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Multistage tests (MSTs) have received renewed interest in recent years as an 

effective compromise between fixed-length linear tests and computerized adaptive test.  

Most MSTs studies scored the assessments based on item response theory (IRT) methods. 

Many assessments are currently being developed as mixed-format assessments that 

administer both standalone items and clusters of items associated with a common 

stimulus called testlets. By the nature of a testlet, a natural dependency occurs between 

the items within the testlet that violates the local independence of items.  Local 

independence is a fundamental assumption of the IRT models. Using dichotomous IRT 

methods on a mixed-format testlet-based assessment knowingly violates local 

independence.  By combining the score points within a testlet, researchers have 

successfully applied polytomous IRT models. However, the use of such models loses 

information by not using the unique response patterns provided by each item within a 

testlet.  The three-parameter logistic testlet response theory (3PL-TRT) model is a 

measurement model developed to retain the uniqueness in response patterns of each item, 

while accounting for the local dependency exhibited by a testlet, or testlet effect.   
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Because few studies have examined mixed-format MSTs administration under the 

3PL-TRT model, the dissertation performed a simulation to investigate the administration 

of a mixed-format testlet based MSTs under the 3PL-TRT model. Simulee responses 

were generated based on the 3PL-TRT calibrated item parameters from a real large-scale 

passage based standardized assessment.  The manipulated testing conditions considered 

four panel designs, two test lengths, three routing procedures, and three conditions of 

local item dependence.  

The study found functionally no bias across testing conditions.  All conditions 

showed adequate measurement properties, but a few differences did occur between some 

of the testing conditions.  The measurement precision was impacted by panel design, test 

length and the magnitude of local item dependence.  The three-stage MSTs consistently 

illustrated slightly lower measurement precision than the two-stage MSTs.  As expected, 

the longer test length conditions had better measurement precision than the shorter test 

length conditions.  Conditions with the largest magnitude of local item dependency 

showed the worst measurement precision. The routing procedure had little impact on the 

measurement effectiveness. 
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Chapter 1: Introduction 

The use of computers and the development of item response theory (IRT) 

exemplify two of the most paramount changes in test delivery platforms in recent history 

(Brennan, 2006). Although less sophisticated forms of adaptive testing have been 

developed using classical test theory approaches (e.g. Stanford-Binet), the interaction 

between computing power and IRT has resulted in tailored testing with equal if not 

greater reliability than fixed item length testing forms.  A testing delivery platform has 

implications on a number of test specifications such as test scoring, scaling, equating, 

platform comparability, item pool development, among others (Schmeiser & Welch, 

2006).  The current study focuses on a particular delivery platform, namely multistage 

tests (MSTs), in order to fully understand the implication of using this particular test 

delivery platform and its capability of capturing an examinee’s current ability being 

measured.  Investigations, such as this dissertation, must be conducted to provide 

information about the best delivery method to test developers for the needs of their 

program.  The current introduction briefly reviews different testing platforms and the 

advancement in computers and IRT that have led to advancement in adaptive testing.  

Then, a description of the impact item types have on both delivery platforms and IRT 

models is given. 

MODERN TEST DELIVERY PLATFORMS 

Today numerous test delivery platforms are available to a testing program.  The 

advent of computers and their increased computing power has enhanced the way in which 

a test can be delivered to an examinee from that of traditional paper-pencil testing. 
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Paper-pencil Based Testing 

Large-scale assessments are sometimes delivered in the form that may be 

regarded as a “traditional” testing format.  For the current discussion, a standardized 

paper-pencil test is being referenced as a traditional testing format.  For example, an 

examinee receives a hard copy of a test form consisting of a set of fixed-length items in 

conjunction with an answering document.  The form length is fixed, in that, every 

examinee receiving the form is administered the same number of items.  The examinee  

then records their answers to an answer document, such as a Scantron bubble sheet, 

where items are answered by filling in a bubble that corresponds to the perceived correct 

item’s response option from the test form.  Upon completion, examinees’ answer 

documents are sent to a scoring center, where the answer documents are scored. 

Computer-Based Testing 

Computer-based testing entails any platform that uses a desktop, laptops, or other 

versions of a microcomputer to administer a test.  Drasgow, Luecht, and Bennett (2006) 

discuss varying computer-based delivery platforms such as computerized linear fixed-

length tests (LFTs), item-level computerized adaptive tests (CATs), clusterized adaptive 

tests, and structured computer-adaptive multistage tests (MSTs).  Two major differences 

in administration from traditional based testing, besides the user-interface, are the need 

for a large and accessible item bank and potential on-site scoring.  Computer-based tests’ 

item banks are generally stored on a network server or the administering computer for 

accessibility purposes during test administration.  Another difference found is in the test 

scoring procedures.  Scoring in most cases of computer-based tests can be done on-site 

and no longer needs to be shipped to a scoring center.  The scoring procedures does 

impact the platform in which a test may be delivered (Wainer, 2000b). 
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A computerized LFT is analogous to the paper-pencil based test described above.  

The difference is that administration takes place on a computer.  Because computerized 

LFT are administered as intact forms, scoring can either be done during the testing 

experience or after.  Computerized adaptive testing (CAT) is the first style of testing 

presented that distinguishes itself from testing for a broad range of abilities by tailoring 

the test items to the ability of the examinee (Wainer, 2000b).  The tailoring is executed by 

scoring responses in real time and using this information to select the next item for 

administration (Drasgow et al., 2006). 

The remaining platforms discussed are alternative forms of CAT.  Clusterized 

adaptive tests were introduced by Wainer and Kiely (1987).  They provide a framework 

for the adaptive unit at the cluster level of items developed around a central content 

category.  For clusterized adaptive tests, an examinee is administered a content item 

cluster.  Upon completion of the cluster, the examinee’s ability is updated based on all 

responses and a new cluster is selected.  Adaptive MSTs are similar to the clusterized 

adaptive tests in that sets of items are used as the building block for a test (Zenisky, 

Hambleton, & Luecht, 2010).  In MSTs, an examinee is administered a set of items in 

stages, where the set of items is not primarily centered on content categories but rather 

will piecemeal the content categories within a stage.  A typical administration might 

proceed as follows. The first stage, i.e. first set of items, is administered to the examinees.  

Then based on the item responses in the first stage and the MST routing procedures, an 

examinee navigates to the second stage, where another set of items is selected from a 

series of subtests.  The routing procedure is a predetermined subtest selection procedure 

that matches an ability level to a subset of items, while adhering to a program’s policies.  

The examinee will then respond to the new set of items. Then the pattern continues for 
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each subsequent stage until the examinee reaches the termination point in the final stage 

of the exam. 

Implementing various delivery platforms impacts the psychometric properties of a 

test.  Lord (1971) noted that administering a test appropriate to an ability level yields 

more accurate measurements of an examinee.  One major distinction between LFTs and 

adaptive tests is that adaptive tests attempt to tailor the administration to the examinee’s 

ability.  In doing so, CATs have been shown to provide similar measurement precision to 

LFTs while significantly reducing the administered test length (Wainer, 1993).  However, 

CATs have their own complications.  Two distinct difficulties in implementing CATs are 

item exposure rate issues and the inability for an examinee to review items.  An item 

exposure rate is the rate at which an item is administered to the examinee population.  

Security issues can be exasperated by fully adaptive tests when  many of the same items 

get administered to most examinees, which leads to overexposure of some items and the 

underutilization of others (Thissen & Mislevy, 2000).  MSTs offer test designers a 

compromise between allowing an examinee the ability to review subsets of items while 

building in exposure control strategies and tailoring to an examinee’s ability (Zenisky et 

al., 2010).  The current study focuses on the use and implementation of adaptive MSTs.  

Because MSTs are adaptive tests, the statistical theory underlying adaptive testing will be 

briefly reviewed. 

MODERN TESTING THEORY 

Current forms of adaptive testing were strongly influenced by modern testing 

theory.  Modern testing theory started with Lord's (1952) normal ogive models.  Then 

major breakthroughs for applicability were developed by Rasch's (1960) and Birnbaum's 

(1968) extensions using logistic functions.  Their work has now provided the framework 
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for the current family of item response theory (IRT) models that are capable of measuring 

an examinee’s proficiency through test items rather than the test forms.  Now, adaptive 

testing uses an item’s statistical characteristics estimated from the IRT family to tailor a 

test to an examinee’s estimated ability level. 

The appropriateness of IRT models can be dictated by the examinee response 

patterns and the item types being administered on a test. The most common item type is a 

multiple-choice item.  A multiple-choice item is an item with a prompt or question 

eliciting a response from a set of possible response options.  Included in the response 

options is exactly one correct item and a set of distractors or incorrect options.  The item 

is then either scored right or wrong and often coded 0 or 1, respectively.  Due to the 

binary scoring of multiple-choice items, they are often referred to as dichotomous items.  

Polytomous items are items that consist of multiple categories of classifications (i.e. two 

or more) for a given response. For example, essay items score using a scoring rubric with 

two or more possible score points, survey style Likert items, or constructed response 

items that receive partial credit are among the varying style of polytomous item types.  A 

polytomous item will receive a score k from the ordered category set of scores 0, 1, 2, …,

jm , where jm  is the highest score category for a given item.  Testlets are another set of 

items that have elicited appropriate scoring methods in modern testing theory. A testlet is 

a cluster of items with prompts and response options developed around a common 

stimulus (Wainer, Bradlow, & Wang, 2007).  A common stimulus might consist of a 

reading passage, graph, or data table.  Like dichotomous items, testlet-based items can be 

scored as right or wrong within the testlet. 

A test can be constructed of standalone dichotomous, standalone polytomous, 

testlet-based items, or any combination of the item types.  When combinations of item 

types are used for administration, it will be referred to as a mixed-format test.  The 
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current study uses a mixed-format testlet-based item pool that consists of standalone 

multiple choice items and testlet-based multiple choice items. 

Since the inception of IRT, adaptive testing has taken advantage of its ability to 

measure a person’s ability at the item level.  However, specific models are only 

appropriate for specific types of items.  Since some items considered for the current study 

are testlet-based, the appropriateness of the IRT family must be scrutinized.  IRT models 

are statistically based models.  As with any statistical model, assumptions are made when 

defining a model.  For IRT based models, one of the assumptions that can be violated for 

a testlet-based exam is the assumption of local independence (Lord, 1980).  However, in 

the presence of a testlet, an item’s local independence within-testlets can be violated and 

lead to bias in an items statistical properties (Sireci, Thissen, & Wainer, 1991; Wainer et 

al., 2007).  The violation in local independence has lead researchers to develop a number 

of testlet response theory (TRT) models.  Because of the nature of the item pool, the 

current study employs an MST under the three parameter logistic TRT (3PL-TRT) 

model. 

Currently, only a handful of studies have used the 3PL-TRT model for an MST 

administration (Galindo, Park, & Dodd, 2013; Keng, 2008; Lu, 2010).  Both Keng (2008) 

and Galindo, et al. (2013) used an item pool that only consisted of testlet-based items.  Lu 

(2010) studies various levels of mixed-format administration.  The study found that 

higher levels of a testlet effect, or a manifest variable that violates local independence 

within a testlet, created a greater need to use the 3PL-TRT model.  However, Lu (2010) 

only investigated one of two scenarios suggested for appropriate implementation of a 

3PL-TRT model which aligns more with a clusterized adaptive test than an MST (Wainer 

et al., 2007).  Specifically, Lu (2010) used a subset of items from the larger total set of 

items associated with a given testlet.  In practice, it is common to see smaller testlet sizes 



 7 

that are administered as a whole set, say a testlet sizes between five and ten items,  such 

as the GRE and SAT as was investigated by Wainer, Bradlow, and Du (2000). 

Therefore, the purpose of the current research is to use a simulation study to 

investigate the operational characteristics of an MST under the 3PL-TRT model for a 

mixed-format testlet-based item pool that administers standalone items and whole 

testlets.  The simulation uses item parameters from an existing testing program to 

generate item responses in order to represent a realistic testing scenario.  To assess the 

operational characteristics of an MST in this context, the precision of ability estimates 

and the routing of simulees during administration is examined. One aspect of the item 

responses for the item pool that was manipulated is the testlet effect.  MST components 

that varied are the panel design, test length, and routing procedures.  Gaining insight into 

the impact of these various testing conditions for an MST administration helps inform 

testing programs interested in employing MSTs about the associated advantages and 

disadvantages for testlet-based item pools. 
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Chapter 2: Literature Review 

The following literature review describes the relevant research and background 

information for the current study.  The first section provides an introduction to item 

response theory (IRT).  The second section then outlines the use of testlet response theory 

(TRT).  Then the basic components of multistage testing are described.  Next, an 

overview of research pertaining to MSTs is explained.  The final section states the 

problem of main interest for this dissertation. 

ITEM RESPONSE THEORY 

Item response theory (IRT) is a scaling method that consists of a family of models 

that relates one’s item response to a latent variable, or trait ability, generally referred to as 

theta, or   (de Ayala, 2009).  In doing so, IRT treats latent traits and item characteristics 

as predictors of observed item responses.   

Generally speaking, most IRT models consist of three assumptions that 

characterize modeling the probability of getting an item correct conditional on modeling 

an ability level.  IRT models have a dimensionality assumption, where the response data 

is an indicator of one or more latent construct(s) or factor(s) (Reckase, 2009).   By and 

large, this refers to the model being representative of the construct(s) being assessed in 

order to inform the probability of a correct response. The models for the current study 

will only consider that of a unidimensional structure, or a person’s ability being 

represented by one latent dimension or factor.  The second assumption is that of 

conditional independence, sometimes referred to as local independence.  The weak form 

of local independence assumes that the items are uncorrelated conditional on ability.  The 

strong form of local independence assumes that the responses are statistically 

independent given an ability level. The final assumption common to IRT models is that 
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of functional form, or that a mathematical statement can be made relating the person’s 

response and ability to an item (see Lord, 1980).  All three assumptions hold throughout 

the discussion of dichotomous and polytomous IRT models. 

Dichotomous Models 

Dichotomously-scored items consider only two response options.  Typical 

responses can be right/wrong but could include agree/disagree or true/false. Item types 

such as these often occur as multiple choice items, where an item stem, or the intended 

question to be answered, is presented to an examinee eliciting a response from which the 

options include one correct option and the remaining distractor options are incorrect.  

Therefore, the mathematical models to be introduced represent the relationship between 

the item’s parameters and a person’s ability parameter, where only binary options are 

considered for the response patterns and are generally coded 0 or 1. 

Three of the most widely used dichotomous models in the IRT literature are: 1) 

Rasch/one-parameter logistic (1PL) model (Rasch, 1960); 2) two-parameter logistic 

(2PL; Birnbaum, 1968); and 3) three-parameter logistic (3PL; Birnbaum, 1968).  

Collectively, these dichotomous IRT models differ based on three item parameters which 

distinguish the probabilistic functioning of each model.   

Rasch/1PL 

The Rasch/1PL formulation of a response function models the probability of 

answering an item correctly given a person’s ability as follows: 

  
)(exp1

)(exp
,|1

j

j

jj
b

b
bup









 , (1)  

where the function in Equation 1 models the probability of a correct response, u equals 1, 

on item j for a given ability   with relative item difficulty jb .  The item difficulty 
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parameter is the   value that corresponds to the inflection point of the probability trace 

line.  For the 1PL model, the point of inflection is always at the .50 probability of 

answering an item correct.  Additional assumptions for the model are equal 

discriminations across items and no guessing occurring when answering an item.  See 

item 1 in Figure 1 for an example of a 1PL item characteristics curve (ICC). 

2PL 

The 2PL model is an extension of the 1PL model developed by Birnbaum (1968). The 

extension to the 2PL model occurs by including a unique item discrimination parameter 

for every item: 
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where jb and   retain their original interpretation as the item difficulty and person 

ability, respectively.  The model also includes the item discrimination parameter a , 

modeling a unique discrimination index for each item j.  The item discrimination 

parameter is a function of the slope at the point of inflection of the ICC.  Descriptively 

items with higher a parameters have steeper slopes than items with lower a parameters.  

An additional assumption for the 2PL model is that no guessing occurs when answering 

an item.  For an example of the effects of the discrimination parameter, Figure 1 

compares two items, Items 1 and 2, where Item 1 has item discrimination equal to 1 and 

the item discrimination for item 2 is 1.4.  It can then be seen that around the point of 

inflection, 5.0 , Item 2 accelerates to its upper asymptote more quickly than does Item 

1. 
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Figure 1. Item Characteristic Curve for 1PL, 2PL, and 3PL.  Item 1 a=1, b=0.5, and 

c=0; Item 2 a=1.4, b=0.5, and c=0; Item 3 a=1.4, b=-0.2, and c=0.2. 
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3PL 

Birnbaum (1968) further extended the 2PL model in to the 3PL model by 

introducing a pseudo-guessing parameter.  The probability of a correct response 

conditional on ability for the 3PL model is modeled as follows: 
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where ja is the item discrimination parameter, jb is the item difficulty parameter, and jc

is the pseudo-guessing parameter for item j.  The pseudo-guessing parameter, jc , is 

representative of the probability that a person with ability approaching negative infinity 

will answer the item correctly.  Mathematically, it acts as the lower asymptote for the 

function in Equation 3.  The item difficulty parameter is still the ability level that 

corresponds to the point of inflection.  When guessing is present, the point of inflection is 

the halfway point between the pseudo-guessing parameter, jc , and the upper asymptote 

of 1, i.e. 2/)1( jc .  Figure 1’s Item 3 illustrates an item with a c value equal to 0.2, an a 

value equal to 1.4, and a b value of -0.2.  In this instance, the probability of answering the 

item correctly for an ability at the point of inflection is 
2

2.1
 or .6.  It can be seen that the 

lower asymptote approaches 0.2 and that the point of inflection has shifted down on the 

theta scale, or Item 3 is easier when comparing it to Items 1 and 2.  It must be noted that 

if the pseudo-guessing parameter equals zero, the models in Equations 2 and 3 are 

equivalent and the 3PL model reduces down to the 2PL model. 

Item and Test Information 

Any statistical model has a level of uncertainty associated with the parameters of 

interest and is generally referred to as the standard error (SE).  Psychometric work is 

designed to provide evidence for a person’s ability on a given construct within a certain 

degree of (un)certainty. The uncertainty of an ability estimate is known as the standard 
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error (SE) and is symbolized as )ˆ( e .  IRT uses the contribution of each item to help 

reduce the uncertainty associated with a person’s estimated theta by use of the item 

information function (Lord, 1980):  
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where jp  is the probability of answering item j correctly, jq  is the probability of 

answering item j incorrectly (and can be rewritten as jp1 ), ja  is the discrimination 

parameter for item j, jc is the pseudo guessing parameter, and jp'  is the first derivative 

of jp with respect to  .  Notice that information will vary across the ability continuum.  

Additionally, information with all other item parameters being held constant varies 

directly from to the square of the item discrimination parameter. 

A test’s total information, or test information function, is the sum of the 

administered item information functions:  
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where it has been shown to be the upper bound of information attained from item 

responses and is equivalent to the squared inverse of the SE (Birnbaum, 1968).   

Therefore the SE for person’s ability can be defined by the inverse of the square root of 

the test information function as follows: 
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Polytomous IRT Models 

Polytomously-scored items consist of multiple category classifications (i.e. two or 

more).  For example, essay items graded on a scoring rubric of two or more scores, Likert 

attitude scale items, or constructed response items that receive partial credit are examples 
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of polytomous item types.  For a polytomous item j the score x(k) = {0,1,2,…mj}, is the 

set of possible ordinal response categories.  The polytomous models included in the 

discussion entail popular models appropriate for ordinal score categories.  Due to the 

nature of the item responses, polytomous models represent the probability of a category 

score as a function of  , and not the probability of answering an item correct as was the 

interpretation for dichotomous models.  Polytomous IRT models are broadly categorized 

by two methods  1) difference models and 2) divide-by-total models (Thissen & 

Steinberg, 1986).  One difference model and two divide-by-total models are discussed 

below, including the graded response model (Samejima, 1969), the partial credit model 

(Masters, 1982), and the generalized partial credit model (Muraki, 1992), respectively. 

Graded Response Model 

The graded response model (Samejima, 1969) is a difference model which scores 

items with two or more ordered response categories. The graded response model first 

defines the probability of scoring in a particular category or higher as follows: 
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where )(* kjP  is the probability for a person with ability   scoring in category k or higher 

on item j, ja is the item discrimination for item j and )(kjb is the category boundary 

location for category k in item j and are always in increasing order.  The category 

boundary location, )(kjb , is defined as the theta value that corresponds to .5 on the given 

)(* kjP  function.  It can be interpreted as the category bound between categories k and k-

1, and represents the point of inflection for the function in Equation 7. Lower and upper 

limits for the function are defined as 1*0 P  and 0* 1 jmP , respectively.  Because 

)(* kjP  is the probability of scoring in category k or higher, to calculate the probability of 
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scoring in category k for a given ability, one must take the difference between the 

probability of category k and k+1 as follows: 

 1**)(  kkik PPp  . (8)  

Hence, the graded response model is referred to as a difference model.  Note, the model 

in Equation 7 reduces to the 2PL model in the case of only two response categories.  

Partial Credit Model 

The partial credit model is the first of the two divide-by-total models to be 

described.  Masters (1982) extended the Rasch model to incorporate two or more score 

categories. The partial credit model’s mathematical form is defined as:  
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where )(kjb  is the step difficulty parameter for item j with category score k.  The step 

difficulty parameter acts as the transition point at which category k’s probability equals 

the probability of category (k-1). The divide-by-total namesake originates from the notion 

that the probability of scoring in category k is calculated by dividing the numerator, or the 

unique proportion of area represented by category k, divided by the total area of the 

function or the sum of all legitimate category response functions, or the denominator.  

Note that the partial credit model reduces down to the dichotomous Rasch model in the 

case of only two response categories. 

Generalized Partial Credit Model 

The generalized partial credit model is the second divide-by-total model to be 

described and is an extension to the partial credit model (Muraki, 1992).  Muraki’s 

extension includes a unique item discrimination parameter and is formulated as follows: 
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where ja  is item j’s item discrimination parameter, and )(kjb  has the same interpretation 

as in the partial credit model.  In the case of an item having only two response categories 

the model reduces down to the 2PL model.  

Item and Test Information 

Item information for polytomous models is more complex in that, the models are 

composed of multiple category parameters.  Samejima’s (1969) noted that to construct 

the item information for polytomous models one must first construct the category 

information function, then the item information function is the sum of the weighted 

category information functions:  
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where )(' kjp is the first derivative of the probability of scoring in category k with respect 

to  , and )(kjp  is the probability of scoring in category k.  The test information is the 

same as in the dichotomous case seen in Equation 5, in that the test information function 

is the sum of the item information functions.  

TESTLET RESPONSE THEORY 

The two types of models discussed thus far have primarily dealt with the idea of 

scoring either dichotomous or polytomous items or a mixture of the two.  However, 

testlets are not quite dichotomous and not quite polytomous.  When testlets are 

developed, they are typically created to cover an array of content specification by using a 

number of multiple choice items stemming from the common stimulus (Wainer & Kiely, 
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1987).  Due to the nature of the items’ development, one could consider each item 

individually (i.e., dichotomously) and thus claiming their independence from each other.  

If a researcher considers the cluster of items as locally independent, one is knowingly 

overlooking the possibility of a context effect.  A context effect is the influence an item 

contracts simply by its relationship with another item.  This is an item interaction, where 

the item responses create a manifest variable which violates the local independence 

assumption (Tuerlinckx & De Boeck, 2001).  Turlinckx and De Boek (2001) supported 

the implication of prior research (Sireci et al., 1991; Wainer & Thissen, 1996; Yen, 1993) 

by illustrating the positive bias present in the discrimination parameters for a manifest 

variable that is not modeled in some manner. 

Rosenbaum’s (1988) treatment of item bundles proved that local independence 

holds across testlets, even in the presence of testlet dependency.  Rosenbaum’s (1988) 

findings encouraged researchers to change the unit of measurement from the item level to 

the testlet by using summed testlet scores and applying unidimensional polytomous IRT 

models (Wainer & Lewis, 1990).  Using polytomous IRT models has been found to work 

better than treating them as stand-alone dichotomous items in the presence of a testlet 

effect (Sireci et al., 1991; Thissen, Steinberg, & Mooney, 1989; Wainer & Lewis, 1990; 

Wainer, Sireci, & Thissen, 1991; Wainer, 1995).  Though using a polytomous model to 

score testlets as a unit has been shown to work well (Wainer, 1995), Wainer et al. (2007) 

discussed two circumstances in which the use of a testlet-based model is more 

appropriate than using a polytomous model.  

