stormwater controls, which 

greatly increases maintenance costs. Inlet filters and registers must then be cleaned out 

after every major rain event to preserve their functionality. If a filtrante becomes clogged, 

it is usually just allowed to fill up and cease functioning; it is more expensive to clean them 

out than to simply drill a new borehole.  The root cause of this problem, of course, is a lack 

of proper solid waste disposal services and sanitation services, which were largely 

privatized in the shift to neoliberal governance. The stormwater engineers tend to make a 

more proximal attribution for the trash problem, however, citing a lack of education on the 

part of the public.   

In our country, in order to do the easiest thing that have the most 

functionality, we first have to educate the citizenry. Because they throw 

trash in the street, the trash travels down the gutters, and it travels 

through the oil/grit separator, into the sewers, and into the filters—and 

it clogs the filters. The cost of unclogging a filter is the same as 

constructing another one...So, in order to make our technical work 

more efficient, to do what has to be done to manage stormwater, we 

have to first educate the public. (A. Miceli, personal communication, 

August 2014) 

While a lack of public education and conscientiousness certainly plays a part, many 

simply do not have any alternative to placing their trash on the side of the road. 

The second most pressing problem identified by the stormwater engineers is a lack 

of financial resources, which, along with the massive maintenance burden due to trash 
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accumulation, forces management to be reactionary instead of planning for the future. Ing. 

Yadira Batista explains the problem: “Apart from the trash, the biggest problem is that 

there aren’t a lot of resources to work with. When we work at a site and construct a 

stormwater system, it takes a long time to return to maintain it because we focus on other 

problems throughout the city. So when we do return to the site, the previous work is already 

totally deteriorated” (Y. Batista, personal communication, August 2014). This same 

dynamic has played out in Los Platanitos, where numerous small fixes have been made to 

add capacity to the channel, but most of these fixes are no longer functional. This lack of 

resources also forces the stormwater engineers to choose short-term solutions that they 

know are less effective than other solutions on the basis of cost. Both Alfonzo Miceli and 

Yadira Batista agree on the solution—“[Sewers] would be the definitive solution, for the 

filters don’t have a very long life—they are a short-term solution” (Y. Batista, personal 

communication, August 2014) 

Thirdly, it is important to note that while the stormwater engineers that I 

interviewed were not familiar with the overarching paradigm of decentralized stormwater 

management, they did have an understanding of its underlying principles (J. Torres, A. 

Miceli, Y. Batista, J. De la Cruz, personal communication, August 2014). Ing. Yadira 

Batista was very aware of the relationship of impervious cover to increasing stormwater 

volumes: “Before, there were lots of green areas. There weren’t as many buildings and the 

soil absorbed the water and filtered it. But now since they have made so many buildings, 

and the natural soil is no longer there.” Furthermore, the concept of infiltration-based 

stormwater controls is not foreign to any stormwater engineer in Santo Domingo: they are 

commonplace in the form of an infiltration boreholes. Ing. Yadira Batista and Juan Torres 

were also familiar with infiltration trenches, which use gravel and a perforated pipe to serve 

as a storage volume as the surrounding soil infiltrates stormwater. This understanding of 
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the basic building blocks of a decentralized stormwater management network suggests that, 

if convinced of its efficacy and provided sufficient resources, Dominican stormwater 

engineers could rapidly learn to implement such a system. 

While this familiarity with basic green stormwater infrastructure concepts is 

encouraging, there are still many barriers to implementing a decentralized stormwater 

management model in Santo Domingo. First and foremost, none of the engineers I 

interviewed thought it was a particularly good idea. Most expressed the opinion that it 

wouldn’t work in the DR and that large tunnels would be a better solution. Even though 

Yadira Batista and Juan Torres were both familiar with infiltration trenches, neither 

recommend this system because the water remains on the site as it slowly infiltrates into 

the soil. This aversion to standing water is common among those who are newly introduced 

to green stormwater infrastructure (Earles et al., 2009), and it is true that poorly maintained 

controls can become clogged and cause nuisance ponding. Similarly, the notion that 

massive tunnels would be the ideal solution reveals a lack of familiarity with the negative 

water quality and wildlife externalities of such solutions, as well as a lack of knowledge 

about the comparative costs. This following response from Ing. Yadira Batista reveals a 

misunderstanding of the relationship between stormwater and water pollution: “What I 

think they should [use] are the sewers, because water in those is well-treated. They conduct 

stormwater—stormwater doesn’t contaminate; it is just rainwater” (Y. Batista, personal 

communication, August 2014). Stormwater running off clean impervious surfaces such as 

roofs can be very clean, it is true, but the vast majority of impervious surfaces throughout 

Santo Domingo are covered in contaminants of all forms. 

Another challenge to implementing infiltration-based methods for stormwater 

management is that the drainage department is limited in what it can do because it has no 

authority to regulate impervious cover, urban form, or the streetscape. Planning in Santo 
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Domingo, and the DR as a whole, is highly fragmented—the Planning Department 

regulates greenspace on a site, while Public Works designs and constructs all the streets 

and gutters, and Drainage performs maintenance on the roadside controls. Each department 

is funded though separate processes, interdepartmental coordination is uncommon, and 

what is essential to one department may not be highly valued by another. For example, Ing. 

Yadira Batista relayed to me the typical evolution of an urban parcel, and how this process 

produces illegal subdivisions and a subsequent high degrees of impervious cover: 

“The planning department is in charge of regulating the amount of 

green space on a site—the permits and things like that. It would be 

good to work together with the planning department and to develop a 

solution…What happens is that everyone has their little house, and they 

go buying land to construct a building, and they put down money to 

build an apartment, and [the planning department] doesn’t say no to 

that.” 

And even if stormwater managers could limit impervious cover, change the 

streetscape to better accommodate infiltration trenches, or get the Planning Department to 

abide by its own existing regulations, it is very difficult to enforce building codes in Santo 

Domingo. According to Alfonzo Miceli, lax and corrupt enforcement results in 

developments where the building plans have little relation to what actually gets built.  

 When the planning department is reviewing the plans, they have to 

have their sanitary and stormwater systems, but I will tell you, here in 

this country the rules are almost never followed. It is that same lack of 

awareness, and also the [inspectors] are for sale. There are some that 

are very serious, but others that aren’t—just like all the countries on 

their way to development.  

Without adequate supporting regulations and enforcement, it is virtually impossible 

to introduce sustainable stormwater management practices from the top-down. The 

controls will simply not get built. However, another alternative is to approach the problem 

from the bottom-up—with a community-based stormwater management model.  
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Water-Related Infrastructure in Los Platanitos, Los Trinitarios, and Santa Cruz 

I initially only set out to investigate how stormwater infrastructure is planned and 

implemented in Santo Domingo and specifically in Los Platanitos, as well as the potential 

for incorporating a decentralized stormwater managagement approach into the existing 

framework. As I conducted interviews with professionals and residents, however, it 

became apparent that in a developing context, stormwater infrastructure cannot be 

examined in a vacuum. Because of a lack of formal planning and the predominant reliance 

on the self-procurement of most water-related services in informal settlements, the 

stormwater infrastructure, potable water systems, household water systems, and sanitary 

systems are all interrelated. The following section outlines how the stormwater system 

currently functions in the informal settlement of Los Platanitos, but it also highlights the 

intersections of potable water provision and sanitary disposal. 

Los Platanitos is composed of largely rural migrants and situated on land deemed 

unsuitable for formal development due to its steep slopes, proximity to a natural drainage 

way, and the fact that it had been previously used as a landfill. Is it located on the 

southeastern extremis of the Rio Isabela watershed, just northwest of where it meets the 

Ozama River and flows into the Caribbean Sea. The neighborhood is situated in a steep 

canyon, traversed by two major and three smaller channelized creeks that converge at a 

natural low-lying collection and retention area called La Piscina. La Piscina drains into the 

Yaguasa River, which then flows into the Isabela River. The capacity of the formerly 

natural channel has been expanded through piecemeal municipal projects over the course 

of several years, but this capacity has largely been lost due to sedimentation, trash 

accumulation, and degradation of the infrastructure. Due to the lack of capacity and the 

large volume of runoff coming from the communities of Los Trinitarios, Santa Cruz, and 

the arterial Avenida Hermanas Mirabal, the channel frequently overflows during periods 
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of heavy rainfall and floods the nearby homes. In interviews with residents directly 

adjacent to the principal channel, Sletto ed. (2010) found that 75% of residents’ homes had 

flooded within the past year, and 58% had flooding severe enough to force them to leave 

their homes. This problem is only exacerbated by the accumulations of uncollected trash 

that are swept from the curb to clog the inlets that drain to the channel. Much of this trash 

eventually makes its way into the channel, which causes blockages downstream. 
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  Figure 2 Stormwater Management in Los Platanitos. Clockwise from top left: a) A child sweeps runoff from Hermanas 

Mirabal to an inlet that drains to the channel. b) An inlet to the channel. c) High levels of impervious cover. d) Trash 

accumulations in the channel frequently block the free-flow of water. e) Trash and contaminated water is carried into 

an inlet that drains to the channel. f) Illegal connections to the household water system. Photographs by Kelly Strickler. 
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Figure 3 Santo Domingo Norte and Los Platanitos 

As the community of around 2,000 residents has low incomes and high levels of 

unemployment, underemployment, and informal employment, the residents are 

particularly vulnerable to flood impacts (Sletto, ed. 2010). Residents who live at lower 

elevations near the channel, and who are therefore subject to more frequent flooding, tend 

to have lower incomes than those who live at higher elevations. As indicated by a 

vulnerability and risk assessment carried out by UT students in 2008, residents of the lower 

portion of the neighborhood have an estimated median income between USD $60-100, 

whereas upper portion has an estimated median income between USD $200-$345 (Sletto, 

ed. 2010). Thirty-nine percent of adults in all elevations of Los Platanitos work in the 
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informal sector, while 48% of working-age adults are unemployed (Sletto, ed. 2010). These 

low income and employment levels make residents of the neighborhood more vulnerable 

to flood impacts, for they lack the necessary resources to mitigate the problems associated 

with flooding such as sickness, loss of income, and loss of property. 

