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ABSTRACT

We present a method for extracting the angular diameter distances, DA, and the expansion rates, H, of the universe
from the two-dimensional baryon acoustic oscillations (BAO) in the galaxy power spectrum. Our method builds
upon the existing algorithm called the “fit-and-extract” (FITEX) method, which allows one to extract only D2

A/H
from a spherically averaged one-dimensional power spectrum. We develop the FITEX-2d method, an extension of
the FITEX method, to include the two-dimensional information, which allows us to extract DA and H simultaneously.
We test the FITEX-2d method using the Millennium Simulation as well as simplified Monte Carlo simulations
with a bigger volume. The BAOs, however, contain only a limited amount of information. We show that the full
modeling, including the overall shape of the power spectrum, yields much better determinations of DA and H, hence
the dark energy equation of state parameters such as w0 and wa , than the BAO-only analysis by more than a factor
of 2, provided that nonlinear effects are under control.
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1. INTRODUCTION

Dark energy, discovered via the observed luminosity dis-
tances out to high-z Type Ia supernovae (Riess et al. 1998;
Perlmutter et al. 1999), is the most mysterious element in physics
today (see Copeland et al. 2006 for a recent review).

As dark energy primarily affects the expansion rate of the
universe, one can gain information on the nature of dark
energy by measuring the cosmological distances as well as the
expansion rates of the universe accurately.1

While the cosmic microwave background (CMB) and the
Type Ia supernovae can be used for measuring the angular
diameter distance out to z � 1090 and the luminosity distances
out to z � 2, respectively, the power spectrum of matter
distribution in the universe can be used to measure the angular
diameter distances as well as the expansion rates of the universe
out to a wider range of redshifts.

Two length scales are encoded in the matter power spectrum,
P (k) (see, e.g., Weinberg 2008):

1. The comoving Hubble horizon size at the matter-radiation
equality, rH (zeq) = c/[a(zeq)H (zeq)].

2. The comoving sound horizon size at the so-called drag
epoch at which baryons were released from photons,
rs(zdrag) = ∫ t(zdrag)

0 dtcs(t)/a(t), where cs(t) = c/[
√

3(1 +
a(t)3Ωb/(4Ωγ ))] is the sound speed of photon–baryon
fluid.

The former determines the overall shape of the power spec-
trum of dark matter including the location of the peak of P (k)
at keq ≡ 1/rH (zeq), whereas the latter determines the location
of the baryonic features called the baryon acoustic oscillations
(BAOs).

These length scales can be predicted from the five-year
data of the Wilkinson Microwave Anisotropy Probe (WMAP)

1 While dark energy also affects the growth rate of the amplitude of matter
fluctuations, which has been seen in the data via the so-called integrated
Sachs–Wolfe (ISW) effect (e.g., Boughn & Crittenden 2004; Nolta et al. 2004;
Afshordi et al. 2004; Fosalba et al. 2003; Fosalba & Gaztañaga 2004), we do
not discuss the effect on the amplitude of fluctuations in this paper.

(Hinshaw et al. 2009; Dunkley et al. 2009; Komatsu et al. 2009)2:

keq ≡ 1

rH (zeq)
= (0.968 ± 0.046) × 10−2 Mpc−1, (1)

rs(zdrag) = 153.3 ± 2.0 Mpc, (2)

and
zeq = 3176+151

−150, zdrag = 1020.5 ± 1.6. (3)

These lengths can be used as the “standard rulers,” which give
us the angular diameter distances as well as the expansion rates
of the universe (Seo & Eisenstein 2003; Blake & Glazebrook
2003; Hu & Haiman 2003).3

We, as observers who measure the angular and redshift
distribution of galaxies, can measure four distance ratios given
by

θeq(z) = rH (zeq)

(1 + z)DA(z)
= 1

keq(1 + z)DA(z)
, (4)

θs(z) = rs(zdrag)

(1 + z)DA(z)
, (5)

δzeq(z) = rH (zeq)H (z)

c
= H (z)

keqc
, (6)

δzs(z) = rs(zdrag)H (z)

c
, (7)

where DA(z) is the proper (i.e., not comoving) angular diam-
eter distance. We measure θeq(z) and θs(z) by comparing the

2 These predictions assume a flat universe and dark energy being the vacuum
energy. For a nonflat universe with dark energy having a constant equation of
state, w, the WMAP five-year data yield keq = (0.975+0.044

−0.045) × 10−2 Mpc−1,

rs (zdrag) = 153.4+1.9
−2.0 Mpc, zeq = 3198+145

−146, and zdrag = 1019.8 ± 1.5.
3 The matter power spectrum also contains the third distance scale, the Silk
damping scale, which can also be used as the standard ruler. The Silk damping
scale is the smallest of these three distance scales, and its effect (i.e., the
suppression of power below the Silk damping scale) is not as prominent as the
effects of the other two distance scales. Nevertheless, the Silk damping must
be taken into account when we model the full shape of the power spectrum.
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predicted lengths with the corresponding observed lengths per-
pendicular to the line of sight, and δzeq(z) and δzs(z) from the
lengths parallel to the line of sight.4

The BAOs have been detected in the current galaxy red-
shift survey data from the Sloan Digital Sky Survey (SDSS)
and the Two-degree Field Galaxy Redshift Survey (2dFGRS)
(Eisenstein et al. 2005; Cole et al. 2005; Hütsi 2006; Percival
et al. 2007). However, the current data are not yet sensitive
enough to yield DA(z) and H (z) separately (Okumura et al.
2008); thus, one can only determine a combined distance scale
ratio from the spherically averaged power spectrum. Since two
spatial dimensions are available on the sky and one dimension
is available along the line of sight, one can measure

[
θ2
s (z)δzs(z)

]1/3 = rs(zdrag)[
(1 + z)2D2

A(z)c/H (z)
]1/3 . (8)

Eisenstein et al. (2005) have measured this quantity at z = 0.35
from the SDSS Luminous Red Galaxies (LRG), and Percival
et al. (2007) have extended their analysis to include more data
from the SDSS LRG, as well as the SDSS main galaxy samples
and the 2dFGRS galaxies at z = 0.2.

Komatsu et al. (2009) have combined these measurements
with the CMB distance ratios determined from the WMAP five-
year data, the “WMAP distance priors,” to obtain the constraints
on dark energy properties. The analysis performed in Komatsu
et al. (2009) is a proto-type of what one can do in the future. It is
clear that we can gain more information if we can measure DA(z)
and H (z) simultaneously at various redshifts. Therefore, in the
future we should be able to perform a much more sensitive test
of dark energy properties by combining DA(z) and H (z) from
the future galaxy survey data, and the CMB distance priors from
the future CMB experiments such as Planck.

Moreover, the BAOs capture only a part of information
encoded in the shape of P (k). One would miss another baryonic
feature, the Silk damping scale, by only measuring BAOs.
A more serious drawback is that one would miss the other
prominent standard ruler, keq, completely, by only measuring
BAOs.

Nevertheless, there is one major advantage of using BAOs:
the phases (not the amplitude) of BAOs are less sensitive to the
distortion of the shape of P (k) due to nonlinear matter clustering,
nonlinear galaxy bias, or nonlinear redshift space distortion (Seo
& Eisenstein 2005; Eisenstein et al. 2007; Nishimichi et al.
2007; Smith et al. 2008; Angulo et al. 2008; Sanchez et al.
2008; Seo et al. 2008). As a result, many studies have focused
on developing various ways to extract the distance information
from BAOs.

Most of the previous work focused only on extracting the
BAOs from the spherically averaged P (k) (which gives D2

A/H )
(e.g., Percival et al. 2007). Yamamoto et al. (2005) have studied
the monopole and quadrupole moments in the galaxy power
spectrum and their implications for determinations of the dark
energy equation of state parameter, w, and concluded that even
in the worst case scenario (i.e., the absence of the BAOs feature
on the observed power spectrum), galaxy survey can still provide
useful limits on w from a combination of the monopole and
quadrupole power spectra. Recently, Padmanabhan & White

4 The measured power spectrum in redshift space is a function of the
wavenumber parallel to the line of sight, k‖, and that perpendicular to the line
of sight, k⊥, i.e., P = P (k‖, k⊥). The angular observables, θeq and θs , are
measured from k⊥, while the line-of-sight observables, δzeq and δzs , are
measured from k‖.

