The Wildlife (Protection) Act and conservation prioritization of butterflies of the Western Ghats, southwestern India

Krushnamegh Kunte

Various schedules of the Wildlife (Protection) Act, 1972 (henceforth WPA), dictate the level of legal protection given to species of Indian animals. Shortcomings of the schedules of the WPA with respect to insects have been pointed out, but no solutions have been suggested. Here I have used butterflies of the Western Ghats as a case study, analysed their conservation values with multiple species attributes and then compared my findings with the species listed under the WPA. Analysis shows that a large proportion of species with high conservation values, many of them narrowly endemic and endangered, are not listed under the WPA, indicating the need to expand the listings. This methodology can be used to objectively assess conservation values of other animals and their inclusion in the WPA.

Keywords: Biodiversity hotspots, environmental law, insect diversity, Wildlife Protection Act.

THE most important legal system for protection of endangered animals in India is the Wildlife (Protection) Act, 1972 (ref. 1), henceforth WPA. The more recent Biological Diversity Act and Biological Diversity Rules² govern the use and protection of biodiversity, but both rely on the schedules of the WPA as a guideline for protecting species. WPA was a laudable legal measure for its time and it has proven valuable in the past several decades, especially with respect to conservation of large mammals and other vertebrates. The effectiveness of WPA in the conservation of invertebrates, however, is less clear. Several limitations of invertebrate lists under the schedules of the WPA have been highlighted in the past, particularly: (a) taxonomic inconsistencies and inaccuracies³, (b) lack of objectivity^{3,4}, and (c) inadequacy of the listings of the schedules⁴. Of potentially dire consequence is the exclusion from the WPA schedules of many species that are narrowly endemic to small geographic areas within the confines of the country, are highly endangered and do not have any special legal protection.

The butterfly fauna of the Western Ghats (Table 1)^{5,6}, which is one of the global biodiversity hotspots and an important conservation area, exemplifies the problems posed by current listings under the six WPA schedules. According to the WPA, taxa listed under Schedule I have the highest level of legal protection, Schedule II offers the second highest level of protection and so on down to

Schedule IV. Schedule V lists vermin and pests, and Schedule VI lists six plants. Among the first four schedules, butterflies are listed under Schedules I, II and IV, but many of the Western Ghats endemics and rare species have not been included⁴. There seem to be no data available in peer-reviewed literature describing the conservation importance of Indian butterfly species and subspecies. The rationale behind assigning taxa to specific WPA schedules has also not been published in any publicly available government documents. This has prevented objective assessment of the current listings and any future opportunities to improve them.

One way to remedy this situation is to analyse conservation values of butterfly species, which can then be used as a guide to the listing of species under WPA schedules. Conservation values based on multiple species attributes were computed earlier for birds of the Uttar Kannada District, southwestern India, by scoring their distributional ranges, habitats and taxonomic distinctiveness⁷. A similar scoring system was employed to assign conservation values to all the bird species and their habitats in the Western Ghats, to highlight conservation strategies in the face of ongoing habitat conversion and biodiversity loss⁸. Species parameters have also been used recently in assessing extinction proneness in tropical butterflies⁹, and should be useful in the present context. Here I present an analysis of butterfly fauna of the Western Ghats, using multiple species parameters in assigning conservation values to all species. The results are compared with the WPA schedules and I also discuss how the approach presented here can be instrumental in improving the WPA schedules to ade-

Krushnamegh Kunte is in the Section of Integrative Biology, University of Texas at Austin, 1 University Station, C 0930, Austin, TX 78712, USA. e-mail: krushnamegh@mail.utexas.edu

Family	Genera	Species	WG endemics ^a	WG + SL endemics ^b	Total endemics
Papilionidae	4	19	5	0	5
Pieridae	14	34	3	1	4
Nymphalidae	45	97	12	4	16
Riodinidae	1	1	0	0	0
Lycaenidae	54	100	3	3	6
Hesperiidae	46	82	10	0	10
Total	164	333	33	8	41

 Table 1. Family-wise breakdown of butterfly diversity and endemism in the Western Ghats

^aWG, Species endemic to the Western Ghats; ^bWG + SL, Endemics shared with Sri Lanka.

quately protect species that need legal protection for their long-term conservation.

Methods

Study area and butterfly species

The Western Ghats stretches along the western coast of peninsular India from Surat Dangs in southern Gujarat to southwestern Tamil Nadu (8-20°N), covering an area of ~160,000 sq. km and ranging in elevation from sea level to ~2700 m. The northern parts and extreme southern tip are less moist, while the central and southern Western Ghats receive heavy annual precipitation of up to 6000 mm, which supports dense evergreen forests rich in species diversity and endemism. The two most biodiverse areas of the Western Ghats, i.e. Coorg-Nilgiris and southern Western Ghats, are separated by the Palghat Gap (Figure 1), giving rise to local endemism and increasing overall diversity in the area. Most of the flora and fauna of the Western Ghats are derived from the Oriental region (Holloway¹⁰ and references therein). Endemism varies from over 60% for amphibians and reptiles to 4% for birds, but the overall levels of diversity and endemism in the Western Ghats are high¹¹, prompting their inclusion in the global biodiversity hotspots. A list of the Western Ghats butterflies was prepared from faunistic literature^{5,6,12–14}.

Conservation scores

Each butterfly species was given scores for four parameters (global distribution, local distribution, habitat preference and status) as discussed below. Values were assigned for various states of the parameters such that restricted global and local distributions, rarity and occurrence in threatened or very specialized habitats, each received the highest score. Widespread global and local distributions, commonness and occurrence in widespread, less threatened or diversity of habitats, each received a low score. Then a composite conservation value was calculated for each butterfly species by adding its four scores. Since scores were assigned from 1 to 10 for each of the four parameters, the highest possible conservation value for a species was 40 and the lowest value was 4.

Figure 1. Map of the Western Ghats showing the four zoo-geographic divisions.

Parameter values could be assigned in a number of ways and the method used here was arbitrary. What was critical for the present purpose was the relative rank of various states of the parameters. By extension, the relative conservation values (in this case out of 40) of different species were important, not absolute numbers computed for each species. In order to preserve and present my original data values were not normalized. The values can be normalized from my raw data for comparison with similar studies in other groups or areas. Given the limited space here, it is not feasible to give the complete list of butterflies of the Western Ghats with parameter values and conservation scores for each species. This dataset can be requested by e-mail. It will also be made available in a free public domain soon.