The first circumstance discussed is the use of a within-testlet adaptive test 

(Wainer et al., 2007).  Testing programs may consider the construction of large testlets, 

or a common stimulus with say 10-20 associated items.  The intention of such a 

development is not that one examinee is expected to see all items within the testlet but to 
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adaptively select a smaller subset of items.  In this scenario, the selection algorithm 

would have a predetermined within-testlet stopping rule in which the examinee might 

see, for example, seven testlet items; then a new testlet would be selected and the 

associated items from within the testlet would be adaptively administered.  This process 

would continue until the desired psychometric properties were reached at which point the 

test would be terminated.  The total score cannot be modeled in this particular scenario 

with polytomous models because an examinee is not receiving all of the items within a 

testlet.  This occurs because the testlets would need to be calibrated based on the total 

number of categories even though a person would not see all within-testlet items.  

Therefore, the polytomous model would not carry the same meaning from examinee to 

examinee and, thus, lending itself uninterpretable.  

Wainer et al. (2007) describe the second circumstance as one in which more 

information from the testlet is desired.  When testlets are scored as individual items and 

within-testlet variability exists, the item discrimination parameters tend to be positively 

biased which results in overestimated testlet information (see Wainer, Bradlow, & Du, 

2000; Wainer et al., 2007).  When a testlet is represented as a summed score and modeled 

as a polytomous item, the dependency present in the testlet will naturally and more 

appropriately reduce the total information of the item cluster when compared with the 

sum of the dichotomously modeled items.  Yet, modeling the item as polytomous loses 

some of the information gained by modeling individual response patterns. For example, if 

a five-item testlet is taken, there are 10 different ways in which an examinee could 

receive a total testlet score of three, but using a polytomous model is non-differentiable 

between any response patterns.  In addition, no guessing can be parameterized for 

polytomous models, which appears likely for a testlet consisting of all multiple-choice 

items.  
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In each scenario, better approximation of response patterns is necessary. The 

current study focused on a data structure analogous to the latter scenario where additional 

information was desired based on the response patterns.  

Model Specification 

Testlet response theory (TRT) models were developed as a generalization of 

existing IRT models.  They were developed in such a way that if no dependence within a 

testlet is present, the model can reduce back to the dichotomous IRT model (Wainer et 

al., 2007).  Wainer and colleagues have developed a series of models for multiple choice 

item-based testlet for both the 2PL and 3PL context (see Bradlow, Wainer, & Wang, 

1999; Wainer et al., 2000).  Conceptually, the extensions are the same for each model and 

the focus here is on the 3PL dichotomous model. 

The development of the TRT family of models was done so in a fully Bayesian 

framework (Wainer et al. 2007).  Bayesian methods allow for the probability model to be 

constructed as joint probability distributions for both the likelihood of the data given the 

model and prior distributions for the parameters of interest.  This can be more formally 

written as: 

 )()|()|(  pxLxP  , (12) 

where the posterior distribution, )|( xP  , is used to provide estimates for the parameters 

of interest by expressing a prior knowledge about the parameters of interest, )(p , on the 

likelihood function of the observed data, )|( xL .  By modeling parameter estimates in 

this fashion, Bayesian inference treats the parameters of interest as random variables 

rather than unknown fixed variables.  A naturally occurring consequence of Bayesian 

estimation is the estimation of not only the point estimates for the parameters of interest, 

but also the inclusion of posterior distributions for each parameter in the model.  In order 
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to estimate the posterior distributions, random sampling methods have been developed 

called Markov chain Monte Carlo (MCMC) methods, that numerically approximate 

probability distributions for large spaces (Kruschke, 2011). 

The 3PL-TRT model still entails three item parameters that retain their original 

interpretations as referenced in Equation 3, namely the discrimination, a, the difficulty, b, 

and the pseudo-guessing, c parameters.  To progress to a TRT model, the 3PL function 

may be rewritten more generally as: 
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where ijt  is the latent linear score predictor for person i  on item j.  For the 3PL model, 

the linear score predictor is defined as: 

   jijij bat   .  (14)  

In the case of testlets, Equation 14 does not capture the entirety of the data structure.  In 

order to do so, the testlet effect must be captured.  Modeling the items’ within-testlet 

interaction, which accommodates the violation of local independence, is done by 

introducing an additional parameter to the linear score predictor as follows: 

   )( jidjijij bat   , (15) 

where )( jid  is the testlet effect parameter.  The testlet effect parameter is the interaction 

of person i and item j that is nested within testlet )( jd .  Then )( jid  represents a person 

i'’s random effect for the testlet d taking item j.  The testlet effect parameter then 

accounts for the communality of items associated with a common stimulus by including a 

person’s random effect for the items within a testlet.  The variance for )( jid  is then 

estimated for each testlet and can be used as an indicator for within-testlet local item 

dependence (LID).  Modeling the within-testlet’s LID allows for the assumption of 

conditional independence between testlets. 
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For the formulation of the probability of scoring an item correctly Equation 15 is 

substituted into Equation 13 which results in the following: 
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The next step of the Bayesian analysis is to specify the prior distributions for the 

parameters of interest. In the case of the current model a prior must be specified for ja , 

jb , jc , i , and )( jid .  The prior distributions include: 
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Notice in the prior distributions defined above, more parameters are introduced.  

For example, jb is normal with mean, b , and variance, 2

b .  Each new parameter 

specified in the prior distributions must also have a distribution assigned to them known 

as hyperpriors.  Wainer et al. (2000) recommended hyperpriors to have normal-inverse 

gamma distributions acting as slightly informative conjugate priors for the mean and 

variance respectively for each parameter of interest.  In the case of ja and jc , or the item 

discrimination and pseudo-guessing parameter, respectively, a transformation on the 

parameters is performed in order to use normal priors on the two distributions.  This 

occurs because ja acts similarly to an exponential function and jc is a parameter bound 

from 0 to 1.  As one inspects the prior for the testlet effect, )( jid , one may observe that 

the variance of the parameter is testlet specific, or each testlet has its own unique variance 

estimate, 
2

)(
ˆ

jd , where in the case of a stand-alone dichotomous item, the variance equals 

zero and no testlet effect is  present.  The variance estimate 
2

)(
ˆ

jd for each testlet 

represents the magnitude of LID within testlet )( jd . 
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To illustrate the efficacy of the 3PL-TRT model, Wainer et al. (2000) conducted a 

simulation study that compared four response modeling methods. The models included a 

3PL IRT model estimated with marginalized maximum likelihood (MML), 3PL IRT 

model estimated with MCMC with Gibbs sampling (Geman & Geman, 1984), 3PL-TRT 

with a common estimated testlet variance using MCMC methods, and 3PL-TRT with 

unique estimated testlet variances using MCMC methods.  A 70 item test with 30 

independent items and four testlets of size 10 were crossed with three levels of testlet 

dependency, one with no dependencies, one with equal dependencies, and one with 

unequal dependencies.  1000 simulees were generated with binary responses.  The results 

showed that all models recovered the parameter estimates similarly well in the condition 

with no testlet effects.  For conditions with testlet effects, the two 3PL-TRT models 

outperformed both IRT based models. When unique testlet effects were generated, the 

3PL-TRT estimating unique variances outperformed the simpler TRT model that 

assumed common testlet effect variability, along with all other models considered in the 

study.  

Wainer et al. (2000) also conducted an applied study to data from the Scholastic 

Assessment Test (SAT) and Graduate Record Examination (GRE) with the same four 

models as mentioned in their simulation study.  Each verbal test consisted of numerous 

independent items and four testlets of varying size.  The SAT verbal test resulted in very 

small estimated testlet variance indicating the testlet items were written well with regards 

to conditional independence properties. The GRE verbal test, when modeled for unique 

testlet effect variability, showed much higher testlet effect variance estimates.  Further 

analysis indicated significantly higher item discrimination parameters for the items 

associated with testlets under the 3PL IRT model. 
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The result of increased item discrimination encourages a further look at item 

information found in Equation 4 and the information function for TRT.  Wainer et al. 

(2000) derived TRT item information as: 
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Notice that Equation 4 and 17 are virtually equivalent except for the modeling of )( jid  in 

the linear score predictor.  Recall the direct relationship with the item discrimination 

parameters and item information. Specifically, items with higher a  parameters provide 

more information than items with lower  a  parameters.  This relationship is still present 

in the TRT information function.  Also recall that information has been found to be 

overestimated because of the inflated item discrimination parameters when conditional 

independence of testlets is ignored (see (Sireci et al., 1991).  Because (Wainer et al., 

2000) found increased item discrimination parameters when local independence was 

ignored, Wainer et al. (2007) reasoned that models ignoring the testlet effect, create a 

context effect that overestimates  s'ja .  If the s'ja  are overestimated, then the test 

information function is overestimated, and thus SE’s of ability esimates are 

underestimated (Murphy, Dodd, & Vaughn, 2010; Sireci et al., 1991; Wainer et al., 2007; 

Wainer & Thissen, 1996; Yen, 1993).  Therefore, the accuracy in measurement precision 

for the GRE verbal was more appropriately accounted for by modeling the testlet effect 

with the 3PL-TRT model. 

In certain situations, past research has indicated that ignoring local dependency 

created by the use of testlets results in overestimated item discrimination parameters, 

which then results in inaccurate measurement precision.  Therefore, the measurement 

model shows signs of utility when assessments administer testlet-based items. 
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MULTISTAGE TEST 

Multistage tests (MSTs) have been described as a compromise between 

computerized adaptive tests (CATs) and linear fixed-length tests (LFTs) (Jodoin, 

Zenisky, & Hambleton, 2006; Zenisky et al., 2010).  LFTs are tests where all examinees 

receiving a particular form receive the same set of items.  On the other end of the 

spectrum, CATs adapt to an examinee’s ability during administration at the item level, 

where there are potentially countless forms that could be administered to examinees.  

MSTs represent the middle of the continuum, where the test is pre-constructed like an 

LFT but adaptation takes place between modules, or a collection of preassembled items 

(Wainer, 2000a). MSTs have multiple naming conventions including computerized 

master testing (Lewis and Sheehan, 1990) computer adaptive sequential testing (Luecht 

& Nungester, 1998), multiple-form structures (Armstrong, Jones, Koppel, & Pashley, 

2004), and bundled multistage adaptive testing (Luecht, 2003).  Each naming convention 

provides a commonality by administering sub-units or clusters of items and adapting to 

an examinee’s ability through a network of paths that select the modules based on the 

current estimate of an examinee’s ability.  

The concept of an MST has been around for some time.  Cronbach and Gleser  

(1965) and Lord (1971a, 1971b, 1980) discussed the use of two-stage testing.   The 

original idea behind administering a two-stage test was to administer an average 

difficulty first stage routing subtest to estimate a preliminary ability level.  The second 

stage subtest test is then chosen among a set of subtests of varying difficulty, e.g. an easy, 

medium, or hard test.  Wainer and Kiely (1987) then suggested developing sub-units of 

items around a common content category and adaptively administering on the sub-unit of 

interest.  Bock and Mislevy (1988) renewed interest in two-stage tests as a multi-purpose 

means of scoring interpretation for both individual ability and larger unit achievement 
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scoring.  Then research regarding MSTs went dormant as fully adaptive tests 

overshadowed MSTs as the preferred method of adaptive administration (Mead, 2006). 

More recently, resurgence in MSTs has occurred as the benefit for using MSTs offers 

quantitative advantages over traditional LFTs and qualitative advantages over fully 

adaptive delivery platforms.  

Relative advantages of MSTs are apparent when comparing them to LFTs. MSTs 

provide increased measurement precision across the ability scale because of their 

adaptive nature.  In many testing situations, the abilities of examinees widely range.  

LFTs are typically constructed in a fashion that concentrates the test construction around 

a specified level of difficulty, which reduces to effectively measure an examinee’s 

capabilities across the distribution of examinees’ (Kim & Plake, 1993; Lord, 1980).  

Additionally, MSTs lead to reduced testing time and potential on-site scoring (Jodoin et 

al., 2006; Zenisky et al., 2010).  Modern MSTs also provide more flexible testing 

windows because administration takes place on computer (Hendrickson, 2007).  

Multiple advantages also exist for MSTs over CAT.    Some of the advantages are 

qualitative in nature and are related to quality assurance. MST forms can be created prior 

to administration allowing developers more control over test blueprint, item ordering, and 

item review (Hendrickson, 2007).  MSTs also allow examinees to review items within a 

stage, which helps alleviate testing anxiety and allows examinees to maximize scores 

without compromising the adaptive selection criteria (Vispoel, 1998).  In addition, item 

exposure control can be handled during MST test form construction, thus eliminating the 

need for special algorithms that combined with item selection procedures as is necessary 

in CATs (Georgiadou, Triantafillou, & Economides, 2007).  Thissen, Steinberg, & 

Mooney (1989) argue that for a test consisting of testlets, unidimensionality and local 

independence is better assured for MSTs than CATs.  Zenisky et al. (2010) also noted 
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that when incorporating mixed-format tests into the test design, the overall system design 

tends to be much easier to develop and implement.  

MSTs do not come without any disadvantages when compared to CATs.  First the 

fully-adaptive test have better measurement precision over a typical MST design when all 

model assumptions are met, because tailoring takes place at the item level in CAT and 

therefore adapts at more points.  This leads to a need for more items to be given using 

MSTs in order to ensure equal measurement properties compared to CAT 

administrations.  When replacement is needed for items within a testlet it can be difficult 

to exchange items because of dependency of testlet-based items (Wainer & Kiely, 1987).  

In addition, the potential for routing errors can be burdensome especially in the case of 

two-stage testing (Weiss, 1974).   

Using MSTs are appealing because of its compromise between LFTs and CATs.  

MSTs include more adaptive points than traditional testing but less than item level CATs.  

Because MSTs are a compromise between both the LFT and CAT testing platforms, 

MSTs are now being implemented in practice.  MSTs that have been researched or are 

currently in operational use include the Law School Admissions Test (LSAT), the 

Graduate Record Examination (GRE), the Uniform Certified Public Accountant 

Examination (UCPAE), the Test of English as a Foreign Language (TOEFL), the 

National Council of Architectural Registry Board (NCARB), the National Assessment of 

Educational Progress (NAEP), and the U.S. Medical Licensure Examination (USMLE) 

(Bock, Zimowski, & Panel, 1998; Davey & Lee, 2011; R. Luecht, Brumfield, & 

Breithaupt, 2006; R. M. Luecht & Nungester, 1998; Schnipke & Reese, 1997; Wainer, 

Lewis, Kaplan, & Braswell, 1990; Wainer & Lukhele, 1997). 
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Basic MST Components 

Basic features for all adaptive tests are still relevant for MSTs.  Fundamental 

decisions must be made that outline the structure of the test, such as, the total number of 

items in the test, the number of stages in the test, the number of items within each stage, 

and the overall test blueprint that all guide the development process.  Considerations 

related to the adaptive nature of MSTs entail within and total test scoring, stage 

construction, between stage navigational procedures and algorithms, and the number of 

forms or panels available during an administration window.   

The structure of an MST has been categorized into four main components: panels, 

stages, modules, and pathways.  Together, the relationship between components dictates 

the administration of the test to an examinee.  A panel is the overall set of items an 

examinee could be administered.  The items are catalogued into sub-units of items called 

modules.  Modules are generally constructed based on both qualitative and quantitative 

features, where both content specifications and the item’s statistical properties are used to 

construct modules of varying difficulty.  A stage can be thought of as the levels of a 

panel.  A stage consists of one or more modules that typically vary in difficulty.   The 

first stage in an MST is often, but not limited to, one module referred to as the routing 

test.  Based on the performance on the routing test adaptation occurs between the first and 

second stage where an examinee is routed to one of the modules at the next stage.  At the 

end of each stage are the adaptive points, where performance on the current and/or 

previously administered modules are used to identify the navigational pathway to the next 

module in the subsequent stage with exception of the final stage.  

One commonly researched panel design cited for MSTs is a 1-3-3. (e.g. 

Hambleton & Xing, 2006; Jodoin et al., 2006; Keng, 2008; Kim, 2010; R. Luecht et al., 

2006; R. M. Luecht & Nungester, 1998; Zenisky et al., 2010).  This design has three 
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stages.  One module is available at Stage 1, three modules are available at Stage 2, and 

three modules are available at Stage 3.  Each respective stage beginning with Stage 1, has 

one module, three modules, and three modules that an examinee could potentially be 

administered.  Figure 2 is an example of a 1-3-3 MST design with three panels.  Here it 

can be seen that an examinee has three navigational pathways as they finish the routing 

test in Stage 1.  The pathway chosen will lead the examinee to a module in Stage 2.  For a 

person in Stage 2, easy and hard modules then have two pathways available to move from 

Stages 2 to 3 and a person in the medium module will have three possible pathways.  

Generally it has been suggested that only adjacent steps can be made by an examinee 

(Luecht & Nungester, 1998), and thus the reason for only two pathways for the easy and 

hard modules.  The connective lines indicate potential pathways an examinee can 

navigate based on performance during administration and the policy decision related to 

routing procedures.  The 1-3-3 panel design is not the only possible design but is 

probably the most prominent design structure across research studies.  Variations in panel 

designs can potentially entail an increase or decrease in both modules and stages.  
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Figure 2. Design for a 1-3-3 adaptive multistage test with multiple panels.  The dark 

bold lines are the primary routes and the dashed lines are the supplementary 

routes for an examinee.  E = easy difficulty module; M = medium difficulty 

module; H = hard difficulty module. 
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The skills and content being assessed dictate the size and types of items that need 

to be developed for an item pool (Schmeiser & Welch, 2006).  Policy decisions such as 

those regarding test blueprint have implications on the proportion of the item pool that 

relate to specific content.  In addition, an item pool should be representative of the types 

of tasks being developed for the assessment.  For instance, when a test consists of both 

stand-alone multiple-choice items and testlet-based multiple choice items, the depth or 

number of each type of item must be inspected in order to ensure the ability to create 

parallel modules and potentially parallel panels.  Additionally, if a test is intended for a 

broad ability range, the item pool should have a range of difficulty and discrimination 

parameters (Xing & Hambleton, 2004). 

Target Test Information Function 

The use of IRT can construct modules of varying difficulty.  Defining the desired 

statistical targets for a range of abilities can be achieved by using the information from 

individual item parameters (Breithaupt & Hare, 2007).  To achieve a certain level of 

measurement precision, one can target specific  ’s on the ability continuum as the target 

test information functions (TTIFs). Recall that the test information function is the sum of 

the item information as seen from Equation 5.  A TTIF represents the amount of 

estimated error variance for a range of θ’s that is willing to be tolerated for a panel and/or 

a sub-unit of items (Luecht & Nungester, 1998).  Targeted information can then be used 

to inform the assembly mechanism about the overall desired test information for the 

panel and the “test” information of a sub-unit of items when building modules.    TTIFs 

are one of the main components that guide the simultaneous assembly of modules and 

panels.  
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Automated Test Assembly 

In an attempt to populate the modules with the desired psychometric properties 

and maintain the integrity of the testing blueprint, automated testing assembly (ATA) is 

an effective way to assemble modules from an existing item pool (Melican, Breithaupt, & 

Zhang, 2010). Four main features must be deliberated in order to specify the necessary 

constraints for a successful ATA: defining the objectives in assembly, the TTIFs, the 

number of modules, and the stringency of each test constraint.  (Breithaupt, Ariel, & 

Veldkamp, 2005).  Defining objectives essentially refers to defining the decision 

variables needed for assembly.  The stringency of test constraints is the weighting of 

various constraints that exist in conjunction with the item pool.  For instance, if one 

constructs 3 panels, will the panels be allowed to repeat items across panels?  Is that of 

less concern than having duplicate testlets across panels?  Researchers have been 

successful with such dilemmas when constructing MSTs by using ATA.  Linear 

programming approaches have been notably successful at solving the many constraints 

that must considered when building the panels (Theunissen, 1985; Van Der Linden, 

Veldkamp, & Reese, 2000).  Linear programming essentially creates optimal solutions to 

a complex set of equations.  Mixed Integer Programming (MIP) has been one of the more 

prominent forms of successful linear programming.  MIP approaches test assembly by 

defining constraints such as exposure control or content representation as decision 

variables (Cor, Alves, & Gierl, 2009). Ultimately, decision variables are defined in such a 

way that a binary decision is made by the program solver, or a variable given the binary 

options of a (1) is included and (0) is excluded in the final form.  Mathematically this can 

be expressed as follows: 
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 formin test  included is  item if 1
. (18)  



 32 

The next step is to express an objective function.  An objective function is an equation 

that changes as decision variables change.  For instance, it might be desired to target or 

maximize the information of panel for a particular value. The objective function can then 

be expressed as follows: 

 
t k i

jtkti xIMaximize )(:  , (19) 

where Equation (19) states that the information function I, across all items j, across the 

specified abilities, k , across each test, t, times the decision variable jtx , should be 

maximized. 

The next types of equations are the item and test level constraints set forth by the 

test developers (Cor et al., 2009). Types of constraints for a 3PL model potentially 

include limits on the item discrimination, pseudo guessing parameters, or certain levels of 

item difficulty that will be allowed.  For example, say a developer only wanted to allow 

items with item difficulty, jb , between -1.5 and 1.5. This can be mathematically 

expressed as:  

 .  testsallon   items allfor  , 5.1)(5.1 tjbx jtjt   (20)  

An instance of test level constraints may consist of content related constraints.  An 

example may be that it is desired to have 9 items from the first content category, 1C , for 

each test form.  The constraint could then be represented as: 

 
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jtx 9 , (21) 

or the sum of items that are a subset of content category 1C  is equal to nine. 

Once all the decision rules are in place an ATA algorithm can be used to assemble 

a test.  A number of successful MIP based ATAs software has been developed such as 

CASTISEL (R. M. Luecht, 1998), JPLEX (Park, Kim, Dodd, & Chung, 2011), or 

lp_Solve (Diao & van der Linden, 2011a). 
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Total Test Scoring and Ability Estimation 

Scoring MSTs has two main considerations. The first concerns estimating an 

overall ability upon test completion.  The second consideration for scoring modules 

during the actual test administration to inform the MST routing procedures.  Final ability 

estimates are generally calculated using one of the following point estimate techniques, 

maximum likelihood estimates (MLE) or a Bayesian estimators like maximum a 

posteriori (MAP) and expected a posteriori (EAP).   

The MLE procedure uses the maximum of the likelihood function for examinee j 

with a given ability j as follows: 
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where n is the number of items, jx is the vector of item responses for examinee j, with a 

given ability, j  , and )( jijP   is the probability of answering item i correctly for a given 

ability (Lord, 1980).   MLE estimators are advantageous because they are asymptotically 

efficient unbiased estimators.  Disadvantages occur for examinees who either answer all 

items correctly or incorrectly, which creates a situation where the likelihood does not 

have a mode or maximal point (Parshall, Spray, Kalohn, & Davey, 2002). 

Bayesian procedures produce point estimator of   by using the posterior 

distribution.  Recall from Equation 12 that )|( xP   is the posterior distribution for  , the 

parameter of interest.  MAP is an iterative method that uses the mode of the posterior 

distribution (see Lord, 1986; Mislevy, 1986).  Alternatively, EAP uses the mean of the 

posterior distribution and is a non-iterative Bayesian approach (R. D. Bock & Mislevy, 

1982).  Unlike MLE techniques, Bayesian methods will provide a point estimate for 

response vectors that are all correct or incorrect.  However, Bayesian methods tend to 
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underestimate ability estimates at high abilities and overestimate lower abilities (Parshall 

et al., 2002). 

Module Scoring and Routing Procedures 

Because of the adaptive nature of an MST between modules, scoring during test 

administration must also be considered to help inform the routing procedures put in place. 