(2008) have explored an extraction of the quadrupole moment
of the two-dimensional power spectrum, P (k, μ), which gives
a different distance combination, DAH.

In this paper, we shall develop a method for extracting DA and
H simultaneously from the two-dimensional BAOs. Since we do
not use spherical averaging or truncate the Legendre expansion
of BAOs at arbitrary orders, our method uses more information
than most of the previous methods. To our knowledge, the full
two-dimensional extraction of DA and H from BAOs has been
explored only by Wagner et al. (2008).

This paper is organized as follows. In Section 2, we
give a brief account of the original one-dimensional “fit-and-
extract” (FITEX) method, which was developed by Koehler
et al. (2007) for extracting BAOs from a spherically averaged
one-dimensional P (k). We then extend this method to the
two-dimensional FITEX-2d method by including the full
two-dimensional information without spherical averaging. In
Section 3, we extract DA and H from simulated noisy data using
the FITEX-2d method, and show that the FITEX-2d yields un-
biased estimates of DA and H. In Section, 4 we repeat the same
analysis for a more realistic simulation, using the Millennium
Simulation (Springel et al. 2005). In Section, 5 we propagate
errors in H (z) and DA(z) to those in the dark energy equation
of state with the parametrization of w(z) = w0 + waz/(1 + z).
We conclude in Section 6.

Throughout this paper we shall use the cosmological pa-
rameters given by Ωm = 0.277, ΩΛ = 0.723, Ωb = 0.0459,
ns = 0.962, and h = 0.702 (Dunkley et al. 2009; Komatsu
et al. 2009), which are the maximum likelihood values inferred
from the WMAP five-year data (Hinshaw et al. 2009) combined
with the current BAO data (Percival et al. 2007) and Type Ia
supernova data (Kowalski et al. 2008).

2. FITEX-2D: METHODOLOGY

We develop a method for extracting DA and H simultaneously
from the two-dimensional BAOs without spherical averaging.

Our method builds upon the existing “fit-and-extract”
(FITEX) method developed by Koehler et al. (2007) for ex-
tracting D2

A/H from a spherically averaged, one-dimensional
P (k). The FITEX method extracts BAOs by fitting and remov-
ing the nonoscillatory part of P (k), which leaves only the oscil-
latory component, i.e., BAOs. Koehler et al. (2007) model the
nonoscillatory, smooth part by the following functional form:

P 1d
smooth(k) =

[
A

1 + Bkδ
e(k/k1)α

]2

kns , (9)

where ns is the primordial tilt, while A, B, δ, k1, and α are
free parameters. Koehler et al. (2007) have shown that this
function is flexible enough to fit out the smooth part of the
spherically averaged P (k) measured from the Hubble Volume
Simulation (Evrard et al. 2002). They have tested the FITEX
method particularly for a large scale, k < 0.3 h Mpc−1, at high
redshifts, 1.9 < z < 3.8, that are relevant to the Hobby–Eberly
Dark Energy Experiment (HETDEX; Hill et al. 2004).

We make a simple extension of the one-dimensional FITEX
method by including angular dependence. We model the two-
dimensional smooth power spectrum by

P 2d
smooth(k, μ) = P 1d

smooth(k)[1 + g(2)(k)P2(μ)

+ g(4)(k)P4(μ) + g(6)(k)P6(μ)], (10)

where μ is the cosine of the angle θ between k and the line of
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sight, i.e., μ = cos θ and tan θ = k⊥/k‖. Therefore, μ = 0 and
μ = 1 for k‖ = 0 and k⊥ = 0, respectively.

Here, Pl(μ) is the Legendre polynomials:

P2(μ) = 1

2
(3μ2 − 1), (11)

P4(μ) = 1

8
(35μ4 − 30μ2 + 3), (12)

P6(μ) = 1

16
(231μ6 − 315μ4 + 105μ2 − 5). (13)

The odd multipoles must vanish by symmetry. One may include
l � 8 if necessary, but we find it sufficient to include the terms
only up to l = 6.

Finally, g(l)(k) is given by the sixth-order polynomials with
only even powers of k:

g(l)(k) = a
(l)
0 + a

(l)
2 k2 + a

(l)
4 k4 + a

(l)
6 k6, (14)

where all of a
(l)
i ’s are varied simultaneously for each l. The odd

powers must vanish because they are not analytic in k (Weinberg
2008). We include the terms only up to k6, as we include the
multipoles up to l = 6. If, for instance, l = 8 is included, then
k8 may also be included for consistency.

Aside from the primordial tilt, ns, the FITEX-2d contains
17 free parameters (five for P 1d

smooth(k) plus 4 × 3 = 12 for the
angular dependence). While it may sound like many, the number
of data points available on the two-dimensional power spectrum
is usually much larger, and thus our fit is well behaved.

It may be instructive to use the conventional model for the
redshift space power spectrum to show what these parameters
are supposed to capture. The leading order angular distortion is
given by the so-called Kaiser effect, which arises from coherent
converging velocity flow toward the linear overdensity region
(Kaiser 1987). The linear Kaiser power spectrum is given by

P linear
kaiser (k, μ) = b2

1(1 + 2βμ2 + β2μ4)P linear(k)

= b2
1

[(
1 +

2

3
β +

1

5
β2

)

+
4

3
β

(
1 +

3

7
β

)
P2(μ) +

8

35
β2P4(μ)

]
P linear(k),

(15)

where β ≡ f/b1 is a k-independent function that depends on the
linear galaxy bias, b1, and the cosmological parameters (mainly
Ωm) via

f ≡ d ln D

d ln a
, (16)

where D is the growth factor of linear density fluctuations. We
therefore find

a
(0)
0 = 1 (17)

a
(2)
0 =

4
3β

(
1 + 3

7β
)

1 + 2
3β + 1

5β2
, (18)

a
(4)
0 =

8
35β2

1 + 2
3β + 1

5β2
, (19)

and the other terms are zero.
Another example is the so-called finger-of-God (FoG) effect,

which arises from random motion within virialized halos. When

Figure 1. Illustration of the FITEX-2d method. This figure shows an anisotropic
nonlinear galaxy power spectrum before we apply FITEX-2d. The contours
show ln[P (k‖, k⊥)] at z = 2, where we have computed P (k‖, k⊥) from
Equation (21). Anisotropic distribution of power due to redshift space distortion
is apparent.

the distribution of the pairwise peculiar velocity within a halo is
given by an exponential distribution with the velocity dispersion
σ 2

v (Peebles 1976; Davis & Peebles 1983), one finds (Ballinger
et al. 1996)

PFoG(k, μ) = P linear
kaiser (k, μ)

1 + f 2k2μ2σ 2
v

. (20)

While the FoG yields many terms when expanded into the
Legendre polynomials, it is still a good approximation to
truncate the expansion at l = 6 if k is sufficiently smaller
than 1/σv . Note that the FoG effect yields terms in the form
of powers of (kμ)2; thus, it makes sense to use the same number
for the maximum power of k (see Equation 14) and the maximum
multipole (see Equation 10) of the FITEX-2d fitting function.

In general, neither of these two expressions are adequate. The
linear Kaiser formula is valid only on very large scales, while the
exponential FoG formula is valid only on very small scales. At
the intermediate scales we find more complicated expressions
from, e.g., the third-order perturbation theory (Heavens et al.
1998). To account for these complications we have included
k-dependent coefficients for the Legendre polynomials.

In Figures 1 and 2 we show the performance of P 2d
smooth(k, μ).