	RAPA ^a	RAWI	UNPA	UNWI	COPA	COWI	ABPA	ABWI	Total	
NWG ^b	5		3	1	9	2			20	
WG	1	1	2	1	4	4			13	
WGSL	1	2	1		1	3			8	
PI	1	1			1	7			10	
IS	3		1	9	1	17			31	
OR	17	14	7	21	4	71		1	135	
OEH	2	3		5	1	22			33	
OAU	2		1	7	1	26		3	40	
OAF	2		2	1		13			18	
OH					1	1			2	
GL	2	1		1	1	17		1	23	
Total	36	22	17	46	24	183	0	5	333	

Table 2. Association between global distribution and status of butterflies of the Western Ghats

^aStatus within the Western Ghats – RA, Rare; UN, Uncommon; CO, Common; AB, Abundant; PA, Patchily distributed; WI, Widely distributed. Conservation scores – RAPA, 10; RAWI, 9; UNPA, 7; UNWI, 6; COPA, 4; COWI, 3 and ABWI, 1.

^bGlobal distribution – NWG, Narrowly endemic to the Western Ghats (occur only in the southern and Coorg-Nilgiris regions; conservation score is 10); WG, Endemic to the Western Ghats, conservation score is 8; WGSL, Endemic to the Western Ghats–Sri Lanka biodiversity hotspot, conservation score is 6; PI, Restricted to Peninsular India, conservation score is 5; IS, Restricted to the Indian Subcontinent, conservation score is 4. The following distributions are over larger zoogeographic scales: OR, Oriental region, conservation score is 3; OEH, Oriental region and eastern Palaearctic (China, Japan, Korea, etc., conservation score is 2); OAU, Oriental and Australian regions, conservation score is 2; OAF, Oriental and African regions, conservation score is 2; OH, Oriental and Palaearctic, conservation score is 2, and GL, Distributed over three or more zoogeographic regions, or 'global', conservation score is 1.

Global distributions

Global distributions were assigned to species in terms of zoogeographic regions following Cox¹⁵: (1) Oriental region (India east- and southeast-ward up to Indonesia, the Philippines and Taiwan), (2) Australian region (New Guinea-Irian Jaya, Australia, New Zealand and associated Pacific Islands), (3) African region (including parts of the Middle East), (4) Palaearctic region (northern Eurasia), (5) Nearctic region (North America, including parts of Central Mexico), and (6) Neotropical region (southern North America, Central and South America). I classified the more restricted Oriental distributions into Indian subcontinent (Pakistan to northern Myanmar and the Himalayas to Sri Lanka), and Peninsular India and Sri Lanka-Western Ghats biodiversity hotspot (for narrower endemics, see the next section). Several faunistic works were consulted for global distribution of species^{5,16-24}. Values for each of these distributional categories and other parameters are given in Tables 2 and 3.

Local distribution (within the Western Ghats)

The Western Ghats was subdivided in the following four natural zoogeographic sections⁷: (1) northern – southeastern Gujarat to Goa, (2) central – Goa to Coorg, (3) Coorg and Nilgiris, and (4) southern – south of the Palghat Gap to the southern tip of the Western Ghats (Figure 1). Local distribution of species was extracted from a variety of sources^{4-6,13} and unpublished observations.

Habitat preferences

The major butterfly habitats were classified in broad categories reflecting the precipitation gradient, altitude and vegetation types, as follows:

- (1) Low and mid-elevation evergreen and semi-evergreen forests (sea level up to 1500 m): This is one of the most endangered habitats in India; hence species inhabiting this habitat received the highest conservation score.
- (2) Montane evergreen forests (>1800 msl) known as 'shola' forests: Species found in this habitat are highly specialized on montane forests and some of them are narrow endemics. This and the next habitat are highly endangered due to tea, coffee and wattle plantations and associated human disturbance; hence their inhabitants also received the highest score.
- (3) Montane grasslands and edges of shola forests above 1800 m: as above.
- (4) Moist forests: Including evergreen, semi-evergreen and dense riparian moist deciduous forests. Evergreen forests are thus a subset of moist forests, the evergreen forest species being more habitat-specialized. Species assigned to this category usually do not venture into drier and more exposed parts of the deciduous forests. This habitat is increasingly threatened from damming of forest rivers, extensive human use and various development activities.

	-					<u>^</u>						
	EVS^{a}	SHO	MSG	MOI	DEC	DDS	WOO	GRS	SSA	DIV	Total	
NWG ^b	11	2	7								20	
WG	11			2							13	
WGSL	5	1		2							8	
PI				3	3	2		1		1	10	
IS	8			4	8	2	3	4	1	1	31	
OR	53	1	2	34	22	3	12	3	2	3	135	
OEH	11		1	8	4		5			4	33	
OAU	10			12	3	1	9	2		3	40	
OAF				1		3		13		1	18	
OH			1							1	2	
GL	3		1		1		7	6	1	4	23	
Total	112	4	12	66	41	11	36	29	4	18	333	

Table 3. Association between global distribution and habitat preference of butterflies of the Western Ghats

^aButterfly habitats – EVS, Low and mid-elevation evergreen and semi-evergreen forests, conservation score is 10; SHO, Montane evergreen ('shola') forests, conservation score is 10; MSG, Montane shola–grassland mosaics, conservation score is 10; MOI, Moist forests (evergreen, semi-evergreen and riparian moist deciduous forests, conservation score is 8); DEC, Deciduous forests, conservation score is 6; DDS, Dry deciduous and scrub forests, conservation score is 4; WOO, Generalist woodland species (evergreen, deciduous and scrub forests, conservation score is 3); GRS, Low and midelevation dry grasslands and savannahs, conservation score is 2; SSA, Streams, swamps and other open freshwater habitats, conservation score is 2 and DIV, Diverse habitat types (generalist spp.), conservation score is 1. ^bGlobal distribution as in Table 2.

- (5) Moist deciduous forests: This habitat is more secure than the above-mentioned habitats, but suffers from felling, burning and intensive human use.
- (6) Dry deciduous forests and scrublands: Most of these are highly disturbed deciduous forests that have been thinned and converted to dry habitats due to intense use by humans and livestock.
- (7) Woodlands: Species assigned to this category inhabit a wide range of woodland habitats, from openings in evergreen forests to wooded areas in urban settings. These are woodland generalists.
- (8) Low and mid-elevation dry grasslands and savannahs: These are usually maintained as grazing land for livestock by human-induced fires.
- (9) Non-forest streams, swamps and other open freshwater habitats: Although this habitat is important for migratory birds, fish and other animals, it is not so important for butterflies since few habitat generalist species use it non-exclusively.

Habitat information on butterfly species was gathered from various sources $^{4,13,25-26}$ and unpublished observations.

Status

Status, i.e. frequency of occurrence and patchiness of geographical distribution, was assigned to butterfly species in the Western Ghats from the literature as well as unpublished observations. Common species received lower scores than rare species, and species with patchy populations received higher scores than those with more widespread populations (Table 2).

tinctiveness in computing conservation values^{7,8,27,28}. This component could feature prominently in future studies on Indian butterflies when we have a better understanding of phylogenetic relationships between various species groups and when species arrangements in some important genera have stabilized further. Several taxonomic efforts are currently under way to resolve these issues^{29–31}, and it should be possible to use the resulting information in near future.