In addition to the hazard posed by periodic flooding, the channel also presents a 

threat to residents’ health and quality of life because here is no functional separation 

between stormwater and sanitary sewers in Los Platanitos, nor in any other informal 

settlements in Santo Domingo Norte. Indeed, sanitary systems for the safe disposal of 

human waste are very limited in Santo Domingo Norte—only 27% of the population is 

connected to a separated sanitary system, and many of these systems were constructed by 

independent organizations. There are 16 water-treatment plants throughout the 

metropolitan area, but most of these are not in service (SDN, 2013). For the most part, 

these dedicated sanitary systems discharge wastewater containing fecal matter directly into 

the river or sea—only three percent of wastewater is processed by a wastewater treatment 

plant (J. Diaz Anderson, personal communication, August 2014; SDN, 2013). Under these 

circumstances, stormwater not only has the potential to damage property and pose an 

inconvenience to residents in these marginal communities—it also poses an imminent 

public health threat.  

Because Los Platanitos and the upland neighborhoods of Trinitarios and Santa Cruz 

are not serviced by dedicated sanitary systems, human waste disposal becomes entirely the 

responsibility of individual households. Of the 11 interviewees from the communities 

surrounding the channelized creek, no one reported that their homes were connected to a 

system provided by the local municipal government; i.e. the Ayuntamiento of Santo 

Domingo Norte. The methods used for disposing of human waste vary depending on the 

resident’s proximity to the creek and level of income. For residents with lower incomes, 
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who tend to live in the steepest slopes of the valley or in the floodplain, the only feasible 

option for removing human waste from the area is to connect their toilets to the creek via 

a run of 3 inch PVC pipe. Residents living in the uplands of the creek (i.e. in higher 

elevations) are able to employ a more varied mix of sanitary solutions. Some can afford 

septic systems that trap solid wastes while allowing bacteria-laden water to travel into the 

creek. Others drill infiltration boreholes to deposit their waste in the aquifer. While the 

wealthier can marginally treat their waste or hide their contamination by perforating the 

aquifer, all of these practices are hugely damaging to water quality. Sletto ed. (2010) 

documented that the principal channel had levels of biologic oxygen demand between 15 

and 36 mg/l; measurements above 6 mg/l are considered unacceptable. These results, 

coupled with high levels of ammonia, indicate that the water in the channel is highly 

contaminated by organic waste. As a result, the fecal matter in the open channel poses an 

imminent health hazard to those who live near the creek. Because the presence of E. Coli 

and Leptospira interrogans (among other bacteria) is a chronic health hazard rather than 

an infrequent, albeit serious occurrence, one prominent member of Fundación Los 

Platanitos (FUMPLA) thinks that the contaminated water surpasses flooding in terms of 

priorities for neighborhood improvements (M. Rodriguez, personal communication, 

August 2014; Sletto, ed. 2012). Furthermore, the cumulative effect of the disposal of such 

vast quantities of human waste into the urban hydrologic system has significantly degraded 

the water quality of the Osama, Iguaza, and Isabela Rivers, leading to a loss of aquatic 

species and the overgrowth of algae and water hyacinths (Consultores Ambientales y 

Pesqueros, 1998).  

Another consequence of the lack of separation between water supply and 

wastewater disposal in Los Platanitos is that access to sustainable sources of potable water 

has diminished as the area has seen increased urbanization. This is a common occurrence 
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throughout the metropolitan area—according to the Millennium Development Goals Needs 

Assessment, sustainable access to safe drinking water actually decreased in urban areas 

from 1990 to 2000 (COPDES and UNCT, 2004). In Los Platanitos, this decreased access 

to safe drinking water is largely due to contamination of groundwater sources and the 

unreliable provision of potable water. While Los Platanitos was founded as a peri-urban 

settlement that relied on groundwater sources, the aquifer has since become highly 

contaminated due to thousands of infiltration boreholes that have been drilled into the 

aquifer to mitigate localized flooding. Unfortunately, because most of these wells are also 

used as sewage outlets, the aquifer is highly contaminated and water must be provided from 

upstream parts of the aquifer or river (Gilboa, 1980). Residents must now rely on the 

Corporación del Acueducto y Alcantarillado de Santo Domingo (CAASD) to bring in 

potable water from upstream portions of the rivers Osama and Isabela. This increased 

pressure on CAASD from rapid urban development without concurrent public investment, 

as well as the high number of illegal connections, has in turn resulted in a lower level of 

service. Almost no one I spoke with received potable water with any regularity, and 

everyone had to rely on bottled water or trucked-in water for at least some portion of their 

potable water requirements.    

As uncontrolled development continually adds impervious surfaces upstream, 

flooding will only worsen in Los Platanitos without some sort of solution. The 

Ayuntamiento of Santo Domingo Norte currently lacks the capabicity to adequately address 

the problem. Since the Mayor’s bid to upgrade the channel in 2006 was not approved and 

funded by the central government (J. De la Cruz, personal communication, August 2014), 

representatives of the municipal administration have on various occasions suggested that 

the Ayuntamiento would soon develop a flood-mitigation project, but no actions have been 

taken yet. Unfortunately, Los Platanitos is still not officially recognized as a separate 
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neighborhood, and as a result, it is poorly represented in the participatory planning process. 

Despite all of these barriers, however, there exists local capacities to develop a community-

based storm water management system from the bottom up.   

Santo Domingo’s rapid population growth during the mid to late twentieth century, 

coupled with the shift to neoliberal forms of governance, has placed immense strain on 

both the environment and local governments. Consequentially, water-related services such 

as potable water, sanitary sewers, and drainage are provided in a highly reactive fashion, if 

they are provided at all. Services are rarely extended to informal settlements such as Los 

Platanitos, leading to a situation in which the most vulnerable populations live in those 

areas most likely to experience frequent flooding. Due to its ability to be employed 

incrementally, at a low cost, and by citizens themselves, a green stormwater infrastructure 

approach to stormwater management warrants consideration as a way to alleviate flooding 

in informal settlements. Concentrating on modeling the potential flood impacts and 

evaluating the community’s capacity to carry out such a program, this study investigates 

the feasibility of implementing source-control methods such as rain gardens and rain 

barrels to reduce flooding in Los Platanitos. 
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CHAPTER FOUR: Research Design and Methods 

Antecedents 

The community of Los Platanitos is part of an ongoing participatory research effort 

in which students from UT Austin School of Architecture collaborate with residents to 

address challenges facing the community, largely concentrating on issues surrounding 

solid waste disposal. These collaborative research projects were carried out in January and 

March of 2008, 2010, 2012, and 2014. Previous research has been largely confined to the 

immediate area around the channel, but investigators have identified drainage into the 

community from other neighborhoods as a significant contributor to flooding (Sletto, ed. 

2010). I participated in the research efforts during two weeks in January and nine days in 

March of 2014, in which our research team conducted an investigation of the spatial 

distribution and cultural significance of plants within the community. Before I spent any 

time in the community, however, I decided to first familiarize myself with the area through 

geospatial analysis as a part of my coursework in CRP 386, Introduction to Geographic 

Information Systems.  

In the months preceding my first visit to Santo Domingo, I conducted a desktop 

study that aimed to explore my personal interest in the multifunctional nature of green 

infrastructure while also familiarizing myself with the geography and hydrology of the area 

that I was going to be working in. Through a combination of geospatial analysis and 

hydrological modeling using the ArcMap 10.2 and the EPA’s System for Urban 

Stormwater Treatment, and Analysis INtegratration (SUSTAIN) and Stormwater 

Management Model (SWMM) modeling software, this project quantified the possible 

decreases in runoff through the upstream implementation of three types of green 
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infrastructure. Because I knew the residents of Los Platanitos had lower incomes on 

average and received only limited support from the local government, I chose to investigate 

the storm water impacts of small-scale interventions that could be implemented quickly, 

relatively cheaply, and with little reliance on actors outside of the neighborhood. The 

following table outlines the three scales of intervention that were investigated using the 

hydrological modeling tools. 

 
Table 1 Green Stormwater Infrastructure Models Used in 2013 Desktop Study 

 Operationalization 

within the model 

Scale Cost Constraints 

Model 1 1 ft x 1 ft x 2 ft planters Individual to 
household level 

Very low Availability of 
compost 

Model 2 Rooftop gardens/Green 
roofs 

Household level Medium Costs and 
maintenance  

Model 3 Bioretention cells Neighborhood level High Need to obtain 
land-use rights 

After determining the feasible placement and number of these types of intervention 

based on a suitability analysis within the modeled subwatershed, the stormwater impacts 

of these interventions were projected using the EPA’s SWMM modeling software. Out of 

the three intervention types, the model showed that only the large-scale bioretention cell 

had any detectable effect on overall subwatershed runoff and system flooding. These 

results influenced my decision to more closely examine a distributed network of rain 

gardens, because, when functioning together, such a network should approximate the 

volume reduction of one larger cell. While the preliminary geospatial analysis certainly 

informed the direction of the present project, I had to make many assumptions to construct 

the model and any statements about the feasibility of implementation lacked a grounding 

in the environmental, political and economic realities of Santo Domingo Norte.  
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After completing the geospatial analysis in December of 2013, I traveled to Los 

Platanitos in January and March of 2014 to participate in the UT Austin School of 

Architecture community-based research project. Building upon previous research efforts 

which helped to establish a vermicomposting project in the community, our research 

focused on investigating whether adaptive capacities surrounding household plant 

production could enhance community resilience and potentially serve as a foundation for 

a reconceptualization of the vermiculture project as a source of integrated, community-

based development. During my time in Los Platanitos, I was struck by how community 

members took great care to make sure that even the smallest piece of outdoor space always 

looked presentable and beautiful—the path in front of a house was swept multiple times a 

day, a single potted plant was prominently displayed, or a dilapidated house was brightly 

painted. This obvious attention to neatness and aesthetics in turn informed my choice of 

proposed SCMs, for community members would not be interested in implementing 

solutions in their personal space that they found ugly or untidy.  

