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Programmable accelerators such as GPUs, FPGAs, and DSPs enable mod-

ern systems to provide higher performance for many workloads than is possible by

using conventional processors alone. Traditionally, portability of applications to

these accelerators and between accelerators was a major hurdle in utilizing acceler-

ators in a heterogeneous system. With the emergence of standardized programming

APIs such as OpenCL, this problem is being ameliorated and many accelerators can

now be programmed using a single API.

In this work, we address the efficient execution of irregular programs on

heterogeneous systems. Irregular programs are used extensively in problem do-

mains like graph analytics and finite-element methods, and they are characterized

by data-dependent control flow and memory accesses that cannot be predicted at

compile time. We focus on heterogeneous systems that provide a coherent memory

to all devices.
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First, we describe a set of compiler and runtime techniques to support ef-

ficient execution of irregular programs on heterogeneous systems composed of a

CPU and an integrated GPU. The compiler allows applications written in C++ to be

executed on the GPU without any programmer effort. The runtime system solves

the load imbalance arising from irregularity in the applications by dynamically as-

signing work to each device.

Next, we present an alternative implementation strategy for irregular appli-

cations on a system with more heterogeneity. Specifically, graph applications can be

expressed as producer-consumer computations on FPGA+CPU heterogeneous sys-

tems. This approach allows for better utilization of the capabilities of each device

and suggests a programming model for accelerators that goes beyond the offload

model.

Finally, we explore efficient execution of irregular applications on acceler-

ators that do not share a coherent memory with the master processor. For discrete

GPUs, we explore implementation strategies of graph application, focusing on syn-

chronization tradeoffs and present optimizations that address the synchronization

overheads both within and across devices.
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Chapter 1

Introduction

Heterogeneous hardware is emerging as a key direction taken by industry

to satisfy expectations of continuous improvement in performance, especially in

the datacenter. Traditionally, large-scale deployments of computers were used to

execute scientific and financial applications, since these applications required a lot

of computational power. In the last decade, applications from new problem domains

like machine learning and graph analytics have also become major consumers of

cycles in datacenters.

Scaling these diverse applications requires developing new hardware plat-

forms that go beyond traditional latency-optimized cores, which have been shown

to be limited by physical design constraints [Beamer et al., 2015, Ozdal et al.,

2016, Ham et al., 2016]. Programming these next-generation platforms will require

new abstractions as well as revamped tool-chains to support these abstractions ef-

ficiently on hardware platforms. While traditionally, a single ISA and architecture

design made the transition between platforms very smooth, the transition from ho-

mogeneous parallelism to heterogeneous parallelism presents a set of interesting

challenges. The trade-off between software and hardware complexity is one of the

key challenges - should programmers have to learn new abstractions to express their
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algorithms efficiently, or should hardware architects develop hardware that imple-

ments existing abstractions more efficiently?

In this dissertation, we explore the execution of irregular programs on het-

erogeneous systems. Irregular programs capture a large class of problems that are

not amenable to compiler optimizations since in these applications, most of the

optimization opportunities are available only during execution. Our work shows

that while existing programming constructs can be used to efficiently utilize het-

erogeneous hardware without having programmer effort spent in porting the appli-

cations across different hardware platforms, opportunities for further improvement

are available if these abstractions are expanded to benefit from the diversity in a

heterogeneous system.

1.1 Contributions

This dissertation explores efficient implementation of irregular programs on

heterogeneous systems and proposes techniques across the software stack necessary

to achieve that goal. Specifically, we highlight contributions in three areas.

1. Compilers: These assist in porting applications across devices. While ven-

dors do provide APIs for programming accelerators, programmers have to

learn a new API to port applications for accelerators. We show that a compiler

can transform existing applications to target these accelerators efficiently.

2. Runtime systems: These are necessary to exploit information available only

during execution. In a heterogeneous system, the runtime is responsible for
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load balancing, communication management and synchronization across the

different devices.

3. Programming abstractions: The current range of programming models de-

signed for accelerators rely on the offload model in which a master processor

off-loads computations to the accelerator and obtains the result. We show that

this model is inadequate, especially for more diverse accelerators such as the

FPGA, and propose new abstractions.

1.2 Outline

The outline of the rest of this dissertation is as follows. We first present

some background for the work, covering the hardware and software aspects needed

to understand the dissertation. In Chapter 3, we describe a set of compiler and run-

time techniques that assist in executing irregular applications on a heterogeneous

system composed of a commodity CPU and an integrated GPU. The key challenge

addressed here is to reduce the overhead of dynamic load balancing between the het-

erogeneous processors in such a system. In Chapter 4, we focus on discrete GPUs

that provide more computational capabilities at the expense of increased communi-

cation latencies and complexity. We explore and present guidelines for implement-

ing efficient synchronization strategies necessary to execute graph applications on

discrete GPUs. We also explore heterogeneous execution of graph applications for

multi-GPU systems in which optimizing for communication becomes a key chal-

lenge in the face of heterogeneity.
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In Chapter 5, we explore a system composed of an FPGA and a CPU, which

offers increased heterogeneity, and hence presents a different set of opportunities to

optimize graph applications. We present a novel strategy of executing graph appli-

cations on such heterogeneous systems which addresses CPU performance limita-

tions by offloading some work to the FPGA.

We discuss related work in Chapter 6, present some directions for future

work in Chapter 7, and conclude in Chapter 8.
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Chapter 2

Background

In this chapter, we present some background to put the dissertation into

context. We first briefly describe the motivation for heterogeneous hardware, and

describe some heterogeneous platforms available today. Next, we describe irregular

applications which is the domain of applications addressed in this dissertation.

2.1 Heterogeneous Systems

There are two factors that have led to a continuous improvement in proces-

sor performance over the past two decades - Moore’s Law and Dennard’s scaling.

Moore’s law [Moore et al., 1998] is the observation that the number of of transistors

per unit area doubles every 2 years. Equivalently, this can be phrased as shrinking of

the transistor sizes - every 2 years, the size of a transistor shrinks to half. Dennard’s

scaling [Dennard et al., 1974], describes the power requirements of transistors de-

creases as the size decreases. This roughly translates to a constant power per unit

area. However, Dennard’s scaling does not take into account power leakage which

becomes significant when transistor sizes become small enough. This new scenario,

where Dennard’s scaling does not apply, but Moore’s law does, has led to a different

set of challenges for hardware designers. Fundamentally, this means that although
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more transistors can be placed into the same area, not all of these can be powered

simultaneously due to power and thermal constraints.

Traditionally, these transistors were used to speed up serial processing of

a program by different techniques such as pipelining, out-of-order execution, and

vectorization. However, the limits of Dennard’s scaling prevent future progress

along those lines. The alternate direction adopted by the industry has been to turn

to parallelism. Instead of accelerating the execution of a single stream of instruc-

tions, the hardware provides more throughput by enabling the execution of multiple

streams of instructions, possibly at a lower rate.

The simplest strategy to utilize parallelism in a multi-processor is to repli-

cate cores, and add a coordination network. While this approach is simple, an

alternative is to use the extra transistors to provide heterogeneous capabilities. We

present several different designs next, some of which are used to evaluate software

implementations of graph applications in the remainder of the document. The three

devices describe different levels of heterogeneity - from using the same ISA in the

case of Sec. 2.1.1, to having different design points as demonstrated by Sec. 2.1.3.

2.1.1 big.LITTLE

To satisfy the wide range of requirements presented by applications on a

mobile platform, especially power constraints, ARM has developed heterogeneous

systems composed of cores that execute the same ISA but differ in power/perfor-

mance tradeoffs. The central idea is to provide small LITTLE cores that can provide

power efficiency, and large big cores that run at higher clock rates and have greater
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instruction throughput while consuming more power than the LITTLE cores. The

operating system task scheduler [big.LITTLE, 2013] can move tasks from a LIT-

TLE core to a big core or vice versa according to different dynamic schemes. As the

cores share the same ISA, process migration is relatively simple. This design offers

the simplest form of heterogeneity, which stems from architecture, contrasted with

homogeneous cores behaving differently under dynamic voltage-frequency scaling

(DVFS) [Macken et al., 1990].

2.1.2 Intel Haswell

The Intel Haswell, also known as 4th generation Intel Processor, is a com-

modity x86 processor introduced in 2013. The high level organization of the pro-

cessor is shown in Fig. 2.1. The processor also contains a generation 7.5 graphics

processor. The HD − 4600 integrated GPU consists of a number of slices, each

containing two sub-slices. Each sub-slice consists of 10 execution units (EU), and

each EU can execute 7 threads. Each level of the organization has a different set of

shared components, allowing for a scalable design for different market segments.

The GPU also shares the physical memory with the CPU cores.

The GPUs and the CPUs share a last-level cache (LLC), with a cache line

size of 64-bytes. Cache coherency is provided through the shared distributed last-

level cache where each "core" (CPU core or a slice) gets a slice of the cache. This

is done through a hash of the physical address. Both the integrated GPUs and CPU

cores are connected by a bi-directional 32-byte wide ring interconnect. Some mod-

els are equipped with an on-die EDRAM which acts as a victim cache. A system
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Figure 2.1: Intel Haswell (4th generation) processor architecture [Junkins, 2014].

agent, connected through the ring-interconnect, manages the communication be-

tween the CPU/GPU with the memory or other devices.

This system provides a middle ground for heterogeneity, providing a CPU

and an integrated GPU which can be used to accelerate graphics workloads at a

modest energy budget.

2.1.3 Terasic DE1-SoC

The Terasic DE1-SoC is a system-on-chip with a dual core ARM Cortex-A9

and a Altera Cyclone-V FPGA. The high-level organization of the architecture is

given in Fig. 2.2. The MPU subsystem consists of the Cortex-A9 CPU as well as a

L2 cache and an accelerator coherency port (ACP) IP mapper which is responsible

for coherency with accelerators. The Cortex-A9 has a snoop-control unit (SCU),

which snoops for data-accesses to physical addresses shared with the FPGA. Co-
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Figure 2.2: Organization of a Cyclone-V SoC from Altera. The DE1-SoC from
Terasic is an instance of this SoC.

herency is managed by mapping a window of physical memory to be shared be-

tween the CPU and the FPGA. The FPGA fabric communicates with the MPU

through a number of bridges which enable bi-directional transfers. The FPGA also

has a direct path to the memory subsystems through the SDRAM controller subsys-

tem that bypasses the caches and the L3-controller.

This system provides another extreme design point on the heterogeneous

spectrum. The accelerator has a fundamentally different design compared to the

CPU, while still providing the ability of general workloads to be executed on the

accelerator.
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2.2 Irregular Applications

To understand the sources of irregularity and what features distinguish an

irregular application from a regular one, we start with a simple example of adding

two arrays. In a imperative language such as C++, the procedure involves going

over the two arrays, and adding the two corresponding elements while storing the

result at the current location indexed by a loop counter. This is a fairly simple

application, and modern processors excel at this template as it has a very predictable

behavior, both in terms of what instructions to execute as well as what data to

access.

2.2.1 Parallelism

We first consider a simple program that adds two arrays and stores the result

in a new array. The first snippet in Fig. 2.3 illustrates the example where two arrays,

arr_a and arr_b, each containing num_elements items, are added and the result is

stored in the result array. A processor will go over all the entries in order, reading

them from both arrays, computing and writing the result into the destination array’s

corresponding index. Since the addition of individual entries is independent of one

another, they can be performed out of order. A modern processor is equipped with a

hardware prefetcher, which can detect simple memory access patterns and prefetch

addresses before they are accessed by an instruction. In this case, it will detect

that consecutive locations of arrays arr_a and arr_b are being read and result being

written.

On a multi-core system, which is equipped with multiple processors, the uti-
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1 ///Sample 1
2 for(int i=0; i< num_elements; ++i){
3 result[i] = arr_a[i] + arr_b[i];
4 }
5 ///Sample 2
6 for(int i=0; i< num_elements; ++i){
7 result[i] = arr_a[i] + arr_b[index[i]];
8 }
9

10 ///Sample 3
11 for(int i=0; i<num_elements;++i){
12 result[index[i]] = arr_a[i] + arr_b[i];
13 }

Figure 2.3: Adding two array elements. The first snippet add two arrays sequen-
tially, the second one performs an indirect read, while the third one performs an
indirect write.

lization of all the processor requires more coordination. One of the simplest way of

utilizing all the cores is to partition the workload between the cores. This is possi-

ble for simple computations such as our running example. If num_elements is large

enough, all the participating cores can work on their individual partitions. Here,

too, the prefetchers on each core will be able to detect that each core is working on

a sequence of memory locations and prefetch values from each array.

While the Sample 1 code can be parallelized in a simple and efficient way,

most applications do not have such simple patterns. As described later in more

detail, most graph applications require accessing memory locations through an in-

direction array. This is shown in the code annotated Sample 2 in Fig. 2.3. Here, the

application is going over an array of elements, and each iteration adds two values,

one from a sequential access of arr_a, and the other an indirect access of arr_b

through index. In this case, a serial as well as a parallel execution will show poor

locality in referencing arr_2 as the accesses cannot be predicted by the prefetcher
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1 ///Sample 1
2 for(int i=0; i< num_elements; ++i){
3 for(int j=0; j < WORK_SIZE; ++j){
4 //do work
5 }
6 }
7 ///Sample 2
8 for(int i=0; i< num_elements; ++i){
9 for(int j=0; j<work_size[i]; ++j){

10 //do work
11 }
12 }

Figure 2.4: Control flow irregularity.

and performance suffers. Another source of access irregularity is having irregular

writes as shown in Sample_3 in Fig. 2.3. Here, index array is used to access the

location where the result of the addition will be placed.

Just as we have described memory access irregularity above, the control

flow of an application can also exhibit irregularity. To observe this, we consider

a derivative of the sample codes in the Fig. 2.3. The first code sample in Fig. 2.4

shows a nested loop where the outer loop iterates over num_elements items, and for

each iteration, performs WORK_SIZE inner loop iterations. Assuming that the body

of the inner loop has a fixed amount of work, if the value of WORK_SIZE is known

at compile time, the compiler can perform certain optimizations such as unrolling

to avoid the inner loop from requiring a conditional statement. If WORK_SIZE is

not known at compile time, these optimizations cannot be performed.

When executing the code in sample_1 of Fig. 2.4 on a parallel system, the

scheduler can divide the num_elements evenly among the different processors. This

balances the load across the different processors since the work performed by each

inner loop iteration is the same, even if it is not known at compile time. This can
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be shown by the second code sample in Fig. 2.4. Here, each inner loop performs a

different amount of iterations, which is known only at runtime through a work_size

array. This poses two challenges. First, the inner loop cannot be optimized by the

compiler as described above. Second, load balancing across multiple processors

becomes difficult since the different inner loop iterations have different amount of

work.

For the discussion, we have ignored data-races between the concurrent threads

executing the kernel. If the array index is not a permutation or contains duplicates,

concurrent threads may access the same data. In the case of Sample_2, multiple

threads maybe reading the same element in arr_b, which constitutes a benign race

if the element accessed is less than the machine word. However, the code in Sam-

ple_3 results in concurrent threads writing to the same locations if they update the

same entry in result array. A data race is used to refer to situations where multiple

threads concurrently access the same location and at least one of the accesses is a

write. This require some form of synchronization between the concurrent updates.

