
 

 

 

 

 

 

 

 

 

 

Copyright 

by 

Jihyun Park 

2014 

 

 

  



 

The Dissertation Committee for Jihyun Park Certifies that this is the approved 

version of the following dissertation: 

 

 

Regulation and Function of Two Membrane-Associated Protein Kinases 

 

 

 

 

 

 

Committee: 

 

Kevin N. Dalby, Supervisor 

John H. Richburg 

Karen S. Browning 

Edward M. Mills 

Shawn B. Bratton 

 



 

Regulation and Function of Two Membrane-Associated Protein Kinases 

 

 

 

by 

Jihyun Park, B.S.; M.S. 

 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

May 2014 



 

Dedication 

 

To the loving memory of my dear grandfather, Tae-San Doo (1926-2014) 

& 

To my beloved parents, Sang-Gon Park and Inhye Doo 

 

 

 

 

 

 

 

 

 

 



v 

Acknowledgements 

First and foremost I would like to thank my advisor Dr. Kevin N. Dalby for giving 

me the opportunity to work in his laboratory. I am sincerely grateful for his guidance, 

support and patience throughout this study. He has been a real mentor and has inspired me 

as a scientist during my graduate school years. I will forever be thankful for all the positive 

things he has brought to my life and all I have learned from him. 

I would also like to thank the members of my Ph.D. committee, Dr. John Richburg, 

Dr. Karen Browning, Dr. Edward Mills, and Dr. Shawn Bratton for their insightful 

comments, advice, and time over years.  

I also thank the past and present members of Dalby’s lab who have contributed 

immensely to my personal and professional development at UT-Ausin. The Dalby group 

has been a source of friendship as well as good advice. 

I am deeply grateful to all my friends in Korea and in U.S.A who have supported 

me along the way in any shape or form as it has all been precious to me. 

I would also want to dedicate this work to my boyfriend, Giorgio, who has 

constantly encouraged me and greatly contributed to my happiness and well-being.  

Most importantly, I would like to express my sincerest appreciation to my family, 

my father and mother, Sang-Gon Park and Inhye Doo, and to my brother, Sungjun Park for 

their love, support, and sacrifices. They have always believed in me that has enabled me to 

pursue my goals. Without their caring support, this achievement would not have been 

possible. I hope that I have made them proud of me. 

Specially, this work is dedicated to the memory of my grandfather, Tae-San Doo, 

who passed down to me a love of reading and the respect for education as a teacher. 

Finally, I dedicate this dissertation to all those who believe in the beauty of 

SCIENCE and the joy of LEARNING.  

                                                                                                                            

Jihyun Park 

Austin, Texas  

May 2014  



vi 

Regulation and Function of Two Membrane-Associated Protein Kinases 

 

Jihyun Park, Ph.D. 

The University of Texas at Austin, 2014 

 

Supervisor: Kevin N. Dalby 

 

Protein kinases, many of which are regulated by autophosphorylation, modify their 

substrates by phosphorylation.  Due to their roles in cellular signaling cascades controlling 

processes such as cellular proliferation, differentiation, metabolism, and apoptosis, protein 

kinases have caught the attention of scientists.  In this study, we characterized the 

regulation and functions of two human membrane-bound protein kinases, TRPM7 and 

PERK.  

TRPM7 (transient receptor potential melastatin 7) is a non-selective cation channel 

fused to an atypical kinase domain at the C-terminus that is implicated in cellular 

magnesium homeostasis.  While the channel properties of TRPM7 have been studied 

extensively, little is known about the mechanisms regulating its kinase activity. 

Furthermore, to date, no specific small molecule inhibitor of TRPM7 kinase has been 

identified.  Therefore, we characterized the biochemical and functional properties of 

TRPM7 autoactivity and discovered the first group of small molecule compounds targeting 

the kinase activity.  Through a broad range of biochemical assays, we demonstrated that 

early autophosphorylation on three serine residues is required for TRPM7 kinase activity.  
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These phosphorylations promote a tetramer to dimer transition of the catalytic domain, as 

well as its cellular association with myosin.  Aided by the discovery of effective kinase 

inhibitors a role for the kinase domain in actomyosin contractility and migration was 

examined. 

PERK (PKR-like endoplasmic reticulum kinase) is a serine/threonine kinase, 

resident in the ER membrane and activated by the unfolded protein response (UPR), which 

detects the accumulation of unfolded proteins in the ER.  The UPR and PERK are up-

regulated in a variety of tumor types and may be critical for cancer cell adaptation.  

Therefore, a goal of this study was to identify PERK inhibitors that will provide new 

potential therapeutic strategies for treating cancer.  We discovered a number of lead 

compounds and validated their ability to inhibit PERK kinase activity in vitro.  The most 

potent PERK inhibitor was further tested to evaluate the modulation of the PERK signaling 

pathway in pancreatic cancer cells.  
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Chapter 1: Introduction 

 

1.1 FUNCTIONS AND REGULATION OF TRPM7 CHANNEL 

Transient receptor potential (TRP) cation channels constitute a large protein 

superfamily.  Physiologically, TRP channels function as cellular sensors responding to 

various stimuli such as temperature, taste, pain, sound and mechanical stress (1-4).  All TRP 

members contain six transmembrane segments with the pore loop positioned between the 

fifth and sixth transmembrane domains, which together form the cation-permeable pore (3).  

The transient receptor potential melastatin (TRPM) family has eight members representing 

a wide range of structural features, expression patterns, ion selectivity and gating properties 

and functions.  The TRPM family is divided into four groups based on mammalian 

sequence homology: TRPM1/3, TRPM6/7, TRPM2/8, and TRPM4/5 (3, 5).  TRPM7 

consists of 1863 amino acids and was cloned by two groups (6, 7).  It is ubiquitously 

expressed, but with highest mRNA expression levels detected in the brain, heart and kidney 

(6, 8, 9).  Like most TRP channels, TRPM7 channels have six transmembrane domains, with 

a pore-forming domain between the fifth and sixth transmembrane domains.  TRPM7 

encodes a divalent cation channel fused to an atypical kinase domain at the C-terminus 

(figure 1.1) (10).  This kinase is a member of a small family of kinases that include 

elongation factor 2 (eEF2) kinase, and myosin heavy chain kinase A from Dictyostelium 

discoideum (7).  How the atypical kinase domain regulates the channel function of TRPM7 

remains unclear.   
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TRPM7 is a non-selective cation channel, which is permeable to divalent cations 

such as Mg2+ and Ca2+, as well as other trace metals including Zn2+, Mn2+ and Ni2+ (8, 11, 12).  

Initial studies report that TRPM7 current (flux of ions) is inhibited by the binding of Mg2+ 

(near the pore) and Mg-ATP (in the kinase domain) (13, 14).  Its current is also inhibited by 

extracellular Zn2+and Gd3+ (15, 16).  In the absence of extracellular divalent cations, TRPM7 

has also been reported to conduct monovalent cations such as Na+ and K+, including 

protons (17).  In addition, TRPM7 is known to be regulated by the Src-family kinases, and 

PIP2 levels have been shown by other groups to be crucial for TRPM7 channel activation 

(18).  It remains controversial whether the receptor-mediated activation of phospholipase C 

(PLC), promoting hydrolysis of PIP2, leads to activation or inactivation of the TRPM7 

channel (19, 20).  Other research has also shown that TRPM7 currents are activated following 

a decrease in extracellular pH from physiological pH (7.4) to pH 4.0 (3, 17).   

TRPM channels have diverse C-terminal domains but share a common C-terminal 

cytoplasmic TRP domain and a coiled-coil domain.  Two TRP boxes located within the 

TRP domain possess significant sequence homology among the members of TRPC, 

TRPM, and TRPN subfamilies (3).  The coiled-coil domain is a widespread protein-protein 

interaction structural motif that is found in a variety of protein classes including motor 

proteins, fibrous proteins and membrane fusion proteins.  By use of size-exclusion 

chromatography, Tsuruda et al. demonstrated that a recombinant TRPM8 truncation 

protein containing the last 50 residues of the C-terminal cytoplasmic domain, forms a 

coiled-coil that is able to self-assemble into tetramers (21).  Furthermore, they demonstrated 

that this domain is required for the expression of functional channels at the plasma 
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membrane.  Recently, Fujiwara et al. resolved a high resolution crystal structure of the 

coiled-coil domain of TRPM7, which revealed that its overall structure is a tightly twisted, 

symmetric, and antiparallel tetramer (figure 1.2A) (22).   

Genetic and electrophysiological studies identified a major role of TRPM7 in the 

regulation of intracellular Mg2+ concentration, by showing that RNA interference or 

deletion of TRPM7 results in a decrease in intracellular Mg2+, cell cycle arrest and 

eventually cell death (8, 23, 24).  Recent studies showed that homozygous deletion of the 

TRPM7 kinase domain caused embryonic lethality while heterozygous mice displayed 

abnormal absorption of Mg2+ suggesting that TRPM7 is a key regulator of Mg2+ 

homeostasis (24).  Inhibition of TRPM7 channel activity can be achieved by increasing Mg2+ 

concentration and intracellular Mg-ATP levels.  Additionally, recent evidence suggests that 

TRPM7 activity contributes to various physiological functions in the cell, such as cell 

proliferation, neuronal cell death, neurotransmitter release, small synaptic-like vesicle 

fusion, and the regulation of actomyosin contractility (25-29).   

 

1.2 CHARACTERIZATION OF TRPM7 ALPHA-KINASE DOMAIN 

TRPM7 contains an atypical functional kinase domain which has specificity for 

serine and threonine residues (7, 30).  While the function and regulation of the TRPM7 

channel has been extensively studied, little is known about the molecular mechanisms that 

regulate the activity of the TRPM7 alpha-kinase domain and the role of the kinase domain 

in regulating the channel function remains controversial.  Runnels et al. reported that 

kinase-dead and Zn2+-binding mutants abolished channel activity measured in whole-cell 
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recording experiments, which suggest that the kinase activity is essential for TRPM7 

channel function (6).  Another group showed that mutation and deletion of the kinase 

domain of TRPM7 formed functional channels implying that TRPM7's kinase domain is 

not essential for activation of its channel (14).  Later, using whole-cell patch clamp analysis, 

Matsushita et al. argued that TRPM7 channel activity is functionally dissociated from its 

kinase activity, by showing that TRPM7 mutants that were mutated at two major 

autophosphorylation sites did not alter channel activity or regulation by internal Mg2+ (31).   

The TRPM7 alpha-kinase assembles into a dimer through the exchange of a 27-

residue-long N-terminal sequence that extends from residue 1551 to residue 1577 (figure 

1.2B) (32).  By analysis of truncation and site-directed mutants, Crawley et al. further 

divided the N-terminal segment into two parts; an ‘activation sequence’, encompassing 

residues 1553–1562, that is critical for kinase activity, but not dimer formation, and a 

‘dimerization sequence’, encompassing residues 1563–1570, that is required for both dimer 

formation and TRPM7 kinase activity (33).  These findings suggest that TRPM7 alpha-

kinase dimer formation plays a pivotal role in regulating enzyme activity.   

Like conventional protein kinases, TRPM7 undergoes autophosphorylation, but the 

functional consequences for kinase activity are not well understood.  Clark et al. identified 

autophosphorylated residues in TRPM7 by mass spectrometry and demonstrated that the 

cytosolic Ser/Thr-rich domain of TRPM7 is heavily autophosphorylated (32±4 mol/mol) 

(34).  Recent research has revealed that all three non-muscle isoforms of the myosin II heavy 

chain (IIA, IIB and IIC) are substrates of TRPM7 kinase (35, 36).  Myosin II interacts with 

actin and forms bipolar filaments, which are important for regulating actomyosin 
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contractility (12, 35-37).  The report that myosin II heavy chain is a downstream substrate of 

TRPM7 kinase suggests a potential role of TRMP7 in the regulation of the actomyosin 

cytoskeleton, in a manner which is analogous to the function of myosin II heavy chain 

kinase (MHCK A) in Dictyostelium.  In vitro biochemical assays were used to show that 

TRPM7 WT, but not the kinase-dead mutant (TRPM7-D1775A), phosphorylates and 

associates with myosin IIA in a regulated manner (36).  In addition, deletion of the 

autophosphorylation sites in the Ser/Thr-rich region of TRPM7 completely disrupted the 

phosphorylation of myosin II heavy chain, suggesting that TRPM7 interacts with the 

actomyosin cytoskeleton in a kinase-dependent manner to regulate myosin II activity and 

accordingly actomyosin contractility.  TRPM7 is also involved in regulating cytoskeletal 

dynamics by its association with annexin I (36, 38).  Once again, these findings indicate a 

potential role of the TRPM7 alpha-kinase domain in the regulation of cell adhesion and 

motility.   

 

1.3 CELLULAR FUNCTIONS AND ROLES OF TRPM7 IN CANCER 

As mentioned earlier, TRPM7 has been suggested to play a critical role in cell 

growth, proliferation and cell death.  The expression of TRPM7 is prevalent in the brain, 

spleen, lung, kidney, heart, liver and microglia.  TRPM7 overexpression was also found in 

cancer cells such as retinoblastoma, neck and head cells, gastric and breast cancer cells (23, 

39-44).  However, whether TRPM7 activity contributes to cancer progression has not been 

established.  Ca2+ and Mg2+ drive several cellular processes, and hence ion channels play a 

crucial role in the normal physiologic functioning of the cell.  However, dysregulation of 
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channel function has been implicated in promoting a variety of human diseases, including 

cancer.   

As a regulator of cell survival and death, TRPM7 is suggested to be a potential 

target for the pharmacological treatment of cancer.  Research in human gastric cancer cells 

has shown that blockade of TRPM7 channels or knockdown of TRPM7 expression by 

siRNA inhibited cancer cell growth and induced the apoptosis of these cancer cells (40).  

This implies the potential function of TRPM7 in the growth and proliferation of cancer 

cells.  Similarly, pharmacologic inhibition of TRPM7 channels by Gd3+, a nonspecific 

TRPM7 channel inhibitor, or knockdown of TRPM7 mRNA, suppressed the growth and 

proliferation of malignant head and neck tumor cells (39).   

Tumor metastasis is a hallmark of cancer and is defined as the ability of tumor cells 

to change their capacity to migrate, and permits them to adhere to other cells and tissues 

distant from the original tumor site (45, 46).  As TRPM7 is known to be implicated in 

modulating cell adhesion and migration through regulating cytoskeletal dynamics, 

researchers including Middelbeek and Guilbert, investigated whether TRPM7 is a key 

player in cancer cell metastasis (43, 44, 47).  Examination of the TRPM7 mRNA expression 

in the Oncomine database revealed that TRPM7 is closely linked with metastasis and 

invasive breast cancer (48).  Suppression of TRPM7 expression with RNA interference 

resulted in a significant decrease in the ability of breast cancer cells to migrate.  Moreover, 

a recent study from Guilbert et al. suggested that TRPM7 is involved in estrogen receptor-

negative metastatic breast cancer cell migration through its kinase domain.  They reported 

that overexpression of the truncation mutant lacking the kinase domain decreased cell 
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migration, while the overexpression of the WT TRPM7 significantly increased migration 

of the weakly metastatic MCF-7 and highly metastatic MDA-MB-231 cells by 2.5 fold (43).  

However, the molecular mechanisms underlying the contribution of TRPM7 to cancer cell 

proliferation and migration is still far from being understood.  Taken together, these 

findings increase the possibility that TRPM7 could be a new and potential therapeutic 

target for the treatment of cancer.   

 

1.4 THE UNFOLDED PROTEIN RESPONSE (UPR) SIGNALING  

The endoplasmic reticulum (ER) is an organelle that has essential roles required for 

normal cellular functions, including calcium homeostasis, protein secretion and lipid 

biosynthesis.  In eukaryotic cells, the ER provides a unique environment for the proper 

folding and posttranslational modification of several secretory and transmembrane proteins 

(49, 50).  Approximately one-third of the total proteome is synthesized on the ER.  As a 

protein-folding compartment, this organelle is sensitive to alterations in homeostasis (51-55).  

Multiple physiological or pathological disturbances that cause ER calcium depletion, 

nutrient deprivation, oxidative stress, viral infection or DNA damage can interrupt the 

protein-folding process and trigger accumulation of unfolded or misfolded proteins in the 

ER, a cellular condition referred to as ER stress (56-58).  Under such stress the cell initiates 

a protective mechanism termed the unfolded protein response (UPR) that is specifically 

designed to restore homeostasis and normal ER function.  The UPR consists of three main 

signaling systems initiated by three ER resident stress sensors: activating transcription 

factor 6 (ATF6), inositol requiring kinase 1 (IRE1), and protein kinase R (PKR)-like 
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endoplasmic reticulum kinase (PERK) (figure 1.3) (59-61).  Activation of the UPR leads to 

adaptation or cellular death (62).  During adaptation, the UPR functions to restore ER 

homeostasis by inducing the expression of chaperones that enhance protein folding.  At the 

same time, protein translation is globally attenuated to reduce the ER folding load, while 

the degradation of unfolded proteins is increased.  On the contrary, if ER stress is prolonged 

and severe, UPR signaling triggers cell death by apoptosis (63, 64).  Thus, ER homeostasis 

strongly influences many physiological processes including lipid and cholesterol 

metabolism, energy control and inflammation.  The functional significance of UPR 

signaling is not yet fully understood, but it is known that aberrant protein folding and the 

UPR have been linked to the development of various disease states such as diabetes, cancer 

and neurodegenerative disorders (49, 51, 52, 54, 58, 65-69).  Therefore, targeting UPR signaling 

could be a promising therapeutic strategy for the treatment of diseases whose pathogenesis 

is characterized by a highly activated UPR and ER stress.   

Under normal, unstressed conditions, the luminal domains of three UPR sensors 

(ATF6, IRE1 and PERK) are bound to a chaperone called the glucose regulating protein 

78 (GRP78) also known as BiP (70, 71).  However, upon ER stress, GRP78 is released from 

all three transducers and binds to unfolded or misfolded proteins in the lumen of the ER, 

leading to activation of the UPR and downstream signaling events initiated by all three 

UPR transducers.  As mentioned above, if the ER stress is too severe to be handled, the 

UPR initiates apoptotic cell death signaling.  ER sensor molecules including PERK are 

responsible for both the adaptive and the proapoptotic pathways of the UPR.   
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ER stress and UPR signaling are frequently up-regulated in tumor cells as a result 

of mutant or deregulated protein synthesis and folding (72, 73).  They are also up-regulated 

as a consequence of tumor hypoxia promoted by the tumor’s abnormal vasculature, and in 

some cases due to the protein-damaging effects of agents used in chemotherapy (74, 75).  All 

of these may lead to the accumulation of misfolded proteins in the ER (76).  It has been 

reported that the UPR attenuates overall tumor protein translation, while enhancing the 

translation of stress survival proteins such as HIF-1α, c-Myc and VEGF, which are known 

oncoproteins (77-83).  However, how UPR activation contributes to tumor cell survival is not 

clear.   

 

1.5 PERK AND ITS REGULATION 

PERK is an ER transmembrane protein that consists of a luminal domain (bound 

by the ER chaperone BiP/GRP78 under non-stressed conditions) and a cytoplasmic domain 

(that possesses kinase activity).  PERK is a serine-threonine kinase that belongs to the 

eIF2α kinase subfamily (PKR [protein kinase double-stranded RNA-dependent], GCN2 

[general control non-derepressible-2] and HRI [heme-regulated inhibitor]) and 

phosphorylates eIF2α on Ser51 (59, 84-87).  When the ER is stressed, BiP/GRP78 binds to the 

unfolded proteins and releases the luminal domain of PERK, allowing it to oligomerize in 

ER membranes.  This leads to its autophosphorylation and kinase domain activation (61, 88-

90).  The close vicinity of the cytoplasmic kinase domains of the PERK dimer allows trans-

autophosphorylation at multiple sites, including residues on the kinase activation loop and 

the insert loop.  PERK is also capable of undergoing autophosphorylation on its tyrosine 
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residues both in vitro and in vivo (91).  Furthermore, it has been shown that Tyr615, which 

is located in a highly conserved region of the kinase domain of PERK, is essential for 

autocatalytic activity (91).  PERK is known to be hyperphosphorylated by ER stress in cells; 

however, very little is known about where the multiple phosphorylation occurs within its 

kinase domain and how its function is controlled.  Using a chimeric FV2E-PERK construct, 

Avivar-Valderas et al. have demonstrated in vitro that dimerization is sufficient to activate 

the kinase (92).  Recently, a crystal structure of the mouse PERK kinase domain was 

determined to 2.8A resolution, and its structure revealed a back-to-back N-lobe dimer, 

which has been shown for the other eIF2α kinases, GCN2 and PKR (93).   

The activation of PERK results in the phosphorylation of its main downstream 

effector, the eukaryotic initiation factor 2α (eIF2α) and suppression of global mRNA 

translation by inhibiting its GDP-GTP exchange reaction (90, 94).  This mechanism expedites 

the process of ER homeostasis, by enabling the existing unfolded or misfolded proteins in 

the lumen to attain their folded conformation.  Interestingly, attenuated protein translation 

is not universal; genes with internal ribosome entry site (IRES) sequences in the 5′ 

untranslated regions escape from this global inhibition of protein synthesis (95, 96).  