Overall Research Design and Justification 

During the planning phase of this project I selected a mixed-methods research 

design that utilized semi-structured interviews with institutional actors, structured 

interviews with middle-income neighborhood residents, detailed field mapping of the 

creek’s watershed with local experts, and field testing of soil infiltration rates. This mixed-

methods approach was chosen to both identify the geophysical parameters of the area that 

drive the selection of potential interventions as well as understand the sociocultural, 

political, and economic realities that could influence the implementation of those 

interventions.   



 46 

In addition to these primary data collection methods, supplementary materials such 

as previous studies, legal documents, observed rainfall volumes, plans, maps, and historical 

aerial photography were obtained from participants and relevant institutions. Concurrent 

with a review and analysis of this secondary data, I also conducted a literature review of 

current practices and theory in stormwater control to develop an understanding of the 

geophysical limitations, design considerations, maintenance requirements, and costs 

associated with each potential stormwater control measure.  

Institutional Actors Interviews 

I conducted semi-structured interviews with institutional actors from the 

Corporación del Acueducto y Alcantarillado de Santo Domingo (CAASD) and the 

Ayuntamientos of Santo Domingo Norte and the Distrito Nacional. These interviews were 

intended to provide details regarding current stormwater practices, the potential for 

alternative practices, and institutional barriers to implementing a green infrastructure 

approach stormwater management in the informal settlements of Santo Domingo. 

Participants were recruited through two primary means: 1) personal contacts from my 

previous visits to Santo Domingo, and 2) the personal and professional contacts of the 

engineer Juan Torres, a longtime local partner of UT’s research efforts. The interview 

questions were constructed to be open-ended to allow participants to answer freely, 

encouraging unanticipated responses and covering issues that participants found most 

relevant and important. If time constraints allowed, I discussed interview questions with 

Juan Torres beforehand in order to ensure that the questions were understandable and 

appropriate to the context. I also formulated alternative wordings and explanations to 

standardize how certain concepts were described to participants.  
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Interview questions were tailored to the expertise of the participants. For example, 

questions for the stormwater engineers covered practical matters regarding current 

stormwater controls such as materials costs, labor inputs, effectiveness, maintenance 

requirements, and institutional barriers to implementing a green infrastructure framework 

for stormwater control. I first read the participants a verbal informed consent and then 

asked if they would permit me to make a voice recording of the interview.  Participants 

were largely allowed to direct the conversation, and supplemental questions were 

frequently spontaneously interjected to clarify any topics that had not been included in the 

original interview questions. Participants were allowed to refuse to answer questions or 

stop the interview at any time. At the end of the interview, I asked if they could provide 

any additional written or electronic materials such as plans, maps, or previous studies. 

Santa Cruz/Los Trinitarios Interviews 

I also conducted a purposeful interview questionnaire with residents in the middle 

income communities surrounding Los Platanitos about their perceptions of flooding, their 

knowledge and interest in stormwater control practices, and the form and efficacy of 

potential incentives for implementing such practices. Interviews were concentrated in these 

communities because they are situated in the most promising area for the implementation 

of SCMs due to the larger prevalence of private outdoor space and the homes’ location in 

the flat, upland areas of the creek’s watershed. These interviews were aimed at developing 

an understanding of the feasibility of implementing SCMs in the private yards of this 

community, as well as the potential community-level barriers and resources that could be 

leveraged to carry out such a plan.  

Participants were largely recruited through the contacts and knowledge of my guide 

and local expert, Elias Brito Reynoso. Mr. Reynoso was integral to my research activities 



 48 

in the communities surrounding Los Platanitos—he served as a guide and local expert on 

topography and hydrology, ensured my safety, and connected me with knowledgeable 

residents. Interviews took place in the participant’s yard, place of business, or home. I first 

read the participants a verbal informed consent and then asked if they would permit me to 

make a voice recording of the interview. While the line of questioning was more structured 

than the institutional actors’ interviews in that each resident was asked the same series of 

questions using the exact same wording, residents were encouraged to direct the 

conversation towards topics they deemed most relevant and important. Depending on the 

participant’s perceived level of interest and patience with the process, supplemental 

questions were sometimes spontaneously interjected to clarify any topics that had not been 

included in the original interview questions. Finally, I asked the participant if I could take 

pictures of their yard and home.  

Field Mapping 

While limited topographic and digital elevation models are available for the area, 

these resources are not highly detailed and cannot account for the modifications to the 

natural hydrology as a result of man-made features such as roads, gutters, and pipes. For 

this reason, field mapping with knowledgeable residents was required to develop a detailed 

representation of the subwatersheds of the three arms of the channelized creek. I enlisted 

two area residents as local experts and research assistants: Elias Brito Reynoso, a member 

of the Fundación Los Platanitos and resident of Santa Cruz, and Juan Francisco Correa, a 

resident of Los Platanitos who lives in the uplands to the north of the creek. Each local 

expert was interviewed separately during the field mapping of their respective 

neighborhoods.  
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After I explained the purpose of the exercise and oriented the local expert on a map 

that I had prepared using ESRI’s ArcMap 10.2, the local expert first led me around their 

neighborhood while pointing out where storm flows came from and to which arm of the 

creek they were directed. With the help of the local expert, I marked these locations and 

directions of flow on a map I had created based on the work of previous UT research 

groups. This map had major roads, alleys, and a limited number of building footprints 

superimposed over georeferenced aerial photography obtained from Google Earth. On 

major roads and alleys, the local experts were often able to articulate the exact location 

where storm water begins to flow from the streets and into the creeks. In other words, they 

were able to define the watershed boundary within a few feet. This process of purposefully 

walking the entirety of the neighborhood also provided an opportunity for the local experts 

to explain other important locations within the community. For example, Juan Francisco 

Correa pointed out a natural lagoon that had previously stored a large amount of rainfall 

before draining to the northwest channel, but that is now being systematically filled-in by 

the mattress factory to the north of the community.  

After finishing this walk of the neighborhood, I sat down with each local expert to 

draw a continuous line that divided up the subwatersheds of the principal channel and its 

two tributaries. This line connected the various reference points, using the local experts’ 

knowledge of the topography to fill in any gaps. Both local experts were unsure of the 

location of the northern limit of the northwest channel’s watershed due to the complexity 

of the lagoon system and the fact that the border extends outside of their immediate 

neighborhood.  For this northern boundary, I made a conservative estimate based on my 

previous desktop study and other topographical information at my disposal (this process is 

further described in the Watershed Modeling section of this chapter). The final product was 
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a georeferenced map with a detailed representation of the subwatersheds of each arm of 

the channelized creek that runs through Los Platanitos.   

On a separate walk of each local expert’s neighborhood, I quickly walked down 

each street recording the number of houses with no visible unpaved outdoor space and 

those with sufficient unpaved outdoor space for the installation of a rain garden. The 

purpose of this exercise was to extrapolate the percentage of homes in each neighborhood 

that could potentially support a privately-maintained rain garden or rain barrel.  

Field Testing 

In order to evaluate the feasibility of the use of infiltration-based SCMs and to 

establish design infiltration rates to calculate the potential impact on stormwater volumes, 

it was necessary to estimate a representative infiltration rate of the soils in the upland areas 

that contribute to the channelized creek. I adapted the field testing method from the City of 

Austin Environmental Criteria Manual (ECM) section 1.6.7.4, Infiltration Rate Evaluation. 

This section provides various methods of determining the design value for an infiltration 

rate, depending on the type of SCM proposed and the resources available to the designer. 

Because of the limited availability of accurate soil survey maps, other geotechnical 

information, and the heavy equipment needed for other testing methods, I chose the 

Percolation Test for its simplicity and cost effectiveness. Meant for investigating 

infiltration facilities with drainage areas less than two acres and with maximum ponding 

depths of 12 inches, the Percolation Test as described in the ECM can be conducted using 

simple tools and manual labor, and does not require extensive excavation. Before leaving 

for Santo Domingo, I accompanied an engineer from the City of Austin Watershed 

Protection Department as he performed a percolation test in order to learn the technique. 
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Ideally, the percolation test should be performed at the site of each proposed rain 

garden or other infiltration-based SCM site. In the case of this investigation, it would have 

been preferable to test multiple sites across Santa Cruz and Los Trinitarios to account for 

potential variability in soil composition. Unfortunately, it was infeasible to organize a large 

number of percolation tests due to the necessity of returning over the period of two days 

and the unease that many residents felt at the idea of digging a hole in their yard. For these 

reasons, I performed only one infiltration test at the home of Elias Brito Reynoso, one of 

the participatory researchers.  

I dug the test hole in a location that was deemed most suitable for a rain garden—

it could easily capture runoff from the house’s roof with a minimum amount of tubing and 

its position close to the exterior wall of the yard made for a short, direct path for excess 

water to the existing street gutters. The ECM specifies that the test hole should be between 

8 and 12 inches in diameter, with a depth that corresponds to the proposed bottom elevation 

of the control. Because I used a conventional shovel to excavate the soil rather than a post-

hole digger, the resulting hole was irregular and I had to estimate an approximate diameter. 