Routing procedures dictate which pathway is used to navigate from one module to the 

next.  The decision points of a routing procedure indicate which pathways will be 

navigated and therefore must be determined prior to administration.  Generally, one of 

the advantages of an MST is the adaptive administration coupled with the capability of an 

examinee to review items within a module.  Consequently, scoring takes place during 

administration once a module has been submitted.  Then the current level of performance 

is used to select a module at a subsequent stage.   One option, similar to a CAT, is to 

score and route examinees based on the selecting the maximum module information (i.e. 

test information for a module) for a given ability estimate based on one of the 

aforementioned point estimate methods like MLE (Chuah, Drasgow, & Luecht, 2010; 

Davis & Dodd, 2003; Jodoin et al., 2006; Kim & Plake, 1993), MAP (Schnipke & Reese, 

1997) or EAP (Hambleton & Xing, 2006; Luecht et al., 2006).  Other scoring procedures 

are dictated by the routing methods implemented through the use of either true score 

routing or theta routing.   

Both the true score routing and theta routing are achieved by defining decision 

points on the ability continuum that will route an examinee from one module to the next.  

For theta routing, after a module has been submitted an ability estimate is performed 

through one of the aforementioned point estimate procedures.  Then based on the 

decision points made prior to administration, the examinee is routed to the corresponding 
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module at the next stage.  True score routing is achieved by using the decision points on 

the ability continuum to estimate an examinee at that point’s true score (Luecht et al., 

2006).  Then based on the number correct (NC) for an examinee on all previous items, 

the examinee is routed to the corresponding module.  For example, the decision point for 

two pathways from Stage 1 to Stage 2 is a true score of 5.6.  If an examinee answers five 

items correct then of the two possible modules regarding the decision point, the examinee 

is routed to the easier of the two modules at Stage 2, but if an examinee answers 6 items 

correctly (s)he will be navigated to the harder of the two modules.   It should be noted 

that both types of module scoring are intended to yield the same routing patterns, where 

the true score was previously used as a means to get around the computation intensity of 

in-test ability estimation.   

The needs of the testing program impact the decision for which particular scoring 

method is implemented.  For instance, it may be desired to control the overexposure of 

items and therefore send approximately the same proportion of people to all modules; it 

may be desired to select based on the optimal statistical properties of a module; or it may 

be desired to select a module based on the optimal statistical properties with respect to a 

particular cut point for decision based purposes.  Multiple routing procedures have been 

developed to answer the needs of testing programs.  The two most prominent methods in 

the literature are the approximate maximum information (AMI) and the defined 

population interval (DPI; Luecht et al., 2006).  Originally these methods were developed 

using true score techniques but have since been adapted to use the theta scoring routing 

(e.g. Hambleton & Xing, 2006; Kim, Chung, Park, & Dodd, 2013).    

The AMI procedure compares the TIF for adjacent modules and solves for the 

intersection point on the ability continuum.   Once the intersection is located on the 

ability scale this becomes the routing decision point.  Then an estimated true score or 
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theta estimate is compared to the decision point and the module at the subsequent stage is 

selected and administered.  

The DPI is another routing procedure that aims to control the proportion of 

examinees that see each module.  The DPI is particularly useful for programs interested 

in more directly dictating pool utilization and exposure rates of items (Luecht et al., 

2006).  Figure 2 illustrates the pathways available in a typical 1-3-3 panel design.  Then if 

a testing program is interested in maintaining proportional module exposure, the program 

will define the routing procedure in such a way that sends one-third of examinees to the 

easy, medium, and hard modules after the routing test is submitted.  This is accomplished 

by assuming a normal ability distribution and then finding the theta’s associated with the 

33rd and 67th percentile.  Then using either true score routing or theta routing 

approximately proportional modules are administered.  Similarly, to maintain 

proportionality the decision points are used at each stage. 

Additional methods have been proposed such as the proximity method by Kim & 

Plake (1993).  The proximity method compares average difficulty of adjacent modules to 

the current ability estimate.  Whichever module has the minimum absolute deviation is 

selected for administration.  However methods like the proximity method are problematic 

because they do not take into account all of the item parameters when selecting modules 

and therefore the current study will focus on the two most prominent methods in the AMI 

and DPI. 

MST FINDINGS 

MST research can be classified into two types of studies.  One type compares the 

MST to various test delivery platforms, usually consisting of a CAT and sometimes 

including an LFT.  The second type of study only considers the MST platform and 
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compares various aspects of an MST’s components to further understand its operational 

characteristics.  The first section to be discussed concerns the testing platform, or how 

MST compares to both CATs and LFTs.  Included in the testing platform are findings 

regarding measurement precision, decision consistency, and exposure control findings.  

Then general operational characteristics are in the second section.  Specifically, the 

following MST components will be discussed: panel design, test length and total test 

information, stage level information, and routing procedures.  Finally, MST research 

based on the 3PL-TRT model is discussed. 

MST versus Other Test Delivery Platforms 

The majority of MST studies have compared an MST to other test delivery 

platforms.  The two primary comparisons are made between LFTs and CATs.  As one 

might expect, the overall performance of an MST falls somewhere in the middle of LFTs 

and CATs.  When comparing CATs to MSTs for dichotomous item pools CATs 

consistently outperform both MSTs and LFTs (Edwards, Flora, & Thissen, 2012; 

Hambleton & Xing, 2006; Kim & Plake, 1993; Patsula, 1999; Xing & Hambleton, 2004; 

Zheng, Nozawa, Gao, & Chang, 2012).  These studies consistently offer two main 

findings.  Item level CATs show higher levels of measurement precision and decision 

consistency than both MSTs and LFTs.  In addition, MSTs generally outperform LFTs of 

the same test length.  This supports the utility of MSTs because increased precision can 

be attained over an LFT, while allowing both the testing program and examinees the 

ability to review items. 

When a test is delivered from a dichotomous item pool with no constraints the 

results for test delivery platforms are fairly straightforward.  However, when a CAT is 

administered with constraints like exposure control or when item selection procedures 
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administer entire testlets, mixed findings have been recorded. Schnipke & Reese (1997) 

conducted a study that included LFTs, MSTs, and two CATs under the 3PL model. One 

CAT was fully adaptive at the item level, and the other was a testlet-based CAT 

administration where items were administered by testlets.  Not surprisingly the item level 

CAT showed the highest level of measurement precision.  When comparing the testlet-

based CAT to the MST, results indicated similar performance between the two testing 

platforms.  Keng (2008) compared an item level CAT, testlet-based CAT, and a 1-3-3 

MST panel design for an item pool consisting of solely passage-based testlet items.  All 

testing platforms in the study included content balancing based on the originating test.  

For longer test lengths, the MST outperformed the testlet-based CAT with respect to 

measurement precision, and for all other conditions the two platforms performed 

similarly.  In addition, the MST consistently attained higher levels of pool usage, better 

exposure control rates, and consistent item overlap for similar examinees.  However, 

when the study condition generated negatively-skewed ability distributions the module 

exposure rates rose dramatically, indicating a non-normal ability distribution may pose 

additional security concerns for a testing program when using AMI for module selection. 

When polytomous item pools have been studied, mixed results were found when 

comparing the CAT administrations to the MSTs (Davis & Dodd, 2003).  Note, 

understanding the impact of exposure control was the primary objective for the study.  

With respect to exposure controls, the MSTs outperformed the CATs with various 

exposure control procedures.  In addition, smaller amounts of bias were observed for the 

MST system.  The CATs did result in better root mean square error (RMSE) and the 

average absolute deviation (AAD), two measures of the measurement precision for ability 

estimates. 
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Kim (2010) compared a number of adaptive formats using a mixed-format item 

pool consisting of dichotomous and polytomous items.  The primary focus was to 

compare the decision consistency and decision accuracy of the various testing platforms.  

The item-level CAT and sequential probability ratio test, an adaptive test that 

incorporates decision rates into the item selection process, both outperformed the MST.  

However, it should be noted that all platforms performed adequately with regards to 

pass/fail decisions.  In support of MSTs, the study also found that the MST maintained 

adequate decision consistency with lower exposure rates and increased pool usage. 

From the research that compares MSTs to other testing programs, two main 

findings supporting the use of MSTs can be stated:  (1)  The more constraints put on a 

CAT-based delivery such as content balancing, exposure control, and testlet-based 

administration, the more similar the psychometric performance of CATs and MSTs 

become.  (2) MSTs consistently outperform LFT administrations. 

MST Operational Characteristics 

The previous section summarized the current understanding across test delivery 

platforms.  The current section synthesizes findings to provide insight into the current 

understanding MST’s operational characteristics. 

Panel design and test length are two of the initial decisions developers must make 

when constructing an MST.  Panel designs effect virtually all other aspects of the 

administration, such as exposure control, item pool size, or routing of examinees.  The 

panel design is probably the most researched aspect of an MST, with the 1-3-3 being the 

most prominent throughout studies (e.g. Armstrong et al., 2004; Chen, 2010; Edwards et 

al., 2012; Galindo et al., 2013; Jodoin et al., 2006; Kim & Plake, 1993; Kim, Chung, 

Dodd, & Park, 2012; Patsula, 1999; Zenisky, 2004; Zheng et al., 2012).  Two main 
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findings have been found regarding the panel design.  The more stages and the more 

modules at each stage increase the measurement precision.  This occurs because 

increased adaptation points create an administration more similar to a fully adaptive test.  

Researchers have then suggested that for the sake of implementing an MST, three stages 

and up to five modules will likely suffice for appropriate decision consistency and ability 

estimation (Brossman, 2014, Chen, 2010; Kim et al., 2012; Patsula, 1999; Xing & 

Hambleton, 2004; Zenisky, 2004; Zheng et al., 2012).   

Intuitively, it has been known for decades, even before the development of 

modern test theory, that a longer test is more precise than a shorter test.  Consistent with 

intuition, studies that directly compare test length, consistently show that a longer test, or 

a test with more information, is more precise (Chen, 2010; Galindo, Park, & Dodd, 2013; 

Hambleton & Xing, 2006; Jodoin et al., 2006; Kim & Plake, 1993; Kim et al., 2013; Kim, 

2010; Zenisky, 2004; Zheng et al., 2012).  

Mixed results have been observed when comparing the interaction between 

overall test information and stage-level information for dichotomous item pools.  The 

most comprehensive studies in regards to stage-level information conditions were 

conducted by Patsula (1999) and Zheng et al. (2012).  Both studies used increased 

information at the beginning, middle, and final stage levels respectively and compared 

them to equal stage information.  Patsula found that equal stage information lead to the 

most accurate ability estimates.  Zheng et al. (2012) found little differences between the 

various stage level differences, with the exception of the condition high levels of 

information in the middle stage, which yielded the least precise ability estimates. 

Additional studies have been conducted that investigated varying stage-level 

information conditions.  Kim and Plake (1993) studied a number of two-stage panels with 

varying number of two-stage modules (6, 7, or 8 modules) and various routing test target 
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TIFs for a dichotomous item pool.  The study found little difference between the number 

of modules or test length used.  The study did find increased measurement precision for 

routing tests with a uniform distribution of information across the targeted ability range.  

Zenisky (2004) compared both test level information and stage level information using a 

dichotomous item pool by comparing two distributions o stage-level information: (1) 

equal distribution across stages and increase information at Stage 1, or (2) routing stage 

information.  The study found that tests with the highest levels of overall TIFs resulted in 

the highest levels of precision when the stages TIFs were equal.  However, when lower 

overall TIF’s were present, the panel design was more precise for higher levels of Stage 1 

information.  Like Zenisky (2004), Jodoin et al. (2006) also considered different stage-

level information conditions.  In one condition, stage information was equal, while in the 

other condition routing stage information was decreased while increasing Stages’ 2 and 3 

information.  This study found little impact on the decision accuracy rates when 

comparing the stage information conditions.  Edwards et al. (2012) used an MST with 

increased information at Stage 3 to compare to a longer LFT and found that the MST 

yielded higher reliability for the MST.  The generalization of these studies is tenuous as 

the comparisons of stage level information were limited and findings were mixed. 

Research has also considered the impact of stage-level information on polytomous 

item pools.  Macken-Ruiz (2008) studied MSTs using a polytomous item pool under the 

generalized partial credit model.  The study used three MST designs with an equal 

proportion of information design, an increasing subsequent stage information design, and 

a decreasing subsequent stage information design. The condition with information 

increasing with each stage resulted in the best measurement precision.  Chen (2010) 

varied the routing test information under the generalized partial credit model for a 

polytomous item pool.  Overall, the MST test structures produced similar results and little 
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difference was found between the two routing test conditions.  Kim et al., (2012) varied 

the level of information in the routing stage for a mixed-item pool under the generalized 

partial credit model.  The study found that more information in the routing stage resulted 

in better decision consistency.  A more recent study, conducted by Galindo et al. (2013) 

investigated the effects of overall TIF with routing module information.  The study 

indicated the strongest factor in measurement accuracy and precision was the overall 

length of the test and little differences were found between the routing modules with the 

same overall test length. 

Overall, the more items on a test, the better the measurement precision.  Varying 

stage level information has produced mixed results.  Increased routing module 

information indicated better decision accuracy, while other studies have indicated 

increased precision when the final stage modules have increased information.  

The overall performance of an MST is also influenced by routing procedures.  

Most research on routing procedures has taken place in the context of classification 

testing.  Hambleton and Xing, (2006) used two forms of the DPI, one with consistent 

decision points as described by Luecht et al. (2006), the other derived decision points 

from the approximate standard error of the target TIF’s center.  No difference in the two 

methods was detected and both performed adequately with respect to decision 

consistency measures and exposure rates were controlled as expected with the DPI.  

Weissman, Belov, and Armstrong, (2007) compared the AMI and DPI.  AMI 

outperformed DPI with respect to decision consistency measures. However, the DPI 

utilized the modules at a much higher rate than did the other methods.  Zheng et al. 

(2012) compared theta routing with number correct routing for the AMI procedure.  They 

found little difference in either routing procedure.  Kim et al. (2013) conducted the most 

recent study which compared the AMI procedure with two DPI procedures for a mixed-
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format dichotomous/polytomous item pool.  The first DPI procedure proportionally 

routed examinees based on their stage-level provisional ability, and the second procedure 

routed examines based on their within-module rank order.  The authors found little 

difference between the routing procedures with respect to decision consistency, but no 

bias or accuracy measures were reported for the examinees ability estimation.  

Because these studies focused on classification testing, little consideration has 

been given to ability estimation for the broader population.  Zenisky (2004) did compare 

the AMI, DPI, and the proximity method.  The AMI resulted in the highest measurement 

precision, but all methods were considered adequate.  With respect to exposure control 

rates, the DPI routed examinees to each module with equal proportions, while the AMI 

administered certain modules at higher rates. 

Overall, the AMI has been shown to consistently outperform other routing 

procedures because it selects modules based on maximum information.  However, the 

DPI controls the rate of module administration much better than the AMI, while 

maintaining adequate levels of decision consistency.  More research needs to be 

conducted with regards to the recovery of abilities and routing procedures in the MST 

context. 

MST Under the 3PL-TRT Model 

To date few studies have compared MSTs under the 3PL-TRT model (Galindo et 

al., 2013; Keng, 2008; Lu, 2010).  Moreover, only Lu (2010) investigated a mixed-format 

testlet-based item pool.  Lu (2010) found that the higher the presence of LID the more a 

test needed to be scored under the 3PL-TRT model.   Lu only administered a module 

standalone items, or a module of one testlet.  A testing program might want to administer 

a combination of standalone items and testlets in a given stage.   



 44 

In addition, a number of studies have used testlet-based item pools that combine 

the testlet responses into a polytomously-scored item and used a polytomous scoring 

model  (Chen, 2010; Davis & Dodd, 2003; Davis, 2004; Kim, 2010) But as noted in the 

TRT section, using a polytomous model on testlet-based items rather than a TRT model 

results in a loss of information concerning the examinee’s ability.  Findings do not 

necessarily generalize across models and item pool types. Therefore, the use of the 3PL-

TRT model with mixed-format data needs to be conducted for MSTs. 

STATEMENT OF PROBLEM 

The use of MSTs has been recommended as a compromise between traditional 

LFTs and fully adaptive CATs (Hendrickson, 2007).  Most MST research has compared 

MSTs to other testing platforms. In addition, some studies have considered the 

operational characteristics of MSTs, but much of this work has been done with respect to 

classification testing.  Although some classification studies examined both measurement 

precision and decision indices (e.g.  Zenisky, 2004), the majority of these studies focused 

on the consistency and accuracy of decision making when using an MST.  One of the 

benefits of MSTs is that a testing program can for control content specifications, item 

pool usage, and item exposure control rates with the panel design prior to administration 

(see Georgiadou, Triantafillou, & Economides, 2007).  Although it has been consistently 

shown that item-level CATs generally result in higher measurement precision, some 

studies have noted that using exposure controls, content constraints, or a testlet-based 

CAT has produced comparable results between a CAT and an MST administration (Davis 

& Dodd, 2003; Keng, 2008; Schnipke & Reese, 1997).  Because of the promising 

findings when comparing the comparability of MSTs and CATs, further studies need to 

be conducted that explicitly try to optimize the psychometric and operational 
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characteristics of MSTs as an alternative to a fully adaptive CAT.  More specifically, 

more research is needed to consider panel designs, test length, routing procedures, and 

the impact of these MST components on measurement precision for MSTs.  

Researchers have investigated a number of panel designs structures.  Because 

many studies focused on classification testing, construction of panels and modules 

sometime target the various cut scores being used (see, e.g. Hambleton & Xing, 2006; 

Kim et al., 2013; Lu, 2010; Zenisky, 2004).  While this approach functions for 

classification testing, the approach can lead to less measurement precision for the upper 

and lower extremes of the distribution when the test purpose focuses on ability 

estimation. 

Generally, longer tests lead to higher reliability and decreased measurement error.  

This notion was mathematically proven in classical test theory (Brown, 1910; Spearman, 

1910), and has been a supported benefit of adaptive MSTs (Chen, 2010; Edwards et al., 

2012; Galindo et al., 2013; Keng, 2008; Kim, 2010; Lu, 2010; Zheng et al., 2012).  But at 

what point does a test become too short?  Stark and Chernyshenko (2006) suggested that 

test length in most studies has not been short enough to really find the point where MST 

components and measurement precision interact and breakdown. The current study 

explores different test lengths in order to find that point. 

Routing procedures are critical components of MSTs that help testing programs 

maintain desired exposure rates while tailoring an examinee’s test.  To date only a 

handful of studies have directly compared routing procedures (Edwards et al., 2012; 

Hambleton & Xing, 2006; Kim et al., 2013; Zenisky, 2004; Zheng et al., 2012).  Of those 

studies, only one did so with a mixed-format item pool containing dichotomous and 

polytomous items (Kim et al., 2013).  However, Kim et al. (2013) only used two DPI 

procedures that proportionally routed examinees to non-adjacent modules beyond Stage 
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2. This is not generally found in applied settings because it is too far a jump for an 

examinee (Breithaupt & Hare, 2007; Luecht et al., 2006) and has been empirically 

demonstrated to occur very rarely (Hambleton and Xing, 2006).  In addition, none of 

these studies examined routing procedures when using a 3PL-TRT model.  

Many tests are mixed-format meaning they contain multiple item types.  For 

example the Advanced Placement (AP) (College Board, 2004), National Assessment of 

Educational Progress, or state assessments like those administered in Wisconsin and 

North Carolina, (see Rosa, Swygert, Nelson, and Thissen, 2001) use mixed-format 

assessments.  In some cases, mixed-format testing comes about because skills being 

assessed create a need for constructed responses or rubric-scored items coupled with 

multiple choice items.  In other instances, mixed-format tests testing is created by 

developing stand-alone multiple-choice items alongside testlet-based items  (Wainer & 

Kiely, 1987).   

When testlets are scored as stand-alone items, local independence is violated and 

results in overestimated discrimination parameters, ja , which in turn leads to 

overestimated TIF and underestimated SE’s (Murphy et al., 2010; Sireci et al., 1991; 

Wainer et al., 2000).  When items are scored polytomously, a loss of information can 

occur because the score pattern is not taken into account (Wainer et al., 2007).   Yet, only 

three studies have investigated the use of a 3PL TRT model in the context of MSTs 

(Galindo et al., 2013; Keng, 2008; Lu, 2010).  Moreover, only Lu (2010) studied the 

effects of the model with mixed-form testlet item pool.  However, the simulation study 

conducted by Lu (2010) only considered the first scenario presented by Wainer et al. 

(2007), where a large number of testlet-items are developed and a subset of items from 

the testlet are adaptively administered.  The current study investigated the latter scenario 
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presented by Wainer et al. (2007), where whole testlets mixed with stand-alone items are 

administered to examinees.  

As more testing companies are implementing MSTs for purposes of estimating 

broader ability levels, understanding the operational characteristics of MSTs become 

increasingly important.  The present research increases the body of literature on the 

operational characteristics of MSTs with a mixed-format testlet-based item pool.  

Additionally, numerous testing companies have utilized mixed-format testlet-based 

assessments.  The IRT family is typically used to score such assessments.  It behooves 

the measurement to investigate the fidelity of scoring a mixed-format testlet-based 

assessment under 3PL-TRT model in realistic testing scenarios.  Studies that investigate 

the scoring under the 3PL-TRT model will help inform testing programs about the 

recovery of ability estimates when administering mixed-format assessments. Specifically, 

this study investigated measurement accuracy and precision of ability estimates for an 

MST with multiple panel designs under a 3PL TRT model administering a mixed-format 

testlet administration.  In addition, routing procedures under a mixed-testlet structure 

have never been investigated under the 3PL TRT model.  The magnitude of LID has been 

shown to impact the administration of MSTs and the recovery of ability estimation.  

Because testlets can violate the assumption of local independence, the current study used 

results from an operational form to estimate the magnitude of the testlet effect, as well as, 

varying the magnitude of local item dependence (LID). Covering a wider range of LID 

helps generalize the findings as they relate to item banks with various levels of LID when 

administering mixed-format testlet-based assessments.  Investigating the various test 

designs, routing procedures, and LID under the 3PL TRT model will provide testing 

programs with guiding principles for the implementation of a mixed-format testlet-based 

MSTs. 
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Research Goal 

The primary goal of this study is to examine the operational characteristics of 

MSTs for a mixed-format testlet-based item pool under the 3PL-TRT model.  

Standardized tests with mixed-format testlet-based item pools are being administered in 

practice such as the GRE and SAT (Wainer et al., 2000), where the GRE illustrated the 

presence of a potential testlet effect.  Therefore, it behooves the psychometric community 

to conduct studies, such as this dissertation, to investigate the applicability of an MST 

under the 3PL-TRT model. 

Research Questions 

Four research questions are then needed to evaluate the operational characteristics 

of an MST under the 3PL-TRT model.   

(1) How does panel design impact the measurement precision of an MST with a 

mixed-format testlet-based item pool? 

(2) How does test length impact the measurement precision of an MST with a 

mixed-format testlet-based item pool? 

(3) How does the magnitude of LID effect the administration and ability 

estimation of an MST with a mixed-format testlet-based item pool? 

(4) How do various routing procedures impact the ability estimation of an MST 

with a mixed-format testlet-based item pool? 

(5) How do panel design, test length, LID, and routing procedures interact with 

respect to the accuracy and precision of ability estimation? 
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Chapter 3:  Method 

DESIGN OVERVIEW 

Four multistage test (MST) designs were compared across several manipulated 

test conditions.  The MST conditions include two, three-stage MSTs and two, two-stage 

MSTs.  Additional test conditions include two total test lengths, three routing procedures, 

and three testlet effect conditions.  When being routed from Stage 1 to Stage 2, the two 

defined population interval (DPI) procedures in the study are mathematically equivalent 

and result in the same administrative procedure.  The resulting design for the three-stage 

tests is (2 panel design x 2 test lengths x 3 routing procedures x 3 testlet effects) 36 

manipulated conditions. The results for two of the three routing procedures used in a two-

stage test are equivalent. Therefore, the design for the two-stage tests yields (2 panel 

designs x 2 test lengths x 2 routing procedures x 3 testlet effects) 24 manipulated 

conditions.  A total of 60 conditions were investigated for the current study. Table 1 

contains the breakdown of the various conditions for the three-stage and two-stage panel 

design conditions.  

The item pool and parameter estimation procedures are described first.  Then the 

manipulated conditions are fully explained, followed by the procedures to generate 

simulees’ responses.  The penultimate section fully expound upon the MST simulation 

and administration, including the automated test assembly (ATA) and simulation’s 

administrative procedures.  Finally, the data analysis is described. 
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Table 1.  Multistage Test Study Conditions. 