Therefore, some selected mRNAs, such as activating transcription factor 4 (ATF4), are 

translated.  ATF4 acts as a transcription factor regulating multiple genes that contribute to 

recovering ER functions such as amino acid transport and synthesis, redox reactions and 

protein secretion (97, 98).  ATF4 also induces the expression of genes related to pro-apoptotic 

functions.  Two main target genes driven by ATF4 are CHOP (transcription factor C/EBP 

homologous protein) and GADD34 (growth arrest and DNA damage-inducible 34) (99, 100).  
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CHOP is a transcription factor that is associated with apoptotic cell death.  However, the 

link between CHOP expression and cell death is likely more complex than simple down-

regulation of pro-survival genes.  GADD34 encodes a protein phosphatase 1 (PP1) which 

counteracts PERK by dephosphorylating the Ser51 residue of eIF2α (101).  In addition, 

PERK was also reported to phosphorylate the bZIP transcription factor NF-E2 related 

factor 2 (NRF2), resulting in the activation of genes related to antioxidant response 

including heme oxygenase 1 and glutathione S-transferase (102, 103).   

PERK has also been reported to have UPR-independent roles.  It regulates 

proliferation of the insulin-secreting beta cells during early neonatal development and is 

essential for survival of acinar cells in mouse exocrine pancreas, neither of which is 

associated with the ER stress response (104, 105).  The importance of PERK in this response 

was first recognized in the human genetic disorder, Wolcott-Rallison syndrome, which is 

characterized by postnatal retardation, skeletal dysplasia and early onset insulin-dependent 

diabetes (106).  PERK is also required for normal ER functions including pro-insulin 

trafficking, insulin secretion and quality control of protein synthesis in beta cells (106-109).   

Taken together, the PERK-eIF2α arm of the UPR is strongly protective at modest 

levels of signaling (varies depending on cell type) by maintaining redox balance during ER 

stress through activation of ATF4 and NRF2, but can also contribute to apoptotic cell death 

pathways when activated to a greater extent.   

 

1.6 PERK: A KEY MOLECULE OF THE UPR AS A CANCER DRUG TARGET 
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The regulation of protein translation is complex, involving 9 eukaryotic initiation factors 

(eIFs) (110).  Eukaryotic translation initiation factor 2 (eIF-2), which consists of three 

subunits (α, β and γ), is one of the key molecules in the initiation of translation (87, 111).  A 

critical control point is the initiation of protein translation through the alpha subunit of 

elF2, which is required for the recruitment of the methionyl-tRNA to the 40S ribosome at 

the beginning of protein translation.  During the initiation phase, elF2 forms a ternary 

complex with Met-tRNAmet and GTP and facilitates generation of 43S preinitiation 

complex.  Before the joining of the 60S ribosomal subunit, the GTP bound to elF2 is 

hydrolyzed, then elF2-GDP is released from the ribosomal subunit.  For subsequent rounds 

of translation, GDP bound to elF2 must be exchanged for GTP, a process carried out by 

elF2B.  When eIF2 is phosphorylated, it prevents the GDP-GTP exchange activity of 

eIF2B, thus preventing the initiation of protein synthesis, which leads to attenuation of 

general cap-dependent protein translation (87, 112, 113).  In the UPR signaling, the primary 

mechanism for elF2α phosphorylation is through PERK (61, 88).  It has been shown that 

elF2α phosphorylation is associated with increased expression of stress response proteins 

(HIF-1α, c-MYC, VEGF) (114).  Rapidly proliferating cancer cells need increased ER 

activity to facilitate protein folding, assembly and transport.  However, growing tumors 

suffer from regions of hypoxia and from decreased nutrient supply due to abnormal 

vascularization and rapid growth (76, 115).  These changes disturb ER homeostasis and 

activate the UPR to overcome stresses by increasing transcription of stress response genes.  

Thus, in response to ER stress, it was observed that the UPR is activated in a variety of 

tumor types such as cervical carcinoma, glioblastoma, lung cancer and breast cancer from 
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both patients and animal models (57, 116).  Cells with a compromised PERK-eIF2α-ATF4 

signaling pathway are more sensitive to hypoxic stress in vitro, and form tumors that grow 

more slowly in vivo (117).  Previous studies by Blais et al. demonstrate that tumors derived 

from K-Ras-transformed Perk−/− mouse embryonic fibroblasts (MEFs) are not only smaller 

than wild-type tumors but also appear to have severe limitations in their ability to stimulate 

tumor cell adaptation and angiogenesis (80, 118).  Similarly, cell-cycle arrest was observed 

when PERK expression was knocked down by shRNA in human breast cancer cells and 

esophageal carcinoma cells.  In addition, BiP, a regulator of PERK, was also shown to be 

required for both tumor growth and conferring drug resistance (119).   

Poor oxygenation (hypoxia) is present in the majority of human tumors and is 

associated with poor prognosis (74, 115).  Hypoxia also elicits multiple cellular response 

pathways that alter gene expression and affect tumor progression, including two separate 

pathways that strongly suppress the mRNA translation during hypoxia (74, 120).  The first 

pathway is mediated by the UPR and phosphorylation of the eIF2α, which is required for 

hypoxic cell survival and tumor growth.  Translation during hypoxia is also inhibited 

through the inactivation of a second eukaryotic initiation complex, eukaryotic initiation 

factor 4F (115).  At least part of this inhibition is mediated through the mammalian target of 

rapamycin kinase (mTOR).  mTOR integrates signals from several upstream pathways that 

respond to growth factors, nutrients, and energy, to regulate metabolism and cell growth 

(120-123).  Control of mRNA translation via disruption of eIF4F is indeed expected to vary 

considerably among different tumors because the upstream pathways that control the 

assembly of this complex are frequently disrupted in cancer (120).  In addition, eIF4F has 
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emerged as an important target during tumor development.  Although eIF4F assembly 

under hypoxia is disrupted, the importance of this effect on tumor growth or hypoxia 

tolerance has yet to be addressed.   

Despite PERK being identified as a therapeutic target for cancer, no selective 

inhibitors had been reported when this study began.  However, recently GlaxoSmithKline 

research group reported a highly specific small molecule inhibitor of PERK (GSK2606414) 

(124).  GSK2606414 is a high affinity ligand of the PERK kinase domain that hinders kinase 

activity by binding to the kinase ATP binding pocket, resulting in competition with ATP.  

GSK2606414 inhibited PERK activation in A549 cells and decreased tumor growth in a 

xenograft model of pancreatic cancer at a dose of 50-150 mg/kg per day.  The same group 

developed a further optimized PERK inhibitor, GSK 2656157 (125), which also blocked 

PERK activity in cells as shown by a decrease in PERK autophosphorylation, eIF2α 

phosphorylation, expression of ATF4 and CHOP.  Twice daily oral administration of 

GSK2656157 also inhibited tumor growth in several mouse xenograft models.  Using in 

vivo techniques, including gene expression analysis in pancreatic tumor xenografts and 

immunohistochemistry, Axten et al. showed that the anticancer activity of the PERK 

inhibitor (GSK 2656157) correlates with several physiological features including altered 

amino acid metabolism, decreased blood vessel density, and vascular perfusion (125).  

However, mechanisms for the observed anti-tumor effect need to be further elucidated.   

Together, this evidence suggests a substantial role for PERK and the UPR in tumor 

survival and adaptation to stress.  Therefore, inhibiting PERK activity offer a potentially 
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effective approach to block the UPR and thus, the synthesis of stress survival oncoproteins, 

ultimately leading to cancer cell death.   
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Figure 1.1. Schematic structure of TRPM7 channel.   

Representation of the domain structure of TRPM7 including the six transmembrane 

domain, coiled-coil domain, Ser/Thr-rich region and the atypical alpha-kinase domain. 

(Modified from Wolf et al. (10))  
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Figure 1.2. Crystal structure of TRPM7.  

A, Structure of the TRPM channel coiled-coil assembly domain (Fujiwara et al.)(22)  

B, Structure of the kinase domain of TRPM7 (residues 1551–1577) (Yamaguchi et al.)(32) 
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Figure 1.3. Schematic representation of ER stress-induced unfolded protein response 

(UPR).  

Accumulation of misfolded or unfolded proteins at the ER triggers an adaptive stress 

response known as the UPR.  The UPR is controlled by three sensors molecules of unfolded 

proteins in the ER membrane (ATF6, PERK, and IRE1).  The ER stress sensors activate 

transcriptional and translational programs that collectively recover the homeostasis of 

protein folding in the ER.   
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Chapter 2: Characterization of the Mechanism of TRPM7 

Autoactivation: Three Early Phosphosphorylations Correlate with 

Autoactivation† 

 

2.1 ABSTRACT 

The channel-kinase TRPM7 is a bifunctional protein consisting of a cation channel 

that is permeable to Mg2+, Ca2+ and Mn2+ and is fused to a kinase domain.  

Electrophysiological characterization of TRPM7 implicates it in cellular magnesium 

homeostasis.  While the channel properties of TRPM7 have been studied extensively, little 

is known about the mechanisms regulating its kinase activity.  In this study, we investigated 

the biochemical and functional properties of TRPM7 autoactivity.  The vigorous 

autophosphorylation of the TRPM7 kinase domain during its expression in bacterial cells 

acted as a barrier towards the study of its mechanism of autoactivation.  The use of a lambda 

phosphatase co-expression protocol enabled us to obtain phosphate-free TRPM7.  Using 

this form of TRPM7, we could monitor its autophosphorylation and relate it to its activity 

against a downstream substrate.  Here, using rapid quench-flow kinetics, we demonstrate 

that the first three phosphates that add to the enzyme (in the first ~30 seconds) are sufficient 

to fully active TRPM7 against a peptide substrate and myosin.  These three sites were 

determined by mass spectrometry.  Mutation of the three early autophosphorylation sites 

                                                 
† Contributions to the work described in this chapter: Dr. Tamer S. Kaoud (Analyzed PF-TRPM7 by rapid 

quench flow device and helped fitting kinetic data); Dr. James A. Madsen and Dr. Jennifer S. Brodbelt 

(Analyzed early autophosphorylation sites of TRPM7 by mass spectrometry); Dr. Austen F. Riggs (Analyzed 

TRPM7 by dynamic light scattering). 
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abolished kinase activity against its substrates and impeded its interaction with actomyosin 

in the cells.  To study the effect of oligomerization of the kinase domain on the 

autophosphorylation of TRPM7, rapid quench flow was employed over a range of TRMP7 

concentrations.  The rate of autophosphorylation increased steadily with increasing 

concentration, consistent with oligomerization-dependent autophosphorylation.  

Phosphate-free TRPM7 kinase domain exists as a tetramer, while both fully activated and 

transiently-autophosphorylated (30 seconds) TRPM7 kinase domain is dimeric.  

Collectively, our results support a model where early autophosphorylation on three 

residues triggers a conformational change that promotes a tetramer to dimer transition of 

the catalytic domain and activation of the enzyme to facilitate its association with 

actomyosin.  

 

2.2 INTRODUCTION 

The channel-kinase TRPM7 is ubiquitously expressed.  This channel is permeable 

to various cations such as Mg2+, Ca2+, Zn2+, Co2+and Mn2+, but preferentially transports 

Mg2+ (12, 126, 127).  Since Mg2+ is an abundant and essential divalent ion in the cell (126), 

TRPM7 is considered to be an important regulator of cellular Mg2+ homeostasis (6, 8).  

Magnesium is a critical cation and cofactor in various intracellular functions where it 

provides structural integrity for numerous proteins and nucleic acids and is a cofactor for 

many enzymatic reactions (126).  However, little is known about the regulation of cellular 

Mg2+ homeostasis.  Recent studies showed that homozygous deletion of the kinase domain 

caused embryonic lethality while heterozygous mice displayed abnormal absorption of 



21 

Mg2+ suggesting that TRPM7 is a key regulator of Mg2+ homeostasis (24).  On the other 

hand, another study using primary mammalian cells reported that deletion of the gene 

Trpm7 did not affect the absorption of Mg2+ or the concentration of total cellular Mg2+  (128).  

The functional alpha-kinase domain at the carboxyl terminus of TRPM7 has been 

structurally characterized and displays the unique feature of a zinc finger domain as well 

as a region involved in the binding of ATP (32).  The bifunctional property of TRPM7 to 

act as an ion channel and as a kinase provides this protein unique abilities to regulate 

cellular signal transduction (6, 8).  The role of the TRPM7 kinase domain in the channel 

function remains controversial.  While some studies reported that the TRPM7 channel 

activity is dependent on the phosphotransferase activity of the kinase domain by showing 

for example that mutations of the kinase domain disrupted the channel function in whole 

cell recordings, others found that the channel function was dissociated from the kinase 

activity by demonstrating that TRPM7 lacking the kinase domain exhibited the same Mg2+ 

sensitivity as wild type TRPM7 (6, 14, 31, 129).  Three downstream substrates of TRPM7 kinase 

have been identified so far.  These are annexin-1, myosin II, and calpain (37, 38, 130). 

Besides a role in Mg2+ homeostasis, TRPM7 is involved in other cellular events 

such as cell proliferation, apoptosis, exocytosis, cell adhesion and actomyosin contractility 

(2, 26, 36-38, 130).  Considering that these substrates and TRPM7 have been implicated in cell 

migration, cell growth, and cell death, it is possible that the phosphorylation of annexin-1, 

myosin II, or calpain by the TRPM7 kinase domain is involved in the regulation of cell 

survival and cell death.  However, the biological importance of these signaling events still 

remains to be addressed.  Recent studies suggested that the TRPM7 kinase domain 
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autophosphorylates extensively (more than 30 sites) within its C-terminus and this 

extensive autophosphorylation controls substrate recognition and phosphorylation (34).  In 

addition, it was reported that dimerization of TRPM7 is required for its activity (32, 33).  To 

date, little is known regarding the role of autophosphorylation in regulating TRPM7 kinase 

activity.  According to a growing number of studies with clinical significance, TRPM7 has 

been linked to the pathogenesis of human diseases such as ischemic brain damage, 

Alzheimer’s disease, stroke and cancer (1, 39, 41, 131, 132).  Protein kinases are important targets 

for the treatment of human diseases such as cancer as they are often the result of 

misregulated kinase-dependent signaling pathways (133-136).  Hence TRPM7 can be a 

candidate target for the treatment of human disease. 

In this study, we characterized the mechanisms of TRPM7 autophosphorylation 

using purified nonphosphorylated TPRM7 catalytic domain and its activity against 

downstream substrates.  We used both peptide and myosin as substrates.  A rapid quench-

flow kinetic study of its autophosphorylation and autoactivation revealed that the first three 

phosphates added to the enzyme (within the ~30 seconds) are enough to make the enzyme 

fully active against its peptide substrate, while the remaining 34 phosphates that are added 

by further autophosphorylation are not required for its activity.  These three 

autophosphorylation sites have been further studied by MS/MS and site-directed 

mutagenesis.  To study the effect of oligomerization on autophosphorylation of TRPM7, 

rapid quench-flow was employed to determine the ability of TRPM7 to be 

autophosphorylated at different concentrations.  At a concentration of more than 400 nM 

the rate of TRPM7 autophosphorylation plateaued.  In order to monitor the active state of 
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this enzyme, dynamic light scattering was used.  We also performed a pre-steady state 

kinetic analysis of the enzyme to obtain the catalytic properties of TRPM7 in detail.  We 

observed an initial burst followed by slower, linear phase.  Overall, our results provide a 

detailed characterization of the kinase activity of TRPM7 and suggest that TRPM7 is 

autophosphorylated in an oligomerization-dependent manner and requires no more than 

three phosphates to become active towards other substrates.  The autophosphorylation on 

three sites may play a role promoting a conformational change necessary for enzyme 

activity and may communicate to regulate the channel. 

 

2.3 MATERIALS AND METHODS 

Reagents, Strains, Plasmids and Equipment 

Yeast extract, tryptone and agar were purchased from USB Corporation (Cleveland, 

OH). Isopropyl β-D-1-thiogalactopyranoside (IPTG) and dithiothreitol (DTT) were 

obtained from US Biological (Swampscott, MA).  Qiagen (Valencia, CA) supplied Ni-

NTA Agarose, QIAprep Spin Miniprep Kit, QIAquick PCR Purification Kit and QIAquick 

Gel Extraction Kit. Restriction enzymes, PCR reagents and T4 DNA Ligase were obtained 

from either New England BioLabs (Ipswich, MA) or Invitrogen Corporation (Carlsbad, 

CA).  Oligonucleotides for DNA amplification and mutagenesis were from Sigma-Aldrich 

(St. Louis, MO).  Stratagene PfuUltra™ High-Fidelity DNA Polymerase was purchased 

from Agilent Technologies, Inc. (Santa Clara, CA).  BenchMark™ Protein Ladder was 

from Invitrogen Corporation.  SIGMAFASTTM Protease inhibitor cocktail tablets for 

purification of His-tagged proteins, ultra-pure grade Tris-HCl, and HEPES were from 
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Sigma-Aldrich.  All other buffer components or chemicals were purchased from either 

Sigma-Aldrich or Fischer Scientific (Pittsburgh, PA).  Amicon Ultrafiltration Stirred Cells, 

Ultracel Amicon Ultrafiltration Discs and Amicon Ultra Centrifugal Filter Units were from 

Millipore (Billerica, MA).  ATP was purchased from Roche (Indianaoilus, IN) and [γ-32P] 

ATP was purchased from Perkin Elmer (Waltham, MA).  E. coli strain DH5a for cloning 

was obtained from Invitrogen Corporation, and BL21 (DE3) and Rosetta-gami™ 2(DE3) 

for recombinant protein expression were from Novagen, EMD4Biosciences (Gibbstown, 

NJ).  The pET-32a vector was obtained from Novagen.  The ÄKTA FPLC™ System and 

the following columns Mono Q HR 10/100 anion exchange column and Superdex™ 200 

prep grade gel filtration column were from Amersham Biosciences GE Healthcare Life 

Sciences (Piscataway, NJ). 

 

Constructs 

1) Construction of pET32a-TRPM7 1403-1864 : A construct encoding the Trx-

His6-tagged kinase domain of TRPM7 was created by PCR amplification of the nucleotide 

sequence corresponding to the last 462 amino acids (1403-1864) of Homo sapiens channel-

kinase 1 (CHAK1, GenBankTM accession number AF346629) using the following 

oligonucleotides: forward (5’-

CCGGAATTCATGGCGGCGTCCTCCCTGGAGCAGAAG-3’) and reverse (5’-

ATGCGGCCGCTCTCAGTGATGATGATGATGATGGGATCCACGCGGAACCAGC

CTGAAGAAGGGCAGATGGTGCTG-3’).  The PCR product was digested with EcoRI 

and NotI, and the resulting digested product was ligated into an EcoRI-NotI digested 
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pET32a vector that has been modified by replacing the sequence coding for the 

enterokinase cleavage site by the TEV protease cleavage recognition sequence.  Then, the 

construct was transformed into the E. coli strain DH5.  Plasmid DNA was purified and 

the sequence verified by sequencing.   

2) Construction of pGEX4T-myosin1802-1977: 

DNA encoding human nonmuscle myosin heavy chain II B in the CMV-EGFP vector was 

obtained from Addgene (Cambridge, MA).  Human myosin heavy chain II B (aa 1802-

1977) was created by PCR amplification using the following oligonucleotides, a) forward 

(5’- GGCAGCGGAGGGATGCAGGAACTCGAG-3’) and b) reverse (5’-

GACCCAGAGCCACCTTACTCTGACTGGGGTGG-3’) and the PCR product was 

ligated into the linearized pGEX4T-1 vector.  Then, the construct was transformed into the 

E. coli strain DH5. Plasmid DNA was purified and the sequence verified by sequencing.   

3) Construction of mutant TRPM7:  

A PCR based site-directed mutagenesis method was employed to generate point mutants, 

S1492A, S1511A, S1567A, S1492D, S1511D, and S1567D.  The wild type pET32a-

TRPM7 construct was used as a template, and PCR was carried out for each mutant with a 

set of sense and antisense mutagenic primers.  The PCR products were treated with Dpn1 

restriction enzyme and purified through DNA agarose gel electrophoresis.  Purified DNA 

was used to transform E. coli strain (Novablue), and transformants were identified. 

