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Dedication 

 

 To the millions of people personally afflicted by alcohol abuse and dependence 

and to the family and friends who have helplessly had to stand by and watch loved ones 

as they suffered the effects of this insidious disease, I dedicate this to you. 

As scientists, we understand the reality of your challenges and we are committed 

to helping advance the development of improved treatment options through our pursuit of 

more clearly understanding the specific sites by which alcohol acts in the brain to 

produce intoxication. 
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Alcohol is abundantly consumed by society and general anesthetics are used 

everyday in operating suites throughout the world, yet the sites and mechanisms of action 

for these drugs are not completely understood. Glycine receptors (GlyRs) are pentameric 

ion channels expressed throughout the brain and spinal cord and have become 

increasingly popular targets in the study of alcohol action. Each GlyR subunit is 

composed of four alpha helical transmembrane segments (TM1-4), and although amino 

acids involved with alcohol action have been previously identified in TM1-4, the 

orientation of each of these residues with respect to a putative alcohol/anesthetic binding 

cavity remains controversial. In order to better characterize this binding cavity within the 

GlyR, we conducted a series of experiments using cysteine mutagenesis and biochemical 

cross-linking. In Aim 1, the participation of TM1 with TM3 in a common 

alcohol/anesthetic binding cavity was further investigated. We used two-electrode voltage 

clamp electrophysiology in Xenopus oocytes to demonstrate the ability of A288 in TM3 

to form cross-links with I229 in TM1, which reduced the ability of both alcohol and 

anesthetics to modulate GlyR function.  Aim 2 investigated whether TM3 could also 

participate in a binding cavity with TM4. We have shown that residues in TM4 are able 

to form cross-links with A288 in TM3, and found that cross-linking between TM3 and 



 xi 

those residues in TM4 also reduced the ability of alcohol and anesthetics to enhance 

GlyR function. Aim 3 determined whether these cross-links are formed between residues 

within the same subunit (intra-subunit) or between subunits (inter-subunit), and 

ultimately whether these residues participate in a common alcohol/anesthetic binding 

cavity within or between GlyR subunits. GlyR protein, which measures about 50 kDa, 

was extracted from oocytes injected with the cysteine mutants, and immunoblotting was 

used with a GlyR-specific antibody to subsequently help quantify band ratios between 

cross-linked and uncross-linked conditions. We found an increase in the 100:50 kDa band 

ratio for the TM1-3 mutant only, but not TM3-4 mutant or the wild-type, which suggests 

TM1-3 may participate in an alcohol binding cavity between GlyR subunits while TM3-4 

may contribute to a binding cavity within a subunit. 
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CHAPTER I: Background and Significance 

 

Despite the frequent consumption of alcohol in our society and the common use 

of general anesthetics in operating suites, scientists and healthcare providers are only 

beginning to understand how these drug molecules interact with molecular targets to 

produce physiological and behavioral effects.  Alcohol, like anesthetics, is a CNS 

depressant capable of producing a range of dose-dependent physiological and behavioral 

effects beginning with low-dose disinhibition and anxiolytic properties followed by 

moderate-dose amnestic and other cognitive impairments. Finally, alcohol and 

anesthetics share similar high-dose end points including sedation, the induction of 

anesthesia, coma, and in severe circumstances, even death. 

Originally, it was proposed that both alcohol and anesthetics exert their effects 

through action at lipid membranes (Janoff et al., 1981; Lyon et al., 1981), however a 

more current and widely accepted view is that these drug molecules act by binding 

directly to a number of proteins in the central nervous system (CNS), including glycine 

receptors (GlyRs) (Harris et al., 2008). GlyRs not only mediate the majority of inhibitory 

neurotransmission in the brain stem and spinal cord (Legendre, 2001), but they are also 

expressed in other brain regions including the olfactory bulb, hippocampus, nucleus 

accumbens (van den Pol and Gorces, 1988; Fatima-Shad and Barry, 1993; Molander and 

Soderpalm, 2005; Baer et al., 2009; Jonsson et al., 2012), and cerebellum (Takahashi et 

al., 1992). 
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THE GLYR STRUCTURE 

GlyRs are members of the Cys-loop family of ligand-gated ion channels, which 

also includes the nicotinic acetylcholine receptor (nAChR), the serotonin 3 receptor (5-

HT3R), and γ-aminobutyric acid type A (GABAA). Functional receptors are composed of 

five homologous subunits positioned around a central chloride channel, with the structure 

of each subunit consisting of an extracellular N-terminal domain, a transmembrane 

domain with four alpha helical segments (TM1, TM2, TM3, and TM4), an intracellular 

loop between TM3 and TM4, and an extracellular C-terminal domain (Figure 1.1). The 

glycine agonist binding site is located extracellularly at the interface between adjacent 

GlyR subunits, where pairs of oppositely charged residues on each side of the interface 

form optimal conditions for glycine binding (Grudzinska et al., 2005). The coupling of 

glycine agonist binding and channel gating has been proposed to involve an interaction of 

the TM2-TM3 linker region with the β1-β2 loop and the Cys loop (Kash et al., 2003). In 

addition, GlyRs can be gated by lower efficacy agonists such as taurine and β-alanine, 

however these agonists likely exert their effects through similar, but distinct, mechanisms 

from that of glycine (Pless et al., 2011).  

Four GlyR α subunits (α1-4) and a single β subunit have been identified 

(Grenningloh et al., 1990; Harvey et al., 2000; Harvey et al., 2004).  There is 80-90% 

sequence identity among the α subunits and approximately 50% identity among the β  
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Figure 1.1. Representative 3D Structure of a ligand-gated ion channel. The extracellular 
domain (ECD) is depicted in red, transmembrane domain (TMD) in purple, and 
cytoplasmic domain (CD) or intracellular loop in green. In the absence of an x-ray crystal 
structure, GlyR homology models are built using related proteins with known sequences 
and structures as a template. The Torpedo nAChR was used as a template for the 
pentamer illustrated here (Adapted from Baenziger and Corringer, 2011).  
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subunit and the α subunits.  GlyR subunits can assemble to form either homomeric α 

receptors or heteromeric αβ receptors (Lynch, 2004).   

 Although a complete high resolution GlyR crystal structure has not yet been 

solved, medium to high resolution structures exist for related ligand-gated ion channel 

motifs, including the acetylcholine binding protein (AChBP) (Brecj et al., 2001; Celie et 

al., 2004) and the Torpedo nAChR (Unwin, 2005).  Additionally, the crystal structures 

for two prokaryotic homologues, Erwinia chrysanthemi (ELIC) and Gloebacter violaceus 

(GLIC) (Hilf and Dutzler, 2008; Hilf and Dutlzer, 2009; Bocquet et al., 2009), and the 

invertebrate Caenorhabditis elegans glutamate-gated chloride channel (GluCl) (Hibbs and 

Gouaux, 2011) have provided improved templates and better informed homology 

modeling for the study of GlyRs and related mammalian ion channels. Most recently, 

Mowrey et al. (2013) used full-length nuclear magnetic resonance (NMR) spectroscopy 

and electron micrographs to produce specific structural information from the expressed 

hGlyR-α1 TM domain. This lower resolution structural information, specifically from the 

GlyR, combined with the known homologue structures and experimental data from 

studies in heterologous expression systems should help to provide ongoing insight and 

more detailed, higher resolution information regarding GlyR structure. 

 

THE GLYR, ALCOHOL, AND ANESTHETICS 

Alcohols and volatile anesthetics were initially hypothesized to produce their 

effects through action at the lipid bilayer of cell membranes.  This lipid hypothesis was 
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based on the early observation that volatile anesthetic potency strongly correlated with 

the ability of anesthetics to partition into olive oil (Meyer, 1899; Overton, 1901).  More 

recently however, there has been accumulating evidence that these drug molecules 

instead bind to specific proteins (Franks and Lieb, 1984; Mihic et al., 1997), and 

currently, the protein sites of action theory is the predominant view (Harris et al., 2008).  

In addition, experimental evidence has shown that alcohols and volatile anesthetics likely 

share common sites of action in the GlyR (Mihic et al., 1997; Beckstead et al., 2001; 

Jenkins et al., 2001) and act as positive allosteric modulators (Harrison et al., 1993; 

Mascia et al., 1996). 

Initial studies using heterologous expression systems, site-directed mutagenesis, 

and alkyl thiol reagents identified two critical amino acid residues for alcohol and 

anesthetic enhancement in GlyR TM2 and TM3. These include serine-267 (S267) and 

alanine-288 (A288) in TM2 and TM3, respectively (Mihic et al., 1997; Mascia et al. 

2000). Additional experiments suggested that these residues along with isoleucine-229 

(I229) from TM1 and others from TM4 likely participate in a common alcohol/anesthetic 

binding cavity (Jenkins et al., 2001; Lobo et al., 2004a; Lobo et al., 2006; McCracken et 

al., 2010).  

More recently, Borghese et al. (2012) have also shown that mutation of residues 

neighboring the critical S267 site in TM2, glutamine-266 (Q266), and methionine-287 

(M287) also eliminates alcohol enhancement of GlyR function. In addition to the 

aforementioned TM sites, other putative alcohol binding sites have also been proposed in 

the α1 GlyR, including alanine-52 (A52) in loop 2 of the N-terminal domain (Davies et 
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al., 2004; Crawford et al., 2008) and lysine-385 (K385) in the intracellular loop linking 

TM3 and TM4, which has been proposed to be involved in GlyR modulation by Gβγ 

(Yvenes et al., 2003; Yvenes et al., 2008). 

 

CROSS-LINKING OF GLYR TRANSMEMBRANE SEGMENTS 

 Given that specific amino acid residues within the TM domain appear to be 

crucial for GlyR modulation by alcohols and anesthetics, investigating the proximity and 

orientation of these residues to each other as well as a putative alcohol/anesthetic-binding 

cavity is imperative in order to better understand alcohol and anesthetic action at GlyRs.  

The proximity and relative orientation of TM residues of interest can be investigated by 

substituting cysteine at each position, and subsequently testing whether or not they are 

able to form biochemical cross-links with one another. Residues of interest must be 

located on opposing helices in order to form cross-links, and typically their Cα carbons 

cannot be separated by greater than 15 Α (Lee et al., 1995; Yang et al., 1996; Struthers et 

al., 2000; Soskine et al. 2002; Winston et al., 2005).  

Due to the current absence of a GlyR crystal structure, there are multiple 

hypotheses regarding the site of alcohol- and anesthetic-binding within the GlyR TM 

domain. One hypothesis suggests that I229 in TM1, S267 in TM2, A288 in TM3 and 

others from TM4 may contribute a hydrophilic alcohol/anesthetic binding site within a 

GlyR subunit (intra-subunit). This intra-subunit hypothesis is supported by 

electrophysiology studies in heterologous expression systems using the substituted 
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cysteine accessibility method (SCAM) as well as initial cross-linking findings in GlyRs 

and homology modeling (Williams & Akabas, 1999; Yamakura et al., 2001; Lobo et al., 

2004a; Lobo et al., 2004b; Lobo et al., 2006). In addition, x-ray structures of general 

anesthetics bound to the prokaryotic homologue GLIC support binding and modulation at 

an intra-subunit cavity (Nury et al., 2009).  A second hypothesis has been proposed 

suggesting that the critical TM residues are positioned such that anesthetics instead bind 

at the interface between two adjacent subunits (inter-subunit). This inter-subunit 

hypothesis was first based on similar studies in the GABAA receptor to those described 

above in the GlyR (Bali et al., 2009) and has been recently supported by crystallography 

work paired with functional studies in GLIC which determined and compared the crystal 

structures of ethanol-treated and non-ethanol treated receptors (Sauguet et al., 2013).  