Previous analyses have frequently used taxonomic dis-

The present analysis should be considered with two important caveats in mind. First, the scoring scheme used here is open to some arbitrariness. Secondly, different sets of species attributes may be important while calculating conservation scores for different groups of organisms. Thus, in a more inclusive effort in future, a multi-criterion analysis should be performed followed by sensitivity analysis for the various species attributes, so that these two issues can be addressed in more detail.

Results

Thirty-three of the 333 butterfly species found in the Western Ghats are endemic, and an additional eight endemics are shared between the Western Ghats and Sri Lanka biodiversity hotspots, making the total number of endemic and narrowly endemic species as 41 or 12.31% of the Western Ghats butterfly fauna (Table 1). The mean conservation value of all the 333 species was 20.1 ± 7.13 (range 9–40). The mean conservation value of non-endemic species was 18.51 ± 5.85 (range 9–33; 292 spp.), that of the species endemic to the Western Ghats and Sri Lanka was 31.37 ± 4.93 (range 21–40; 41 spp.). The difference between the distribution of conservation values of

endemic and non-endemic species was significant (Kolmogorov–Smirnov test: D = 0.7445, P < 0.0001). However, the ranges of their conservation values overlapped to a large extent (Figure 2), indicating that endemism alone was not a good correlate of overall conservation values.

Table 2 gives a breakdown of species according to their global distribution and status within the Western Ghats. The proportion of rare and patchily distributed species was highest among narrow endemics, i.e. those occurring only in Coorg-Nilgiris and southern Western Ghats (five out of 20 species, or 25%), followed by other endemics, including those shared with Sri Lanka (seven out of 41 species, or 17%) and non-endemic species (29 out of 292 species, or 10%). Table 3 gives a breakdown of species according to their global distribution and habitat preference within the Western Ghats. An unusually high proportion of narrowly endemic species occupied three highly endangered habitats: evergreen forests (11 species, or 55% of the narrow endemics) and montane sholagrassland mosaics (9 species, or 45%). Thus, endemism, rarity, patchy distributions and preference for endangered habitats were generally associated. Note in Table 3 the marked absence of endemic species in dry, open habitats such as deciduous forests and scrub/savannahs, which are mostly a result of recent human-caused alterations in the Western Ghats.

Table 4 gives a family and WPA schedule-wise breakdown of Indian butterflies. It also includes a family-wise breakdown of 82 out of the total 333 butterfly species of the Western Ghats, with conservation values in the top quartile of the analysis. Although the schedules consider all the Indian taxa while the present study analyses conservation values of only the Western Ghats butterflies,

Figure 2. Distribution of conservation values of non-endemic species (A) and species endemic to the Western Ghats and Sri Lanka (B).

CURRENT SCIENCE, VOL. 94, NO. 6, 25 MARCH 2008

the comparison bares important issues. The most striking result from this comparison is the taxonomic bias against family Hesperiidae as listed in the WPA schedules, whereas many hesperiids have high conservation values. Nymphalidae, Lycaenidae and Hesperiidae are the most diverse families both in India and in the Western Ghats^{5,6}, and their endemism levels in the Western Ghats are similar (Table 1). Diversity, endemism and resulting conservation values of the three families were accurately represented in the present analysis: the three families had comparable number of species in the top quartile of conservation values. In contrast, the WPA schedules covered a mere 3% of species under Hesperiidae (Table 4). Moreover, only a minor proportion of the species having the highest conservation values is included in any WPA schedule, highlighting the inadequacies of the listings of the WPA schedules and the need to expand them.

Discussion

Here I have attempted to compute conservation values of butterflies of the Western Ghats. Conservation values have been used to further assess the adequacy of butterfly listings under the WPA schedules. The present analysis indicates that the WPA does not protect many endemic and non-endemic species with high conservation values. For example, the WPA schedules do not list the following Western Ghats species with highest conservation values: Eurema nilgiriensis, Mycalesis igilia, M. davisoni, M. orcha, Thoressa evershedi and T. sitala (all with conservation values in the range 34-40, out of 40). On the other hand, narrowly endemic, patchily distributed and taxonomically the most distinctive butterfly in the Western Ghats, Parantirrhoea marshallii (conservation value 38), and other highly restricted Western Ghats endemics such as Zipaetis saitis, Papilio buddha and Appias wardii are all listed under Schedule II. These deserve to be listed under Schedule I. Thus, the WPA schedules should be expanded to include high conservation priority species currently missing from the schedules altogether, and species listed under various WPA schedules need reshuffling in order to grant a more appropriate level of protection to them according to their conservation values.

The finding that narrow endemics generally have higher conservation values is not surprising. However, particular attention should be paid to the fact that some rare and sparsely distributed non-endemics also have high conservation values. This is important because the Western Ghats populations of these more widespread species represent either subspecies or long-isolated populations that contain unique intraspecific genetic diversity and possess evolutionary potential, which is an important component of overall species diversity of the Western Ghats. In contrast, given their abundance in a variety of habitats, including urban landscapes, species endemic to the Indian subcontinent (e.g. *Pachliopta hector*) or the Western

	Schee	Schedules of the Wildlife (Protection) Act				
-	Ι	II	IV	Total	This study	
Papilionidae	14	21	0	35 (8%)	4 (5%)	
Pieridae	6	21	4	31 (7%)	5 (6%)	
Nymphalidae	61	141	5	211 (47%)	28 (34%)	
Riodinidae	0	4	0	4 (1%)	0 (0%)	
Lycaenidae	47	113	1	161 (36%)	21 (26%)	
Hesperiidae	0	3	9	12 (3%)	24 (30%)	
Total	128	303	19	450 (100%)	82 (100%)	

 Table 4. Family-wise comparison of taxa and their relative percentages (rounded-off to the nearest integer) listed under various schedules in the Wildlife (Protection) Act of India with taxa in the top quartile of conservation values in this study

Ghats (e.g. *Troides minos*) may not need legal protection under the WPA. For these reasons, I argue that endemism alone should not be used to list species in the WPA schedules; rather, a multi-parameter system similar to the one proposed here should be evolved and employed in future policy decisions and legal conservation efforts.

An analysis of conservation values of the birds of the Western Ghats has earlier shown that evergreen forests and montane shola–grassland mosaics support a high proportion of endemic and endangered bird species⁸; the present analysis shows that this is also true for the butter-fly species. Hence, further attention is needed in offering better protection to these bird and butterfly habitats, since extinction of the species will follow widespread decline in their habitats even if the WPA protects them.