Note. LID=Local Item Dependence; AMI=approximate maximum information; SL-DPI=Stage-

level defined population interval; ML-DPI=module level defined population interval. 
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ITEM POOL DEVELOPMENT 

The item pool development took place over four basic steps. The first was 

obtaining parameter estimates from real-data responses. Following the item parameter 

estimation, the item pool was concatenated four times to create an adequately sized pool 

for use in the current study. Item responses were generated once the pool was expanded.  

Finally, the generated item responses for the expanded pool were recalibrated.  

Real Dataset  

Three test forms from a nationally administered test were used for the study.  Item 

responses from the large-scale passage-based exam were used to estimate the item 

parameters for the simulation study.  The item responses consist of a random sample of 

approximately 100,000 examinees for each form.  Actual responses were used to estimate 

item and testlet parameters.  Each of the three forms consisted of 67 unique multiple-

choice items, for a total number of 201 items.  Each form was a mixed-format pool of 

standalone items and passage-based testlet items. Each form consisted of either 19 or 20 

stand-alone items and 6 or 7 testlet based items. The items associated with a testlet range 

from 2 to 14 items.   

At this point it is pertinent to the discussion to introduce the concept of test units. 

Each type of item is considered a test unit. If the item is a standalone that represents one 

type of test unit with two possible score points. If the test unit is testlet-based with two 

questions associated, it is a test unit with three possible score points (i.e. 0-2).  If the 

testlet has 13 questions associated with a reading passage, it is a test unit with 14 possible 

score points (i.e 0-13).  Nine different test units were identified across the three forms. 

Each of the original forms consisted of 26 total test units of various sizes. In total 58 test 

units were stand-alone items, five test units were two-item testlets, three test units were 

four-item testlets, two test units were six-item testlets, two test units were seven-item 



 52 

testlets, two test units were nine-item testlets, two test units were twelve-item testlets, 

three test units were thirteen-item testlets, and one test unit was a fourteen-item testlet.  

Parameter Estimation 

Parameter estimation for items and testlets were estimated under the three-

parameter logistic testlet response theory (3PL-TRT) model (Wainer et al., 2000) by 

using the SCORIGHT software (Wang, Bradlow, & Wainer, 2005).  Under the 3PL-TRT 

model, item and testlet parameters were estimated for each item j, the discrimination ja , 

the difficulty jb , the pseudo-guessing jc .  In addition, the variance of the testlet effect, 

2

)( jd , for each testlet )( jd  was estimated.  Allowing for variability in each testlet )( jd  

permits varying degrees of local dependency among the testlets associated items.    

SCORIGHT is a general computer program that can model dichotomous and 

polytomous items or any combination of the two in a fully Bayesian framework.  

SCORIGHT estimates parameters using a Markov chain Monte Carlo (MCMC) 

techniques (Geman & Geman, 1984).   All three forms were calibrated using the priors as 

previously specified in the TRT section and as suggested by Wainer et al. (2007).  Two 

chains were used for each form with a total of 20,000 iterations.  During each chain, the 

first 12,000 iterations were discarded, referred to as the burn-in period.  A burn-in period 

is used to stabilize the posterior distribution.  Final item parameter estimates were based 

on every eighth draw of the posterior distribution from the remaining 8,000 iterations, a 

process referred to as thinning.  Similar procedures were used by Boyd (2003) and Keng 

(2008) when estimating the 3PL-TRT model.  

Simulated Dataset 

During the panel construction one goal was to maintain test unit proportionality. 

This objective was expressly meant to maintain the ratio of standalone items and testlet-
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based items from the original.  The most complex panel design was the 1-5-5. To 

construct a three 1-5-5 panels attempt constructing three panels with no repeated test 

units, the design required 245 unique test units.  Therefore, the original mixed-format 

testlet-based item pool was increased in size by concatenating the original pool four 

times.  This resulted in an item pool size of 1005 with 390 test units available for 

administration. Table 2 shows the distribution of test units for the entire mixed format 

testlet-based item pool after expansion.  

Table 2.  Final Mixed-format Testlet-based Item Pool 

Items per Testlet 1 2 4 6 7 9 12 13 14 Totals 

Total Test Units 290 25 15 10 10 10 10 15 5 390 

Total Items 290 50 60 60 70 90 120 195 70 1005 

Item Response Generation for Item Pool Recalibration 

 It was desired to not simply administer repeat items during the MST 

administration, so random error was introduced to the item parameters through a 

recalibration process. The recalibration process consisted of a sample size of 20,000 

simulees generated from a standard normal distribution )1,0(~ N .  Additionally, each 

simulee had a testlet effect parameter value )( jid  for each testlet )( jd .  Simulees’ )( jd  

were randomly drawn from a normal distribution with mean equal to zero and the testlet 

specific variance or ),0(~ 2

)( )( jd
Njd  .  Then response patterns were generated for all 

1005 items.  The probability of person i responding correctly to item j was calculated 

from the generated simulee’s parameters   and )( jd ,  and from the item parameter 

estimates jjj cba ,,  obtained from the 3PL TRT calibration of the real dataset.  Then a 

random number was generated for each person and item from a Uniform (0, 1) 
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distribution to introduce random error into the item responses.  A simulee for item j was 

then given a correct response (i.e., 1) if the generated random probability from the 

uniform distribution was less than or equal to the calculated probability of a simulee 

answering the item correctly.  Otherwise the simulee is given an incorrect response (i.e., 

0).  This procedure was used to generate responses to all 1005 items for all 20,000 

simulees. 

Recalibration 

Once responses were generated, the mixed-format testlet-based item pool 

consisting of 1005 items was recalibrated based on the 20,000 simulee responses.  Item 

parameters and the testlet effect variance, 2

)( jd , were estimated using SCORIGHT as 

described in the parameter estimation section.  Because the SCORIGHT program centers 

the calibration on the examinees, the estimated theta distribution was approximately 

standard normal. Table 3 provides the descriptive statistics for the item parameter 

estimates for the final mixed-format testlet-based item pool. In addition, Figure 3 

provides the pool’s information when the gammas for each testlet equal zero. 

Table 3.  Mixed Format Testlet-Based Item Pool Descriptive Statistics.  

Item 

Parameter 
Mean S.D. Minimum Maximum 

A 1.549 0.542 0.431 5.932 

B -0.155 1.102 -2.937 2.104 

C 0.101 0.080 0.008 0.489 

2

)( jd  0.245 0.209 0.061 1.053 
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Figure 3.  Pool information under the testlet response theory model when 0)( d . 
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MANIPULATED CONDITIONS 

Panel Design 

Four panel designs were constructed for the current study. Probably the most 

commonly cited panel design is the 1-3-3 (e.g. (Chen, 2010; Hambleton & Xing, 2006; 

Keng, 2008; Kim, Chung, Dodd, & Park, 2012; Kim, Chung, Park, & Dodd, 2013; 

Macken-Ruiz, 2008), where the routing stage or Stage 1 consists of one module available 

for all examinees.  Stage 2 and Stage 3 then consist of three modules at each stage.  The 

modules consisted of variable difficulty levels, which allow for the adaptive routing of an 

examinee.  The three modules typically consist of an easy, medium, and hard difficulty 

level.  Patsula (1999) found that adding both stages and modules increased the accuracy 

of ability estimates.  Because the current study is primarily focused on estimating abilities 

for a broad range of abilities, a second three-stage panel design was considered, namely 

the 1-5-5.  For this panel design, one module is again present in Stage 1 and five modules 

are available for administration at both Stage 2 and Stage 3.  Again, each module within a 

stage ranged in difficulty from very easy to very hard difficulty modules.  Three-stage 

panel designs are not the only designs that are found in the literature.  Often it is of 

interest for researchers to consider a two-stage test.  Some of the original research 

conducted on MSTs incorporated two-stage tests (see Kim & Plake, 1993; Lord, 1980; 

Patsula, 1999).  In addition, current testing programs such as the GRE (ETS, 2011) are 

implementing two-stage MSTs. The study therefore used two two-stage panel designs, 

specifically a 1-3 panel design and a 1-5 panel design.  Each panel design is depicted, 

including pathways, in Figure 4.  The 1-3, 1-5, 1-3-3, and the 1-5-5 are located in the 

figure panes A, B, C, and D, respectively. 
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Test Length 

  The current study investigated two test lengths in part to see how short an MST 

can become in a mixed-format setting before losing the capacity to estimate abilities well.  

The data responses originated from three 67 item mixed-format test forms of standalone 

and testlet-based items.  The goal of the current study was to create conditions of test 

length that maintained proportionality similar to the original test blueprints. Maintaining 

proportionality entailed a number of specifications including the number of standalone 

items in proportion to the number of testlets administered within modules and across 

stages.   
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Figure 4. Panel designs with pathways for the study. VE=Very Easy difficulty 

E=Easy difficulty; M=Medium difficulty; H=Hard difficulty; VH=Very 

Hard difficulty 
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A test form had 19 or 20 standalone items and 47 or 48 passage-based items, 

respectively.  To adhere to this constraint, the item pool was organized into test units. 

Recall each form consisted of 26 test units on the original forms. In terms of test units, 

each form consisted of 19 to 20 dichotomously test units and six or seven testlet-based 

test units.  The study used two shorter test lengths approximately proportional to an 

original full length LFT.  The longer of the two test lengths was 55 items which 

reasonably approximates to 20 or 21 test units.  The shorter test length condition was a 

panel with each examinee receiving 44 items which reasonably approximates to and 17 or 

18 test units. To inform the automated assembly program identifying which test units 

becomes of great import. Table 4 provides the proportions of test units in the pool, 

approximate number of test units for a given length, and panel combinations used in the 

ATA.   

Notice that the test unit combinations do fluctuate as the ultimate goal was to 

approximate the test units while administering a specific number of items, namely 55 and 

44 items. Flexibility in the number of test units proportional to the original test was 

allowed to float, so the composition of panels would have exact number of items.   The 

test unit composition still maintains a sense of proportionality with respect to the 

originating test unit administration.  In addition, identifying test units in this fashion 

increases the pool usage because varying testlet lengths are identified during the 

assembly process. The following combinations were considered to be parallel for the 

purpose of this study because the number of items is reaming constant during panel 

assembly.  
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Table 4.  Distribution of Test Unit Combinations for Long and Short Test Length 

Panels. 

No. of Items 

per Test Unit 
1 2 4 6 7 9 12 13 14 TU(IT) 

No. of Pool 

Test Units 
290 25 15 10 10 10 10 15 5 390 (1005) 

Long 

Combinations 

15 1 1 0 0 1 1 1 0 20(55) 

16 1 1 1 0 0 0 1 1 21(55) 

15 2 1 0 1 0 1 1 0 21(55) 

Short 

Combinations 

13 1 1 0 0 0 1 1 0 17(44) 

14 1 0 1 0 1 0 1 0 18(44) 

Note.       No.=Number; IT=items; TU=test units. 

Routing Procedures 

Routing procedures are a variable of interests for the current study because they 

impact the security of an item pool.  A decision must be made on the control of item 

exposure rates administered to the population of examinees. The study used three routing 

procedures.  One routing procedure selects modules based on approximate maximum 

information (AMI) and the other two procedures are variants of the DPI.  Kim et al. 

(2013) did not investigate the efficacy of ability estimation under any of the routing 

procedures for a mixed-format item pool.  In addition, no studies have compared routing 

procedures in a mixed-format testlet pool under the 3PL-TRT model.  Therefore, the 

current study explored the usefulness of routing procedures commonly seen in practice 

using the 3PL-TRT model for a mixed-format item pool.  

Approximate Maximum Information 

The AMI is the most commonly used routing procedure across studies (Zenisky et 

al., 2010).  Similar to CAT’s item selection on maximum information, the AMI selects 

modules that provide the highest amount of information for a person’s current ability 
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estimate.  The method generally results in the most accurate ability estimates. However, 

the method will over administer certain modules based on the nature of the ability 

distribution (Luecht et al., 2006).  Once panels were constructed, decision point for each 

pathway were identified based on the intersection of adjacent module information 

functions.  For the 1-3 and 1-3-3 panel design, two decision points at Stage 2 and Stage 3 

were needed and are denoted as L  and U .  Then, if the provisional ability estimate was 

less than or equal to the decision point, L ˆ , the simulee was routed to the easy 

module.  If the provisional estimate was greater than or equal to the upper decision point, 

U ˆ , the simulee was routed to the hard difficulty module.  Otherwise, the simulee 

received the medium difficulty.  Similar decisions were made for routing from Stage 2 to 

Stage 3.  Recall from Figure 4, additional pathways can reroute simulees to adjacent 

modules.  Again, the process of identifying the intersection of adjacent information 

functions was repeated for the decision points at Stage 3.  From Stage 2 to Stage 3, a 

simulee was rerouted from the easy module difficulty if the current estimated ability was 

greater than the decision point, .ˆ
L    A simulee in the medium difficulty module was  

rerouted if they fall below or above the decision points, L ˆ  or U ˆ ,  and was 

rerouted to the easy or hard module, respectively.  A simulee in the hard module at Stage 

2 was rerouted to the medium module at Stage 3, if their provisional ability estimate fell 

below the decision point, U ˆ .  Figure 5 illustrates the routing decisions for the AMI 

procedure on a 1-3-3 panel design.  Similarly, four decision points must be identified for 

the 1-5 and 1-5-5 panel designs.  The decision point between the very easy and easy 

module are labeled LL ; the decision point between the easy and medium module is LM ; 

the decision point between the medium and hard module is MU ; and the decision point 

between the hard and very hard module is UU .  A detailed table of the AMI decision 

points is presented in the panel assembly in the Results chapter.  
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Defined Population Interval 

The DPI was developed as a means to specifically dictate the exposure rates of 

modules during the administration process.  Most often this method is used to maintain 

equally proportioned module administration.  If the policy of a testing program is to 

administer equal proportions of each module available after Stage 1, then a form of the 

DPI will need to be implemented (Luecht et al. 2006). Two methods of the DPI have 

been investigated in the classification setting (Kim et al., 2013). One such method is to 

consider stage-level routing, which is referred to as the stage level DPI (SL-DPI).  SL-

DPI essentially rank orders examinees across all modules and then routes them to the 

subsequent stage and module based on the overall rank order.  The second method is to 

rank order examinees within modules and proportionally route each examinee within a 

module to the next stage’s module.  This method is referred to as the module level DPI 

(ML-DPI).   

The goal for both DPI procedures was to administer equal proportions to all 

modules at all stages of administration.  All examinees at Stage 1 see the routing module. 

Then one-third of examinees see the easy, medium, and hard modules at Stage 2 and 

Stage 3 in the 1-3 or 1-3-3 panel design; and one-fifth of the examinees see each module, 

including very easy, easy, medium, hard, and very hard difficulty modules in the 1-5 or 

1-5-5 panel design at Stage 2 and Stage 3.   
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Figure 5. Example of AMI and SL-DPI procedure.  AMI=approximate maximum 

information; SL-DPI=Stage level defined population interval.  E=Easy 

difficulty; M=Medium difficulty; H=Hard difficulty.  

 

To use the DPI procedures, it was assumed that the ability distribution was 

normally distributed.  The details that distinguish the two procedures will now be further 

explained.  The SL-DPI procedure similar to that described in Luecht et al. (2006) has the 
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same decision points at each stage.  Assuming the ability distribution to be normal, theta 

decision points of -0.41 and 0.41 correspond to the 33
rd

 and 67
th

 percentile on a standard 

normal distribution and were used as L  and U at each stage for the 1-3 and 1-3-3 panel 

designs, respectively. For the 1-5 and 1-5-5 panel designs, the 20th, 40th, 60th, and 80th 

percentile on the standard normal curve need to be identified.  The corresponding theta 

decision points between each stage were then 85.0LL , 26.0LM , 26.0MU , 

and 85.0UU , respectively. 

The ML-DPI used in Kim et al. (2013) considered pathways between all possible 

modules at each stage and defined an equal proportion of examinees to be (re)routed to 

and from each module at subsequent stages.  However, in practice, it has been 

empirically demonstrated that very few examinees are rerouted to non-adjacent modules 

at subsequent stages (Hambleton & Xing, 2006).  Therefore, the current study only routed 

examinees to adjacent modules from Stage 2 to Stage 3 as is illustrated in Figures 3.  

Notice for the 1-3 and 1-5 panel design, the SL-DPI and ML-DPI are equivalent, because 

no rerouting takes place within the MST administration.  Therefore, the two DPI methods 

can only be compared in a three-stage MST setting. 

The decision points from Stage 1 to Stage 2 are the same for the SL-DPI and ML-

DPI procedure, and decision points for the ML-DPI between Stage 1 and Stage 2 were 

used as described for the SL-DPI.  The proportion of reroutes was desired to be equal to 

the exposure rates for the overall test administration.  This translates to one-third of 

within-module examinees to be rerouted to each adjacent module at the next stage for the 

1-3-3 panel design, and one-fifth of within-module examinees to be rerouted for the 1-5-5 

panel design.  To achieve this proportional rerouting, more decision points were 

identified when navigating from Stage 2 and Stage 3 in both the 1-3-3 and 1-5-5 panel 

designs.  Figure 6 illustrates the proportion of examinees within each module that are 
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routed to each module at subsequent stages.  For a 1-3-3 panel design this means one-

third of the examinees were routed to the easy, medium, and difficult modules at stage 

two.  Then from Stage 2 to Stage 3, one-third of the examinees within a module were 

rerouted to each adjacent module in Stage 3.   

To achieve a reroute of one-third of examinees within a module a change in 

cumulative probability needs to be considered.  For the case of the 1-3-3 design each 

module contains approximately 33.3% of examinees. To reroute one-third of examinees 

to each adjacent module, a .111 change in the cumulative probability on a normal 

distribution was taken into account.  The corresponding theta score decision points 

between Stage 2 and Stage 3 were identified as 765.0L  to remain in the easy 

module; 140.0140.0  M to remain in the medium module, and 765.0H  to 

remain in the hard module.  For the 1-5-5 panel design, a reroute of one-fifth of 

examinees within a module corresponds to a cumulative probability change of .04 for 

each module. Accounting for this change between examinees induced eight decision 

points to select an examinees pathway from Stage 2 to Stage 3. The decision points to 

remain in the very easy module was 994.0LL ; the decision points to remain in the 

easy module were 358.0706.0  LM ; the decision points to remain in the medium  

module were 151.0151.0  M ; the decision points to remain in the hard module 

were 706.0358.0  MH ; and finally, the decision point to remain in the hard module 

was 994.0HH . 
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Figure 6. Illustration of the within-module proportions to be routed at subsequent 

stages for the module level defined population interval (ML-DPI). 

Local Item Dependence 

The study also included three levels of local item dependence (LID) within 

testlets.  The presence of LID within testlets has been empirically shown to degrade 

model fit (Glas, Wainer, & Bradlow, 2000; Murphy et al., 2010; Wainer et al., 2000) and 

that decision accuracy and the measurement accuracy of ability estimation decreases as 

the magnitude of LID increases (Lu, 2010).  The first magnitude considered for the study 

was the magnitude estimated during the calibration of the full size item pool.  This 
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provides insight into the effects LID may have on tests currently being administered with 

similar psychometric properties to the originating test.  The other two magnitudes will be 

0.0 and 0.8, two levels previously used by Wainer et al. (2000).  The three levels were 

used during simulation by defining 2

)(

2

)(
ˆ and,8.0,0.0 jdjd   .  The LID was then used as 

corresponding testlet effect variance in the generation of response patterns for each item. 

DATA GENERATION FOR MST SIMULATIONS 

Two steps in the data generation process were necessary.  The first step generates 

the simulated examinees’ ability and testlet effects.  Then the response patterns need to 

be generated.  The simulated response patterns used a combination of the simulees’ 

ability and the item parameters from the recalibrated testlet pool.  A total of 100 

replications were created. For each replication 1,000 simulee ability values, or known 

s'  were generated.  The   values were drawn from a standard normal distribution, 

)1,0(~ N .  Additionally, each simulee needed to have the testlet effect parameter value 

)( jid  for each testlet )( jd  generated.  Simulees’ )( jd  were generated from a normal 

distribution with mean equal to zero and the testlet specific variance or 

),0(~ 2

)( )( jd
Njd   for the given LID condition.  Then response patterns for all 1005 

items were generated using the same process as described previously in the item pool 

development section. 

Recall that for each condition there are three LID variance patterns.  The same set 

of simulee   distribution was used with the three testlet effect conditions.  All )( jd  will 

be generated from a normal distribution with mean equal to zero and the respective LID 

condition testlet variances.  Therefore, three sets of responses were generated with each 

set consisting of 100 replications. The first set of responses was generated with no LID, 

i.e. 0 , or 02

)( jd for all simulees; the second set of generated responses had a large 
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constant LID for )( jd with mean equal to zero and 8.02

)( jd ; and the third set of 

generated responses had the estimated LID for )( jd  with mean equal to zero and 

2

)(

2

)(
ˆ

jdjd   , or the estimated variance for testlet )( jd . 

MST ASSEMBLY 

Recall that one of the manipulated variables for the current study regards panel 

design.  Four panel designs were considered. The current study constructed four panel 

designs are 1-5-5, 1-3-3, 1-5, 1-3.  Each panel design condition constructed parallel 

panels. The automated testing assembly (ATA) constructed panels to have two test length 

conditions, a 55 item and a 44 item panel. Content constraints were initially considered 

but were deemed to sparse to be realistic for the given testlet-based item pool.  The 

current study used the bottom-up method of assembly, where the assembly strategy treats 

the process as a simultaneous building of all modules for the given panel design (Luecht 

et al., 2006).  The proceeding discussion provides further constraints set in place for the 

ATA algorithm. 

One of the main objectives that must be declared for ATA is defining the targets 

for the targeted test information function (TIF) for each module being assembled. The 

target TIFs were defined to be equal across modules within a stage. This method allows 

the assembly process to optimize the TIF within each module and is referred to as a 

relative targets (Diao & van der Linden, 2011). To obtain equal targeted TIFs within a 

stage, an additional targeting parameter must be defined for ATA denoted as the targeted 

k  values. The k  values for all conditions commonly range from -1.0 to 1.0 on the  -

scale and were used as the range in the current study (van der Linden, 2005).  For the 

conditions with three modules, this will result in  0.1,0.0,0.1k , and for the 

conditions with five modules, this will result in  0.1,5.0,0.0,5.0,0.1 k .  The 
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target k values tell the linear programming solver to maximize a module TIF at each k , 

or in the case of the routing module, the TIF must obtain a uniform TIF criteria at across 

the defined k values, for modules and panels.    

MST constructions were conducted in R with the lpSolveAPI package (Konis, 

2013).  First the routing module specifications will be discussed, followed by the 

subsequent stages.  The model for the simultaneous assembly of the routing module was 

assembled as an approximate uniform distribution for the relative targets (Diao & van der 

Linden, 2011b; Kim & Plake, 1993).  For a multistage test, the objective function was 

based on a maximin principle (van der Linden, 2005).  The maximin principle is defined 

so the minimum value of the module information function across the targeted k values is 

maximized.  The items in the pool are denoted as Jj ,...,1 .  The number of items in a 

testlet is denoted as )( jdn  and the number of items for the module will be denoted as MLn .  

The model that will be used is  

 ymax  (23)  

which will be subject to the following constraints for decision variable jx  

 , allfor  ,)(
1

kyxI jk

J

j

j 


  (24) 

 , allfor  ,)(
1

kyxI jk

J

j

j  


 (25) 

 



)(

)(

jdj

jdj nx , (26) 

 ML

J

j

j nx 
1

, (27) 

  1,0jx , (28) 

 0y . (29) 

The combination of Equation 23 and the constraints in Equation 24 implement the 

maximin principle.  This will achieve an approximately uniform distribution of the 
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targeted k  values for the routing module.  Equation 25 uses   as a tolerance constraint 

to help ensure the obtainment of the uniform distribution and to set an upper bound on the 

information for the targeted k .  The testlet, and module length requirement are declared 

in Equations 26 and 27. 