Finally, a third “multisite” hypothesis has emerged suggesting that perhaps alcohols and 

anesthetics may, in fact, bind and act at both intra-subunit and inter-subunit sites within 

these receptor proteins. This hypothesis has been generated largely from mutagenesis 

studies in the GLIC and GluCl homologues, molecular simulations, and newer homology 

modeling (Howard et al. 2011; Murail et al., 2012; Yoluk et al., 2013). In addition, recent 

structural information obtained from full-length nuclear magnetic resonance (NMR) 

spectroscopy and electron micrographs using expressed hGlyR-α1 TM domain 

demonstrated a considerable degree of flexibility at the extracellular end of the pore 

(Mowrey et al., 2013), allowing residue A288 in TM3 to possibly participate in both an 

intra-subunit and inter-subunit drug bind cavity in the GlyR. Recent cross-linking studies 

in the mammalian GABAA receptor also provide additional support for the “multisite” 
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hypothesis, but suggest that the effects may be influenced by receptor type and state as 

well as differentially affected by alcohols and anesthetics (Borghese et al., 2014).  

 

GAPS IN OUR KNOWLEDGE 

 Despite accumulating evidence for the role of TM amino acid residues in alcohol 

and anesthetic enhancement of the α1 GlyR, several unknowns remain with regard to the 

contribution of these residues to a putative alcohol/anesthetic-binding pocket. First, in the 

absence of a GlyR crystal structure, the proximity and relative orientation of the critical 

TM amino acid residues involved with alcohol/anesthetic action has not been fully 

elucidated, and it is presently unknown whether the critical residues in TM1-3 contribute 

to an intra-subunit binding pocket within the TM domain of each GlyR subunit, form an 

inter-subunit pocket at the subunit interface as some have proposed in the GABAAR and 

shown in prokaryotic homologues, or alternatively, contribute to both an intra- and inter-

subunit binding pocket (Figure 1.2). Moreover, because the involvement of TM4 in 

alcohol and anesthetic action has been much less studied than TM1-3, the significance of 

its contribution to a putative alcohol/anesthetic binding pocket remains less clear. This 

dissertation contains three aims that will address these areas and will contribute to a more 

thorough understanding of alcohol and anesthetic action at the GlyR. 
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SPECIFIC AIMS 

1. To investigate whether TM1 participates in a common alcohol and anesthetic binding 

cavity with TM3. 

2. To examine whether TM3 participates in a common alcohol and anesthetic binding 

cavity with TM4. 

3. To determine whether the critical sites for alcohol and anesthetic action in TM1-4 are 

oriented to form a binding cavity within the same subunit (intra-subunit), between 

subunits (inter-subunit) or both. 
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Figure 1.2. Putative alcohol and anesthetic binding sites. A) Inter-subunit cavities located 
at the interface between adjacent subunits are depicted in red on using a representative 
Cys-loop ion channel. B) Intra-subunit cavities are depicted in blue at the center of the 
helical bundle within each subunit (Adapted from Borghese et al., 2014).  
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CHAPTER II: Biochemical Cross-linking Provides Evidence that 
Glycine Receptor Transmembrane Segments 1 and 3 Participate in a 
Common Inter-subunit Alcohol and Volatile Anesthetic Binding Cavity 

 

INTRODUCTION 

 Strychnine-sensitive glycine receptors (GlyRs), like other proteins in the central 

nervous system (CNS), have become the focus of investigations into the sites of action 

for alcohol and anesthetics. They belong to the Cys-loop superfamily of ligand-gated ion 

channels, which also includes nicotinic acetylcholine receptor (nAChR), the serotonin 3 

receptor (5-HT3R), and the γ-aminobutyric acid type A receptor (GABAAR). GlyRs 

mediate inhibitory neurotransmission in the CNS through their expression in the 

brainstem and spinal cord (Legendre et al., 2001) as well as in areas of the amygdala, 

cortex, hippocampus, striatum, ventral tegmental area (Jonsson et al., 2009; Baer et al., 

2009), and cerebellum (Takahashi et al., 1992).  

 Functional GlyRs consist of five homologous protein subunits positioned around a 

central chloride channel, with the glycine agonist binding site located extracellularly at 

the subunit interface where pairs of oppositely charged residues promote glycine binding 

(Grudzinska et al., 2005). Structurally, each subunit is composed of an extracellular N-

terminal domain, a transmembrane domain with four alpha helical segments (TM1, TM2, 

TM3, and TM4), an intracellular loop between TM3 and TM4, and an extracellular C-

terminal domain. A single β and four α GlyR subunits (1-4) have been identified 
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(Grenningloh et al., 1990; Harvey et al., 2000; Harvey et al., 2004), which can assemble 

to form functional homomeric α receptors or heteromeric αβ receptors (Lynch, 2004).  

 The GlyR is a common site of action for alcohols and anesthetics (Mihic et al. 

1997; Mascia et al., 2000; Beckstead et al., 2001; Borghese et al., 2012), and both drugs 

positively modulate GlyR function (Harrison et al., 1993; Mascia et al., 1996). Studies 

using site-directed mutagenesis and alkyl thiol reagents have identified critical amino 

acid residues for alcohol and anesthetic action in TM1-4 of the GlyR and suggest these 

residues may contribute to water-filled alcohol/anesthetic-binding cavity (Mascia et al., 

2000; Jenkins et al, 2001; Lobo et al., 2004a; Lobo et al., 2006). In addition, studies using 

cysteine mutagenesis and cross-linking agents have shown that A288 in TM3 is able to 

form cross-links with each of the critical residues for alcohol and anesthetic action in 

TM1 (I229) (Lobo et al., 2008) (Figure 2.1) , TM2 (S267) (Lobo et al., 2004b), and TM4 

(Y406, W407, I409, and Y410) (McCracken et al., 2010). Moreover, cross-linking of 

A288 in TM3 with 267 in TM2 has been shown to significantly reduce alcohol or volatile 

anesthetic potentiation of GlyR function (Lobo et al., 2004b), providing further evidence 

that S267 and A288 together likely participate in an alcohol/anesthetic binding cavity. 

However in the absence of a high resolution GlyR crystal structure, the specific 

orientation of these critical residues, particularly A288 in TM3, remains controversial. 

 Initial medium to high resolution information from related ligand-gated ion 

channel motifs, including the acetylcholine binding protein (AChBP) (Brecj et al., 2001; 

Celie et al., 2004) and the Torpedo nAChR (Unwin, 2005), provided useful structural 

insight into GlyR structure that was used to construct early homology models, which  
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Figure 2.1. Effect of Oxidation with iodine and reduction with DTT on GlyRs. A) WT 
representative tracing demonstrating that glycine response is altered following the 
application of 0.5 mM iodine or 10 mM DTT. B) The glycine response of the 
I229C/A288C double mutant is markedly reduced following oxidation by iodine. 
However, the effect is reduced by DTT (Adapted from Lobo et al., 2008).  
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predicted that critical amino acids in all four GlyR TM segments faced into a water-filled 

alcohol/anesthetic binding cavity within an intra-subunit alpha helical bundle (Bertacini 

et al., 2005; Ernst et al., 2005; Young et al., 2008). This intra-subunit prediction is 

consistent, at least in part, with the cross-linking findings from the GlyR demonstrating 

the ability of A288 in TM3 to form cross-links with each of the critical alcohol/anesthetic 

residues in the other TM segments.  More recently, the x-ray structures have been solved 

for two prokaryotic homologues, Erwinia chrysanthemi (ELIC) and Gloebacter violaceus 

(GLIC) (Hilf and Dutzler, 2008; Hilf and Dutlzer, 2009; Bocquet et al., 2009), and the 

invertebrate Caenorhabditis elegans glutamate-gated chloride channel (GluCl) (Hibbs and 

Gouaux, 2011). While x-ray structures of general anesthetics bound to the prokaryotic 

homologue GLIC support binding and modulation at an intra-subunit cavity (Nury et al., 

2009), functional and structural studies in GLIC using ethanol and bromo-ethanol instead 

propose an alternative inter-subunit hypothesis whereby alcohol action is primarily 

occurring at the interface of two adjacent subunits (Sauguet et al., 2013). A third 

“multisite” hypothesis has also been generated based on mutagenesis studies in the GLIC 

and GluCl homologues, molecular simulations, and newer homology models. The 

multisite hypothesis posits that alcohols and anesthetics may, in fact, act at both inter-

subunit and intra-subunit sites within these protein receptors (Howard et al. 2011; Murail 

et al., 2012; Yoluk et al., 2013). Therefore, the aim of the present study was to investigate 

whether 1229 in TM1 and A288 in TM3 are participating in a common alcohol/anesthetic 

binding cavity, and to determine whether the cavity is within a GlyR subunit or between 

adjacent subunits. 
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MATERIALS AND METHODS 

Materials  

All chemical reagents and buffer constituents were purchased from Sigma-Aldrich 

(St. Louis, MO), and were prepared immediately before use. Adult female Xenopus 

laevis frogs were purchased from Nasco (Ft. Atkinson, WI). 

Site-directed Mutagenesis 

 A QuickChange site-directed mutagenesis kit (Stratagene, La Jolla, CA) was used 

to make point mutations in the human glycine receptor α1 subunit (subcloned in the 

pBKCMV N/B-200 vector). Specifically, the I229C and A288C single mutants were 

constructed.  Additionally, the I229C/A288C, and I229C/C290S double mutants and the 

I229C/A288C/C290S triple mutant were engineered. All point mutations were verified by 

DNA sequencing in the core facility at the University of Texas at Austin. 

 

Oocyte Isolation and cDNA Injection 

 Portions of ovary were surgically extracted from adult female Xenopus laevis 

frogs. Mature oocytes were manually isolated, treated in 0.5 mg/ml collagenase (type IA), 

and subsequently injected into the nucleus with 30 nl of nuclease-free water and cDNA 

(1.5 ng/30 nl) encoding either wild-type or mutant human α1 glycine receptors.  Injected 

oocytes were incubated at 13°C in sterile modified Barth’s solution (MBS) (88 mM 

NaCl, 1 mM KCl, 2.4 mM NaHCO3, 19 mM HEPES, 0.82 mM MgSO4, 0.33 mM 
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Ca(NO3)2, 0.91 mM CaCl2, 10,000 units/liter penicillin, 50 mg/liter gentamicin, 90 

mg/liter theophylline, 220 mg/liter sodium pyruvate, pH 7.5) for 1-7 days. 

 

Electrophysiological Recording 

 Two-electrode voltage clamp electrophysiology was used to measure glycine-

induced current from oocytes 1-7 days following injection with cDNAs.  Oocytes were 

place in a rectangular chamber (~ 100 µl) and continuously perfused at a rate of 2 ml/min 

with MBS at 13°C.  A -70 mV holding potential was achieved using to two glass 

electrodes containing 3 M KCl and a Warner Instrument oocyte clamp (Hamden, CT).  