In summary, the analysis presented here offers a rationale, viz. conservation values of species based on multiple species attributes, for including species in the WPA schedules and providing them legal protection. This analysis can be extended to the flora and fauna of the entire country, particularly flowering plants, vertebrates and invertebrates on which similar information is available, such as butterflies and odonates (dragonflies and damselflies). As conservation biologists assess the status of various species and organismal groups, rank species by their conservation values and make the information available in peer-reviewed, publicly available research journals, government bodies can use this information for designing and implementing conservation strategies, including placement of species in appropriate WPA schedules according to their conservation values. This kind of strategy calls for concerted efforts of and regular interaction between researchers, conservation planning and decision-making bodies, and forest officials. The government approach to conservation also needs to be more dynamic, unlike the current static approach that lacks any schemes for periodic revisions and reassessments of important policy frameworks such as the WPA. This is crucial since conservation concerns are not unchanging even for apparently unthreatened species, as the alarming decline in vulture populations recently painfully demonstrated³².

Thus, periodic assessments of the WPA listings, particularly of those taxa on which new information is continuously being generated, will better equip us in dealing with the changing conservation scene. This is more likely to succeed in protecting India's biodiversity wealth in the long term.

- Anon., The Wildlife (Protection) Act, 1972 (as amended up to 1993) with rules uptil 1995, Natraj Publishers, Dehra Dun, 1997, 4th updated edn, Wildlife (Protection) Amendment Act, Government of India, 2002; <u>http://envfor.nic.in</u>/, accessed 20 February 2007.
- 2. National Biodiversity Authority, The Biological Diversity Act, 2002 and Biological Diversity Rules, 2004, National Biodiversity Authority, Government of India, 2004.
- Mohanraj, P. and Veenakumari, K., Nomenclature, classification and the basis of the schedules in the Wildlife (Protection) Act, 1972. *Curr. Sci.*, 1996, **70**, 428–432.
- Kunte, K., Butterflies of Peninsular India, Universities Press, Hyderabad and Indian Academy of Sciences, Bangalore, 2000.
- 5. Evans, W. H., *The Identification of Indian Butterflies*, Bombay Natural History Society, Mumbai, 1932, 2nd edn.
- Gaonkar, H., Butterflies of the Western Ghats, India (including Sri Lanka: A Biodiversity Assessment of a Threatened Mountain System). Technical report submitted to the Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 1996.
- Daniels, R. J. R., Hegde, M., Joshi, N. V. and Gadgil, M., Assigning conservation values: A case study from India. *Conserv. Biol.*, 1991, 5, 464–475.
- 8. Pramod, P., Daniels, R. J. R., Joshi, N. V. and Gadgil, M., Evaluating bird communities of Western Ghats to plan for a biodiversity friendly development. *Curr. Sci.*, 1997, **73**, 156–162.
- Koh, L. P., Sodhi, N. S. and Brook, B. W., Ecological correlates of extinction proneness in tropical butterflies. *Conserv. Biol.*, 2004, 18, 1571–1578.
- Holloway, J. D., The biogeography of Indian butterflies. In *Ecology and Biogeography in India* (ed. Mani, M. S.), Junk, The Hague, 1974, pp. 473–499.
- Daniels, R. J. R., Biodiversity of the Western Ghats An overview. From the National Biodiversity Strategy and Action Plan: Western Ghats Eco-Region, Report submitted to Ministry of Environment and Forests, Governemnt of India, 2001.
- 12. Talbot, G., *The Fauna of British India, including Ceylon and Burma: Butterflies, Vol. I and II*, Taylor and Francis, London, 1939.
- Wynter-Blyth, M. A., Butterflies of the Indian Region, Bombay Natural History Society, Mumbai, 1957.

- Nalini, S. and Boris, L., The spot puffin butterfly *Appias lalage lalage* Doubleday (Pieridae) A rare record for South India. J. Bombay Nat. Hist. Soc., 1996, **93**, 596.
- Cox, C. B., The biogeographic regions reconsidered. J. Biogeogr., 2001, 28, 511–523.
- Bascombe, M. J., Johnston, G. and Bascombe, F. S., *The Butter-flies of Hong Kong*, Academic Press, London, 1999.
- Corbet, A. S. and Pendlebury, H. M., *The Butterflies of the Malay Peninsula*, 4th edn revised by Eliot, J. N., Malayan Nature Society, Kuala Lumpur, 1992.
- d'Abrera, B., Butterflies of the Afrotropical Region, Part I: Papilionidae, Pieridae, Acraeidae, Danaidae, Satyridae (2nd edition). Hill House Publishers, Melbourne, 1997.
- d'Abrera, B., Butterflies of the Afrotropical Region, Part II: Nymphalidae, Libytheidae (2nd edition), Hill House Publishers, Melbourne, 2004.
- d'Abrera, B., World Butterflies, Hill House Publishers, Melbourne, 2006.
- Larsen, T. B., The Butterflies of Kenya and their Natural History, Oxford University Press, Oxford, 1991.
- 22. Lewis, H. L., *Butterflies of the World*, Harrison House, New York, 1987.
- Savela, M., <u>http://www.nic.funet.fi/pub/sci/bio/life/insecta/lepido</u> <u>ptera/ditrysia/papilionoidea/index.html</u> (accessed September– October 2006).
- Scott, J. A., The Butterflies of North America: A Natural History and Field Guide, Stanford University Press, Stanford, 1986.
- Larsen, T. B., The butterflies of the Nilgiri Mountains of South India (Lepidoptera, Rhophalocera). J. Bombay Nat. Hist. Soc., 1987, 84, 26–54; 291–316; 560–584.
- Larsen, T. B., The butterflies of the Nilgiri Mountains of South India (Lepidoptera, Rhophalocera). J. Bombay Nat. Hist. Soc., 1988, 85, 2–43.
- 27. Freitag, S. and Van Jaarsveld, A. S., Relative occupancy, endemism, taxonomic distinctiveness and vulnerability: Prioritizing re-

gional conservation actions. *Biodivers. Conserv.*, 1997, 6, 211-232.

- Redding, D. W. and Mooers, A. Ø., Incorporating evolutionary measures into conservation prioritization. *Conserv. Biol.*, 2006, 20, 1670–1678.
- Braby, M. F., Vila, R. and Pierce, N. E., Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): Higher classification and biogeography. *Zool. J. Linn. Soc.*, 2006, 147, 239–275.
- Wahlberg, N. *et al.*, Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. *P. R. Soc. London, Ser. B*, 2005, 272, 1577–1586.
- Zakharov, E. V., Caterino, M. S. and Sperling, F. A. H., Molecular phylogeny, historical biogeography and divergence time estimates for swallowtail butterflies of the genus *Papilio* (Lepidoptera: Papilonidae). *Syst. Biol.*, 2004, 53, 193–215.
- Oaks, J. L. *et al.*, Diclofenac residues as the cause of vulture population decline in Pakistan. *Nature*, 2004, 27, 630–633.