In Figure 1 we show a simple analytical model5 for the nonlinear
galaxy power spectrum in redshift space given by

Pg(k, μ) = b2
1

[
Pδδ(k) + 2βμ2Pδθ (k) + β2μ4Pθθ (k)

]
× 1

1 + f 2k2μ2σ̃ 2
v

, (21)

where Pδδ(k), Pδθ (k), and Pθθ (k) are the density-density,
density-velocity, and velocity-velocity power spectra com-
puted from the third-order perturbation theory, and they are

5 This model is admittedly too simple to be realistic. We shall test the
FITEX-2d method in a more realistic setting using the Millennium Simulation
in Section 4.
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Figure 2. Illustration of the FITEX-2d method. This figure shows the power
spectrum shown in Figure 1 minus the best-fitting two-dimensional smooth
spectrum, P 2d

smooth(k‖, k⊥), given by Equation (10). The structure of BAOs, i.e.,
the oscillatory feature, is now apparent. The FITEX-2d method recovers the
isotropic distribution of the BAO phases successfully, which makes it possible
to use the distribution of the phases for measuring DA and H simultaneously.
Top: positive BAO peaks; bottom: negative BAO peaks (troughs).

given by Equations (63), (64), and (65) in Scoccimarro
(2004), respectively. This form is similar to Equation (71) of
Scoccimarro (2004), but we have replaced exp

( − f 2k2μ2σ 2
v

)
and f in his formula by 1

/(
1 + f 2k2μ2σ̃ 2

v

)
and β, respectively,

where σ̃ 2
v ≡ 0.6σ 2

v is the one-dimensional peculiar velocity dis-
persion with an empirical fudge factor of 0.6 calibrated off our
simulations presented in Jeong & Komatsu (2006). Here, σ 2

v is
given by

σ 2
v ≡ 1

3

∫
d3k

(2π )3

P linear(k)

k2
= 1

3

∫
dk

2π2
P linear(k). (22)

We chose z = 2 and b1 = 2.5. The contour of power spectrum
is anisotropic in Figure 1 due to the redshift space distortion;
however, we recover isotropy after subtracting the best-fitting
P 2d

smooth(k, μ) from the anisotropic data (see Figure 2). We see

that the BAOs have been extracted successfully, with isotropy
of the oscillation phases recovered well.

3. EXTRACTION OF DA AND H FROM NOISY DATA:
FITEX-2D VERSUS FULL MODELING

In Section 3.1, we show how well we can estimate DA and H
from the two-dimensional BAOs extracted from noisy data using
the FITEX-2d method. In Section 3.2, we compare the BAO
results to the accuracy one would obtain from the full modeling
of P (k, μ), including the overall shape. In other words, for the
former (BAOs) we only use θs and δzs for measuring DA and
H, while for the latter (full modeling) we can use θs , δzs , θeq,
δzeq, as well as the Silk damping scale for measuring DA and
H, provided that nonlinear effects (nonlinear matter clustering,
nonlinear redshift space distortion, and nonlinear bias) are under
control.

Note that the treatment of nonlinear effects in this section is
too simple to be realistic. For a more realistic treatment, we shall
use the galaxy power spectrum from the Millennium Simulation
(Springel et al. 2005) in Section 4.

3.1. FITEX-2d

To estimate errors in DA and H from the FITEX-2d method,
we use simple Monte Carlo simulations.

For the underlying spectrum we use the same data as shown
in Figure 1, which includes a simplified modeling of nonlinear
matter clustering and nonlinear redshift space distortion as given
by Equation (21). As for the galaxy bias, we use a linear bias
with b1 = 2.5.

Once the underlying spectrum is specified, it is straightfor-
ward to compute the errors in Pg(k‖, k⊥), σPg

, provided that the
distribution of Pg(k‖, k⊥) is a Gaussian. We use the standard
formula that includes sampling variance as well as shot noise
(see, e.g., Jeong & Komatsu 2009)

σPg
(k‖, k⊥)

Pg(k‖, k⊥)
= 2π

√
1

Vsurveyk⊥Δk⊥Δk‖

1 + ngPg(k‖, k⊥)

ngPg(k‖, k⊥)
, (23)

where ng is the number density of galaxies, Vsurvey is the survey
volume, Δk⊥ and Δk‖ are the fundamental wavenumbers, i.e.,
the resolution in k⊥ and k‖. We take these to be Δk‖ = Δk⊥ =
(2π )/V

1/3
survey.

We use σPg
from Equation (23) to calculate the rms error in

Pg(k‖, k⊥), and generate 1000 Monte Carlo realizations. We then
apply the FITEX-2d method to remove the smooth component
from each realization to extract BAOs. For each realization,
we measure DA and H simultaneously by fitting the phases of
extracted two-dimensional BAOs to those of the reference BAOs
extracted from either (1) the linear power spectrum, or (2) the
nonlinear power spectrum given by Equation (21), with known
DA,ref and Href . (Later we find that using the linear spectrum
as the reference BAO yields the biased estimates of DA,ref and
Href .) We use a simplex downhill method for χ2-minimization
in the two-dimensional parameter space. The number of free
parameters for this analysis is two, i.e., DA and H, and we
do not include the amplitude in the fit. We have checked that
including the amplitude does not change the results very much,
as the amplitude and the phases of BAOs are nearly uncorrelated
(see Appendix A.3.1 for more details). This is true in both real
and redshift space. When we apply FITEX-2d to the simulated
data, we perform a fit out to kmax = 0.40 h Mpc−1.
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Figure 3. Accuracy of DA and H extracted from BAOs with the FITEX-2d
method applied to simulated Monte Carlo realizations that approximate the
HETDEX survey (the larger, dotted contours; see Section 3.1). The best-fitting
values of DA and H agree with the true values; thus, the FITEX-2d method
yields unbiased estimates of DA and H. The solid contours show DA and H
from the full modeling, including the overall shape of the power spectrum,
with various parameters marginalized over. (Note that the BAO-only contours
are unaffected by the marginalization.) For this we have used the Fisher matrix
forecast (see Section 3.2). The inner and outer ellipses show 68% and 95% C.L.,
respectively. (Top left) The full modeling Fisher matrix is marginalized over the
overall amplitude, ln A, (top right) marginalized over ln A and the linear redshift
distortion parameter, β, (bottom left) marginalized over ln A, β, and the velocity
dispersion in the FoG factor, σ̃ 2

v , (bottom right) marginalized over ln A, β, σ̃ 2
v ,

and the shape of the initial power spectrum, ns and αs .

We choose the survey parameters, Vsurvey, z, and ng, such that
they roughly match those expected for the HETDEX (Hill et al.
2004): Ng = 0.755 × 106, and 1.9 � z � 3.5 with the sky
coverage of 420 deg2, which yields Vsurvey � 3.0h−3Gpc3.6

We find that, when the phases extracted by FITEX-2d are
compared with the reference BAOs extracted from the linear
power spectrum, the best-fitting values of DA and H averaged
over 1000 simulations disagree with the underlying, “true” val-
ues by 0.05% and 0.63% for DA and H, respectively, due to the
phase shift of BAOs caused by nonlinearities (including nonlin-
ear redshift space distortion). This result extends the previous
study by Nishimichi et al. (2007), who studied a spherically
averaged one-dimensional power spectrum and found that the
bias was less than 1% in (D2

AH−1)1/3.
On the other hand, when the phases are compared with the

reference BAOs extracted from the nonlinear power spectrum
(Equation 21), the best-fitting values of DA and H agree with
the true values to well within the Monte Carlo sampling error;
thus, we confirm that the FITEX-2d method yields unbiased
estimates of DA and H.

In Figure 3 we show the projected error ellipses on DA and
H from the BAOs extracted with the FITEX-2d (larger, dotted
contours; same in all four panels). We find 1.8% and 2.5% errors
on DA and H, respectively, with the cross-correlation coefficient
of r = 0.44, from the Monte Carlo simulations. For the same

6 The HETDEX is expected to detect 0.755 million Lyman-α emitting
galaxies between 1.9 � z � 3.5 over 420 deg2 in three years of observations
on the Hobby–Eberly Telescope.

survey parameters, the BAO Fisher matrix proposed by Seo &
Eisenstein (2007) yields 1.5% and 2.5% errors on DA and H,
respectively, with r = 0.41. Therefore, we conclude that the
FITEX-2d method yields the results that nearly saturate the
Fisher matrix bound, i.e., it is nearly an optimal method in a
sense that it can yield the smallest errorbars one can obtain with
the BAO-only analysis.