All solutions were prepared immediately before use and applied by bath perfusion. 

Alcohol or Volatile anesthetic potentiation. A glycine EC5-10 (the concentration 

that produced 5-10% of the maximal response) was determined for each oocyte after 

application of the maximal glycine concentration and served as the test glycine 

concentration.  All test glycine concentrations were applied for 30 s and were followed 

by a 5 min washout.  Oocytes received two consecutive applications of the test glycine 

concentration to ensure that responses were stable.  Alcohols or anesthetics were pre-

applied for 1 min alone and then co-applied with glycine for 30 s.  All drug applications 

were immediately followed by a 10 min washout.  The test glycine concentration was 

applied again, and the percent potentiation of the glycine-induced current by the alcohol 

or anesthetic was calculated for each oocyte.  10 µM HgCl2 was applied for 1 min in the 

presence of 100 mM glycine (maximal) and followed by a 15 min washout.  Afterward, 
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the maximal glycine concentration was re-applied and the test concentration (EC5-10) was 

recalculated.  The potentiation of glycine-induced current by the alcohol or anesthetic 

was then measured again as described above.  This protocol was used to test 22 mM 

butanol and 0.6 mM isoflurane, which corresponds to approximately two times the 

minimal alveolar concentration (MAC) for these drugs. 

Oxidation with H2O2 and Reduction with DTT. The maximal glycine 

concentration (100 mM) was applied for 15-20 s and followed by a 15 min washout. This 

was repeated and the second glycine response served at the test glycine response for this 

experiment. 0.5% H2O2 was then applied in the presence of maximal glycine (100 mM) 

for 1 min. and then washed out for 15 min. The oocytes were unclamped during 

application and washout of the oxidizing agent to maintain health, but remained impaled 

by the electrodes as previously described in Lobo et al. 2008 and McCracken et al. 2010. 

After re-clamping, maximal glycine was re-applied and the responses were compared to 

the initial glycine test response prior to H2O2 application. Maximal glycine was applied a 

second time and served as the new test glycine response. 10 mM dithiothreitol (DTT) was 

applied for 3 min while oocytes were unclamped as described above for the cross-linking 

agents and washed out for 15 min and re-clamped. Maximal glycine was re-applied and 

the responses were compared to the second glycine test response following H2O2 

application. 

Data Analysis. For each receptor tested in the experiments using HgCl2, repeated-

measures t-tests were used to detect differences before and after cross-linking (i.e. pre-

HgCl2 vs post-HgCl2) conditions. For the additional cross-linking experiments using the 
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oxidizing agent H2O2 and reducing agent DTT, a one-way ANOVA with Tukey’s post-

test was used to detect significant differences between conditions (pre- H2O2 vs post- 

H2O2 vs post-DTT). GraphPad PRISM software (San Diego, CA) was used for all 

analyses, and statistical significance was determined at p < 0.05. 

 

Protein Extraction 

Individual oocytes were manually isolated and injected with 1.5 ng/nl cDNA as 

described above. Injected oocytes were incubated for 5-7 days at 13°C. Groups of 25 

oocytes were pooled for each condition. Those included in the cross-linked condition 

were treated with 0.5 % H2O2 by bath perfusion as described in McCracken et al. 2010 

and as described for the HgCl2 application above in the electrophysiology experiments. 

Following a 15 min washout, oocytes were homogenized in 1 mL of Wash Buffer (0.1M 

EDTA, pH 7.5; 0.1 M EGTA, pH 7.5; 2M NaCl; 0.1M NaH2PO4, pH 7.5) with protease 

inhibitors (5 mM benzamidine; 15 mM iodoacetamide), and then centrifuged at 4°C for 

30 min at 13500 rpm. The supernatant was removed, and 250 µL of Extraction Buffer 

(wash buffer described above + 2% Triton + 5 mM benzamidine + 15 mM 

iodoacetamide) was added. The pellet was resuspended, rotated at 4°C for 2 hrs, and then 

centrifuged at 4°C for 30 min at 13500 rpm. The supernatant was removed and saved as 

the protein extract. Similar protein extract protocols using Xenopus oocytes have been 

described previously by Bali et al. (2009).  
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Immunoblotting 

Equal amounts of soluble proteins (unless otherwise noted) extracted from 

oocytes were resolved by SDS-PAGE and electrotransferred to polyvinylidene fluoride 

membrane in a buffer containing 25 mM Tris, 192 mM glycine, 0.1% (w/v) SDS, and 

20% (v/v) methanol for 1 h at 18 V. Membranes were briefly rinsed in a buffer 

containing 10 mM Tris HCl (pH 8.0), 150 mM NaCl and 0.01% (v/v) Tween-20 (TBS-

T), and then incubated at room temperature for 1 h in TBS-T containing 5% (w/v) 

skimmed milk powder to block non-specific binding of antibodies. Incubation of 

membranes with specific primary antibody for GlyR α1 (AbCam, Cambridge, England) 

was performed in TBS-T containing 1% skimmed milk and 1% BSA powders (w/v) for 2 

h at room temperature, followed by three 10 min washes with TBS-T alone. Membranes 

were then incubated for 1 h at room temperature with an appropriate secondary antibody 

conjugated to horseradish peroxidase (HRP), diluted in TBS-T /1% (w/v) skimmed milk 

and BSA powders, followed by three 5 min washes with TBS-T. After the final wash, 

blots were immediately developed by applying the Enhanced Chemi-Luminescence 

(ECL) reagent (Pierce Chemical Co., Rockford, IL) for 2 min, and then a Kodak Image 

Station 2000MM (Eastman Kodak, Rochester, NY) was used to acquire images. 

 

Protein Identification by Mass Spectrometry 

Gel bands of interest were excised and washed 3 times then digested in-gel with 

modified porcine trypsin protease (Promega, Fitchburg, WI). The digested tryptic 

peptides were desalted using a Zip-tip C18 (Millipore, Billerica, MA). Peptides were 
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eluted from the Zip-tip with 0.5μL of matrix solution (α-cyano-4-hydroxycinnamic acid, 

5 mg/mL in 50% acetonitrile, 0.1% trifluoroacetic acid, 25mM ammonium bicarbonate) 

and spotted on a MALDI plate. 

Mass Spectrometry. MALDI-TOF MS and TOF/TOF tandem MS/MS were 

performed on AB SCIEX TOF/TOF™ 5800 System (AB SCIEX). MALDI-TOF mass 

spectra were acquired in reflectron positive ion mode, averaging 4000 laser shots per 

spectrum. TOF/TOF tandem MS fragmentation spectra were acquired for each sample, 

averaging 4000 laser shots per fragmentation spectrum on each of the 7-10 most 

abundant ions present in each sample (excluding trypsin autolytic peptides and other 

known background ions). 

Database search. Both the resulting peptide mass and the associated fragmentation 

spectra were submitted to GPS Explorer workstation equipped with MASCOT search 

engine (Matrix Science, Boston, MA) to search the Swiss-Prot database. Searches were 

performed without constraining protein molecular weight or isoelectric point, with 

variable carbamidomethylation of cysteine and oxidation of methionine residues, and 

with one missed cleavage also allowed in the search parameters. Protein identification in 

the mass spectra was performed by Applied Biomics (Hayward, CA). 

 

Quantification of Band Ratios 

ImageJ64 was used to process and quantify α1 GlyR-labeled band intensity at 

approximately 100 kDa and 50 kDa, which corresponded to the loci in which monomeric 

and dimeric GlyR subunits were identified by MS. These band intensities were then 
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calculated and reported as direct ratios (100:50 kDa), and statistically significant 

differences in band ratio between the uncross-linked and cross-linked conditions were 

measured for the representative TM1-3 mutant and the wild-type using repeated-

measures t-tests, p < 0.05. 
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RESULTS 

Previous studies using cysteine substitution and alkyl thiol reagents have shown 

that I229 in TM1 and A288 in TM3 are water-accessible and play critical role in 

anesthetic action (Jenkins et al., 2001; Lobo et al., 2004a; Lobo et al., 2004b), and initial 

biochemical cross-linking studies showed evidence of cross-link formation and suggested 

I229 and A288 likely participate in a common alcohol and volatile anesthetic binding 

cavity. However, it remains uncertain whether the I229C/A288C cross-links are formed 

between residues within the same subunit (intra-subunit) or between subunits (inter-

subunit), and whether these residues are participating in common alcohol-binding cavity 

within or between GlyR subunits. Therefore, the purpose of the present study was to 

examine these possibilities (i.e. intra-subunit vs inter-subunit cross-linking) using 

cysteine mutagenesis, Xenopus oocyte electrophysiology, and immunoblotting with a 

GlyR-specific antibody. 

 The I229C/A288C double mutant and I229C/A288C/C290S triple mutant 

previously shown to form cross-links in Lobo et al. (2008) as well as the corresponding 

single mutants were each expressed in oocytes.  Glycine-induced current was measured, 

and the alcohol and volatile anesthetic effects were compared before and after cross-

linking with HgCl2, which reacts with accessible pairs of cysteines to form intermolecular 

S-Hg-S dimers when the residues are in proximity to one another and located on 

opposing faces of adjacent helices (Struthers et al., 2000; Soskine et al., 2002).  The 

glycine sensitivity of the cysteine mutants was reported (Lobo et al., 2008), and although 
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the mutations produced some degree of altered glycine sensitivity (Table1), all of the 

mutants formed functional GlyRs.   

 First, we examined whether the cross-linking of I229C in TM1 with A288C in 

TM3 alters alcohol enhancement of GlyR function. Specifically, the potentiation of 

submaximal (EC5-10) glycine-induced current by 22 mM butanol was compared before 

and after the application of the cross-linking agent HgCl2. Similar to Lobo et al. (2008), 

agonist-induced rotation of the TM domain appears to be necessary for the formation of 

cross-links in the I229C/A288C mutant, so 10 µM HgCl2 was applied in the presence of 

100 mM glycine (maximal) for these experiments. We found butanol potentiation was 

nearly abolished in both the I229C/A288C double mutant and I229C/A288C/C290S triple 

mutant following the application of HgCl2, but there was no significant effect on butanol 

potentiation in the wild-type or single mutants (Figure 2.1). 

 Next, we investigated whether the cross-linking of I229C in TM1 with A288C in 

TM3 alters volatile anesthetic enhancement of GlyR function.  Specifically, we measured 

the potentiation of submaximal (EC5-10) glycine current by 0.6 mM (2xMAC) isoflurane 

before and after the application of HgCl2.  As described above for the butanol 

experiment, HgCl2 was applied in the presence of maximal glycine. There was no effect 

of HgCl2 on the wild-type or single mutants. However, isoflurane potentiation was 

significantly decreased in both the I229C/A288C double mutant and 

I229C/A288C/C290S triple mutant (Figure 2.2). 