Mutations were confirmed by DNA sequencing. 
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Expression and Purification of Proteins in E.coli 

1) Expression and purification of phosphate-free TRPM7 (PF-TRPM7):  

The TRPM7 catalytic domain was undergoing autophosphorylation intensively, which was 

indicated by a relatively high molecular mass shown on the SDS-PAGE gel (~90 kDa) 

compared with its actual molecular mass ~73 kDa.  The unphosphorylated TRPM7 

catalytic domain was prepared by co-expressing with lambda phosphatase, and the plasmid 

pCDF-Duet λ-phosphatase was given as a generous gift from Dr.Richard Bayliss (Institute 

of Cancer Research, London UK).  The constructs, pET32a-Trx-TRPM7 and pCDF-Duet 

λ-phosphatase were co-transferred into E. coli strain C41 (DE3).  A single colony of freshly 

transformed cells was used to inoculate 100 mL of Luria-Bertani (LB) media containing 

50 g/mL ampicillin, 17 g/mL chloramphenicol, and 5 g/mL spectinomycine, and 

grown overnight at 37 ˚C on a shaker (250 rpm).  The culture was diluted 100-fold into 2x 

YT media containing the same concentration of antibiotics and incubated at 37 ˚C on a 

shaker (250 rpm) until it reached an OD600 of 0.6-1.0.  Protein expression was then induced 

with 20µM isopropyl β-D-1-thiogalactopyranoside (IPTG) for 16 hours at 22 ̊ C.  The cells 

were harvested by centrifugation (6000g for 10 minutes at 4 ˚C), flash frozen in liquid 

nitrogen and stored at -80 ˚C.  The collected cells were lysed in 150 mL of buffer A (20 

mM Tris pH 8.0, 0.03% Brij-30, 0.1% (v/v) β-mercaptoethanol, 5 mM imidazole, 1mM 

benzamidine, 0.1 mM PMSF, and 0.1 mM TPCK) containing 0.5 M NaCl, 20% glycerol, 

1 mM MgCl2 and 0.2 mg/ml lysozyme at 4 °C for 30 minutes.  The suspension was 

sonicated for 10 minutes (5 s pulses) at 4 ºC.  The lysate was cleared by centrifugation 

(Sorvall – SS34 rotor) at 27,000g for 30 minutes at 4 ̊ C and the supernatant gently agitated 
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with 15 mL of Ni-NTA beads (Qiagen) for 1 hour at 4 ˚C.  In a 100 mL chromatography 

column, the beads were washed with 150 mL of buffer A containing 10 mM imidazole and 

the Trx-His6-TRPM7 was then eluted with 30 mL of Buffer A containing 200 mM 

imidazole.  The eluted protein was applied to a Mono Q HR 10/10 anion exchange column 

equilibrated in buffer B (20 mM Tris pH 8.0, (v/v) 0.03% Brij-30, (v/v) 0.1% β-

mercaptoethanol, and 20% glycerol).  The column was developed over 15-17 column 

volumes of buffer B with a linear gradient of 0-0.5 M NaCl.  Eluted fractions of Trx-His6-

TRPM7 were collected and concentrated to a volume of 10 mL using an Amicon Ultra-15 

Centrifugal Filter Unit (Millipore) and applied to a HiLoad™ 16/60 Superdex™ 200 prep 

grade gel filtration column pre-equilibrated with Buffer D (25 mM HEPES, 2 mM 

dithiothrietol, 20 mM MgCl2, 0.1 mM EDTA, 0.1 mM EGTA, and 20% glycerol pH 7.5).  

Gel filtration chromatography was performed over 1.5 column volumes (180 mL) at a flow 

rate of 1 mL/min.  Fractions were collected and analyzed for purity using SDS-PAGE.  

Fractions that contained the TRPM7 catalytic domain were pooled and dialyzed against 

Buffer E (25 mM HEPES pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2 mM 

DTT, and 10 % glycerol)  

2) Expression and purification of fully phosphorylated TRPM7 kinase domain 

(TRPM7-KD): 

The construct, pET32a-Trx-TRPM7 was transferred into E. coli strain Rosetta-gami™ 

2(DE3).  A single colony of freshly transformed cells was used to inoculate 100 mL of 

Luria-Bertani (LB) media containing 50 g/mL ampicillin, 17 g/mL chloramphenicol, 

and 5 g/mL tetracycline, and grown overnight at 37 ̊ C on a shaker (250 rpm).  The culture 
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was diluted 100-fold into 2x YT media containing the same concentration of antibiotics 

and incubated at 37 ˚C on a shaker (250 rpm) until it reached an OD600 of 0.6-1.0.  

Purification step was same as the one for PF-TRPM7.  

3) Expression and purification of GST myosin heavy chain II B (1802-1977): 

pGEX 4T1 containing DNA encoding residues 1802-1977 of myosin heavy chain II B was 

transformed into E. coli strain BL21 (DE3) electro-competent cells.  From a single colony 

of freshly transformed cells, a 10 mL culture of LB containing 50 μg /mL ampicillin was 

inoculated and incubated with shaking overnight at 37 ºC.  The culture was diluted 100-

fold into LB media containing 50 μg/ mL ampicillin, and incubated at 37 ºC with shaking.  

Once the OD600 of the culture had reached 0.6, the expression was induced by the addition 

of 1 mM IPTG. Shaking was continued at 37 ºC for 1 hour, before the cells were pelleted 

(7000×g, 12 minutes).  The bacterial pellets were immediately frozen in liquid nitrogen 

and stored at -80 ºC.  The frozen wet cells were resuspended in 50 ml of Buffer F (10 mM 

Na2HPO4, 1.8 mM KH2PO4, pH 7.3, 140 mM NaCl, 2.7 mM KCl, 0.1% β-mercaptoethanol, 

0.1 mM TPCK, 0.1 mM PMSF and 1 mM Benzamidine) containing 0.2 mg/mL lysozyme.  

The mixture was incubated at 4 ºC for 30 minutes.  Then Triton X-100 was added (to a 

final concentration of 1%) and incubated another 30 minutes at 4 °C. Finally, the cells were 

sonicated for 5 minutes at 4 °C.  The lysate was then centrifuged for 30 minutes at 

12,000×g.  The supernatant was mixed with 10 mL of Glutathione Sepharose™ High 

Performance (Amersham Biosciences) equilibrated in Buffer E and shaken gently for 1.5 

hours at 4 ºC.  In a 50 mL column, the beads were washed with 50 mL of Buffer E.  The 

GST-tagged proteins were eluted with 5 mL buffer G (50 mM Tris HCl pH 7.5 containing 
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20 mM reduced glutathione, 0.1% β-mercaptoethanol, 0.1 mM TPCK, 0.1 mM PMSF and 

1 mM Benzamidine). 

 

Analytical Methods 

General kinetic assays 

In order to assess the correlation between PF-TRPM7 autophosphorylation and its 

kinase activity, autophosphorylation and activity towards peptide substrate were measured 

concurrently. After initiating 800 nM PF-TRPM7 autophosphorylation by adding 1 mM 

[-32P] ATP (100-1000 cpm/pmol), the degree of autophosphorylation was determined in 

10 μl aliquots that were taken from the reaction mixture at set time points. Concurrently, 

aliquots (30 μl) from the TRPM7-KD autophosphorylation reaction mixture were diluted 

and its ability to phosphorylate its peptide substrate was determined. 

TRPM7-KD activity was assayed at 30 °C in assay buffer (25 mM HEPES buffer-

pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2 mM DTT and 10 μg mL-1 BSA), 

containing 300 μM [γ-32P] ATP (100-1000 c.p.m. pmol-1), 11 mM MgCl2 and 12.5µM of 

peptide substrate (acetyl-RKKYRIVWKSIFRRFL-amide) in a final total volume of 100 

µL.  At set time points, 10 L aliquots were taken and spotted onto P81 cellulose filters 

(Whatman, 2 × 2 cm).  The filter papers were then washed thrice in 50 mM phosphoric 

acid (15 minutes, each wash), once in acetone (15 minutes) and finally dried.  The amount 

of labeled peptide associated with each paper was determined by measuring the cpm on a 

Packard 1500 scintillation counter.   
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Autophosphorylation assay using rapid quench flow equipment 

Rapid Chemical Quench. Rapid quench experiments were performed on a KinTek RQF-3 

rapid quench-flow apparatus. reactions were conducted at 27 ºC in assay buffer (25 mM 

HEPES, 50 mM KCl, 2 mM DTT, 0.1 mM EDTA, and 0.1 mM EGTA, pH 7.4) containing 

10 mM MgCl2. Experiments were initiated by the rapid mixing of solution A (containing 

2 mM [-32P] ATP (100-1000 cpm/pmol) with an equal volume of solution B (containing 

various concentrations PF-TRPM7 0-6400 nM). After brief time intervals (0.02-40 

seconds), reactions were quenched with 115 μL of quenching buffer (20 mM HEPES pH 

7.4, 200 mM KCl, 0.1% bovine serum albumin, 50 mM EDTA, 1 mM EGTA). The 

quenched reaction mixture was collected in 1.5 mL centrifuge tubes followed by heating 

for 10 minutes at 95 ˚C and centrifuged briefly at 5000g.  Aliquots (30 μL) of the quenched 

reaction mixture were resolved by SDS-PAGE and stained with Coomassie Brilliant Blue.  

Gels were exposed for 16 hours in a Phosphorimager cassette which was then scanned in a 

Typhoon Phosphorimager and then analyzed using ImageQuant™ TL software.  To 

determine the stoichiometry of the autophosphorylation, the gels were dried, the pieces 

containing TRPM7-KD excised, and the associated radioactivity measured with a Packard 

1500 liquid scintillation analyzer. 

Pre-steady state kinetic assay 

Rapid quench experiments were performed on a KinTek RQF-3 rapid quench-flow 

apparatus. reactions were conducted at 27 ºC in assay buffer (25 mM HEPES, 50 mM KCl, 

2 mM DTT, 0.1 mM EDTA, and 0.1 mM EGTA, pH 7.4) containing 10 mM MgCl2. 

Experiments were initiated by the rapid mixing of solution A (containing 2 mM [-32P] 
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ATP (100-1000 cpm/pmol) and 25 μM peptide substrate mixture) with an equal volume of 

solution B (containing either 1600 nM fully phosphorylated TRPM7-KD [figure 2.5] or 

1600 nM PF-TRPM7 [figure2.3B]). After brief time intervals (0.01-4 seconds), reactions 

were quenched with 115 μL of quenching buffer (20 mM HEPES pH 7.4, 200 mM KCl, 

0.1% bovine serum albumin, 50 mM EDTA, 1 mM EGTA).  The quenched reaction 

mixture was collected in 1.5 mL centrifuge tubes followed by heating for 10 minutes at 95 

˚C and centrifuged briefly at 5000g.  Aliquots (30 μL) of the quenched reaction mixture 

were resolved by 20% SDS-PAGE and stained with Coomassie Brilliant Blue.  Gels were 

exposed for 16 hours in a Phosphorimager cassette which was then scanned in a Typhoon 

Phosphorimager and then analyzed using ImageQuant™ TL software.  To determine the 

peptide substrate phosphorylation, the gels were dried, the pieces containing 

phosphorylated peptide excised, and the associated radioactivity measured with a Packard 

1500 liquid scintillation analyzer.  In experiments where both PF-TRPM7 

autophosphorylation and peptide substrate phosphorylation were monitored 

simultaneously (figure 2.6A), the gels were dried, the pieces containing either 

autophosphorylated TRPM7-KD or phosphorylated peptide excised, and the associated 

radioactivity measured with a Packard 1500 liquid scintillation analyzer. 

Analysis of the three autophosphorylation-site mutants.   

a. Assay against peptide substrate: Assays were performed in the assay buffer (25 

mM HEPES, 50 mM KCl, 2 mM DTT, 0.1 mM EDTA, and 0.1 mM EGTA, pH 7.4) 

containing 10 mM MgCl2 using 80 nM of TRPM7-KD WT and mutants that were pre-

autophosphorylated following the protocol that mentioned in the general kinetics assays, 
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12.5 μM peptide substrate and 0.5 mM [-32P] ATP (100-1000 cpm/pmol) in a final 

reaction volume of 100 L.  Kinase activity in each case was determined by calculating the 

rate of phosphorylation of the peptide.  b. Assay against myosin IIB: Assays were 

performed in the same assay buffer mentioned above using 80 nM of TRPM7-KD WT and 

mutants, 8 μM myosin IIB and 1 mM [-32P] ATP (100-1000 cpm/pmol) in a final reaction 

volume of 50 L.  The reaction mixture was incubated at 30 ˚C for 10 minutes before the 

reaction was initiated by addition of 1 mM [-32P] ATP.  The reaction was carried out for 

1 minute and quenched by addition of hot SDS-PAGE sample loading buffer.  The samples 

were resolved by SDS-PAGE and stained with Coomassie Brilliant Blue.  Gels were 

exposed for 2 hours in a phosphorimager cassette which was then scanned in a Typhoon 

Phosphorimager.  c. Autophosphoylation of TRPM7-KD mutants: Assays were performed 

in the same assay buffer described earlier using 800 nM TRPM7-KD mutants and 1 mM 

[-32P] ATP (100-1000 cpm/pmol) in a final reaction volume of 50 L.  The reaction 

mixture was incubated for 30 and 60 minutes.  The samples were analyzed as mentioned 

above. 

 

Dynamic Light scattering 

Dynamic light scattering experiments were performed on phosphate-freeTRPM7-

KD, 30 seconds autophosphorylated TRPM7-KD and fully phosphorylated TRPM7-KD. 

Samples were previously dialyzed against light scattering assay buffer (25 mM HEPES 

(pH 7.5), 100 mM NaCl, 2 mM DTT and 5 mM MgCl2).  The assay buffer, which is freshly 
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prepared with Nanopure water (~18.3 MΩ cm) and filtered through a 0.02 m filter 

(Anodisc 47, Whatman, catalog # 6809-5002) was used to establish the light scattering and 

refractive index baselines.  The TRPM7-KD sample, 40 μL at 3.6 μM, was centrifuged for 

30 seconds and injected into the column.  Bovine serum albumin monomer (Sigma A1900) 

was injected to the column at 2 mg/mL for normalization of the light-scattering detectors.  

Size exclusion 14 chromatography was performed at a flow rate of 0.4 mL/min at room 

temperature for a run time of ~ 40 minutes.  All measurements were made at 25 C.  Size-

exclusion chromatography was performed as previously described (137, 138) with a TSK-

GEL G3000PWXL column (300 × 7.8 mm ID, 14 mL column volume, Tosoh Bioscience 

LLC).  Samples were centrifuged for ~ 30 seconds to remove any insoluble components 

prior to injection.  Molar masses, peak concentrations and hydrodynamic radii were 

determined with Astra software (Wyatt Technology).   

 

Mass Spectrometry, Liquid Chromatography, and Automated Spectral Analysis 

TRPM7 samples were reduced, alkylated, and digested with trypsin. A 1:20 

enzyme: substrate ratio, a pH of ~8, and an incubation time of 16 hours at 37 °C were used 

for digestion.  All mass spectrometric experiments were undertaken on a Thermo Fisher 

Scientific LTQ XL (San Jose, CA).  Liquid chromatography was performed using a Dionex 

UltiMate 3000 RSLCnano system (Sunnyvale, CA), and a Dionex Acclaim PepMap RSLC 

C18 column (75 μm × 15 cm, 2 μm particle size).  Eluent A consisted of 0.1% formic acid 

in water and eluent B 0.1% formic acid in acetonitrile.  A linear gradient from 5% eluent 

B to 50% eluent B over 120 minutes at 300 nL/min was used.  Samples were injected at 
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approximately one picomole of digested protein.  Data-dependent LC-MS/MS was 

performed as follows: the first event was the full mass scan (m/z range of 400 - 2000) in 

the positive mode followed by ten CID events on the ten most abundant ions from the full 

mass scan.  The maximum injection time for full mass scans and MS/MS events was set to 

100 ms, the dynamic exclusion duration was 50 s, and the exclusion list size allowed for 

500 specified m/z values.  A single repeat count was used. A q-value of 0.25, an activation 

time of 30 ms, and normalized collision energy (NCE) of 35% were used for all CID events.  

MassMatrix was used for automated LC-MS/MS analysis.  A precursor mass tolerance of 

2.0 Da, and a fragment mass tolerance of 0.8 Da were used for processing.  Phosphorylation 

of serine, threonine, and tyrosine were set as variable side-chain modifications, and 

carbamidomethyl of cysteine was set as a fixed modification.  Experimental CID spectra 

were searched against a database consisting of the TRPM7 + tag sequence.  Peptide hits 

were filtered based on a minimum pp score of 5, a pp2 score of 5, or a minimum pptag score 

of 1.3.  Peptides with a minimum length of 6 amino acids and a max peptide ranking of 

one were also filtered out.  Phosphorylated peptides were manually verified before 

calculating peak area ratios. 

 

Site-Directed Mutagenesis by Overlap Extension Using the Polymerase Chain 

Reaction 

A PCR-based site-directed mutagenesis method was employed to generate point 

mutants, S1492A, S1511A, and S1567A.  The full length WT TRPM7 construct containing 

Myc and FLAG tags (Origene) was used as a template, and PCR was carried out for each 
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mutant with a set of sense and antisense mutagenic primers.  The PCR products were 

treated with DpnI restriction enzyme to get rid of methylated template plasmid and purified 

through agarose gel electrophoresis.  The mutated plasmid remains intact in the reaction.  

Purified DNA was used to transform E. coli (novablue), and transformants harboring 

mutant constructs were identified.  Mutations were confirmed by DNA sequencing. 

 

Western Blotting and Immunoprecipitation Experiments 

The full length of Myc-FLAG tagged TRPM7 in pCMV vector was purchased from 

Origene.  HEK293 cells were transfected with full length of Myc-FLAG tagged TRPM7 

(both WT and alanine mutants) using lipofetamine 2000 (Invitrogen).  At 72 hours after 

transfection, cells were lysed on ice for 20 minutes in lysis buffer (50 mM Tris pH 7.5, 300 

mM NaCl2, 0.5 mM DTT, 1.5 mM MgCl2, 0.2 mM EDTA, 1% Triton X-100 supplemented 

with protease inhibitors) and the extract was cleared by centrifugation.  The protein 

concentration was measured by Bradford analysis (Bio-Rad).  For immunoprecipitation of 

exogenously expressed TRPM7, Myc-Tag (9B11) Mouse mAb (Sepharose Bead 

Conjugate) (Cell Signaling Technology) was added to the lysates of WT and mutant 

TRPM7, the samples were incubated at 4 °C overnight.  Subsequently, the beads were 

washed three times with lysis buffer, protein complexes were solubilized in Laemmli 

sample buffer and separated by SDS-PAGE.  Proteins were fractionated on a 10% SDS 

polyacrylamide gel (Bio-Rad) and transferred to Hybond-P PVDF Membrane (GE 

Healthcare).  Primary antibodies were incubated overnight at 4 ºC using 1:1000 anti-FLAG 

antibody (Sigma-Aldrich); 1:1000 anti-myosin IIB rabbit polyclonal antibodies (Cell 
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Signaling Technology); anti-rabbit (Bio-Rad) horseradish peroxidase-conjugated 

secondary antibodies and ECL Plus™ Western blotting reagents (GE Healthcare) were 

employed to develop the blots. 

 

2.4 RESULTS AND DISCUSSION 

Preparation of phosphate-free TRPM7-KD to facilitate the study of its 

autophosphorylation mechanism  

All alpha-kinases including eEF2K, MHCKs, TRPM6, and TRPM7 have been 

reported to autophosphorylate, and this autophosphorylation is considered to be an 

important regulatory mechanism for their activity (1).  The in vitro study of the 

autophosphorylation mechanism of these enzymes is challenging due to its uncontrollable 

autophosphorylation upon expression in bacterial or mammalian cells.  For example, a 

recent study has shown that the cytosolic C-terminal kinase domain of TRPM7 undergoes 

extensive autophosphorylation during expression in HEK293 cells (34).  Herein, we 

introduced a novel co-expression system to co-express both lambda phosphatase and 

residues 1403-1864 of TRPM7 (TRPM7-KD) in E. coli in order to prepare the phosphate-

free TRPM7 kinase domain (PF-TRPM7).   

The SDS-PAGE experiments shown in figure 2.1A and B demonstrate the 

difference in apparent molecular weight when assessed by SDS PAGE (72 versus 90 kDa) 

between TRPM7-KD when expressed in E. coli, in the presence and absence of lambda 

phosphatase.  When TRPM7-KD is treated with lambda phosphatase in vitro a similar 

molecular weight band is observed supporting the notion that this system can produce 
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phosphate-free TRPM7-KD (PF-TRPM7).  The phosphorylation status of PF-TRPM7 was 

further examined.  A mass spectrometry analysis of proteolytically cleaved PF-TRPM7 

revealed only trace phosphorylation (figure 2.6 B, D).  

To test the capability of PF-TRPM7 to autophosphorylate in vitro after removal of 

the phosphates during bacterial expression, 800 nM of PF-TRPM7 was incubated with 1 

mM [-32P] ATP in the presence of 11 mM MgCl2 and phosphate addition detected by 

autoradiography and quantified by phosphorimager analysis.  PF-TRPM7 was successfully 

autophosphorylated with high efficiency in vitro (figure 2.1C), which validates this form 

of the enzyme as a suitable tool to study the TRPM7-KD autophosphorylation mechanism. 

 

Evidence that the inactive kinase domain is tetrameric 

 A shorter form of TRPM7 (residues 1548-1863) has been reported by Scott W. 

Crawley et al. (33) to be a dimer, while the structure of residues 1230-1282 (TRPM7cc) that 

corresponds to a coiled-coil domain has been recently resolved by Yuichiro Fujiwara et al. 

(22) to be an antiparallel tetramer in both crystal and solution.  The availability of a 

phosphate-free form of the kinase domain TRPM7 enhances the chance to characterize the 

oligomerization state of this domain in both its non-phosphorylated and fully 

phosphorylated form using dynamic light scattering (139).  Figure 2.2 shows that PF-TRPM7 

has an approximate molecular mass that is 4-fold the expected molecular mass (72kDa), 

suggesting that PF-TRPM7 is a tetramer in solution. 
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Autophosphorylation is required to activate TRPM7-KD 

To compare the autoactivation of PF-TRPM7 and TRPM7-KD, we monitored their 

activities towards a peptide substrate (RKKYRIVWKSIFRRFL) (140) utilizing a P81-based 

kinase assay (figure 2.3A).  Kinase activity was measured as a function of 

autophosphorylation time.  The kinase activity of both PF-TRPM7 (figure 2.3A) and 

TRPM7-KD (data not shown) was maximal within the first minute of autophosphorylation, 

suggesting that either autophosphorylation is not required for its kinase activity or the 

autophosphorylation is rapid.   