The hole was dug to 12 inches, a common rain garden depth. Because the design infiltration 

rate is based on saturated conditions to obtain the most conservative estimation, the test 

hole must be pre-soaked to approximate saturated conditions. I poured water into the hole 

to pre-soak it, and testing was commenced after all of the water had percolated. In cases of 

slow percolation or time constraints, the test is typically performed between 15 and 26 

hours after the pre-soak. I placed a piece of wood over the top of the hole to serve as a 

datum from which depth measurements were made. I then filled the hole with water, and 

recorded this water elevation and the time it was taken. This process was repeated until all 

the water had percolated. I calculated the steady-state percolation rate as the change in 

water elevation (in inches) by the corresponding time interval (in hours). Finally, I 
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converted the steady-state percolation rate (p)  to a representative infiltration rate (i) using 

the reduction factor (Rf) as follows, which accounts for water losses through the sides of 

the percolation hole: 

i = p/Rf 

The reduction factor (Rf) is given by: 

Rf = ((2d1 - Δd)/D) + 1 

Where: 

D1 = water depth at start of representative time interval (in.) 

Δd = water level drop during representative time interval (in.) 

D = diameter of percolation hole (in.) 

Watershed Modeling 

Upon my return the United States, I used information obtained from field mapping 

and field testing to create a model of the watersheds of the principal channel and its two 

tributaries using EPA’s Stormwater Management Model (SWMM) 5.1 software. After 

constructing the model, I conducted an analysis of potential runoff reductions due to the 

implementation of rain gardens and rain barrels. SWMM 5.1 uses watershed properties 

such as percent impervious cover, slope, and soil infiltration rate to estimate the runoff 

generated from a watershed during a simulated rain event (or series of rain events). This 

runoff is then routed through a modeled conveyance network of conduits and junctions, 

where it is eventually discharged at an outfall. When the runoff inflow from the upstream 

conduit is within the design capacity of the downstream conduit, the inflow simply drains 

through the downstream conduit. If the inflow exceeds the design capacity of the 

downstream conduit, however, only a part of discharge can be drained by the outflow 

conduit. This portion of the discharge which exceeds the design capacity surcharges onto 

the ground surface, causing flooding. 
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SWMM can account for various hydrologic processes that produce runoff from 

urban areas, including the capture and retention of rainfall and runoff with various types of 

decentralized stormwater control measures (called LID practices by the model) (USEPA, 

2010). It does not explicitly model spatial variability, but spatial variability can be 

mimicked by partitioning of the study area into individual subcatchments based on land 

feature characteristics (Pathirana; USEPA, 2009). Table 2 summarizes the source of each 

model parameter and how it was estimated, and the estimation methodologies are further 

explained below. Because this study is intended to estimate the flood impacts of the 

proposed system of rain gardens, SWMM’s ability to estimate the production of pollutant 

loads associated with runoff was not utilized at this time.  
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Table 2 Principal Model Elements, Estimation Methods, and Sources 

Required Elements Estimation Methods Sources 

Watershed Boundaries Field mapping  Interviews and walks with 
knowledgeable community 
members 

ArcMap’s Hydrology toolset + 30 
meter ASTER Global Digital 
Elevation Model 

USGS Earth Explorer, 2013.  

Analysis of 2008 team’s watershed 
boundary 

Sletto ed., 2008. 

Analysis of SRTM Level 2 Synthetic 
Drainage Network 

USGS Center for Earth Resources 
Observation and Science (EROS), 
2007. 

Percent Impervious Cover Digitization of aerial imagery Google Earth and ArcMap 
Basemap 

Soil Infiltration Rate 
(Saturated Hydraulic 
Conductivity, or ksat) 

Field testing City of Austin Environmental 
Criteria Manual, section 1.6.7.4 

Analysis of soil maps + consulting 
with a biofiltration pond engineer  

Ministry of the Environment and 
Natural Resources, 2015.  
Rodríguez and Pineda, 1981. 
Tom Franke, personal 
communication, March 2015.  

Rainfall Parameters Synthetic storm generation using 
the Intensity-Duration-Frequency 
curves provided in the Santo 
Domingo Drainage Plan. 

Keifer and Chu, 1957 
Auding-Watson, 1997 

Existing Drainage System Based on principal channel 
measurements taken during initial 
vulnerability and risk assessment.  

Sletto et al., 2008. 

Rain Garden and Rain 
Barrel Parameters 

Potential rain garden size estimation Interviews and walks with 
knowledgeable community 
members  

Number of homes with sufficient 
pervious area estimation 

Sletto et al., 2014 

Number of rain garden adopters 
from pool of eligible households 
estimation 

Mayer et al., 2012 
Green et al., 2012 

Model conceptuazlization Simpson, 2010. 
Tom Franke, personal 
communication, March 2015. 
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Watershed boundaries  

The watersheds of the principal channel and its two tributary channels were 

estimated using a combination of multiple sources of information: 1) field mapping with 

knowledgeable residents, 2) ArcMap’s Hydrology toolset and a 30 meter Digital Elevation 

Model (DEM) obtained from NASA and Japan’s Ministry of Economy, Trade, and 

Industry (METI) Shuttle Radar Topography Mission, 3) results of previous UT researchers’ 

attempts to identify the channel’s watershed, and 4) the SRTM Level 2 Synthetic Drainage 

Network obtained from the U.S. Geological Survey Center for Earth Resources 

Observation and Science (EROS). Because the watersheds derived from each of these 

sources of information conflicted with each other and urban watershed boundaries are 

highly dependent on human modifications of the landscape, the watershed divisions used 

in the final analysis are a conservative estimate that placed the most value on local 

knowledge. When knowledgeable community members were unsure about watershed 

boundaries, I retained the information that was consistent across all of the supplementary 

data sources. 

In Figure 4 below, watershed divisions based on local knowledge are represented 

as solid lines, while those that are based on less reliable information are represented as 

dashed lines. The “potential drainage areas”polygons, represented as black dashed lines, 

are areas that could potentially also contribute to flooding problems in Los Platanitos. 

Whereas the community members interviewed in 2008 indicated that Residencia Vista del 

Parque discharged its stormwater into the northern tributary, this was not confirmed during 

my interviews. The community members that I interviewed believe that the most of the 

runoff generated from the housing development, situated to the northeast of the 

community, drains directly to the river. This seems to be corroborated by the presence of a 

ridgeline roughly along the green dotted line in Figure 4, but it is entirely possible that the 
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community members I interviewed were mistaken and the development’s runoff drains 

directly to the northern tributary. There are numerous stormdrains from the development 

to the northern tributary. Similarly, the runoff from Hermanas Mirabal north of the metro 

station very likely drains to the principal channel. Runoff from Hermanas Mirabal was 

frequently cited as a major contributor to flooding. Because the community member I 

interviewed could only confirm that it came from “around the bend” (E. Reynoso, personal 

communication, August 2014), however, I could only be confident in extending the 

watershed boundary to that point.    

Figure 4 Estimated Watershed Boundaries 
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The uncertainty regarding the watershed boundaries depicted in Figure 5 are largely 

due to the unavailability of high-resolution topographical information and the high degree 

of urbanization within the watershed. Although the METI Shuttle Radar Topography 

Mission has produced the highest resolution, global elevation data to date, multiple 

attempts to use it to delineate channel subwatersheds have proved that it is not detailed 

enough to delineate watersheds at this scale. Important topographical details that would be 

provided by a high-resolution (1.5 m) LiIght Detection And Ranging (LIDAR) dataset, 

which is typically used for this purpose in the United States, are lost. The watershed 

delineation process from the desktop study produced a singular channel that does not 

correspond to the known channels. Even after reconditioning the DEM to “burn” the field-

verified stream channels into the DEM, the output watersheds significantly overlapped 

with a nearby USGS synthetic stream, the presence of which was verified using Google 

Earth. Because this USGS synthetic stream is much longer than the study channel and 

crosses the largest portion of the lagoon, it is likely that this larger stream drains the 

majority of the lagoon system, with the study channel draining the southern lagoon (this 

interpretation of the area’s hydrology is a refinement of Sletto ed.’s initial assessment of 

risk and vulnerability in 2008, which provided a highly generalized estimate of the 

channel’s watershed based on limited data and rapid field observations; see Figure 5). For 

this reason, I chose to estimate the northern boundary (represented by a green dashed line 

in Figure 4) based on all the information at my disposal. 
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Figure 5 The University of Texas Researchers’ Estimate of the Principal Channel’s Watershed 

(Sletto ed. 2008) 

Percent directly connected impervious cover  

The percent impervious cover of each subwatershed was developed from Google 

Earth and ArcMap’s Basemap imagery using ArcMap’s editing toolset. Areas that 

appeared to be impervious were traced and added to the building footprints shapefile 

developed by Sletto ed. (2008) and modified by subsequent community-based research 

efforts. The resolution of this imagery was sufficient to detect road and buildings in 

conventionally developed areas. In the informally developed areas, however, roofs are 

constructed of whatever material is available, and are not usually constructed as one 

cohesive unit. With low-resolution imagery, it is difficult to tell between an irregular dark 

piece of zinc and tree canopy. The limitations of the imagery likely lead to mistakes in the 

digitization of impervious cover. In addition to the imagery limitations, the soil is very 
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compacted in many areas by foot and motorized traffic, rendering the soil effectively 

impervious. For this reason, the total impervious cover estimation is likely an 

underestimation due to soil compaction and imagery limitations. 

SWMM uses directly connected impervious area (DCIA) as its model input, which 

is the impervious area that drains directly to the stormwater conveyance system without 

flowing over pervious surfaces. This value is typically less than the total impervious area 

(IA), and is a function of the predominant land uses (and their concomitant drainage 

practices) in a watershed. I used the total impervious area estimations to derive DCIA for 

each watershed using the Sutherland Equations (USEPA, 2009; USEPA, 2011). The 

Sutherland Equation differs for average, highly connected, totally connected, somewhat 

connected, and mostly disconnected watersheds. Based on the “Watershed Selection 

Criteria” for the equation below, I chose the “Average” watershed equation because of the 

areas relatively high density and the fact that almost none of the rooftops are directly 

connect to the conveyance system (see Table 3). 