3.2. Full Modeling

To calculate the errors in DA and H expected from the
full modeling of the two-dimensional galaxy power spectrum,
Pg(k, μ), we use the Fisher matrix given by (see, e.g., Eisenstein
et al. 1999; Seo & Eisenstein 2003)

Fij =
∫ kmax

0

4πk2dk

(2π )3

∫ 1

0
dμ

∂ ln Pg(k, μ)

∂θi

∂ ln Pg(k, μ)

∂θj

w(k, μ),

(24)
where θi = (ln DA, ln H, ln A, β, σ̃ 2

v , ns, αs) for i = 1, 2,. . .,7,
respectively, kmax = 0.40 h Mpc−1, where A is the overall am-
plitude of the power spectrum, β is the linear redshift distortion
parameter, σ̃ 2

v is the calibrated one-dimensional velocity disper-
sion (see Equation 21), and ns and αs describe the shape of the
initial (primordial) power spectrum:

Pini(k) ∝ kns+ 1
2 αs ln(k/kpivot). (25)

Here, the weight function, w(k, μ), is one half of the so-called
“effective volume,”

w(k, μ) ≡ 1

2

[
ngPg(k, μ)

1 + ngPg(k, μ)

]
Vsurvey ≡ 1

2
Veff(k, μ). (26)

The effective volume is equal to the actual survey volume,
Vsurvey, in the sampling variance dominated regime, Pg(k, μ) 	
1/ng , whereas it is small in the shot-noise dominated regime,
Pg(k, μ) 
 1/ng . In Figure 4 we show ngPg(k, μ) for Ng =
0.755 × 106 and b1 = 2.5 as a function of z. The factor of
1/2 accounts for symmetry in k → −k. The derivatives of
ln Pg(k, μ) with respect to θi are calculated and given in the
appendix A.2.

Unlike for BAOs, which are insensitive to the parameters that
affect the overall shape, for the full modeling we need to make
sure that we take into account potential degeneracy between DA
and H and any other parameters that affect the overall shape.
In this paper, we include ln A, β, σ̃v

2, ns, and αs . (We shall
comment on the effects of nonlinear bias in Section 3.3.)

We study the effects of marginalization over various parame-
ter combinations by taking the submatrix, F̄ij , of the full 7 × 7
matrix with the index, i, of θi running from 1 to 7, such that the
submatrix includes the matrix components of desired parame-
ters to be marginalized. In other words, the parameters that are
not included in the submatrix are fixed and not marginalized
over.

Then, we compute the marginalized errors in ln DA and ln H
as

σln DA
=

√
(F̄−1)11, (27)

σln H =
√

(F̄−1)22. (28)

To simplify the analysis, we fix all the other cosmological
parameters, such as f (z), Ωbh

2, etc. These cosmological param-
eters will be determined by the future CMB mission, Planck,
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Table 1
Fisher Matrix Forecast for the Full Power Spectrum Analysis with Various Choices of Marginalization

None ln A β σ̃ 2
v ns αs ln A, β

Δln DA (%) 0.279 0.876 0.318 0.282 0.479 0.416 1.100
Δln H (%) 0.433 0.784 1.118 0.794 0.506 0.535 1.127
rDA,H 0.379 −0.723 −0.312 0.080 −0.232 −0.230 0.033
Δln R (%) 0.187 0.761 0.318 0.259 0.386 0.363 0.774

β, σ̃ 2
v ln A, σ̃ 2

v ln A, β, σ̃ 2
v ln A, ns, αs ln A, β, ns ln A, β, σ̃ 2

v ,
αs ns, αs

Δln DA (%) 0.327 0.891 1.101 1.088 1.232 1.250
Δln H (%) 1.448 1.096 1.459 0.982 1.355 1.521
rDA,H −0.386 −0.635 0.001 −0.822 −0.204 −0.103
Δln R (%) 0.322 0.868 0.878 0.973 1.000 1.013

Notes. The fractional errors in DA and H, and their cross-correlation coefficients, rDA,H , and the fractional errors in the combined
one-dimensional distance scale, R (Equation 29), marginalized over several combinations of parameters: ln A, β, σ̃ 2

v , αs and ns. The
cosmological parameters are taken from Table 1 of the Komatsu et al. (2009; “WMAP+BAO+SN ML”). The survey parameters
approximate those of HETDEX: the survey area and target redshift are 420 deg2 and 1.9 < z < 3.5, respectively, the number of galaxies
is Ng = 0.755 × 106, and the bias is assumed to be linear with b1 = 2.5.

Figure 4. Galaxy power spectrum times the number density of galaxies,
ngPg(k, μ), where the number of the galaxies is fixed for each redshift bin
to Ng = 0.755 × 106, and Pg(k, μ) is computed from Equation (21) with
b1 = 2.5. The shot noise dominates the error budget when ngPg(k, μ) < 1.
Contour values are [0.1, 0.3, 0.5, 1.0, 3.0, 5.0]. (Top left) z = 1, (top right)
z = 2, (bottom left) z = 3, (bottom right) z = 4.

accurately, and therefore it is a good approximation to simply fix
them, and vary only ln DA, ln H , A, β, σ̃ 2

v , ns and αs . The fidu-
cial value for the bias is set to b1 = 2.5 and f = d ln D/d ln a
is computed from the fiducial cosmological model.7 We expect
that the analysis of the bispectrum (Fourier transform of the
three-point function) will give a precise determination of b1
(as well as nonlinear bias parameters such as b2; Sefusatti &
Komatsu 2007), and therefore it is also a good approximation
to simply fix it. However, we also explore a more conservative

7 One might also wish to marginalize over f for the following reason: while f
can be calculated from the cosmological parameters assuming the validity of
general relativity, one might choose to let f free and use it for testing the
validity of general relativity. In this paper, we chose to assume the validity of
general relativity, but one can extend our analysis to let f free in a
straightforward manner.

case where we do not know what b1 is, i.e., we marginalize over
the overall amplitude as well as β. In the future work we also
plan to investigate the effect of marginalization over b2, using a
joint analysis of the power spectrum and bispectrum. Therefore,
our calculation presented here will provide the lower limit to the
errors in ln DA and ln H expected from the full modeling of the
power spectrum measured in a survey like HETDEX. We use
the same survey parameters that we have used in Section 3.1,
and we integrate Equation (24) up to kmax = 0.40 h Mpc−1.

In Figure 3, we show the resulting error ellipses from
the full modeling, in the smaller, solid contours, with four
choices of marginalization (we present the results from more
choices of marginalization in Table 1). First, for all choices
of marginalization we find that the sizes of the errors in both
DA and H are substantially smaller than those from the BAO-
only analysis with the FITEX-2d. For example, determinations
of both DA and H are improved by more than a factor of 2
in the case of the amplitude marginalization. This is expected,
as we are able to use more information encoded in the power
spectrum; namely, the Hubble horizon at the matter-radiation
equality epoch and the Silk damping scale. Second, DA and
H are anti-correlated for the amplitude marginalization, with
the cross-correlation coefficient of r = −0.72 (see the top-left
panel of Figure 3), as opposed to a positive correlation seen in
the BAO-only analysis. This is due to the marginalization over
the overall amplitude: if we fixed the overall normalization, then
we would still find a positive correlation between DA and H with
r = 0.38.