 In order to verify the results of HgCl2 cross-linking by an alternative method in 

preparation for the immunoblotting experiments, we tested the ability of the oxidizing  
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Receptor Glycine EC50 

(µmol/L) 
WT 180 ± 56 
I229C 110 ± 7.0 
A288C 1800 ± 190 
I229C/A288C 180 ± 37 
I229C/A288C/C290S 81 ± 45 
 
Table 1 
Glycine EC50 values for wild-type and mutant TM1-3 
glycine receptors. All values represent mean ± SEM 
from 4-11 oocytes. Adapted from Lobo et al., 2008. 
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Figure 2.2. Alcohol potentiation of EC5-10 glycine response in mutant TM1-3 GlyRs. As 
described in Lobo et al. (2008), 10 µM HgCl2 was applied in the presence of 100 mM 
glycine (i.e. the activated/desensitized state) to the I229C/A288C double mutant and the 
I229C/A288C/C290S triple mutant (as well as single mutant controls) and produced 
evidence of cross-linking.  The effect of 22 mM butanol was compared before and after 
10 µM HgCl2 was applied in the presence of glycine to the mutants and the wild-type. All 
values represent mean ± SEM from 4-5 oocytes. Repeated-measures t-tests were used to 
detect differences between the Pre-HgCl2 and Post-HgCl2 conditions for each receptor. 
*p<0.05  
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Figure 2.3. Anesthetic potentiation of EC5-10 glycine response in mutant TM1-3 GlyRs. 
As described in Lobo et al. (2008), 10 µM HgCl2 was applied in the presence of 100 mM 
glycine (i.e. the activated/desensitized state) to the I229C/A288C double mutant and the 
I229C/A288C/C290S triple mutant (as well as corresponding single mutant controls) and 
produced evidence of cross-linking. The effect of 0.6 mM isoflurane was similarly tested 
on the mutants and the wild-type before and after 10 µM HgCl2 was applied in the 
presence of glycine. All values represent mean ± SEM from 4-5 oocytes. Repeated-
measures t-tests were used to detect differences between the Pre-HgCl2 and Post-HgCl2 
conditions for each receptor. *p<0.05  
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agent, H2O2, to induce disulfide bond formation in the I229C/A288C double mutant that 

showed evidence of cross-linking. We also tested the I229C/C290S double and 

I229C/A288C/C290S triple mutants to help address the possibility that I229C in TM1 

may be cross-linking with the endogenous cysteine at position 290, instead of A288. In 

accordance with the HgCl2 experiments and iodine studies previously conducted by Lobo 

et al. (2008), cross-linking was again observed for the I229C/A288C double and the 

I229C/A288C/C290S triple mutants following the application of 0.5% H2O2, resulting in 

significantly decreased glycine-induced current. The effect was reversed by reduction 

with 10 mM DTT. However, no cross-linking was observed for the wild-type, I229C 

single mutant, or I229C/C290S double mutant (Figure 2.4). The I229C/A288C/C290S 

triple mutant appears to form cross-links in an almost identical manner to that of the 

I229C/A288C double mutant, suggesting that the endogenous cysteine at position 290 is 

not responsible for the effects observed and the cross-links are forming between I229 in 

TM1 and A288 in TM3. Therefore, the I229C/A288C/C290S triple mutant was not 

included in the remainder of this study, and we focused on the I229C/A288C double 

mutant in order to elucidate whether the cross-links formed between I229 and A288 are 

occurring within the same subunit (intra-subunit) or between subunits (inter-subunit), and 

whether these residues are participating in a common alcohol-binding cavity within or 

between GlyR subunits. 

 To assess these possibilities further, we extracted protein from oocytes injected 

with wild-type GlyRs or the I229C/A288C double mutant from above and then used 

immunoblotting with a GlyR-specific antibody (Figure 2.5A and B). We subsequently  
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Figure 2.4. Effects of oxidation with H2O2 and reduction with DTT on GlyRs. 0.5% H2O2 
was applied in the presence of 100 mM glycine (i.e. the activated/desensitized state), 
which produced evidence of cross-linking in the I299C/A288C and I229C/A288C/C290S 
mutants only. This effect was reversed by 10 mM DTT. All values represent mean ± 
SEM from 4-5 oocytes. One-way ANOVA with Tukey’s post-test was used to detect 
differences between the Pre- H2O2, Post- H2O2, and Post-DTT conditions for each 
receptor. *p<0.05  
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verified protein identity by mass spectrometry (MALDI-TOF/TOF) (Table 2). The 

differences in 100:50 kDa band ratios were compared between uncross-linked and cross-

linked conditions for the wild-type and I229C/A288C double mutant. Wild-type GlyR 

subunits measure about 50 kDa under ordinary conditions. Therefore, we hypothesized 

that if cross-linking occurred between two adjacent subunits, then we would observe an 

increase in the presence of GlyR-labeled 100 kDa band, and an increase in the ratio of 

100:50 kDa bands. Alternatively, we expected no change for cross-linking within a 

subunit. For the I229C/288C mutant, we found a significant increase in the 100:50 kDa 

band ratio (Figure 2.6), which suggests that TM1-3 may participate in an 

alcohol/anesthetic binding cavity between GlyR subunits. There was not a significant 

difference in the 100:50 kDa band ratio between the uncross-linked or cross-linked 

condition for the wild-type.  
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Figure 2.5. Immunoblot for WT and mutant TM1-3 GlyRs. A) Immunblotting reveals a 
dominant 50 kD band, the anticipated molecular weight of a GlyR subunit, with 
increasing concentrations of wild-type GlyR protein, unlike in the lanes loaded with 
samples comprised of uninjected (uninj) oocytes, which only showed faint evidence of 
non-specific labeling at lower molecular weight. B) 100 kD and 50 kD α1 GlyR-labeled 
bands in the wild-type and I229C/A288C mutant in the uncross-linked vs cross-linked 
(+H2O2) conditions.   
 
  

WT 
30 µg 

WT 
60 µg 

Uninj. 
30 µg 

  

Uninj. 
60 µg 

50	  Kd 

100	  Kd 

+ H2O2 

WT WT 
I229C/
A288C 

I229C/
A288C 

100 Kd 

50 Kd 

A 

B 



 31 

 
 Molecular Weight 

(kDa) 
Protein Score 

C.I. % 
GLRA1 100-105 59 
GLRA1 100 59 
GLRA1 50-55 87 
GLRA1 48-50 78 

 
Table 2 
Protein Identification of Wild-Type GlyR. All values are from a 
representative uncross-linked wild-type sample determined by 
MALDI-TOF/TOF.  
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Figure 2.6. Quantification of Band Ratios for WT and TM1-3 mutant GlyRs. The100:50 
kDa band ratio increased for the I229C/A288C double mutant when cross-linked, 
however there was no significant  increase for the wild-type. Immunoblot images were 
processed using ImageJ64 software, and the band intensity was taken and reported as a 
direct ratio. 0.5% H2O2 was applied by bath perfusion as previously described 
(McCracken et al., 2010).  Independent t-tests were used to detect differences between 
the Uncross-linked and Cross-linked conditions for each receptor. *p<0.05 
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DISCUSSION 

Our findings suggest that the formation of a cross-link between residue 288 in 

TM3 and residue I229 in TM1 reduces the ability of alcohol and volatile anesthetics to 

bind and produce their effects at an inter-subunit cavity in the GlyR. These results are in 

accordance with similar studies in the GABAAR. For example, Bali et al. (2009) 

suggested that the homologous residue to I229 in TM1 of the GABAAR is oriented 

toward the subunit interface such that it is able to form cross-links with TM3 of an 

adjacent subunit, and photoaffinity labeling studies have suggested that multiple classes 

of general anesthetics may act at this inter-subunit site (Zhong et al., 2008; Stewart et al., 

2008; Li et al., 2010). Moreover, crystallographic studies using an ethanol-sensitized 

GLIC mutant co-crystallized with ethanol, bromoethanol and bromoform provide 

additional support for an inter-subunit binding cavity (Sauguet et al., 2013).  

These results differ, at least in part, from the recent x-ray structure of the volatile 

anesthetic desflurane bound at an intra-subunit cavity in the bacterial homologue GLIC 

(Nury et al., 2011) and suggest that anesthetic interaction with GLIC may involve more 

than a simple binding cavity either between or within subunits. Similarly, Borghese et al. 

(2014) reported evidence for an intra-subunit alcohol/anesthetic binding cavity in the 

GABAAR β2 subunit using biochemical cross-linking and alkyl thiol labeling techniques, 

which specifically revealed that residue N265 in TM2 (homologous to S267 in TM2 of 

the α1 GlyR) could form cross-links with other β2 residues in both TM1 and TM3 of the 

same subunit. This appears to be consistent with earlier studies in the α1 GlyR in which 
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the formation of a cross-link between A288 in TM3 and 267 in TM2 significantly 

reduced alcohol or volatile anesthetic effects (Lobo et al., 2004b). However, in 

accordance with our findings here and the work mentioned above by Bali et al. (2009), 

Borghese et al. (2014) also found evidence for inter-subunit cross-linking between the 

homologous TM1 residue in the GABAAR α1 subunit (L232) and the TM3 residue in β2, 

but one helical turn below the site homologous to A288 in the GlyR. This further suggests 

that, in addition to GLIC, alcohol and anesthetic interaction with these critical residues in 

the mammalian ion channels also involves additional complexity beyond exclusive 

binding either at inter-subunit or intra-subunit site. 

 Additionally, the results from our oxidation experiment in the present study 

corroborate earlier cross-linking studies in the GlyR that initially investigated the 

proximity and orientation of residue A288 in TM3 with residues in TM1, particularly the 

critical alcohol and anesthetic residue at I229. Previously, Lobo et al. (2008) used iodine 

and HgCl2 to independently test for cross-linking in a number of GlyR TM1 and TM3 

double cysteine mutants. Of note, evidence of cross-linking was reported in the 

I229C/A288C and I229C/A288C/C290S double and triple mutants, which was reversible 

with DTT following application of either HgCl2 or iodine. This is in agreement with our 

present findings using H2O2 and HgCl2, which we validated with immunoblotting. Based 

on earlier homology modeling used in Lobo et al. (2008), it was suggested that, perhaps, 

cross-linking was occurring between TM1 and TM3 of the same subunit. At the time, the 

4Å resolution structure of the Torpedo nAChR was commonly used as a template to 

model members of the Cys-loop family of ion channels, including the GlyR. However, 
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the lack of some conserved residues created sequence alignment challenges between the 

nAChR and GlyR, especially in the TM2-3 loop and TM3 region, which resulted in 

added uncertainty about the orientation and proximity of residues in TM3. The 

emergence of x-ray structures for the prokaryotic homologues ELIC and GLIC as well as 

the invertebrate GluCl have since provided greater insight and helped to clarify some 

these alignment discrepancies. Nevertheless, the combination of the present study and 

Lobo et al. (2008) demonstrate that the earlier homology models based on the Torpedo 

nAChR still proved valuable in helping to identify critical residues for further 

experimental testing in heterologous expression systems and yielded useful predictions 

and hypotheses about the location of putative alcohol/anesthetic binding pockets with the 

GlyR.  