To test if autophosphorylation is required for its kinase activity, we used a rapid 

quench-flow device to monitor phosphate incorporation into either the peptide substrate or 

myosin IIB protein substrate (35).  We compared PF-TRPM7 and fully phosphorylated 

TRPM7-KD.  We reasoned that if autophosphorylation regulates TRPM7-KD activity, 

fully phosphorylated TRPM7-KD will initially phosphorylate its substrates more rapidly 

than the PF-TRPM7.  The comparison between the ability of fully phosphorylated TRPM7-

KD and PF-TRPM7 to phosphorylate the peptide substrate (figure 2.2B) demonstrated that 

autophosphorylation is essential to activate TRPM7-KD as PF-TRPM7 exhibits a lower 

initial rate of peptide phosphorylation than the fully phosphorylated TRPM7-KD.   

 

Characterization of the mechanism of TRPM7 autophosphorylation  

As previously established, the early autophosphorylation of PF-TRPM7 is 

sufficient for its full autoactivation.  To determine the effect of PF-TRPM7 concentration 

on its autophosphorylation, we examined how the rate of autophosphorylation varied with 
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the TRPM7 concentration.  Using a rapid quench flow kinetic assay, we were able to 

quantify the initial rate of 32P incorporation into PF-TRPM7 at different concentrations and 

determine the relationship between the rate of autophosphorylation and TRPM7 

concentration.  Rapid quench-flow kinetic experiments were performed at 7 different 

concentrations of TRPM7 between 50–3200 nM (figure 2.4).  The observed rate constant 

k1 for the initial rate of autophosphorylation varied from 0.01 to 0.08 sec-1 and plateaued 

above 800 nM PF-TRPM7.  

 

Pre-steady state kinetic analysis of TRPM7-KD  

Our previous rapid quench data showed that fully active TRPM7 exhibits a 

transient pre-steady-state "burst" of a phosphorylated substrate.  Therefore, we studied 

kinetic transients on the catalytic reaction pathway of TRPM7 in detail.  Experiments were 

performed on a Rapid Quench-Flow apparatus as described in Materials and Methods.  To 

observe a burst of product formation, the concentration of substrate must exceed that of the 

enzyme and must exceed the dissociation constant, such that the majority of the enzyme 

will be bound to the substrate before initiation of the catalytic reaction.  For experiments, 

final concentrations of 3 mM MgATP, 25 μM peptide, and 0.5-1 μM TRPM7 were used.  

Both peptide and MgATP were incubated together in syringe A before rapid mixing with 

an equal volume of TRPM7 from syringe B.  At varying times, the reaction was stopped 

by the addition of a quench solution (400 mM EDTA).  Figure 2.5A shows 8 time courses, 

for the formation of peptide~p, obtained at two different concentrations of TRPM7 (0.5, 1 

μM).  The progress curve for each time course exhibited an initial burst followed by a 
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slower linear phase.  Data were fitted to an equation describing a single exponential 

followed by a steady-state rate (equation. 2.1).  The formation of the burst occurred with a 

rate constant of k2 = 27 s-1 followed by a slow product release from the enzyme with a rate 

constant of k3 = 1.9 s-1.  The amplitude of the burst exhibited a proportional dependence on 

the enzyme concentration when the experiments were performed at two different enzyme 

concentrations, 0.5 and 1 μM, respectively.  The burst amplitude indicates the quantity of 

active enzyme that is present in the reaction mixture.  The observed burst amplitudes (α) 

for each curve fit represented approximately 80% of the total enzyme concentration ([E]t, 

α [E]t: 0.5, 0.43; 1, 0.75 μM). 

[𝐸𝐴𝑃]+[𝑃]

[𝐸𝐴]0
= (

𝑘2

𝑘2+𝑘3
)2 [1 − 𝑒−(𝑘2+𝑘3)𝑡] + ( 

𝑘2𝑘3

𝑘2+𝑘3
) 𝑡                 Equation 2.1 

 

Three early phosphorylations are sufficient to fully activate TRPM7 

To further understand the mechanism we simultaneously monitored 

autophosphorylation and substrate phosphorylation using a rapid quench kinetic assay.  

Data were fitted to the following model (where E is PF-TRPM7 and EA is phosphorylated 

TRPM7-KD, S is the peptide substrate and P is the phosphorylated peptide substrate) using 

Kintek Explorer software: 

E=EA, 

EA+S=EAS, 

EAS=EA+P 
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Figure 2.6A shows the fitted data, PF-TRPM7 exhibits a lag phase in its ability to 

phosphorylate the peptide substrate, which corresponds to the incorporation of 3 

phosphates into PF-TRPM7 (closed circles represents mole phosphate per mole TRPM7 

and closed squares present phosphorylated peptide) and as shown in figure 2.6A, fully 

phosphorylated TRPM7 does not exhibit such a lag phase.  Interestingly, after ~40-50 

seconds of autophosphorylation, the rate of myosin (TRPM7-KD protein substrate) 

phosphorylation by PF-TRPM7 became similar to the rate of phosphorylation by fully 

phosphorylated TRPM7-KD (data not shown), suggesting that early three 

autophosphorylation sites are sufficient for its kinase activity towards myosin.  These three 

autophosphorylation sites have been further determined by mass spectrometry analysis 

(figure 2.6B-D).  To determine these early autophosphorylation sites purified PF-TRPM7 

was allowed to autophosphorylate in the presence of MgATP for 30 seconds.  The sample 

was reduced, alkylated, and digested with trypsin as described under ‘2.3 Materials and 

Method’.  The relative degree of phosphorylation of the TRPM7 sites based on peak area 

ratios of phosphorylated and non-phosphorylated peptides from TRPM7-KD after 0 or after 

30 seconds of autophosphorylation was compared and the results (which have been 

summarized in figure 2.6D), revealed three major sites after 30 seconds of 

autophosphorylation in recombinant human TRPM7-KD - Ser1492, Ser1511 and Ser1567.  

It should be noted that only trace phosphorylation was detected in PF-TRPM7. 

Previously, Matsushita et al. reported that Ser1511 and Ser1567 are the major sites of 

TRPM7 autophosphorylation (31).  Accordingly, we investigated the contribution of the 

three autophosphorylation sites to TRPM7 kinase activity by generating mutant constructs.  
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In order to confirm these phosphorylation sites are important for TRPM7 activity, we 

mutated Ser1492, Ser1511 and Ser1567 individually to alanine and tested whether mutation of 

these autophosphorylation sites abolishes kinase activity.  Mutation of Ser1492, Ser1511 or 

Ser1567 to alanine resulted in almost no autophosphorylation compared with wild-type 

TRPM7-KD (figure 2.7A).  We also assessed the ability of these mutants that were 

autophosphorylated for different times (0.5–45 minutes) to phosphorylate a TRPM7 

peptide substrate.  None of the mutants showed significant peptide phosphorylation, as 

compared to the wild-type enzyme or any enhancement of enzyme activity following 

incubation with MgATP (figure 2.7B).  Myosin IIB exhibited similar results to the peptide 

substrate (figure 2.7C).  In addition, we mutated Ser1492, Ser1511 and Ser1567 to aspartic acid 

to mimic phosphorylation and investigated the ability of these mutants to 

autophosphorylate or phosphorylate myosin IIB.  The aspartic acid mutants showed a 

similar autophosphorylation level to the wild type TRPM7-KD (figure 2.8A) but only one 

of them (S1567D) rescued myosin IIB phosphorylation (figure 2.8B). 

As described in Chapter 1, by LC-MS/MS, Clark et al. identified 46 residues 

autophosphorylated in WT-TRPM7 including Ser1511 and Ser1567 which were identified 

earlier by Matsushita et al (31, 34).  However, Clark et al. reported that mutation of these 

residues to alanine either individually or in combination had no effect on TRPM7 

autophosphorylation or activity towards myosin II.  Their results are consistent with neither 

those of Matsushita’s nor our studies.  Their HA-tagged TRPM7 kinase domain was 

obtained from HEK293 cells by immunoprecipitation and subjected to an in vitro kinase 

assay.  These experiments raise the possibility that TRPM7 can undergo extensive 
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autophosphorylation and function normally in spite of mutation of Ser1511and Ser1567 to 

alanine by unknown factors in the cells.  By taking advantage of a rapid quench kinetic 

assay using PF-TRPM7, we demonstrated that Ser1492, Ser1511 and Ser1567 residues are 

absolutely essential for TRPM7 activity.  Autophosphorylation on these residues are 

required for further autophosphorylation of TRPM7 implying that their phosphorylation is 

an important priming event that would control TRPM7 autophosphorylation and kinase 

activity. 

 

The three autophosphorylation sites regulate the association with myosin II B 

As previously described in Chapter 1.2., the protein kinase domain of TRPM7 

phosphorylates actin filament interacting proteins: myosin II.  Clark et al. demonstrated 

that TRPM7 associates with myosin II in a kinase-dependent manner by showing that a 

kinase dead mutant (TRPM7-D1775A) did not interact with myosin IIA heavy chain (36).  

Interaction with the actomyosin cytoskeleton suggests that TRPM7 kinase activity might 

regulate the stability of actomyosin filaments and affect cytoskeletal remodeling.  

Therefore, we investigated whether the three early autophosphorylation sites influence the 

association of TRPM7 with the actomyosin cytoskeleton in the cells.  Accordingly, we co-

precipitated Myc-TRPM7 complexes (WT and three alanine mutants) with anti-Myc 

antibodies and detected the presence of associated myosin IIB by western blotting.  As seen 

in figure 2.9, myosin IIB heavy chain was present in a complex with WT TRPM7, but not 

in a complex with the mutants.  These results indicate that the interaction between TRPM7 
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and myosin IIB is strictly kinase activity-dependent and further confirm that the three 

autophosphorylation residues are the main regulators of the kinase activity.   

 

The autophosphorylation on three serine residues induces a conformational change 

of the TRPM7 kinase domain  

As mentioned earlier, TRPM channels have diverse C-terminal domains but share 

a common coiled-coil domain located at the C-terminus of the transmembrane domain.  

When recombinant proteins containing putative coiled-coils from TRPM channels are 

expressed by themselves, the coiled-coil domains are able to self-assemble into tetramers, 

as observed using biophysical techniques.  The deletion or point mutated coiled-coil 

domain was shown to result in a non-functional channel by abolishing multimeric channel 

assembly, suggesting that the tetramerized coiled coil is important for functional TRPM 

channels.  Moreover, recent X-ray crystallography of the TRPM7 coiled-coil domain 

(residues 1230-1282) demonstrated that TRPM7 coiled-coils were capable of forming 

tetrameric antiparallel structure (22).  The structure of the short TRPM7 alpha-kinase 

domain (residues 1548-1863) expressed in E.coli, determined by X-ray crystallography, 

revealed that TRPM7 alpha-kinase assemble into a dimer through the interaction of the N-

terminal alpha-helix of one subunit with the second subunit (33).  Taken together based on 

previous structural studies, there would be two kinase dimers in a tetrameric TRPM7 

channel.  The successful preparation of a phosphate-free form of the kinase domain of 

TRPM7 allowed us to determine the oligomerization state of this domain in both its non-

phosphorylated and fully phosphorylated form.  Using dynamic light scattering we found 
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that a phosphate-free form of TRPM7 exists as a tetramer in solution (figure 2.2 and 2.10).  

This observation increased the possibility that the TRPM7 oligomerization state can be 

influenced by autophosphorylation.  Therefore, we also performed dynamic light scattering 

on fully phosphorylated TRPM7-KD and autophosphorylated TRPM7-KD (30 seconds) in 

order to compare with tetrameric inactive TRPM7-KD.  The molar mass distribution, as a 

function of elution volume, is shown for each sample in figure 2.10.  The molecular mass 

of fully phosphorylated TRPM7-KD and autophosphorylated TRPM7-KD (30 seconds) is 

estimated to be 150 kDa in solution.  This is about twice the sequence derived mass of ~72 

kDa, which suggests that both fully phosphorylated and 30 second-autophosphorylated 

TRPM7-KD exist in a dimeric state.  These data support the notion that early 

autophosphorylation on three serine residues causes a conformational change to promote a 

tetramer to dimer transition of the kinase domain leading to an active enzyme.  As expected, 

alanine mutants which do not have an ability to be autophosphorylate and harbor kinase 

activity could not form a dimer (data not shown) and remained a tetramer.  Our data provide 

evidence that the active TRPM7 kinase domain is dimeric under physiological conditions.  

As a result, our findings propose a schematic model for the regulation of TRPM7 

conformational change as seen in figure (figure 2.11).  In the inactive state, the TRPM7 

kinase domain is tetrameric.  Activation of the kinase domain by autophosphorylation 

results in the structural transition of the kinase from the tetramer to dimer, potentially 

regulating the channel.  

 

2.5 CONCLUSION 
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We provide evidence that three early autophosphorylation sites of TRPM7 (Ser1492, 

Ser1511 and Ser1567) regulate its autoactivity and its interaction with myosin II using a range 

of biochemical experimental techniques.  The evidence includes i) a concentration-

dependent autophosphorylation mechanism, ii) in vitro rapid quench kinetic analysis and 

MS/MS demonstrating that TRPM7 requires the early three phosphates to activate the 

kinase domain towards downstream substrates, iii) biochemical analyses of the TRPM7 

complex showing that TRPM7 associates with myosin II in a kinase dependent manner in 

cells and iv) dynamic light scattering analysis revealing that early autophosphorylation 

induces a conformational change of the TRPM7 kinase domain.   
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Figure 2.1. SDS-PAGE analysis of purified TRPM7-KD (1403-1864). 

A, In vitro treatment of purified TRPM7-KD with lambda phosphatase.  B, Purified PF-

TRPM7 kinase domain which was co-expressed with lambda phosphatase in E.coli.  

Proteins were expressed in E.coli (Rossita Gami 2 cells), purified and analyzed by 10% 

SDS-PAGE in tris-glycine running buffer using BenchMark Protein Ladder (Invitrogen), 

and stained with coomassie blue.  C, Autophosphorylation of PF-TRPM7. PF-TRPM7 (800 

nM) was allowed to autophosphorylate in the presence of 11 μM MgCl2.  At the indicated 

times, the reaction quenched with hot SDS-PAGE sample loading buffer.  The samples 

were then analyzed as described under ‘2.3. Materials and Methods’.  (upper) Coomassie-

stained gel.  (down) Autoradiograph.  

  



48 

 

Figure 2.2. Dynamic light scattering analysis of phosphate-free TRPM7 kinase 

domain. 

Fractionation of 3.6 µM phosphate-free TRPM7 kinase domain using size exclusion 

chromatography followed by quasi-elastic light scattering (QELS) analysis shows that 

phosphate-free TRPM7 self-association causes tetramerization.  The chromatographic 

conditions are given in the ‘2.3. Materials and Methods’.  The patterns represent the relative 

concentrations determined by measurement of the refractive index differences, the molar 

mass distribution and the hydrodynamic Stokes radius (RH), as a function of elution 

volume.  
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Figure 2.3. Autoactivity of TRPM7-KD towards peptide substrate.  

A, Activity of PF-TRPM7 pre-phosphorylated for designated time against peptide 

substrate. The incorporation of phosphate into 12.5 µM peptide substrate by PF-TRPM7 

pre-phosphorylated for different time points (0.5-100 min) monitored by general kinase 

assay using p81 paper.  B, Rapid quench flow kinetics experiment compares the ability of 

PF-TRPM7 and fully phosphorylated TRPM7-KD to phosphorylate 12.5 µM peptide 

substrate.  Closed squares represent the activity of 800 nM of fully phosphorylated 

TRPM7-KD towards its peptide substrate in the presence of a saturating ATP 

concentration.  Closed circles represent activity of 800 nM PF-TRPM7 towards its peptide 

substrate in the presence of a saturating ATP concentration.  
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Figure 2.4. Effect of different TRPM7 concentrations on its autophosphorylation. 

It was studied by investigating the concentration dependence of TRPM7-KD 

autophosphorylation rate constant.  Plotted is the observed rate constant (sec-1) for 

autophosphorylation versus TRPM7-KD concentration (nM).  The incorporation of 

phosphate into different concentrations of PF-TRPM7 was monitored by rapid quenched 

flow kinetics.  The lines are the best fits of each data set to the following equation kobs = 

kmax +[E]/[E]+´ dK  where kobs is the observed rate constant, kmax is the maximum observed 

rate constant, [E] is TRPM7-KD concentration and ´ dK  is the apparent dissociation 

constant.  
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Figure 2.5. Product release as the rate limiting step in the kinetic mechanism of 

TRPM7 kinase domain.  

A, Rapid mixing of MgATP with TRPM7-KD•Peptide substrate.  Rapid quench-flow 

experiments were conducted at 27 °C and pH 7.5 in assay buffer (25 mM HEPES, 50 mM 

KCl, 2 mM DTT, 0.1 mM EDTA, and 0.1 mM EGTA) containing 10 mM MgCl2. [γ-32P] 

ATP (100-1000 cpm/pmol) and peptide substrate mixture were loaded into sample loop A, 

while TRPM7-KD were loaded into sample loop B.  Final concentrations were 1 mM 

MgATP2-, 25 µM peptide substrate, and 0.5 (circle), 1 µM (square) TRPM7-KD.  At set 

times, reactions were quenched by the addition of quenching buffer (20 mM HEPES pH 

7.4, 200 mM KCl, 0.1% bovine serum albumin, 50 mM EDTA, 1 mM EGTA) and product 

formation (EAP + P) was quantified as described in ‘2.3 Materials and Methods’.  The 

lines through the data correspond to the best fit to equation 2.1 according to an average k2 

of 26.5 s-1 and k3 of 1.84 s-1.  B, Reaction scheme.  
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Figure 2.6. Three early autophosphorylation events are required for TRPM7 

autoactivation.  
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Figure 2.6 continued.  

A, Fitted rapid quench kinetic data showed that PF-TRPM7 became active towards 

substrates after incorporation of the first 2-3 phosphates which was confirmed by lag phase 

of peptide phosphorylation until TRPM7 gets ~3 phosphates.  (Closed circle curve 

represents mole phosphate per mole TRPM7 and closed square curve presents 

phosphorylated peptide).  Data were fitted using Kintek explorer software to the following 

model (E=EA, EA+S=EAS, EAS=EA+P).  B-D, Mass spectrometric analysis of 

autophosphorylation sites in TRPM7-KD. Base peak ion chromatogram of B, PF-TRPM7 

and C, after 30 seconds of autophosphorylation.  D, Relative degree of phosphorylation of 

TRPM7 sites based on peak area ratios of phosphorylated and non-phosphorylated peptides 

from TRPM7 after 0 or after 30 seconds of autophosphorylation.  Peak area ratio = peak 

area for phosphorylated peptide / peak area for non-phosphorylated peptide.  The ratios 

were calculated using the highest peak area for each peptide and corresponding 

phosphorylated peptide. 
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Figure 2.7. The effect of Alanine mutation of the early phosphorylation sites on 

TRPM7-KD autophosphorylation and kinase activity against either peptide and or 

protein substrate (myosin IIB).  
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Figure 2.7 continued.  

A, Autophosphorylation of wild type PF-TRPM7 and mutant TRPM7 in which Ser1492, 

Ser1511, and Ser1567 were changed to alanine residues.  Either WT PF-TRPM7 or each 

mutant was incubated with [32P] MgATP for 30 min and 60 min.  Samples were separated 

by SDS-PAGE (upper) and analyzed by autoradiography (lower).  B, Activity of PF-

TRPM7 and each alanine mutant that were pre-autophosphorylated for different time points 

against 12.5 µM peptide substrate and saturating concentration of ATP.  C, Kinase activity 

of PF-TRPM7 and each alanine mutant against myosin IIB.  Either wild type PF-TRPM7 

or each alanine mutant was incubated with [32P] MgATP and myosin IIB for 30 min.  

Samples were separated by SDS-PAGE (upper) and analyzed by autoradiography (lower). 
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Figure 2.8. The effect of aspartate mutation of the early phosphorylation sites on 

TRPM7-KD (A) autophosphorylation and (B) ability to phosphorylate its protein 

substrate myosin IIb substrate.  

A, Autophosphorylation of wild type PF-TRPM7 and three mutants in which Ser1492, 

Ser1511, and Ser1567 were changed to aspartic acid residues.  Either wild type PF-TRPM7 

or mutant was incubated with [32P] MgATP for 60 min.  Samples were separated by SDS-

PAGE (upper) and analyzed by autoradiography (lower).  B, Either wild type PF-TRPM7 

or each aspartate mutant was incubated with [32P] MgATP and myosin IIB for 30 min.  

Samples were separated by SDS-PAGE (upper) and analyzed by autoradiography (lower). 
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Figure 2.9. The effect of alanine mutation of the early phosphorylation sites on 

TRPM7 –myosin interaction in HEK293 cells.  

Full length of Myc-FLAG tagged TRPM7 WT and Alanine mutants were transfected into 

HEK293 cells and immunoprecipitated with anti-Myc antibody-containing beads 

according to the protocol described in ‘2.3 Materials and Methods’ and associating myosin 

IIB heavy chain was detected by western blotting. 
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Figure 2.10. Dynamic light scattering analysis: Effect of autophosphorylation on the 

self-association of TRPM7 kinase domain.  