There are many solutions to synchronize concurrent access to shared data

such as transactional memory (hardware [Herlihy and Moss, 1993] and software [Shavit

and Touitou, 1995]), mutual exclusion [Dijkstra, 1965] through locks, and inspector-

executor [Saltz et al., 1997].

We have described two of the characteristics of an irregular applications

- memory access irregularity and control-flow irregularity. Addressing these two

behaviors efficiently on modern systems is the key to irregular applications.
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Figure 2.5: A graph colored to represent the different dynamic components dur-
ing execution. Red nodes indicate active elements – nodes where a computation
needs to be performed, and the shaded region around each active element denote
the neighborhood of each activity – sets of nodes and edges that are accessed dur-
ing the execution of the activity.

2.3 Graph Applications

Graphs are a convenient way of representing irregular computations since

they allow the representation of arbitrary data structures as well as capture arbi-

trary relationships through edges. Many irregular applications are expressed using

maps and the emergence of large scale social data has helped highlight the need

for schema-less representations - which graphs excel at. This prevalence of graphs

in modern applications makes it worthwhile to spend some time on characteriz-

ing key components of graphs and potentially categorizing the graph instances into

sub-group which can then be targeted individually for optimization.

A graph can be described as a set of nodes V and a set of edges E, where

each end-point of an edge is a node in the graph. The set of nodes and edges
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collectively encapsulate the topology or structure of the graph - what the graph

looks like. There may be application specific data labels associated with the nodes

and the edges. For instance, the nodes may represent individuals on a social network

and the edges may represent interactions between the individuals.

Given a graph G(V,E) and the data labels DV ,DE , a graph application is a

program that performs some computation over the graph and generates new label(s)

for the nodes or the edges or summarizes the graph. For instance, in a Single Source

Shortest Path(SSSP) application, the nodes may represent cities and the edges

represent the length of the roads between them. The goal of the computation is to

find the length of the shortest path from a specific node or city (source) to every

other node. The data labels on the node are all initialized to infinity except for the

source which is set to 0. While there are many different algorithms for computing

SSSP, there is one key operation common to all – if a shorter path is available for

a city, the distance label of that city should be updated. If no such update exists,

the computation has terminated, and each node (city) has its shortest distance as its

label.

A graph application can be specified through two key components - opera-

tor and schedule. The operator defines what computation needs to be performed,

whereas the schedule defines when and where the computation needs to be per-

formed.

15



2.3.1 Operator

We refer to this computation as the operator. An operator can be applied to

different components of a graph - nodes, edges or sub-graphs. These are the active

elements of the application and define what component of the graph the operator is

applied to. For SSSP, the active elements are nodes. An operator applied to an ac-

tive element may access elements in the graph besides the active element itself. For

instance, in SSSP, an operator will scan the adjacent nodes of a node to check if a

shorter path is available. The region of the graph accessed by an activity constitutes

the neighborhood of the activity and may span beyond the immediate neighbors.

One dimension along which an operator can be classified is how the operator

updates the graph. A morph computation changes the structure of the graph by

adding or removing nodes and edges. Most graph analytics applications only update

the labels on the nodes and edges of the graph, and do not modify the structure of

the graph by adding/removing nodes and edges. Furthermore, the operator for these

applications only accesses directly adjacent to the active elements. These operators,

which access direct neighbors and do not modify the structure of the graph are also

called local computations.

A local computation operator can be further classified according to the ac-

cesses it performs on the graph. If the operator reads from multiple nodes and only

updates the label of the active node, it is known as a pull operator as it pulls updates

from nodes adjacent to the active element. Conversely, a push operator writes to the

nodes adjacent to the active element. Note that some algorithms may fall in both

categories as they have a mixture of the characteristics of both operator styles.
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Fig. 2.5 shows the key concepts in a graph application. The graph shown

has circular nodes connected by edges. At any point during the execution, the

operator may be applied to many of the active elements. In the figure, nodes circles

colored red are candidates for execution. For each candidate, the shaded regions

represents the neighborhood of the activity. As described earlier, the neighborhood

of an activity is not necessarily adjacent to the active element.

2.3.2 Schedules

Given an operator, we can repeatedly apply it to all graph nodes until no

nodes changes its label. For instance, in SSSP, we can repeatedly scan the nodes

to see if a shorter path is available. This algorithm, also known as Bellman-Ford,

computes the shortest path from a specified source in O(∣V ∣∣E∣) steps. These al-

gorithms are called topology-driven algorithms, as the topology of the graph drives

the computations. While these are simple to implement, for many algorithms a

topology-driven algorithm is very inefficient. Consider SSSP where initially all

the nodes are at a distance infinity, and the source node is initialized to be at dis-

tance zero. For a topology-driven schedule, all the nodes execute the operator, but

only a small subset of the nodes adjacent to the source node are updated. In the

next round, nodes adjacent to those updated in the first step will be updated. This

process will repeat until all the nodes have settled on their final version or some

other termination criteria is reached (such as the maximum number of operator exe-

cutions). For many graph applications, the fraction of nodes updated in each round

is very small - leading to a large fraction of wasted work.
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An alternate is to track the active elements and execute operators only at

sites that potentially contain updates to be propagated. As described above, for

SSSP, if the distance of a node is updated as the result of the application of an op-

erator, it needs to propagate those updates to nodes adjacent to it - hence it becomes

active. Initially, only the source is active, and the result of applying the operator to

the source will activate adjacent nodes that update their distances. This reduces the

wasted work significantly at the expense of tracking the active elements.

Another key property described by the schedule is whether the operator is

ordered or not. Given a set of active elements, an ordered operator defines a strict

order in which the active elements are to be executed. Dijkstra’s algorithm is an

ordered algorithm for SSSP where the active element with the least distance is to

be executed first. This ordered, data-driven algorithm is the most work-efficient

algorithm for SSSP. The Bellman-Ford algorithm for SSSP, as described above,

is an example of an unordered algorithm as the nodes will be updated to their correct

distance even if they are not performed in a specific order. However, it is a very

inefficient algorithm.

2.4 Implementation Issues

In this section we briefly describe the different issues relevant to implement-

ing graph algorithms. First, we describe a data structure to represent graphs. Next

we describe different implementation strategies for implementing graph algorithms

using this data structure.

We use Single Source Shortest Path (SSSP) to illustrate the issues that arise
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in implementing graph analytics algorithms. In the SSSP application, a directed

graph represents a collection of nodes which are connected through some weighted

edges. Each node maintains a label dist representing its distance from a start node,

initialized to infinity. The goal of the algorithm is to compute the shortest distance

of every node from a given start node. This can be achieved through different

algorithms as described in the Sec. 2.4.2 and Sec. 2.4.3.

2.4.1 Graph representation

One of the challenges of implementing a graph application is the choice of

representation. While the node or edge labels can be represented by arrays indexed

by the node or edge ID, the topology of the graph can be specialized. We can start

with a naive adjacency matrix representation where we store the topology of the

graph in a boolean matrix M of dimension ∣V ∣ × ∣V ∣. A node a is adjacent to b

iff the entry M[a][b] is true. While this representation provides efficient access to

the adjacency information, it can waste memory for sparse graph. Most real world

graphs are sparse, meaning ∣E∣ << ∣V ∣
2. This means that a large fraction of the

adjacency matrix will be false. If the operator has to go over the adjacent nodes of

an active node, it has to scan the entire row of ∣V ∣ entries for any true entries. This

results in not only wasted memory but also wasted computation.

An alternate representation trades the simplicity of an adjacency matrix for

efficiency in both memory and computation. The compressed sparse row(CSR)

representation packs all the adjacency information of each node contiguously. This

compression not only reduces the memory required to store the topology of the
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graph but also makes it more efficient to traverse the adjacent nodes of an active

element. A graph and its CSR representation are shown in Fig. 2.6. In the CSR

representation, for a graph G(V,E), where V is the set of nodes, and E is the set of

edges, each node is given a unique number between 1 and ∣V ∣. The representation

uses four arrays, whose role is described below.

• node-data: an array of size ∣V ∣, indexed by node number, that contains the

label of each node.

• indices: an array of size ∣V ∣+ 1 used to access the edges connected to a node.

The elements between indices[n] and indices[n + 1] − 1 in the neighbors

and edge-data arrays below contain information about the edges connected

to node n.

• neighbors: an array of size ∣E∣ that stores the IDs of the out-neighbors of each

node.

• edge-data: an array of size ∣E∣ that stores the data on edges.

Edge or node labels can be omitted as necessary for applications; for exam-

ple, Page-Rank does not require labels associated with edges. An undirected graph

can be represented by storing edges in both directions. The pull-style SSSP algo-

rithm needs the transpose of the hyper-link graph since each node needs to access

fields in nodes that point to it.

While many other graph representations are good candidates for different

algorithms and devices, a single representation is necessary, especially if the graph

20



a

b

c

d

e

f
17

10

2

0

0

3
0

20

(a) Graph

a b c d e f

b c d e c f b f

0 2 3 4 6 8 8

17 10 2 0 0 3 0 20

neighbors

indices

node-data

edge-data

(b) CSR representation

Figure 2.6: A directed graph and its CSR representation. Node e does not have any
outgoing edges, so the indices entries for its edges point to the end of neighbors
array.

is to be loaded from disk. The work in this dissertation assumes that the graph is

represented in a CSR representation, unless otherwise specified.

2.4.2 Pull Implementations

We first describe a pull algorithm for computing the single source shortest

path for a graph. Fig. 2.9 shows a sequential implementation of SSSP using the

CSR representation. Each node has the fields dist that store the distance of the

node from the start node.

The algorithm operates in rounds. In each round, every node n is visited,

its incoming neighbors are scanned to determine if a shorter distance is available

by summing the distance of the incoming neighbor and the weight of the edge

connecting n to it. If a shorter distance is available, the label on n is updated to the

shorter distance. This is known as the Bellman-Ford algorithm for Single Source

Shortest Path, and shown in Fig. 2.7. This algorithm is a topology-driven algorithm

because each round visits all the nodes, and the computation at each node is said to
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1 void sssp_pull(Graph g){
2 for(Node n : g.nodes()){
3 int min_dist=INT_MAX;
4 for(Edge e : n.in_edges()){
5 min_dist= min(e.source.dist + e.weight, min_dist);
6 }
7 n.dist = min(n.dist, min_dist);
8 }
9 }

Figure 2.7: Single Source Shortest Path solved through Bellman-Ford algorithm.
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Figure 2.8: A directed graph and its CSR representation. Node f does not have any
outgoing edges, so the indices entries for its edges point to the end of neighbors
array.

be a pull-style operator because the label at that node is updated by reading labels

from the immediate neighbors.

There are four key memory accesses in this implementation.

• Line 3 – Accesses the data of the node currently being processed. This is a

sequential access since nodes are accessed in sequence by the outer loop.

• Line 5 – Accesses the starting and ending locations of edges for the current

node. This is also a sequential access since the indices array stores end-

points sequentially.
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1 void sssp_pull(Graph &g){
2 for(int i=0; i<g.n_nodes; ++i){
3 NodeData & src = g.node_data[i];
4 int min_dist=INT_MAX;
5 for(int e=g.indices[i];e!=g.indices[i+1]; ++e){
6 int dst_id = g.neighbors[e];
7 int weight = g.edge_data[e];
8 NodeData & dst = g.node_data[dst_id];
9 min_dist = min(min_dist, dst.dist + weight );

10 }//end for-edges
11 src.dist = min(src.dist, min_dist);
12 }//end for-nodes
13 }//end sssp

Figure 2.9: Implementation of Bellman-Ford for Single Source Shortest Path.

• Line 6 – Accesses the destination node of the edge currently being processed.

This too is a sequential access since the neighbor array is accessed sequen-

tially via e.

• Line 7 – Accesses the data associated with the destination of the edge cur-

rently being processed. This is an irregular access since the destination of the

edge can be any node.

To get good performance for graph applications such as Single Source Short-

est Path, each of these accesses must be performed efficiently. Implementations of

the other graph algorithms are similar, except that the computation performed at

nodes is different. For BFS for example, the labels v1, .., vi of the neighbors are

read, and the label of the node is set to the minimum of its current label and the

values of v1+1, ..., vi+1.

23



2.4.3 Push Implementations

The algorithm described in Fig. 2.7 can be classified as a pull-algorithm. In

such a graph algorithm, each node goes over its neighbors and pulls updates from

them. These are relatively simpler to implement as there is only one writer per

node. This obviates the need for synchronizations.Furthermore, these algorithms

can be implemented efficiently in a bulk synchronous parallel manner on modern

architectures.

The drawback of pull-style algorithms is that updates in the graph are not

tracked - every node has to check its neighbors for any updates that might lead to an

update in the node itself. Most graph algorithms such as Breadth First Search (BFS)

and Connected Components converge when no node modifies its label in a give

round. This can lead to a large waste in computation as each node scans its neigh-

bors, and does not find any updates, even if there is only one node in the graph that

was updated in the round. The extreme example is performing BFS on a linked

list. Only one node is updated in each round, but all the node have to be scanned in

every round.

An alternate implementation style is the push-style algorithm. Here, each

node pushes updates to its neighbors. In the basic topology-driven implementation,

all the node are repeatedly processed, and each node will send its update to its

outgoing neighbors. Fig. 2.10 shows an implementation of SSSP using a push

algorithm. The graph is loaded with the source node initialized to zero. Next,

sssp_push is repeatedly applied to the graph. If any node is updated in a call to

sssp_push, the node is updated, and a boolean flag updated is set to true, to indicate
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1 bool updated = false;
2 void sssp_push(Graph g){
3 updated = false;
4 for(Node n : g.nodes()){
5 for(Edge e : n.out_edges()){
6 new_dist = n.dist+e.wt;
7 if(e.destination.dist>new_dist){
8 e.destination.dist= new_dist;
9 updated=true;

10 }//end if
11 }//end for-e
12 }//end for-n
13 }//end sssp
14 ...
15 Graph g(...);//load graph
16 do{
17 sssp_push(g);
18 }while(updated);

Figure 2.10: Single Source Shortest Path topology-driven push algorithm.

that at least one node was updated in the graph, and the changes will need to be

updated further.

At first, this seems like a very inefficient implementation. There can be

concurrent writes which requires synchronization between multiple writes to the

same memory location (destination distance). For Fig. 2.10, the write in line 8 has

to be execute atomically. However, we can observe that any update that needs to be

propagated in the next rounds are those that set the updated flag to true. We can use

this to track active node and only go over active node in every pass. Any node that

had not been updated in the previous round has no new information that needs to be

propagated to its neighbors. For instance, in SSSP, if the distance of a node has been

lowered, it will be scheduled to push its distance to its outgoing neighbors in the

next round. This is also known as a work-list driven or data-driven implementation

since the data-values on the nodes and edges dictates which nodes are processed.
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1 WorkList sssp_wl(Graph g, WorkList wl){
2 WorkList next_wl;
3 for(Node n : wl){
4 for(Edge e : n.out_edges()){
5 new_dist = n.dist+e.wt;
6 if(e.destination.dist>new_dist){
7 e.destination.dist= new_dist;
8 next_wl.push_back(e.destination);
9 }//end if

10 }//end for-e
11 }//end for-n
12 }//end sssp
13 Graph g(...);//load graph
14 WorkList wl(...);//initialize
15 while(!wl.empty()){
16 wl = sssp_wl(g,wl);
17 }

Figure 2.11: Single Source Shortest Path work-list driven push algorithm.