When considering the accumulating experimental evidence from studies in the 

GlyR as well as studies of the closely related GABAAR, it becomes increasingly difficult 

to explain the inter-subunit cross-linking of TM3 with TM1 in an adjacent subunit and 

intra-subunit cross-linking with TM2 or TM4 of the same subunit (Lobo et al., 2004b; 

Bali et al., 2009; McCracken et al., 2010; Borghese et al., 2014) without a substantial 

degree of flexibility or motion, especially in the upper portion of TM3. Figure 2.7 

(adapted from Bertaccini et al., 2010) illustrates the predicted orientation of I229 in TM1 

and A288 in TM3 of adjacent GlyR subunits with an anesthetic molecule drawn at the 

subunit cleft, and also notes the proximity of TM4 residues which have been previously 

shown to cross-link with A288 in TM3.  Based on hGlyR-α1 TM NMR spectroscopy 

studies, Mowrey et al. (2013) reported a highly dynamic segment in the TM region 
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Figure 2.7 Overhead view of critical GlyR TM sites for anesthetic action. Adjacent 
subunits are distinguished by color, gold and green, etc. A hypothetical anesthetic 
molecule is drawn in the proposed inter-subunit site at the subunit cleft. This homology 
model is based on the prokaryotic homologue GLIC (adapted from Bertaccini et al., 
2010).   
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 encompassing S267 in TM2 through approximately A288 in TM3. This may help to 

explain the ability of A288 to cross-link with I229 in TM1 across the subunit cleft, and 

alternatively, also potentially cross-link in the opposite direction with 267 in TM2 or the 

residues in TM4 (Y406, W407, I409, Y410). This seems plausible given that a number of 

these mutants, including I229 in TM1 and Y406 and I409 in TM4, require the co-

application of glycine in the presence of the cross-linking/oxidizing agent.  It has been 

suggested that the application of agonist creates a wringing motion in the extracellular 

domain due to ligand binding and may result in downstream rotation in the TM segments 

(Unwin, 2005).  Another, similar example of motion has been described in the GluCl-

ivermectin model (Yoluk et al., 2013). 

 In summary, we demonstrate that cross-linking between I229 in TM1 and A288 in 

TM3 reduces the ability of alcohol or anesthetic to enhance GlyR function. In addition, 

we provide evidence using immunoblotting that these cross-links are formed between 

adjacent subunits, suggesting that TM1 and TM3 likely participate in an inter-subunit 

alcohol/anesthetic binding cavity in the GlyR. 
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CHAPTER III: Evidence for the Participation of Transmembrane 
Segments 3 and 4 in a Common Intra-subunit Alcohol and Volatile 
Anesthetic Binding Cavity in the Glycine Receptor 

 

INTRODUCTION 

 GlyRs are members of the Cys-loop family of ligand-gated ion channels, which 

includes the nicotinic acetylcholine receptor (nAChR), the serotonin 3 receptor (5-HT3R), 

and γ-aminobutyric acid type A (GABAAR). GlyRs not only mediate the majority of 

inhibitory neurotransmission in the brain stem and spinal cord (Legendre, 2001), but they 

are also expressed in other brain regions including the olfactory, hippocampus, nucleus 

accumbens (van den Pol and Gorces, 1988; Fatima-Shad and Barry, 1993; Molander and 

Soderpalm, 2005; Baer et al., 2009; Jonsson et al., 2012) and cerebellum (Takahashi et 

al., 1992). Although a GlyR crystal structure has not yet been solved, medium to high 

resolution structures exist for related ligand-gated ion channel motifs, including the 

acetylcholine binding protein (AChBP) (Brecj et al., 2001; Celie et al., 2004) and the 

Torpedo nAChR (Unwin, 2005). Additionally, the x-ray structures have been solved for 

two prokaryotic homologues, Erwinia chrysanthemi (ELIC) and Gloebacter violaceus 

(GLIC) (Hilf and Dutzler, 2008; Hilf and Dutlzer, 2009; Bocquet et al., 2009), and the 

invertebrate Caenorhabditis elegans glutamate-gated chloride channel (GluCl) (Hibbs and 

Gouaux, 2011). Most recently, Mowrey et al. (2013) usednuclear magnetic resonance 

(NMR) spectroscopy and electron microroscopy to produce specific structural 

information from the expressed hGlyR-α1 TM domain. This lower resolution structural 
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information, as well as these high-resolution x-ray structures, combined with 

experimental data from studies in heterologous expression systems, has provided insight 

into GlyR structure. 

 Functional GlyRs receptors are composed of five homologous subunits positioned 

around a central chloride channel, with the structure of each subunit consisting of an 

extracellular N-terminal domain, a transmembrane domain with four alpha helical 

segments (TM1, TM2, TM3, and TM4), an intracellular loop between TM3 and TM4, 

and an extracellular C-terminal domain. Four GlyR α subunits (1-4) and a single β 

subunit have been identified (Grenningloh et al., 1990; Harvey et al., 2000; Harvey et al., 

2004). There is 80-90% sequence identity among the α subunits and approximately 50% 

identity among the β subunit and the α subunits, which can assemble to form either 

homomeric α receptors or heteromeric αβ receptors (Lynch, 2004). 

 It is well established that alcohols and volatile anesthetics likely share common 

sites of action in the GlyR (Mihic et al., 1997; Beckstead et al., 2001) and serve as 

positive allosteric modulators of GlyR function (Harrison et al., 1993; Mascia et al., 

1996). Moreover, critical amino acid residues for alcohol and anesthetic enhancement of 

the α1 GlyR have been identified in TM1-3 (I229, S267, and A288 in TM1, 2, and 3, 

respectively) (Mihic et al., 1997; Lobo et al., 2004a).  Although the role of TM4 in 

alcohol and anesthetic action at the GlyR has not been as extensively examined as TM1-

3, studies using site-directed mutagenesis and alkyl thiol reagents suggest that TM4 

residues, along with the implicated residues in TM1-3, may face into a water-filled, 



 40 

alcohol/anesthetic-binding cavity within the TM domain of each subunit (i.e. an intra-

subunit binding pocket) (Mascia et al., 2000; Jenkins et al., 2001; Lobo et al., 2004a; 

Lobo et al., 2006).  

 In accordance, early homology modeling based on the nAChR predicted that 

A288 of TM3 could face into an intra-subunit helical bundle (Ernst et al., 2005; Young et 

al., 2008), which is consistent with experimental biochemical cross-linking data 

demonstrating the ability of A288 in TM3 to form cross-links with I229 in TM1 and/or 

S267 in TM2 (Lobo et al., 2004b; Lobo et al., 2008). More recent studies using cysteine 

mutagenesis and oxidizing agents have begun to investigate the proximity of A288 in 

TM3 to residues in TM4 and provide evidence that Y406, W407, I409, and Y410 in TM4 

are able to form cross-links with A288 in TM3, which supports the assignment of these 

TM4 residues as intra-subunit facing (McCracken et al., 2010; Bertacini et al., 2010). In 

addition, recent x-ray structures of anesthetics bound to the bacterial homologue GLIC 

and photolabeling of GABAA receptors further support action at an intra-subunit cavity 

(Nury et al., 2011) 

 Alternatively, others have proposed the presence of an inter-subunit alcohol and 

general anesthetic binding pocket at the subunit interface. Specifically, Bali et al. (2009) 

suggested that the homologous residue to A288 in TM3 of the GABAA receptor is 

oriented toward the subunit interface such that it is able to form cross-links with TM1 

residues of an adjacent subunit, and photoaffinity labeling studies have suggested that 

multiple classes of general anesthetics may act at this inter-subunit site (Zhong et al., 

2008; Stewart et al., 2008; Li et al., 2010). This inter-subunit hypothesis has been 
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recently supported by crystallography work paired with functional studies in GLIC, 

which determined and compared the crystal structures of receptors in the presence and 

absence of ethanol and bromoethanol (Sauguet et al., 2013). 

 Lastly, a third “multisite” hypothesis has emerged suggesting that perhaps 

alcohols and anesthetics may, in fact, bind and act at both intra-subunit and inter-subunit 

sites within GlyR proteins. This hypothesis has been generated largely from mutagenesis 

studies in the GLIC and GluCl homologues, molecular simulations, and newer homology 

modeling (Howard et al. 2011; Murail et al., 2012; Yoluk et al., 2013). Recent cross-

linking studies in the mammalian GABAA receptor also provide additional support for the 

“multisite” hypothesis, but suggest that the effects may be influenced by receptor type 

and state as well as differentially affected by alcohols and anesthetics (Borghese et al., 

2013). 

 However in the absence of a crystal structure for either the GlyR or the GABAAR, 

the orientation of these residues, and ultimately a putative alcohol and volatile anesthetic 

binding pocket, remains uncertain. Therefore, the goal of the present study was to 

investigate the possibility that A288 in TM3 participates in cross-linking with intra-

subunit facing residues in TM4.  To do so, we examined whether cross-linking A288 with 

each of the intra-subunit facing residues in TM4 (Y406, W407, I409, and Y410) altered 

alcohol or volatile anesthetic enhancement of α1 GlyR function. 
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MATERIALS AND METHODS 

Materials 

 All chemical reagents and buffer constituents were purchased from Sigma-

Aldrich (St. Louis, MO). Adult female Xenopus laevis frogs were obtained from Nasco 

(Ft. Atkinson, WI). 

 

Site-directed Mutagenesis 

 Point mutations in the human glycine receptor α1 subunit (subcloned in the 

pBKCMV N/B-200 vector) were achieved using a QuickChange site-directed 

mutagenesis kit (Stratagene, La Jolla, CA). Specifically, the A288C, Y406C, W407C, 

I408C, I409C, and Y410C single mutants were constructed. Additionally, the 

A288C/Y406C, A288C/W407C, A288C/I409C, and A288C/Y410C double mutants were 

made. All point mutations were verified by DNA sequencing in the core facility at the 

University of Texas at Austin. 

 

Oocyte Isolation and cDNA Injection 

 Portions of ovary were surgically extracted from adult female Xenopus laevis 

frogs, and mature oocytes were manually isolated. Following isolation, ooctytes were 

treated in 0.5 mg/ml collagenase (type IA) and subsequently injected into the nucleus 

with 30 nl of nuclease-free water and cDNA (1.5 ng/30 nl) encoding either wild-type or 

mutant human α1 glycine receptors. Injected oocytes were incubated at 13°C in sterile 

modified Barth’s solution (MBS) (88 mM NaCl, 1 mM KCl, 2.4 mM NaHCO3, 19 mM 
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HEPES, 0.82 mM MgSO4, 0.33 mM Ca(NO3)2, 0.91 mM CaCl2, 10,000 units/liter 

penicillin, 50 mg/liter gentamicin, 90 mg/liter theophylline, 220 mg/liter sodium 

pyruvate, pH 7.5) for 1-7 days. 

 

Electrophysiological Recording 

 Two-electrode voltage clamp electrophysiology was used to measure glycine-

induced current from oocytes 1-7 days following injection with cDNAs. Oocytes were 

place in a rectangular chamber (~ 100 µl) and continuously perfused at a rate of 2 ml/min 

with MBS at 13°C. A -70 mV holding potential was achieved using to two glass 

electrodes containing 3 M KCl and a Warner Instrument oocyte clamp (Hamden, CT). 

All solutions were prepared immediately before use and applied by bath perfusion. 

A glycine EC5-10 (the concentration that produced 5-10% of the maximal 

response) was determined for each oocyte after application of the maximal glycine 

concentration and served as the test glycine concentration. All test glycine concentrations 

were 30 s and were followed by a 5 min washout. Oocytes received two consecutive 

applications of the test glycine concentration to ensure that responses were stable. 