ACKNOWLEDGEMENTS. Various stages of my work on the Western Ghats butterflies have been financially supported in the past 10 years in part by frequent travel support from the Centre for Ecological Sciences, IISc, Bangalore; a Masters degree fellowship from the Ministry of Environment and Forests, Government of India; a research grant from the National Centre for Biological Sciences, Bangalore, and by two fellowships from the Section of Integrative Biology at the University of Texas, Austin – the Hartman Graduate Fellowship and Dorothea Bennett Memorial Graduate Fellowship. I was supported during the writing of this manuscript by the Continuing Fellowship from the University of Texas, Austin.

Received 13 March 2007; revised accepted 5 February 2008

Appendix to:

Kunte, K. 2008. The Wildlife (Protection) Act and conservation prioritization of butterflies of the Western Ghats, southwestern India. *Current Science*, 94:729-735.

Butterflies of the Western Ghats with their distributions, status and habitat preference, from which their conservation values were calculated (see the end of the table). Species are arranged in descending order by their conservation values.

Sr.	Scientific name	Global	Local	Status ^c	Habitat	Conservation
#		distribution ^a	distribution ^b		preference	¹ value ^e
1	Mycalesis igilia	NWG	CONI	RAPA	EVS	40
2	Mycalesis davisoni	NWG	S	RAPA	EVS	40
3	Eurema nilgiriensis	NWG	CONI	RAPA	MSG	40
4	Parantirrhoea marshallii	NWG	CONIS	RAPA	EVS	38
5	Zipaetis saitis	NWG	CONIS	RAPA	EVS	38
6	Thoressa evershedi	NWG	S	UNPA	EVS	37
7	Mycalesis orcha	NWG	CONIS	UNPA	EVS	35
8	Thoressa sitala	NWG	CONIS	UNPA	EVS	35
9	Appias wardii	WG	CS	RAPA	EVS	34
10	Mycalesis oculus	NWG	S	COPA	MSG	34
11	Mycalesis adolphei	NWG	CONI	COPA	MSG	34
12	Ypthima ypthimoides	NWG	S	COPA	MSG	34
13	Rapala lankana	WGSL	CONIS	RAPA	EVS	34
14	Arnetta mercara	NWG	CONIS	COPA	EVS	34
15	Oriens concinna	NWG	CONIS	UNWI	EVS	34
16	Amathusia phidippus	OR	S	RAPA	EVS	33
17	Logania distanti	OR	CONI	RAPA	EVS	33
18	Udara singalensis	WGSL	S	UNPA	SHO	33
19	Tajuria maculata	OR	CONI	RAPA	EVS	33
20	Hypolycaena nilgirica	WGSL	CONIS	RAWI	EVS	33
21	Caltoris canaraica	WG	CS	RAWI	EVS	33
22	Colias nilgiriensis	NWG	CONIS	COPA	MSG	32
23	Ypthima philomela	IS	CONIS	RAPA	EVS	32
24	Ypthima chenui	NWG	CONIS	COPA	MSG	32
25	Parantica nilgiriensis	NWG	CONIS	COPA	SHO	32
26	Celatoxia albidisca	NWG	CONIS	COPA	SHO	32
27	Quedara basiflava	NWG	CONIS	COPA	EVS	32
28	Papilio budha	WG	CS	UNPA	EVS	31
29	Eurema andersonii	OR	CONIS	RAPA	MSG	31
30	Discophora lepida	WGSL	CS	RAWI	EVS	31
31	Prosotas noreia	OR	CONIS	RAPA	EVS	31
32	Aeromachus dubius	NWG	CONIS	COWI	MSG	31
33	Thoressa astigmata	WG	CS	UNPA	EVS	31
34	Suastus minuta	OR	CONIS	RAPA	EVS	31
35	Potanthus pallida	OR	CONIS	RAPA	EVS	31
36	Neptis viraja	IS	CS	RAPA	EVS	30
37	Catochrysops panoramus	OAU	CONI	RAPA	MOI	30
38	Nacaduba caluria	OAU	CONIS	RAPA	EVS	30
39	Arhopala alea	WG	CS	UNWI	EVS	30

40	Salanoemia sala	OR	CONIS	RAWI	EVS	30
41	Potanthus pava	OEH	CONIS	RAPA	EVS	30
42	Neptis nata	OR	CS	RAPA	EVS	29
43	Neptis soma	OR	CS	RAPA	EVS	29
44	Horaga viola	OR	CS	RAPA	EVS	29
45	Curetis siva	NWG	CS	COWI	EVS	29
46	Choaspes benjaminii	OEH	CONIS	RAWI	EVS	29
47	Erionota thrax	GL	CONIS	RAPA	EVS	29
48	Pachliopta pandiyana	WG	CS	COPA	EVS	28
49	Papilio liomedon	WG	CS	COPA	EVS	28
50	Papilio dravidarum	WG	CS	COPA	EVS	28
51	Mycalesis anaxias	OR	CONIS	UNPA	EVS	28
52	Athyma nefte	OR	CS	RAWI	EVS	28
53	Euthalia telchinia	OR	CS	RAWI	EVS	28
54	Idea malabarica	WG	CS	COPA	EVS	28
55	Acytolepis lilacea	OR	CONIS	UNPA	EVS	28
56	Rachana jalindra	OR	CS	RAWI	EVS	28
57	Burara gomata	OR	CS	RAWI	EVS	28
58	Gerosis bhagava	OR	CS	RAWI	EVS	28
59	Cupitha purreea	OR	CONIS	RAWI	MOI	28
60	Hvarotis microsticta	OR	CS	RAWI	EVS	28
61	Appias lalage	OR	S	COPA	MSG	27
62	Euripus consimilis	OR	NCS	RAPA	EVS	27
63	Arhopala atrax	OR	NCS	RAPA	EVS	27
64	Arohonala abseus	OR	NCS	RAPA	EVS	27
65	Horaga onvx	OR	NCS	RAPA	EVS	27
66	Sovia hvrtacus	WG	CS	COWI	EVS	27
67	Thoressa honorei	WG	CS	COWI	EVS	27
68	Prioneris sita	WGSL	CS	COPA	EVS	26
69	Polvura schreiberi	OR	NCS	RAWI	EVS	26
70	Pantoporia sandaka	OR	CS	UNPA	EVS	26
71	Kaniska canace	OEH	CONIS	UNWI	EVS	26
72	Doleschallia bisaltide	OR	NCS	RAWI	EVS	26
73	Ionolvce helicon	OAU	CONIS	UNWI	EVS	26
74	Zeltus amasa	OR	CS	UNPA	EVS	26
75	Pelopidas subochracea	IS	CS	UNWI	EVS	26
76	Nentis clinia	OEH	CS	RAWI	MOI	25
77	Athvma selenophora	OR	CS	UNWI	EVS	25
78	Parthenos svlvia	OAU	CS	UNPA	EVS	25
79	Arhopala bazaloides	OR	CS	UNWI	EVS	25
80	Spindasis abnormis	PI	NCS	RAPA	DEC	25
81	Hvarotis adrastus	OR	CS	UNWI	EVS	25
82	Potanthus confucius	OEH	NCS	RAWI	EVS	25
83	Potanthus palnia	OEH	S	COWI	EVS	25
84	Pieris canidia	OH	CONIS	COPA	MSG	24
85	Pareronia cevlanica	IS	CS	COPA	EVS	24
86	Ynthima avanta	IS	NCS	UNWI	EVS	24
87	Rohana parisatis	OR	NCS	UNPA	EVS	24
88	Vanessa indica	OEH	CONIS	COPA	MSG	24