In contrast, a topology-driven algorithm has all the nodes nodes executed in every

pass.

A data-driven implementation, as shown in Fig. 2.11 for SSSP, uses a work-

list to track the active items. The graph is first loaded, and the distance of source

node initialized to zero. The source node is also added to the work-list since it has

updates that need to be propagated. Next, we call the sssp_wl procedure which

goes over all the nodes in the work-list, and adds nodes to the next work-list if their

distances have been updated. This is repeated until no node is updated. These al-

gorithms are more work-efficient since they do not touch the whole graph in every

pass - unless it is required. The drawback of this approach is the extra synchroniza-

tion required, not only from having multiple writes being performed to each node

from its neighbors, but also maintaining the work-list where active nodes for the

next round are maintained.
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2.5 Abstractions

Given a graph algorithm specification as described above, we would like to

program it to execute on an accelerator. A simple approach is to understand the

native instruction set of the accelerator and to translate the algorithm specification

to it. Clearly, this approach is not productive for application developers looking

to port applications to these accelerators. Alternatively, high level abstractions can

be used to express the graph algorithms at a higher level. This requires a com-

piler and runtime to support the translation and execution of the application on the

accelerator.

2.5.1 CUDA

Compute Unified Device Architecture(CUDA) is a proprietary application

programmer interface developed by Nvidia. The language is designed to make

general purpose GPU (GPGPU) programming more accessible by extending C++

with certain constructs. CUDA provides support for executing kernels on the GPU

which are specified in an augmented subset of C. This makes it very attractive for

application developers experienced with structured programming as kernels require

minor modifications. CUDA also provides a comprehensive set of functions for

management, memory, and event management. A large number of libraries have

been developed to support CUDA which has added to its popularity in many do-

mains. One key drawback to using CUDA is vendor lock-in – only devices from

Nvidia currently support it.
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2.5.2 OpenCL

In response to the growing popularity of CUDA, Open Compute Language(OpenCL)

was developed by Khronos group, a consortium of companies. The OpenCL spec-

ification describes an API that different accelerators must support to obtain com-

pliance. The original 1.0 of the standard was released in 2009. Similar to CUDA,

OpenCL provides API for device, memory and event management. Programming

in OpenCL is slightly more difficult compared to CUDA as the API is designed to

support a larger range of devices. Currently, OpenCL is supported by a range of

devices such as CPUs, GPUs, FPGAs, and DSPs.
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Chapter 3

Data-parallel execution with Integrated GPUs 1

Heterogeneous systems composed of integrated GPUs and multi-core CPUs

are ubiquitous in commodity systems. In this chapter, we explore the efficient exe-

cution of irregular programs on such heterogeneous systems by first addressing the

portability of existing applications to these platforms, and then describe runtime

techniques to address load imbalance between the CPU and the GPU in a heteroge-

neous execution.

3.1 Introduction

Graphics processing units (GPUs) have become increasingly popular for

accelerating general purpose computations. GPUs provide massive parallelism on

a small energy budget and offer opportunities for significant energy savings and

performance improvements compared to multi-core CPUs.

Integrated GPUs are manufactured onto the same die as the CPU, where they

share resources like physical memory (and on Intel’s integrated processors, the last-

1Portions from this chapter have been published in peer-reviewed conferences. The Concord
compiler was presented in [Barik et al., 2014]. The scheduling strategies described have been pub-
lished in [Kaleem et al., 2014]. The first author was responsible for implementation and evaluation
of graph applications as well as conception, design and evaluation of heterogeneous schedule.
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level cache). The ubiquity of integrated GPUs from major hardware vendors such

as AMD and Intel has made these accelerators very accessible. The advantage of

integrated GPUs is that they benefit from low-latency communication and eliminate

most data copying, which significantly lowers the cost of offloading work to the

GPU. However, integrated GPUs are limited by the power and size budget allocated

for the die which is shared with the multi-core CPU.

This interest in GPU acceleration of applications has led to the development

of specialized programming languages such as CUDA [NVIDIA, 2010], OpenCL

[OpenCL, 2009], and, more recently, OpenACC [OpenACC, 2011] and Microsoft

C++ AMP [C++AMP, 2015]. These specialized languages expose details of the

GPU architecture and CPU/GPU communication model to the programmer. While

they enable expert programmers to achieve high performance, their complexity and

the architectural understanding required limits widespread use of GPU program-

ming. One way to reduce the complexity of GPU programming is to use the same

data-parallel programming models that are already used for programming multi-

core CPUs. Recent work [Baskaran et al., 2010, O’Boyle et al., 2013] demonstrated

the practicality of this approach for regular applications operating on array-based

data structures.

The question, though, remains whether benefits of GPU execution can be

extended to irregular applications written in an object-oriented programming style

that features object references, virtual functions, and functor-based parallel con-

structs. To address the irregularity in data-accesses, especially through pointer-

based codes, the programmer can used the shared physical memory between the
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CPU and the integrated GPU. This however, requires virtual addresses in both

device-spaces to map to the same physical address.

This chapter describes a compiler and runtime combination to efficiently

utilize a heterogeneous systems composed of a multi-core CPU and an integrated

GPU for irregular application. First in Sec. 3.2, we describe Concord, a compiler

that can support a large set of C++ programming constructs on the GPU. We then

describe strategies to dynamically balance the workload between the CPU and the

integrated GPU to speed-up execution of applications in Sec. 3.3, Sec. 3.4, and

Sec. 3.5. We evaluate the different schemes for heterogeneous execution in Sec. 3.6,

and conclude in Sec. 3.7.

3.2 Compiler

We first describe Concord, a compiler for translating C++ code to execute

on the integrated GPU. As Concord is targeted towards irregular applications, it

supports most C++ features with some exceptions. The features supported include

classes, virtual functions, multiple inheritance, operator and function overloading,

templates, and namespaces. However, due to compiler and GPU hardware limita-

tions, there are restrictions to its C++ support, violations of which result in compile-

time warnings and parallel code being executed only on the CPU. In particular,

Concord does not support recursion (except for tail-recursion that can be elimi-

nated at the compile time), function calls via a function pointer, taking the address

of a local variable, memory allocation on GPU, and exceptions. It provides two API

functions for data-parallel iteration and reduction, and has shared virtual memory
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(SVM) support that enables programs to transparently share pointer-containing data

structures.

3.2.1 Programming constructs

Concord’s two template API functions for data-parallel computation are

modeled after the corresponding ones in Intel Threading Building Blocks (TBB)[TBB

(Intel Threading Building Blocks), 2011], OpenMP[Dagum and Menon, 1998], and

Cilk[Leiserson, 2009].

1 template <class Body>
2 void parallel_for_hetero(int n, const Body &b, bool on CPU);
3

4 template <class Body>
5 void parallel_reduce_hetero(int n, const Body &b, bool on CPU);

Figure 3.1: Concord programming constructs.

Both template functions take a parameter n that specifies the iteration space,

[0..n−1] to be executed in parallel. For both functions, the second parameter bmust

be an instance of a class Body that defines a function call operator() specifying

the body of the parallel loop or reduction. The third parameter controls whether ex-

ecution should be on the CPU or GPU. For parallel_reduce_hetero, the Body class

must define an additional method join to combine the results for two Body objects.

Concord does not guarantee that the different loop iterations will be executed in

parallel. Also, as in TBB, programmers should make no assumption about the or-

der in which different iterations are done. Similarly, floating point determinism in

reductions is not guaranteed.

Fig. 3.2 shows an example Concord C++ program demonstrating the use
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1 // Functor class implementing one loop body
2 class Foo {
3 int *a;
4 void operator(int i) { a[i] += f(i); }
5 };
6 // Functor class implementing another loop body
7 class Bar {
8 int *a;
9 void operator(int i) { a[i] -= g(i);}

10 };
11 ...
12 Foo *f1 = new Foo();
13 // Single invocation of a data-parallel loop
14 parallel_for(N, *f1);
15 ...
16 Bar *f2 = new Bar();
17 // Multiple invocations of a data-parallel loop
18 for (int i=M; i<P; i++)
19 parallel_for(i, *f2);

Figure 3.2: Example demonstrating use of Concord parallel_for construct.

of the parallel_for construct. The first parallel_for increments every element of

an N -element array a using the data-parallel kernel in Foo::operator once (sin-

gle invocation kernel), while the later loop decrements the elements of a using the

Bar::operator kernel multiple times (multiple invocation kernel). The classes Foo

and Bar contain the environment (e.g., a) for the parallel code specified in the op-

erator functions.

Fig. 3.3 depicts the components of the Concord framework along with their

interaction with other components. Concord builds on the CLANG and LLVM in-

frastructure to compile Concord C++ programs. A compiler pass identifies the loop

body functions (i.e., the operator() and join methods of a body class) and gener-

ates CPU code as well as GPU OpenCL kernel code for them. Concord generates

a host-side executable that embeds the generated OpenCL. To execute the parallel

loop, the runtime extracts its OpenCL code, compiles it just-in-time to the GPU
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Figure 3.3: Concord compiler and runtime overview.

ISA if necessary via the vendor-specific OpenCL compiler, and then, based on the

on_CPU flag, decides whether to execute it on the CPU or GPU.

3.2.2 Shared Virtual Memory (SVM) support

To make it easier to run existing C++ programs on an integrated processor,

Concord provides software based shared virtual memory (SVM). This allows pro-

grams running on the CPU and GPU to directly share complex, pointer-containing

data structures such as trees and linked lists. SVM also eliminates the need to mar-

shal data between the CPU and GPU. The challenge of implementing this transla-

tion is that the CPU and GPU may have separate virtual-to-physical mappings and

different pointer representations. These details differ greatly from one processor

architecture to the next. The remainder of this chapter assumes that the Intel’s 4th

Generation Core (Haswell) processor is used. On this processor, the GPU and CPU

use separate page tables. The GPU’s virtual address space is segmented into sur-

faces and each surface is referenced by a binding table entry. A GPU pointer is

represented as a binding table index plus an offset. To access memory, the offset is
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Figure 3.4: Address translation from CPU virtual address space to GPU virtual
address space.

added to the surface’s base address obtained by looking up that surface’s binding ta-

ble entry. Thus, when a shared pointer is dereferenced on the GPU, the CPU virtual

address must be translated so that it refers to the same physical memory location on

both GPU and CPU.

To perform the translation, a virtual memory region is created at program

startup that is shared between the CPU and GPU. Any shared pointer that the

GPU needs to dereference must be allocated in this shared memory region. This

is achieved by redirecting malloc and free to specialized routines that allocate and

free memory in the shared memory region. The shared memory region is pinned

during GPU kernel execution and has a backing GPU surface with a binding table

entry that is constant during runtime. This approach substantially reduces the cost

of Concord’s shared pointer translation.

Fig. 3.4 depicts the compiler transformation necessary to synchronize the

virtual addresses of shared pointers between CPU and GPU. Given the base ad-
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1 class Arr2List{
2 Node * array;
3 public:
4 Arr2List(Node * a):array(a){}
5 void operator()(int i){
6 array[i].next = &(array[i+1]);
7 }
8 };
9 void convert(Node * a, int N){

10 Arr2List * func = new Arr2List(a);
11 parallel_for_hetero(N,func,false);
12 }

1 typedef unsigned long CPUPtr;
2 #define AS_GPU_PTR(T,p) \\
3 (__global T*)(&svm_const[(p)])
4 __kernel void operator_1(
5 __global char *gpu_base,
6 __global char *cpu_base,
7 CPUPtr cpu_ptr){
8 uint i = get_global_id(0);
9 __global char * svm_const

10 = (gpu_base-cpu_base);
11 __global Node * gpu_ptr
12 = AS_GPU_PTR(Node,cpu_ptr);
13 *(AS_GPU_PTR(Node,gpu_ptr[i].next))
14 =&gpu_ptr[i+1];
15 }

Figure 3.5: Example demonstrating Concord SVM implementation. Left side
shows the C++ implementation provided by the programmer. Right side shows the
transformed code including translation code to convert from CPU virtual addresses
to GPU virtual addresses.

dresses of CPU and GPU for the shared region as cpu_base and gpu_base respec-

tively, a pointer ptr_p in the CPU virtual address space has a corresponding GPU

virtual address gpu_ptr_pwhere gpu_ptr_p = gpu_base+(ptr_p−cpu_base). This

address translation can be optimized by using the runtime constant svm_const =

gpu_base−cpu_base that is computed only once. Then, before dereferencing ptr_p

on the GPU, it can be translated to gpu_ptr_p by simply adding the runtime con-

stant svm_const. Sec. 3.2.5.1 describes how we further optimize away part of this

translation. The right hand side of Fig. 3.5 presents the compiler generated OpenCL

code for the operator() function using the pointer transformation described in this

section. The OpenCL kernel operator_1 takes additional arguments for gpu_base,

cpu_base, and the pointer cpu_ptr to the Body object (which is same as b in the

source program). The shared pointers, cpu_ptr and gpu_ptr p[i].next are translated

from the CPU address space to the GPU address space using the AS_GPU_PTR
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macro. Our pointer translation technique can be generalized to scenarios where

CPU and GPU use different encoding schemes and lengths. For example, if CPU

memory is addressed using 64−bits and GPU memory uses 32−bits, we can apply

the same pointer arithmetic as long as the shared region does not exceed 4GB.

3.2.3 Virtual Functions

One of the most widely used dynamic features of C++ is its virtual function

support. Although there are a variety of different ways to implement virtual func-

tions, the vtable (virtual table) approach is common in modern C++ compilers. In

this approach, a compiler creates a separate vtable for each class and, when creat-

ing an instance of that class (an object), adds to that object a pointer to the class’s

vtable. A call to a virtual function is then handled by dereferencing the underlying

runtime object’s vtable pointer, locating the corresponding virtual function entry

and finally dereferencing that pointer to call the function. To implement virtual

functions on the GPU, vtables need to be allocated in the shared region and, more

importantly, function pointers are required on the GPU. Current integrated GPU

hardware designs are not yet capable of supporting function pointers, so we use

a compiler-based solution. To support virtual functions on the GPU, the Concord

compiler implements three key operations: a) move necessary vtables and runtime-

type information to the shared region; b) share the global symbols of relevant virtual

functions between the CPU and GPU using shared memory; c) translate a virtual

function call into an inline sequence of tests of the call target against the possible

target function pointer values for that call. The compiler implements global symbol
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sharing between CPU and GPU by allocating a new structure in the shared mem-

ory region that encapsulates all global symbols needed for the virtual function calls

executed by a GPU function. It also determines the set of call targets for a given

virtual function using class hierarchy analysis and alias analysis.

3.2.4 Reduction

When using parallel_reduce_hetero, the Body object’s join method con-

tains reduction code that combines two Body objects. Concord performs hierarchi-

cal reduction of the body objects on the GPU using local memory, the high-speed

on-GPU memory that is shared among all work-items of a work-group in OpenCL.

Concord generates OpenCL code for the join method similar to the code generation

technique described in Fig. 3.5. We generate additional wrapper OpenCL code that

makes multiple copies of the shared Body object in each thread’s private memory,

invokes the operator() function to compute the thread’s value that participates in

reduction, moves the private objects to local memory, and finally, iteratively per-

forms reduction using local memory until a single value is left. The local memory

copies hold intermediate reduction results. The final reduced value is copied back

to the original shared Body object. The original sequential join function pointer

is also passed to the runtime to perform sequential reduction if local memory is

insufficient or if the GPU is busy.