 
Table 3 Estimating Directly Connected Impervious Cover Equations 

Watershed Selection 

Criteria 

Assumed Land Uses Equation (where IA(%) >1) 

Average: Mostly storm sewered 
with curb & gutter, no dry wells 
or infiltration, residential 
rooftops not directly connected 

Commercial, Industrial, 
Institutional/ Urban public, 
Open land, and Med. density 
residential 

DCIA=0.1(IA)1.5 

Source: USEPA, 2011 

 



 60 

Soil infiltration rate 

Urban soils, and especially the soils of Los Platanitos, are very variable—soil maps 

are not detailed enough for the design or planning of infiltration-based controls. Prior to 

the design of any rain garden, field tests must be performed to determine the soil’s 

infiltration rate, the depth of ponding that will be allowed, and the excavated area needed 

to capture and infiltrate the desired volume of rainfall (Tom Franke, personal 

communication, June 2014). Unfortunately, the percolation test that I performed in the field 

produced erroneous results, and I did not realize this fact until I returned to the United 

States. Using the methodology described in the “Field Testing” section, the infiltration rate 

was estimated to be 5.59 inches per hour. This infiltration rate is only found in very sandy 

soils, which is inconsistent with the available soil information. These erroneous results are 

likely due to a failure to adequately presoak the hole to depth of the bottom of the proposed 

rain garden.  

According to the Ministry of Environment and Natural Resources webviewer, the 

study area is predominated by the Jalonga – Marmolejos – Caliché soil association, 

although those areas closest to the Yaguaza river are composed of alluvial soils (Ministerio 

de Medioambiente y Recursos Naturales, 2015). Although the available soil data is not 

detailed enough to specify where each of the three series are located, the Jalonga series is 

the most common in this association and has been identified as the primary soil type in 

Villa Mella, which is just north of the study area (Rodríguez & Pineda,  1981). Formed 

largely from limestone and calcerous and noncalcerous sandstone, the Jalonga series is 

characterized as highly friable, calcerous, rocky, shallow, and with high potential for 

erosion (Rodríguez & Pineda, 1981; Tirado, 2003). Its texture has been described as franco 

arcilloso, meaning loam clay with 20-45% sand, 15-52% silt, and 27-40% clay (Fernández, 

2001). Infiltration rate estimates for this type of soil range from 0.03 to 0.09 inches/hour, 
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which is not ideal for infiltration-based controls (Rawls, Gimenez, & Grossman, 1998; T. 

Franke, personal communication, March 2015). Due to its rockiness, however, its drainage 

properties have been described as “very good,” and actually borders on “excessive” for 

agricultural purposes (Tirado, 2003). For this reason, I have chosen to use the higher 

estimation of 0.09 inches/hour for the hydrologic conductivity parameter of the model.  

Rainfall values 

Because SWMM is a dynamic rainfall-runoff model, it requires a hyetograph of 

rainfall over time in 5 minute to 1 hour intervals to generate runoff values (USEPA, 2010). 

While this information is usually obtained from rain gages or the National Weather Service 

in U.S. applications, the Dominican Republic’s National Meteorological Office 

(ONAMET) only reports rainfall in a highly aggregated form (daily values). In order to 

develop a usable rainfall time series from available data, I obtained the intensity-duration-

frequency (IDF) values in the existing Stormwater Drainage Plan of Santo Domingo. 

Because intensity-duration-frequency values simply reflect average rainfall intensity over 

the specified duration, and do not represent actual time histories, it was also necessary to 

generate design storm hyetographs for 5, 10, and 25 year storms using the “Chicago 

Method” described in Keifer and Chu (1957). The Chicago Method uses a series of 

equations and two constants (generated from the IDF curve) to turn the constant intensity 

into a peaked shape over the duration of the storm, which more closely models actual 

rainfall patterns (Keifer and Chu, 1957). The Chicago Method uses the following equations 

to generate the 5, 10, and 25 year synthetic storms depicted in Table 4.  
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When: 

t = time 

tp = time to peak 

r = rainfall fraction before peak 

Des = Design Storm Duration 

Time to Peak  =  tp  =  r*Ddes 

For  t  <  tp : 

 

For  t  >  tp : 

 

 

Table 4 Synthetic Hyetographs for 5, 10, and 20-year Storms 
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Existing drainage system 

Average depth and width values for the drainage system were obtained from the 

detailed CAD model of the principal channel developed during the initial 2008 

vulnerability and risk assessment (Sletto ed. 2008). Because depth of tributary channels 

were not measured in 2008, I applied the depth values of the principal channel where it 

joined each tributary. An estimate of Manning Roughness is also needed for open channel 

flow calculations. A Manning Roughness estimate for channel as a whole was determined 

using the method described in McCuen (1998), which uses a base n value determined by 

the general type of channel and then modifies the base value on the basis of various 

descriptors of the channel and its surface. 

Table 5 Existing Drainage System Parameters 

Drainage System Link Modeled Dimensions (meters) Manning Roughness 

Width Depth  Length 

Principal Channel – Section 1 1.5 0.9  85.5  0.052 

Principal Channel – Section 2 1.5 1.0 152.1 0.052 

Principal Channel – Section 3 1.3 0.6  125.1 0.052 

Principal Channel – Section 4 2.0 0.15 123.7 0.052 

Principal Channel – Section 5 1.3 0.9 111.2 0.052 

Northwest Tributary 0.9 0.9 415.9 0.052 

Southern Tributary  1.0 0.9 682.6 0.052 
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CHAPTER FIVE: Rain Garden and Rain Barrel Implementation in 

Los Platanitos, Santa Cruz, and Los Trinitarios  

Through an analysis of both primary and secondary sources, I conducted a 

feasibility study for the implementation of rain gardens and rain barrels in the watersheds 

of each of the three channels that cut through the communities of Los Platanitos, Santa 

Cruz, and Los Trinitarios. Given past research in the area and the geophysical parameters 

identified through field mapping exercises with knowledgeable residents, I estimated the 

potential form and number of rain gardens and rain barrels that could be expected to be 

installed under a potential incentive- or community-based program. Using methods derived 

from a review of current stormwater modeling techniques, I then estimated the potential 

impact on runoff volumes and flooding. I also identified resources within the community 

that can be leveraged to implement the stormwater control measures. 

Stormwater Controls Measures Tested  

Borrowing from the structure of the earlier desktop study, I had initially planned to 

investigate the feasibility of several SCMs which varied by the typical scale, level of public 

oversight, and resources required. For example, green roofs represent a medium-scale, 

resource-intense, and typically privately-maintained typology (New York City Department 

of Environmental Protection, 2010). In contrast to green roofs, roadside bioswales are 

usually larger scale, extending the entire length of the road, but they are also less complex 

to construct and maintain (Vesely et al.,2005). Roadside bioswales also require a high 

degree of coordination with the public sector due to their integration with the public right-

of-way. Rain gardens are small to medium-sized, and require a moderate level of technical 

expertise and resources to construct and maintain. Rain barrels have small capture volume 

(55 gallons is common), but they are also the simplest to implement and maintain. Due to 
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their small scale and limited capture volume, both rain gardens and rain barrels are typically 

privately-maintained.  

Under ideal conditions, I would conduct a full-scale modeling and feasibility 

analysis for the entire suite of source-control stormwater control measures in an informal 

context. Given the limited timeframe of my fieldwork, however, it became necessary to 

narrow the focus of modeling efforts to one source-control typology. To this end, I 

dedicated a portion of the exploratory phase of my fieldwork to selecting the most-

promising avenue. Along with other exploratory task such as verifying my understanding 

of the flooding problem, building relationships, and testing my interview questions, I also 

made several observations that led me to exclude green roofs and roadside biowales from 

the analysis. Their exclusion does not mean that their implementation is unwise or 

infeasible, however, just that the barriers to their implementation appear to be more 

intractable than those of rain gardens and rain barrels. Further investigation of other source 

control technologies could be conducted according to the same basic methodology that is 

described for rain gardens and rain barrels below.  

Green roofs require a minimum soil volume to function effectively, and any 

structure must be capable of safely supporting the weight of the saturated soil and any 

vegetation (if vegetation is desired). Although the homes of Santa Cruz are solidly built by 

experienced local contractors, even the largest structures would be considered informally 

constructed in the United States. Construction in this area largely does not go through any 

sort of permitting or inspection process, and if an inspector is involved, they typically just 

accept the payment of the associated fees without conducting the inspection (E. Reynoso, 

personal communication, August 2014). It would be unwise to implement a green roof 

under these conditions without a site specific analysis of the roof’s load-bearing capacity.  
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Publically-maintained roadside bioswales were also excluded during the 

exploratory phase. While they were initially considered because Avenida Hermanas 

Mirabal has been identified by community members as a primary source of excess runoff, 

during the field mapping exercise, I did not see any sections of Hermanas Mirabal that 

were not already curb-and-guttered with a 4 to 10 ft sidewalk between the road and a 

building frontage. With buy-in from the local government, roadside swales could 

potentially be implemented in the more “peri” portions of this periurban environment. In 

already built-out areas such as Los Platanitos, however, bioswales cannot alleviate 

immediate urban flooding problems without both a massive retrofit effort and a drastic 

change in Santo Domingo Norte’s institutional approach to stormwater management.  

Whereas the exploratory phase led me to exclude green roofs and publically-

maintained roadside bioswales from the analysis, it also revealed that introducing rain 

gardens and rain barrels for flood mitigation would potentially be well-received by the 

community. Many residents of Los Platanitos already use a rainwater harvesting systems 

for non-potable household use and gardening (see Figure 6). Furthermore, it was apparent 

from the arrangement of household patios that many Santa Cruz homeowners took great 

care to tend to their yards and create interesting plant assemblages (see Figure 6). If rain 

gardens were successfully marketed as beautiful patio amenities, there is the potential for 

both widespread adoption by residents and fastidious maintenance ensuring their 

functionality. Thus, I chose to invest my limited time in the community exploring the 

feasibility of implementing rain gardens and rain barrels in Los Platanitos, Trinitarios, and 

Santa Cruz. 
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Figure 6 Existing Rain Barrel and Well-Maintained Patios in Los Platanitos and Santa Cruz. 