Fractionations of inactive TRPM7 (PF-TRPM7) and active TRPM7 (Fully phosphorylated 

TRPM7-KD and 30 sec-autophosphorylated TRPM7-KD) show that early TRPM7-KD 

autophosphorylation as well as TRPM7-KD full phosphorylation induces its dimerization. 
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Figure 2.11. Schematic model: Activation of TPRM7 catalytic domain. 
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Chapter 3: Suppression of Breast Cancer Cell Migration by Novel 

Inhibitors Targeting TRPM7 Kinase Activity‡ 

 

3.1 ABSTRACT 

TRPM7 (transient receptor potential melastatin 7) is a non-selective cation channel 

that is permeable to both Ca2+and Mg2+ and is implicated in cell adhesion and magnesium 

homoeostasis.  The TRPM7 channel possesses a protein kinase domain at the C-terminus 

whose activity is linked to the control of actomyosin contractility.  TRPM7 mediates 

proliferation, adhesion and migration of breast cancer cells and recently has been reported 

to promote breast tumor cell metastasis.  The lack of cell-permeable pharmacological 

inhibitors of the kinase domain represents a barrier to fully understanding its kinase 

function.  Herein, we describe the discovery of the first group of small molecule 

compounds that target TRPM7 kinase activity and characterize their mechanism of 

inhibition in vitro and in cells.  These compounds were shown to decrease the binding of 

myosin IIB to TRPM7 in cells transfected with pCMV6-TRPM7.  Interestingly, two of the 

inhibitors significantly inhibited MDA-MB-231 breast cancer cell migration, which is 

reportedly regulated by TRPM7 kinase activity. 

 

3.2 INTRODUCTION 

                                                 
‡ Contributions to the work described in this chapter: Dr. Tamer S. Kaoud (Performed biochemical screening 

assays); Dr. Shreya Mitra (Analyzed breast cancer cell migration assay); Anna Tseng (Helped biochemical 

assays).  
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As described above, TRPM7 (transient receptor potential melastatin 7) is a non-

selective cation channel that is permeable to both Ca2+and Mg2+ as well as metal ions and 

is fused to a protein kinase domain at the C-terminus whose activity is linked to the control 

of actomyosin contractility.  The ion-conducting properties of TRPM7 can be modulated 

by different stimuli, resulting in a variety of cellular responses.  The expression of the 

TRPM7 channel is widespread and is found in cancer cells such as retinoblastoma, neck 

and head, gastric and breast(39, 41, 42).  Whether TRPM7 activity contributes to cancer 

progression has not been delineated in detail.  Central to tumor metastasis is the capacity 

of tumor cells to adhere to cells and tissue that differ from the original site.  Metastasis 

occurs through a complicated multistep process including tumor cell dissemination, cell 

invasion, entry into the bloodstream and outgrowth of secondary tumors in distant 

organs(45).  The continuous Ca2+-mediated regulation of actomyosin contractility, as well 

as cytoskeletal dynamics is required for each step of metastasis.  Therefore, as a regulator 

of actomyosin contractility, cell motility and proliferation, TRPM7 was suggested to be a 

potential target for the pharmacological treatment of cancers. 

Earlier studies in human gastric cancer cells showed that blockade of TRPM7 

channels or knockdown of TRPM7 expression by siRNA inhibited cancer cell growth and 

induced apoptosis, implying the potential function of TRPM7 in the growth and 

proliferation of cancer cells.  In breast cancer cells, previous studies have shown that 

calcium is involved in the control of proliferation and apoptosis.  It has been reported that 

there is a clinically relevant link between TRPM7 levels and metastatic disease in breast 

cancer patients (44).  The TRPM7 channel was overexpressed in grade III breast cancer 
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samples and associated with tumor size.  In earlier work, Middelbeek et al. showed that 

knocking down TRPM7 expression by siRNA transfection in invasive human breast cancer 

cells impaired their ability to migrate in vitro and their metastatic potential in a mouse 

xenograft model of human breast cancer (44).  Moreover, a recent study from Guilbert et al. 

suggested that TRPM7 is involved in estrogen receptor-negative metastatic breast cancer 

cells migration through its kinase domain by showing that overexpression of the kinase 

domain-truncated TRPM7 decreased the number of adherent cells and strongly inhibited 

cell migration while the overexpression of the WT TRPM7 significantly increase it (43).  

Taken together, these findings suggest that TRPM7 is a key player in modulating 

adhesion and migration of MDA-MB-231 cells and suggest that TRPM7 could be a 

potential therapeutic target for limiting the metastatic potential of cancer cells.  However, 

molecular mechanisms underlying the contribution of TRPM7 to cancer cell proliferation 

and migration is still not fully elucidated.  In addition, the lack of cell-permeable 

pharmacological inhibitors of the TRPM7 kinase domain represents a barrier to fully 

understand the kinase domain’s function.   

In this study, we discovered small molecule inhibitors that target TRPM7 kinase 

activity by screening a compound collection from NCI and characterized their mechanism 

of inhibition.  The compounds inhibited the association between TRPM7 and myosin in 

HEK293 cells.  Furthermore, some compounds were shown to significantly suppress 

MDA-MB-231 breast cancer cell migration.  Our results support a previous study 

suggesting that TRPM7 plays a role in breast cancer cell migration through its kinase 
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domain.  These small molecule compounds represent the first group of inhibitors to target 

the kinase activity of TRPM7, resulting in the inhibition of breast cancer cell migration.  

 

3.3 MATERIALS AND METHODS 

Biochemical Screening of NCI natural products set and challenge set  

Four 96-well plates were provided by NCI and used for the kinase screening.  

Phosphorylation of 10 µM of TRPM7 peptide substrate (acetyl-RKKYRIVWKSIFRRFL-

amide) were tested using 25 nM of fully phosphorylated TRPM7 in kinase assay buffer (25 

mM HEPES (pH 7.6), 10 mM MgCl2, 50 mM KCl, 2 mM DTT, 0.1 mM EDTA, 0.1 mM 

EGTA, 0.03 % Brij-35, 5-10% DMSO and 10 μg/ml BSA) in the presence of 10 µM of 

each compound.  Each reaction mixture was incubated in a volume of 90 µL per well in 

96-well plate at room temperature for 30 minutes.  The reactions were initiated by the 

addition of 10 µL [γ-32P] ATP, adjusting the ATP concentration to 200 μM (100-1000 

c.p.m. pmol-1).  The reaction was incubated at room temperature for 10 minutes and then 

quenched by transferring 80 μL of reaction mixture to each well of a P81 96-well filter 

plate (Unifilter, Whatman) containing 200 μL of 0.1 M phosphoric acid solution.  The P81 

filter plate was washed 7-8 times with 200-300 mL of 0.1 M phosphoric acid solution and 

one time with pure acetone, followed by the addition of 20 mL of scintillation cocktail.  A 

MicroBeta TriLux liquid scintillation counter (PerkinElmer) was used for screening. 
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In Vitro Kinase Inhibition Assay  

Kinase inhibition assays were conducted at 30 °C in assay buffer (25 mM HEPES 

buffer-pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2 mM DTT and 10 μg mL-1 

BSA), containing 300 μM [γ-32P] ATP (100-1000 c.p.m. pmol-1), 11 mM MgCl2 and 

different concentrations of each compound in a final total volume of 70 µL, containing 5-

10 % DMSO and 0.03% Brij-35 surfactant.   

For TRPM7 assays, 25 nM of fully phosphorylated TRPM7 were assayed with 10 

µM of TRPM7 peptide substrate (acetyl-RKKYRIVWKSIFRRFL-amide).  For eEF2K, 2 

nM eEF2K were assayed with 50 µM eEF2K peptide substrate (acetyl-

RKKYKFNEDTERRRFL-amide) (142).  Activity was assessed at different compound 

concentrations by the measurement of initial rates, where the total product formation 

represented less than 10% of the initial substrate concentrations.  Every reaction was 

initiated by the addition of ATP.  At set time points (0.5, 1, 1.5, 2, 4 min), 10 μl aliquots 

were taken from every reaction and spotted onto 2×2 cm2 squares of P81 cellulose paper; 

the papers were washed 3 times for 15 minutes each in 50 mM phosphoric acid (H3PO4), 

followed by a pure acetone wash, then dried.  The amount of labeled protein was 

determined by counting the associated c.p.m. on a Packard 1500 scintillation counter at a 

sigma value of 2. 

Cell culture  

HEK293T cells were maintained in DMEM (Invitrogen) supplemented with 2 mM 

L-glutamine (Invitrogen), 10% (v/v) FBS-US grade (Invitrogen), 100 g mL-1 streptomycin 

(Sigma) and 100 U mL-1 penicillin (Sigma).  Cells were cultured at 37 °C in a humidified 
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5% CO2 incubator.  For myosin co-immunoprecipitation experiments, cells were seeded in 

a 12-well plate at 400,000 cells per well and the pCMV6-Entry vector containing DNA 

encoding for full length TRPM7 (Myc-DDK-tagged)-Human transient receptor potential 

cation channel, subfamily M, member 7 (Origene) was transfected into HEK293T cells by 

lipofectamine 2000 (Invitrogen, California, USA) according to the manufacturer’s 

protocol.  After 48 hours of transfection, cells were incubated with different concentrations 

of the compounds for additional 16 hours in serum free media except the compound 5 

which was incubated for 3 hours and finally, cells were treated with bradykinin (10-50 nM) 

for 30 minutes in full media.  For cell migration experiment, MDA-MB-231 cells were 

maintained in RPMI media (Cellgro, Mediatech) with 5% (v/v) FBS (Gemini Bio-

Products) 100 U mL-1 penicillin (Sigma), and 100 g mL-1 streptomycin (Sigma).  Cells 

were pre-incubated with 10 µM of each tested compound for overnight, prior to the 

migration assays.  The compounds were maintained in the culture media for the duration 

of the experiment.   

 

Data Analysis  

Steady-state kinetic experiments - Reactions were carried out as mentioned in the 

kinase activity assay except in the kinetic mechanism study, where we varied 

concentrations of substrate (ATP) and compound 2.  Initial rates were determined by linear 

least squares fitting to plots of product against time.  Reciprocal plots of 1/v against 1/s 

were checked for linearity, before the data were fitted to equation 3.1 using a non-linear 

least squares approach, assuming equal variance for velocities, using the program 
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Kaleidagraph 3.5 (Synergy software).  Values for kinetic constants were then obtained 

using the program Sigma plot by fitting the kinetic data to the relevant over-all equation.  

Data conforming to linear competitive inhibition were fitted to equation 3.2; data 

conforming to hyperbolic mixed inhibition were fitted to equation 3.3.  Dose-response 

curves for data conforming to inhibition were fitted to equation 3.4. 
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Immunoprecipitation Experiments 

After washing the cells with PBS (Invitrogen), the lysates were prepared in lysis 

buffer containing 50 mM Tris pH 7.5, 300 mM NaCl, 0.5 mM NaCl, 0.5 mM DTT, 1.5 

mM MgCl2, 0.2 mM EDTA, 1% Triton X-100 supplemented with protease and 

phosphatase inhibitors and then cleared by centrifugation.  The protein concentration was 

measured by Bradford analysis (Bio-Rad).  For immunoprecipitation of exogenously 

expressed TRPM7, Myc-Tag (9B11) Mouse mAb (Sepharose Bead Conjugate) (Cell 

Signaling Technology) were added to the lysate, the samples were incubated at 4 °C 

overnight.  Subsequently, the beads were washed three times with lysis buffer, protein 

complexes were solubilized in Laemmli sample buffer and separated by SDS-PAGE.  

Proteins were fractionated on a 10% SDS polyacrylamide gel (Bio-Rad) and transferred to 

Hybond-P PVDF Membrane (GE Healthcare).  Primary antibodies were incubated 

overnight at 4 ºC using 1:1000 anti-myosin IIB rabbit polyclonal antibodies (Cell Signaling 



68 

Technology); anti-rabbit (Bio-Rad) horseradish peroxidase-conjugated secondary 

antibodies and ECL Plus™ Western Blotting Reagents (GE Healthcare) were employed to 

develop the blots. 

 

Cell migration  

A modified Boyden chamber (Millipore) was used to measure cell migration.  

About 50,000 cells, rinsed and resuspended in serum free RMPI, were added into the upper 

chamber of trans-well separated by inserts with 8 μm pores.  A chemotactic gradient was 

created by adding HBSS (Hank's Buffered Salt Solution) medium containing 1% (v/v) FBS 

to the lower chamber.  Cells were allowed to migrate for 6 hours.  After fixing the migrated 

cells with 4% paraformaldehyde, they were stained with 0.5% (w/v) crystal violet, and 

quantified by counting four randomly chosen fields (at an objective of 10 ×).  

 

3.4 RESULTS AND DISCUSSION 

Our biochemical screening identified five compounds (Table 3.1) exhibiting 

considerable inhibition of TRPM7 kinase activity when assayed at a concentration of 10 

µM.   

 

Prioritizing hits and potential mechanisms of inhibition by the identified inhibitors  

To prioritize the 5 hits identified in the biochemical screening we performed dose-

response curves, examining the ability of the compounds to inhibit the phosphorylation of 

a peptide substrate by the TRPM7 kinase domain in an in vitro kinase assay (table 3.1 and 
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figure 3.1).  To further understand the mechanism of TRPM7 kinase domain inhibition by 

these compounds we tested the ability of these compounds to suppress TRPM7 

autophosphorylation.  Three compounds (1-3) were able to inhibit TRPM7 kinase domain 

autophosphorylation, while the other two compounds did not affect autophosphorylation 

(table 3.1).   

We determined kobs over a range of Mg-ATP concentrations at different fixed 

concentrations of compound 1, in the presence of a saturating concentration of peptide-

substrate.  The double reciprocal plot derived from this study (figure 3.2) is consistent with 

a mechanism of competitive inhibition (figure 3.2, where Ki ~ 0.7±0.04 µM).  According 

to this model, compound 1 binds TRPM7 and alters its affinity for ATP without affecting 

kcat.   

 

Selectivity of the compounds  

To profile the selectivity of the five compounds towards the TRPM7 kinase domain, 

the IC50 of each compound was determined against another atypical alpha kinase eEF2K 

that has been reported to be structurally similar to the TRPM7 kinase domain(143).  Dose 

response inhibition assays against eEF-2K were performed using 2 nM eEF-2K, 50 μM [γ-

32P] ATP, 30 μM Pep-S (acetyl-RKKYKFNEDTERRRFL-amide), and various 

concentrations of each compound.  Most notably, compound 1 exhibits a 700-fold 

selectivity for TRPM7 over eEF2K.  The selectivity profile of these compounds strongly 

demonstrates the ability of the screening protocol to identify molecules that target TRPM7 

kinase domain with selectivity. 
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Cellular Activity  

It has been reported that myosin binding to TRPM7 is triggered by kinase domain 

autophosphorylation.  Unlike TRPM7–WT, TRPM7-D1775A (Kinase dead TRPM7) does 

not interact with myosin IIA heavy chain (36).  The ability of the five compounds to inhibit 

the TRPM7 interaction with myosin IIB were examined in HEK293 cells following 

stimulation by bradykinin (36) and visualized through western blot analysis (figure 3.3).  

Compounds 1, 2 and 5 showed inhibition of the TRPM7-myosin interaction in HEK293 

cells, with compound 1 exhibiting ~75% inhibition at a concentration of 50 µM.  It should 

be noted that the protein substrates concentration in the cell is significantly lower than 

MgATP.  Thus, a non-ATP competitive inhibitor does not have to be as potent as an-ATP 

competitive inhibitor to achieve an acceptable effective dose-50 (ED50) in cells.  For 

example, in figure 3.3, compare the degree of inhibition of 50 µM of compound 1 (an ATP-

competitive inhibitor of TRPM7 kinase domain whose IC50 is 0.5 µM) with that of 

compound 5 (a non ATP-competitive inhibitor whose IC50 is 3.5 µM).   

 

TRPM7 kinase domain inhibitors impedes migration of breast cancer cells  

The invasion-metastatic cascade involves a series of events whereby tumor cells 

leave the primary tumor, intravasate into the circulation, extravasate at distant tissues, and 

establish micrometastases that may grow into macroscopic secondary tumors (144).  Cell 

migration is an early requirement for tumor metastasis, so inhibition of cell migration 

provides a potential strategy to inhibit metastasis (145).  A recent study has reported the 

importance of TRPM7 for breast tumor cell metastasis as TRPM7 knockdown inhibits the 
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migration of invasive human triple negative breast cancer cells (MDA-MB-231)(44), 

although the effect was significant but the absence of inhibitors that specifically inhibit 

TRPM7 kinase domain acted as a barrier to determine if this effect on metastasis returns to 

the channel or the kinase domain.  Interestingly, Guilbert et al. has finally reported that 

TRPM7 is involved in oestrogen receptor-negative metastatic breast cancer cells migration 

through its kinase domain (43).  We examined whether any of the identified compounds 

inhibited chemotactic cell migration of a highly metastatic human breast cancer cell line 

namely MDA-MB-231 in a trans-well assay.  MDA-MB-231 cells were treated with 

DMSO, or compounds 1-5 (10 µM) (figure 3.4) overnight.  Cell viability was monitored 

during the migration assay and found to be unaffected by the addition of the compounds.  

Untreated MDA-MB-231 cells showed robust migration in response to serum, while cells 

treated with 10 µM of compounds 1 and 5 exhibited approximately 80% inhibition of 

migration (figure 3.4).   

 

3.5 CONCLUSION  

The NCI natural products and challenge sets were screened against the kinase 

activity of the TRPM7 kinase domain.  A total of 5 small molecules were identified as 

inhibitors of the TRPM7 kinase domain.  Compound 1 showed marked selectivity for 

TRPM7 over eEF2K and showed 80% inhibition of MDA-MB-231 breast cancer cell 

migration at a 10 µM concentration.  The inhibitors described here represent a starting 

point for the development of selective small molecules capable of compromising the kinase 

activity of TRPM7. 
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Identified inhibitors 

Kinase Assay 

TRPM7 
IC50 (µM) 

Inhibits 

TRPM7 
Auto- 

Phosphorylation?  

Kinase Assay 

eEF2K 
IC50 (µM) 

1 

Hematoporphyrin HCl 

 

0.52 Yes 378 

2 

Iso-hematoporphyrin 

 

2.3 Yes 58 

3 

 

Stictic Acid 

 

Table 3.1 continued, next page. 

4.5 Yes 27 
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Table 3.1. The in vitro kinase assay results of the identified compounds. 

 

  

 

4 

Suramin Sodium 

 

 

2.5 No 27 

5 

Tetrocarcin A 

 

 

                                                                                                                                        

 

3.5 No 41.6 
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Figure 3.1. The effect of compounds 1-5 on the ability of TRPM7 kinase domain to 

phosphorylate its peptide substrate.  
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Figure 3.2. Mechanism of TRPM7 inhibition by compound 1   

Double reciprocal plot of 01 V  vs 1/[ATP] at varied fixed concentrations of compound 1 

(0-11.25 µM) and 10 µM peptide substrate.  Initial velocities were measured using various 

(50–800 µM) concentrations of ATP.  The data were fitted to a model of linear competitive 

inhibition according to equation 3.2, where app

catk  = 0.4 ± 0.02 s-1, app

mK  = 253 ± 24 µM, 

app

iK  = 0.7 ± 0.04 µM.   
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Figure 3.3. Examining the ability of the tested compounds to modulate TRPM7-

myosin interactions in HEK293 cells.   

The effect of compounds 1, 2 and 5 on TRPM7 interaction with myosin IIB was 

investigated by TRPM7 immunoprecipitation using anti-Myc beads and associating 

myosin IIB was detected by western blotting. 
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Figure 3.4. TRPM7 kinase domain inhibitors inhibit MDA-MB-231 breast cancer cell 

migration. 

Representative images of migrated cells on the underside of a trans-well membrane stained 

with crystal violet dye.  10 µM of compounds 1 and 5 significantly reduces the number of 

cells that travel through the trans-well pores to successfully reach the underside of the 

trans-well membrane (migrated cells) in comparison to the untreated cells.  This 

experiment has been independently repeated three times, each one as a triplicate. 
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Chapter 4: Identification of Small Molecule Inhibitors for PERK 

through Luminescence High Throughput Screening and 

Characterization of Novel PERK Inhibitors in Pancreatic Cancer 

Cells†† 

 

4.1 ABSTRACT 

An adaptive stress response mechanism, termed the unfolded protein response 

(UPR), is activated in a variety of tumor types to cope with ER stress and maintain protein 

homeostasis.  PERK (PKR-like endoplasmic reticulum kinase) is a key components of the 

UPR.  PERK is a Ser/Thr protein kinase whose active homodimer phosphorylates 

eukaryotic initiation factor 2α (eIF2α), thereby inhibiting protein translation globally and 

reducing the load of newly synthesized proteins entering the ER.   Many studies reported 

that the UPR is activated in a variety of tumor types.  Previous studies demonstrated that 

cells with a compromised PERK signaling pathway are sensitive to hypoxic stress in vitro 

and form tumors that grow more slowly in vivo.  Together, these data suggest a substantial 

role for PERK and the UPR in tumor cell survival and adaptation to stress.  Thus, selective 

inhibitors of PERK activity may be useful therapeutic candidates for the treatment of 

cancer.  In this study, we discovered potent inhibitors of PERK by high throughput 

screening of small molecule libraries.  Using an HTS approach a number of lead 

                                                 
†† Contributions to the work described in this chapter: Dr. Eun Jeong Cho and Dr. Ashwini K. Devkota 

(Helped high throughput screening at TI3D); Dr. Ramakrishna Edupuganti (Synthesized PERK specific 

inhibitor, GSK2606414); Dr. Tamer S. Kaoud, Dr. Clint D.J. Tavares, and Dr. Qiantao Wang (Helped design 

experiments, and contributed reagents, materials and analysis tool).  
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compounds were identified with demonstrated ability to inhibit PERK kinase activity in 

vitro.  Several potent PERK inhibitors were further tested in a cell-based assay to evaluate 

modulation of the PERK signaling pathway. 