38



3.2.5 Compiler Optimizations

The large register files offered by GPU architectures must be utilized by the

compiler to improve performance. Classical compiler optimizations such as sub-

expression elimination, aggressive register promotion, and loop-unrolling must be

applied in order to exploit the register files. Given that shared pointers incur some

overhead during translation, register promotion should be applied aggressively to

eliminate memory loads of the same location, in particular, across loop iterations.

Since loop-unrolling eliminates the overhead of address calculation and control in-

structions, we perform unrolling and control the unroll-factor by restricting max live

to the available physical registers. Currently, our compiler promotes stack-allocated

objects and reduction-based private copies of the body objects to private memory.

These objects are not shared across threads since each thread creates its own in-

stance. We also use local memory for performing reductions. Although it may

make sense to also use local memory for C++ applications that reuse data among

several GPU threads, the irregularity in the applications makes it harder to perform

it automatically in the compiler. Additionally, a language-based approach to sup-

port local memory in C++ has the disadvantage that the same C++ function cannot

execute seamlessly between the CPU and GPU which is one of the key objectives

of Concord. Apart from the above standard compiler optimization techniques, we

devise two new optimizations in Concord. The first optimization reduces the S/W-

based SVM implementation overheads and the second optimization reduces cache

contention among multiple cores of the GPU. These two compiler optimizations are

described in details below.
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3.2.5.1 Reduce SVM implementation overhead

The pointer arithmetic operations inserted as described in Sec. 3.2.2 must be

minimized by the compiler whenever possible. Depending on how shared pointers

are used on the GPU, it may be beneficial to retain the CPU virtual address repre-

sentation for a shared pointer instead of eagerly translating it to GPU address space.

For example, if the GPU code loads a shared pointer and stores it into a memory

location without dereferencing it, then it is better to never convert the CPU virtual

address. Similarly, there are some situations where it is better to eagerly translate

CPU to GPU addresses, and others where lazy translation is better. For example,

consider the code sample shown in Fig. 3.6.

1 int ** a = data->a, **b=data->b;
2 for ( int i=0; i<N; ++i)
3 b[i]=a[i];
4 //a is not used on GPU after this

Figure 3.6: Example illustrating compiler transformation of shared pointers on
GPU: lazy vs. eager.

In this code fragment, pointer a[i] is loaded from memory and written into

b[i] at each iteration of the loop. With eager translation (i.e., convert to GPU virtual

memory representation as soon as the pointer is loaded), we need pointer arithmetic

operations to translate the array addresses a and b only immediately after their def-

initions, which are outside the for-loop. Using lazy translation (i.e., keep the CPU

virtual memory representation as is and translate to GPU representation just before

dereferencing it), we must add pointer arithmetic to translate a and b from the CPU

to the GPU representation on every loop iteration. The eager approach is clearly

beneficial in this case. On the other hand, eagerly converting the address of an array

40



element a[i] to a GPU virtual address results in wasted work because a[i] is never

dereferenced on the GPU. It would convert all a[i] pointers to GPU addresses only

to immediately convert them back to CPU addresses in order to store them in array

b. The lazy approach is preferable in this case. Both eager and lazy approaches have

their advantages and disadvantages and can perform better or worse depending on

the code patterns in a program. We devise a strategy where we keep both the CPU

representation and GPU representation for every pointer. The GPU representation

is obtained by converting the pointer eagerly when it is loaded from memory. If

at a later use the pointer is stored into a memory location (as a[i] in Fig. 3.6), we

replace the use by the CPU representation. Otherwise, we use GPU representation.

If a pointer is never dereferenced on the GPU, a standard dead code elimination

pass eliminates the redundant conversion to GPU address space. We optimize the

placement of GPU pointer conversion operations using standard live-range shrink-

ing techniques used in optimal code motion[Knoop et al., 1994].

3.2.5.2 Reduce GPU cache-line contention

GPUs include a large number of hardware threads that execute concurrently

and may access data from the global memory. GPU hardware typically coalesces

global memory accesses from a workgroup to hide the latency of global memory

access. Additionally, these accesses may be cached in the GPU cache hierarchy.

The integrated GPUs use a unified L3 cache for all GPU cores to cache global

memory accesses. This cache is not banked and thus suffers from contention among

multiple GPU cores trying to access the same data in a cache line at the same time.
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We devise a compilerbased transformation in which we minimize the number of

simultaneous accesses to the same cache line from multiple GPU cores.

1 class Body{
2 float * d;
3 public:
4 Body(float * f):d(f){}
5 void operator()(int i){
6 ...
7 for(j=0;j<N;j++){
8 ... = d[j];
9 }

10 }
11 };

1 class Body{
2 float *d;
3 public:
4 Body(float *f):d(f){}
5 void operator()(int i){
6 ...
7 int start=i/N;
8 for(j=0; j<N; ++j){
9 j_tmp=(j+start)%N;

10 ...=a[j_tmp]
11 }
12 }
13

14 };

Figure 3.7: Reducing cache-line contention among GPU cores. Left side shows
the original code.

Fig. 3.7 depicts our loop transformation to reduce GPU cache-line con-

tention. The operator() function on the left hand side has a loop that iterates over

same array elements of a across multiple iterations of i. If iterations i and i + 1 are

executed on two separate GPU cores, then they will access the same array elements

of a in the same order. This will result in increasing cache line contention. If the

number of read and write ports to a cache line is not the same as the number of GPU

cores (which is always the case), some cores will have to access the cache-line in

a serialized fashion. On the other hand, the operator() function shown on the right

hand side of Fig. 3.7 does not suffer from this problem. Note that, W represents

the number of GPU cores. The key idea is to ensure that the j loop is accessed

in a different order for each GPU core. We apply this transformation to innermost

loops.

The Concord compiler translates parallel_for_hetero and parallel_reduce_-
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hetero to the runtime API functions offload and offload_reduce respectively. These

runtime functions take additional compiler-generated arguments: (1) a gpu_pro-

gram_t structure for the entire program to hold the OpenCL code and its cached

JIT-compiled GPU binary; (2) a gpu_function_t structure to cache per-function

GPU binary code in order to reuse the JIT-compiled code. The gpu_function_t

also carries the user specified device information per kernel as specified in the third

argument of parallel_for_hetero and parallel_reduce_hetero.

3.3 Heterogeneous execution

We can extract more performance from this heterogeneous system compris-

ing of a multi-core CPU and an integrated GPU by simultaneously executing the

workload on the CPU and the GPU. This requires a systematic way of dividing the

work between the multi-core CPU and the integrated GPU. However, the optimal

division of work between the CPU and GPU is very application dependent. The

CPU and GPU have different device characteristics. CPU cores are typically out-

of-order, have sophisticated branch predictors, and use deep cache hierarchies to

reduce memory access latency. GPU cores are typically in-order, spend their tran-

sistors on a large number of ALUs, and hide memory latency by switching between

hardware threads. This dissimilarity leads to significant differences in execution

performance. Certain applications may execute significantly faster on one device

than the other. As a result, executing even a small amount of work on the slower

device may hurt performance.

As an example, consider Fig. 3.8, which shows the performance of Barnes-
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Figure 3.8: Relative execution time of BH-BarnesHut (left) and FD-Facedetect
(right) as ratio of work offloaded to the GPU is varied from 0% to 100% in incre-
ments of 10% (lower is better). BH is optimal at 40% and FD is optimal at 0%.

Hut (BH) and Face detection (FD) on an Intel Haswell machine as the proportion

of work assigned to the GPU is varied from 0% to 100% (the applications and the

machine are described in more detail in Sec. 3.6). The y-axis in both graphs shows

execution time normalized to the best running time for each application. For BH,

the best running time is obtained when 40% of the work is done on the GPU. FD in

contrast does not benefit at all from GPU execution and performs best when run on

multicore CPU.

Furthermore, certain parallel_for iterations may take more time than others.

Without a-priori information about the loop’s behavior, it is hard to optimally divide

work between the CPU and GPU automatically. Iterations may show execution

irregularity due to data-dependent control flow operations for example. Without

knowledge of the input data, it is hard to determine the optimal partitioning. There

can be more than one parallel_for in an application and each may be invoked more

than once, as in the second parallel_for in Fig. 3.2. Since one parallel loop can
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have the side effect of warming the cache for a second loop, understanding the

interactions among the different parallel loops is important to optimally partition

work. Similarly, interactions between the multiple invocations of the same parallel

loop can also be important for optimal work scheduling.

As a result, devising an automatic heterogeneous scheduling algorithm to

handle all these situations is a daunting task.

Ideally, the scheduler should partition work between CPU and GPU auto-

matically and efficiently without any input from the application developer. The

division of work between the CPU and a GPU has been the subject of a number

of prior studies [Luk et al., 2009, Augonnet et al., 2011, Lee et al., 2013, O’Boyle

et al., 2013, Sbîrlea et al., 2012, Chatterjee et al., 2011]. Their techniques fall into

three broad categories:

• Off-line training [Luk et al., 2009, Lee et al., 2013, O’Boyle et al., 2013]: The

application is first run using a training data set and profiled. The profiling data

is used to select the scheduling policy for subsequent application runs against

real data. Qilin [Luk et al., 2009] performs an off-line analysis to measure

the kernel’s execution rate on each device (CPU and GPU). These rates are

used to decide the distribution of work for each device. Qilin uses a linear

performance model to chose the scheduling policy based on the size of the

input data set. In general, there are two main drawbacks of off-line profiling.

First, the scheduling policy chosen depends on the training data, i.e., if the

training data differs significantly from the actual data used in subsequent runs,
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the scheduling policy is likely to be suboptimal. Second, new execution rates

and work distributions must be determined for each new target platform.

• Use a performance model [Augonnet et al., 2011, Hong and Kim, 2010]: Ac-

curate performance models are notoriously difficult to construct, particularly

for irregular workloads since runtime behavior is very dependent on charac-

teristics of the input data.

• Extend standard work-stealing[Blumofe and Leiserson, 1999] with restric-

tions on stealing [Chatterjee et al., 2011, Sbîrlea et al., 2012]: Work-stealing

is a popular way to address load imbalance in multi-core execution. How-

ever, a GPU differs from the CPU in one important aspect when addressing

load imbalance. Current GPUs cannot initiate communication with the CPU

or execute atomic operations visible to the CPU which means a GPU can-

not request work from non-local work pools. The GPU cannot use persistent

threads to steal work from a common pool because of the relaxed CPU-GPU

memory consistency, which only guarantees that GPU memory updates will

be visible after the GPU code terminates. Furthermore, the GPU is statically

scheduled: once items are scheduled to be processed on the GPU, the order

in which they are processed is undefined and hence we can make no assump-

tions about which items can be stolen from the GPU’s local pool by other

threads.

One simple approach to addressing load imbalance that avoids these limita-

tions is to have a dedicated GPU proxy thread running on the CPU to per-
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form work-stealing on behalf of the GPU. The GPU proxy thread can steal a

number of loop iterations to execute on the GPU, then wait for the GPU to

complete their execution or until all iterations have been processed by either

the CPU or the GPU. The time to execute a number of loop iterations on the

GPU is a key performance bottleneck. If we choose many iterations in or-

der to reduce the overhead of launching work on the GPU, the GPU might

stall loop termination while the CPU threads are out of work. On the other

hand, if we choose too few iterations, this will increase the number of GPU

offload requests as well as underutilize the GPU hardware, as we show later

in Sec. 3.4.2.

• Profiling-based is an online profiling based approach. The application ker-

nel is dynamically profiled and used to determine the distribution of workload

between the CPU and the GPU. The key to this approach is that the profil-

ing phase should not introduce any overhead that can not be compensated

by the benefits obtained by doing it. We present two online-profiling based

techniques in the next two sections and analyze their overheads.

Most of the prior work has been performed in the context of discrete GPUs,

where data must be communicated between CPU memory and GPU memory over

slow interconnect such as the PCIe bus. This high-latency communication limits

the CPU to offload relatively coarse-grain tasks to the GPU. Integrated GPUs dra-

matically reduce the cost of data communication between CPU and GPU, so finer

grain work sharing between the CPU and GPU than has been explored by prior
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work becomes possible.

In this chapter, we present novel scheduling techniques for integrated CPU-

GPU processors that leverage online profiling. Our techniques profile a fraction of

the work-items on each device and decide how to distribute the workload between

the CPU and GPU based on the measured device execution rates. Because our algo-

rithm is fully online, it does not require any prior training and carries no additional

overhead when applied to applications with new data sets or new platforms.

While seemingly simple, scheduling based on online profiling must avoid

several pitfalls to produce good results. First, it should perform the profiling with

near zero overhead, effectively utilizing all available resources, as otherwise, the

profiling cost might significantly reduce the benefit of subsequent heterogeneous

execution. Second, it should accurately measure the execution ratio of different

devices, which might be non-trivial in the presence of load imbalance that often oc-

curs in irregular applications. Finally, it should be able to effectively handle diverse

realistic workloads including those with multiple kernels and multiple invocations

of the same kernel, accounting for the fact that optimal execution might require

different CPU/GPU partitioning of the different kernel invocations or different ker-

nels.

3.4 Naïve profiling

In this section, we propose a heterogeneous scheduling algorithm based on

a simple online profiling scheme and analyze the associated overheads.

48



It is well-known that regular applications with little or no load imbalance

are well-suited for GPUs whereas multi-core CPUs equipped with accurate branch

predictors are capable of performing well across regular or irregular, balanced or

imbalanced workloads. As a result, we first determine the characteristics of a work-

load using an online profiling run in order to determine the rate of execution on

each device. This profiling information is used to decide the percentage of remain-

ing iterations to assign to each device.

Fig. 3.9 shows our naïve profiling scheduling algorithm. It executes in two

phases – profiling phase and execution phase. When a kernel is executed for the first

time over N items, the runtime forks a proxy thread that offloads Nfp iterations to

the GPU, where fp is a ratio between 0 and 12, and measures the rate Gr at which

the GPU processes the kernel. Concurrently, the runtime thread itself processes

another Nfp iterations on the multi-core CPU and computes the CPU rate Cr. Both

threads merge on a barrier after completing the profiling phase where they compare

the two rates Gr and Cr. Based on these rates, the runtime distributes the remaining

iterations to the CPU and GPU in the execution phase. New rates are computed

and cached for future invocations of the same kernel. For already-seen kernels, the

runtime uses the old values of Cr and Gr to distribute iterations.

The naïve profiling based scheduling algorithm may introduce overheads in

both the phases: (1) in the profiling phase, one of the devices completes execu-

tion before the other one; (2) if the iterations used in the profiling phase are not

2We discuss choosing fp in Sec. 3.4.2.
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representative of the entire iteration space (applications with imbalance and irreg-

ularity fall into this category), then the execution phase may introduce some more

overheads. We address both these overheads with an asymmetric scheduling algo-

rithm (Sec. 3.5). Below, we first provide theoretical analysis of our naïve profiling

algorithm and then discuss how fp is determined.