89	Udara akasa	OR	CONIS	COWI	SHO	24
90	Tajuria jehana	IS	CS	UNWI	MOI	24
91	Tajuria melastigma	IS	CS	UNWI	MOI	24
92	Hypolycaena othona	OR	NCS	UNPA	EVS	24
93	Bindahara phocides	OAU	CS	UNWI	EVS	24
94	Burara jaina	OR	NCS	RAWI	MOI	24
95	Bibasis sena	OR	NCS	RAWI	MOI	24
96	Hasora taminatus	OAU	CS	UNWI	EVS	24
97	Psolos fuligo	OR	CONIS	COWI	EVS	24
98	Oriens goloides	OR	CONIS	COWI	EVS	24
99	Polytremis lubricans	OEH	CONIS	UNWI	MOI	24
100	Troides minos	WG	NCS	COWI	MOI	23
101	Graphium antiphates	OR	CS	COPA	EVS	23
102	Mycalesis subdita	PI	CS	COPA	MOI	23
103	Cethosia nietneri	WGSL	NCS	COWI	EVS	23
104	Cirrochroa thais	WGSL	NCS	COWI	MOI	21
105	Athyma ranga	OR	CS	COPA	EVS	23
106	Dophla evelina	OR	NCS	UNWI	EVS	23
107	Kallima horsfieldi	WG	NCS	COWI	MOI	23
108	Celastrina lavendularis	OAU	CONIS	COWI	EVS	23
109	Neopithecops zalmora	IS	CS	COWI	EVS	23
110	Nacaduba hermus	OR	NCS	UNWI	EVS	23
111	Thaduka multicaudata	OR	NCS	UNWI	EVS	23
112	Zinaspa todara	OR	CS	UNWI	MOI	23
113	Creon cleobis	OR	CS	UNWI	MOI	23
114	Tagiades gana	OR	NCS	UNWI	EVS	23
115	Caprona agama	OR	CS	RAPA	DDS	23
116	Pelopidas conjuncta	OR	NCS	UNWI	EVS	23
117	Baoris farri	IS	CS	COWI	EVS	23
118	Melanitis zitenius	OR	CS	COWI	EVS	22
119	Mycalesis visala	OR	CS	COWI	EVS	22
120	Phalanta alcippe	OAU	CS	COPA	EVS	22
121	Libythea lepita	OEH	CS	UNWI	MOI	22
122	Kallima inachus	OEH	Ν	RAPA	MOI	22
123	Nacaduba pactolus	OAU	NCS	UNWI	EVS	22
124	Iraota timoleon	OEH	NCS	UNWI	EVS	22
125	Catapaecilma major	OR	NCS	RAWI	DEC	22
126	Halpe porus	OR	CS	COWI	EVS	22
127	Caltoris philippina	OAU	NCS	UNWI	EVS	22
128	Appias lyncida	OR	NCS	UNWI	MOI	21
129	Mycalesis patnia	WGSL	NCS	COWI	MOI	21
130	Libythea myrrha	OR	NCS	UNWI	MOI	21
131	Anthene emolus	OR	NCS	UNWI	MOI	21
132	Spindasis schistacea	IS	NCS	UNPA	DEC	21
133	Rathinda amor	IS	NCS	COWI	EVS	21
134	Ancema blanka	OR	NCS	UNWI	MOI	21
135	Pratapa deva	OR	NCS	UNWI	MOI	21
136	Tapena twaithesi	OR	NCS	UNWI	MOI	21
137	Odontoptilum angulata	OR	NCS	UNWI	MOI	21

138	Caprona alida	OR	NCS	RAPA	DDS	21
139	Baracus vittatus	IS	CS	COWI	MOI	21
140	Papilio polymnestor	PI	NCS	COWI	MOI	20
141	Cepora nadina	OR	NCS	COWI	EVS	20
142	Appias indra	OR	NCS	COWI	EVS	20
143	Lethe drypetis	PI	NCS	COWI	MOI	20
144	Vindula erota	OR	NCS	COWI	EVS	20
145	Pantoporia hordonia	OR	NCS	COWI	EVS	20
146	Tarucus indica	PI	NCS	RAWI	GRS	20
147	Nacaduba berenice	OAU	NCS	UNWI	MOI	20
148	Spindasis ictis	IS	NCS	UNWI	DEC	20
149	Spindasis elima	IS	NCS	UNWI	DEC	20
150	Cheritra freja	OR	NCS	COWI	EVS	20
151	Zesius chrysomallus	IS	NCS	UNWI	DEC	20
152	Rapala varuna	OAU	NCS	UNWI	MOI	20
153	Tagiades litigiosa	OR	NCS	COWI	EVS	20
154	Aeromachus pygmaeus	OR	CS	COWI	MOI	20
155	Halpe homolea	OR	NCS	COWI	EVS	20
156	Notocrypta paralysos	OR	NCS	COWI	EVS	20
157	Potanthus psuedomaesa	OR	NCS	COWI	EVS	20
158	Pelopidas agna	OR	NCS	COWI	EVS	20
159	Caltoris kumara	OR	CS	COWI	MOI	20
160	Papilio helenus	OEH	NCS	COWI	EVS	19
161	Papilio paris	OEH	NCS	COWI	EVS	19
162	Melanitis phedima	OEH	NCS	COWI	EVS	19
163	Orsotriaena medus	OAU	CS	COWI	MOI	19
164	Argynnis hyperbius	GL	NCS	COPA	MSG	19
165	Neptis jumbah	IS	NCS	COWI	MOI	19
166	Euthalia lubentina	OR	NCS	UNWI	DEC	19
167	Cyrestis thyodamas	OEH	NCS	COWI	EVS	19
168	Euploea klugii	OR	NCS	COPA	MOI	19
169	Tarucus callinara	OR	NCS	RAWI	WOO	19
170	Jamides alecto	OAU	CS	COWI	MOI	19
171	Spindasis lohita	OR	NCS	UNWI	DEC	19
172	Hasora vitta	OR	NCS	UNWI	DEC	19
173	Tagiades jepetus	OAU	NCS	COWI	EVS	19
174	Notocrypta curvifascia	OEH	NCS	COWI	EVS	19
175	Graphium sarpedon	GL	NCS	COWI	EVS	18
176	Graphium agamemnon	GL	NCS	COWI	EVS	18
177	Papilio clytia	OEH	NCS	UNWI	DEC	18
178	Papilio crino	PI	CS	COWI	DDS	18
179	Appias libythea	IS	NCS	UNWI	DDS	18
180	Ixias pyrene	OR	NCS	COWI	MOI	18
181	Ypthima huebneri	OR	NCS	COWI	MOI	18
182	Cupha erymanthis	OR	NCS	COWI	MOI	18
183	Neptis columella	OR	NCS	COWI	MOI	18
184	Limenitis procris	OR	NCS	COWI	MOI	18
185	Tanaecia lepidea	OR	NCS	COWI	MOI	18
186	Euthalia aconthea	OR	NCS	COWI	MOI	18