To simultaneously assemble the designated number of modules f for a given 

condition, The model at each possible stage must also be declared.  At Stage 2, the ATA 

program will target peaked information functions for each module at k for the specified 

panel design.  The model will be the same as in Equation 23.  The difference will be in 

the constraints that are specified for the modules 

 , forms all and  allfor  ,)(
1

fkyxI jfk

J

j

j 


  (30) 

 , forms all and  allfor  ,)(
1

fkyxI jfk

J

j

j  


 (31) 

 



m

f

jf jx
1

 allfor  ,1 , (32) 

 , forms allfor  ,
1

fnx ML

J

j

jf 


 (33) 

 , forms allfor   ,
)(

)( fnx
jdj

jdjf


  (34) 

 ,or   allfor  ,0 31 SSjx jf   (35) 

  1,0ifx ,  (36) 

 0y . (37) 

Notice in the following set of Equations 30-37 the additional subscript for the 

module, f.  Similarly to the routing module Equations 30 and 31 define the target 

information and tolerance for each module.  Equation 32 is used to ensure no item 

overlap for the forms at Stage 2.  Again, Equations 33 and 34 are the testlet and module 

length constraints.  Equation 35 is used to guarantee no item overlap across stages within 

a panel.  Note that 3S  in Equation 35 will not be included for the two stage panel designs. 
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Like the model for the second stage, the constraints and model are defined exactly 

the same for the third stage with the exception of Equation 37.  This constraint was then 

replaced by the following constraint 

 , forms all and ,or   allfor  ,0 21 fSSjx jf   (40)  

where Equation 40 instead includes the set of items used in Stage 2, 2S . 

Minimizing the number of constraints can alleviate the optimization process in the 

branch-and-bound search method when identifying a solution. By specifying the test unit 

distribution, the number of branches is drastically reduced and becomes more efficient at 

identifying a workable solution (Galindo et al., 2013). This approach was used to achieve 

the constraints for Equations 26 and 34. Tables 5 and 6 provide the specific test unit 

identifications which are extensions to the integer combinations presented in Table 4.  

The extensions provide the test unit specifications at the stage level for each panel, when 

distinct. These combinations represent the combinations in which the ATA algorithm 

were able to find a solution.    
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Table 5. Distribution of Test Unit Combinations for Long Test Length Conditions for 

Distinct Stages and Panels. 

No. of Items 

per Test Unit 
Stage 1 2 4 6 7 9 12 13 14 TU(IT) 

Pool  290 25 15 10 10 10 10 15 5 
390 

(1005) 

            

1-5-5 

Combinations 

Stage 

1 
5 0 1 0 0 1 0 0 0 7(18) 

2 5 1 0 0 0 0 1 0 0 7(19) 

3 5 0 0 0 0 0 0 1 0 6(18) 

1-3-3 

Combinations 

Stage

1 
5 1 0 0 0 0 1 0 0 7(19) 

Panel 1 
2 5 0 1 0 0 1 0 0 0 7(18) 

3 5 0 0 0 0 0 0 1 0 6(18) 

Panel 2 

1 6 1 1 1 0 0 0 0 0 9(18) 

2 5 0 0 0 0 0 0 0 1 6(19) 

3 5 0 0 0 0 0 0 1 0 6(18) 

Panel 3 

1 5 1 1 0 1 0 0 0 0 8(18) 

2 5 1 0 0 0 0 1 0 0 7(19) 

3 5 0 0 0 0 0 0 1 0 6(18) 

1-5 

Combinations 

Stage 

1 
8 1 0 1 0 0 1 0 0 11(28) 

2 8 1 1 0 0 0 0 1 0 11(27) 

1-3 

Combinations 

Stage 

1 
8 1 0 1 0 0 1 0 0 11(28) 

2 8 1 1 0 0 0 0 1 0 11(27) 

Note.       IT=items; No.=Number; TU=test units. 
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Table 6. Distribution of Test Unit Combinations for the Short Test Length 

Conditions for Distinct Stages and Panels. 

Test Unit 

Score Points 
Stage 1 2 4 6 7 9 12 13 14 TU(IT) 

1-5-5 

Combinations 

Stage 

1 
2 0 0 0 0 0 0 1 0 3(15) 

 2 4 1 0 0 0 1 0 0 0 6(15) 

 3 8 0 0 1 0 0 0 0 0 9(14) 

1-3-3 

Combinations 

Stage

1 
2 0 0 0 0 0 0 1 0 3(15) 

2 4 1 0 0 0 1 0 0 0 6(15) 

3 8 0 0 1 0 0 0 0 0 9(14) 

1-5 

Combinations 

Stage 

1 
6 0 1 0 0 0 1 0 0 8(22) 

2 7 1 0 0 0 0 0 1 0 9(22) 

1-3 

Combinations 

Stage 

1 
6 0 1 0 0 0 1 0 0 8(22) 

2 7 1 0 0 0 0 0 1 0 9(22) 

Note.       No.=Number; IT=items; TU=test units. 
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MST ADMINISTRATION 

Two additional decisions beyond panel assembly were made that effect the 

administration of the MST to the simulee.  They are the within test scoring, and routing 

procedures of the MST.  EAP was used for all scoring for the MST administration, 

including both within and total MST scoring.  The routing procedures were based on 

theta scoring.  Three conditions were considered for the routing procedures but do not 

affect the steps in administration of modules to the simulee.  The following procedure 

provides a step-by-step process of the MST administration for the simulation study: 

1. The random number generator assigned one of three panels to the simulee. 

2. The simulee were administered the routing module at Stage 1 from the chosen 

panel. 

3. After the module from Stage 1 is completed, a provisional ability, ̂ , and their 

estimated testlet effects, ̂ , were estimated using EAP. 

4. The simulee was then routed to a module at Stage 2 based on the provisional 

ability ̂ , and the current routing procedure in place, namely AMI, DPI-1, or 

DPI-2. 

5. For a two-stage test, administration terminates and a final ability estimate, ̂ , 

and testlet effect parameters, ̂ , were calculated using EAP for all responses 

collected. For a three-stage test, an addition provisional ability, ̂ , and testlet 

effect parameters, ̂ , were estimated, then based on the current routing 

procedure the simulee was routed to the appropriate module at Stage 3.  

6. For the three-stage panel designs, after Stage 3’s administration the final 

ability, ̂ , and testlet effect parameters, ̂ , were estimated for all 

administered responses using EAP. 
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DATA ANALYSIS 

The primary purpose of the dissertation was to investigate the operational 

characteristics of an MST administration for a mixed format testlet-based item pool. 

Specifically the study investigated multiple MST conditions and their effect on ability 

estimation for a broad population of examinees.  In addition, the administrative 

characteristics of the MSTs were inspected for differences in panel and module 

administration.   

Evaluating Research Questions 

The following evaluation indices are related to answering the questions regarding 

ability estimation. 

(1) How does panel design impact the measurement precision of an MST with a 

mixed-format testlet-based item pool? 

(2) How does test length impact the measurement precision of an MST with a 

mixed-format testlet-based item pool? 

(3) How does the magnitude of LID effect the administration and ability 

estimation of an MST with a mixed-format testlet-based item pool? 

(4) How do various routing procedures impact the ability estimation of an MST 

with a mixed-format testlet-based item pool? 

(5) How do test length, LID, and routing procedures interact with respect to the 

accuracy and precision of ability estimation? 

The simulation study’s evaluation criteria assessed the measurement accuracy and 

of recovering a simulee’s known theta,  .  Simulee descriptive statistics, including 

estimated theta,̂ , and standard error of ability estimates )ˆ( e were calculated. The 

Pearson product-moment correlation between the known theta,   and estimated theta,̂ , 

was computed.  The following indices were used to evaluate the measurement properties 
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of the MST designs: bias, root mean squared error (RMSE), and average absolute 

deviation (AAD) on ability estimation.  Bias is calculated by the following formula: 

 
n

Bias

n

i

ii




 1

ˆ 

. (41) 

The formula for RMSE is   

 
n

RMSE

n

i

ii




 1

2)ˆ( 

. (42)  

The formula for AAD is  

 
n

AAD

n

i

ii




 1

ˆ 

. (43) 

For each of the formulas in Equations 41-43, i  is the known theta estimate for 

the simulee i, and i̂  is the estimated theta for simulee i. Where n is the total number of 

simulees in each condition.  All indices described were averaged across the 100 

replications. 

To illustrate the accuracy and precision of the evaluative indices, conditional plots 

were constructed. In addition, the conditional plots for the )ˆ( e  were depicted.  

Conditional plots help visually illustrate the performance of accuracy and precision 

estimates across a broader range of the   distribution.  The conditional plots illuminate 

differences in the effectiveness of the various conditions that can sometimes be concealed 

by aggregated statistics being used for the study.   

In addition to the measurement accuracy and precision measures, the study 

calculated the rate at which modules and panels were administered.  Descriptive statistics 

for the administration are provided in the results section. Additionally important 

information for testing programs is the proportion of examinees routed between modules. 
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Understanding the rate of administration for each module allows for testing companies to 

monitor exposure rates of panels, modules, testlets, and stand-alone items.  All such 

statistics of operational characteristics were extracted from the simulees audit trail.  The 

audit trail is a record of the items and testlets administered to each simulee. 
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Chapter 4: Results 

This study examined multistage tests (MST)s  for four panel designs 1-5-5, 1-3-3, 

1-5, and 1-3; two test lengths (long and short); three routing procedures approximate 

maximum information (AMI), stage-level defined population interval (SL-DPI), and 

module-level defined population interval (ML-DPI); and three local item dependence 

(LID) conditions ( )ˆ,8.0,0.0( 2

)(

2

)( )()( jj dd   ).  The following design resulted in 60 

conditions as seen in Table 1. This chapter presents the final panels assembled, the 

outcomes for evaluating the measurement accuracy and precision, and the module 

administration characteristics associated for each condition. 

PANEL ASSEMBLY 

The item pool for the study was a mixed-format item pool of both stand-alone 

dichotomous items and testlet-based dichotomously score items. In all, there were nine 

types of test units that items could be categorized into as seen in Table 2. Among the test 

unit types, 290 were dichotomous test units, 25 were test units with two items, 15 were 

test units with four items, 10 were test units with six items, 10 were test units with seven 

items, 10 were test units with nine items, 10 were test units with 12 items, 15 were test 

units with 13 items, and five were test units with 14 items.  Figure 7 is an illustration of 

the information for the entire set of stand-alone dichotomous test units. Figure 8 is an 

illustration of the information for all the testlet based test unit types. Notable results from 

Figure 8 were the two item testlet based test unit information was bimodal and the test 

units with 13 testlet-based items had the largest amount of information. 
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Figure 7. Information for the dichotomous stand-alone test units when 0)( d . 
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Figure 8. Information for all testlet-based test unit types when 0)( d . 
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MST panels were constructed from an automated test assembly (ATA) program 

using the R package lp_SolveAPI (Konis, 2013). To evaluate the adequacy of the ATA 

program, visual inspection of the relative target test information functions (TIFs) were 

examined based on targeted information across the ability range for each panel. For the 

sake of brevity, illustrations in this section are limited to Figures 9-16 for one three-stage 

panel and one two-stage panel.  The remaining figures used in the visual analysis for the 

remaining panel designs can be found in Appendix A.  

Recall from Table 5, the patterns used to inform the ATA algorithm for each test 

unit type at each stage and panel.  Originally, the study set out to have no repeat items 

between all panels based on the specified test unit types. When this constraint was 

imposed on the ATA algorithm, it was unable to provide a solution for any panel design.  

Therefore, the constraint allowed a test unit to appear no more than twice, and only on 

different panels and at different stages.  The panel design for the 1-5-5 long and short test 

length conditions was unable to meet these constraints for three panels. The 1-5-5 panel 

designs consistently identified multiple test units within a panel and used a test unit three 

times across panels.  However, the ATA algorithm was able to optimize a solution for the 

1-5-5 panel designs when using only two panels.  Therefore, two panels were assembled 

for each of the 1-5-5 conditions and used for the simulation.  Across all conditions, at 

most only three test units were used repeatedly for a given panel design.  

Three-stage Panel Assembly 

Figures 9-13 contain the relative target TIFs assembled for the short 1-5-5 panel 

design. The TIF plots for the short 1-5-5 panel design illustrate a three stage panel 

assembly. For the 1-5-5 panel design, five targeted theta values were specified, namely 
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)0.1,5.0,0.0,5.0,0.1( k . First, the routing module relative target TIFs at Stage 1 are 

discussed followed by Stage 2 and Stage 3 relative target TIF plots. 

Figure 9 plots the TIFs for the routing stage for both panels. The routing stage 

was intended to be a uniform distribution across the theta range.  The figure indicates that 

the information was consistent across for each k  with some deviation. Overall, the TIFs 

approximated a uniform distribution over the targeted ability range and were viewed as 

adequate for the simulation study. 

Next the modules at each stage need to be inspected for uniformity at the peaks of 

each TIF for the targeted theta range. Figure 10 provides an illustration of the information 

across the targeted theta range for each panel at Stage 2. The information across the 

targeted thetas had peaked information functions occurring at each of the desired targets 

and was approximately uniform with respect to the peaks. Notice the bi-modal TIFs 

produced at the upper end of the ability distribution. This occurred from the use of test 

units for the two-item testlets. This pattern was found throughout the assembly process 

when test units with two-item testlets were used. Figure 11 provides an illustration of the 

information across the targeted theta range for each panel at Stage 3. The relative target 

TIFs were similar across the theta range all peaking uniformly at the targeted theta 

values. 

Another aspect to the visual analysis was the ATA’s ability to replicate relative 

target TIFs for each panel at each of the targeted difficulty levels, or each k . Figures 12 

and 13 provide an illustration of the TIF’s for each difficulty level at Stage 2 and Stage 3 

respectively. It was seen from the figures that each TIF was peaked at their targeted theta 

values and similarly constructed in the immediate surrounding areas for each panel. 

Again one should notice some Stage 2 TIFS were bimodal in Figure 10.  Again, many of 

the TIFs were bimodal because of the use of the two-item testlet test units.   
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Figure 9. Stage 1 routing module relative target TIF plots for the 1-5-5 routing stage 

when 0)( d . 
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Figure 10. Stage 2 relative target TIFs for the short 1-5-5 panel design across the 

targeted theta range when 0)( d .  
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Figure 11. Stage 3 relative target TIFs for the short 1-5-5 panel design across the 

targeted theta range when 0)( d . 
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Figure 12. Stage 2 relative target TIFs for the short 1-5-5 panel design at each targeted 

difficulty level when 0)( d .  
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Figure 13. Stage 3 relative target TIFs for the short 1-5-5 panel design at each targeted 

difficulty level when 0)( d . 
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Two-stage Panel Assembly 

The two-stage panel assembly section provides the relative target TIFs for the 1-3 

long panel design.  First, the Stage 1 routing module TIFs were evaluated. Then, Stage 2 

difficulty plots were inspected across the targeted theta range and at each difficulty. For 

the 1-3 panel design, three theta targets were used for the relative TIFs, namely 

)0.1,0.0,0.1(k . 

Figure 14 plotted the Stage 1 routing module relative target TIFs for each of the 

three panels.  The routing module assembled three modules that were approximately 

uniform across the specified targeted thetas.  At each of the three targeted thetas, the 

information was very similar with some fluctuation between the target values.  The 

information between -1.0 to 1.0 stays within a fairly small band of information and was 

considered adequate for the purposes of a uniform routing module.  

At Stage 2, the three targeted thetas were specified to provide a uniform set of 

peaked relative target TIFs. Figure 15 provides the relative target TIFs across the targeted 

thetas.  Approximately equivalent information was achieved for each of the difficulty 

levels. Similar to the three-stage assembly, one should note the bimodal TIFs especially 

prevalent in the harder modules. Again, this was where the test units with two-item 

testlets were administered.  

Figure 16 provides the relative target TIFs at Stage 2 in order to inspect the 

replicability of a module across panels. The targeted difficulty TIFs resulted in similar 

amounts of information at each of the respective targeted thetas with some deviations 

beyond the general target area. Notice for the hard module that the information actually 

peaks slightly before the targeted theta, 0.1k , but the information for all three panels 

was approximately equal at the targeted theta. Overall, similar amounts of information 

were achieved across the targeted theta range. 
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Figure 14. Stage 1 routing module relative target TIF plots for the long 1-3 routing 

stage when 0)( d . 
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Figure 15. Stage 2 relative target TIFs for the long 1-3 panel design across the targeted 

theta range when 0)( d . 
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Figure 16. Stage 2 relative target TIFs for the long 1-3 panel design at each targeted 

difficulty level when 0)( d . 
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MEASUREMENT ACCURACY AND PRECISION 

The following section includes the dependent measures to evaluate the degree to 

which each testing condition recovered the known theta values.  To evaluate the 

measurement accuracy and precision of the known theta recovery, the dependent 

measures for each sample included the mean estimated theta, mean standard error (SE), 

the Pearson product-moment correlation coefficient between the estimated and known 

theta values, bias, root mean squared error (RMSE), and average absolute difference 

(AAD).  Then all of the statistics were averaged across the 100 replications. Additionally, 

conditional plots of the grand mean bias and SE were constructed to assess the testing 

conditions across the known theta scale. 

Tables 7-10 contain the grand mean estimated theta and standard error (SE) for 

each panel design condition, i.e. 1-5-5, 1-3-3, 1-5, and 1-3. First the three-stage tables are 

presented, followed by the two-stage tables.  

Table 7 provides the estimates for the 1-5-5 panel design conditions.  The grand 

mean of the estimated thetas were reasonably close but slightly above the grand mean for 

the known thetas.  As expected, there was an observed increase in the grand mean SE 

when the test length was decreased. The grand mean of the SEs for the long test length 

conditions ranged from 0.176 to 0.181 and the short test lengths ranged from 0.190 to 

0.195.  In addition, the grand mean of the SE for each routing procedures was very 

similar with the AMI consistently having the smallest SE.  Across all conditions, the 1-5-

5 panel design with the constant testlet effect LID condition, i.e. 8.02

)( jd , resulted in 

the largest grand mean estimated theta. The grand mean of the SE’s for each 1-5-5 

condition were all similar in magnitude. The conditions that generated responses with a 

testlet effect of 8.02

)( jd consistently had the largest grand mean of the SEs, where the 
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conditions with no testlet effect, 02

)( jd  and the item pool’s estimated testlet effects, 

2

)(

2

)(
ˆ

jdjd   , were similar. 

Table 8 provides the descriptive statistics for the 1-3-3 panel design conditions. 

Similar to the 1-5-5 panel designs, the grand mean theta estimates were slightly above but 

close to the known thetas.  As expected, the grand mean of the SE for the longer test 

length condition was smaller than the short test length. The range for the longer test 

lengths SEs were between 0.175 and 0.183, and the range for the short test lengths was 

between 0.192 and 0.200.  All routing procedures produced similar grand mean SEs with 

the AMI routing having the smallest, and minimal differences being observed for the DPI 

procedures. The largest grand mean of the SE was recorded for the 8.02

)( jd  LID 

conditions. The 8.02

)( jd  LID condition had the largest grand mean of estimated theta 

ranging between 0.15 and 0.26. 

Table 9 produced very similar descriptive statistic patterns for the 1-5 panel 

designs. The grand mean of the estimated thetas were all close but slightly above the 

grand mean of the known theta estimates ranging between 0.005 and 0.013.  The grand 

mean of the SEs for the longer test lengths were smaller than the shorter test lengths.  The 

range for the longer test lengths was 0196 to 0.200 and the range for the short test lengths 

was 0.214 to 0.220.  Little to no difference was found between the grand mean of the SEs 

for each of the routing procedures for the 1-5 two stage tests.  The 8.02

)( jd  LID 

condition produced the largest grand mean of the SEs. 

Table 10 provides the ability estimation descriptive statistics for 1-3 panel 

designs.  The grand mean of the estimated thetas were all similar but slightly higher than 

the known theta estimates. The grand mean of the SEs were smallest for the longer test 

length conditions.  Although differences were minimal, the AMI produced smaller grand 

mean of the SEs than did the DPI routing procedure. The  8.02

)( jd  LID condition 
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producing the largest grand mean of the estimated thetas and grand mean of the SEs for 

each test length. 

When comparing across panel designs, the grand mean of the theta estimates were 

all fairly similar. All were slightly higher than the grand mean for the known thetas. The 

descriptive statistics for the three-stage panel designs were very similarly to the two-stage 

tests. However, when examining the SEs for the three-stage test to the two-stage test 

designs, it was seen that the two-stage test produced higher standard errors than the three-

stage tests. 
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Table 7. Estimated theta and Standard Error Descriptive Statistics for the 1-5-5 Panel 

Design. 

Test 

Length 

Routing 

Procedure 
LID 

Theta Estimate
a 

Grand Mean 

(Min, Max) 

SE 

Grand Mean 

(Min, Max) 

Long 

AMI 

0.8 
0.019 0.180 

(-0.059, 0.094) (0.176, 0.184) 

0.0 
0.008 0.176 

(-0.061, 0.086) (0.172, 0.18) 

2

)(
ˆ

jd  
0.013 0.176 

(-0.083, 0.085) (0.171, 0.18) 

ML-DPI 

0.8 
0.018 0.181 

(-0.06, 0.085) (0.178, 0.185) 

0.0 
0.008 0.178 

(-0.076, 0.089) (0.173, 0.181) 

2

)(
ˆ

jd  
0.011 0.178 

(-0.071, 0.082) (0.174, 0.182) 

SL_DPI 

0.8 
0.017 0.181 

(-0.066, 0.078) (0.177, 0.184) 

0.0 
0.009 0.178 

(-0.068, 0.091) (0.173, 0.182) 

2

)(
ˆ

jd  
0.013 0.178 

(-0.091, 0.085) (0.173, 0.181) 

Short 

AMI 

0.8 
0.015 0.195 

(-0.082, 0.1) (0.191, 0.199) 

0.0 
0.009 0.190 

(-0.063, 0.08) (0.186, 0.193) 

2

)(
ˆ

jd  
0.009 0.190 

(-0.082, 0.085) (0.187, 0.194) 

ML-DPI 

0.8 
0.015 0.195 

(-0.073, 0.092) (0.192, 0.199) 

0.0 
0.009 0.191 

(-0.066, 0.078) (0.187, 0.194) 

2

)(
ˆ

jd  
0.01 0.191 

(-0.093, 0.08) (0.187, 0.195) 

SL_DPI 

0.8 
0.015 0.195 

(-0.071, 0.087) (0.192, 0.198) 

0.0 
0.009 0.191 

(-0.063, 0.087) (0.188, 0.194) 

2

)(
ˆ

jd  
0.009 0.191 

(-0.084, 0.075) (0.187, 0.195) 

Note: All statistics were computed from across 100 replications; each replication contained 1,000 

observations. LID=local item dependence 
a
 Known  ’s: grand mean = -0.005, -0.001, and -0.003 for the )ˆ,8.0,0.0( 2

))((

2

)(( jdjd    
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Table 8. Estimated Theta and Standard Error Descriptive Statistics for the 1-3-3 

Panel Design. 

Test 

Length 

Routing 

Procedure 
LID 

Theta Estimate
a 

Grand Mean 

(Min, Max) 

SE 

Grand Mean 

(Min, Max) 

Long 

AMI 

0.8 
0.026 0.179 

(-0.063, 0.102) (0.176, 0.183) 

0.0 
0.012 0.175 

(-0.061, 0.083) (0.172, 0.178) 

2

)(
ˆ

jd  
0.018 0.176 

(-0.07, 0.097) (0.172, 0.18) 

ML-DPI 

0.8 
0.021 0.183 

(-0.051, 0.091) (0.18, 0.186) 

0.0 
0.012 0.180 

(-0.067, 0.089) (0.178, 0.184) 

2

)(
ˆ

jd  
0.016 0.180 

(-0.085, 0.085) (0.177, 0.184) 

SL_DPI 

0.8 
0.019 0.180 

(-0.071, 0.087) (0.177, 0.183) 

0.0 
0 0.176 

(-0.085, 0.072) (0.173, 0.178) 

2

)(
ˆ

jd  
0.015 0.177 

(-0.071, 0.095) (0.174, 0.181) 

Short 

AMI 

0.8 
0.022 0.198 

(-0.047, 0.095) (0.195, 0.201) 

0.0 
0.01 0.194 

(-0.053, 0.089) (0.191, 0.197) 

2

)(
ˆ

jd  
0.015 0.195 

(-0.078, 0.087) (0.19, 0.199) 

ML-DPI 

0.8 
0.015 0.200 

(-0.072, 0.091) (0.197, 0.203) 

0.0 
0.01 0.196 

(-0.054, 0.083) (0.192, 0.199) 

2

)(
ˆ

jd  
0.012 0.196 

(-0.077, 0.087) (0.193, 0.2) 

SL_DPI 

0.8 
0.015 0.197 

(-0.073, 0.087) (0.195, 0.201) 

0.0 
0 0.192 

(-0.068, 0.069) (0.189, 0.195) 

2

)(
ˆ

jd  
0.011 0.194 

(-0.095, 0.072) (0.191, 0.197) 

Note: All statistics were computed from across 100 replications; each replication contained 1,000 

observations. LID=local item dependence 
a
 Known  ’s: grand mean = -0.005, -0.001, and -0.003 for the )ˆ,8.0,0.0( 2

))((

2

)(( jdjd    
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Table 9. Estimated Theta and Standard Error Descriptive Statistics for the 1-5 Panel 

Design. 