Alcohols or anesthetics were pre-applied for 1 min alone and then co-applied with 

glycine for 30 s. All drug applications were immediately followed by a 10 min washout. 

The test glycine concentration was applied again, and the percent potentiation of the 

glycine-induced current by the alcohol or anesthetic was calculated for each oocyte. 10 

µM HgCl2 was applied for 1 min (in the absence of glycine for the A288C/W407C and 

A288C/Y410C mutants and in the presence of 100 mM glycine for the A288C/Y406C 



 44 

and A288C/I409C mutants as previously published in McCracken et al., 2010) and 

followed by a 15 min washout. Afterward, the maximal glycine concentration was re-

applied and the test concentration (EC5-10) was recalculated. The potentiation of glycine-

induced current by the alcohol or anesthetic was then measured again as described above 

. This protocol was used to test the effects, in both the resting and open/desensitized 

states, of 22 mM butanol and 0.6 mM isoflurane, which corresponds to approximately 

two times the minimal alveolar concentration (MAC) for these drugs. 

Data Analysis. For each receptor tested, repeated-measures t-tests were used to 

detect differences between pre-HgCl2 and post-HgCl2 conditions (i.e. before and after 

cross-linking). GraphPad PRISM software (San Diego, CA) was used for all analyses, 

and statistical significance was determined at p < 0.05. 

 

Protein Extraction 

Individual oocytes were manually isolated and injected with 1.5 ng/nl cDNA as 

described above. Injected oocytes were incubated for 5-7 days at 13°C. Groups of 25 

oocytes were pooled for each condition. Those included in the cross-linked condition 

were treated with 0.5 % H2O2 by bath perfusion as described in McCracken et al. 2010 

and as described for the HgCl2 application above in the electrophysiology experiments. 

Following a 15 min washout, oocytes were homogenized in 1 mL of Wash Buffer (0.1M 

EDTA, pH 7.5; 0.1 M EGTA, pH 7.5; 2M NaCl; 0.1M NaH2PO4, pH 7.5) with protease 

inhibitors (5 mM benzamidine; 15 mM iodoacetamide), and then centrifuged at 4°C for 

30 min at 13500 rpm. The supernatant was removed, and 250 µL of Extraction Buffer 
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(wash buffer described above + 2% Triton + 5 mM benzamidine + 15 mM 

iodoacetamide) was added. The pellet was resuspended, rotated at 4°C for 2 hrs, and then 

centrifuged at 4°C for 30 min at 13500 rpm. The supernatant was removed and saved as 

the protein extract. Similar protein extract protocols using Xenopus oocytes have been 

described previously by Bali et al. (2009).  

 

Immunoblotting 

Equal amounts of soluble proteins extracted from oocytes were resolved by SDS-

PAGE and electrotransferred to polyvinylidene fluoride membrane in a buffer containing 

25 mM Tris, 192 mM glycine, 0.1% (w/v) SDS, and 20% (v/v) methanol for 1 h at 18 V. 

Membranes were briefly rinsed in a buffer containing 10 mM Tris HCl (pH 8.0), 150 mM 

NaCl and 0.01% (v/v) Tween-20 (TBS-T), and then incubated at room temperature for 1 

h in TBS-T containing 5% (w/v) skimmed milk powder to block non-specific binding of 

antibodies. Incubation of membranes with specific primary antibody for GlyR α1 

(AbCam, Cambridge, England) was performed in TBS-T containing 1% skimmed milk 

and 1% BSA powders (w/v) for 2 h at room temperature, followed by three 10 min 

washes with TBS-T alone. Membranes were then incubated for 1 h at room temperature 

with an appropriate secondary antibody conjugated to horseradish peroxidase (HRP), 

diluted in TBS-T /1% (w/v) skimmed milk and BSA powders, followed by three 5 min 

washes with TBS-T. After the final wash, blots were immediately developed by applying 

the Enhanced Chemi-Luminescence (ECL) reagent (Pierce Chemical Co., Rockford, IL) 
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for 2 min, and then a Kodak Image Station 2000MM (Eastman Kodak, Rochester, NY) 

was used to acquire images. 

 

Protein Identification by Mass Spectrometry 

Gel bands of interest were excised and washed 3 times then digested in-gel with 

modified porcine trypsin protease (Promega, Fitchburg, WI). The digested tryptic 

peptides were desalted using a Zip-tip C18 (Millipore, Billerica, MA). Peptides were 

eluted from the Zip-tip with 0.5μL of matrix solution (α-cyano-4-hydroxycinnamic acid, 

5 mg/mL in 50% acetonitrile, 0.1% trifluoroacetic acid, 25mM ammonium bicarbonate) 

and spotted on a MALDI plate. 

Mass Spectrometry. MALDI-TOF MS and TOF/TOF tandem MS/MS were 

performed on AB SCIEX TOF/TOF™ 5800 System (AB SCIEX). MALDI-TOF mass 

spectra were acquired in reflectron positive ion mode, averaging 4000 laser shots per 

spectrum. TOF/TOF tandem MS fragmentation spectra were acquired for each sample, 

averaging 4000 laser shots per fragmentation spectrum on each of the 7-10 most 

abundant ions present in each sample (excluding trypsin autolytic peptides and other 

known background ions). 

Database search. Both the resulting peptide mass and the associated fragmentation 

spectra were submitted to GPS Explorer workstation equipped with MASCOT search 

engine (Matrix Science, Boston, MA) to search the Swiss-Prot database. Searches were 

performed without constraining protein molecular weight or isoelectric point, with 

variable carbamidomethylation of cysteine and oxidation of methionine residues, and 
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with one missed cleavage also allowed in the search parameters. Protein identification in 

the mass spectra was performed by Applied Biomics (Hayward, CA). 

 

Quantification of Band Ratios 

ImageJ64 was used to process and quantify α1 GlyR-labeled band intensity at 

approximately 100 kDa and 50 kDa, which corresponded to the loci in which monomeric 

and dimeric GlyR subunits were identified by MS. These band intensities were then 

calculated and reported as direct ratios (100:50 kDa), and statistically significant 

differences in band ratio between the uncross-linked and cross-linked conditions were 

measured for the representative TM3-4 mutant and the wild-type using repeated-

measures t-tests, p < 0.05. 

 

Molecular Modeling 

A homology model of homo-pentameric GlyRa1 was built by threading the primary GlyR 

sequence onto the X-ray structure of the eukaryotic glutamate-gated chloride channel 

(GluCl, PDB ID 3RHW). The cytoplasmic TM3-4 loop was trimmed to match the length 

of the GluCl template in that region. The modeling and subsequent refinement were 

essentially as described previously (McCracken et al., 2010). In that the GluCl structure 

is eukaryotic and, as opposed to our previous models based on GLIC (PDB ID 3EAM), is 

ligand-gated in the ligand-binding domain rather than by protons. In addition, the 

sequence identity and similarity between GlyR and GluCl is higher that with GLIC 

(McCracken, et al., 2010). In contrast to the alignment of GlyR with nAChR (PDB ID 
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2BG9), there are no gaps in the alignment in the TM2-3 loop (Ernst, 2005) and the 

similarity of residues in TM4 is evident. The refined model was used to mutate residues 

of interest to cysteine and measure center-to-center distances between sulfur atoms. 
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RESULTS 

Previous studies using cysteine substitution and alkyl thiol reagents have shown 

that residues in TM4 are water-accessible and suggest that these residues, along with 

others from TM1-3, including A288, may contribute to a water-filled, intra-subunit drug 

binding pocket (Jenkins et al., 2001; Lobo et al., 2006; Lobo et al., 2008). In addition, 

studies using cysteine mutagenesis and cross-linking agents have begun to investigate the 

proximity of A288 in TM3 to residues in TM4 and provide evidence that Y406, W407, 

I409, and Y410 in TM4 are able to form cross-links with A288 in TM3, which supports 

the assignment of these residues as intra-subunit facing (McCracken et al., 2010). 

Therefore, the purpose of the present study was to determine whether cross-linking 

A288C in TM3 with intra-subunit facing residues in TM4 alters alcohol or volatile 

anesthetic enhancement of α1 GlyR function.    

 The four double cysteine mutants (A288C/Y406C, A288C/W407C, 

A288C/I409C, and A288C/Y410C) previously shown to form cross-links in McCracken 

et al. (2010) as well as the corresponding single mutants were each expressed in Xenopus 

laevis oocytes. Two-electrode voltage clamp electrophysiology was used to measure 

glycine-induced current, and alcohol and volatile anesthetic effects were measured before 

and after the application of the cross-linking agent HgCl2, which reacts with accessible 

pairs of cysteines to form intermolecular S-Hg-S dimers when the residues are in 

proximity to one another and located on opposing faces of adjacent helices (Struthers et 

al., 2000; Soskine et al., 2002). The glycine concentration-responses of the single and 

double cysteine mutants were reported (Lobo et al., 2006; McCracken et al., 2010), and 
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although the mutations result in some degree of altered glycine sensitivity (Table 3.1), all 

of the mutants formed functional GlyRs.   

First, we investigated whether the cross-linking of A288C in TM3 with intra-

subunit facing residues in TM4 alters alcohol enhancement of GlyR function.  We 

measured the potentiation of submaximal (EC5-10) glycine-induced current by 22 mM 

butanol before and after application of the cross-linking agent HgCl2.  As described in 

McCracken et al. (2010), 10 µM HgCl2 was applied to the A288C/W407C and 

A288C/Y410C double mutants and corresponding single mutants in the resting state 

(absence of glycine) (Figure 3.1A). However, agonist-induced rotation of TM3 is 

necessary for the formation of cross-links in the A288C/Y406C and A288C/I409C, so for 

these double mutants and the corresponding single mutants, 10 µM HgCl2 was applied in 

the presence of maximal glycine (Figure 3.1B). We found that while the application of 

HgCl2 had no significant effect on butanol modulation of submaximal glycine response in 

the wild-type or single mutants, butanol modulation was significantly decreased in all 

four double cysteine mutants following the application of HgCl2 (Figure 3.1A and B). 

 Similarly, we examined whether the cross-linking of A288C in TM3 with intra-

subunit facing residues in TM4 alters volatile anesthetic enhancement of GlyR function.  

We compared the potentiation of submaximal (EC5-10) glycine current by 0.6 mM 

isoflurane before and after the application of HgCl2. As described above, HgCl2 was 

applied to the A288C/W407C and A288C/Y410C double mutants and corresponding 

single mutants in the resting state (absence of glycine), whereas HgCl2 was applied in the 

presence of maximal glycine for the A288C/Y406C and A288C/I409C double mutants  
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Receptor Glycine EC50 

(mM) 
WT 0.3 ± 0.1 
A288C 2.8 ± 0.8 
Y406C 3.8 ± 0.1 
W407C 0.7 ± 0.1 
I409C 0.4 ± 0.1 
Y410C 0.5 ± 0.1 
A288C/Y406C 6.5 ± 1.5 
A288C/W407C 6.0 ± 0.2 
A288C/I409C 4.4 ± 2.8 
A288C/Y410C 26 ± 1.6 
 
Table 3 
Glycine EC50 values for wild-type and 
mutant TM3-4 glycine receptors. All values 
represent mean ± SEM from 4-11 oocytes. 
Adapted from McCracken et al., 2010. 
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Figure 3.1. Alcohol potentiation of EC5-10 glycine response in TM3-4 mutant GlyRs. A) 
As described in McCracken et al. (2010), 10 µM HgCl2 was applied to the 
A288C/W407C and A288C/Y410C double mutants in the absence of glycine (i.e. the 
resting state) and produced evidence of cross-linking.  Accordingly, the butanol effect on 
these double mutants and the corresponding single mutants was compared before and 
after 10 µM HgCl2 was applied alone.  B) However for the A288C/Y406C and 
A288C/I409C double mutants, cross-linking was only observed when 10 µM HgCl2 was 
applied in the presence of 100 mM glycine (i.e. the activated/desensitized state), so the 
these double mutants and the corresponding single mutants were tested under similar 
conditions.  All values represent mean ± SEM from 4-5 oocytes. Repeated-measures t-
tests were used to detect differences between the Pre-HgCl2 and Post-HgCl2 conditions for 
each receptor. *p<0.05  

A 

B 
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and corresponding single mutants. Following the application of HgCl2, isoflurane 

potentiation was nearly abolished in all four of the double cysteine mutants, but not in the 

wild-type or single mutants (Figure 3.2A and B). 