187	Parantica aglea	OR	NCS	COWI	MOI	18
188	Discolampa ethion	OR	NCS	COWI	MOI	18
189	Tarucus ananda	OR	NCS	COWI	MOI	18
190	Nacaduba beroe	OR	NCS	COWI	MOI	18
191	Anthene lycaenina	OR	NCS	COWI	MOI	18
192	Amblypodia anita	OR	NCS	COWI	MOI	18
193	Apharitis lilacinus	IS	NC	RAPA	GRS	18
194	Loxura atymnus	OR	NCS	COWI	MOI	18
195	Celaenorrhinus leucocera	OR	NCS	COWI	MOI	18
196	Celaenorrhinus ambareesa	PI	NCS	COWI	DEC	18
197	Celaenorrhinus ruficornis	OR	NCS	COWI	MOI	18
198	Sarangesa dasahara	OR	NCS	COWI	MOI	18
199	Iambrix salsala	OR	NCS	COWI	MOI	18
200	Arnetta vindhiana	PI	NCS	COWI	DEC	18
201	Gangara thyrsis	OR	NCS	COWI	MOI	18
202	Graphium doson	OEH	NCS	COWI	MOI	17
203	Appias albina	OAU	NCS	COWI	MOI	17
204	Polvura agraria	IS	NCS	UNWI	WOO	17
205	Euthalia nais	IS	NCS	COWI	DEC	17
206	Abisara echerius	OEH	NCS	COWI	MOI	17
207	Everes lacturnus	OAU	NCS	COWI	MOI	17
208	Acvtolepis puspa	OAU	NCS	COWI	MOI	17
209	Megisba malaya	OAU	NCS	COWI	MOI	17
210	Nacaduba kurava	OAU	NCS	COWI	MOI	17
211	Petrelaea dana	OAU	NCS	COWI	MOI	17
212	Deudorix epijarbas	OAU	NCS	COWI	MOI	17
213	Deudorix isocrates	IS	NCS	COWI	DEC	17
214	Curetis thetis	IS	NCS	COWI	DEC	17
215	Hasora badra	OEH	NCS	COWI	MOI	17
216	Psuedocoladenia dan	OEH	NCS	COWI	MOI	17
217	Sarangesa purendra	IS	NCS	COWI	DEC	17
218	Pelopidas mathias	OAF	NCS	COWI	MOI	17
219	Pelopidas assamensis	OR	Ν	RAPA	GRS	17
220	Graphium nomius	OR	NCS	COWI	DEC	16
221	Cepora nerissa	OR	NCS	COWI	DEC	16
222	Ixias marianne	PI	NCS	COWI	DDS	16
223	Pareronia valeria	OR	NCS	COWI	DEC	16
224	Elymnias hypermenstra	OR	NCS	UNWI	WOO	16
225	Ypthima ceylonica	IS	CS	COWI	WOO	16
226	Charaxes solon	OR	NCS	COWI	DEC	16
227	Tarucus nara	IS	CS	COWI	WOO	16
228	Chilades pandava	OR	NCS	COWI	DEC	16
229	Catochrysops strabo	OR	NCS	COWI	DEC	16
230	Arhopala pseudocentaurus	OR	NCS	COWI	DEC	16
231	Arhopala amantes	OR	NCS	COWI	DEC	16
232	Surendra quercetorum	OR	NCS	COWI	DEC	16
233	Apharitis acamas	OAF	Ν	RAPA	GRS	16
234	Tajuria cippus	OR	NCS	COWI	DEC	16
235	Deudorix perse	OR	NCS	COWI	DEC	16

236	Rapala iarbus	OR	NCS	COWI	DEC	16
237	Rapala manea	OR	NCS	COWI	DEC	16
238	Curetis dentata	OR	NCS	COWI	DEC	16
239	Coladenia indrana	OR	NCS	COWI	DEC	16
240	Caprona ransonnetti	OR	NCS	COWI	DEC	16
241	Udaspes folus	OR	NCS	COWI	DEC	16
242	Matapa aria	OR	NCS	COWI	DEC	16
243	Pelopidas thrax	OAF	Ν	RAPA	GRS	16
244	Hebomoia glaucippe	OEH	NCS	COWI	DEC	15
245	Charaxes bernardus	OEH	NCS	COWI	DEC	15
246	Acraea violae	IS	NCS	COWI	DDS	15
247	Jamides bochus	OEH	NCS	COWI	DEC	15
248	Jamides celeno	OAU	NCS	COWI	DEC	15
249	Hasora chromus	OAU	NCS	COWI	DEC	15
250	Gegenes nostradamus	GL	Ν	RAPA	GRS	15
251	Tarucus balkanica	GL	Ν	RAWI	GRS	14
252	Talicada nyseus	OR	NCS	COWI	DDS	14
253	Badamia exclamationis	GL	NCS	COWI	DEC	14
254	Gomalia elma	OAF	NCS	UNWI	GRS	14
255	Parnara ganga	OR	Ν	UNPA	GRS	14
256	Pachliopta hector	PI	NCS	COWI	DIV	13
257	Catopsilia pomona	OAU	NCS	ABWI	DEC	13
258	Belenois aurota	OAF	NCS	COWI	DDS	13
259	Colotis amata	OAF	NCS	COWI	DDS	13
260	Colotis etrida	IS	NCS	COWI	GRS	13
261	Colotis fausta	GL	NCS	UNWI	GRS	13
262	Colotis phisadia	OAF	Ν	UNPA	GRS	13
263	Colotis vestalis	OAF	Ν	UNPA	GRS	13
264	Lethe rohria	OR	NCS	COWI	WOO	13
265	Mycalesis mineus	OR	NCS	COWI	WOO	13
266	Ypthima asterope	OAF	NCS	COWI	DDS	13
267	Neptis hylas	OR	NCS	COWI	WOO	13
268	Athyma perius	OR	NCS	COWI	WOO	13
269	Junonia atlites	IS	NCS	COWI	SSA	13
270	Junonia iphita	OR	NCS	COWI	WOO	13
271	Castalius rosimon	OR	NCS	COWI	WOO	13
272	Caleta caleta	OR	NCS	COWI	WOO	13
273	Chilades laius	OR	NCS	COWI	WOO	13
274	Suastus gremius	OR	NCS	COWI	WOO	13
275	Taractrocera maevius	IS	NCS	COWI	GRS	13
276	Taractrocera ceramas	IS	NCS	COWI	GRS	13
277	Eurema blanda	OEH	NCS	COWI	WOO	12
278	Delias eucharis	IS	NCS	COWI	DIV	12
279	Leptosia nina	OAU	NCS	COWI	WOO	12
280	Lethe europa	OEH	NCS	COWI	WOO	12
281	Mycalesis perseus	OAU	NCS	COWI	WOO	12
282	Ypthima baldus	OEH	NCS	COWI	WOO	12
283	Polyura athamas	OEH	NCS	COWI	WOO	12
284	Junonia almana	OR	NCS	COWI	SSA	12