Photographs by Kelly Strickler. 
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Study Approach and Model Assumptions 

In addition to traditional grey conveyance and storage infrastructure, SWMM is 

capable of modeling the runoff implications of several types of source controls such as 

vegetated swales, biofiltration cells, rain cisterns, green roofs, permeable pavements, and 

rain gardens. The feasibility study uses field observations, remote sensing, interviews with 

knowledgeable residents, and assumptions based on the existing literature to construct 

three models: existing conditions, a rain garden scenario, and a rain barrel scenario (see 

Chapter 3 for a more extensive discussion the development of model parameters).  

The model of existing conditions in Los Platanitos, Santa Cruz, and Los Trinitarios 

is based on the best estimation given data and time limitations, and should not be 

considered an exact representation. However, while the model is not well-developed 

enough to accurately predict exact flood volumes, it is capable of estimating rough 

proportions of runoff reduction resulting from rain garden and rain barrel implementation. 

For modeling purposes, the watersheds of the three channels are conceptualized as the three 

subcatchments depicted in Figure 7. As discussed previously, these watersheds likely 

underestimate the influence of runoff from Hermanas Mirabal and the storage capacity of 

the lagoon in the Northwest. The model also does not account for the storage volume or 

blockage of The Piscina. When the box culvert that drains The Piscina is blocked by 

accumulations of trash, the capacity of the principal channel is seriously compromised, 

exacerbating upstream flooding (Sletto ed., 2008). 

The watersheds range from 36 to 43 acres, with impervious cover percentages 

ranging from 32% to 52%. The principal channel watershed is the most highly urbanized, 

and subsequently has the most severe flooding. Those living along the channel and near 

the confluence of the channel arms are the most impacted by flooding—even a small 
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reduction in flood volumes or frequency could result in significant quality of life and health 

improvements in those very vulnerable populations. 

 

 

Figure 7 Study Watersheds 
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Figure 8 Existing Scenario Model (top) and Rain Gardens Scenario (bottom). SWMM does not 

model spatial relationships—catchments and conduits are not to scale. 

To measure the potential stormwater impact of implementing rain gardens and rain 

barrels in the study area, I used interviews, remote sensing, field survey, past research in 

the area, and insights from relevant literature to estimate the number of controls that could 

be expected to be implemented under a potential incentive- or community-based program. 

From research conducted as part of our 2014 survey of household plant production 

practices in Los Platanitos, I was able to estimate how many households in each 
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subwatershed have sufficient pervious area available to install a rain garden. This survey 

resulted in the identification of four basic patio typologies in Los Platanitos: Low-

space/No-space, Small, Large, and Conuco (Sletto ed., 2014). The latter two typologies, 

which represent 43% of the surveyed patios (n = 14), both include sufficient pervious cover 

to install a rain garden, as well as sufficient space to install a rain barrel. Because the 

surrounding areas are of a similar or higher socioeconomic status than Los Platanitos, it 

was assumed that the percent of “eligible” properties applied to unsurveyed areas as well. 

This assumption is justified because higher socioeconomic areas were observed to have 

larger patios than those of Los Platanitos, giving a conservative estimate of eligible 

properties. Because my field survey of Santa Cruz showed that all houses had large patios, 

all households in Santa Cruz were considered eligible. Using the number of structures in 

each watershed obtained from digitizing building footprints from aerial imagery, I was able 

to estimate the number of total eligible households in each watershed.  

 Since a property owner may be using their patio space for other purposes or simply 

may not want to install a stormwater control, the number of eligible properties that could 

be expected to adopt a rain garden or rain barrel was estimated using the results of Mayer 

et. al (2012) and Green et al. (2012), who found that 23% and 30% percent of eligible 

households chose rain gardens and rainwater harvesting systems in a reverse-auction, 

respectively (see Chapter 1 for a discussion of this study). This assumes that any 

prospective program will provide the materials at no cost to the homeowner, and that some 

incentive will be offered to homeowners if they desire one. If these assumptions are not 

met, the number of controls in each watershed is likely to drop by half (half of the reverse 

auction bids were for $0).  
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Table 6 Estimated Number of Eligible and Stormwater Control Adopting Households 

Watershed Neighborhood Total 
Households 

Eligible 
Households 
 

Rain 
Garden 
Adopters 
(23% of 
eligible) 

Rain Barrel 
Adopters 
(30% of 
eligible) 

Principal LP + unsurveyed 883 379 87 114 

 Santa Cruz 152 152 35 46 

 Total 1035 531 122 160 

Northwest LP + unsurveyed 432 185 43 55 

 Santa Cruz 36 36 8 10 

 Total 468 221 51 65 

South LP + unsurveyed 124 124 28.5 37 

 Santa Cruz 289 124 28.5 37 

 Total 413 248 57 74 

Total  1,916 1,000 230 299 

With these estimations of the number of rain gardens and rain barrels that could be 

expected to be installed under an incentive program, the controls were added to the existing 

scenario model to estimate their stormwater impact (see Chapter 3 for a discussion of the 

existing scenario model). Rain gardens were conceptualized in the model as a single 

storage subcatchment with the combined dimensions of the estimated number of rain 

gardens in each subcatchment (see Figure 8) (Adams and Pappa; Simpson, 2010). The 

general assumptions for the stormwater control models as a whole and the parameters for 

each control are listed below and in in Table 7:  

General Model Assumptions  

1. Green Ampt infiltration model 

2. The rain gardens are terraced to maximize infiltration and provide rectangular storage 

volumes. 

3. All rain gardens are on the subcatchment level (as opposed to receiving runoff from 

the conduit) 

4. There is no surface flow from external watersheds (run-on) (run-on from Hermanas 

Mirabal is likely, but it cannot be quantified) 
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5. Free outfall and no storage at the Piscina. 

6. Rain barrels are emptied before the next rain event. 

7. Rain gardens are properly installed and well-maintained  

 

Table 7 Rain Garden and Rain Barrel Model Parameters 

Parameter Assumption Source 

Rain Gardens Rain Barrels 

Number of eligible properties 43% of structures (LP+) 

100% of structures 
(Santa Cruz)  

43% of structures 
(LP+) 

100% of structures 
(Santa Cruz) 

Sletto ed., 2014 

Field survey 

Number of eligible properties 
that will install control 

23% of eligible 
properties 

30% of eligible 
properties 

Mayer et al., 2012 

Green et al., 2012. 

Size 13.3 ft x 3.3 ft x 0.5 ft 

(8 cement blocks by 2 
cement blocks) 

35 in tall  

24 in diameter 

(standard oil drum) 

Interviews with 
knowledgeable 
community members 

Tom Franke, personal 
communication, 
March 2015 

Side slope 3:1 N/A Tom Franke, personal 
communication, June 
2014 

Volume 70 ft3 9.2 ft3 Adams and Pappa 

Rain garden slope 0.05% (assumes 
terracing) 

N/A N/A 

Soil type Clay loam with high 
gravel content  

N/A N/A 

Infiltration rate (hydraulic 
conductivity) 

0.09 in/hr  N/A 

Suction head 8.27 inches  N/A 

Initial deficit 0.124  N/A 

The resulting mass continuity errors indicate that the models have high internal 

validity. The mass continuity errors for runoff and flow routing represent the percent 

difference between initial storage + total inflow and final storage + total outflow for the 
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entire drainage system. If the error exceeds 10%, then the validity of the analysis results 

may be questioned. According to the SWMM Knowledge Base, less than 1% error is 

considered “excellent,” less than 2% is “great,” and less than 5% is acceptable (SWMM 

Knowledge Base forum answer, 2010). The models had continuity errors ranging from 0.03 

to 3.64, all with the acceptable range. It is important to note that this measure of internal 

validity does not relate to whether the model accurately reflects actual conditions. Future 

research could enhance external validity by calibrating the parameters to values measured 

in the field, but this was not possible given the limited time available in the field. 

Existing Conditions Results 

The existing conditions modeling results are presented in Figure 9. These runoff 

and flooding predictions for 5-, 10-, and 20- year storms appear reasonable; as the volume 

of total precipitation increases from 20 acre/feet to 28.5 acre/feet, there is a proportional 

increase in the volume of surface runoff and internal outflow, which is flow that leaves the 

conveyance system through flooding at non-outfall nodes (see Figure 9). The internal 

outflow, hereafter referred to as flooding, is significantly greater than the external outflow 

(flow that leaves through the outflow node) for all three storms. While this situation is not 

impossible, the flooding is most likely overestimated due to an underestimation of flood 

storage in the lagoon and The Piscina (see Study Approach and Model Assumptions). The 

outflow stays relatively constant over the three storms, reflecting the limited capacity of 

the conveyance infrastructure, while the flooding increases with the size of the storm.  
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Figure 9  Existing Conditions: Runoff and Outflow Results for 5-, 10-, and 20-year Storms 

Given the fact that many in the community flood in relatively frequent 1-, 2-, and 
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benefit from any green stormwater controls. For the 5-year storm, a brief analysis of the 

runoff by subcatchment also yields predictable results, with the watershed with the highest 

percentage of impervious cover producing the largest runoff volumes and lowest 

infiltration rates (see Figures 10 and 11). 
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Figure 10  Existing Scenario: Runoff by Subcatchment 

 
Figure 11  Existing Scenario: Infiltration by Subcatchment 
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Potential Stormwater Impact of Rain Garden and Rain Barrel Implementation 

According to the model results, neither the implementation of rain gardens nor rain 

barrels has a drastic effect on runoff or flood volumes for the 5-year storm. While the 

addition of nearly 300 rain barrels nearly doubles the storage capacity of the system, this 

storage only amounts to a 0.5% reduction in runoff and a 0.4% reduction in flood volumes. 