Next, we addressed the possibility that the diminished butanol and isoflurane 

effects in the double mutants following HgCl2 application was due to Hg2+ binding to 

each of the substituted cysteines and forming S-Hg-Cl bonds, rather forming a cross-link 

between TM3 and TM4 and reducing the ability of butanol or isoflurane to bind and 

produce an effect at an intra-subunit cavity within in the TM domain of the GlyR. 

Although this possibility is unlikely given that the butanol and isoflurane effects were not 

significantly altered in the single mutants, we measured butanol and isoflurane 

modulation in the A288C/Y406C and A288C/I409C mutants when HgCl2 was applied in 

the absence of glycine, which has been previously shown not to produce functional 

effects or, presumably, cross-links. Accordingly, we found that in the A288C/Y406C 

mutant, the potentiation of EC5-10 glycine response by 22 mM butanol was not 

significantly altered following the application of HgCl2 in the absence of glycine. In 

addition, the application of HgCl2 alone did not significantly alter potentiation by 0.6 mM 

isoflurane. Similarly, HgCl2 alone had no significant effect on butanol or isoflurane 

modulation of the A288C/I409C double mutant (data not shown). Taken together, our 

findings suggest that the formation of a cross-link between A288 in TM3 and residues in 

TM4 reduces the ability of alcohols and volatile anesthetics to bind and produce an effect 

and further supports the participation of these residues in a common binding cavity. 

However, it remains uncertain whether these cross-links are formed between residues  
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Figure 3.2. Anesthetic potentiation of EC5-10 glycine response in mutant TM3-4 GlyRs. 
A) In accordance with the butanol experiments, 10 µM HgCl2 was applied to the 
A288C/W407C and A288C/Y410C double mutants and corresponding single mutants in 
the resting state (absence of glycine), and the potentiation of submaximal glycine 
responses by 0.6 mM isoflurane was compared before and afterward. B) For the 
A288C/Y406C and A288C/I409C double mutants and corresponding single mutants, 
HgCl2 was applied in the activated/desensitized state (presence of 100 mM glycine). All 
values represent mean ± SEM from 4-5 oocytes. Repeated-measures t-tests were used to 
detect differences between the Pre-HgCl2 and Post-HgCl2 conditions for each receptor. 
*p<0.05   

A 

Y41
0CB 
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within the same subunit (intra-subunit) or between subunits (inter-subunit), and 

ultimately whether these residues are participating in common alcohol-binding cavity 

within or between GlyR subunits.  

We used the homology model of GlyR with the residues of interest substituted 

with cysteine to determine potential sites for cross-linking (Figure 3.3). Distances 

between S-S with cysteines substituted at I229 (TM1), S267 (TM2), A288 (TM3), and 

Y406 (TM4) in two adjacent subunits ranged from about 7 to 12 Angstroms. An ideal S-S 

disulfide bond is approximately 2 Angstroms. The use of HgCl2 to form an S-Hg-S bond 

extends that final bond distance to approximately 5 Angstroms. Obviously, some rotation 

or bending of the helical segments would be required to accommodate the experimental 

cross-linking results. 

To further investigate these possibilities, we extracted GlyR protein from oocytes 

injected with wild-type GlyRs or a representative double cysteine TM3-4 mutant from 

above (A288C/Y410C), which has shown evidence of cross-link formation using either 

HgCl2 or H2O2 (McCracken et al., 2010). We then used immunoblotting with a GlyR-

specific antibody (Figure 3.3) and verified protein identification by mass spectrometry 

(MALDI-TOF/TOF) (Table 3.2). The differences in 100:50 kDa band ratios were 

quantified and compared between uncross-linked and cross-linked conditions for the 

representative TM3-4 mutant and the wild-type. Wild-type GlyR subunits typically 

measure about 50 kDa. Therefore, we hypothesized that if cross-linking occurred 

between two adjacent subunits, then we would observe an increase in the presence of  
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Figure 3.3. Homology Model of 3D structure of portions of GlyR TM1-4. Based on the 
invertebrate Caenorhabditis elegans glutamate-gated chloride channel (GluCl), as 
described in Methods, distances are between S-S with cysteines substituted at I229 
(TM1), S267 (TM2), A288 (TM3), and Y406 (TM4) in two adjacent subunits (red and 
blue). An ideal S-S disulfide bond is theoretically about 2 Å, however the use of HgCl2 to 
form an S-Hg-S bond extends that final bond distance to approximately 5 Å. The 
distances between S-S with cysteines substituted at the respective positions noted above 
ranged from about 7-12 Å. 
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GlyR-labeled 100 kDa band, and an increase in the ratio of 100:50 kDa bands. 

Conversely, we expected no change for cross-linking within a subunit. We did not find 

any significant differences in the 100:50 kDa band ratios between the uncross-linked or 

cross-linked conditions for either the TM3-4 mutant or the wild-type (3.4). This is 

consistent with previous homology modeling (Bertaccini et al., 2005; Unwin et al., 2005) 

and biochemical cross-linking studies suggesting that the TM4 residues of interest: Y406, 

W407, I409, and Y410 form intra-subunit cross-links with A288 of TM3 from the same 

subunit (McCracken et al., 2010) and provides evidence that these residues may 

participate in a common drug-binding cavity within a GlyR subunit. 
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Figure 3.4. Immunoblot for WT and mutant TM3-4 GlyRs. 100 kDa and 50 kDa α1 
GlyR-labeled bands in the wild-type and A288C/Y410C mutant in the uncross-linked vs 
cross-linked (+H2O2) conditions. 0.5% H2O2 was applied by bath perfusion as previously 
described (McCracken et al., 2010). 
 
  

WT WT 
A288C/
Y410C 

A288C/

+ H2O2 

100 Kd 

50 Kd 



 59 

  

 Molecular Weight 
(kDa) 

Protein Score C.I. 
% 

GLRA1 100-105 57 
GLRA1 100 60 
GLRA1 50-55 89 
GLRA1 48-50 78 

 

Table 4 
Protein Identification of Mutant TM-3-4 Glycine Receptor. All 
values are from a representative uncross-linked A288C/Y410C 
mutant sample determined by MALDI-TOF/TOF.  
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Figure 3.5. Quantification of Band Ratios for WT and mutant TM3-4 GlyRs. The100:50 
kDa band ratio did not increase for the A288C/Y410C double mutant or the wild-type 
when cross-linked. Immunoblot images were processed using ImageJ64 software, and the 
band intensity was taken and reported as a direct ratio. 0.5% H2O2 was applied by bath 
perfusion as previously described (McCracken et al., 2010). All values represent mean ± 
SEM. Repeated-measures t-tests were used to detect differences between the uncross-
linked vs cross-linked (+H2O2) conditions for each receptor, p>0.05. 
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DISCUSSION 

Our findings suggest that the formation of a cross-link between residue 288 in 

TM3 and residues Y406, W407, I409, and Y410 in TM4 reduces the ability of alcohol 

and volatile anesthetics to bind and produce their effects at an intra-subunit cavity in the 

GlyR. Although the crystal structure of the glycine receptor has not been solved, our 

results are consistent with the recent x-ray structure of desflurane bound at an intra-

subunit cavity in the bacterial homologue GLIC (Nury et al., 2011). More recently, 

photolabeling studies demonstrated the competitive binding of Propofol and AziPm at 

residues corresponding to the intra-subunit pocket identified in the GLIC crystal structure 

(Jayakar et al. 2013; Chiara et al., 2014), which further supports an intra-subunit site of 

action for anesthetics. However, the interaction of anesthetics and alcohols with GLIC, 

and the other ligand-gated ion channels, may involve more than a single pocket bounded 

by the four TM regions. The high-resolution structure of GLIC with desflurane and 

propofol shows a "linking tunnel," which connects inter- and intra-subunit cavities (Nury 

et al., 2011). 

The position of A288C in (Figure 3.3) is facing more into the inter-subunit space 

than toward the intra-subunit cavity. The model shows that the distances between A288C 

in TM3 of one subunit and residues in TM4 of the adjacent subunit are so great that the 

receptor would be considerably distorted by the cross-linking, and presumably, rendered 

non-functional. A more likely possibility is that the two helical turns at the extracellular 

end of TM3 are flexible. A somewhat extreme example is a “spring model” used by 

Otero-Cruz et al. (2007) to explain the effect of substitutions in TM3 of in the related 
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nAChR. We previously considered the effect of a 100 degree rotation of TM3 during the 

opening transition to explain experimental cross-linking of TM3 with residues in TM4 

(McCracken et al., 2010). Currently, there are many other examples of experimental 

evidence for specific motion of TM3 or a more global motion within the subunit that 

changes the accessibility of reagents to the intra-subunit cavity (Jung et al., 2005; Bali et 

al., 2009; Yoluk et al., 2013). 

Another uncertainty is the position of TM4 in these channels (Bertaccini et al., 

2010). Studies using voltage-clamp fluorometry have reported differences between the 

GlyR α1 and α3 subunits with respect to the relative orientation and proximity of TM3 

and TM4, whereby fluorescence-tagged TM3 and TM4 residues in the α1 subunit 

exhibited intra-subunit facing orientation under glycine-dependent conditions whereas 

homologous α3 residues displayed evidence of differing orientation (Han et al., 2013). 

High resolution structures of GLIC, ELIC and GluCl find TM4 to be tilted away from the 

other three TM regions (Bocquet et al., 2009; Hilf and Dutzler, 2009; Hibbs and Gouaux, 

2011) and the intra-subunit binding site for desflurane in GLIC appears to be formed 

primarily by TM1-3 (Nury et al., 2011). It is possible that the tilt of TM4 away from the 

other TMs allows it to be partially or completely surrounded by lipid (Baenziger and 

Corringer, 2011). However, data from cross-linking experiments in the GlyR show that 

TM3 and TM4 are in sufficient proximity to allow cross-linking not only with HgCl2, but 

in the case of A288C/Y410C, also with an oxidizing agent (McCracken et al., 2010). 