 

4.2 INTRODUCTION 

Protein folding is necessary for newly synthesized proteins to attain a correct 

conformation before exiting from the ER.  Accumulation of unfolded or misfolded proteins 

in the ER occurs when the cell is subject to stress caused by various pathological 

disturbances.  Under such stress the cell will initiate a protective mechanism named the 

unfolded protein response (UPR) that is specifically designed to restore homeostasis and 

normal ER function (56, 57).  This stress survival mechanism attenuates overall protein 

translation; however, it enhances the translation of a small number of stress survival 

proteins such as HIF-1α, c-Myc and VEGF (77-80).  During tumorgenesis, cancer cells need 

to tolerate cellular stresses such as oxidative stress, nutrient deprivation or disruption of 

ER redox status.  In order to adapt to and overcome the stress, tumor cells remodel 

transcriptional and translational programs by activating pro-survival signaling pathways.  

The unfolded stress response (UPR) is responsible for detecting ER stress and reacting to 

increased levels of unfolded or misfolded proteins in the ER.  Tumor cells, which are 

frequently subjected to increased levels of unfolded proteins, hypoxia and glucose 

deprivation may be dependent on the UPR for survival (81).  

The UPR is initiated by several proteins such as IRE1, ATF6 and PERK.  It has 

long been recognized that the majority of solid tumors contain areas of hypoxia because of 
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an abnormal tumor vasculature (115).  To overcome the effects of hypoxia, tumors take 

advantage of the UPR by phosphorylating eIF2α through activation of PERK as an adaptive 

mechanism.  PERK is a serine/threonine kinase that is activated by a cell’s UPR, which 

detects the presence of unfolded proteins in the ER.  PERK has been shown to be critical 

to tumor cell adaptation and angiogenesis in response to hypoxic stress (80, 118).  Using 

PERK-/-MEFs, it was observed that failure of tumor cells to activate the UPR results in 

increased apoptosis, reduced cell survival and inhibition of tumor growth (80, 118).  

Therefore, PERK is a potential candidate protein for targeting tumor stress.  

Accordingly, PERK became an active target for drug design in academia and the 

pharmaceutical industry.  The goal of this study was to identify inhibitors using high 

throughput screening that exhibit selective PERK inhibition.  Despite PERK being 

identified as a therapeutic target, no specific small molecule inhibitor that targeted PERK 

had been reported when we initiated our research.  In a recent study, Axten et al. reported 

a selective ‘first in class’ inhibitor of PERK (GSK2606414) through screening and lead 

optimization using the human PERK crystal structure (scheme 4.1) (124).  The compound 

GSK2606414 has an IC50 of 0.4 nM in vitro which was measured using the GST–PERK 

kinase domain and His-tagged full-length recombinant human eIF2α substrate.  In addition, 

Axten et al. demonstrated that this compound inhibits PERK activation in a cellular assay 

(IC50=30 nM) and inhibits the growth of a human tumor xenograft in mice.   

Small molecule inhibitors are generally discovered in a high throughput assay 

system where a large number of compounds are screened against a target enzyme in an 

automated fashion using a suitable assay.  High throughput Screening (HTS) is an approach 



81 

in drug discovery that has gained widespread popularity.  A radiation-based 32P assay is a 

common protein kinase assay format.  However, radiation-based screening produces 

numerous challenges for HTS, such as radioactive contamination of the work environment 

and safety issues, so it is not suitable for HTS.  In this study, we optimized a nonradioactive 

screening method based on luminescence generated by firefly luciferase.  The kinase-Glo 

TM luminescent kinase assay (Promega, Madison, WI) determines relative ATP levels 

remaining in solution following a kinase reaction by luciferase-mediated luminescence.  

The intensity of the luminescence signal is inversely correlated to kinase activity.  Herein 

we report utilizing a luminescent kinase assay to determine PERK activity in an HTS 

application using a 384 well plate format.  After optimization of enzyme, substrate, and 

ATP concentrations, we screened small molecule libraries and identified several lead hits.  

The lead compounds were demonstrated to weakly inhibit PERK autophosphorylation and 

potently inhibit its activity against eIF2α in vitro and in cellular assay.   

 

 

 

 

 

 

 

Scheme 4.1. The first-in-class inhibitor of PERK (GSK2606414). 

 

GSK 2606414 
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4.3 MATERIALS AND METHODS 

Reagents and equipment 

Competent cells used for amplification and expression were provided by Novagen 

(Gibbstown, NJ).  Yeast extract and tryptone were purchased from US biological 

(Swampscott, MA).  IPTG and DTT were obtained from USB (Cleveland, OH).  Most of 

the buffer components including HEPES, Trizma base (Tris), sodium chloride, potassium 

chloride, EDTA, EGTA, calcium chloride, magnesium chloride, Brij-35, Triton X-100, β-

mercaptoethanol, benzamidine hydrochloride, TPCK and PMSF were purchased from 

Sigma (St. Louis, MO).  Ni-NTA agarose was supplied by Qiagen (Santa Clarita, CA) 

while all other components used in the protein expression and purification was obtained 

from Fisher Scientific (Pittsburgh, PA).  Amersham Biosciences (Pittsburgh, PA) provided 

the FPLC system and the columns for purification.  P81 cellulose papers were obtained 

from Whatman (Piscataway, NJ).  ATP was purchased from Roche (Indianapolis, IN).  

Radiolabelled [-32P] ATP was obtained from Perkin Elmer (Waltham, MA).  ADP was 

from MP Biomedicals (Solon, OH). 

 

PERK Cloning 

The original expression empty vector (GVL2) was kindly provided by Dr. Yan 

Jessie Zhang (Department of Chemistry and Biochemistry, University of Texas at Austin).  

This expression vector was derived from pET28a vector (Novagen) containing N-terminal 

hexahistidine tag and GST tag followed by multiple cloning sites (MCS).  Ligation 

independent cloning (LIC) site was introduced into the MCS by one step PCR reaction 
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using pfuUltra polymerase (Stratagene).  The PCR was performed using the following 

primers:  a forward primer, 5'- GGT GGC TCT GGG TCA AGT AAA GGT GGA TAC 

GGA TCC-3'  and a reverse primer, 5'- GCC GGG TCC CTG AAA GAG GAC TTC AAG 

TGA GCT CGA TTT TGG AGG-3'. The linearized GVL2-3C/LIC vector was then treated 

for 1 hour at room temperature with T4 DNA polymerase (NEB) in NEB buffer 2 

containing 2.5mM dTTP and the reaction was stopped by heat inactivation at 75°C for 20 

minutes.  The human PERK truncated kinase domain (550-1116 a.a) (GenBank accession 

number: NM_004836.5) was amplified by PCR reaction using the forward primer (5’-CAG 

GGA CCC GGC TCA GGA ATG AGG CAA AGG AAG GAG TCT GAA-3’) and the 

reverse primer (5’-GAC CCA GAG CCA CC TTA TTT-3’).  The PCR amplification 

reaction mixture (50 l) contained 1X PfuUltra™ HF reaction buffer (Tris (pH 8.0) and 2 

mM Mg2+), 200 M of each dNTP, 0.2 M each of the forward and reverse primer, 10 ng 

of DNA template and 1U of PfuUltra™ HF polymerase.  The PCR cycle conditions 

included initial denaturation at 95 ˚C for 3 minutes, followed by 35 cycles of denaturation 

at 94 ˚C for 30 seconds, primer annealing at 57 ˚C for 1 minute and extension at 72 °C for 

5 minutes, with a final elongation step of 72 °C for 10 minutes.  The PCR product was gel 

purified and ligated into previously prepared linearized GVL2-3C/LIC vector.  The ligated 

product was transformed into the E. coli DH5 cells.  A single colony was isolated and 

amplified and the extracted plasmid DNA was verified for sequencing at the ICMB core 

facilities, UT-Austin, using an applied Biosystems automated DNA sequencer. 
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PERK Expression (550-1116) 

Recombinant human PERK was expressed in E. coli strain Rosetta-gamiTM 2 (DE3) 

(Novagen).  The strain was chosen to facilitate the expression of human PERK since it 

contains many rare codons (almost 9% of the total codons).  Rosetta-gamiTM 2 (DE3) 

carries the pRARE2 plasmid that provides tRNAs for seven rare codons.  The PERK kinase 

domain expression construct was transformed into Rosetta-gamiTM 2 (DE3) chemical 

competent cells.  A single isolated colony was used to inoculate 100 mL of LB media 

containing 50 µg/mL kanamycin, 34 µg/mL chloramphenicol and 10 µg/mL tetracycline 

and the culture was grown overnight at 37 °C with shaking at 250 rpm.  Next day the 

overnight culture was diluted 100 fold into 1000 mL 2xYT media containing same 

concentrations of antibiotics and were grown at 37 °C for 5-6 hours for OD600 to reach 0.6.  

Cultures were induced with 0.1 mM IPTG for 16 hours at 25 °C.  Then the cells were 

harvested by centrifugation (5000 rpm for 20 minutes at 4 ºC), flash frozen in liquid 

nitrogen and stored at -80 °C until lysis.    

 

PERK Purification (550-1116) 

Ni-NTA affinity chromatography 

 Aliquot of the frozen cell pellet from each liter of culture was resuspended in 50 

mL lysis buffer (50 mM Tris pH 8.0, 250 mM NaCl, 10 mM Imidazole, 0.1% β-

mercaptoethanol, 1 % triton X-100 (v/v), 1 mM benzamidine, 0.1 mM PMSF, 0.1 mM 

TPCK and 0.1 mg/mL lysozyme).  The suspension was sonicated for a total of 20 minutes 

at 5 second pulse with 5 second intervals in ice at 4 °C.  The lysate was centrifuged for 30 
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minutes at 16,000 rpm at 4 ºC.  The supernatant containing the protein fractions were 

incubated with Ni-NTA beads (Qiagen) for 1 hour at 4 ºC.  The beads were washed with 

100 mL wash buffer (50 mM Tris pH 8.0, 500 mM NaCl, 40 mM Imidazole, 0.1% β-

mercaptoethanol, 1 mM benzamidine, 0.1 mM PMSF and 0.1 mM TPCK).  The His6-GST-

3C-PERK protein was eluted with 20 mLs of elution buffer (50 mM Tris pH 8.0, 500 mM 

NaCl, 500 mM Imidazole, 0.1% β-mercaptoethanol, 1 mM benzamidine, 0.1 mM PMSF 

and 0.1 mM TPCK).  The concentration was estimated based on the absorbance at 280 nm 

(A280) in spectrophotometer using the extinction coefficient of 112370 cm-1M-1 and path 

length of 1 cm. 

3C Protease cleavage 

 The His6-GST-3C-PERK protein eluted from Ni-NTA affinity chromatography 

was dialyzed in 4 L of 3C Cleavage buffer (25 mM HEPES, 200 mM NaCl, 2 mM DTT, 

10% Glycerol at pH 7.5).  The cleavage was performed by incubating protein in the 

presence of 1.5 % PreScission protease (kindly provided by Dr. Yan Jessie Zhang, 

Department of Chemistry and Biochemistry, University of Texas at Austin) at 4 ºC 

overnight with gentle shaking.  The cleavage was confirmed by running the protein in 10% 

SDS-PAGE.   

Activation of PERK 

 After overnight protease cleavage, the total protein was collected and further 

incubated with 4 mM ATP and 10 mM MgCl2 for additional 3 hours on the ice for 

activation.  The activated PERK was then applied to HiPrep 26/10 Desalting column (GE 

Healthcare) pre-equilibrated with anion exchange buffer (50 mM Tris pH 8.0, 10 mM 
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NaCl, 0.1 mM EDTA, and 0.1 mM EGTA, 0.1% β-mercaptoethanol).  The excess ATP 

was removed and the eluted protein fractions from HiPrep 26/10 Desalting column were 

followed by Mono-Q HR 10/10 anion exchange chromatography. 

MonoQ 10/10 anion exchange chromatography 

 The cleaved and activated protein was applied to Mono-Q HR 10/10 anion 

exchange column pre-equilibrated with anion exchange buffer (50 mM Tris pH 8.0, 10 mM 

NaCl, 0.1 mM EDTA, 0.1 mM EGTA, 0.1% β-mercaptoethanol).  The column was 

developed with a gradient of 0.15-1 M NaCl over 17 column volumes at a flow rate of 2 

mL/min.  The collected peak fractions were analyzed by SDS-PAGE and the fractions 

containing cleaved PERK were collected and dialyzed against storage buffer (25 mM 

HEPES, 50 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2 mM DTT, 10% Glycerol at pH 

7.5).  The dialyzed protein were concentrated using Amicon Ultra-15 centrifugal filter unit 

(10,000 NMWL) (Millipore), flash frozen in small aliquots in liquid nitrogen and were 

stored at -80 ºC.  The concentration of the protein was established based on the absorbance 

at 280 nm (A280) in spectrophotometer using the extinction coefficient of 97,150 cm-1M-1 

and path length of 1 cm. 

 

Expression and purification of eIF2α 

 The codon-optimized human eIF2α (4-314) in pET30a vector (pET30a-heIF2aopt) 

was generously provided by Dr. Gerhard Wagner (Department of Biological Chemistry 

and Molecular Pharmacology, Harvard Medical School, Boston, MA).  The BL21 (DE3) 

E. coli strain (Invitrogen) was used for protein expression.  Cells were co-transformed with 
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the expression plasmid for the human eIF2α and the plasmid pG-Tf2 (a kind gift from Dr. 

Gerhard Wagner) which carries the expression system for GroEL, GroES, and TF.  A single 

isolated colony was used to inoculate 100 mL of LB media containing 50 µg/mL 

kanamycin and 17 µg/mL chloramphenicol and the culture was grown overnight at 37 °C 

with shaking at 250 rpm.  Next day the overnight culture was diluted 100 fold into 1000 

mL 2xYT media containing same concentrations of antibiotics and were grown at 37 °C 

for 3-5 hours for OD600 to reach 0.6-1.0.  Cultures were induced with 0.1 mM IPTG for 16 

hours at 20 °C.  Then the cells were harvested by centrifugation (5000 rpm for 20 minutes 

at 4 ºC), flash frozen in liquid nitrogen and stored at -80 °C until lysis.  Aliquot of the 

frozen cell pellet from each liter of culture was resuspended in 50 mL lysis buffer (50 mM 

Tris pH 8.0, 250 mM NaCl, 10 mM Imidazole, 0.1% β-mercaptoethanol, 1 % triton X-100 

(v/v), 1 mM benzamidine, 0.1 mM PMSF, 0.1 mM TPCK and 0.1 mg/mL lysozyme) and 

sonicated for a total of 20 minutes at 5 second pulse with 5 second intervals in ice at 4 °C.  

The lysate was centrifuged for 30 minutes at 16,000 rpm at 4 ºC.  The supernatant 

containing the protein fractions were incubated with Ni-NTA beads (Qiagen) for 1 hour at 

4 ºC.  The beads were washed with 100 mL wash buffer (50 mM Tris pH 8.0, 500 mM 

NaCl, 40 mM Imidazole, 0.1% β-mercaptoethanol, 1 mM benzamidine, 0.1 mM PMSF and 

0.1 mM TPCK).  The His6 tagged protein was eluted with 20 mL of elution buffer (50 mM 

Tris pH 8.0, 500 mM NaCl, 500 mM Imidazole, 0.1% β-mercaptoethanol, 1 mM 

benzamidine, 0.1 mM PMSF and 0.1 mM TPCK).  The eluted protein was then loaded into 

HiLoad 16/60 Superdex-75 (GE Healthcare) gel filtration chromatography that was pre-

equilibrated with gel filtration buffer (20 mM HEPES, 200mM NaCl, 2mM DTT, 10% 
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Glycerol at pH 7.5).  The protein was run over 1.2 column volume at a flow rate of 1 

mL/min.  The collected peak fractions were analyzed by SDS-PAGE and the fractions 

containing human eIF2α were collected and dialyzed against storage buffer.  The dialyzed 

protein were concentrated using Amicon Ultra-15 centrifugal filter unit (10,000 NMWL) 

(Millipore), flash frozen in small aliquots in liquid nitrogen and were stored at -80 ºC.  

 

Peptide Synthesis 

 Peptide substrate for PERK (5-FAM-Arg-Ser-Arg-Arg-Gly-Ser-Leu-Asn-Lys-Ser-

Arg-OH) was identified by peptide microarray analysis at Pfizer (Oncology PGRD, La 

Jolla, CA).  This peptide was synthesized, purified by HPLC and purchased from AnaSpec 

(San Jose, CA).  

 

Substrate dependence assays 

eIF2α dependence assays were performed using 20 nM PERK and several 

concentrations of eIF2α (0-50 μM) in assay buffer containing 25 mM HEPES pH 7.5, 50 

mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2 mM DTT, 10 mM MgCl2, 40 µg/ml BSA and 

0-1000 µM [-32P] ATP (specific activity = 1000 cpm/pmol) in a final reaction volume of 

100 µL.  The reaction mixture was incubated at 30 ˚C for 10 minutes before the reaction 

was initiated by addition of [-32P] ATP.  10 µl aliquots were taken and spotted into P81 

phosphocellulose papers at fixed time point intervals.  The papers were washed with 50 

mM phosphoric acid (3 times for 20 minutes each) and then dried following acetone wash.  

The amounts of radiolabelled phospho- eIF2α were determined by counting the associated 
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counts/min on a synctillation counter (Packard 1500) at an σ value of 2. Kinase activity 

was determined by calculating the rate of phosphorylation of eIF2α (μM.s-1), and the data 

were fitted to equation 4.1.   

 

 SK
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


app

M

app

max
 Equation 4.1 

The parameters are defined as follows: v, initial velocity; app

maxV , apparent maximum 

velocity; [S], concentration of varied substrate; 
app

MK , apparent substrate concentration 

required to achieve half maximal activity. 

 

Compound libraries and Screening Facilities   

 Compound libraries and automation facilities for high throughput screening (HTS) 

were provided by Texas Institute for Drug and Diagnostic Development (TI3D) facility at 

the University of Texas at Austin.  TI-3D has several compound libraries for high 

throughput screening.  These include: Chembridge Kinase set of 11,250 compounds, 

Chembridge fragment set of 4,000 compounds, NCC clinical collection of 446 compounds, 

Maybridge HitFinder V.9 of 14,400 compounds MicroSource Spectrum of 2,000 

compounds, Target focused kinase set of 600 compounds.  All compounds were stored at 

-80 °C as 10 mM stock in 100% DMSO.   

 

Luminescence assay optimization 

Initially, assays were performed manually in white 96-well plates by varying 

reagent (enzyme, ATP, or peptide) concentrations or reaction time to determine the 
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optimum condition.  In detail, 60 µL of the assay mixture (enzyme and peptide diluted in 

assay buffer) was pipetted into a plate, followed by the addition of 40 µL ATP to initiate 

the enzymatic reaction.  After incubating at room temperature for various times, 100 µL of 

the Kinase-Glo Luminescent Kinase assay kit prepared according to the manufacturer’s 

protocol (Promega) was added and the luminescence was measured 10 minutes later. 

Finally, the Kinase-Glo Luminescent Kinase Assay (Promega) has been optimized to be 

done in a 10 µl volume in 384 well plate at room temperature in assay buffer (25 mM 

HEPES pH7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2 mM DTT, 10 mM MgCl2, 

20 µg/ml BSA) containing 20 nM PERK, 200 µM peptide substrate (5-FAM-

RSRRGSLNKSR) and each tested compound in 0.25% DMSO and 0.01% Triton.  The 

reaction mixtures were incubated at room temperature for 30 minutes before initiation with 

1 µM ATP.  As controls, either all components except PERK or ATP alone were used.  

Luminescent kinase assay measures kinase activity by quantitating the amount of ATP 

remaining in solution following a kinase reaction.  After 2 hours, 10 µl of Kinase-Glo assay 

mix was added.  The kinase reaction was quenched and luminescence was measured on an 

Envision plate reader.   

 

High Throughput Screen (HTS) 

A high throughput screening facility was provided by TI-3D (Texas institutes for 

drug and diagnostic development) at University of Texas-Austin. TI-3D has an automated 

liquid handling system (Perkin Elmer) which can perform assays in 384 well plates and 

Envision plate reader (Perkin Elmer) that can read luminescence signal.  All the libraries 
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were screened at 25 µM final concentration except the Chembridge fragment set which 

was screened at 500 µM and Target focused kinase library that was screened at 3 different 

concentrations (1, 5, 25 µM).  Assays were conducted in 10 µl reaction volume at room 

temperature in assay buffer (25 mM HEPES pH7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM 

EGTA, 2 mM DTT, 10 mM MgCl2, 20 µg/ml BSA) containing 20 nM PERK, 200 µM 

peptide substrate and 1 µM ATP in 0.25% DMSO and 0.01% Triton.  Rows 1 and 2 

(positive controls) contained enzyme but no compounds whereas rows 23 and 24 (negative 

controls) contained no enzyme or compounds.  Rows 3 to 22 contained enzyme as well as 

the compounds to be screened.  First, 5 µl of assay reaction (all components except ATP 

and inhibitor) was added to the 384 well plates except for the negative control which 

contain the same assay mix except the enzyme and peptide.  Then 1 µl of the 10X inhibitor 

or DMSO only (controls) was added to the wells.  The enzyme-inhibitor mix was allowed 

to incubate at room temperature for 30 minutes before starting the reaction with 4 µl of 

ATP.  After adding ATP, the mixture was incubated at room temperature for 2 hours.  Then, 

10 µl of Kinase-Glo reagent (Promega) was added to each well, and the luminescence 

signal was read on the Envision plate reader for 10 minutes.  Approximately 104 

compounds showed greater than 30% inhibition. 