Test 

Length 

Routing 

Procedure 
LID 

Theta Estimate
a 

Grand Mean 

(Min, Max) 

SE 

Grand Mean 

(Min, Max) 

Long 

AMI 

0.8 
0.017 0.200 

(-0.066, 0.085) (0.196, 0.205) 

0.0 
0.007 0.197 

(-0.068, 0.08) (0.192, 0.201) 

2

)(
ˆ

jd  
0.011 0.196 

(-0.068, 0.087) (0.193, 0.2) 

DPI 

0.8 
0.012 0.200 

(-0.067, 0.077) (0.196, 0.205) 

0.0 
0.007 0.197 

(-0.073, 0.082) (0.193, 0.201) 

2

)(
ˆ

jd  
0.007 0.196 

(-0.085, 0.093) (0.193, 0.2) 

Short 

AMI 

0.8 
0.013 0.220 

(-0.062, 0.084) (0.216, 0.225) 

0.0 
0.008 0.214 

(-0.066, 0.082) (0.21, 0.219) 

2

)(
ˆ

jd  
0.009 0.214 

(-0.086, 0.073) (0.21, 0.217) 

DPI 

0.8 
0.009 0.220 

(-0.079, 0.089) (0.216, 0.225) 

0.0 
0.005 0.214 

(-0.074, 0.089) (0.21, 0.22) 

2

)(
ˆ

jd  
0.007 0.214 

(-0.088, 0.079) (0.211, 0.218) 

Note: All statistics were computed from across 100 replications; each replication contained 1,000 

observations. LID=local item dependence 
a
 Known  ’s: grand mean = -0.005, -0.001, and -0.003 for the )ˆ,8.0,0.0( 2

))((

2

)(( jdjd    
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Table 10.  Estimated Theta and Standard Error Descriptive Statistics for the 1-3 Panel 

Design. 

Test 

Length 

Routing 

Procedure 
LID 

Theta Estimate
a 

Grand Mean 

(Min, Max) 

SE 

Grand Mean 

(Min, Max) 

Long 

AMI 

0.8 
0.019 0.201 

(-0.047, 0.082) (0.198, 0.204) 

0.0 
0.008 0.194 

(-0.061, 0.079) (0.191, 0.197) 

2

)(
ˆ

jd  
0.011 0.197 

(-0.08, 0.081) (0.193, 0.201) 

DPI 

0.8 
0.015 0.203 

(-0.064, 0.084) (0.199, 0.206) 

0.0 
0.008 0.199 

(-0.06, 0.076) (0.195, 0.202) 

2

)(
ˆ

jd  
0.01 0.198 

(-0.08, 0.087) (0.195, 0.202) 

Short 

AMI 

0.8 
0.016 0.219 

(-0.057, 0.075) (0.216, 0.224) 

0.0 
0.007 0.211 

(-0.064, 0.079) (0.206, 0.215) 

2

)(
ˆ

jd  
0.008 0.215 

(-0.084, 0.091) (0.211, 0.219) 

DPI 

0.8 
0.013 0.223 

(-0.061, 0.089) (0.219, 0.227) 

0.0 
0.006 0.216 

(-0.075, 0.082) (0.211, 0.221) 

2

)(
ˆ

jd  
0.007 0.216 

(-0.075, 0.078) (0.212, 0.22) 

Note: All statistics were computed from across 100 replications; each replication contained 1,000 

observations. LID=local item dependence 
a
 Known  ’s: grand mean = -0.005, -0.001, and -0.003 for the )ˆ,8.0,0.0( 2

))((

2

)(( jdjd    
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Tables 11-14 provide the summary statistics for the Pearson product moment 

correlation coefficient, bias, RMSE, and AAD for each panel design condition in the 

study. The patterns of results within each of the panel designs were very similar, 

therefore they are discussed collectively.   

Table 11-14 provides the results for the measurement accuracy and precision 

measures for the 1-5-5, 1-3-3, 1-5, and 1-3 panel designs, respectively.  The mean 

correlation coefficient for each condition was very high.  As expected, the smallest mean 

correlation occurred in the short test lengths. But even in the short test length conditions 

the smallest mean correlation observed was 0.940 in the 1-3-3 panel design in Table 12.  

The range of mean correlations for all test lengths, routing procedures, and LID 

conditions was 0.943 to 0.961, 0.940 to 0.967, 0.945 to 0.967, and 0.942 to 0.967 for the 

1-5-5, 1-3-3, 1-5, and 1-3 panel designs, respectively. When comparing the routing 

procedures very little difference was observed. While holding other variables constant, 

the AMI most frequently resulted in the  highest mean correlation, but no practical 

difference was indicated as the largest observed difference between any routing 

procedure mean correlation was less than or equal to 0.001.  The 8.02

)( jd  constant 

large testlet effect consistently provided the smallest mean correlation regardless of test 

length, routing procedures, or panel design.  The mean correlations ranged from 0.940 to 

0.954, 0.952 to 0.967, and 0.950 to 0.964 for the LID conditions )ˆ,0.0,8.0( 2

)(

2

)( jdjd   , 

respectively 

The bias across the panel designs did not provide many consistent patterns. All 

conditions illustrate a small amount of positive bias but the magnitude was functionally 

zero, as the mean bias ranged between 0.005 and 0.026 across all conditions. The mean 

bias did not seem to be dictated by test length. Within a panel design, many instances 

produced a reduction in mean bias when routing procedure and LID condition were held 
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constant and test length was shortened, such as the case for the entire set of 1-3-3 panel 

design conditions.  Another set of occurrences were the 1-5 and 1-3 panel designs for 

both AMI routing procedures when a testlet effect was present. When comparing routing 

procedure, no real difference was detected.  The AMI did not consistently outperform the 

other routing procedures although the modules were being selected based on the highest 

amount of information.  In some instances, the DPI outperformed the AMI procedures 

with respect to the mean bias, such as the 1-3-3 panel design in Table 12.  The 8.02

)( jd

LID condition typically produced the largest mean bias across the panel designs when 

holding constant test length and routing procedures.  However, a couple of instances 

occurred when the 8.02

)( jd  LID condition did not produce the highest mean bias, such 

as in Table 13 for the 1-5 panel design using the DPI procedure. One should note that the 

differences being discussed were minimal and the greatest difference in mean bias 

between any conditions was only 0.013. 

The mean RMSE and mean AAD patterns were very similar across each set of 

panel designs.  As expected, longer tests produced smaller mean RMSE and mean AAD 

than the shorter test length conditions.  One should also notice that routing procedures 

show very little differences when all other conditions are held constant. For example, the 

range of mean RMSE for the 1-3-3 panel design for the longer test across all routing 

procedures was 0.287 to 0.292, 0.260-0.285, and 0.321 to 0.327 for the 

)ˆ,8.0,0.0( 2

))((

2

)(( jdjd   LID conditions, respectively The largest mean RMSE and mean 

AAD was detected for the 8.02

)( jd LID condition, followed by the condition where 

2

)(

2

)(
ˆ

jdjd   , and the smallest measures were present when no testlet effect was included 

in the response generation.  The range for the RMSE was 0.322 to 0.337, 0.321 to 0.347, 

0.301 to 0.327, and 0.304 to 0.335 for the 1-5-5, 1-3-3, 1-5, and 1-3 respectively for the 

8.02

)( jd  conditions.  The range for the mean RMSE for the same respective panel 
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designs for the 2

)(

2

)(
ˆ

jdjd    conditions were 0.285 to 0.310, 0.288 to 0.320, 0.266 to 

0.290, and 0.268 to 0.295.  Finally, the RMSE for same the respective panel designs 

under the 0.02

)( jd  LID ranged from 0.278 to 0.307, 0.260 to 0.314, 0.255 to 0.278, 

and 0.257 to 0.279. 

 The differences across panels also needed to be evaluated. When the three-stage 

panel designs were compared to each other, very little differences were found for all 

dependent measures.  The same results were seen when comparing the two-stage tests. 

Interestingly, when the three-stage tests (i.e. 1-5-5 and 1-3-3) were compared to the two-

stage (1-5 and 1-3) panel designs some differences were found between the mean 

correlations, RMSE, and AAD.  The mean correlation coefficients were consistently 

higher for the two-stage test designs than the three-stage test designs. For instance, when 

one compares the long test length conditions across the LID conditions, the three-stage 

mean correlations range from 0.946 to 0.948, 0.960 to 0.967, and 0.958 to 0.960 for the 

)ˆ,0.0,8.0( 2

)(

2

)( jdjd    LID conditions, respectively. Where the respective LID conditions 

for the two-stage test designs range from 0.952 to 0.954, 0.967 to 0.967, and 0.963 to 

0.964. 

When comparing panel designs, the mean RMSE and mean AAD produced 

similar patterns to the mean correlations. First, when looking at the three-stage tests we 

see that the mean RMSE and mean AAD were generally larger for the 1-3-3 panel design. 

For instance, when the AMI routing procedure was compared across the two panel 

designs for the long test length each LID condition was at least .002 higher for mean 

RMSE. However, the mean RMSE and mean AAD were smaller for the 1-3-3 panel 

design for the SL-DPI condition with no testlet effect LID condition. Where the mean 

RMSE for the 1-5-5 panel was 0.281 and 0.306 and  for the 1-3-3 panel design 0.260 and 

0.293 for the long and short length tests, respectively. The 1-3 mean RMSE and mean  
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Table 11. The Correlation Coefficient Between Known and Estimated Theta, Bias, 

RMSE, and AAD for the 1-5-5 Panel Designs. 

Test 

Length 

Routing 

Procedure 
LID 

Correlation 

Mean 

(Min, Max) 

Bias 

Mean 

(Min, Max) 

RMSE 

Mean 

(Min, Max) 

AAD 

Mean 

(Min, Max) 

Long 

AMI 

0.8 
0.947 0.019 0.322 0.253 

(0.941, 0.954) (-0.008, 0.043) (0.299, 0.341) (0.236, 0.271) 

0.0 
0.962 0.014 0.278 0.218 

(0.956, 0.966) (-0.008, 0.03) (0.266, 0.291) (0.206, 0.231) 

2

)(
ˆ

jd  
0.960 0.015 0.285 0.224 

(0.952, 0.964) (-0.008, 0.038) (0.269, 0.301) (0.209, 0.237) 

ML-DPI 

0.8 
0.947 0.018 0.323 0.254 

(0.938, 0.954) (-0.005, 0.044) (0.303, 0.341) (0.239, 0.265) 

0.0 
0.961 0.013 0.281 0.221 

(0.956, 0.965) (-0.003, 0.034) (0.265, 0.299) (0.209, 0.236) 

2

)(
ˆ

jd  
0.959 0.014 0.287 0.226 

(0.951, 0.965) (-0.01, 0.034) (0.272, 0.307) (0.214, 0.241) 

SL_DPI 

0.8 
0.947 0.017 0.323 0.254 

(0.937, 0.955) (-0.003, 0.04) (0.302, 0.343) (0.241, 0.269) 

0.0 
0.961 0.014 0.281 0.221 

(0.956, 0.967) (-0.005, 0.039) (0.268, 0.295) (0.208, 0.233) 

2

)(
ˆ

jd  
0.959 0.015 0.286 0.225 

(0.954, 0.967) (-0.002, 0.038) (0.266, 0.301) (0.208, 0.237) 

Short 

AMI 

0.8 
0.943 0.015 0.336 0.264 

(0.936, 0.95) (-0.007, 0.037) (0.317, 0.353) (0.25, 0.279) 

0.0 
0.955 0.015 0.304 0.240 

(0.947, 0.962) (-0.005, 0.05) (0.285, 0.322) (0.223, 0.254) 

2

)(
ˆ

jd  
0.953 0.012 0.309 0.244 

(0.944, 0.959) (-0.012, 0.034) (0.29, 0.326) (0.231, 0.262) 

ML-DPI 

0.8 
0.943 0.016 0.337 0.265 

(0.936, 0.951) (-0.006, 0.037) (0.319, 0.361) (0.25, 0.285) 

0.0 
0.954 0.015 0.307 0.242 

(0.945, 0.96) (-0.003, 0.039) (0.291, 0.327) (0.23, 0.256) 

2

)(
ˆ

jd  
0.952 0.013 0.310 0.245 

(0.943, 0.96) (-0.009, 0.039) (0.293, 0.325) (0.231, 0.258) 

SL_DPI 

0.8 
0.943 0.015 0.336 0.265 

(0.933, 0.95) (-0.012, 0.039) (0.317, 0.356) (0.253, 0.281) 

0.0 
0.954 0.015 0.306 0.241 

(0.948, 0.959) (-0.006, 0.045) (0.29, 0.325) (0.227, 0.253) 

2

)(
ˆ

jd  
0.953 0.012 0.309 0.244 

(0.945, 0.959) (-0.01, 0.035) (0.29, 0.332) (0.229, 0.259) 

Note: All statistics were computed from across 100 replications; each replication contained 1,000 

observations. AMI=approximate maximum information; ML-DPI=module-level defined 

population interval; SL-DPI=stage-level defined population interval; LID=local item dependence 
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Table 12. The Correlation Coefficient Between Known and Estimated Theta, Bias, 

RMSE, and AAD for the 1-3-3 Panel Designs. 

Test 

Length 

Routing 

Procedure 
LID 

Correlation 

Mean 

(Min, Max) 

Bias 

Mean 

(Min, Max) 

RMSE 

Mean 

(Min, Max) 

AAD 

Mean 

(Min, Max) 

Long 

AMI 

0.8 
0.947 0.026 0.325 0.255 

(0.939, 0.955) (-0.002, 0.061) (0.308, 0.347) (0.243, 0.274) 

0.0 
0.961 0.018 0.281 0.222 

(0.956, 0.968) (-0.003, 0.045) (0.263, 0.298) (0.208, 0.238) 

2

)(
ˆ

jd  
0.959 0.021 0.288 0.227 

(0.953, 0.964) (0.002, 0.039) (0.275, 0.3) (0.217, 0.236) 

ML-DPI 

0.8 
0.946 0.021 0.327 0.258 

(0.936, 0.952) (-0.007, 0.047) (0.305, 0.347) (0.241, 0.272) 

0.0 
0.960 0.017 0.285 0.225 

(0.955, 0.965) (-0.003, 0.05) (0.273, 0.306) (0.213, 0.241) 

2

)(
ˆ

jd  
0.958 0.018 0.292 0.231 

(0.952, 0.962) (0, 0.039) (0.276, 0.309) (0.217, 0.242) 

SL_DPI 

0.8 
0.948 0.019 0.321 0.253 

(0.937, 0.957) (-0.005, 0.042) (0.3, 0.345) (0.236, 0.273) 

0.0 
0.967 0.005 0.260 0.205 

(0.962, 0.971) (-0.019, 0.021) (0.239, 0.273) (0.192, 0.217) 

2

)(
ˆ

jd  
0.959 0.018 0.287 0.226 

(0.951, 0.964) (-0.014, 0.036) (0.27, 0.306) (0.215, 0.242) 

Short 

AMI 

0.8 
0.940 0.022 0.347 0.272 

(0.932, 0.947) (-0.002, 0.047) (0.328, 0.362) (0.255, 0.284) 

0.0 
0.952 0.016 0.314 0.248 

(0.944, 0.959) (-0.011, 0.039) (0.293, 0.33) (0.229, 0.26) 

2

)(
ˆ

jd  
0.950 0.018 0.320 0.252 

(0.941, 0.956) (-0.001, 0.036) (0.298, 0.342) (0.237, 0.27) 

ML-DPI 

0.8 
0.940 0.015 0.344 0.272 

(0.93, 0.949) (-0.009, 0.036) (0.325, 0.373) (0.257, 0.298) 

0.0 
0.952 0.015 0.314 0.248 

(0.944, 0.957) (-0.008, 0.04) (0.297, 0.338) (0.234, 0.265) 

2

)(
ˆ

jd  
0.950 0.014 0.318 0.251 

(0.943, 0.956) (0, 0.038) (0.299, 0.342) (0.235, 0.269) 

SL_DPI 

0.8 
0.941 0.015 0.342 0.270 

(0.932, 0.948) (-0.012, 0.048) (0.32, 0.359) (0.253, 0.285) 

0.0 
0.958 0.005 0.293 0.232 

(0.951, 0.963) (-0.018, 0.025) (0.277, 0.313) (0.216, 0.251) 

2

)(
ˆ

jd  
0.951 0.013 0.314 0.248 

(0.942, 0.958) (-0.012, 0.047) (0.295, 0.334) (0.233, 0.262) 

Note: All statistics were computed from across 100 replications; each replication contained 1,000 

observations. AMI=approximate maximum information; ML-DPI=module-level defined 

population interval; SL-DPI=stage-level defined population interval; LID=local item dependence 
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Table 13. The Correlation Coefficient Between Known and Estimated Theta, Bias, 

RMSE, and AAD for the 1-5 Panel Designs. 

Note: All statistics were computed from across 100 replications; each replication contained 1,000 

observations. AMI=approximate maximum information; ML-DPI=module-level defined 

population interval; SL-DPI=stage-level defined population interval; LID=local item dependence 

  

Test 

Length 

Routing 

Procedure 
LID 

Correlation 

Mean 

(Min, Max) 

Bias 

Mean 

(Min, Max) 

RMSE 

Mean 

(Min, Max) 

AAD 

Mean 

(Min, Max) 

Long 

AMI 

0.8 
0.954 0.017 0.301 0.236 

(0.946, 0.961) (-0.007, 0.042) (0.277, 0.327) (0.218, 0.253) 

0.0 
0.967 0.012 0.255 0.201 

(0.962, 0.971) (-0.004, 0.029) (0.243, 0.271) (0.191, 0.214) 

2

)(
ˆ

jd  
0.964 0.014 0.266 0.209 

(0.959, 0.969) (-0.008, 0.034) (0.251, 0.279) (0.199, 0.22) 

DPI 

0.8 
0.953 0.012 0.301 0.237 

(0.946, 0.962) (-0.009, 0.035) (0.282, 0.318) (0.222, 0.248) 

0.0 
0.967 0.013 0.255 0.201 

(0.964, 0.972) (-0.009, 0.032) (0.241, 0.272) (0.19, 0.211) 

2

)(
ˆ

jd  
0.964 0.009 0.266 0.209 

(0.957, 0.968) (-0.008, 0.028) (0.245, 0.282) (0.194, 0.221) 

Short 

AMI 

0.8 
0.945 0.014 0.327 0.256 

(0.938, 0.951) (-0.009, 0.038) (0.306, 0.347) (0.241, 0.273) 

0.0 
0.961 0.014 0.277 0.219 

(0.955, 0.967) (-0.008, 0.037) (0.257, 0.295) (0.202, 0.232) 

2

)(
ˆ

jd  
0.958 0.012 0.289 0.228 

(0.951, 0.963) (-0.015, 0.033) (0.272, 0.307) (0.211, 0.24) 

DPI 

0.8 
0.945 0.010 0.326 0.256 

(0.935, 0.953) (-0.011, 0.037) (0.301, 0.354) (0.238, 0.271) 

0.0 
0.961 0.011 0.278 0.219 

(0.954, 0.965) (-0.009, 0.034) (0.263, 0.3) (0.209, 0.235) 

2

)(
ˆ

jd  
0.958 0.009 0.290 0.228 

(0.952, 0.963) (-0.007, 0.022) (0.271, 0.308) (0.214, 0.242) 
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Table 14. The Correlation Coefficient Between Known and Estimated Theta, Bias, 

RMSE, and AAD for the 1-3 Panel Designs. 

Test 

Length 

Routing 

Procedure 
LID 

Correlation 

Mean 

(Min, Max) 

Bias 

Mean 

(Min, Max) 

RMSE 

Mean 

(Min, Max) 

AAD 

Mean 

(Min, Max) 

Long 

AMI 

0.8 
0.953 0.019 0.304 0.238 

(0.944, 0.959) (-0.003, 0.045) (0.279, 0.33) (0.222, 0.257) 

0.0 
0.967 0.013 0.258 0.202 

(0.962, 0.972) (-0.006, 0.04) (0.242, 0.273) (0.191, 0.215) 

2

)(
ˆ

jd  
0.964 0.014 0.268 0.211 

(0.959, 0.969) (-0.008, 0.036) (0.252, 0.284) (0.2, 0.221) 

DPI 

0.8 
0.952 0.015 0.305 0.239 

(0.945, 0.959) (-0.007, 0.037) (0.287, 0.32) (0.228, 0.252) 

0.0 
0.967 0.013 0.257 0.202 

(0.962, 0.972) (-0.009, 0.033) (0.238, 0.271) (0.187, 0.211) 

2

)(
ˆ

jd  
0.963 0.012 0.269 0.212 

(0.957, 0.968) (-0.003, 0.029) (0.256, 0.284) (0.202, 0.225) 

Short 

AMI 

0.8 
0.943 0.017 0.333 0.262 

(0.936, 0.95) (-0.006, 0.044) (0.311, 0.354) (0.248, 0.275) 

0.0 
0.961 0.013 0.279 0.219 

(0.953, 0.965) (-0.019, 0.037) (0.261, 0.296) (0.203, 0.233) 

2

)(
ˆ

jd  
0.957 0.011 0.293 0.230 

(0.951, 0.962) (-0.011, 0.035) (0.277, 0.311) (0.217, 0.244) 

DPI 

0.8 
0.942 0.014 0.335 0.263 

(0.931, 0.949) (-0.009, 0.042) (0.319, 0.357) (0.25, 0.283) 

0.0 
0.961 0.011 0.278 0.219 

(0.955, 0.966) (-0.007, 0.031) (0.259, 0.292) (0.203, 0.231) 

2

)(
ˆ

jd  
0.956 0.010 0.295 0.232 

(0.950, 0.961) (-0.009, 0.032) (0.277, 0.308) (0.22, 0.243) 
Note: All statistics were computed from across 100 replications; each replication contained 1,000 

observations. AMI=approximate maximum information; DPI=defined population interval; 

LID=local item dependence 
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AAD were all greater than or approximately equal to the 1-5 panel designs, when holding 

the other conditions constant.  

Interestingly, more pronounced differences in magnitude were seen when 

comparing the three-stage tests to the two-stage tests. When the long tests for both three-

stage tests and two-stage tests were compared for all respective routing and LID  

conditions, the mean RMSE and mean AAD were smaller for the two-stage tests. The 

same result was found for the short length tests. The range for the three-stage long test 

length conditions for mean RMSE and AAD were 0.260 to 0.327 and 0.205 to 0.258, 

respectively.  For the two-stage long test lengths the mean RMSE and AAD ranged from 

0.255 to 0.304 and 0.201 to 0.238, respectively.  The three-stage short conditions mean 

RMSE and mean AAD ranged from 0.293 to 0.347 and 0.232 to 0.272, respectively.  

Where the two-stage short length test mean RMSE and mean AAD ranged from 0.277 to 

0.335 and 0.219 to 0.263, respectively. 

Figures 17-21 illustrate the conditional plots across the three LID conditions’ 

mean bias and grand mean of the SE conditional on theta.  Figures 17-18 give the 1-3 

panel design, short test length plots for the AMI and DPI routing procedures, 

respectively.  Figures 19-21 give the 1-5-5 long test length plots for the AMI, ML-DPI, 

and SL-DPI routing procedures, respectively.  These figures were presented as they 

represented the extremes of the panel designs for the study.  Figure 17-21 shows that the 

three LID conditions performed similarly in terms of conditional mean bias and condition 

grand mean SE for the majority of the distribution.  Differences start to occur in the MST 

designs for 0.20.2   .  In the extremes of the distribution we start to see that the 

condition with larger amounts of item dependency produce more bias.  The LID 

condition with the constant large testlet effect, i.e. 8.02

)( jd  produced the smallest SEs 

in the extremes of the distribution.  Although the overall grand mean SEs were larger for 
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the 8.02

)( jd  condition, it was seen in this study that the SEs may be underestimated in 

the extremes of the distribution. The condition using the real estimated testlet effects and 

the condition with no testlet effect were very similar.  Over the set of the study 

conditions, the extremes for the negative  ’s were typically less bias for the estimated 

testlet effects, 2

)(

2

)(
ˆ

jdjd   , while the positive  ’s typically had less bias for the 

conditions with no testlet effect, 02

)( jd .  No discernable differences were seen in the 

conditional plots between the panel designs, test lengths, or routing procedures.  The 

patterns discussed were observed throughout all the conditions investigated in the study. 