3.4.1 Analysis

Let αg denote the ideal ratio for distribution to the GPU, and the remaining

1 − αg to the CPU. If we denote the rate with which CPU executes work items as

Cr and GPU as Gr, we would like to find the ratio αg of work items to be offloaded

to the GPU such that:
Nαg

Gr

=
N(1 − αg)

Cr

(3.4.1)

Where N is the total number of work items to be processed due to a call to

the parallel_for. Using this formula, we can derive the value of αg as:

αg =
Gr

Gr +Cr

Intuitively, αg specifies how fast the GPU is compared to the CPU. So if

the two devices are processing items at the same rate (Cr = Gr), we would have

αg = 0.5.

The ideal time to execute the N work-items can be expressed as:

Tideal =
N

Cr +Gr

(3.4.2)
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Figure 3.9: Heterogeneous execution via Naïve profiling.

Real execution time will consist of the Tprof , time to profile Nfp work on

CPU and GPU, and Texec, time to execute the remaining items according to the

measured distribution ratio βg.

Treal = Tprof + Texec (3.4.3)

The distribution ratio βg computed by the profiling may differ from the ideal

distribution ratio αg that allows both devices to terminate at the same time. This

could happen, for example, if the workload is highly irregular or if the profiling

stage is too short. How much the execution time Texec differs from the ideal time

to execute (1 − 2fp)N remaining items depends on the difference between αg and

βg, as stated in the theorem below. Ideally, we would like profiling to derive βg as
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close to αg as possible.

Theorem 3.4.1. The overhead of executing P iterations using distribution ratio βg

instead of the ideal ratio αg is proportional to the difference between βg and αg.

Proof. The overhead is the difference of execution times with βg and αg.

Toverhead =max[
Nβg
Gr

−
Nαg

Gr

,
N(1 − βg)

Cr

−
N(1 − αg)

Cr

]

=max[N(
βg − αg

Gr

),N(
αg − βg
Cr

)] (3.4.4)

The above difference is clearly proportional to βg − αg.

Another source of overhead with the naïve profiling algorithm is a subop-

timal distribution of work during the profiling phase. The profiling time is the

maximum of time to execute Nfp items on each of CPU and GPU.

Tprof =max[
Nfp
Gr

,
Nfp
Cr

] (3.4.5)

The profiling phase can impose significant overhead if the difference be-

tween Gr and Cr is very large. For example, assume that the GPU is 10x faster than

the CPU (Gr = 10Cr). In this case,

Tprof =max[
Nfp
10Cr

,
Nfp
Cr

] =
Nfp
Cr

If we assume fp = 5%, the time taken by the profiling phase becomes 0.05N
Cr

.

As the GPU is 10x times faster than the CPU, it completes its profiling run in

one tenth of the time. If the GPU would continue working during the rest of the
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profiling run it could complete nine times as much work, that is, another 45% of

the total work. Even if the profiling is accurate, and the remaining work is divided

between the CPU and GPU using the ideal distribution ratio αg = 0.9, the time the

GPU has spent idle during the profiling stage will have significant negative effect

on total execution time.

3.4.2 Determining profiling size

Determining the right number of iterations or work-items to use for profil-

ing is important. Picking too many items for the profiling phase can increase the

profiling overhead since one device may have to wait for the other device to com-

plete execution. On the other hand, picking too few work items for the GPU can

underestimate GPU performance since it is underutilized. Ideally, the profiling size

should be large enough to utilize all the available GPU parallelism. To illustrate

this point, we demonstrate the impact of different profiling sizes on two kernels:

one regular kernel and the other irregular.

Regular kernel: Fig. 3.10 shows the impact of choosing different profiling

sizes on the performance of a simple synthetic kernel running on the integrated

GPU (details of our experimental platform are provided in Sec. 3.6). This kernel

computes the sum of integers from 1 to 2048 per work-item. There are no memory

accesses and no thread divergences in the kernel. We report the GPU execution rate,

Gr, as we increase the number of work-items offloaded to the GPU. As we increase

the number of items, we see an increase in Gr as the GPU takes the same amount

of time to process more items. The rate stabilizes at 2048 items, which implies that
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nesHut (BH) and BarnesHut-unoptimized (BH-U).

the GPU hardware was underutilized when processing less than 2048 items. Ideally,

we would like to have at least 2048 items to profile accurately and not underutilize

this specific GPU.

Irregular kernel: Irregular kernel code may complicate the choice of a

good profiling chunk size. Fig. 3.11 shows the average execution rates for both

BH-U and BH3 when we process items in chunk sizes ranging from 512 to 8192.

We show the execution rates separately for the CPU (Cr) and GPU(Gr). The CPU

performance is relatively stable for both BH and BH-U (the difference in time per

item for the two versions is due to the improved locality with BH), and not affected

3BH is an optimized version of Barnes-Hut algorithm (BH-U), where the bodies are sorted in a
breadth-first-search order from the root.
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by increasing chunk size. However, for BH-U on the GPU, Gr increases sharply

from 512 to 1024 and is relatively stable for larger values. A similar but less subtle

trend is visible for BH on the GPU as well.

The impact of picking a small chunk size for GPU profiling is visible If we

pick a chunk size of 512 for BH-U, we get the GPU rate 1
92 , and the CPU rate 1

21 ,

which leads to an offload ratio αg of 0.17. However, if we pick 1024 as the chunk

size, we get a different rate for the GPU 1
54 and for the CPU 1

19 leading to an GPU

offload ratio of 0.27, which is close to the static optimal 0.30.

To summarize, we want to use the smallest number of items that fully utilize

the GPU. The integrated GPU we use in our experimental evaluation has 20 exe-

cution units (EU), 7 threads per EU, each thread being 16-way SIMD for a total of

2240 work-items that can execute at one time. This information can be obtained au-

tomatically by querying the GPU device using the OpenCL API4. So, we use 2048

as the profiling size for our evaluation which agrees with our empirical observation

above for both regular and irregular kernels.

3.5 Asymmetric profiling

In this section, we describe our asymmetric profiling algorithm that ad-

dresses the overheads of the naïve profiling algorithm and additionally, provides

adaptive strategies that handle load imbalance due to irregularity and multiple invo-

cations per kernel.

4CL_DEVICE_MAX_COMPUTE_UNITS, CL_DEVICE_MAX_WORK_GROUP_SIZE, and
CL_DEVICE_NATIVE_VECTOR_WIDTH_INT.
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The first overhead in naïve profiling was caused by waiting on a barrier

when one of the devices finishes execution before the other. We address this over-

head in asymmetric profiling as follows: we initially have a shared pool of work

consisting of the entire parallel iteration space, and we pick a portion fp of items to

be offloaded to the GPU using the proxy GPU thread. The CPU workers continue

to pick items from the shared global pool and locally collect profiling information.

When the GPU proxy thread finishes profiling, it performs the following steps in

order; it (1) computes the distribution ratio by reading each worker’s local profil-

ing statistics (during this time, the CPU workers continue to work on the shared

pool), (2) empties the shared pool, (3) adds the CPU portion of the work to one of

the CPU worker’s work-stealing queue, and (4) finally offloads GPU portion of the

work to GPU. Fig. 3.12 illustrates the algorithm. It is important to note that while

the GPU is executing, CPU workers continue to work from the shared pool, thereby

eliminating the overhead seen in naïve profiling.

One of the design choices for asymmetric scheduling is to start with a shared

pool in the profiling phase instead of work-stealing. This is justified since at the

beginning we have no knowledge of how to partition work among CPU workers

and the proxy GPU worker. For example, for applications with irregularities, it

may be costly to partition the work up front into the work-stealing queues.

If both the devices are kept busy in the profiling phase by having sufficient

number of parallel iterations, it can be seen that the profiling phase will introduce

zero overhead in the asymmetric profiling algorithm (theoretical analysis is pro-

vided below in Sec. 3.5.1). Similar to the naïve profiling, the vanilla version of
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Figure 3.12: Heterogeneous execution through symmetric profiling.

asymmetric profiling may still introduce overhead in the execution phase if the it-

erations used in profiling phase are not representative of the entire iteration space.

We address this in Sec. 3.5.2.

3.5.1 Analysis

We now analyze the overhead of asymmetric profiling compared to the ideal

execution scenario. We concentrate on the analysis of the profiling phase, as the

behavior of the execution phase in the base algorithm is identical to that of naïve

profiling. Assuming the runtime offloads fp fraction of the original items to the

GPU and allows CPU threads to execute as long as the GPU is busy, the time taken

by the GPU to complete Nfp items is tp =
Nfp
Gr

. At the same time, CPU completes
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an additional tpCr items assuming there is enough work to keep it busy. In this

case, the overhead of the profiling is zero, as both GPU and CPU work all the time.

On the other hand, if the amount of work offloaded to GPU is so large that there is

not enough work items for CPU, there is a non-zero overhead. This observation is

formally stated by the following theorem.

Theorem 3.5.1. Overhead of the profiling phase in the asymmetric profiling algo-

rithm is zero if fp < αg.

Proof. The number of items executed by CPU is maximum of the amount of work

it can perform in tp time and the remaining work:

Nc =max(tpCr, (1 − fp)N)

The first argument to max is greater than the second, when tpCr > (1−fp)N , which

simplifies to fp > αg. In this case, the total amount of work executed by CPU and

GPU is Np = Nfp +
NfpCr

Gr
. In the ideal case, this work can be executed by CPU

and GPU working together in Np

Cr+Gr
time. This time is equal to the profiling phase

time Nfp
Gr

as can be shown by simple algebraic transformations. The overhead of the

profiling phase is, thus, zero.

In practice, fp is likely to be greater than αg only when CPU is significantly

faster than GPU. For example, if we offload 5% of work to GPU for profiling, CPU

should be at least 19x faster than GPU to trigger non-zero overhead. To handle such

cases our work can be combined with static profiling techniques such as [O’Boyle

et al., 2013] to determine if the workload has a strong CPU bias and use CPU-biased

asymmetric profiling instead of the GPU-biased one.
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3.5.2 Addressing load imbalance

In order to address bias due to the initial profiling, the profiling can be re-

peated until a certain termination condition is reached, after which the benefits of

re-profiling diminish. This ensures that we profile more than once to understand

the application-level imbalance better. We consider two termination conditions:

convergence and size.

Convergence-based strategy repeats profiling until βg converges. For ex-

ample, we could re-profile until computed ratios differ by no more than 0.05. The

assumption with convergence strategy is that once the distribution ratio stops chang-

ing, it is close to the ideal ratio αg. Convergence strategy works well when distri-

bution ratio indeed stabilizes after temporary converging. On the other hand, size-

based strategy repeats the profiling until a certain portion of the work items has been

completed. For example, we could re-profile till the number of remaining items is

more than 50%. Size-based strategy works well when i) running CPU threads in

profiling mode does not impose a lot of overhead, and ii) the irregularity of the

workload gets amortized over fixed portion of the items.

When re-profiling, it is important to keep both CPU and GPU busy. As has

been shown by Theorem 3.5.1, asymmetric profiling incurs no overhead only when

there is sufficient amount of work to keep CPU busy while GPU performs its fixed

portion of work. The profiling strategy, thus, should keep the total fraction of items

offloaded to GPU below the ideal distribution ratio αg, or, more practically, below

its approximation, βg, from a prior profiling run.
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It is important to note that there can be scenarios where neither size-based or

convergence-based strategies can determine the optimal partitioning – for example,

triangular loop inside a parallel_for loop. We believe such scenarios are rare in

practice – none of the sixteen benchmarks we studied exhibit this kind of behavior.

3.5.3 Multiple invocations per kernel

In programs where the kernel is executed multiple times, the programmer

can assume the first invocation as a profile run to obtain the rate of execution on

both devices. After the first run, whenever we execute some items on one or both

devices, we observe the execution rates and update our offload ratio βg according

to the selected update strategies described below.

3.5.3.1 Update functions:

Given an execution of some items on the devices, we use (Cr, Gr, Cn, Gn),

where Cr and Gr are rates and Cn, Gn are number of items processed by the CPU

and GPU respectively. Two variants we propose are :

1. Greedy: Simply use the Gr, Cr to compute βg. This is always used the first

time a rate is computed since we assume no initial distribution of work-items.

2. Sample weighted: Compute w =
Cn+Gn

Cn+Gn+Tn
, where Tn is the number of items

used to compute the rate so far, and βnew
g =

Gr

Gr+Cr
. And set the new ratio to

be βg = wβnew
g + (1 −w)βg. Update Tn+ = Cn +Gn.

We also evaluate a device-weighted variant, which weights the rate computed by
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each device by the number of items processed by the device for that profiling

run. We do not observe a significant improvement in the performance of device-

weighted updates. We use the sample-weighted updates for our experimental re-

sults.

3.6 Evaluation

We now present an evaluation of our techniques. We begin with an overview

of the hardware and software environment. We next describe the benchmarks used

in the evaluation and their static and runtime characteristics. Finally, we present

performance results and follow it up with a summary.

Runtime: During program execution, the runtime loads the embedded OpenCL

code and just-in-time compiles it to GPU ISA using the vendor-specific OpenCL

compiler. It also decides how to distribute the work between the CPU and GPU.

It implements work-stealing on the CPU, with one of the CPU worker threads (the

GPU proxy thread) offloading to the GPU as guided by online profiling. The ob-

served distribution ratio, βg, for our scheduling algorithms (described in Sec. 3.4

and Sec. 3.5) is computed in the GPU proxy thread which then redistributes the

parallel iterations among the CPU and GPU cores.

3.6.1 Environment

We evaluated our scheduling techniques on a desktop computer with a 3.4GHz

Intel 4th Generation Core i7-4770 Processor with four CPU cores and with hyper-

threading enabled. The integrated GPU is an Intel HD Graphics 4600 with 20 ex-
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BarnesHut (BH) [Barnes and Hut, 1986] 1M bodies, 1 step 1 Barneshut 1 6.852 1000000 1.96 × 1011

BarnesHut(unoptimized) (BH-U) [Barnes and Hut, 1986] 1M bodies, 1 step 1 Barneshut 1 9.194 1000000 1.98 × 1011

LavaMD (LMD) [Che et al., 2009] -boxed1d 10 1 kernel 1 0.582 1000 2.02 × 1010

Matrix Multiply (MM) 2048 by 2048 float matrix 1 testc 1 1.506 4194304 7.08 × 1010

Ray Tracer (RT) sphere=256,material=3,light=5 1 kernel 1 2.426 10240000 3.25 × 1011

Breadth first search (BFS) W-USA (∣V ∣=6.2M, ∣E∣=1.5M ) 1 relax 1748 14.05 6262104 5.68 × 1011

Black Scholes (BS) [Bienia et al., 2008] 64K 1 mainwork 2000 0.32 65536 6.17 × 1010

Connected Component (CC) W-USA (∣V ∣=6.2M, ∣E∣=1.5M ) 1 merge 2147 22.37 6262104 1.54 × 1012

Face Detect (FD) [OpenCV, 2006] 3000 by2171 Solvay-1927 1 HaarDetect 132 1.884 22-1370340 6.09 × 1010

Heartwall (HW) [Che et al., 2009] test.avi 1 kernel 5 0.924 51 4.62 × 1010

N-Body (NB) 4096 bodies 1 Slowpar 101 4.506 20475 3.91 × 1011

Seismic (SM) [TBB (Intel Threading Building Blocks), 2011] 1950 by 1326, 100 frames 1 UpdateStress 100 2.048 25791520 1.43 × 1011

Shortest Path (SP) W-USA (∣V ∣=6.2M, ∣E∣=1.5M ) 1 relax 2577 30.66 6262104 9.17 × 1011

BTree (BT) [Che et al., 2009] big-command 2 kernel_cpu 1 0.586 1000000 1.66 × 1011

kernel_cpu_2 1 1000000
Computational fluid dynamics (CFD) [Che et al., 2009] missile - 0.3M 4 compute-time 6000 24.072 232704 1.49 × 1012

compute-flux 6000 232704
compute-step 2000 232704
init 1 232704

Particle Filter (PF) [Che et al., 2009] (128,128,10), 80K particles 7 find-index 9 4.646 8000 3.50 × 1011

calculate-u 9 8000
divide-weights 9 8000
update-weights 9 8000
particle-filter-like 9 8000
initial-arrays 1 8000
initial-weights 1 8000

Table 3.1: Key statistics for the kernels of benchmarks used in the evaluation.
Oracle-time is the time taken by the best offline distribution, and is also used as the
normalizing factor in Fig. 3.14 and Fig. 3.15.

ecution units (EUs), each with 7 hardware threads where each thread is 16-wide

SIMD, and running at a turbo-mode clock speed from 350MHz to 1.2GHz. The

system has 8GB system memory and is running 64-bit Windows 7.