The addition of 230 moderately sized (70 ft3) rain gardens throughout the three watersheds, 

however, does reduce runoff by 8% and flood volumes by 19% (see Figure 12). In addition 

to the reduction in flooding, the rain gardens scenario also produces a 25% increase in the 

external outflow through the outfall node. This means that as the rate of runoff slows due 

to the storage and infiltration capacity of the rain gardens, more stormwater is able to 

discharge through the outflow instead of leaving the system via flooding.  
 

 

Figure 12  Runoff and Outflow Results for Existing Conditions, Rain Gardens Scenario, and Rain 

Barrels Scenario 
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The reduction in runoff peaks for rain gardens scenario can be seen in Figure 13 

below. The peak runoff rate is reduced from 130 to 50 CFS for a 5-year storm. With 

significantly reduced 5-year peaks and the extension of the hydrograph, the rain garden 

scenario can be assumed to help reduce flooding by giving the channel more time to convey 

flows through the system (an assertion supported by the increase in external outflows seen 

in Figure 12 above). Because many residents adjacent to the channel flood during smaller 

rain events, even this small reduction can have a large effect on quality of life. For 

comparison with a larger storm, Figure 14 displays the system runoff for a 20-year storm. 

While the peak runoff rate is moderately reduced from 450 to 300 CFS, this reduction is 

unlikely to have an effect on flooding in the community. The volumes and runoff rates 

from larger storms are simply too large for the rain gardens to handle.  

 

 

Figure 13  System Runoff for Existing Conditions, Rain Barrel, and Rain Garden Scenarios (5-

Year Storm) 
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Figure 14 System Runoff for Existing Conditions, Rain Garden Scenario, and Rain Barrel 

Scenario (20-year Storm) 
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community buy-in and participation, so the qualitative portion of my research was devoted 

to evaluating the community’s capacity to construct, monitor, and maintain a system of 

rain gardens and rain barrels.  

Existing civil society groups within Los Platanitos are already highly motivated to 

address flooding, and would likely be interested in pursuing any reasonable flood 

mitigation proposal. There are two primary organizations, both of which are dedicated to 

preventing solid waste from entering the channel. During rain events, this solid waste 

accumulates at choke-points along the principal channel and exacerbates flooding 

problems. The Fundación Los Platanitos (FUMPLA) is following the Fundazurza model 

for community-based solid waste management and recycling, with the objective of 

generating income from recyclables that would otherwise accumulate in the channel. 

Mujeres Unidas, the other active group, is attempting to reduce the amount of organic waste 

in the channel while also generating income through a vermicomposting project. Though 

both of these groups are still in the early phases of developing their organizational 

capacities and have yet to generate significant income from their projects, they have 

demonstrated that they are capable of implementing long-term projects (Sletto ed., 2014). 

Furthermore, both groups have established working relationships with other civil society 

organizations, the municipality, and local and international educational institutions. 

Tapping FUMPLA or Mujeres Unidas to run the potential rain garden/rain barrel program 

enables the program to leverage the group’s existing connections, trust, and experience to 

recruit participants. 

While the participation of trusted civil society groups would be a great advantage, 

stormwater controls would most likely be maintained by individual homeowners. If more 

well-off residents in higher elevations are not motivated to help lower-income residents 

who live adjacent to the channel, they will not participate altogether or their controls will 
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not be adequately maintained. Based on my interviews with homeowners in higher-income 

neighborhoods within the watershed, however, it appears that most residents would be 

willing to install a stormwater control on their property if it would alleviate channel 

flooding. Ten out of the eleven community members interviewed stated that they would 

consider installing a rain garden if they received some sort of support (rain barrels were 

not included in the prompt). When asked whether they thought a monetary incentive or 

technical support would be better, the majority of respondents strongly preferred a scenario 

in which the materials and technical support were provided to participants. Reasons for this 

preference varied: respondents noted that monetary incentives had a tendency to be 

misused (J. Garcia, personal communication, August 2014), and expressed their 

unfamiliarity with the construction techniques (A. Gómez, personal communication, 

August 2014). Others expressed more altruistic reasons, such as: “It is a problem that is 

affecting the community--if there is a problem and each person takes a small part of the 

problem, we can solve the problem…it is not a question of negotiating a price.” These 

positive responses and the rejection of the use of monetary incentives suggests that the rate 

of rain garden adopters in Los Platanitos could potentially surpass that of the EPA’s 

“citizen-based stormwater management” study (Shuster et al., 2013; Green et al., 2012). 

Although individuals were willing to help their neighbors, the concept of a rain 

garden was wholly unfamiliar to all of the respondents. Any potential program would need 

to include a training element to teach interested community-members how to construct and 

maintain a rain garden, and the proper way to use a rain barrel for stormwater purposes. 

Fortunately, many individuals in Los Platanitos work or have worked in construction, and 

many have demonstrated skill in “insurgent architecture” in past collaborations with UT 

students. Also referred to as “guerilla architecture,” insurgent architecture is defined as 

“small-scale interventions in the social and urban landscape. . . intended as an immediate 
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and inexpensive way of satisfying the needs of a specific group’’(Corser and Gore 2009, 

p. 32). Insurgent architecture projects such as the vermicomposting sites constructed in 

2012 and 2014 are assembled on-site from easily obtainable materials with little prior 

design, with frequent course corrections and on-the-spot discussion of possible 

configurations (see Figure 15). Once taught the basics of rain garden construction and 

maintenance, these individuals could easily carry out construction activities using an 

insurgent architecture approach. It is important to note that these individuals would need 

to be compensated fairly for their time. In the words of Elias Brito Reynoso, a community-

member highly-skilled in construction, “It could be an honorary position, but here no one 

does anything for free” (Personal communication, August 2014). 

Assuming the level of participation seen in the EPA’s “citizen-based stormwater 

management” study, a SWMM model of the addition of 230 moderately sized (70 ft3) rain 

gardens throughout the three watersheds shows a 19% reduction in flood volumes for the 

5-year storm; and the addition of nearly 300 rain barrels brings the total reduction to 20%. 

To reach this predicted reduction, however, residents who do not experience flooding must 

volunteer to dedicate portion of their patio to a stormwater control. Furthermore, existing 

community capacities must be utilized to gain the community’s trust, ensure that the rain 

gardens are constructed correctly, and that both rain gardens and rain barrels remain 

functional. While both prerequisites have been met in this case, an influx of some money 

will be necessary to implement such a project. Whereas the interview respondents did not 

believe monetary compensation was appropriate for homeowners that decide to adopt a 

control, some costs are associated with the materials, labor, and training of local skilled 

construction workers. These costs beg the question, are these costs worth a 20% reduction 

in flood volumes for a small-storm?  
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Figure 15 Residents of Los Platanitos building a vermicomposting site in March 2014. 

Photograph by Kelly Strickler 
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CHAPTER SIX: Conclusions 

This study investigated the feasibility and potential benefits of implementing a 

network of decentralized green stormwater infrastructure controls in the subwatersheds of 

three channelized creeks that contribute to flooding in Los Platanitos, an informal 

settlement in Santo Domingo Norte, Dominican Republic. The project sought to answer 

two related questions: 1) What are potential resources to be leveraged or barriers to the 

implementation of an incentive- or community-based stormwater infrastructure provision 

model? 2) Given the predominant urban form, soil characteristics, rainfall patterns, 

capacity of current stormwater infrastructure, and percent impervious cover within the 

channels’ subwatersheds, what are the runoff and storage implications of the construction 

of these controls? Through a mixed-methods research design, a Stormwater Management 

Model (SWMM) was developed to estimate the potential runoff and storage impacts of the 

construction of a network of rain gardens and rain barrels throughout the contributing 

subwatersheds.  

Assuming the level of participation seen in the EPA’s “citizen-based stormwater 

management” study (Green et al., 2012; Mayer et al., 2012; Shuster  et al., 2013), the 

addition of 230 moderately sized (70 ft3) rain gardens throughout the three watersheds 

shows a 19% reduction in flood volumes for the 5-year storm; and the addition of nearly 

300 rain barrels brings the total reduction to 20%. These findings beg the question—is a 

20% combined reduction in flood volumes for a 5-year storm worth the monetary, human, 

and social capital needed to achieve it? Even if such a project could attract economic 

support from a non-governmental organization or the Ayuntamiento, most homes are still 

going to flood during the 5-year storm, and the intervention will have little to no effect on 

larger storms. As planners in a position of trust, is it ethical to advocate for a community 
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to spend its limited resources on such a small return? While the utilization of social and 

human capital does not carry economic costs, they are finite resources—and there are many 

other pressing needs.  

Moreover, could it be counterproductive to make half-measures towards flood 

mitigation given the retreat of the state under neoliberal governance? This study has 

demonstrated that to truly protect the residents adjacent to the channel from flooding due 

to extreme weather events, a combination of grey and green infrastructure is needed. While 

a decentralized approach can work concurrently with a centralized system, and a 

community-based approach aimed at decreasing flood frequency in the short-term does not 

preclude the potential implementation of larger-scale grey infrastructure, the municipality 

may see a community-based service provision as justification for not addressing the 

problem. More generally, does providing community-based services in the absence of 

state-provided services only serve to reinforce and enable the neoliberal shift from 

government to governance, leaving service provision to the voluntary sector (Chantada, 

2014)?  

On the other hand, there are multiple other benefits of green stormwater 

infrastructure that are not captured in simple terms of flood volume reduction. While 

upgrades to the conventional grey infrastructure must be implemented by the local 

government, rain gardens and rain barrels can be employed almost immediately for 

immediate results. The enhancement of storage and infiltration capacity in the channels’ 

watersheds will also impact flood frequency—some smaller storms will not cause flooding 

at all. Those living along the channel will be exposed to highly contaminated water with 

less frequency; children may be healthier and miss less school; and adults may miss less 

work due to illness. Rain gardens that are vegetated with suitable plants will also beautify 

the urban environment, contribute to a reduction in urban heat island effect, and buffer a 
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highly vulnerable population from the potential social, psychological, and physical hazards 

of living in a precarious living situation (Kuo & Sullivan, 2001).  