The origin of the negative correlation is the so-called Alcock–
Paczynski (AP) test (Alcock & Paczynski 1979): when the
redshift space distortion is known perfectly well, the departure
of the power spectrum in redshift space from isotropy, i.e.,
dependence of P (k, μ) on μ2, can be used to determine DAH ,
resulting in r = −1 for a power-law power spectrum. The
contributions from departures of P (k) from a pure power-law,
i.e., the existence of “standard rulers,” such as BAOs, the Hubble
horizon at the matter-radiation equality and the Silk damping
scale, make r bigger than −1 (see Appendix A.3 for more
details). When ln A and β are marginalized over simultaneously,
the correlation between DA and H nearly disappears: the AP test
no longer works when we marginalize over the linear redshift
space distortion. We find r = 0.033 (see the top right panel of
Figure 3) for this case.
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When ln A is marginalized over while the other parameters
(β, σ̃ 2

v , ns, and αs) are held fixed, we find 0.88% and 0.78%
errors on DA and H, respectively, with r = −0.72. The
more parameters we marginalize over, the greater the cross-
correlation coefficient between DA and H as well as the errors
on DA and H become. Note that the increase in the errors does
not necessarily imply the decrease in the statistical power in
constraining dark energy properties: since the cross-correlation
coefficient is also reduced, the error in the combined one-
dimensional distance scale, R, is much less affected by the
marginalization (see Table 1). The error in ln R has been
computed as (Seo & Eisenstein 2007)

σ 2
ln R = σ 2

ln DA
(1 − r2)

1 + 2rσln DA
/σln H + σ 2

ln DA

/
σ 2

ln H

. (29)

Finally, the errors in DA, H, and R for various choices
of marginalization are (σln DA

, σln H , σln R) = (0.88%, 0.78%,
0.76%), (1.10%, 1.13%, 0.77%), (1.10%, 1.46%, 0.88%), and
(1.25%, 1.52%, 1.01%) for the marginalization over ln A,
ln A and β, ln A, β and σ̃ 2

v , and ln A, β, σ̃ 2
v , ns and αs ,

respectively (see Table 1 for a more comprehensive list).
This result should be compared with that from the BAO-only
analysis: (σln DA

, σln H , σln R)=(1.76%, 2.47%, 1.08%). It is clear
that the full analysis, even with a generous set of marginalization
choices, beats the BAO-only analysis with a significant gain in
the distance determination accuracies.

3.3. Caveat for the Full Modeling

Our analysis presented in Section 3.2 is too simplistic and
optimistic, as it ignores any systematic errors due to our lack
of understanding of the effects of various nonlinearities in the
power spectrum.

Among the three major nonlinearities, nonlinear matter clus-
tering is under control, at least for high redshifts, i.e., z � 2, as
one can model nonlinear evolution of matter fluctuations almost
exactly by the third-order perturbation theory (Jeong & Komatsu
2006). While the nominal third-order perturbation theory breaks
down at lower redshifts, z ∼ 1, there have been a number of
studies aiming at improving upon our ability to compute P (k)
at z ∼ 1 or even lower redshifts (Crocce & Scoccimarro 2008;
Matarrese & Pietroni 2007; Taruya & Hiramatsu 2008; Valageas
2007; Matsubara 2008; McDonald 2007). Therefore, it is quite
possible that the nonlinear matter clustering will be fully under
control in the near future, at least for the scales that are relevant
to the BAO scales, i.e., k � 0.40 h Mpc−1.

In a separate paper (Jeong & Komatsu 2009), we show that
nonlinear galaxy biasing is also under control in the weakly
nonlinear regime. One can use the perturbation theory approach
combined with the local bias assumption (Fry & Gaztanaga
1993; McDonald 2006) to model the galaxy power spectrum
with nonlinear bias.

The most problematic one is the nonlinear redshift space
distortion. Our understanding of nonlinear redshift space distor-
tion, especially the FoG effect, is limited (Scoccimarro 2004).
Therefore, whether one can achieve the accuracy of DA and H
(H in particular) reported in Figure 3 depends crucially on our
ability to correct for the FoG effect. This is work in progress.
Note that the marginalization over σ̃ 2

v should capture some of
the increase in the errors in distance scales due to our ignorance
of FoG.
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Figure 5. Accuracy of DA and H extracted from BAOs with the FITEX-2d
method applied to the Millennium Galaxy Simulation in redshift space at z = 3
(Springel et al. 2005; Bower et al. 2006; Benson et al. 2003; Cole et al. 2000).
The best-fitting values of DA and H agree with the true values to within statistical
errors of the Millennium Simulation; thus, the FITEX-2d method also yields
unbiased estimates of DA and H for the Millennium Simulation. The solid and
dotted lines show 68% and 95% C.L., respectively.

4. EXTRACTION OF DA AND H FROM THE
MILLENNIUM SIMULATION

How realistic is our result for the determinations of DA and H
from the BAO phases using the FITEX-2d method? Since our
Monte Carlo simulations used in Section 3.1 are too simple, in
this section we test the FITEX-2d method further by using the
Millennium Simulation (Springel et al. 2005).

We use the Millennium Galaxy catalogue, generated by the
semi-analytical galaxy formation code (Bower et al. 2006;
Benson et al. 2003; Cole et al. 2000). We have measured the two-
dimensional power spectrum of galaxies in redshift space from
the Millennium Simulation, and applied the FITEX-2d method
to remove the smooth component. We then find the best-fitting
DA and H from the BAO phases extracted from the FITEX-2d.
Again, we use the data up to kmax = 0.40 h Mpc−1.

In Figure 5 we show the result. The best-fitting value that
we find from the Millennium Simulation corresponds to one
point at the center of the contours. We find the errors from
the Monte Carlo simulations that we described in Section 3.1
with the survey parameters replaced by those of the Millennium
Simulation: Vsurvey = (0.5h−1Gpc)3, ng = 0.138 h3 Mpc−3,
and z = 3.06. (There are 17,238,935 galaxies in the Millennium
Simulation at z = 3.06.) For the theoretical power spectrum
that we use for generating Monte Carlo simulations, we use
the best-fitting power spectrum for the galaxy catalogue of the
Millennium Simulation found in Jeong & Komatsu (2009).

Since the volume of the Millennium Simulation is ∼ 24
times as small as that would be surveyed by HETDEX, the
uncertainties in DA and H are larger for the Millennium
Simulation. (Compare Figure 5 with the larger contours of
Figure 3.) We find 5.1% and 6.8% errors on DA and H,
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Figure 6. Partial derivatives of ln DA and ln H with respect to the dark
energy equation of state parameters, w0 and wa , as a function of z for
two different cosmological models. (Left) (w0, wa) = (−1.0, 0.0). (Right)
(w0, wa) = (−1.1, 0.5).

respectively, with the cross-correlation coefficient of r = 0.43,
from the Monte Carlo simulations. These errors are larger than
those from HETDEX Monte-Carlo simulation by a factor of 2
(rather than

√
24 ∼ 5) as the shot noise on the power spectrum

of the Millennium Simulation is much smaller than that of
HETDEX simulation.

The best-fitting values of DA and H are well within the 68%
confidence level (C.L.) region, which indicates that the FITEX-
2d is able to yield unbiased estimates of the BAO phases from
the Millennium Simulation.

These results indicate that the FITEX-2d method that we
have developed in this paper can be used for extracting the
BAOs and measuring DA and H safely from the real data. It
would be interesting to apply the FITEX-2d method to the two-
dimensional power spectrum measured from the SDSS LRG
samples (Okumura et al. 2008), and extract DA and H from them.

5. ERROR PROPAGATION TO THE DARK ENERGY
EQUATION OF STATE

In Sections 3 and 4, we have estimated errors in DA and
H from two different approaches, i.e., the BAO fitting using
the FITEX-2d method and the full modeling. In this section,
we propagate errors in DA and H to those in the dark energy
equation of state parameters. We parametrize w(z) using the
linear model, w(z) = w0 +waz/(1 +z) (Linder 2003; Chevallier
& Polarski 2001).

We propagate the errors in DA and H to those in w0 and wa

by

F̃αβ =
∑
ij

∂pi

∂qα

∂pj

∂qβ

Fij , (30)

where F̃αβ is the Fisher matrix for the dark energy parameters,
Fij is the Fisher matrix for DA and H, pi = (ln DA, ln H ) for
i = 1 and 2, and qα = (w0, wa) for α = 1 and 2.