Propyl methanethiosulfonate labeling experiments indicate that W407C, I409C, Y410C 
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and K411C are accessible to this reagent and are likely exposed to water, which is 

consistent with this region of TM4 contributing to a water-filled cavity (Lobo et al., 

2006). It seems likely that TM4 has considerable flexibility and may approach the other 

TMs, perhaps during gating, which is supported by the observation that cross-linking for 

A288C/Y406C and A288C/I409C are only observed if the receptor is activated by 

glycine (McCracken et al., 2010). Moreover, it is tempting to speculate that alcohols and 

anesthetics are able to stabilize the open state of the GlyR given this state creates a closer 

orientation of TM4 to the other TMs, which would allow for stronger binding to an intra-

subunit pocket formed by all four TM segments.  

 In summary, we found that the formation of a cross-linking between A288 in 

TM3 with residues Y406, W407, I409, or Y410 in TM4 reduces the ability of alcohol or 

anesthetic to enhance GlyR function. Moreover, using immunoblotting we provide 

evidence that this cross-linking appears to occur within a subunit, suggesting that TM3 

and TM4 likely participate in an intra-subunit alcohol/anesthetic binding cavity in the 

GlyR. 
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CHAPTER IV: DISCUSSION AND IMPLICATIONS 

 
In the absence of a GlyR crystal structure, the orientation of the TM amino acids 

critical for alcohol and anesthetic action have been controversial, and ultimately the 

positioning of the putative drug binding cavity within the GlyR has remained uncertain.  

The purpose of this project was to investigate whether biochemical cross-links are formed 

between residues within the same subunit (intra-subunit) or between subunits (inter-

subunit), and ultimately to determine whether these residues are participating in a 

common alcohol/anesthetic binding cavity within or between GlyR subunits (or both). 

We found that the formation of a cross-link between I229 in TM1 and A288 in 

TM3 reduced the ability of butanol or isoflurane to modulate GlyR function. Similarly, 

we have also shown that residues Y406, W407, I409, and Y410 in TM4 are able to form 

cross-links with A288 in TM3 (McCracken et al., 2010), and this cross-linking between 

TM3 and residues in TM4 in the present study also reduced the ability of alcohol or 

anesthetic to bind and produce its effect. Moreover, we found specific evidence that 

cross-linking between TM1 and TM3 appears to be inter-subunit, but intra-subunit for 

TM3 and TM4, suggesting that TM1-3 may participate in an alcohol and anesthetic 

binding cavity between GlyR subunits while TM3-4 may contribute to a binding cavity 

within a subunit. Taken together, our findings are in general agreement with the recent 

“multisite” hypothesis positing that alcohol and anesthetics act at both inter- and intra-

subunit sites on ligand-gated ion channels. This hypothesis has been generated largely by 

mutagenesis studies in the GLIC, ELIC, and GluCl homologues, molecular simulations, 
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and newer homology modeling based on the known prokaryotic/invertebrate structures. It 

expands upon the initial structures co-crystallized with drug molecules bound at either an 

intra-subunit or inter-subunit cavity (Howard et al. 2011; Murail et al., 2012; Spurny et 

al., 2013; Yoluk et al., 2013). 

 Although the general structural features of pentameric ligand-gated ion channels, 

including the GlyR and other members of the Cys-loop family, have been established and 

fairly well accepted, especially since the emergence of the 4Å resolution structure of the 

Torpedo nAChR, technical challenges have created barriers in membrane protein 

crystallography limiting the advancement and production of x-ray structures for the 

mammalian ligand ion channels (Carpenter et al., 2008), particularly GlyRs and 

GABAARs. Despite these challenges, the use of homology modeling combined with 

studies using mutagenesis and alkyl thiol reagents and/or oxidizing agents have been 

reasonably successful over the past 10+ years at helping to identify critical amino acid 

residues for alcohol and anesthetic action at multiple sites throughout the GlyR and its 

relatives. Primarily, residues in the TM segments have received the most attention and 

support (Mihic et al., 1997; Mascia et al., 2000; Lobo et al., 2006; Harris et al., 2008; Li 

et al., 2010; Duret et al., 2011; Borghese et al., 2012), but also sites such as A52 in the N-

terminal domain (Davies et al., 2004; Crawford et al., 2007) and K385 the intracellular 

loop linking TM3 and TM4 have been proposed to play a role in alcohol modulation 

(Yvenes et al., 2003; Yvenes et al., 2008). 

Recently, the known crystal structures for the two prokaryotic homologues, ELIC 

GLIC (Hilf and Dutzler, 2008; Hilf and Dutlzer, 2009; Bocquet et al., 2009), and the 
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invertebrate GluCl (Hibbs and Gouaux, 2011) have provided improved templates and 

better informed homology modeling for the study of GlyRs and related mammalian ion 

channels. These homologues and their known structures have also advanced the study of 

structure-function in the alcohol and anesthetic fields. For example, the determination of 

atomic-resolution anesthetic-bound and alcohol-bound GLIC structures (Nury et al., 

2011; Sauguet et al., 2013) as well as an anesthetic-bound ELIC structure (Spurny et al., 

2013) have recently begun to help further our understanding of the sites of alcohol and 

anesthetic action in the related ion channels and improve the characterization of drug 

binding. And while these known structures have provided solutions to previous alignment 

quandaries and have helped to pinpoint relevant sites for putative binding cavities with 

greater efficiency, these known prokaryotic sequences and their x-ray structures, in 

reality, also still represent models of the GlyR and related proteins found in higher order 

organisms, despite reasonably high predictive validity.  As such there are some 

differences worth noting between the mammalian anion-selective channels such as the 

GlyR and GABAAR and the prokaryotic channels GLIC and ELIC.  

First, GLIC is a cation-sensitive channel gated by protons, which contains a short, 

truncated-like intracellular loop domain that differs from its mammalian homologues, 

(Bocquet et al., 2009) and possesses some unique pharmacological features. Both general 

anesthetics and ivermectin inhibit GLIC function (Weng et al., 2010; Duret et al., 2011), 

which is opposite to the potentiating effects of these drugs on wild-type GlyRs and 

GABAA. In addition, wild-type GLIC is insensitive to pharmacologically relevant 

concentrations of ethanol, however Howard et al. (2011) demonstrated potentiation with 
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higher, anesthetic-range concentrations of ethanol or methanol while longer chain n-

alcohols produced inhibition. Notably though, more pharmacologically relevant 

potentiating drug effects have been a reported from a GLIC chimera harboring the human 

α1 GlyR TM domain. Like wild-type GlyRs, a variety of modulators potentiate the 

function of this chimera, including alcohols, anesthetics, and ivermectin (Duret et al. 

2011), underscoring the obligatory role of the GlyR TM domain in the potentiating 

effects of these allosteric modulators. Similarly, ELIC is also a cation-selective ion 

channel, whose atomic-resolution structure was determined prior to that of GLIC (Hilf 

and Dutzler, 2008), but difficulty identifying agonists to gate the channel made GLIC 

more popular and practical for physiological studies. High µM-mM concentrations of 

GABA, along with other primary amines, have since been shown to behave as agonists at 

ELIC (Zimmermann and Dutzler, 2011), while ethanol and anesthetics inhibit ELIC 

function (Spurny et al., 2013).  Given these characteristics, GLIC and ELIC may be the 

closest model for the human nAChR, rather than GlyR or GABAARs.   

Nevertheless, recent co-crystallization studies in GLIC and ELIC with anesthetics 

and alcohols (or their derivatives) have provided valuable structural insight to help better 

understand how and where these drugs are interacting with related human ligand-gated 

ion channels, including the GlyR. In the initial finding by Nury et al. (2011), both the 

volatile anesthetic desflurane and the intravenous anesthetic propofol were reported to 

occupy an intra-subunit cavity.  Subsequently, an ethanol-sensitized GLIC variant was 

also co-crystallized with ethanol, bromoethanol, and bromoform, which revealed primary 

occupancy of an inter-subunit binding cavity, although in the ethanol-sensitized variant, 
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both bromo-ethanol and bromoform were retained in the intra-subunit cavity as well 

(Sauguet et al., 2013). Moreover, the crystallization of ELIC in complex with bromoform 

resulted in the observation of anomalous density in multiple regions of the protein 

indicative of binding.  These predominantly included a hydrophobic pocket in the 

extracellular domain between β7-β10 strands, the channel pore, and a novel, more deeply 

situated inter-subunit TM site (Spurny et al., 2013).  However, there was no evidence of 

bromoform retained in the intra-subunit cavity in the case of ELIC, which could reflect 

the conformational/state-dependent differences between ELIC and GLIC (Spurny et al., 

2013).  Figure 4.1 provides a general overview of the different general anesthetic binding 

sites revealed by crystal structures of GLIC and/or ELIC (note that ethanol is 

unfortunately not included, however it shares many overlapping inter-subunit and intra-

subunit sites as discussed above).  

Although the present study did not address possible alcohol and anesthetic sites 

outside of the TM domain, our findings appear to be consistent with a multisite model in 

the GlyR. In functional studies of GLIC, the delineation of a potentiating inter-subunit 

cavity and an inhibitory intra-subunit cavity have been proposed (Murail et al., 2012; 

Sauguet et al., 2013). This was developed largely from the observation that introduction 

of the single F14’A point mutation in GLIC results not in only potentiation rather than 

inhibition by alcohol and anesthetics, but at much more relevant concentrations (Howard 

et al., 2011; Sauguet et al., 2013).  Moreover, molecular simulations have expanded upon 

this and even generated models for GlyRs and GABAARs (Murail et al., 2012), however 

inconsistencies among experimental data involving the mutagenesis of conserved sites 
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directly identified in the anesthetic-bound crystal structures have made the identification 

and proposal for the intra-subunit inhibitory site in GLIC a bit weaker (Ghosh et al., 

2013). Furthermore, in GABAAR experiments similar those conducted in the present 

study, Borghese et al. (2014) reported evidence of both inter-subunit and intra-subunit 

alcohol/anesthetic binding, but found no relationship between where the anesthetic binds 

and the type of modulation they produce (potentiation vs. inhibition). Similarly, the 

modulation we observed in GlyRs was consistently potentiating in nature for both alcohol 

and volatile anesthetics. However, future studies may be necessary to further investigate 

whether a precise relationship exists between where alcohols/anesthetics bind (inter-

subunit vs. intra-subunit) in the GlyR and the type of modulation the produce 

(potentiation vs. inhibition).  

In conclusion, we provide evidence that alcohols and anesthetics act at both inter- 

and intra-subunit cavities in the GlyR, which is generally consistent with multisite 

models derived from the known sequences and structures of bacterial and other 

invertebrate homologues. The use of these structures as templates for related higher order 

ion channels such as the GlyR allows for greater efficiency in the study of alcohol and 

anesthetic sites and mechanisms. Moreover, their continued use and refinement may one 

day offer a more viable approach toward the development of novel, safer general 

anesthetics and more effective treatment options for alcohol abuse and alcoholism. 
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Figure 4.1. Overview of anesthetic binding sites in pentameric ligand-gated ion channels. 
Graphic representation is based on the known ELIC structure. Two adjacent subunits are 
shown in red and blue, and drugs placed schematically and labeled accordingly. (ES) = 
Extracellular site; (PS) = Pore site; (IS) = Inter-subunit site; Note the propofol-desflurane 
Intra-subunit site is drawn with a representative drug molecule bound, but not labeled. 
(Adapted from Spurny et al., 2013).   
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