Do these relatively small ancillary benefits to green stormwater infrastructure 

outweigh the risk of the potentially large opportunity costs of a) spending valuable human 

and social capital and/or b) inadvertently endorsing a rollback of municipal provision of 

stormwater infrastructure? Perhaps. Could the risk of enabling the rollback of services be 

mitigated through partnerships with the local government, whereby nongovernmental 

organizations (NGOs) and/or residents contribute manpower and resources in return for 

local government intervening more than what they would otherwise? Again, perhaps—

without a more thorough investigation, it is impossible to make recommendation with any 

degree of confidence. Ultimately, the decision does not lie with planners, of course. It lies 

with the individuals and civil society organizations of the communities of Los Platanitos, 

Los Trinitarios, and Santa Cruz. Our obligation as planners is to provide complete 

information and open a space for dialogue. To that end, I propose the following 

recommendations. 

Recommendations 

This report recommends that the communities of Los Platanitos, Los Trinitarios, 

and Santa Cruz adopt an approach to stormwater management that combines green 

infrastructure with more traditional solutions. As the modeling results demonstrate, green 

stormwater infrastructure alone cannot protect the most vulnerable residents from larger 

storm events. By enabling a reduction in design parameters, the implementation of green 

stormwater controls can, however, reduce the costs associated with upgrading the grey 

system. In the City of Austin Brentwood Study, a combination of green stormwater 

infrastructure and targeted traditional infrastructure improvements completely eliminated 



 87 

structural flooding for moderate storms, and significantly reduced the number of structures 

subject to flooding in somewhat larger storms. While these traditional infrastructure 

upgrades added approximately one million dollars to the projected costs, these costs were 

still significantly lower than the traditional infrastructure scenario (City of Austin, 2014). 

The necessary expansions to the grey infrastructure system will require coordination with 

the Ayuntamiento and significant funds expenditures. Unfortunately, the lack of sufficient 

resources in the Ayuntamiento for such a project is exactly one of the obstacles that a green 

infrastructure approach was intended to circumvent.   

While large-scale upgrades to the grey infrastructure system require inputs from the 

Ayuntamiento, in the short term, the community can take several immediate actions. Sletto 

ed. (2008) identified improvements to La Piscina as the lowest cost project to provide direct 

flooding relief to the community. Currently large deposits of solid waste are blocking the 

culvert under the highway into the Parque Mirador Norte. Cleanup and/or expansion of La 

Piscina and the culvert would increase the channel’s conveyance capacity for a relatively 

low cost, and could be done with little disturbance to residents. In the short term, the 

community could begin putting together a participatory budgeting proposal for such an 

upgrade. Because these improvements are highly targeted and could be performed with 

limited funds, it would be a good participatory budgeting candidate.  

Another immediate action that can be taken is the establishment of a 

test/demonstration area within the community to introduce green infrastructure concepts 

and teach a few local technicians how to construct rain barrels and rain gardens properly. 

This demonstration site could be located on a tract of land that was recently awarded to the 

community by the Ayuntamiento. This initial training by an experienced engineer is very 

important, for the failure or mismanagement of the first few controls could negatively 

influence the community’s opinion of the entire paradigm. Any demonstration project 
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would also need to carefully manage expectations, clearly explaining that green 

infrastructure alone will not solve flood problems, but it can possibly help with smaller 

storms if enough controls are implemented throughout the entire watershed. The 

demonstration site should be jointly led by both FUMPLA and Mujeres Unidas. While 

FUMPLA has more connections to homeowners in the upland areas of the subwatersheds, 

Mujeres Unidas manages a source of compost that could serve to enhance the attractiveness 

and functionality of potential rain gardens. Mujeres Unidas also has cultivated a 

relationship with the National Botanical Garden, which provides free or low-cost plants to 

community groups. The Botanical Garden could potentially advise the project on suitable 

plant assemblages for the wet/dry conditions of rain gardens.  

More long-term solutions will all require cooperation with the Ayuntamiento 

because they require regulation of development practices or the expenditure of significant 

monetary capital. Many of these solutions are currently infeasible given the current 

technical, regulatory, and financial capacity of the Ayuntamiento, and any potential 

expenditures in these areas should be weighed against the costs of infrastructure upgrades. 

From a regulatory standpoint, the Ayuntamiento should ensure that all new (formal) 

development does not exacerbate downstream flooding. Currently, most apartments and 

housing complexes are designed to drain to the nearest natural channel, regardless of 

downstream flooding problems. This attention to downstream effects should especially 

include the nearby mattress factory, which has been filling in the northwest channel’s 

lagoon and continuing to exacerbate the problem. The Ayuntamiento should also establish 

a system to prevent further informal encroachment into flood risk areas, perhaps by setting 

up desired, but nonresidential uses in currently unused lots adjacent to the channel. Los 

Platanitos lacks access to many basic services, so these lots could serve as mobile 

healthcare stations (or whatever service is needed). Los Platanitos also must have access 
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to reliable solid waste collection to reduce the accumulation of trash in the channel, which 

exacerbates flooding. Such a solid waste solution could follow Fundsazurza’s community 

partnership model, or be provided by the Ayuntamiento.  

If all these long-term solutions were successfully carried out, the required 

infrastructure upgrades might be minimal. As mentioned previously, La Piscina and its 

associated culvert should be cleaned, dredged, and protected from further alterations. If at 

all possible, the Ayuntamiento should also deepen the current channel, especially in those 

areas where it is only 15 cm deep. In order to reduce contamination by illegal sewer 

connections, the Ayuntamiento should also provide a separate sanitary sewer. 

Alternatively, composting toilets that can dispose of waste without contaminating the 

channel could be provided at a lower cost than installing a separated sewer system. It is 

possible that an international NGO such as SOIL (Sustainable Organic Integrated 

Livelihoods) could be recruited to help install and educate the community about 

composting toilets. SOIL is an NGO operating in Haiti that promotes the use of ecological 

sanitation, a process by which human waste is converted into valuable compost (SOIL, 

2015).  

The model developed to estimate the stormwater impacts of rain garden and rain 

barrel implementation in Los Platanitos, Los Trinitarios, and Santa Cruz is still rather 

coarse—additional data is needed to develop more precise estimates of the potential flood 

impacts due to green stormwater infrastructure. Follow-up research should calibrate the 

SWMM model with real runoff and rain gauge data, and incorporate more detailed 

topographical information to estimate peak flows, flood depths, and potential reduction in 

flood depths. Follow-up research should also include an assessment of the feasibility and 

potential impacts of other controls such as infiltration trenches, green roofs, and larger-

scale rainwater cisterns. 
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Conclusions 

Theoretically, in the absence of large investments of physical capital to construct large-

scale grey infrastructure, a decentralized green stormwater infrastructure approach is well-

suited to an informal context in that it can be implemented by citizens themselves. 

Individual controls can be constructed incrementally as time, space, and materials allow. 

With low costs relative to conventional grey infrastructure (Thurston et al., 2003; 

ECONorthwest, 2007; USEPA, 2007; Brewer and Fisher, 2004), human and social capital 

are among the few requirements to construct and ensure the continuing functionality of a 

large number of individual small-scale stormwater controls. In informal communities, 

human and social capital is often the only form of capital readily available—as a result, 

these communities often have robust networks of formal and informal social ties that can 

be leveraged for a community-based, decentralized stormwater management system. In 

Los Platanitos, local civil society organizations and programs, highly skilled individuals 

and their connections, and opportunities to collaborate with the University of Texas are all 

sources of human and social capital that, if utilized for a bottom-up stormwater 

management paradigm, can partially substitute for the current lack of technological and 

physical capitals of grey infrastructure.   

The EPA’s “citizen-based stormwater management” study also demonstrated that 

community engagement and the activation of social capital may actually enhance the 

effectiveness of a stormwater control program. In additional to measuring the effectiveness 

of the green stormwater infrastructure in increasing the storage and infiltration capacity of 

the watersheds, the researchers also employed a statistical analysis of the spatial 

distribution of successful bids to illustrate the significant role of social capital in forming 

clusters of participating properties. Homeowners within a five property radius from 

successful bidders were more likely to be successful bidders themselves (Schuster et al., 
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2013), indicating that as participants shared their positive experiences with their neighbors, 

neighbors may have become more willing to enroll themselves (Green et al., 2012). 

According to Shuster et al. (2013), these findings indicate that “investing in strategies that 

grant responsibility and power to individuals may increase the economic benefits of 

financial investments in small to medium sized physical projects by inducing collective 

action and strengthening social cohesion” (p. 8). In communities with strong social 

cohesion such as Los Platanitos, this transmission through social ties could potentially lead 

to a higher rate of stormwater control adoption than in Shuster’s original study (23% and 

30% for rain gardens and rain barrels, respectively).   

While the current study has demonstrated that green stormwater infrastructure 

alone is only capable of reducing flood volumes for small, 5-year storms in the informal 

settlement of Los Platanitos, even small flood reductions can have a significant effect on 

quality of life and health of vulnerable communities. Furthermore, many of the model 

parameters were generated under assumptions taken from studies conducted in the US. In 

contexts where increased engagement of social capital is necessary to compensate for a 

lack of government-provided services, this study suggest that a similar incentive- or 

community-based program could see a higher rate of green stormwater infrastructure 

adoption and success than in US applications. Regardless of specific green infrastructure 

adoption rates, however, a combination of green and grey infrastructure approaches to 

stormwater management is still needed to protect vulnerable residents from very large 

storms.  
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