 

DMSO tolerance 

 Assays to test DMSO tolerance were performed in assay buffer (25 mM HEPES 

pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2 mM DTT, 10 mM MgCl2 and 40 

µg/mL BSA) containing 20 nM PERK, 1 µM ATP, 200 µM peptide substrate and different 
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concentrations of DMSO (0, 1, 2, 3, 5, 10%) in 100 µl volume at room temperature.  Assays 

were started with the addition of ATP.  

 

Confirmation Screen  

Compounds demonstrating above 30% activity in the rescreen were further 

confirmed by radioactive screen.  Compound final concentrations were 100 µM for 

Fragment library and 1, 5, 25 µM for all other libraries.  Assays were performed at room 

temperature in 100 µl volume in 96 well plate format.  All other assay conditions were 

maintained similar except that the radioactive assays were performed using protein 

substrate at 5 µM.  First, 10 µl of compounds were pipetted into the wells of 96 well plates.  

Then 70 µl of the assay mix (enzyme, peptide, and buffer) were added into each wells.  The 

first row contained enzyme but no inhibitors (positive controls) and the last row contained 

no enzyme or inhibitors (negative control).  The enzyme-inhibitor mix was incubated in a 

volume of 90 µL per well in 96-well plate at room temperature for 30 minutes.  The 

reactions were initiated by the addition of 10 µL [γ-32P] ATP, adjusting the ATP 

concentration to 100 μM (100-1000 c.p.m. pmol-1) for PERK.  The reaction was incubated 

at room temperature for 10 minutes and then quenched by transferring 80 μL of reaction 

mixture to each well of a P81 96-well filter plate (Unifilter, Whatman) containing 200 μL 

of 0.1 M phosphoric acid solution.  The P81 filter plate was washed 7-8 times with 200-

300 mL of 0.1 M phosphoric acid solution to get rid of excess ATP, dried with acetone 

followed by the addition of 20 mL of scintillation cocktail.  The counts in each wells were 

read using MicroBeta®TriLux liquid scintillation counter (Perkin Elmer).  For the 
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compounds that showed greater than 50% activities, dose response assays were performed 

at several concentrations of the compound to determine IC50.  

 

In Vitro Kinase Inhibition Assay  

 Kinase inhibition assays were conducted at 30 °C in assay buffer (25 mM HEPES 

buffer-pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2 mM DTT and 10 μg mL-1 

BSA), containing 300 μM [γ-32P] ATP (100-1000 c.p.m. pmol-1), 11 mM MgCl2 and 

different concentrations of each compound in a final total volume of 70 µL, containing 5-

10 % DMSO and 0.03% Brij-35 surfactant.  Activity was assessed at different compound 

concentrations by the measurement of initial rates, where the total product formation 

represented less than 10% of the initial substrate concentrations.  Every reaction was 

initiated by the addition of ATP.  At set time points (0.5, 1, 1.5, 2, 4 min), 10 μl aliquots 

were taken from every reaction and spotted onto 2×2 cm2 squares of P81 cellulose paper; 

the papers were washed 3 times for 15 minutes each in 50 mM phosphoric acid (H3PO4), 

followed by a pure acetone wash, then dried.  The amount of labeled protein was 

determined by counting the associated c.p.m. on a Packard 1500 scintillation counter at a 

sigma value of 2.  Dose-response curves for data conforming to inhibition were fitted to 

equation 4.2.     

                                                                Equation 4.2 
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Cell culture  

HEK293T cells were maintained in DMEM (Invitrogen) supplemented with 2 mM 

L-glutamine (Invitrogen), 10% (v/v) FBS-US grade (Invitrogen), 100 g mL-1 streptomycin 

(Sigma-Aldrich) and 100 U mL-1 penicillin (Sigma-Aldrich).  Cells were cultured at 37 °C 

in a humidified 5% CO2 incubator.  The pancreatic carcinoma MiaPaCa-2 cell line was 

obtained from American Type Culture Collection (Manassas VA).  MiaPaCa-2 cells were 

grown in DMEM medium adjusted to contain 4 mmol/L L-glutamine, 4.5 g/L glucose, 10% 

(v/v) fetal bovine serum, 100 units/mL penicillin, and 100 μg/mL streptomycin.  Cell line 

was maintained in a humidified incubator containing 5% CO2 at 37 °C.  

 

Cell Proliferation Assay 

 Cell proliferation was assessed using MTS assay (CellTiter 96® AQueous Assay, 

Promega, WI).  Cells were seeded in 96-well plates at a density of 2 X 103 cells per well in 

100 µl medium.  Next day cells were treated with different concentrations of 4 PERK 

inhibitors (compound 1-4) followed by addition of 0.15 µg/mL tunicamycin to induce ER 

stress.  After 72 hours incubation, 20% MTS reagent was added into the culture medium.  

After 2-4 hours further incubation, the change in tetrazolium salts into formazan was 

determined by measuring the absorbance at 490 nm using kinetic microplate reader 

(Molecular Devices Corporation, Sunnyvale, CA). 

 



95 

Colony Formation Assay 

The inhibition of the colony-forming ability of MiaPaCa-2 cells was assayed by 

seeding cells in complete medium into 100-mm tissue culture plates and cells were allowed 

to grow to reach 90% confluence.  Cells were then treated with various concentration of 

compounds in complete medium for 1 hour, followed by addition of 5 µg/mL tunicamycin 

for an additional 6 hours to induce ER-stress.  DMSO was used as a control.  Treated cells 

were harvested using trypsin, counted and a specific number of cells (500 cells) were plated 

in 50 mm petri dishes.  They were cultured at 37 °C with 5% CO2 and saturated humidity 

conditions for 10 days.  After 10 days, the medium was removed and cells were rinsed in 

PBS, and fixed in 3% (v/v) acetic acid, 10% (v/v) methanol for 2 minutes.  Then fixed 

solution was discarded and 0.2% (w/v) crystal violet staining solution was added and 

stained for 30 minutes.  They were washed with water slowly and dried in the air and 

colonies were counted manually. Colonies were defined as ≥50 cells. 

 

Western blot analysis 

MiaPaCa-2 cells were treated with DMSO or various concentrations of compound 

3 for 1 hour, followed by addition of 5 µg/ml tunicamycin (Sigma) for an additional 5 hours 

to induce ER-stress.  After respective times, the cells were trypsinized and collected by 

centrifugation.  After washing the cells with PBS (Invitrogen), the lysates were prepared 

in cold RIPA buffer containing protease inhibitors (Roche Diagnostics, Indianapolis, IN).  

Then cell lysates were cleared and collected by centrifugation.  The protein concentration 

was measured by Bradford analysis (Bio-Rad).  Lysates containing 30 µg of total protein 
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were fractionated on a 10% SDS polyacrylamide gel and transferred to Hybond-P PVDF 

Membrane (GE Healthcare) using Bio-Rad’s Mini-PROTEAN system.  The membranes 

were blocked with 5% dry milk in Tris-buffered saline-Tween 20 (TBST) for 1 hour at 

room temperature.  Blots were incubated with primary antibodies overnight at 4 ºC using 

1:1000 anti-total PERK (R&D System); 1:1000 anti-total eIF2α; 1:1000 anti-phospho 

eIF2α (Ser 51); 1:500 anti-ATF4; 1:500 anti-CHOP (Cell Signaling Technology) and anti-

actin (Millipore).  Either anti-goat (Thermo Scientific) anti-rabbit (Bio-Rad) or anti-mouse 

(Cell Signaling Technology) horseradish peroxidase-conjugated secondary antibodies, 

ECL Plus™  and western blotting reagents (GE Healthcare) were employed to develop the 

blots. 

 

4.4 RESULTS AND DISCUSSION 

Expression and purification of active human PERK and eIF2α 

 Human PERK and eIF2α were purified according to the protocol explained earlier 

in the Materials and Methods section.  His-GST-tagged human PERK (541-1116 a.a) was 

expressed in a modified pET28a vector using E. coli strain Rosetta-gami™ 2(DE3).  

Purification was accomplished by three successive chromatography steps: 1) Ni-NTA 

affinity, 2) Cleavage and HiPrep desalting, and 3) Mono Q 10/10 anion exchange.  We 

purified soluble, tag-cleaved human PERK, which has an ability to phosphorylate eIF2α as 

well as a peptide substrate.  The purity of PERK was verified by running the protein on 

10% SDS-PAGE.  The final cleaved PERK runs as an 85-kD protein on SDS-PAGE (figure 

4.1C).  His6-tagged human eIF2α (4-314 a.a) was overexpressed in E. coli strain BL21 
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(DE3) and purified using Ni-NTA affinity chromatography, followed by a gel filtration 

column.  The recombinant human eIF2α runs as a 37-kD protein in SDS-PAGE (figure 

4.1D).  

 

Determination of kinetic parameters of PERK 

 To analyze the ability of the purified kinase to phosphorylate its substrate, eIF2α, 

dose response assays were performed with 20 nM PERK and several concentrations of 

eIF2α (0-50 μM) as described under ‘4.3 Materials and Methods’.  Initial velocity data at 

different concentrations of eIF2α and saturating ATP concentration were fitted using 

equation 4.1 and kinetic parameters for PERK phosphorylating eIF2α determined (figure 

4.2).  The recombinant human PERK expressed in bacteria phosphorylates eIF2α, with a 

half maximal activity achieved at 8.1±3.2 µM and a catalytic constant of app

catk  = 

0.28±0.035 s-1.   

 

Optimization of luminescent kinase assay for screening 

To screen chemical libraries efficiently, a suitable detection technology must be 

chosen(146).  The Kinase-Glo Luminescent Kinase Assay, a nonradioactive, homogeneous, 

ATP quantitative kit useful for kinase activity detection, is available from Promega 

(Madison, WI).  ATP is a universal substrate for kinases.  Thus, we decided to use the 

Kinase-Glo assay in order to determine kinase activity in an HTS format.  In order to 

optimize the kinase reaction for screening, a set of experiments were conducted to 

determine the optimal concentration of ATP, substrate, and kinase necessary for the 



98 

reaction.  We optimized HTS assay conditions using both 96 well plates and 384 well plates 

(figure 4.3).   

The reaction has been optimized to be done in a 10 µl volume in 384 well plate at 

room temperature in assay buffer (25 mM HEPES pH7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 

mM EGTA, 2 mM DTT, 10 mM MgCl2, 20 µg/ml BSA) containing 20 nM PERK, 200 

µM peptide substrate (5-FAM-RSRRGSLNKSR) and each tested compound in 0.25% 

DMSO and 0.01% Triton.  The reaction mixtures were incubated at room temperature for 

30 minutes before initiation with 1 µM ATP.  As controls, either all components except 

PERK or ATP alone were used.  Luminescent kinase assay measures kinase activity by 

quantitating the amount of ATP remaining in solution following a kinase reaction.  After 2 

hours, 10 µl of Kinase-Glo assay mix was added.  The kinase reaction was quenched and 

luminescence was measured on an Envision plate reader.  ATP remaining at the time that 

the reagent is added is used as a substrate by the luciferase to catalyze the mono-

oxygenation of luciferin (Scheme 4.2).  The luminescent signal correlates directly to the 

amount of ATP present and inversely correlates with the amount of kinase activity.  High 

throughput screening assays usually contain small amounts of additives such as DMSO or 

detergents.  Since many small molecule compounds are not soluble in aqueous buffer, 

addition of small amount of DMSO can enhance the solubility of the compounds.  In 

addition, detergents such as Brij-35 or Triton are also widely used since they can enhance 

the stability of the enzyme.  These additives can bind to the enzyme and interfere the 

enzyme activity.  Therefore DMSO tolerance test was performed by varying DMSO 
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concentration (0 to 10%) to see if this factor had any effect on the enzymatic activity.  As 

shown in figure 4.4, the presence of DMSO did not affect the enzyme activity.  

 

 

 

Scheme 4.2. Principle of the Kinase-Glo luminescent kinase assay. 

 

High throughput screening of small molecule libraries  

HTS was performed in 384 well plates using the optimized assay conditions, as 

described earlier.  A total of ~30,000 small compounds from both focused and diverse 

libraries were screened for potential hits.  All the libraries were screened at 25 µM final 

concentration except the Chembridge fragment set which was screened at 500 µM.  

Compounds showing greater than 50% activity in the assay were considered as hits.  Out 

of 32,096 compounds screened, ~104 compounds showed greater than 50% activity.  HTS 

is often populated with false-hits, which can result from the variability in the assay itself.  

The suitability of the HTS assay is often determined by a statistical measurement called 

the Z’ factor which takes into account the mean and standard deviation values for the 

positive and negative reference controls (147).  A Z’ value between 0.5 and 1 is generally 

considered as an indicator of a quality assay.  The calculated Z’ values for our screening 
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were greater than 0.5 for all plates which suggests that there is a large separation of data 

points between the baseline and the positive signal.  

Both focused and diverse libraries of small compounds were screened for potential 

hits.  The focused library was selected utilizing a ligand-based pharmacophore selection 

method that ranked compounds based on pharmacophores that promote interaction with 

the ATP binding site of protein kinases (Chembridge Corporation).  A Target focused 

Kinase set ~600 known kinase inhibitors was also screened.  As expected, several hits were 

obtained from the kinase focused libraries (Chembridge Kinase set and Target focused 

Kinase set) (figures 4.7 and 4.8).  A Fragment library was also screened at 500 µM to yield 

several hits (figures 4.5).  The Fragment library contains simpler and less functionalized 

compounds (MW <300 Da).  As a consequence, hits from the fragment library do not tend 

to bind tightly (Kd values in the micro- to milli-molar range).  This suggests that kinase-

focused libraries may be suitable for targeting PERK.  The main task we faced following 

the screen was to verify the hits.  Some compounds may interfere with luminescence 

leading to false-positive hits, thus, a different type of kinase assay such as a 32P assay was 

used for confirmation. 

 

Hit confirmation screen by radiometric assay 

Based on the inhibitory activities of the compounds, we prioritized hits in the 

original screens to validate them.  Confirmation screen was performed by radioactive assay 

using the protein substrate, eIF2α.  All enzyme-inhibitor mixtures were incubated for 30 

minutes before starting the reaction with [-32P] ATP.  Since some compounds were found 
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to be insoluble, the final DMSO concentration was increased to 5% to enhance better 

solubility.  Hits were re-screened at concentrations of 0.5 and 25 µM except the fragments, 

which were tested at 500 µM.  Compounds that showed more than 50 % inhibition at 25 

µM in the counter screen, were further assessed in dose-response assays in the presence of 

0.01% triton X-100.  It is known that many compounds form aggregates in aqueous 

solutions and inhibit the enzyme by non-specifically binding to them (148-150).  The presence 

of small amounts of non-ionic detergent such as triton X-100 can often attenuate the 

inhibition if the compound is acting by aggregation (148-150).  Therefore, the purpose of triton 

X-100 is to get rid of the promiscuous inhibitors.  

Among several hits exhibiting more than 50% inhibition at a concentration of 25 

µM, four small molecules inhibited PERK with nanomolar IC50.  The four inhibitors were 

all found in the target focused kinase library.  Their inhibition rates from both initial and 

validation screening were calculated as a percentage with respect to the control value 

(table 4.1 and 4.2).  The dose-response curves are plotted and fitted using equation 4.2.  As 

seen in figure 4.9, compound 3 is the most potent inhibitor of PERK with an IC50 of 19 nM 

while compounds 1, 2, and 4 show IC50 values of 68, 300, and 45 nM respectively.  

 

Effect of compounds (1-4) on PERK autophosphorylation 

In addition, we examined whether these compounds are capable of inhibiting PERK 

autophosphorylation by using a phosphate free form of PERK.  As shown in figure 4.10A, 

phosphate free PERK was successfully prepared by treating with lambda phosphatase in 

vitro and purified through size-exclusion chromatography.  To test the capability of the 
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produced phosphate free PERK to autophosphorylate in vitro after removal of the 

phosphates, 200 nM of phosphate free PERK was exposed to 1 mM 32P-ATP in the 

presence of 10 mM MgCl2 for 0 to 30 minutes and the phosphate addition was visualized 

by autoradiography.  Phosphate free PERK was successfully autophosphorylated in vitro 

(figure 4.10B), confirming that this form of the enzyme is suitable to test the effects of the 

compound (1-4) on PERK autophosphorylation.  Figure 4.11 displays the dose-responsive 

curves of compounds (1-4) against PERK autophosphorylation.  As seen in table 4.3, 

compounds 1 and 2 inhibited PERK autophosphorylation with IC50 values of 74 and 140 

nM respectively.  On the other hand, different mode of inhibition was observed in 

compound 3 and 4.  In particular, compound 3 showed more than 60 fold difference 

between IC50 values of PERK autophosphorylation (~1200 nM) and eIF2α phosphorylation 

(~19 nM) suggesting that compound 3 appears to have a distinct mode of binding.  Our 

data suggest that compound 3 may be a starting point for the development of potent and 

selective small molecules capable of inhibiting PERK. 

 

Characterization of PERK inhibitors on cellular activity 

In order to confirm that our in vitro results using purified enzyme correlates with 

cellular studies, we examined the ability of compounds (1-4) to inhibit PERK activity in 

HEK293T cells.  PERK activity was assessed in a gel-based assay in the presence of each 

inhibitor.  The effect of each compound on the phosphorylation of eIF2α, an in vivo 

substrate of PERK, as well as on the autophosphorylation of PERK was tested following 

stimulation of PERK by a chemical inducer of the UPR, and visualized by western blot 
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analysis.  To validate the ability of the selected anti-p-eIF2α (Ser51) antibody to detect the 

phosphorylated form of eIF2α, we examined the effect of compounds (1-4) on the 

phosphorylation of recombinant eIF2α by PERK in-vitro using this antibody in a western 

blot based assay.  As showing in figure 4.12, levels of phosphorylated eIF2α were 

significantly decreased when incubated with compounds (1-4) compared to the control.   

PERK is up-regulated in cells upon treatment with pharmacological agents that 

disrupt the Ca2+ balance (thapsigargin), protein folding (DTT), or N-linked glycosylation 

(tunicamycin) in the endoplasmic reticulum (125).  We used 1 µM of thapsigargin (151, 152) as 

an ER stress inducer.  As expected, compounds 1-4 showed inhibition of eIF2α 

phosphorylation in the HEK293T cells, with compounds 3 and 4 exhibiting almost 

complete inhibition at a concentration of 5 µM (figure 4.13).   

A demonstration of an inhibition of PERK autophosphorylation with the 4 

inhibitors in HEK293T cells was difficult due to the lack of a reliable phospho-specific 

antibody to human PERK.  Thus, autophosphorylation of PERK was visualized by SDS-

PAGE by mobility shift detection of the phosphorylated protein using a total anti-PERK 

antibody.  Treatment of HEK293T cells with 1 µM thapsigargin for 2 hours leads to 

activation and autophosphorylation of PERK.  Figure 4.S1 displays an example of the 

inhibition of PERK upon treatment with compound 3.  The level of PERK phosphorylation 

started to decrease at the concentration of ~ 10 µM.  Surprisingly, at the higher 

concentration, expression level of PERK itself was significantly suppressed (figure 4.S1, 

supplementary materials).  Previous studies suggest that many kinases are activated upon 

cleavage by caspases (153).  In fact another eIF2α kinase, PKR (protein kinase double-
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stranded RNA-dependent) is cleaved by mammalian caspase and the cleaved PKR is active 

in phosphorylating its substrate (154).  Likewise, high concentration of PERK inhibitors may 

trigger more stress in cells and escalated ER stress might cause cleavage or degradation of 

PERK.  Future studies to understand the possible underlying mechanism of this result will 

be necessary. 

 

Investigating the effect of compound 3 (TG101348) in pancreatic cancer cells 

Effect of compound 3 (TG101348) on cell proliferation and colony formation 

It has been reported by Bobrovnikova-Marjon et al. that knockdown of PERK by 

shRNA in human breast and esophageal carcinoma cells triggers a cell cycle delay, 

resulting in a significant decrease (50% reduction) in cell proliferation (155).  Moreover, 

PERK-deficient MEF cells generated tumors with a significantly reduced volume (16 fold) 

relative to PERK-positive MEF cells (80) suggesting that PERK promotes cancer cell 

proliferation and tumor growth.  