3.6.2 Benchmarks

We consider a diverse set of applications (sixteen in total) to evaluate our

proposed runtime system. These applications span a spectrum of application do-

mains and exhibit different behaviors: single kernel vs. multiple kernels, single

invocation vs. multiple invocations, and regular vs. irregular. Most of these were

ported from existing sources: TBB [TBB (Intel Threading Building Blocks), 2011],
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Figure 3.13: Total number of dynamic instructions of benchmarks divided into
three categories: memory, control, and remaining, obtained via a serial CPU execu-
tion. The number of dynamic instructions is given in Table 3.1(column 9).

Rodinia [Che et al., 2009], and Parsec [Bienia et al., 2008]. We also developed some

applications from scratch. The details of our benchmarks are shown in Table 3.1.

The compile-time and run-time characteristics of our benchmarks are tabu-

lated in Table 3.1. The order of the benchmarks we use are as follows: (1) single

kernel and single invocation (BH, BH-U, LMD, MM, RT); (2) single kernel and

multiple invocations (BFS, BS, CC, FD, HW, NB, SM, SP); (3) multiple kernels

and multiple invocations (BT, CFD, PF). The table shows the number of times a

kernel is invoked in column 6. The Oracle-time in column 7 reports the absolute

execution time for an Oracle approach described in Sec. 3.6.3 – this serves as the

baseline for the runtime evaluation in Fig. 3.14 and Fig. 3.15, which are normal-

ized to this time. Column 8 reports the number of parallel iterations per kernel

invocation. Column 9 reports the number of instructions executed at runtime per

benchmark.

To better understand the irregularities in our benchmarks, we also analyze

63



0

20

40

60

80

100

BH BH-U LMD MM RT BFS BS CC FD HW NB SM SP BT CFD PF Gmean

CPU GPU Naïve ASYM SharedQ

Figure 3.14: Relative speedup for all benchmarks compared to Oracle. Oracle is at
100% (higher is better).

the dynamic instruction traces for a single-threaded CPU execution via Intel VTune

Amplifier to determine the run-time behavior of our applications5. Fig. 3.13 shows

the division of the instructions into three categories: memory operations (load and

store instructions), control instructions, and remaining, which can be a crude esti-

mate for the compute instructions. The absolute number of dynamic instructions

is given in column 9 of Table 3.1. Applications such as BH, BH-U, BFS, CC,

SP, BT, and PF show considerable amount of control flow irregularities where as

FD, and SM show significant amount of memory related operations. Since these

applications are not hand-tuned for GPUs, the memory related operations may not

necessarily be coalesced and give an indication of non-coalesced memory accesses

on the GPU. Also note that benchmarks with large amount of control flow irregu-

larities may not perform well on the GPU.

5Note that this measurement provides an upper-bound of the irregularities present in a bench-
mark.
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3.6.3 Comparison schemes

We compare the following scheduling strategies to distribute the parallel

iterations between the CPU and GPU:

1. CPU: Multi-core CPU execution based on TBB. The parallel_for invocation

is simply forwarded to the TBB runtime to complete the execution.

2. GPU: GPU-only execution, where all items are offloaded to the GPU via

OpenCL.

3. Oracle: The best performance obtained by exhaustive search of different

amount of parallel_for iterations assigned to the CPU and GPU. The GPU

works on some percentage of the parallel iterations while the CPU works on

the remaining ones. The percentage is varied from 0% to 100% on the GPU

in increments of 10% and the best performance obtained is selected. The

best percentage for single kernel benchmarks is given in Table 3.2(row 1) and

the absolute runtime for those percentages is given in Table 3.1(column 7).

We select the runtime obtained by such a technique as the baseline for all

comparisons.

4. Naïve: The naïve profiling scheme described in Sec. 3.4 where we use the

same profiling size for both the CPU and the GPU.

5. ASYM: The asymmetric profiling scheme described in Sec. 3.5. We use the

sample weighted variant for multiple invocation kernels.
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Figure 3.15: Comparison of different adaptive schemes. Vertical axis shows rela-
tive speedup vs. Oracle (higher is better).

6. SharedQ: We also compare against a shared queue implementation where a

GPU proxy-thread atomically grabs a fixed chunk of work (profile size) and

offloads it to the GPU while CPU threads also atomically obtain work-items

from the same global queue. Since there will be contention on the shared

queue, this approach may suffer as the number of workers increase6.

We also evaluate two variants of our asymmetric profiling algorithm to ad-

dress load imbalance, as described in Sec. 3.5.2:

• ASYM+CONV: A convergence-based update strategy, where half of re-

maining items are used for reprofiling until convergence is achieved. Con-

vergence is reached when the βg computed on two successive profiling steps

do not differ by more than 0.05.

• ASYM+SIZE: A size-based update strategy, where we repeatedly profile

with fp items on the GPU until at least half of the total items are left.

6Note that our SharedQ implementation does not use the optimization strategies described in
Sec. 3.5.3.
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3.6.4 Results

Heterogeneous execution: First we highlight the significance of hetero-

geneous execution compared to single device execution. We compare the single-

device execution (either on the CPU or the GPU) against the offline optimal model

(Oracle). Fig. 3.14 shows that there is an obvious advantage to heterogeneous ex-

ecution: (1) using only the multi-core CPU, we can achieve 47.07% of Oracle on

average; (2) using only the GPU, we can achieve 49.67% of Oracle on average.

Clearly, heterogeneous execution results in 2× improvement in runtime compared

to the best of executing on the CPU-alone or the GPU-alone. These results empha-

size the improvement of heterogeneous execution over single device execution.

Naïve profiling: Naïve profiling as described in Sec. 3.4 performs online

profiling on a fraction of the parallel iterations to determine the offload ratio, βg.

Although the profiling information obtained is able to outperform single-device

execution as illustrated in Fig. 3.14, it only performs at 82.7% of the Oracle on av-

erage. There are two sources of inefficiency in naïve profiling: (1) The overhead

of profiling can dominate the execution time for workloads that are highly biased

towards a particular device. For instance NB and MM are both highly biased to-

wards the GPU. With a fixed profiling size on both devices, the scheduler has to

wait at the barrier for both devices to report the rates to determine the distribution.

If the GPU profiling finishes early, the scheduler waits for the CPU to complete the

profiling step resulting in a large overhead. (2) The inaccuracy of profiling infor-

mation, although not evident, is another source of inefficiency. For instance, FD

only obtains 61.2% of the Oracle, because the profiling information obtained is not
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BH BH-U LMD MM RT BFS BS CC FD HW NB SM SP
Oracle 40 40 0 100 70 70 100 70 0 0 100 70 50
Naïve 52.4 44.3 0 89.6 84.4 72.8 94.9 73.9 31.1 0 77.3 77 71
ASYM 47.9 41.7 0 92.5 84.3 72.8 96.2 73.8 32.9 0 89.6 92.1 70.6
ASYM+SIZE 39.6 40.2 0 92.2 69.7 61.1 96.0 68.8 18.4 0 88.3 92.2 59.2
ASYM+CONV 41.2 40.6 0 92.4 70.6 73.1 96 73.8 33.2 0 89 92.7 70.7

Table 3.2: GPU work percentages computed by different schemes for single-kernel
applications.

representative of the entire iteration space. The inaccuracy can also be observed in

optimal distribution percentages (as shown in Table 3.2) for benchmarks with single

parallel_for kernels.

Asymmetric profiling: As described in Sec. 3.5, asymmetric profiling does

not suffer from the overhead of waiting on a barrier to compare the rates for both

devices. Most applications benefit from using asymmetric profiling compared to

naïve profiling. That is, it performs on average at 94.2% efficiency compared to

the Oracle. The biggest improvement is observed in applications that show a high

GPU bias such as NB and MM. This is because the distribution ratio βg can be

decided quickly, and hence the overhead of profiling is reduced significantly (close

to zero7). We note, however, that BH and FD do not benefit from the vanilla ver-

sion of asymmetric profiling. This is, as explained before, due to the inaccuracy of

the profiling information as evident from the distribution computed by asymmetric

profiling differing from the optimal distribution obtained by the Oracle (as shown

in Table 3.2). Note that benchmarks such as BS, BT, BFS, and SP improve perfor-

7This overhead in our implementation consists of : for N workers, we read a local counter from
each worker and perform N additions and 3 divisions, which is negligible compared to the total
execution time of an application.
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mance better than Oracle using asymmetric profiling – this is because the Oracle is

obtained in increments of 10%.

ASYM+CONV: In order to address the load imbalance and the inaccuracy

of profiling information, we rely on repeated profiling to achieve more accurate in-

formation. The convergence based approach repeatedly profiles until the offload

ratio, βg, determined by consecutive profiling phases differs by less than 0.05. This

does introduce an overhead of repeated profiling, but the benefit of more accu-

rate profiling information should offset this overhead. ASYM+CONV can achieve

on average 94.6% of Oracle as shown in Fig. 3.15. The biggest improvement

is observed in the applications that have some irregularity, for instance BH. The

convergence based approach determines a more accurate distribution ratio, as ev-

ident from the percentages reported in Table 3.2 (47% for ASYM versus 41% for

ASYM+CONV) is more closer to the optimal value 40%. Similarly, for RT, the

ratio reported becomes 69% versus the optimal 70%.

However, we observe that this approach still does not improve FD, and fur-

thermore the efficiency of PF goes down. Both of them are false positives as they

converge fairly quickly in ASYM+CONV approach. The source of inefficiency for

FD stems from the algorithm: the cascade of classifiers is grouped to discard failing

face images early. The profiling phase obtained from the initial rounds converges

in two iterations on these cascade of classifiers, which is not representative of later

stages that search further for faces in parts of the image not discarded by earlier

stages. For PF, an inaccurate rate due to convergence makes the performance drop

from 87% for ASYM to 83% for ASYM+CONV. Clearly, in order to improve the
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efficiency of FD and PF, the profiling information has to be resilient to local op-

tima. Also note that, FD shows a large amount of memory related irregularities and

PF shows a large amount of control flow and memory irregularities (as shown in

Fig. 3.13).

ASYM+SIZE: Instead of relying on convergence, we use half of the work-

items to determine the profiling ratio and use this ratio to distribute the remaining

items. This approach proves the best performing overall since it does not rely on

an initial portion of the work-items to determine the rate and does not converge

on a local maxima. There is an overhead to repeated profiling which reduces the

efficiency for some applications, but not significantly. However, the biggest winner

is PF, which performs at 96% of Oracle, followed by FD, which performs at 95% of

Oracle. Overall, the size-based approach performs at 96.8% (geo-mean) efficiency

of the Oracle, thereby clearly demonstrating that it is the best strategy across all

benchmarks.

3.7 Summary

This chapter shows how to transform C++ code to execute efficiently on in-

tegrated GPUs. To facilitate a large set of applications written in a language such as

C++, key features such as classes, virtual functions, and pointer-based codes have to

be supported. Besides supporting these features, the translation has to ensure that

the generated code does not incur large overheads through several optimizations.

Some of these optimizations are extensively studies in literature, while some, as

described in Sec. 3.2.5 are specific to the target architecture. Although a compiler
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enables application kernels to be executed efficiently on an integrated GPU, run-

time information is required to optimally balance workload between the multi-core

CPU and integrated GPU in a heterogeneous execution. Specifically, irregular ap-

plications exhibit large variance in performance behavior which cannot be modeled

at compilation time. These applications require runtime strategies to dynamically

profile and adjust the workload distribution between the multi-core CPU and inte-

grated GPU. A naïve profiling strategy has the potential to incur large overheads,

especially for applications that are balanced towards either the multi-core CPU or

the integrated GPU. An alternate approach, as described in Sec. 3.5 avoids this

problem by not stalling the multi-core CPU during the profiling phase. Various

heuristics can be used to improve the balance even further at the potential expense

of repeated profiling phases.
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Chapter 4

Data-parallel execution with discrete GPUs1

The previous chapter discussed execution on a heterogeneous system con-

sisting of a CPU and an integrated GPU. These devices are attractive as they provide

an accelerator in the form of an integrated GPU at a low power budget along with

coherent memory obviating the need for data movement. However, these acceler-

ators are constrained in their computational capability. When more powerful ac-

celerators are required, or when multiple accelerators are required, a discrete GPU

is used. In this chapter, we shift our focus to discrete GPUs to accelerate graph

applications.

4.1 Introduction

GPUs, primarily designed to accelerate graphics workloads, can execute

regular kernels efficiently. Irregular kernels, such as those for graph applications,

can be very challenging. There are two aspects of graph applications that are ad-

dressed in this chapter. First, we discuss the implementation of a topology-driven

1Portions from this chapter have been published in [Kaleem et al., 2015, Kaleem et al., 2016]
where the synchronization strategies for Stochastic Gradient Descent were first presented. All key
ideas in these publications were conceived by the first author, as well as all the OpenCL implemen-
tations.
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algorithm (Sec. 2.3.2), focusing on the scheduling of activities on a single device

and how to harness an efficient single device execution in a heterogeneous sys-

tem. Next, in Sec. 4.7, we discuss data-driven algorithms Sec. 2.3.2 which require

efficient communication mechanisms across different devices in a heterogeneous

system.

4.2 Graph algorithms on discrete GPUs

We begin with topology-driven graph algorithms. When writing code for

such algorithms, GPU programmers are faced with many implementation choices,

but the performance implications of these choices are usually not obvious. Some

implementation choices can be easily explored by changing compiler flags or modi-

fying a few lines of code, but others lead to entirely different programs so exploring

the space of possibilities may involve substantial programmer effort. The choice of

synchronization strategy is an example. At a high level, programmers have a choice

between coarse-grain, barrier-style synchronization or fine-grain synchronization

using constructs like atomics or locks. To use barrier-style synchronization, the

program must be executed in rounds and the tasks in each round must be indepen-

dent; with fine-grain synchronization, there may not be a notion of rounds, and

concurrently executing tasks may read and write the same locations provided these

memory accesses are properly synchronized. Not only are the resulting programs

very different but each synchronization style can itself be implemented in many

ways, as we show in this chapter. Furthermore, the performance of irregular graph

programs can be very dependent on the structure of the input graph: a program
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Figure 4.1: Taxonomy of scheduling strategies.

that performs well for power-law graphs may perform poorly for high-diameter

graphs like road networks. Given all these complications, programmers would ob-

viously benefit from guidelines that would help them make the right implementation

choices.