285	Tirumala limniace	OEH	NCS	COWI	WOO	12
286	Euploea core	OAU	NCS	COWI	WOO	12
287	Leptotes plinius	OAU	NCS	COWI	WOO	12
288	Prosotas nora	OAU	NCS	COWI	WOO	12
289	Prosotas dubiosa	OAU	NCS	COWI	WOO	12
290	Spialia galba	OR	NCS	COWI	GRS	12
291	Ampittia dioscorides	OR	NCS	COWI	SSA	12
292	Telicota colon	OAU	NCS	COWI	WOO	12
293	Telicota ancilla	OAU	NCS	COWI	WOO	12
294	Catopsilia pyranthe	OAU	NCS	ABWI	DDS	11
295	Eurema brigitta	GL	NCS	COWI	WOO	11
296	Eurema laeta	GL	NCS	COWI	WOO	11
297	Colotis eucharis	OAF	NCS	COWI	GRS	11
298	Colotis danae	OAF	NCS	COWI	GRS	11
299	Phalanta phalantha	GL	NCS	COWI	WOO	11
300	Byblia ilithyia	OAF	NCS	COWI	GRS	11
301	Ariadne ariadne	OR	NCS	COWI	DIV	11
302	Ariadne merione	OR	NCS	COWI	DIV	11
303	Hypolimnas bolina	GL	NCS	COWI	WOO	11
304	Hypolimnas misippus	GL	NCS	COWI	WOO	11
305	Tirumala septentrionis	OR	NCS	ABWI	WOO	11
306	Danaus genutia	GL	NCS	COWI	WOO	11
307	Azanus ubaldus	OAF	NCS	COWI	GRS	11
308	Azanus uranus	OAF	NCS	COWI	GRS	11
309	Azanus jesous	OAF	NCS	COWI	GRS	11
310	Chilades parrhasius	OAF	NCS	COWI	GRS	11
311	Spindasis vulcanus	OR	NCS	COWI	DIV	11
312	Parnara bada	OAF	NCS	COWI	GRS	11
313	Borbo cinnara	OAU	NCS	COWI	GRS	11
314	Borbo bevani	OAU	NCS	COWI	GRS	11
315	Pachliopta aristolochiae	OEH	NCS	COWI	DIV	10
316	Papilio demoleus	OAU	NCS	COWI	DIV	10
317	Papilio polytes	OEH	NCS	COWI	DIV	10
318	Junonia hierta	OAF	NCS	COWI	DIV	10
319	Junonia orithya	GL	NCS	COWI	GRS	10
320	Junonia lemonias	OEH	NCS	COWI	DIV	10
321	Danaus chrysippus	GL	NCS	COWI	GRS	10
322	Euploea sylvester	OAU	NCS	ABWI	WOO	10
323	Spalgis epius	OAU	NCS	COWI	DIV	10
324	Pseudozizeeria maha	OH	NCS	COWI	DIV	10
325	Zizina otis	OEH	NCS	COWI	DIV	10
326	Zizula hylax	GL	NCS	COWI	SSA	10
327	Chilades trochylus	GL	NCS	COWI	GRS	10
328	Euchrysops cnejus	OAU	NCS	COWI	DIV	10
329	Eurema hecabe	GL	NCS	ABWI	WOO	9
330	Melanitis leda	GL	NCS	COWI	DIV	9
331	Cynthia cardui	GL	NCS	COWI	DIV	9
332	Zizeeria karsandra	GL	NCS	COWI	DIV	9
333	Lampides boeticus	GL	NCS	COWI	DIV	9

^a: global distribution: NWG = narrow Western Ghats endemic (occurs only in Coorg and Nilgiris southward): 10 pts
WG = Western Ghats endemic: 8 pts
WGSL = endemic to Western Ghats and Sri Lanka: 6 pts
PI = Restricted to Peninsular India (including Sri Lanka): 5 pts
IS = restricted to Indian Subcontinent: 4 pts
OR = occurs only in Oriental Region: 3 pts
OEH = occurs in Oriental and Eastern Holarctic Regions: 2 pts
OAU = occurs in Oriental and Australian Regions: 2 pts
OAF = occurs in Oriental and African Regions (including parts of Middle East): 2 pts
OH = occurs in Oriental and Palaearctic Regions: 2 pts
GL = occurs in three or more zoogeographic regions ("global"): 1 pts

^b: Local distribution in the Western Ghats:

S: Southern Region only: 10 pts CONI: Coorg and Nilgiris only: 10 pts CONIS: Coorg-Nilgiri and Southern Regions only: 8 pts CS: Southern and Central Regions including Coorg-Nilgiris: 6 pts NCS: in all three regions of the Western Ghats: 4 pts N: Northern Region only: 2 pt NC: Northern and Central Regions only: 2 pt

^c: Status in the Western Ghats:

RAPA: rare, patchy: 10 pts RAWI: rare, widespread: 9 pts UNPA: uncommon, patchy: 7 pts UNWI: uncommon, widespread: 6 pts COPA: common, patchy: 4 pts COWI: common, widespread: 3 pts ABWI: abundant, widespread: 1 pt

^d: Habitat preference:

EVS: low and mid-elevation evergreen and semi-evergreen forests only: 10 pts SHO: montane (shola) forests: 10 pts MSG: montane habitats including shola and grasslands: 10 pts MOI: moist forests (evergreen, semi-evergreen and riparian moist deciduous forests): 8 pts DEC: deciduous forests: 6 pts DDS: dry deciduous and scrub forests: 4 pts WOO: generalist woodland species (evergreen, deciduous and scrub forests): 3 pts GRS: low and mid-elevation dry grasslands and savannahs: 2 pts SSA: streams, swamps and other open freshwater habitats: 2 pts DIV: diverse habitat types (generalist spp): 1 pt

^e: **Conservation value:** calculated as the sum of the scores from previous columns. The highest possible value was 40, the lowest was four.