Partial derivatives of DA and H with respect to w0 and wa are
given by

∂ ln DA

∂w0
= −3

2
ΩΛ

∫ z

0 ln(1 + z′)f (z′)g(z′)−3/2dz′∫ z

0 g(z′)−1/2dz′ , (31)

∂ ln DA

∂wa

= −3

2
ΩΛ

×
∫ z

0 [ln(1 + z′) − z′
1+z′ ]f (z′)g(z′)−3/2dz′∫ z

0 g(z′)−1/2dz′ , (32)

∂ ln H

∂w0
= 3

2
ΩΛ ln(1 + z)

f (z)

g(z)
, (33)

∂ ln H

∂wa

= 3

2
ΩΛ

[
ln(1 + z) − z

1 + z

]
f (z)

g(z)
, (34)

where f (z) and g(z) are given by

f (z) = exp

(
3
∫ z

0

1 + w0 + wa
z′

1+z′

1 + z′ dz′
)

, (35)

g(z) = Ωm(1 + z)3 + ΩΛf (z). (36)

Figure 6 shows the derivatives as a function of z be-
tween 0.5 � z � 6.5 in two different cosmological models,
(w0, wa) = (−1.0, 0.0) and (−1.1, 0.5). The former is the ΛCDM
model, while the latter resembles the maximum likelihood
values of w0 and wa from the WMAP+BAO+SN+BBN
(Komatsu et al. 2009). The derivatives are similar for these
cosmological models, and therefore we use the ΛCDM model
as the fiducial model for computing the derivatives.

We add the distance information from CMB as

F̃ total
αβ (z) = F̃ CMB

αβ + F̃
gal
αβ (z), (37)

where we assume that the CMB experiment yields 1% determi-
nation of the angular diameter distance out to z = 1090, i.e., we
use

F̃ CMB
αβ = 104 ∂ ln DA(z = 1090)

∂qα

∂ ln DA(z = 1090)

∂qβ

. (38)

We are interested in how the BAO-only analysis compares
with the full modeling. In Figure 7 we show the projected error
contours on w0 and wa calculated from the BAO-only analysis
with the FITEX-2d and those from the full analysis at four
redshift bins: 0.5 � z � 1.5, 1.5 � z � 2.5, 2.5 � z � 3.5,
and 3.5 � z � 4.5. The survey area and the number of galaxies
are 420 deg2 and Ng = 2.9 × 106 for all redshift bins. From
the BAO-only analysis we find (Δw0, Δwa) = (0.29, 1.26),
(0.38, 1.39), (0.55, 1.92), and (0.91, 3.18), whereas from the
full modeling we find (Δw0, Δwa) = (0.09, 0.27), (0.06, 0.17),
(0.09, 0.35), and (0.17, 0.68), for 0.5 � z � 1.5, 1.5 � z � 2.5,
2.5 � z � 3.5, and 3.5 � z � 4.5, respectively.

We therefore conclude that the full analysis yields much better
constraints on w0 and wa than the BAO-only analysis.

6. CONCLUSION

In this paper, we have developed a method, called the FITEX-
2d method, to extract the two-dimensional phases of BAOs from
galaxy power spectra in redshift space. Our model builds on and
extends the existing one-dimensional algorithm, called FITEX,
developed by Koehler et al. (2007).
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Figure 7. Projected 68% constraints on the dark energy parameters, w0 and wa :
the BAO fitting with the FITEX-2d method (dotted) vs. the full modeling (solid).
For both cases, we use the power spectrum up to kmax = 0.40 h Mpc−1, and we
assume that the CMB experiment measures the angular diameter distance out
to z = 1090 with 1% accuracy. The survey area and the number of galaxies are
420 deg2 and Ng = 0.755×106 for all cases. Top left: 0.5 � z � 1.5; top right:
1.5 � z � 2.5; bottom left: 2.5 � z � 3.5; bottom right: 3.5 � z � 4.5. Here,
the full modeling Fisher matrix is marginalized over the overall amplitude.

Our method removes the smooth, nonoscillating component
from the observed galaxy power spectrum in redshift space.
The fitting function consists of the smooth one-dimensional
spectrum that depends only on k, P 1d

smooth(k) given by
Equation (9), multiplied by the angle-dependent function ex-
panded in the Legendre polynomials with even multipoles. The
coefficients of the Legendre polynomials contain even powers
of k. The resulting function, given by Equation (10), is able to
capture the nonoscillating part of the galaxy power spectrum
well.

We have tested the FITEX-2d method using the analytical
model without any noise, the Monte Carlo realizations with
noise expected from the HETDEX experiment (Hill et al.
2004), and the galaxy catalogue created from the Millennium
Simulation (Springel et al. 2005). In all cases the FITEX-
2d method yields unbiased estimates of the angular diameter
distance, DA, and the expansion rate, H.

However, the BAOs capture only a part of distance infor-
mation encoded in the galaxy power spectrum. To exploit the
distance information, especially the equality scale, rH (zeq), we
have explored the constraints on DA and H from the full model-
ing of the galaxy power spectrum in redshift space. Provided that
three key nonlinearities (nonlinear matter clustering, nonlinear
galaxy bias, and nonlinear redshift space distortion) are under
control, we find that the full modeling yields the constraints that
are better than the BAO-only analysis by more than a factor of
2 both in DA and H, and the dark energy parameters such as w0
and wa .

While the effects of nonlinear matter clustering (Jeong &
Komatsu 2006; Crocce & Scoccimarro 2008; Matarrese &
Pietroni 2007; Taruya & Hiramatsu 2008; Valageas 2007;

Matsubara 2008; McDonald 2007) and nonlinear galaxy bias
(Jeong & Komatsu 2009) are being understood in the weakly
nonlinear regime that is relevant to the future galaxy surveys,
the effects of nonlinear redshift space distortion are poorly un-
derstood. While the FITEX-2d method that we have developed
in this paper are useful for obtaining robust constraints on DA
and H, hence the dark energy properties, one must understand
nonlinear redshift space distortion to fully exploit the full infor-
mation content of the galaxy power spectrum in redshift space.
We would then be able to reduce the errors in DA and H by more
than a factor of 2.
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thorough analysis. This material is based in part upon work
supported by the Texas Advanced Research Program under
Grant No. 003658-0005-2006, by NASA grants NNX08AM29G
and NNX08AL43G, and by NSF grant AST-0807649. E.K. ac-
knowledges support from an Alfred P. Sloan Research Fellow-
ship. The Millennium Simulation databases used in this paper
and the Web application providing online access to them were
constructed as part of the activities of the German Astrophysical
Virtual Observatory.

APPENDIX

FISHER MATRIX CODE

In this Appendix, we describe what we have implemented
in our Fisher matrix code, which is publicly available as a
part of “Cosmology Routine Library (CRL),” developed by
one of the authors (E.K.). This code includes the nonlinear
matter power spectrum in both real and redshift space, as well
as marginalization over the amplitude, the linear redshift space
distortion, the velocity dispersion of FoGs, the primordial tilt
and running index. In the future release we plan to include
nonlinear galaxy bias and primordial non-Gaussianity.

A.1. Basics

A simple, approximate formula of the Fisher matrix for galaxy
survey is given by (e.g., Seo & Eisenstein 2003)

Fij =
∫ kmax

0

4πk2dk

(2π )3

∫ 1

0
dμ

∂ ln Pg(k, μ)

∂θi

∂ ln Pg(k, μ)

∂θj

w(k, μ),

(A1)
where Pg(k, μ) is the galaxy survey power spectrum calculated
theoretically as a function of parameters, θi are the parameters
to be extracted from the data, and w(k, μ) is a function given by

w(k, μ) ≡ 1

2

[
ngPg(k, μ)

1 + ngPg(k, μ)

]
Vsurvey. (A2)

Here, ng and Vsurvey are the number density of galaxies and the
volume of survey, respectively.