As such, the remainder of the conditional mean bias and conditional grand mean SE plots 

for the remaining manipulated variables can be found in Appendix B.  
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Figure 17.  Conditional bias and standard error plots for the 1-3 panel design, short test 

length, AMI routing procedure across the LID conditions.  Note:  

AMI=approximate maximum information; LID=local item dependence. 



 109 

 

 

Figure 18. Conditional bias and standard error plots for the 1-3 panel design, short test 

length, DPI routing procedure across the LID conditions.   

Note:  DPI=defined population interval; LID=local item dependence. 
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Figure 19. Conditional bias and standard error plots for the 1-5-5 panel design, long 

test length, AMI routing procedure across the LID conditions.   

Note:  AMI=approximate maximum information; LID=local item 

dependence. 
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Figure 20. Conditional bias and standard error plots for the 1-5-5 panel design, long 

test length, ML-DPI routing procedure across the LID conditions.   

Note: ML- DPI=module-level defined population interval; LID=local item 

dependence. 
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Figure 21. Conditional bias and standard error plots for the 1-5-5 panel design, long 

test length, SL-DPI routing procedure across the LID conditions.   

Note: SL- DPI=stage-level defined population interval; LID=local item 

dependence. 
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Overall, three patterns emerged from the results.  First, test length impacts the 

measurement precision of the assessment.  The longer tests consistently produced smaller 

grand mean SEs and higher mean correlations, mean RMSE, and mean AAD.  The 

second pattern was with regard to the amount of LID used in the generating responses.  

When a consistent testlet effect variance of 0.8 was used in the response generation, the 

measurement precision slightly decreased.  This LID condition produced smaller mean 

correlations, higher RMSE, and higher AAD. Similarly, the condition that generated 

responses with the estimated testlet effect variances, 2

)(

2

)(
ˆ

jdjd   , performed better with 

respect to the larger testlet effect condition, 8.02

)( jd  but illustrated some depreciation 

when comparing it to the condition where generated responses did not have a testlet 

effect present, 02

)( jd .  The third pattern occurred when comparing the three-stage 

tests to the two-stage tests. When comparing the respective test length, routing 

procedures, and LID conditions, the two-stage tests seemingly outperformed the three-

stage tests. The two-stage tests resulted in higher correlations, lower RMSE, and lower 

AAD. 

The study also attempted to identify an interaction that may be taking place with 

respect to the four manipulated variables.  The only remote indication of an interaction 

occurred in the 1-3-3 panel designs for the SL-DPI routing procedure when no testlet 

effect was present.  It was the only condition that decreased in RMSE when comparing 

the five module designs to the three module designs.  

MODULE AND PANEL ROUTING  PROPERTIES 

Routing procedure properties were assessed by computing the frequency 

distribution of module administration for each manipulated condition.  To compare the 

different routing procedures, the decision point for the AMI procedure needed to be 
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presented as the were only identified after panel assembly.  Then to further evaluate the 

administration process, the average percentage of module administration was calculated 

over the 100 replications.  The percentage of modules administered were an indication of 

the effectiveness of the desired module administration for each routing procedure and 

could enlighten any differences that may have occurred in the dependent variables.  

Table 15 provides the decision points for the AMI routing procedure regarding the 

panel designs with five modules for the second and third stage.  Table 16 provides the 

decision points for the AMI routing procedure regarding the panel designs with three 

modules for the second and third stage.  Each panel assembled had unique decision points 

based on the intersection of the adjacent modules.  When you look at the decision points 

across the panels for the respective pathways, the theta cut points were fairly similar, with 

the largest difference for a respective decision point being 0.2 on the theta scale.  
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Table 15. Approximate Maximum Information Theta Decision Points for the 1-5-5 

and 1-5 Panel Designs.   

  1-5-5 Long 

  LL  LM  MU  UU  

Stage 2 
Panel 1 -0.5 -0.3 0.3 1 

Panel 2 -0.5 -0.3 0.2 0.9 

Stage 3 
Panel 1 -1 -0.4 0 0.5 

Panel 2 -0.8 -0.5 0.2 0.5 

  1-5-5 Short 

Stage 2 
Panel 1 -0.7 -0.3 0.2 0.7 

Panel 2 -0.7 -0.3 0.1 0.7 

Stage 3 
Panel 1 -0.6 -0.3 0.1 0.7 

Panel 2 -0.7 -0.4 0.1 0.6 

  1-5 Long 

Stage 2 

Panel 1 -0.8 -0.4 0.2 0.7 

Panel 2 -1 -0.4 0.2 0.5 

Panel 3 -0.9 -0.4 0.1 0.5 

  1-5 Short 

Stage 2 

Panel 1 -0.8 -0.4 0.2 0.6 

Panel 2 -0.9 -0.4 0.2 0.6 

Panel 3 -1 -0.4 0.1 0.6 
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Table 16. Approximate Maximum Information Theta Decision Points for the 1-3-3 and 1-3 Panel Designs.

Panel 

Design 
 1-3-3 1-3 

Test 

Length 
 Long Short Long Short 

  L  U  
L  U  

L  U  
L  U  

Stage 2 Panel 1 -0.6 0.5 -0.5 0.4 -0.7 0.4 -0.7 0.4 

 Panel 2 -0.4 0.4 -0.5 0.5 -0.7 0.4 -0.7 0.4 

 Panel 3 -0.4 0.4 -0.6 0.4 -0.7 0.5 -0.6 0.5 

Stage 3 Panel 1 -0.7 0.3 -0.4 0.4 NA NA NA NA 

 Panel 2 -0.7 0.4 -0.7 0.2 NA NA NA NA 

 Panel 3 -0.8 0.2 -0.7 0.1 NA NA NA NA 
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Table 17 provides the percentage of simulees for the 1-5-5 panel design, long test 

length, and estimated testlet variance LID condition that took each module.  When 

examining the marginal percentage, it was seen the AMI procedure administered a large 

portion of the very easy module with 30.5% of simulees viewing this module at Stage 2.  

In Stage 3, we see that the distribution was pretty evenly distributed with the largest 

percentage of simulees taking the very hard module.  Both DPI procedures performed 

similarly with marginal percentages at approximately 20% at both Stage 2 and Stage 3. 

The difference in the two procedures was elucidated when comparing how they rerouted 

simulees during administration between stages.  The ML-DPI roughly rerouted equal 

proportions within a module at Stage 2 to an adjacent module at Stage 3. By contrast, the 

SL-DPI consistently retained the majority of simulees to take a module of similar 

difficulty at Stage 2 and Stage 3. Tables 18 and 19 are the additional tables describing the 

administration for the 1-5-5 panel design, long test length, for the responses generated 

with no testlet effect and a consistent testlet variance of 0.8. Similar patterns were 

observed as discussed above for the two remaining LID conditions.  

 Tables 20-22 provide the percentage of simulees taking each module for the short 

test length 1-5-5 panel design conditions.  The results indicated that the short 1-5-5 tests 

performed similarly to that of the long test length administrations.  The most noticeable 

difference occurred with the AMI procedure.  The distribution of simulees administered 

to each module at each difficulty level was approximately uniform.  However, when 

examining the Stage 3 module administration it seems to become less uniform more 

simulees seem to be administered to the very easy and very hard modules. Similar to the 

longer test length, the DPI procedures administer approximately administer 20% of each 

module, with the ML-DPI procedure rerouting more simulees than the SL-DPI routing 

procedure. 
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Table 17. Percentage of Module Administration for the 1-5-5 Panel Design, Long Test 

Length for the 2

)(

2

)(
ˆ

jdjd    Local Item Dependency condition. 

AMI 

 Route 2 

Route 1 VE ME M MH VH Total 

VE 
17.3 13.2    30.5 

ME 
0.5 2.6 4.5   7.5 

M 
 2.6 10.8 9.1  22.5 

MH 
  2.6 7.6 13.2 23.4 

VH 
   0.4 15.7 16.1 

Total 
17.8 18.3 17.9 17.1 28.9 100.0 

ML-DPI 

 VE ME M MH VH Total 

VE 
13.5 5.4    18.9 

ME 
6.3 7.1 7.3   20.7 

M 
 7.0 7.0 7.5  21.5 

MH 
  6.3 7.9 6.4 20.6 

VH 
   5.0 13.4 18.4 

Total 
19.8 19.5 20.5 20.4 19.8 100.0 

SL-DPI 

 VE ME M MH VH Total 

VE 
15.4 3.6    19.0 

ME 
3.8 11.4 5.4   20.5 

M 
 4.9 11.3 5.2  21.4 

MH 
  4.4 12.4 3.8 20.6 

VH 
   3.2 15.3 18.5 

Total 
19.2 19.9 21.0 20.9 19.1 100.0 

Note:  All percentages were calculated across all 100 replications and 1,000 simulees per 

replication (i.e. N=100,000). AMI=approximate maximum information; DPI=defined population 

interval; VE=very easy; ME=medium easy; M=Medium; MH=medium hard; VH=very hard. 
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Table 18. Percentage of Module Administration for the 1-5-5 Panel Design, Long Test 

Length for the 0.02

)( jd  Local Item Dependency Condition. 

AMI 

 Route 2 

Route 1 VE ME M MH VH Total 

VE 
17.6 12.4    30.0 

ME 
0.4 2.8 4.4   7.6 

M 
 2.4 11.9 9.0  23.3 

MH 
  2.4 7.8 13.1 23.3 

VH 
   0.2 15.7 15.9 

Total 
18.0 17.5 18.7 17.0 28.7 100.0 

ML-DPI 

 VE ME M MH VH Total 

VE 
13.9 4.9    18.8 

ME 
6.3 7.7 6.6   20.6 

M 
 7.0 7.4 7.3  21.8 

MH 
  6.2 8.2 6.1 20.5 

VH 
   4.6 13.9 18.4 

Total 
20.1 19.6 20.3 20.2 19.9 100.0 

SL-DPI 

 VE ME M MH VH Total 

VE 
15.7 3.1    18.8 

ME 
3.7 12.0 4.7   20.4 

M 
 4.8 12.3 4.9  21.9 

MH 
  4.2 12.9 3.3 20.5 

VH 
   2.8 15.7 18.5 

Total 
19.3 19.9 21.2 20.6 19.0 100.0 

Note:  All percentages were calculated across all 100 replications and 1,000 simulees per 

replication (i.e. N=100,000). AMI=approximate maximum information; DPI=defined population 

interval; VE=very easy; ME=medium easy; M=Medium; MH=medium hard; VH=very hard. 
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Table 19.  Percentage of Module Administration for the 1-5-5 Panel Design, Long Test 

Length for the 8.02

)( jd  Local Item Dependency Condition. 

AMI 

 Route 2 

Route 1 VE ME M MH VH Total 

VE 
16.1 15.8    31.9 

ME 
0.6 2.2 4.9   7.7 

M 
 3.3 9.1 9.1  21.5 

MH 
  4.3 7.1 12.0 23.3 

VH 
   1.0 14.6 15.6 

Total 
16.7 21.2 18.2 17.2 26.5 100.0 

ML-DPI 

 VE ME M MH VH Total 

VE 
12.4 7.3    19.7 

ME 
5.8 6.1 9.6   21.6 

M 
 7.1 5.2 7.8  20.2 

MH 
  7.9 6.2 6.4 20.4 

VH 
   6.5 11.8 18.3 

Total 
18.2 20.5 22.7 20.4 18.2 100.0 

SL-DPI 

 VE ME M MH VH Total 

VE 
14.1 5.4    19.6 

ME 
3.8 9.8 8.0   21.5 

M 
 5.5 8.9 5.9  20.3 

MH 
  6.1 10.0 4.4 20.5 

VH 
   4.8 13.4 18.2 

Total 
17.9 20.7 23.0 20.7 17.8 100.0 

Note:  All percentages were calculated across all 100 replications and 1,000 simulees per 

replication (i.e. N=100,000). AMI=approximate maximum information; DPI=defined population 

interval; VE=very easy; ME=medium easy; M=Medium; MH=medium hard; VH=very hard. 
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Table 20. Percentage of Modules Administered for the 1-5-5 Panel Design, Short Test 

Length for the 2

)(

2

)(
ˆ

jdjd    Local Item Dependency Condition. 

AMI 

 Route 2 

Route 1 VE ME M MH VH Total 

VE 
17.6 4.9    22.5 

ME 
5.4 3.6 5.9   14.9 

M 
 5.7 7.1 6.9  19.7 

MH 
  5.4 9.3 6.4 21.1 

VH 
   3.9 18.0 21.9 

Total 
23.0 14.2 18.4 20.1 24.4 100.0 

ML-DPI 

 VE ME M MH VH Total 

VE 
11.4 6.3    17.7 

ME 
7.7 5.6 7.9   21.2 

M 
 8.7 5.5 8.2  22.4 

MH 
  7.4 6.0 7.4 20.8 

VH 
   5.6 12.3 17.8 

Total 
19.1 20.6 20.8 19.8 19.7 100.0 

SL-DPI 

 VE ME M MH VH Total 

VE 
13.0 4.8    17.8 

ME 
5.5 9.1 6.4   21.1 

M 
 6.8 9.4 6.2  22.4 

MH 
  5.9 9.8 5.0 20.8 

VH 
   4.1 13.8 17.9 

Total 
18.5 20.7 21.7 20.1 18.9 100.0 

Note:  All percentages were calculated across all 100 replications and 1,000 simulees per 

replication (i.e. N=100,000). AMI=approximate maximum information; DPI=defined population 

interval; VE=very easy; ME=medium easy; M=Medium; MH=medium hard; VH=very hard. 
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Table 21. Percentage of Modules Administered for the 1-5-5 Panel Design, Short Test 

Length for the 0.02

)( jd  Local Item Dependency Condition. 

AMI 

 Route 2 

Route 1 VE ME M MH VH Total 

VE 
17.4 4.2    21.6 

ME 
5.8 3.8 5.9   15.5 

M 
 5.6 7.5 7.1  20.2 

MH 
  5.2 9.7 6.2 21.1 

VH 
   3.5 18.2 21.7 

Total 
23.2 13.6 18.6 20.2 24.4 100.0 

ML-DPI 

 VE ME M MH VH Total 

VE 
11.6 5.5    17.1 

ME 
7.9 6.1 7.7   21.7 

M 
 8.6 5.9 8.3  22.9 

MH 
  7.3 6.2 7.1 20.7 

VH 
   5.1 12.6 17.8 

Total 
19.4 20.2 21.0 19.7 19.8 100.0 

SL-DPI 

 VE ME M MH VH Total 

VE 
13.0 4.1    17.1 

ME 
5.6 9.9 6.2   21.7 

M 
 6.6 10.1 6.3  23.0 

MH 
  5.7 10.1 4.9 20.6 

VH 
   3.6 14.0 17.7 

Total 
18.6 20.6 21.9 20.0 18.9 100.0 

Note:  All percentages were calculated across all 100 replications and 1,000 simulees per 

replication (i.e. N=100,000). AMI=approximate maximum information; DPI=defined population 

interval; VE=very easy; ME=medium easy; M=Medium; MH=medium hard; VH=very hard.  
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Table 22.  Percentage of Modules Administered for the 1-5-5 Panel Design, Short Test 

Length for the 8.02

)( jd  Local Item Dependency Condition. 

AMI 

 Route 2 

Route 1 VE ME M MH VH Total 

VE 
17.0 8.3    25.3 

ME 
4.4 2.6 5.9   12.9 

M 
 6.2 5.6 6.3  18.2 

MH 
  7.4 8.0 5.7 21.0 

VH 
   5.7 16.9 22.6 

Total 
21.5 17.1 18.9 20.0 22.6 100.0 

ML-DPI 

 VE ME M MH VH Total 

VE 
10.8 10.6 .   21.4 

ME 
6.2 4.2 8.4   18.7 

M 
 8.9 4.3 7.4  20.5 

MH 
  9.4 5.1 6.2 20.7 

VH 
   7.2 11.4 18.7 

Total 
16.9 23.6 22.1 19.7 17.6 100.0 

SL-DPI 

 VE ME M MH VH Total 

VE 
12.7 8.7    21.4 

ME 
4.5 7.0 7.0   18.4 

M 
 7.4 7.3 5.8  20.5 

MH 
  8.1 8.4 4.6 21.0 

VH 
   5.7 13.0 18.6 

Total 
17.2 23.1 22.4 19.9 17.5 100.0 

Note:  All percentages were calculated across all 100 replications and 1,000 simulees per 

replication (i.e. N=100,000). AMI=approximate maximum information; DPI=defined population 

interval; VE=very easy; ME=medium easy; M=Medium; MH=medium hard; VH=very hard.  
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Tables 23 and 24 provide the percentage of simulees in 1-3-3 panel design for the 

long and short test length, respectively, taking each module during administration.  At 

stage 2 the AMI procedure routed fairly similarly to both DPI procedures except that the 

AMI tended to under administer the easy modules for the long test lengths. The disparity 

between the AMI and the DPI was more prevalent at stage 3 where both the medium and 

hard modules were administered at a rate of roughly 40%.  The DPI procedures 

consistently administered approximately one-third of each module across the theta range. 

Again differences between the ML-DPI and the SL-DPI were seen between stages when 

rerouting simulees.  The ML-DPI showed a much higher rate of module reroute in 

difficulties, where the SL-DPI simulees primarily stayed in the module to which they 

were originally assigned in stage 2.  

Table 25 provides the percentage of simulees’ module administration for the two-

stage conditions.   The AMI tended to administer the medium difficulty level and very 

hard difficulty level at a higher rate than the other modules. However, it should be noted 

that range across all 1-5 conditions for percentage of module difficulty administered was 

15.0% to 28.0%.   The DPI administered module fairly uniformly across the theta range. 

The DPI module difficulty percentage administered ranged from 18.7% to 21.5%  

 Overall, the AMI procedure tended to deliver modules less uniformly than the two 

DPI procedures.  However, at Stage 2 for the 1-5-5 short length tests, the AMI 

administered each module in a fairly uniform fashion with each module being 

administered close to 20% for each difficulty level. As expected, the DPI administered 

each module about the same amount for each design.  The only difference was the 

amount of module reroutes taking place between stages.  The ML-DPI rerouted more 

examinees than the SL-DPI procedure.  
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Table 23.  Percentage of Modules Administered for the 1-3-3 Panel Design, Long Test Length for the 8.0,0.0,ˆ 2

)(

2

)( jdjd    

Local Item Dependency Condition. 

Note:  All proportions were calculated based on 100 replications and 1,000 simulees per replication. AMI=approximate maximum 

information; MLDPI=module-level defined population interval; SLDPI=stage-level DPI  

 

  

  
2

)(

2

)(
ˆ

jdjd     0.02

)( jd   8.02

)( jd   

  Route 2  Route 2  Route 2  

 Route 1 Easy Medium Hard Total Easy Medium Hard Total Easy Medium Hard Total 

AMI 

Easy 21.0 8.5  29.4 21.3 8.9  30.2 19.9 8.3  28.2 

Medium 1.2 27.3 7.6 36.1 1.1 27.8 7.6 36.5 1.6 27.4 8.6 37.6 

Hard  1.8 32.7 34.5  1.4 31.9 33.3  1.7 32.5 34.2 

Total 22.1 37.6 40.3 100.0 22.4 38.2 39.5 100.0 21.4 37.5 41.1 100.0 

MLDPI 

Easy 20.2 12.9  33.1 20.3 13.1  33.4 19.3 15.2  34.5 

Medium 12.5 7.8 12.5 32.7 12.6 8.6 13.2 34.3 12.7 6.1 13.0 31.8 

Hard  14.7 19.4 34.1  12.8 19.6 32.3  15.7 18.1 33.7 

Total 32.7 35.4 31.9 100.0 32.9 34.4 32.7 100.0 32.0 37.0 31.0 100.0 

SLDPI 

Easy 28.8 4.4  33.2 29.6 3.8  33.4 27.7 7.0  34.7 

Medium 4.2 23.6 5.0 32.8 4.2 25.6 4.5 34.3 4.8 20.8 5.9 31.6 

Hard  3.5 30.5 34.1  2.6 29.7 32.3  5.2 28.5 33.7 

Total 33.0 31.5 35.5 100.0 33.8 32.1 34.2 100.0 32.6 33.0 34.4 100.0 
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Table 24. Percentage of Modules Administered for the 1-3-3 Panel Design, Short Test Length for the 8.0,0.0,ˆ 2

)(

2

)( jdjd    

Local Item Dependency Condition. 

 

Note:  All proportions were calculated based on 100 replications and 1,000 simulees per replication. AMI=approximate maximum 

information; ML-DPI=module-level defined population interval; SL-DPI=stage-level DPI  

 

 

  

  
2

)(

2

)(
ˆ

jdjd     0.02

)( jd   8.02

)( jd   

  Route 2  Route 2  Route 2  

 Route 1 Easy Medium Hard Total Easy Medium Hard Total Easy Medium Hard Total 

AMI 

Easy 19.7 7.4  27.1 19.8 6.9  26.7 16.8 9.0  25.8 

Medium 5.5 19.7 12.9 38.2 5.6 20.5 12.5 38.6 7.3 18.6 14.1 39.9 

Hard  6.0 28.8 34.7  6.0 28.8 34.7  6.8 27.5 34.3 

Total 25.2 33.1 41.7 100.0 25.4 33.4 41.2 100.0 24.1 34.4 41.6 100.0 

ML-

DPI 

Easy 17.2 15.8  33.0 17.3 15.3 . 32.6 16.1 18.5  34.6 

Medium 15.1 6.3 13.7 35.0 15.4 7.0 13.2 35.6 15.2 4.9 12.6 32.7 

Hard  14.0 18.1 32.1 . 14.0 18.1 32.1  16.1 16.7 32.8 

Total 32.2 36.0 31.8  32.7 36.2 31.3 100.0 31.3 39.5 29.3 100.0 

SL-

DPI 

Easy 25.7 7.0  32.67 26.0 6.5  32.5 25.1 9.6  34.7 

Medium 7.9 20.4 6.8 35.18 7.7 21.6 6.4 35.6 9.2 17.3 6.8 33.2 

Hard  5.1 27.0 32.17  4.8 27.1 31.9  6.8 25.3 32.1 

Total 33.6 32.6 33.9 100.0 33.7 32.9 33.5 100.0 34.2 33.7 32.1 100.0 
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Table 25. Percentage of Modules Administered for the 1-5 and 1-3 Panel Designs 

Note:  All proportions were calculated based on 100 replications and 1,000 simulees per replication. AMI=approximate maximum 

information; DPI=defined population interval; VE=very easy; ME=medium easy; M=Medium; MH=medium hard; VH=very hard; 

E=easy; H=hard.  

 

  1-5 Panel Design Long Test Length  

 
2

)(

2

)(
ˆ

jdjd    0.02

)( jd  8.02

)( jd  

Route VE ME M MH VH VE ME M MH VH VE ME M MH VH 

AMI 17.8 16.2 22.9 15.0 28.0 17.9 16.3 23.2 15.3 27.4 17.6 16.4 23.4 14.8 27.9 

                

DPI 19.2 20.3 21.1 20.5 18.8 19.2 20.5 21.4 20.1 18.8 18.8 20.8 21.5 19.3 19.5 

  1-5 Panel Design Short Test Length  

AMI 17.9 16.1 23.1 16.5 26.5 17.6 16.2 23.4 16.7 26.2 18.2 16.9 22.9 15.4 26.7 

                

DPI 18.9 20.6 21.3 20.5 18.7 18.8 20.8 21.5 20.4 18.6 19.4 21.2 20.8 19.1 19.5 

  1-3 Panel Design Long Test Length  

  E M H   E M H   E M H  

AMI  23.0 43.9 33.1   23.3 43.8 32.8   21.7 44.5 33.8  

                

DPI  33.7 32.8 33.6   33.6 33.3 33.1   33.5 33.3 33.1  

  1-3 Panel Design Short Test Length  

AMI  24.1 43.3 32.6   24.1 43.4 32.6   22.6 43.2 34.1  

                

DPI  33.6 33.0 33.4   33.6 33.4 33.0   33.7 32.8 33.4  
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Chapter 5: Discussion 

This chapter discusses the study’s results. The study investigated the operation 

characteristics of MSTs with a mixed-format testlet based item pool under the three-

parameter logistic testlet response theory (3PL-TRT) model.  Included in the discussion 

are three main sections. First the research questions are addressed based on the results of 

the study. Then practical implications from the findings are described. Finally, limitations 

and future directions of research are discussed. 