Therefore, the effectiveness of compound 3 in inhibiting the growth of human 

pancreatic carcinoma cell lines was investigated.  MiaPaCa-2 cells were treated with 

different doses of compound 3 to determine whether or not this compound might have anti-

proliferative effects on pancreatic cancer cells during the log phase of growth.  MiaPaCa-

2 cells were cultured with increasing concentrations of the compound followed by 

incubation with the ER stress inducer, tunicamycin for 72 hours.  Tunicamycin perturbs 

ER homeostasis by affecting N-linked glycosylation of proteins.  Then cell proliferation 

was assessed by an MTS assay (Promega).  This assay relies on the ability of viable cells 
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to convert a soluble tetrazolium salt [3-(4, 5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, MTS] to a formazan product, 

which then can be quantitated using a spectrophotometer.  Control cells were treated with 

equivalent concentrations of DMSO in the absence of inhibitors.  As shown in figure 4.14, 

incubation with compound 3 in the presence of tunicamycin for 72 hours significantly 

inhibited the proliferation of MiaPaCa-2 cells.  Treatment of compound 3 resulted in a 

dose-dependent inhibition of cell proliferation with a 50% inhibitory concentration (IC50) 

value of ~0.8 μM in the presence of tunicamycin (0.15 µg/ml). In the absence of 

tunicamycin, the IC50 value was ~15 μM.  Compounds (1,2 and 4) were also effectively 

anti-proliferative in ER stressed MiaPaCa-2 cells, but higher concentration of these 

compounds were required to reach 50% inhibition in the absence of ER stress (data not 

shown).  There was no significant cytotoxic effect when MiaPaCa-2 cells were solely 

treated with tunicamycin (0.15 µg/ml) without compounds.  The cytotoxic effects of 

compounds on long-term survival were further confirmed with a clonogenic assay.  This 

assay is also referred to as an anchorage-dependent colony formation assay.  It measures 

the ability of a single cell to grow into a colony (usually defined as >50 cells) and its ability 

to undergo unlimited division.  Cancer cells are characterized by unrestricted growth due 

to loss of contact inhibition while normal, untransformed cell growth is arrested when they 

come into contact with each other.  Thus, this clonogenic assay is an indirect measure of 

the tendency of MiaPaCa-2 cells to undergo neoplastic transformation.  MiaPaCa-2 cells 

were treated with varying concentrations (5, 10, 25, 50 µM) of compound 3 under 

tunicamycin-induced stress for 6 hours.  Next, the medium was aspirated and washed, and 
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cells were trypsinized.  Then, cells were counted, re-plated onto 60 mm dishes at initial 

cell concentrations of 500 cells/well and allowed to grow for an additional 15 days with 

inhibitor-free medium.  As seen in figure 4.15, during the 15-day culture period, exposure 

of cells to compound 3 reduced the colony-forming ability relative to cells exposed to 

tunicamycin alone.  Clonogenicity of MiaPaCa-2 cells treated with compound 3 showed 

50% inhibition that was clearly evident at 10 µM.  In addition, treatment with both 

compound 1 and 2 led to nearly 100% cell death even at the lowest concentration, 5 µM 

(data not shown). 

 

Effect of compound 3 (TG101348) on PERK downstream signaling pathway 

To further elucidate the mechanism of PERK inhibitor-mediated ER stress response 

signaling in pancreatic cancer cell lines, we evaluated key UPR signaling molecules by 

Western blotting.  We selected compound 3 for use in cellular studies based on its potency 

as an inhibitor of PERK activity in MiaPaCa-2 cells.  As expected, pre-treatment of 

MiaPaCa-2 cells with compound 3 in the presence of the ER stress inducer, tunicamycin 

resulted in the inhibition of PERK activation, as well as PERK expression.  In addition, 

treatment with compound 3 repressed PERK-mediated UPR signaling in a dose-dependent 

fashion. 

It is generally known that tunicamycin activates the UPR through inhibition of N-

linked glycosylation, which triggers ER stress due to the accumulation of misfolded 

proteins.  As shown in figure 4.16, tunicamycin alone induced activation of PERK, which 

was visualized by a mobility shift detection of phosphorylated proteins on SDS-PAGE.  
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Furthermore, treatment with tunicamycin markedly increased the levels of ATF4 and 

CHOP.  The treatment with compound 3 significantly suppressed the expression of PERK 

in the MiaPaCa-2 cells and this expression pattern was similar to that seen in figure 4.S1.  

This decrease in PERK expression by compound 3 may be due to the activation of caspase-

driven proteolytic activity associated with cells undergoing apoptosis triggered by ER 

stress.  The molecular mechanism underlying this observation needs to be investigated 

further.  Western blot analysis of MiaPaCa-2 cells treated with compound 3 revealed 

decreases in downstream targets for PERK signaling, such as ATF4, and CHOP expression, 

compared to cells treated with tunicamycin alone (figure 4.16), suggesting a cause and 

effect relationship between compound 3 and down-regulation of UPR signaling.  

Interestingly, however compound 3 did not inhibit phospho-eIF2α, even at the highest 

concentration used.  This suggests that other eIF2α kinases, such as GCN2, PKR and HRI 

may contribute to the regulation of eIF2α in pancreatic cancer cells.  Collectively, however 

our results suggest that compound 3 disrupts the regulation of the UPR in pancreatic cancer 

cells subject to ER stress by tunicamycin.  TG101348 is also known to inhibit the non-

receptor tyrosine kinase, JAK2(156-158), which is associated with the promotion of growth 

and division of mammalian cells including blood cell and found in almost every cell type 

(158, 159).  It is essential for signaling through a variety of cytokine receptors, such as those 

that bind growth hormone, prolactin, erythropoietin, and thrombopoietin (158-162).  Therefore 

the effectiveness of TG101348 may be a result of targeting both JAK2 and PERK (scheme 

4.3). 
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Scheme 4.3. Dual inhibition of compound 3 (TG101348). 

 

Biphasic effects of PERK specific inhibitor (GSK2606414) 

Recently, a group from GlaxoSmithKline developed and discovered a specific 

PERK inhibitor, GSK 260414, which exhibited antitumor activity against human 

pancreatic xenograft tumors (125).  According to the authors, this PERK inhibitor has an 

IC50 of ~0.4 nM in vitro and an IC50 of ~30 nM for inhibition of PERK autophosphorylation 

in a cellular assay.  Moreover this compound is orally available and highly selective for 

PERK with a selectivity of >385-fold for PERK over a panel of 294 kinases including three 

other eIF2α kinases.  We synthesized this highly specific PERK inhibitor (GSK2606414) 

to compare with our inhibitors and to use in control experiments.  In the beginning, we 

synthesized GSK260414 according to Axten et al. and confirmed its structure by 1H NMR, 

13C NMR and mass spectrometry (124).  The ability of GSK2606414 to inhibit PERK was 

confirmed in an in vitro dose response assay.  Next we examined its cytotoxicity in human 

pancreatic cancer cells (MiaPaCa-2) by using an MTS assay to compare with results we 

obtained from our hits (compound 1-4).  MiaPaCa-2 cells were treated with various 

concentrations of GSK2606414 under stressed condition by tunicamycin and MTS assays 
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were performed using the same protocol described above.  It showed remarkably anti-

proliferative activity in ER-stressed MiaPaCa-2 cells at concentrations ranging from 0.05 

to 1 µM.  The maximum inhibitory effect was observed at 0.5-1 µM.  The majority of 

MiaPaCa-2 cells treated at 500 nM exhibited ≤15% viability compared with their 

respective controls.  Surprisingly, this anti-proliferative effect was reversed when cells 

were incubated at concentrations greater than 1 μM as shown in figure 4.17 (indicated by 

red curve).  

We found that GSK2606414 possessed an inhibitory effect when added at 0.05–1 

μM concentration, but it became growth stimulatory when its concentration was further 

increased to 25 µM, implying that PERK inhibition by GSK2606414 might trigger a 

compensatory effect that in turn, leads to a paradoxical and biphasic proliferative response.  

Furthermore, in the absence of ER stressor, tunicamycin, there were no significant effects 

of GSK2606414 on cell growth as seen in the blue color in figure 4.17.  The rebound effect 

was also observed in a colony formation assay (figure 4.18).  This biphasic response was 

unexpected since Axten et al. reported an anti-proliferative activity of the PERK inhibitor 

in a 3-day proliferation assay against multiple human tumor cell lines, including pancreatic 

cancer cells, as well as primary human microvascular endothelial cells.  The authors also 

did not report significant effects on the growth of any of these cells in the absence of 

exogeneous ER stress inducers, suggesting that the UPR is not induced under normal cell 

culture conditions.   

We wondered whether PERK signaling was also biphasic.  Therefore, we assessed 

the influence of varying doses of GSK2606414 on PERK-dependent signaling in the 
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MiaPaCa-2 cells by western blotting analysis.  As shown in figure 4.19, CHOP showed a 

biphasic pattern of expression in response to GSK2606414.  Indeed, lower concentrations 

(1, 3 µM) of GSK2606414 decreased CHOP protein expression levels compared to the 

control, whereas higher doses counteracted this effect.  We observed a similar result on p-

eIF2α expression; at a GSK2606414 concentration of 3 µM expression of p-eIF2α was 

minimal.  The biphasic pattern of proliferation in tunicamycin-stressed cells correlates with 

CHOP expression.  Generally CHOP is thought to be a pro-apoptotic transcription factor 

induced by ER stress (50).  Hence CHOP expression is generally considered as an ER stress 

induced cell death marker (71, 94).  Our observation raises the possibility that CHOP may 

promote MiaPaCa-2 cell proliferation in the presence of stress, despite its apoptotic 

function.  As a transcription factor, CHOP itself seems unlikely to be intrinsically 

apoptotic; it more likely regulates the expression of downstream genes that facilitate either 

cell death or cell survival depending on the extent of ER stress and cell fate.  The 

compensatory feedback signaling may be triggered through other UPR molecules such as 

ATF6 and IRE 1, which rescue pancreatic cancer cells from cell death.   

Axten et.al reported that the PERK inhibitor inhibited PERK activity in a dose 

dependent manner with an IC50 in the range of 10-30 nM as shown by the inhibition of 

stress-induced PERK autophosphorylation, as well as decreases in the downstream 

substrates, eIF2α phosphorylation, ATF4, and CHOP in multiple pancreatic cancer cell 

lines.  It should be noted that the authors tested the GSK compound up to 3 µM, and did 

not report concentrations higher than 3 µM.  In addition, more recently, Cojocari et.al also 

synthesized this PERK inhibitor, GSK2606414, and tested it in their cellular experiments 
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(163).  The authors observed its ability to inhibit PERK autophosphorylation and 

downstream eIF2α phosphorylation following exposure to hypoxia (0.2% O2) or 

thapsigargin (300 nM) in the colon cancer cells (HCT116) and pancreatic ductal carcinoma 

cells (KP4).  The GSK2606414 strongly decreased hypoxia- or thapsigargin-induced 

expression of CHOP in HCT116 cells.  However, the compound was ineffective at 

inhibiting CHOP expression in KP4 cells, but surprisingly sensitized them to thapsigargin-

induced ER stress in a concentration dependent manner.  Under normal growth conditions 

however, GSK2606414 did not affect the proliferation of KP4 cells (163). 

Based on results from ourselves and others pancreatic cells tend to be insensitive to 

PERK inhibition under normal cell culture conditions.  No other group has reported a 

paradoxical biphasic effects of GSK2606414 in the literature.  Therefore, the possible 

underlying molecular mechanism of this biphasic phenomenon needs to be further 

investigated. 

 

4.5 CONCLUSION 

Both focused and diverse libraries consisting of almost 30,000 small compounds 

were screened against PERK through luminescent kinase assay.  Approximately, 60 hits 

were identified from the initial high throughput screening and further validated using a 

radioactive based kinase assay.  A total of four small molecules were selected as potential 

inhibitors of PERK with nanomolar IC50’s.  Compound 3, TG101348 showed the most 

marked inhibitory potency in vitro and is a known inhibitor of the kinase JAK2.  Its 

biological effect was further examined in a pancreatic cancer cell line.  TG101348 induced 
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the dose-dependent degradation of PERK as well as the down-regulation of UPR signaling 

(e.g. the induction of ATF4 and CHOP).  Furthermore, TG101348 suppressed pancreatic 

cancer cell proliferation.  Pancreatic cancer cells subject to tunicamycin-induced ER stress 

exhibit a biphasic response to the PERK specific inhibitor GSK2606414.  The basis for this 

observation is unknown, but suggests the potential for synthetic-lethal targeting of cancer 

cells utilizing PERK as an adaptive stress response.  Further studies to understand the 

possible underlying molecular mechanism will be required.  The inhibitors described here 

represent starting points for the development of potent and selective small molecules 

capable of compromising UPR signaling by inhibiting PERK.   
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Figure 4.1. Purification of human PERK catalytic domain and eIF2α that were 

expressed in E. coli. 

A, Schematic representation of the full length of PERK.  B, Schematic representation of 

the expressed form of the catalytic domain of PERK. This PERK catalytic domain was 

expressed in E. coli.  C, Left gel, samples from Ni-NTA affinity chromatography were 

resolved by 10% SDS-PAGE: Lane 1, BenchMark™ protein ladder (Invitrogen); Lane 2, 

Protein eluted from Ni-NTA agarose affinity chromatography; Lane 3, Elution fraction 

from the Ni-NTA column was incubated with PreScission protease, resulting in GST-tag 

cleaved PERK.  Right gel, Purified tagless PERK catalytic domain runs as an 85 kDa 

protein on 10% SDS-PAGE.  D, Human eIF2α (4-314 a.a) overexpressed in the bacterial 

cells (BL21) was subjected to Ni–NTA agarose affinity chromatography followed by 

Superdex 200 gel filtration chromatography.  Purified eIF2α runs as a 37 kDa protein on 

10% SDS-PAGE.  
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Figure 4.2. Analysis of the kinase activity of PERK. 

Human eIF2α dependence assays were performed using 20 nM PERK and 0-50 μM eIF2α 

in a suitable buffer as described under ‘4.3. Materials and Methods’.  The data were fitted 

to Michaelis Menten equation 4.1, where 
app

MK  = 8.1±3.2 µM and 
app

maxV  = 5.6± 0.7 nM.s-1.  

Kinase activity was determined by measuring the rate of phosphorylation of eIF2α (nM.s-

1).   
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Figure 4.3. Optimization of luminescent kinase assay. 

HTS assay conditions were optimized in 384 well plates.  Assays were conducted in a 10 

µl reaction volume at room temperature in the assay buffer as described under ‘4.3 

Materials and Methods’.  Assay mixtures were prepared with or without enzyme in the 

presence or absence of 200 µM of peptide and 1 µM ATP.  Positive control = assay buffer 

only.  Negative controls =no enzyme or no peptide or ATP only. 
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Figure 4.4. Assay stability in the presence of different concentrations of DMSO. 

Assay mixtures were prepared with or without 200 µM of peptide in the presence of 20 nM 

PERK, 1 µM ATP and above indicated concentrations of DMSO (0-10%). 
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Figure 4.5. Examples of hits from Fragment library (Chembridge). 
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Figure 4.6. Examples of hits from Maybridge library. 
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Figure 4.7. Examples of hits from kinase-biased library (Chembridge). 
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Figure 4.8. Examples of hits from Target focused kinase set. 
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Figure 4.9. The effect of compounds 1-4 on the ability of PERK kinase domain to 

phosphorylate eIF2α substrate. 

20 nM active PERK kinase domain was assayed with 8 µM of eIF2α substrate.  Activity 

was assessed at different inhibitor concentrations by the measurement of initial rates at 30 
oC in 25 mM HEPES pH 7.5, 0.1 mM EDTA, 0.1 mM EGTA, 2 mM DTT, 0.05 M KCl, 

10 mM MgCl2 and 0.2 mM [γ-32P] ATP.  The reaction was started by the addition of radio 

labeled ATP.  These 4 compounds are potent inhibitors towards PERK (IC50 for 

compounds 1-4 inhibiting eIF2α phosphorylation were 68, 300, 19 and 45 nM 

respectively).  The lines are the best fits of each data set to equation 4.2.  
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Figure 4.10. Preparation of phosphate-free PERK kinase domain by treatment with 

lambda phosphatase.  

A, Human PERK kinase domain (541-1116 a.a) overexpressed in the bacterial cells (BL21) 

was subjected to Ni–NTA agarose affinity chromatography and treated with lambda 

phosphatase in vitro at room temperature.  Lane 1, PERK without lambda phosphatase 

treatment; Lane 2, BenchMark™ protein ladder (Invitrogen); Lane 3, Flow-through 1; 

Lane 4, Flow-through 2; Lane 5, Wash; Lane 6, Eluted PERK with lambda phosphatase 

treatment.  B, Autophosphorylation of phosphate-free PERK 
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Figure 4.11. The effect of compounds 1-4 on the ability of PERK kinase domain to 

autophosphorylate.  

Initial velocities of  PERK autophosphorylation was measured using 50 nM phosphate free, 

inactive PERK at 30 °C in 25 mM HEPES pH 7.5, 0.1 mM EDTA, 0.1 mM EGTA,  2 mM 

DTT, 0.05 M KCl, 10 mM MgCl2 and 10 µM [γ-32P] ATP.  IC50 for compounds 1-4 

inhibiting PERK autophosphorylation were 74, 142, 1186 and 398 nM respectively.  The 

lines are the best fits of each data set to equation 4.2. 
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Figure 4.12. Test the compounds (1-4) on the phosphorylation of eIF2α in vitro. 

PERK kinase domain (20 nM) was incubated with eIF2α (8 µM) and ATP (1 mM) in the 

assay buffer containing 25 mM HEPES pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM 

EGTA, 2 mM DTT, 10 mM MgCl2, 40 µg/ml BSA for 10 minutes in the presence of 10 

µM of compounds (1-4).  Phosphorylated eIF2α was detected by western blot using anti-

p-eIF2α antibody. 
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Figure 4.13. Cellular effect of compounds (1-4) on the phosphorylation of eIF2α in 

HEK293T cells.  

HEK293T cells were pre-treated with different concentrations of each compound (10-100 

µM) followed by UPR induction for 1 hour (1 µM thapsigargin).  Cell lysates were 

analyzed by western blot. 
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Figure 4.14. Compound 3 induces apoptotic death of pancreatic cancer cells. 

Compound 3 reduces the number of viable MiaPaCa-2 cells in culture.  The cells were 

treated with an increasing concentrations of compound 3 in the presence or absence of 

tunicamycin (0.15 µg/mL) for 72 hours, and the fraction of viable cells were determined 

by MTS assay (Promega) according to the protocol described in ‘4.3 Materials and 

Methods’.  The 50% inhibitory concentration (IC50) value was obtained using equation 4.2. 
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Figure 4.15. Compound 3 inhibits colony formation of MiaPaCa-2 cells. 

MiaPaCa-2 cells were treated with various concentrations of compound 3 in complete 

medium for 1 hour, followed by addition of 5 µg/ml tunicamycin for an additional 6 hours 

to induce ER stress.  Treated cells were harvested using trypsinization, and re-plated (500 

cells/ dish) and cultured at 37 °C with 5% CO2 for 10 days.  Images of the colonies formed 

after 10 days were taken after staining with 0.2% crystal violet.  The colonies then were 

counted.  
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Figure 4.16. Cellular effect of compound 3 on PERK signaling. 

MiaPaCa-2 cells were pre-treated with different concentrations of compound 3 (1-50 µM) 

followed by UPR induction for 5 hours (5 µg/ml tunicamycin).  Cell lysates were analyzed 

by western blot. 
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Figure 4.17. PERK inhibition by GSK2606414 induces biphasic response in 

pancreatic cancer cell proliferation under ER stress. 

GSK2606414 triggers biphasic response in the number of viable MiaPaCa-2 cells in 

culture.  The cells were treated with increasing concentrations of GSK2606414 in the 

presence (red) or absence of 0.15 µg/ml tunicamycin (blue) for 72 hours, and the fraction 

of viable cells were determined by MTS assay (Promega). 

. 
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Figure 4.18. GSK2606414 induces biphasic response in colony formation of MiaPaCa-

2 cells. 

MiaPaCa-2 cells were treated with various concentrations of GSK2606414 in complete 

medium for 1 hour, followed by addition of 5 µg/mL tunicamycin for an additional 6 hours 

to induce ER stress.  Treated cells were harvested using trypsinization, and replated (500 

cells/ dish) and cultured at 37 °C with 5% CO2 for 10 days.  Images of the colonies formed 

after 10 days were taken after staining with 0.2% crystal violet.  The colonies then were 

counted.  
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Figure 4.19. Cellular effect of GSK2606414 on PERK signaling. 

MiaPaCa-2 cells were pre-treated with different concentrations of GSK2606414 (1-50 µM) 

followed by UPR induction for 5 hours (5 µg/ml tunicamycin).  Cell lysates were analyzed 

by western blot. 
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Compound Structure 

Inhibition (%) Known 

Target 25µM 5µM 1µM 

1 

 

 

 

100 

 

100 

 

97.9 

PI3K 

DNA-PK 

2 

 

 

 

100 

 

100 

 

100 

Plk1 

Plk2 

Plk3 

3 

 

 

 

100 

 

82.1 

 

57.9 

Jak2 

Flt3 

Ret 

4 

 

 

 

92.9 

 

64.3 

 

51 

Jak2 

Jak3 

Flt3 

Ret 

 

Table 4.1. Inhibition rates of 4 hits from initial HTS using luminescent kinase assay. 
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Compound Structure 

Inhibition (%) Known 

Target 5µM 0.5µM 

1 

 

  

95 80 

PI3K 

DNA-PK 

2 

 

  

93 71 

Plk1 

Plk2 

Plk3 

3 

 

  

79 59 

Jak2 

Flt3 

Ret 

4 

 

 
 

60 50 

Jak2 

Jak3 

Flt3 

Ret 

 

Table 4.2. Inhibition rates of 4 hits from validation screening using radiometric kinase 

assay. 
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IC50 for eIF2α  

phosphorylation (µM) 

IC50 for PERK 

autophosphorylation (µM) 

Compound 1 0.068±0.005 0.074±0.009 

Compound 2 0.3±0.002 0.142±0.014 

Compound 3 0.019±0.004 1.186±0.6 

Compound 4 0.045±0.01 0.398±0.11 

 

Table 4.3. Summary of PERK inhibition. 
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4.6 SUPPLEMENTARY MATERIALS 

 

 

 

Figure 4.S1. Cellular effect of compound 3 on the phosphorylation of PERK in 

HEK293T cells. 

HEK293T cells were pre-treated with different concentrations of compounds (1-50 µM) 

followed by UPR induction for 1 hour (1µM thapsigargin).  Cell lysates were probed for 

PERK by western blot. 
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