In linear theory, Pg(k, μ) is given by

Pg(k, μ) = b2
1R(μ2)P linear(k), (A3)

where b1 is the scale independent linear bias factor, P linear(k)
is the linear matter power spectrum, and R(μ2) describes the
linear redshift space distortion effect (Kaiser effect):

R(μ2) ≡ (1 + βμ2)2 (A4)

β = (d ln D/d ln a)/b1, (A5)

where D is the growth factor of the linear density fluctuations,
and a is the scale factor.
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A.2. Derivatives

To calculate the logarithmic derivatives of P (k) in Equation
(A1), let us write down the nonlinear galaxy power spectrum
(with linear bias) as (Equation 21):

Pg(k, μ) = b2
1[Pδδ(k) + 2βμ2Pδθ (k) + β2μ4Pθθ (k)]

× 1

1 + f 2k2μ2σ̃ 2
v

.

We compute the derivatives with respect to the following seven
parameters: the angular diameter distance, DA, the Hubble
expansion rate, H, the overall amplitude of the galaxy power
spectrum, A, the linear redshift space distortion factor, β ≡
f/b1, the velocity dispersion with an empirically calibrated
fudge factor, σ̃ 2

v , the tilt of the primordial power spectrum, ns,
and the running index, αs (Pini ∝ kns+1/2αs ln[k/kpivot]). We choose
the convention such that

(θ1, θ2, θ3, θ4, θ5, θ6, θ7) = (ln DA, ln H, ln A, β, σ̃ 2
v , ns, αs).

(A6)
The derivatives with respect to ln A, β, σ̃ 2

v , ns, and αs are easy
to evaluate. They are given by

∂ ln Pg(k, μ)

∂ ln A
= 1, (A7)

∂ ln Pg(k, μ)

∂β
= 2μ2Pδθ (k) + 2βμ4Pθθ (k)

Pδδ(k) + 2βμ2Pδθ (k) + β2μ4Pθθ (k)
, (A8)

∂ ln Pg(k, μ)

∂σ̃ 2
v

= − f 2k2μ2

1 + f 2k2μ2σ̃ 2
v

, (A9)

∂ ln Pg(k, μ)

∂ns

= ∂ ln Pini(k)

∂ns

= ln k, (A10)

∂ ln Pg(k, μ)

∂αs

= ∂ ln Pini(k)

∂αs

= 1

2

[
ln

(
k

kpivot

)]2

. (A11)

We compute the derivatives with respect to ln DA and ln H in a
two-step process. First, we write

∂ ln Pg(k, μ)

∂ ln DA

= ∂ ln Pg(k, μ)

∂ ln k

∂ ln k

∂ ln DA

+
∂ ln Pg(k, μ)

∂μ2

∂μ2

∂ ln DA

, (A12)

∂ ln Pg(k, μ)

∂ ln H
= ∂ ln Pg(k, μ)

∂ ln k

∂ ln k

∂ ln H

+
∂ ln Pg(k, μ)

∂μ2

∂μ2

∂ ln H
, (A13)

where

∂ ln k

∂ ln DA

= 1 − μ2, (A14)

∂ ln k

∂ ln H
= − μ2, (A15)

∂μ2

∂ ln DA

= − 2μ2(1 − μ2), (A16)

∂μ2

∂ ln H
= − 2μ2(1 − μ2), (A17)

∂ ln Pg(k, μ)

∂μ2
= 2βPδθ (k) + 2β2μ2Pθθ (k)

Pδδ(k) + 2βμ2Pδθ (k) + β2μ4Pθθ (k)

− f 2k2σ̃ 2
v

1 + f 2k2μ2σ̃ 2
v

. (A18)

Finally, we need to know the “effective spectral index,”
neff(k, μ), given by

neff(k, μ) ≡ ∂ ln Pg(k, μ)

∂ ln k
, (A19)

or explicitly

neff(k, μ)

= Pδδ(k)nδδ(k) + 2βμ2Pδθ (k)nδθ (k) + β2μ4Pθθ (k)nθθ (k)

Pδδ(k) + 2βμ2Pδθ (k) + β2μ4Pθθ (k)

− 2f 2k2μ2σ̃ 2
v

1 + f 2k2μ2σ̃ 2
v

, (A20)

where

nδδ(k) ≡ ∂ ln Pδδ(k)

∂ ln k
, (A21)

nδθ (k) ≡ ∂ ln Pδθ (k)

∂ ln k
, (A22)

nθθ (k) ≡ ∂ ln Pθθ (k)

∂ ln k
. (A23)

A.3. Correlation Coefficients

In this subsection, we explore the behavior of the cross-
correlation coefficient between DA and H in various cases.
In particular, we focus on the effect of the marginalization
over the overall amplitude with (Section A.3.2) and without
(Section A.3.1) the additional marginalization over the redshift
space distortion.

A.3.1. No Redshift Space Distortion, β = 0

Let us evaluate the Fisher matrices in the limit that the redshift
space distortion is absent, i.e., β = 0. In this limit, the weighting
function in Equation (A1) and the effective spectral index in
Equation (A19) become independent of μ, i.e., w(k, μ) → w(k)
and neff(k, μ) → neff(k). We obtain

F11 =
∫ kmax

kmin

k2dk

2π2
[neff(k)]2w(k)

∫ 1

0
dμ(1 − μ2)2 (A24)

F12 =
∫ kmax

kmin

k2dk

2π2
[neff(k)]2w(k)

∫ 1

0
dμ(1 − μ2)(−μ2)

(A25)

F13 =
∫ kmax

kmin

k2dk

2π2
neff(k)w(k)

∫ 1

0
dμ(1 − μ2) (A26)
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F22 =
∫ kmax

kmin

k2dk

2π2
[neff(k)]2w(k)

∫ 1

0
dμ(−μ2)2 (A27)

F23 =
∫ kmax

kmin

k2dk

2π2
neff(k)w(k)

∫ 1

0
dμ(−μ2) (A28)

F33 =
∫ kmax

kmin

k2dk

2π2
w(k)

∫ 1

0
dμ. (A29)

Now, in order to understand the effect of the structure of neff , let
us assume that the galaxy power spectrum is a pure power-law,
i.e., neff(k) = n and n is the independent of k. In this limit, we
obtain

Fij = w̄

⎛
⎜⎜⎝

8n2

15 − 2n2

15
2n
3

− 2n2

15
n2

5 − n
3

2n
3 − n

3 1

⎞
⎟⎟⎠ (A30)

where w̄ ≡ ∫
k2dk
2π2 w(k).

The marginalized errors of parameters and the correlation
coefficients are computed from the inverse of the Fisher matrix.
However, one can show that the matrix given in Equation (A30)
is singular. In other words, DA and H are completely degenerate
with the amplitude for a power-law power spectrum. This result
shows that only the departure of the power spectrum from a pure
power-law, i.e., the existence of characteristic scales, can break
the degeneracy between DA and H, and A. These scales are often
called the “standard rulers.”

To understand the structure of the Fisher matrix in
Equation (A30) better, let us add small perturbations, ε > 0,
to the diagonal elements, and invert the matrix. The result is

(F−1)ij = 1

w̄

⎛
⎜⎜⎝

1
(2+n2)ε − 1

(2+n2)ε − n
(2+n2)ε

− 1
(2+n2)ε

1
(2+n2)ε

n
(2+n2)ε

− n
(2+n2)ε

n
(2+n2)ε

n2

(2+n2)ε

⎞
⎟⎟⎠ + O(ε0).

(A31)
We find that the correlation coefficient between DA and H is

r12 ≡ (F−1)12√
(F−1)11(F−1)22

→ −1 (A32)

as ε → 0. Therefore, ln DA and ln H are totally anti-correlated,
which implies that, although we cannot determine ln DA

and ln H simultaneously, we can determine ln DA + ln H =
ln(DAH ), even for a power-law power spectrum.8 This is known
as the Alcock–Paczyński (AP) test (Alcock & Paczynski 1979).