RESEARCH QUESTIONS 

To fully explicate the findings with respect to the research questions, a review of 

the panel assembly outcomes needs to be discussed. The panel assembly does influence 

the outcomes from the dependent measure as the amount of information provided to an 

examinee is dictated by the items one receives. Unlike fully adaptive testing, multistage 

test (MST) panel assembly occurs prior to administration.  A solid grasp on the 

approximate information for an examinee at various ability levels for a given testing 

route can then be approximated prior to administration through the panel assembly 

process.   

Although using automated test assembly (ATA) for panel assembly was 

successful in providing parallel panels for each panel design, the panel designs for the 1-

5-5 MSTs were only able to assemble two panels rather than the desired three. The 

remaining panel designs were all able to create three panels as desired for the mixed-

format testlet-based item pool. These results were a function of the number of constraints 

placed in the ATA algorithm and the amount of test units in the item pool.  The number 

of modules in 1-5-5 was greater than the remainder of the panel designs, creating 
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increased constraints on the number of test units used during assembly.  The 1-5-5 panel 

designs were then too demanding on the ATA algorithm and only two of three panels 

could be created.   

One of the main goals of the ATA program was to build modules that provided 

uniform information across a targeted ability range. Due to the additive nature of item 

information, testlet based information will generally contain more information across a 

broader range of the ability-level-spectrum (Murphy et al., 2010).  This was supported by 

the evaluation of the panel assembly.  When examining the relative target TIFs illustrated 

in Figure 9, Figure 10, and Figure 15, the information for a broad range of abilities 

provides very similar information across the target theta range, for this study the 1-5-5 

and 1-5 panel designs targeted )0.1,5.0,0.0,5.0,0.1( k  and the 1-3-3 and 1-3 panel 

designs targeted )0.1,0.0,0.1(k .  Across panel designs, similar information was able 

to be achieved across a broad range of abilities at each stage.  The testlet based item pool 

not only supported the building of modules with uniform peaked TIFs, it also illustrated 

very minimal depreciation in information between adjacent targeted ability ranges.  

How does panel design impact the measurement precision of an MST with a 

mixed-format testlet-based item pool? 

The panel design conditions were chosen because the panel design is one of the 

first choices a testing program will have to make during test development. These 

conditions were assembled with respect to the original large-scale standardized 

assessment used to create the mixed-format testlet-based item pool.  

The four panel designs performed very similarly with respect to the measurement 

accuracy under the 3PL-TRT model. Minimal differences were seen between estimated 

thetas and bias. The overall bias measures were functionally zero but consistently 
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exhibited a small positive bias. This result was present across all the manipulated 

variables. Minimal differences in the measurement precisions between the four panel 

designs with equal number of stages were found. The correlations between known and 

estimated theta, root mean squared error (RMSE), and average absolute deviation (AAD) 

for panel designs with equal number of stages were all very similar.  However, a slight 

increase in measurement precision was observed from the reduction in RMSE and AAD, 

and increase in correlation coefficients when moving from a three-stage test design to a 

two-stage test design.   

Previous research has found that routing stage information has impacted the 

precision of an MST administration (Galindo et al., 2013; Kim & Plake, 1993; Kim, 

2010; Zenisky, 2004). The results seen in this study regarding the correlation, RMSE, and 

AAD may be an indication of the amount of information found in the routing stages. The 

panel designs were assembled to have equal total number of items administered, with 

approximately equal number of items administered at each stage.  For instance, the long 

test length three-stage MST had between 18 and 19 items at each stage, and the long two-

stage test had 27 or 28 items at each.  The information was then increased at the routing 

stage for the two-stage test, which likely reduced the routing error that occurred between 

stages.  As a result the correlations were increased and the RMSE and AAD decreased for 

two-stage tests.  

When examining the bias conditional on abilities under the 3PL-TRT model, little 

bias was found across the bulk of the distribution.  Towards the extremes of the 

distribution similar amounts of bias were detected across all panel designs. Additionally, 

minimal differences in the pattern of measurement error for simulees were detected 

across panel design for the range of abilities.  
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How does test length impact the measurement precision of an MST with a mixed-

format testlet-based item pool? 

One of the benefits to an adaptive test is providing similar precision for an ability 

estimate while being able to decrease the number of items administered when compared 

to a fixed-length test. A goal of the study was to push the boundaries of test length, while 

maintaining the overall test design with respect to the assessment which provided item 

parameters.   

As expected, there were differences in the measurement precision between the 

longer (55 items) and shorter test length (44 items) conditions.  The correlations were all 

reduced, while the SEs, RMSE, and AAD all increased for the shorter test length.  When 

comparing the bias minimal differences in measurement accuracy were found between 

the long and short test lengths.  

When comparing the test lengths across the range of ability distributions, the 

conditional bias was very similar for both test lengths.  The conditional SEs were also 

similar for both test lengths with a slight increase in SEs for the shorter test lengths.  

Overall, there did not appear to be a substantial decrease in the measurement accuracy or 

precision for the shorter length tests.  

How do various routing procedures impact the ability estimation of an MST with 

a mixed-format testlet-based item pool? 

Three routing procedures were examined in the study, namely the approximate 

maximum information (AMI), module-level defined population interval (ML-DPI), and 

stage-level defined population interval (SL-DPI).  Routing procedures are designed to 

dictate the proportion of module administration to examinees. Only minor differences in 

ability estimation was found between the three routing procedures for all the dependent 
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measures. Previous studies have shown that AMI procedure tends to be the routing 

procedure with better precision (see Kim et al.2013; Zenisky, 2004), however the current 

study found only negligible differences between the procedures.  

The minimal differences found between the routing procedures may be partially 

explained by the nature of the mixed-format testlet-based item pool and the panel 

assembly process. Testlet-based items tend to provide more information across a broad 

range of abilities.  The overlap of the information curves between the targeted theta’s was 

very minimal across each of the panel designs. The information overlap may have 

contributed to all routing procedures having similar amounts of information for a wide 

range of abilities even when a module was not optimal with respect to the overall module 

information.   

The main differences found between routing procedures primarily occurred with 

respect to module administration. As expected the AMI, tended to administer modules 

less uniformly than did either DPI procedure. Both DPI procedures administered modules 

that were approximately equally proportioned for the respective panel designs.  For the 

case of the 1-5-5 and the 1-5 panel designs, the DPIs both administered approximately 

20% of each module at Stage 2 and Stage 3.  The 1-3-3 and 1-3 panel designs 

administered approximately 33% of modules at Stage 2 and Stage 3. The differences 

found between the two DPI procedures had more to do with the amount of reroutes 

produced during the administration process. As expected more simulees were rerouted to 

adjacent modules at Stage 3 for the ML-DPI, while the majority of simulees remained in 

the same module difficulty level from Stage 2 to Stage 3 for the SL-DPI. It should also be 

noted that some of the 1-5-5 and 1-5 AMI procedure were not dramatically different in 

proportion of modules administered to the DPI.  Although it was less uniform across the 
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modules as the two DPI procedures, some instances only ranged between 15-25% of 

module administrations across the five modules. This was likely a result of the proximity 

of the targeted thetas and width of information for each module due to the nature of the 

item pool.   

How does the magnitude of local item dependence (LID) effect the administration 

and ability estimation of an MST with a mixed-format testlet-based item pool? 

Three LID conditions were used to generate item responses for the mixed-format 

testlet-based item pool.  The three conditions represented no testlet effect, a constant 

large testlet effect, and estimated testlet effects from the item pool, or 

)ˆ8.0,0.0( 2

)(

2

)( jdjd   . Investigating LID conditions was important as testlet-based items 

are common practice in standardize assessments.  

The results of the current study suggest that, in the presence of a large testlet 

effect yield less measurement precision than an item pool with no testlet effect, or a small 

overall testlet effect. For the largest LID condition, 8.02

)( jd , minimal overall bias was 

detected while the SEs, RMSEs, and AADs were all consistently larger, and the 

correlations were all consistently smaller than the other two LID conditions 

2

)(

2

)(
ˆ,0.0 jdjd   .   

Further exploration into the conditional bias and conditional SE plots showed that 

the bias was largest in the extremes of the ability distribution for all three LID conditions 

with 8.02

)( jd  exhibiting the largest amount of bias. Overall, minimal bias was detected 

across the majority of the ability distribution for all LID conditions.  The grand mean SE 

for the 8.02

)( jd  LID condition was consistently largest.  Interestingly, when examining 

the conditional SE plots, the SEs for 8.02

)( jd  condition tended to be slightly smaller in 

the extremes of the distribution while being slightly larger towards the middle of the 
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distribution than the other two LID conditions.  These results support previous research 

(Murphy et al., 2010; Sireci et al., 1991; Wainer, Bradlow, & Wang, 2007; Wainer & 

Thissen, 1996; Yen, 1993) that the discrimination may be inflated when larger amount of 

conditional independence is present leading to underestimated SE, especially in the 

portions of the distribution that are measured with less precision. However, the 3PL-TRT 

model performed fairly well with adequate amounts of measurement precision for under a 

variety of LID conditions.   

How do panel design, test length, routing procedures, and LID, interact with 

respect to the accuracy and precision of ability estimation? 

The study also sought to find any possible interactions that may be present 

between the different possible test designs.  All the test designs appeared very similar 

with respect to the dependent measures.  There was a slight improvement in measurement 

precision for the SL-DPI routing procedure when moving from the 1-5-5 panel design to 

the 1-3-3 panel design when no testlet effect was present. However, it was very slight and 

may provide little practical advantage to other conditions investigated in the study.  

PRACTICAL IMPLICATIONS 

Computer based testing is very prevalent in today’s assessment environment.  

Although MSTs have been in the psychometric literature for many years, (Lord, 1971a), 

they have recently become more prevalent in large-scale standardized test settings.  

Therefore, it behooves the psychometric community to fully investigate such testing 

environments to understand the implications associated with implementing an MST.  

Additionally, many programs are implementing assessments with mixed-format testlet-

based item pools. These item pools most likely exhibit some form of LID, whether it be a 
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relatively small amount, such as the real item pool, or a large amount of testlet 

dependencies, as were investigated in this study.  Although some literature has addressed 

mixed-format MSTs, very few studies have actually examined the use of the 3PL-TRT 

model with parameters from a real dataset.  All the manipulated conditions in this study, 

such as panel design, test length, routing procedures, and LID are all potential decision 

points that would arise during the test development process for an assessment. Therefore, 

the findings from this study contribute to the knowledge regarding the practical 

guidelines for programs considering MSTs and expand the current literature for programs 

considering mixed-format testlet-based item pools and the use of the 3PL-TRT model 

under realistic testing conditions.  

First, this study demonstrates the use of 3PL-TRT model as an appropriate model 

to handle mixed-format testlet-based MSTs.  Only one study has investigated a mixed-

format testlet-based item pool assembling MSTs from an item pool that was completely 

simulated (Lu, 2010).  This study expanded on previous research in two regards. First, the 

item pool was constructed from an existing test. Secondly, the MST was assembled to 

have mixed-format modules.  The 3PL-TRT model effectively handled an MST that 

administers modules consisting of stand-alone items and testlet-based items.  As 

supported by previous research, the 3PL-TRT appropriately handles testlet-based 

dependencies for varying magnitudes of a testlet effect.  Minimal bias was detected. 

Although an increase in LID slightly depreciates the measurement precision, the 3PL-

TRT model still provides adequate measurement accuracy and precision for the 

conditions investigated in this study. 

Although the focus of the study is not ATA, the study also highlights some of the 

advantages and disadvantages of using an ATA branch and bound solver.  The ATA 
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system was able to construct multiple panels with adequate amounts of information for 

each module to provide the desired levels of measurement precision for each of the 

conditions. The ATA found solutions for all panel designs and constructed uniformly 

peaked target TIFs for all but one of the panel designs. Given the composition of the test 

units in the item pool, only two panels for the 1-5-5 panel designs were able to be 

constructed.  A testing company would likely need a larger test unit pool than the one 

used in this study should they wish to implement a larger panel design such as the 1-5-5.  

Overall, the ATA was highly successful and an efficient way to form the panels used in 

the study.   

The study also demonstrated that the mixed-format testlet-based modules can 

provide a set of uniformly peaked modules across the targeted theta range. Because 

testlet-based target TIFs overlapped overs a broad range of abilities, the mixed-format 

administration provided fairly adequate measurement accuracy and precision for a 

majority of the simulee distribution.  Using mixed-format item types increases the 

number of item types that can be administered while maintaining a high level of 

measurement precision. 

Clearly test length influences the measurement precision of an assessment.  A 

longer test has more measurement precision than a shorter test.  As expected, the current 

study supported this notion.  Even though the measures for the short test lengths were 

considered less precise, both test lengths yielded high levels of precision and could be 

considered viable for use in a testing program.  

Under similar conditions and item pools very little difference was found between 

overall measurement properties of the three routing procedures.  So the use of a particular 

routing procedure depends on the desires of the testing program.  If the testing program is 



 

 

 

 

137 

interested in providing the most precise measurement, then the AMI should be used.  If 

exposure control is an interest than one of the DPI procedures should be used.  With 

respect to the two DPI procedures, the main difference was not a difference in 

psychometric properties but rather the number of routing decision points needed to 

implement each DPI procedure, with the ML-DPI producing more distinct decision 

points.    

Additionally, little difference was found between panel designs.  This may 

suggest that the 1-3 or 1-3-3 may be the most useful panel design in terms of 

measurement properties.  This conclusion is reached not because the measurement 

properties are better, but the assembly process and size of the item pool needed would be 

smaller. Testing organizations must also consider available resources when constructing 

an MST design. Item pool development can be an expensive process, which might hinder 

the use of a 1-5-5 panel design. If, however, module administration is a primary concern 

then the 1-5 and 1-5-5 panel designs may be of interest as they would help in reducing 

module exposure.  

LIMITATIONS AND FUTURE RESEARCH 

The findings in this study address the posed research questions.  Simulation 

studies, by nature, can only generalize to the conditions investigated.  As with any study, 

there are limitations that need to be addressed.  Because investigating all possible 

scenarios in a simulation study quickly becomes unwieldy, the current section provides 

areas in which the future studies could address limitations present in the current study.   

The study assembled panels to have equal items at each stage.  This created a 

situation where the two-stage MSTs had considerably more items at each stage than the 
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three-stage items.  This means more information was provided at a given stage for the the 

1-3 and 1-5 panel designs.  Specifically, more information was provided during the 

routing stage. Based on previous research, it can be hypothesized that the increased 

information at the routing stage increased the routing classification accuracy.  Future 

studies should assemble MSTs with varying amounts of information at each stage in the 

mixed-format contexts.  Controlling how much information occurs at each stage and 

comparing the results could help inform panel assembly guidelines.  

The test lengths were determined in a fashion that maintained proportionality to 

item pool’s administered versions of the originating test.  Therefore, certain proportions 

of test units, i.e. standalone items and testlet-based items, were used to guide the 

assembly process. As such, only limited reductions in test lengths were permitted. This 

occurred Based on the proportions of test units within the mixed-format testlet-based item 

pool, because as test length reduction occurs eventually standalone items would be the 

only test unit utilized. Future studies could further reduce test lengths of an MST 

administering mixed-format MST and mixed-format modules by allowing a looser 

interpretation, or any combination of mixed-format assembly  of test units could  

administered for a pool similar to the one used in the current study.  This would provide 

further knowledge about the minimum test length requirement for mixed-format testlet-

based MSTs. 

The simulee responses were all generated with a normal distribution.  Normality 

is a typical assumption made in testing programs, but does not reflect all possible realistic 

examinee distributions.  It is a common occurrence for a normal distribution to represent 

the range of abilities at the beginning of the testing program, to then become negatively 

skewed over time.  Previous studies using a purely testlet-based item pool under the 3PL-
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TRT model have demonstrated that departures from normality can lead to over-exposure 

of certain modules (Keng, 2008). In addition, the two main types of routing procedures 

used for MSTs are the AMI and DPI.  The DPI functions correctly well when the trait 

levels are normally distributed. T he impact on module administration would likely be 

influenced by the underlying distribution of examinees and should be investigated to 

understand the potential impacts on administration and security of the items.   The use of 

skewed distribution should be compared under the 3PL-TRT model and with various 

routing procedures in future studies with a mixed-format testlet-based item pool.   

Finally, it was noticed that some of the 1-5 and 1-5-5 panel designs administered 

modules under the AMI routing procedure very similarly to the DPI procedures.  This is 

in part due to the target TIF overlap across the range of abilities.  The ability range of the 

target TIF is also a function of the targeted thetas.  The study only ranged the targeted 

thetas from -1 to 1 over equal increments. As a result, minimal differences were found in 

measurement precision when increasing the number of modules.  Relatedly, this study 

also found minimal differences between the measurement precision of routing 

procedures.  Future studies could investigate the range of targeted thetas for the relative 

target TIF functions.  This might help clarify when and if using a 1-5-5 or 1-5 panel 

design might provide increased measurement precision over the more typical 1-3-3 panel 

design, and how targeted theta’s impact the measurement precision when using various 

routing procedures for a mixed-format testlet-based item pool. .  
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Appendices 

APPENDIX A: PANEL DESIGN RELATIVE TARGET TEST INFORMATION FUNCTIONS 

 

Figure A.1. Stage 1 routing module relative target TIF plots for the long 1-5-5 panel 

design when 0)( d . 
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Figure A.2: Stage 2 relative target TIFs for the long 1-5-5 panel design across the 

targeted theta range when 0)( d . 
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Figure A.3. Stage 2 relative target TIFs for the long 1-5-5 panel design across the 

targeted theta range when 0)( d . 



 

 

 

 

143 

 

Figure A.4. Stage 2 relative target TIFs for the long 1-5-5 panel design at each targeted 

difficulty level when 0)( d . 
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Figure A.5. Stage 3 relative target TIFs for the long 1-5-5 panel design at each targeted 

difficulty level when 0)( d . 
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Figure A.6. Stage 1 routing module relative target TIF plots for the long 1-3-3 panel 

design when 0)( d . 
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Figure A.7. Stage 2 relative target TIFs for the long 1-3-3 panel design across the 

targeted theta range when 0)( d . 
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Figure A.8. Stage 3relative target TIFs for the long 1-3-3 panel design across the 

targeted theta range when 0)( d . 
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Figure A.9. Stage 2 relative target TIFs for the long 1-3-3 panel design at each targeted 

difficulty level when 0)( d . 
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Figure A.10. Stage 3 relative target TIFs for the long 1-3-3 panel design at each targeted 

difficulty level when 0)( d . 
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Figure A.11. Stage 1 routing module relative target TIF plots for the short 1-3-3 panel 

design when 0)( d . 
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Figure A.12. Stage 2 relative target TIFs for the short 1-3-3 panel design across the 

targeted theta range when 0)( d . 
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Figure A.13. Stage 3 relative target TIFs for the short 1-3-3 panel design across the 

targeted theta range when 0)( d . 
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Figure A.14. Stage 2 relative target TIFs for the short 1-3-3 panel design at each targeted 

difficulty level when 0)( d . 
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Figure A.15. Stage 3 relative target TIFs for the short 1-3-3 panel design at each targeted 

difficulty level when 0)( d . 
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Figure A.16. Stage 1 routing module relative target TIF plots for the long 1-5 panel 

design when 0)( d . 
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Figure A.17. Stage 2 relative target TIFs for the long 1-5 panel design across the targeted 

theta range when 0)( d . 
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Figure A.18. Stage 2 relative target TIFs for the long 1-5 panel design at each targeted 

difficulty level when 0)( d . 



 

 

 

 

158 

 

Figure A. 19.Stage 1 routing module relative target TIF plots for the short 1-5 panel 

design when 0)( d . 
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Figure A.20. Stage 2 relative target TIFs for the short 1-5 panel design across the targeted 

theta range when 0)( d . 
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Figure A.21. Stage 2 relative target TIFs for the long 1-5 panel design at each targeted 

difficulty level when 0)( d . 
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Figure A.22. Stage 1 routing module relative target TIF plots for the short 1-3 panel 

design when 0)( d . 
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Figure A.23. Stage 2 relative target TIFs for the short 1-3 panel design across the targeted 

theta range when 0)( d . 
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Figure A.24. Stage 2 relative target TIFs for the short 1-3 panel design at each targeted 

difficulty level when 0)( d . 
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APPENDIX B:  CONDTIONAL BIAS AND CONDITIONAL STANDARD ERROR PLOTS. 

 

 

Figure B.1. Conditional bias and standard error plots for the 1-5-5 panel design, short 

test length, AMI routing procedure across the LID conditions.   

Note:  AMI=approximate maximum information; LID=local item 

dependence. 



 

 

 

 

165 

 

 

Figure B.2. Conditional bias and standard error plots for the 1-5-5 panel design, short 

test length, ML-DPI routing procedure across the LID conditions.   

Note:  ML-DPI=module-level defined population interval; LID=local item 

dependence. 



 

 

 

 

166 

 

 

Figure B.3. Conditional bias and standard error plots for the 1-5-5 panel design, short 

test length, SL-DPI routing procedure across the LID conditions.   

Note:  SL-DPI=stage-level defined population interval; LID=local item 

dependence. 
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Figure B.4. Conditional bias and standard error plots for the 1-3-3 panel design, long 

test length, AMI routing procedure across the LID conditions.   

Note:  AMI=approximate maximum information; LID=local item 

dependence. 
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Figure B.5. Conditional bias and standard error plots for the 1-3-3 panel design, long 

test length, ML-DPI routing procedure across the LID conditions.   

Note:  ML-DPI=module-level defined population interval; LID=local item 

dependence. 
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Figure B.6. Conditional bias and standard error plots for the 1-3-3 panel design, long 

test length, SL-DPI routing procedure across the LID conditions.   

Note:  SL-DPI=stage-level defined population interval; LID=local item 

dependence. 
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Figure B.7. Conditional bias and standard error plots for the 1-3-3 panel design, short 

test length, AMI routing procedure across the LID conditions.   

Note:  AMI=approximate maximum information; LID=local item 

dependence. 
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Figure B.8. Conditional bias and standard error plots for the 1-3-3 panel design, short 

test length, ML-DPI routing procedure across the LID conditions.   

Note:  ML-DPI=module-level defined population interval; LID=local item 

dependence. 
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Figure B.9. Conditional bias and standard error plots for the 1-3-3 panel design, short 

test length, SL-DPI routing procedure across the LID conditions.   

Note:  SL-DPI=stage-level defined population interval; LID=local item 

dependence. 
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Figure B.10. Conditional bias and standard error plots for the 1-5 panel design, long test 

length, AMI routing procedure across the LID conditions.   

Note:  AMI=approximate maximum information; LID=local item 

dependence. 
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Figure B.11. Conditional bias and standard error plots for the 1-5 panel design, long test 

length, DPI routing procedure across the LID conditions.   

Note:  DPI=defined population interval; LID=local item dependence. 
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Figure B.12. Conditional bias and standard error plots for the 1-5 panel design, short test 

length, AMI routing procedure across the LID conditions.   

Note:  AMI=approximate maximum information; LID=local item 

dependence. 
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Figure B.13. Conditional bias and standard error plots for the 1-5 panel design, short test 

length, DPI routing procedure across the LID conditions.   

Note:  DPI=defined population interval; LID=local item dependence. 
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Figure B.14. Conditional bias and standard error plots for the 1-3 panel design, long test 

length, AMI routing procedure across the LID conditions.   

Note:  AMI=approximate maximum information; LID=local item 

dependence. 
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Figure B.15. Conditional bias and standard error plots for the 1-3 panel design, long test 

length, DPI routing procedure across the LID conditions.   

Note:  DPI=defined population interval; LID=local item dependence. 
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