As a step towards this goal, we consider the problem of implementing syn-

chronization for graph algorithms, using non-negative matrix factorization (NMF) [Lee

and Seung, 2001] as an exemplar. NMF is used to solve problems such as prod-

uct recommendation and object recognition [Lee and Seung, 1999]. In Sec. 4.2.1,

we describe a particular approach for solving NMF called stochastic gradient de-

scent (SGD), which is an important general optimization method in machine learn-

ing. Fig. 4.1 shows a taxonomy of scheduling strategies for implementing SGD on

GPUs.

In Sec. 4.3, we describe offline techniques, which pre-process the input to

find independent tasks before executing the program, and generate code in which

all synchronization is barrier synchronization. Some of these techniques compute

maximal matchings in the graph to minimize the number of barrier synchroniza-
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tions. We also explore a class of preprocessing techniques called diagonal match-

ings, which have lower preprocessing time but may require more barrier synchro-

nization. In Sec. 4.4, we describe two online schedules that we call Edge-locked

(EL) and Node-locked (NL) implementations, which use fine-grain synchronization

to coordinate the parallel tasks. We discuss strategies to execute SGD in a hetero-

geneous section in Sec. 4.5. In Sec. 4.6, we evaluate the performance of these

implementations of SGD on two platforms, an NVIDIA Tesla K40C and an AMD

Hawaii Radeon R9-290X for both power-law graphs and road networks.

4.2.1 Stochastic Gradient Descent (SGD)

Recommendation systems [Adomavicius and Tuzhilin, 2005] solve prob-

lems like the Netflix challenge problem, which can be described abstractly as fol-

lows: given a set of users U , a set of movies M , and an incomplete database of

movie ratings by users, predict how users will rate movies they have not yet rated.

One way to solve this problem is through non-negative matrix factorization,

which is a kind of low-rank approximation. The database of ratings is represented

as a sparse matrix R in which the rows represent users and the columns represent

movies. Low-rank approximation finds two low-rank dense matrices W and H

such that R≈W∗H as shown in Fig. 4.2. That is, each non-zero entry in R must be

roughly equal to the corresponding entry in W∗H; the remaining entries in W∗H

are the predictions for the missing ratings.

Low-rank approximation can be formulated as a graph problem. The database

of ratings R is represented as a bipartite graph between users and items; if user u
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assigned a rating r to a movie m, there is an edge (u,m) in the graph with weight

r. The matrices W and H are represented by unknown vectors of length t associ-

ated with the nodes representing users and movies respectively, as shown in Fig. 4.3

(these are known as feature vectors). The problem is to find values for these vectors

such that for every edge (u,m) with weight r, the inner-product of the vectors on

nodes u and m is roughly equal to r.

SGD is an iterative algorithm that computes feature vectors by making a

number of sweeps over the bipartite graph. The vectors are initialized to some

arbitrary values. In each sweep, all edges (u,m) are visited. If the inner-product

of the vectors on nodes u and m is not equal to the weight on edge (u,m), the

difference is used to update the two feature vectors. Sweeps are terminated when

some heuristic measure of convergence is reached.

Parallelism can be exploited in each sweep by processing edges in parallel.

Two edges can be processed in parallel provided they do not share a node; oth-

erwise, they are said to conflict and must be processed serially. In our example,

edges a and b conflict because they share the same movie m0; similarly, edges a

and f conflict because they share the same user u0. Thus, the programmer needs to

synchronize accesses to edges to avoid processing conflicting edges concurrently.

The rest of this chapter explores the performance implications of different ways of

implementing this synchronization.
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4.3 Offline Schedules

In a given graph, a set of edges is said to constitute a matching if no two

edges in that set have a node in common [Garey and Johnson, 1990]. Matchings

are useful for parallel SGD computation because the edges in a matching can be

processed in parallel without the need for synchronization. A maximal matching is

a matching m such that every edge not in m conflicts with some edge in m.

Offline schedules pre-process the graph by partitioning its edges into a set

of matchings. The SGD computation is then implemented as a series of super-steps

separated by barriers; in each super-step, the edges in one matching are processed

in parallel without synchronization. In Sec. 4.3.1, we describe maximal-matching

schedules which partition the edges of the graph into a sequence of maximal match-

ings.

The second approach relies on the structural properties of the bipartite graph.

If the graph is viewed as an adjacency matrix, entries along the diagonals of the

matrix can be processed concurrently as they do not share any end-points. This

observation allows us to utilize sparse linear algebra frameworks such as CUDA-

CHiLL [Rudy et al., 2011] to synthesize scheduling routines for graph applications

such as SGD. These diagonal-matching schedules are described in Sec. 4.3.2.

To illustrate the schedules, we use the graph of Fig. 4.3 and a hypothetical

GPU with two threads. Our actual implementations run on an NVIDIA Tesla K40

and AMD R9-290X, as explained in Sec. 4.6, so the two-thread hypothetical GPU

is used only for illustration.
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4.3.1 Maximal matchings schedules

The first category of schedules rely on maximal matchings. Algorithm 1

shows the algorithm to construct a maximal-matching schedule. To build a con-

flict free schedule, i) a maximal matching m is constructed from the graph; ii) the

edges belonging to the maximal matching are removed from the graph; and, iii) the

process repeated until there are no edges left in the graph. We refer to this set of

maximal matching as a matchings-set M . The number of matchings inM is greater

than or equal to the max-degree of the graph Dmax since all edges of that node must

be processed in separate matchings. Fig. 4.4(a) shows the matchings-set M for the

sample graph.

1 while{edges(g) > 0}{
2 m =maximal_matching(g)
3 g = g ∖m
4 M =M ∪ {m}
5 }
6 return M

Algorithm 1: Algorithm for constructing a maximal-matching sched-
ule. Given a graph g, returns the set of matchings M .

Given a matchings-setM , we describe three different strategies for schedul-

ing edges within a set m ∈M .

4.3.1.1 All-Graph Matching-Edge schedule (AGM-E)

In an AGM-E schedule, matchings are processed one at a time. Each thread

grabs an edge, load the labels at the end-points of that edge, performs the SGD

computations, and updates those labels. This process is repeated until there are
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T in top-left cell indicate schedules where each row indicates a time-step and each
column lists the edges processed by a thread.
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no more edges left to be processed in that matching. Note that AGM-E makes no

attempt to schedule edges connected to the same node on the same thread.

For our sample graph, an edge schedule of this sort is shown in Fig. 4.4(b).

In our model GPU, we can execute only two edges per step so the processing of the

first matching takes two steps, and a sweep over all edges takes eight steps.

4.3.1.2 All-Graph Matching-Node schedule (AGM-N)

Unlike the AGM-E schedules, these schedules attempt to exploit locality in

processing edges and utilize the local shared memory of the GPU to store the data

associated with the nodes.

In our implementation, edges connected to a given movie node are all pro-

cessed by the same thread. This is accomplished by processing movie nodes in

blocks of T nodes, where T is the number of threads (the last block may have fewer

nodes). Consider Fig. 4.4(c), which shows a matrix in which the rows are the match-

ings and the columns are the movie nodes. Conceptually, we divide the columns of

this matrix into blocks of T nodes, and process these blocks sequentially. Since we

have two threads in our example, m0 and m1 are in the first block, and m2 and m3

are in the second block. When processing a given block of nodes, we iterate over all

matchings in sequence, processing the appropriate edges as shown in Fig. 4.4(d).

Each block column is processed by making a kernel call. Before a block

column of movie nodes is processed, the associated movie node data is read into

shared-memory. Global inter-thread block synchronization is used to separate the

processing of edges from different matchings. After the processing is complete, the
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movie node data is written back into memory.

4.3.1.3 Sub-Graph Matching (SGM)

This strategy can be viewed as a refinement of AGM-N. For large graphs,

the number of nodes will be more than the number of threads T . In that case, com-

puting a matchings-set for the entire graph and then repackaging it for the AGM-N

schedule can be inefficient. In Fig. 4.4(d), it takes four steps to execute the second

block of nodes consisting of {m2,m3} even though edges i and j can be processed

in parallel with edges k and l respectively. Intuitively, if the number of threads is

smaller than the number of nodes, the nodes will be processed in blocks, so match-

ings should be computed only for nodes in the same block.

This is accomplished by the SGM scheduling strategy. SGM first sorts the

nodes in decreasing order of node degree. Then it partitions the nodes into blocks

of size T . For each block, the matchings-set is computed, and edges are scheduled

for that matchings-set as in AGM-N. The sub-graph matchings for the sample graph

is shown in Fig. 4.4(e), and the SGM schedule is shown in Fig. 4.4(f).

The preprocessing time for SGM is different from the preprocessing time

for the all-graph matching variants. When building all-graph matching, a sin-

gle matchings-set is built for the entire graph. However, for SGM, we build the

matchings-set for each block of nodes separately.
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Figure 4.5: Diagonal matchings schedules for the sample input.

4.3.2 Diagonal matchings schedules

The schedules discussed in Sec. 4.3.1 are based on maximal matchings. To

reduce the preprocessing overhead, schedules can be constructed using matchings

that are not necessarily maximal.

One way to construct matchings cheaply is to exploit the matrix represen-

tation of the graph [Venkat et al., 2015]. In the matrix representation, edges along

a diagonal do not share any nodes and can be processed concurrently. Different

diagonals must be serialized, however.

Diagonal matchings schedules can be advantageous as they facilitate tem-

poral reuse of the nodes, but the benefits must outweigh the overhead of the barrier

synchronization between diagonals. We increase the granularity of work within a

diagonal, and therefore reduce the frequency of barrier synchronization, using two

diagonal variants: (1) Diag (Sec. 4.3.2.1) and, (2) BlkDiag (Sec. 4.3.2.2).
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4.3.2.1 Diagonal (Diag) schedule

Diag also exploits the parallelism within a single edge by processing the

update to the feature vector in parallel. This ordering also achieves global memory

coalescing for accesses to the feature vector across threads. We launch a 2-D grid

of threads of dimension F by E, where F is the size of feature vector (e.g., 16

floats), and E is the number of edges to be processed in a kernel call. A thread

(i, j) processes the ith component of the feature vectors of the end points for edge

j.

The maximum number of diagonals is ∣M ∣+ ∣U ∣−1 and the maximum width

of a diagonal will be the number of columns. In our example, 4 movies (columns)

and 6 users (rows) result in 4 + 6 − 1 = 9 diagonals with the longest diagonal con-

taining 4 entries. The complete list of diagonals, starting from the top is given in

Fig. 4.5(a).

4.3.2.2 Block-Diagonal (BlkDiag) schedule

The BlkDiag schedule reduces the size of the matrix by blocking along

both dimensions. This reduced matrix has a reduced number of diagonals – if the

movies are blocked by a factor R, and the users by a factor C, then the total number

of diagonals in the BlkDiag schedule is ∣M ∣/R + ∣U ∣/C − 1.

A diagonal schedule obtained after 2 × 2 blocking is shown in Fig. 4.5(b).

There are now only 4 diagonals with each block consisting of at most 4 edges.

Our implementation assigns each block to a thread. Within a block, the same set of

movies and users are used repeatedly and the feature vectors corresponding to those
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rows and columns are cached in registers or GPU shared memory.

Comparison to Matchings The diagonal matchings schedules are relatively easy

to compute; the diagonal is determined by the difference in the row and column

indices for an entry. It is, however, conservative because it will schedule entries

concurrently only if they are along the same diagonal. In contrast, the maximal

matchings schedules are more liberal but also costly to compute. Since the maximal

matching does not constrain itself to any diagonal, it can discover more entries to

schedule concurrently. For instance, in our example d3 contains (a, g). We can also

schedule either of i or j with these entries since they do not have any end point in

common. The diagonal matchings schedule will not schedule i or j with d3 since

neither is along the diagonal d3.

4.4 Online Schedules

Online schedules assign edges to threads without attempting to avoid con-

flicts. Therefore, synchronization primitives such as atomics must be used to ensure

mutual exclusion.

We describe two strategies. The Edge-locked strategy EL, described in

Sec. 4.4.1, assigns edges to threads. The Node-locked strategy NL, described in

Sec. 4.4.2, assigns nodes to threads.
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Figure 4.6: Schedules observed for sample input under EL(without and with shuf-
fle) and NL on the hypothetical GPU. Each row indicates edges scheduled at that
time slot, and each column indicates the item processed, if any, by each thread.

4.4.1 Edge-locked (EL)

In each SGD sweep, threads make a number of passes over the set of edges

until all edges have been processed. To process an edge, the thread attempts to

acquire locks on its two nodes, and updates node labels if lock acquisition succeeds.

Otherwise, the edge is deferred and retried in the next pass.

One possible schedule for the edges of Fig. 4.3 is shown in Fig. 4.6(a). We

assume that the edges in the graph are stored in alphabetical order, which is similar

to a CSR representation of Fig. 4.3. Since our hypothetical GPU can execute two

tasks at once, it will pick chunks of two edges from the work-list and try to process

them. The first two edges are {a, b}. Since they share the same source m0, only
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one thread succeeds in acquiring the lock, and edge b is delayed to the next pass.

The next chunk to be executed is {c, d}, and only one edge gets processed while the

other is moved to the next pass, and so on. The second pass, which starts at step 6,

processes edges {b, d, h, j, l} which could not be processed in the first pass.

The main problem with this strategy is that if edges connected to the same

movie are tried concurrently, only one of the threads will make progress. The orig-

inal ordering of the edges was derived from the CSR layout of the graph, which

stores the edges of a given node in adjacent memory locations. This introduces a

large number of conflicts, particularly for high-degree nodes.

To ameliorate this problem, we can shuffle edges randomly2 before assign-

ing them to threads. This lowers the likelihood that edges sharing the same movie

are scheduled concurrently. For our sample graph, we shuffle the edges (for instance

to {k, e, b, d, j, c, h, g, f, a, i, l}) and obtain a schedule as shown in Fig. 4.6(b). By

mixing the edges of m0 with edges from other nodes, we reduce the likelihood of

conflicts. Experiments on actual input graphs confirm that shuffling can improve

performance significantly.

For EL, preprocessing time involves the shuffling of edges to reduce the

conflicts as described above. The execution time includes the time to perform kernel

calls and the determination of whether all edges have been processed.

2Our implementation uses the std::random_shuffle call to shuffle the edges.
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4.4.2 Node-locked (NL)

The Node-locked (NL) scheduling strategy assigns movie nodes to threads.

This has two benefits. First, there is no need to acquire locks on the source node

(i.e. movie) since a node is assigned to a single thread. Locks will still need to be

acquired on the destination nodes (i.e. user). Second, unlike the EL schedule whose

access patterns make it hard to exploit locality, the NL schedule can exploit reuse

of the source node data.

Like the EL schedule, the NL schedule uses multiple passes to process all

the edges of a graph.

Fig. 4.6(c) presents a possible NL-schedule. We first schedule nodesm0 and

m1, and their edges are processed in order. In the first step, all the edges for m0

are processed and marked while f and g are deferred to the next pass. In the next

pass, f and g which were unmarked in the previous pass, are processed and marked.