There is a special case in which the covariance between
A and DA or H may be ignored. One may imagine the sit-
uation where neff(k) depends upon k such that A is uncorre-
lated with DA or H. For example, if neff(k) oscillates about
zero, then

∫ kmax

kmin

k2dk
2π2 neff(k)w(k) would be small compared with∫ kmax

kmin

k2dk
2π2 [neff(k)]2w(k) or

∫ kmax

kmin

k2dk
2π2 w(k). Therefore, F13 and

F23 may be ignored, making A decorrelated with DA and H. In
this case, the Fisher matrix is a two-by-two matrix given by

Fij = w̄n2

(
8
15 − 2

15

− 2
15

1
5

)
. (A33)

8 The other cross-correlation coefficients are r13 → ∓1 and r23 → ±1 for
n > 0 and n < 0, respectively.

The inverse of this matrix is then

(F−1)ij = 1

w̄n2

(
9
4

3
2

3
2 6

)
. (A34)

The correlation coefficient between DA and H is thus given by

r12 = 3/2√
9/4 × 6

= 1√
6

� 0.408. (A35)

This result has been derived by Seo & Eisenstein (2007), and
justifies the use of BAOs as a way to measure DA and H with a
correlation coefficient of 0.408.

From these studies we are led to the following conclusions:

1. When the information is dominated by BAOs, the corre-
lation coefficient between DA and H is r12 � 0.408. The
amplitude of the BAOs contributes little to the errors on DA
and H, as the amplitude information is de-correlated with
DA and H.

2. When the information is dominated by the AP test, r12 �
−1.

3. In reality, as we have shown in this paper, BAOs contribute
less than the overall shape of the power spectrum. Also, the
shape of the power spectrum is not exactly a power-law. As
a result, the correlation coefficient from the full analysis is
usually negative (or small positive), but always greater than
−1 (see Table 1).

A.3.2. With Redshift Space Distortion, β > 0

Next, let us consider the case where the redshift space
distortion cannot be ignored. In this case, we see from
Equations (A2) and (A20) that the weighting function, w(k, μ),
and the effective spectral index, neff(k, μ), are no longer inde-
pendent of μ. The analytical treatment is also possible for this
case, although the results are too complicated to be useful. We
therefore report on the numerical results.

Here, we choose the survey parameters given in Section 3.2
with the nonlinear power spectrum of Equation (21). The results
from the numerical calculations of the Fisher matrix are given
in Table 1. We find that the marginalization over the amplitude
information, and that over the amplitude and the shape of the
primordial power spectrum (i.e., ns and αs) give the cross-
correlation close to −1; thus, one relies on the AP test. The
marginalization over the amplitude and the linear redshift space
distortion (i.e., β) drive the cross-correlation towards zero, as the
AP test no longer works when the linear redshift space distortion
is marginalized over. However, in both cases the errors in the
combined one-dimensional distance scale, R, are about the same.
In other words, while one changes the orientation of the ellipse,
the area is approximately preserved.

In summary, when the amplitude information is marginalized
over, the information is mostly coming from the dependence
of P (k, μ) on μ2, which yields a constraint on DAH via the
AP test, while when both the amplitude and the linear redshift
space distortion are marginalized, the most information is
coming from the standard rulers, which can constrain DA and H
separately, driving the cross-correlation towards zero.

Finally, in Figure 8 we show how different choices of
marginalization over parameters influence the error contours
of w0 and wa: (Δw0, Δwa) = (0.08, 0.27), (0.08, 0.30),
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Figure 8. Projected 68% constraints on the dark energy parameters, w0 and
wa . The full modeling (solid) marginalized over different combinations of
parameters as well as the BAO-only analysis (dotted) are shown. For all cases,
we use the power spectrum up to kmax = 0.40 h Mpc−1, and we assume that
the CMB experiment measures the angular diameter distance out to z = 1090
with 1% accuracy. The survey area and the number of galaxies are 420 deg2 and
Ng = 0.755 × 106, and the redshift range is 1.9 � z � 3.5 for all cases. (Top
Left) marginalized over ln A, (top right) marginalized over ln A, β, (bottom left)
marginalized over ln A, β and σ̃ 2

v , (bottom right) marginalized over ln A, β, σ̃ 2
v ,

ns and αs .

(0.24, 0.85), and (0.24, 0.86), for the cases of no marginaliza-
tion, marginalization over ln A, marginalization over ln A, β and
σ̃ 2

v , and marginalization over ln A, β, σ̃ 2
v , ns, and αs , respectively.

A.4. User’s Guide

When using the Fisher matrix code, one may choose the form
of the model galaxy power spectrum from:

1. Linear power spectrum with the linear redshift space
distortion (Kaiser effect);

2. Nonlinear power spectrum from the third-order perturba-
tion theory with the linear redshift space distortion;

3. Nonlinear power spectrum from the third-order perturba-
tion theory with the nonlinear redshift space distortion given
by Equation (71) of Scoccimarro (2004); or

4. Nonlinear power spectrum from the third-order perturba-
tion theory with the nonlinear redshift space distortion given
by Equation (21).

Next, specify the number of parameters one wishes to
marginalize over, and then choose the parameters from ln A,
β, σ̃ 2

v , ns, and αs .
A given galaxy survey can be sliced up into multiple redshift

bins. After entering the survey area in units of deg2, one is
asked to enter the following parameters at each redshift bin: the
redshift range (zmin <z<zmax), the number of galaxies in units
of millions in the bin, b1, kmax in units of h Mpc−1, and the
redshift error in units of km s−1.

The linear power spectrum at z = 30 has been precomputed
using the CAMB code (Lewis et al. 2000) for the maximum

likelihood parameters given in Table 1 of Komatsu et al. (2009)
(“WMAP+BAO+SN”). The ingredients of the nonlinear power
spectra, Pδδ , Pδθ , and Pθθ , have been precomputed from the
linear spectrum at z = 30. These spectra are then evolved to
a specified redshift by the appropriate growth factor obtained
by solving the differential equation given in Equation (76) of
Komatsu et al. (2009).

Finally, the code yields the errors on ln DA, ln H , rDA,H ,
and ln R (see Equation 29 for the definition of the error in the
combined distance scale, R).

REFERENCES

Afshordi, N., Loh, Y.-S., & Strauss, M. A. 2004, Phys. Rev. D, 69, 083524
Alcock, C., & Paczynski, B. 1979, Nature, 281, 358
Angulo, R. E., Baugh, C. M., Frenk, C. S., & Lacey, C. G. 2008, MNRAS, 383,

755
Ballinger, W. E., Peacock, J. A., & Heavens, A. F. 1996, MNRAS, 282,

877
Benson, A. J., Bower, R. G., Frenk, C. S., Lacey, C. G., Baugh, C. M., & Cole,

S. 2003, ApJ, 599, 38
Blake, C., & Glazebrook, K. 2003, ApJ, 594, 665
Boughn, S., & Crittenden, R. 2004, Nature, 427, 45
Bower, R. G., Benson, A. J., Malbon, R., Helly, J. C., Frenk, C. S., Baugh, C.

M., Cole, S., & Lacey, C. G. 2006, MNRAS, 370, 645
Chevallier, M., & Polarski, D. 2001, Int. J. Mod. Phys., D10, 213
Cole, S., Lacey, C. G., Baugh, C. M., & Frenk, C. S. 2000, MNRAS, 319,

168
Cole, S., et al. 2005, MNRAS, 362, 505
Copeland, E. J., Sami, M., & Tsujikawa, S. 2006, Int. J. Mod. Phys., D15,

1753
Crocce, M., & Scoccimarro, R. 2008, Phys. Rev. D, 77, 023533
Davis, M., & Peebles, P. J. E. 1983, ApJ, 267, 465
Dunkley, J., et al. 2009, ApJS, 180, 306
Eisenstein, D. J., Hu, W., & Tegmark, M. 1999, ApJ, 518, 2
Eisenstein, D. J., Seo, H.-J., & White, M. 2007, ApJ, 664, 660
Eisenstein, D. J., et al. 2005, ApJ, 633, 560
Evrard, A. E., et al. 2002, ApJ, 573, 7
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