Next, we schedule the remaining nodes m2 and m3, which concludes without any

conflict.

NL behaves similar to EL for the initial few passes as it can find work easily.

But after the initial few passes, there is a large overhead of finding new work as each

thread has to scan a node’s entire edge-list. This can be prohibitive for high-degree

nodes as the repeated scans become expensive.

The use of shared memory for storing the movie node’s latent vector reduces

the residency of the kernel, which means the number of edges that can be concur-

rently processed on the GPU is reduced. Further, since only one thread processes
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all edges of a node, nodes with high degrees can lead to serialization and load im-

balance. The use of marks implies that all edges must be scanned in every pass to

determine if they must be processed. As we shall see in the evaluation, these factors

play a major role in the performance of NL.

There is no preprocessing required for NL since the graph representation

allows threads to traverse neighbors of each movie/user directly. The execution

time includes the time to invoke the kernels as well as polling the number of edges

processed to check for completion.

4.5 Heterogeneous schedules

As described above, matching based schemes decompose the graph into a

set of edge-matchings. Each matching represents a conflict-free edge set which can

be executed concurrently on the GPU. We now describe why each of the different

matching schedules, AGM-E, AGM-N, and SGM, are unsuitable for heterogeneous

execution.

1. AGM-E – since each matching represents an independent set of edges (a

conflict-free set), we can partition the conflict-free set across multiple devices

and execute them concurrently. This should be more efficient than process-

ing the conflict-free set on a single device. However, the conflict free sets

for most inputs is rarely large enough to maximally utilize a single device. A

more critical issue has to do with managing a consistent global state. When

a device needs to process an edge (i, j), it needs to load the node-data asso-
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ciated with the end-points of the edge, perform the update and write back the

results. Writing back is necessary since the next conflict free setting might al-

locate either end-point i or j to a different device. Since the node-data for all

the edges in a conflict free set is not necessarily contiguous, the write-back

stage is faced with a complex merging operation of updates from multiple

devices.

2. AGM-N – we can now partition the nodes along one dimension (movies or

users) across all the devices. This reduces the number of nodes we have to

merge at each step to half since one dimension remains fixed to each device.

However, note that we cannot utilize the local memory on the device as we

have to synchronize across device at each step. This is necessary to ensure

we do not process edges across conflict-free sets.

3. SGM We make the same arguments against SGM as we did for AGM-E.

As described above, the matching schedules are too rigid for heterogeneous

execution. Instead we resort to EL, the most efficient single device schedule. If we

can partition the graph into a set of disjoint edges, we can schedule each device via

EL to process all the edges in a partition. By adjusting the size of the partitions, we

can balance the workload across different devices.

4.5.1 Graph partitioning

We build on the observation from diagonal schedules that the edges along

a diagonal do not share any end-point and can be processed concurrently. For het-
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Figure 4.7: Partitioning the graph along movies and users for multi-device exe-
cution. Arrows indicate the search pattern for more work for a device which has
just completed work on partition (1,1). First it searches horizontally to maximize
user-locality, and if it fails, it retries vertically. The numbers indicate the search
order.

erogeneous execution, we would like the diagonals to contain sufficient edges to

amortize the data movement with computation. To achieve this, we perform a 2D

partitioning of the graph as shown in Fig. 4.7. Here, we partition the adjacency ma-

trix along both dimensions, as well as partitioning the user features and movie fea-

tures. Now the devices can process blocks along a diagonal in a bulk-synchronous

manner. Each device picks a block along the diagonal, load the associate user fea-

tures and movie features as well as the edges in the block. Once the device has

finished processing the edges, it will write back the user and movie features to be

read by other devices when the next diagonal is processed.

This approach suffers from under-utilizing the devices if one of the devices

takes a long time to process its block. Since the diagonals are processed in a bulk-

synchronous manner, all the devices have to wait at the barrier. Even if the barrier
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were removed, since the number of diagonals equals the number of devices, at any

point during the execution of a diagonal, all the user and movie features are in use

by one of the devices. If a device finished execution earlier than other devices, it

still has to wait for other devices to write the result of their block before it can load

them and process a block in another diagonal.

We address the device underutilization by over-decomposing the graph. We

create Z diagonals along each dimension where Z is the over-decomposition factor.

Now, there are more diagonals than devices, so each device can now move on to a

block in another diagonal once it has completed its current block. The device will

simply scan the partitions for any unprocessed block along a diagonal and load its

user and movie features. Assuming the size of each block is a, the amount of data

transferred in processing the entire partitions is given by 2aZ2.

Instead of relying on a random search to look for more blocks to process, we

can improve the search to optimize for locality. Once a block has been processed

by a device, the device will first search for available blocks that share the same

user features or movie features with the current block. This is illustrated by the

Fig. 4.7(b). If block (1,1) has just been processed by a device, the device searches

for new blocks along the arrows shown in the figure. If a block is found on this

search path, only one of the user or movie features has to be copied into the device.

This approach reduces the amount of data moved to aZ(1 +Z).
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Table 4.1: Specifications of the platforms used for evaluation.

Host Device
K40 Scientific Linux 6.6, Kernel

2.6.32 on Intel Xeon E5-2609
with 32G RAM

Tesla K40c with 12GB
VRAM

R9-290X Ubuntu 14.04, Kernel 3.16.0
on Intel i7-3770K with 8GB
RAM

AMD R9-290X with
8GB VRAM

4.6 Evaluation

Our evaluation examines the performance of the different synchronization

schemes on two hardware platforms described in Table 4.1. The online and maxi-

mal matching schedules are implemented3 in OpenCL 1.2, the latest supported by

NVIDIA The diagonal matchings schedules are generated via CUDA-CHiLL [Rudy

et al., 2011].

We use twelve input graphs in our experiments (Table 4.2). Eight are scale-

free networks which have a power-law degree distribution with the max-degree

Dmax shown in the table. These resemble real-life inputs to recommendation sys-

tems. To study the effect of input graph structure on performance, we also evaluate

four road networks with relatively uniform degree distribution. The column labeled

EL(s) in Table 4.2 shows the running times of the EL version of SGD for each

combination of input and platform. In the rest of this section, the running times of

all other versions of SGD are normalized with respect to the running time of the EL

version for that combination of input and platform.

3Source code is available from http://iss.ices.utexas.edu.
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Table 4.2: Characteristics of the scale-free and uniform inputs. ∣V ∣ is the total
number of vertices in the graph, ∣E∣ is the number of edges in the graph, and Dmax

represents the maximum degree of any node in the graph. EL(s) is the running
time of the EL versions in seconds.

∣V ∣ ∣E∣ Dmax EL(s)

K40 R9-290X
Scale-free

STACK 0.6M 0.1M 6119 0.04 0.18
IMDB 1.3M 3.7M 1590 0.07 0.38
WIKI 0.1M 5.0M 100022 0.39 1.04
BGG 0.1M 6.0M 43331 0.22 0.53
CITP 7.5M 16.5M 779 0.32 1.69
POKEC 3.2M 22.3M 14734 0.42 2.3
LIVEJ 9.6M 68.9M 20293 1.5 7.2
NFLIX 0.4M 99.0M 227715 2.13 5.28

Road
CAL 3.7M 4.6M 7 0.08 0.49
E 7.1M 8.7M 9 0.19 0.91
W 12.5M 15.1M 9 0.37 1.58
CTR 28.1M 33.8M 8 0.9 3.54
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Figure 4.8: Geomean normalized runtime of scheduling schemes over the two input
classes evaluated over two platforms. The runtimes are normalized to EL’s runtime.
Lower is better.

4.6.1 Overall performance

Since fine-grain synchronization on GPUs is believed to be expensive com-

pared to barrier synchronization, we expected the offline implementations to per-

form better on both platforms (ignoring preprocessing costs).

Fig. 4.8 presents the running times of the different SGD implementations

(ignoring preprocessing costs), normalized to the running time of the EL version.

The first important point to note is that on the K40, the online implementa-

tions are best for both scale-free and road networks, even if we ignore the prepro-

cessing cost for the offline implementations.

Fig. 4.8 shows that on the K40, the best online implementation is 1.3× and

2× faster for power-law graphs and road networks respectively than the best offline

implementation. In contrast, on the R9-290X, the maximal matching schedule is

nearly twice as fast as the best online schedule, a result that is more in tune with
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conventional wisdom.

To investigate this further, we measured the throughput of atomic operations

on both GPUs [Elteir et al., 2011].Fig. 4.10 shows that for atomic writes to the same

location (i.e., atomics with the slowest throughput), the NVIDIA K40 achieves a

throughput of roughly 600M atomics/s (nearly 1 atomic a clock) whereas the AMD

R9-290X languishes far behind at 45M atomics/s.

This explains why the online implementations perform poorly on the AMD

GPU: the NL and EL versions have to do at least one and two atomics per edge

respectively, and atomics are relatively slow on this GPU. In contrast, the offline

implementations execute a variable, but considerably fewer, number of atomics to

implement the device-side barrier synchronization.

Nevertheless, the fact that atomics are relatively fast on the K40 does not

explain why the EL version performs so much better than the offline ones for power-

law graphs even though it performs much more fine-grain synchronization.

The explanation for this counterintuitive behavior is the following. Since

offline schedules are based on matchings, they can process at most one edge con-

nected to a given node between successive barriers. Let dm be the number of edges

connected to the highest degree node N in the graph. An offline schedule must

have at least dm matchings, so if p is the average time for processing an edge, the

execution time of the program is at least dm(p + b) where b is the cost of a barrier.

In an online schedule on the other hand, it is possible for several edges

connected to node N to be processed between successive barriers due to optimistic
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concurrency. If on the average, a fraction f of edges connected to N are processed

in each step and the cost of fine-grain synchronization to process one edge is l, the

time to process all the edges connected to N is at most (dmf(p + l) + b)/f since it

will take 1/f steps to process all the edges connected to N . This can be simplified

to dm(p + l) + (b/f). The first term is the cost to process the edges, and the second

term is the cost of barrier synchronization.

Therefore the relative costs are:

dmp + b(dm) vs. dm(p + l) + b(1/f)

If l, the cost of fine-grain synchronization, is very high, the reduction in barrier

synchronization may not pay off, as on the R9-290X. However, if fine-grain syn-

chronization is not very expensive and the online schedule can process multiple

edges from high-degree nodes in each step, the total cost of barrier synchronization

is lowered substantially, and the online schedule wins like on the K40.

Offline implementations Ignoring preprocessing time, the diagonal-based schemes

are slower than the maximal matching schemes on the K404. This is expected be-

cause the diagonal schedules process fewer edges between successive barriers, so

they also execute more barrier operations.

However, if preprocessing time is taken into account, the diagonal schedules

are faster than the matching-based versions for scale-free graphs. Thus, when pro-

4As our compiler produces CUDA code, we were unable to run these on the AMD GPU.
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Figure 4.9: Speedup of hybrid schedule over EL on the different GPUs across the
two input classes. Higher is better.

cessing scale-free graphs once (or if the graph structure changes), diagonal sched-

ules should be preferred over the offline matching-based versions.

4.6.2 Hybrid schedules

Fig. 4.8 also reveals that on the K40, while the online schemes outper-

form the maximal matchings schemes, the best-performing schedule varies by input

class. EL performs better on scale-free inputs while NL suffers from load imbal-

ance as it processes edges of a high-degree node serially which outweighs the ben-

efit from shared memory reuse. However, NL performs better on road networks

as it is able to better utilize the locality by scheduling nodes to threads. Since the

degree of nodes in a road network is uniform and small, the overhead of scanning

the edge-list of each node on each pass is small. We could choose between EL and

NL using input characteristics by using a framework such as Nitro [Muralidharan

et al., 2014]. Alternatively, a hybrid schedule could be used.

We investigated such a hybrid online schedule which runs NL as the first
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pass and processes all the remaining edges with EL schedule. NL processes most

of the edges while EL processes the remaining edges. NL also exploits shared

memory. This combination of schedules produces better performance on both the

scale-free networks as well as road networks compared to a single online schedule

as shown in Fig. 4.9.

We also investigated if combining an online scheme with an offline scheme

could improve overall performance. Essentially, we observed that the performance

of maximal matchings schedule is limited by the highest degree nodes – the edges

of these nodes must occur in different matchings and hence the highest degree de-

gree node determines the length of the critical path. Therefore, we built a hybrid

schedule which processes a set of high-degree nodes using an EL schedule and the

remaining nodes using SGM. Unfortunately, while this improves the performance

of SGM, the performance of EL is severely affected, since the high-degree nodes

exhibit a large number of conflicts amongst themselves.

4.6.3 Offline schedules

On scale-free inputs, AGM-E performs best amongst the maximal match-

ing schemes as it mimics EL without the overhead of locks. AGM-N suffers the

most from the high degree nodes in a scale-free graph as all the threads have to go

through at least ∣M ∣ ≥ dm time steps. This overhead is avoided by SGM, which

produces better matching based on the number of hardware threads. Road network

graphs which have uniformly low degree nodes allow AGM-E, AGM-N and SGM

to outperform EL.
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Figure 4.10: Atomic throughput of the NVIDIA K40 and AMD R9-290X. X-axis
shows the number of threads launched, and Y-axis shows the throughput of atomics
operations achieved. The K40 peaks at about 600M atomic operations per second,
while the R9-290X saturates at about 45M.

The sparsity of the inputs affects the performance of the diagonal matchings

schemes. The matching schedules greedily pack as many edges into a matching set

producing a smaller number of matchings compared to a diagonal schedule which

produces a matching for every non-empty diagonal.

4.6.4 Heterogeneous schedules

To evaluate SGD on a heterogeneous system, we execute the heterogeneous

schedule described in Sec. 4.5 on five real-world inputs. The execution time are

shown in Fig. 4.11. Each plot represents the absolute runtime for each input, the

different bars show the device configuration, and the x-axis represents different de-

composition factors. The inputs are ordered by the number of edges in the graph

with STACK having the least number of edges and YAHOO having the most num-
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Figure 4.11: Absolute runtime of multi-device SGD on different inputs. Each plot
represents an input with varying over-decomposition along the x-axis. Different
colors represent different device configurations. Lower is better.
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ber of edges.

The two smallest inputs, STACK and BFF, do not show any improvement

by increasing the over-decomposition. There is a slight improvement in perfor-

mance in distributing the computation to two K40 GPUs. Adding a third slower

GPU leads to a load imbalance as the the K600 stalls the completion by working on

a single partition of edges.

The three inputs POKEC, NETFLIX, and YAHOO shows more improve-

ment when moving from a single device to two K40 GPUs. POKEC shows more

reduction in runtime when using an over-decomposition of 3 on the two K40 GPUs.

However, when we observe the same factor on NETFLIX and YAHOO, the runtime

is higher for two K40 GPUs. This can be attributed to the high maximum degree

of each graph (227K and 463K respectively). This will lead the row or column

containing the maximum degree node on the critical path. For POKEC with a max-

imum degree of 14K, the critical path is significantly shorter allowing a 2-device

with over-decomposition of 3 to outperform a 2 device execution.

4.7 Data driven algorithms

Graph applications that operate on nodes of the graph and do not modify the

structure of the graph (local-computations) can be expressed as vertex programs.

The user specifies the activity to be applied to a node and the runtime manages the

application of tasks to all the vertices. For a data-driven application, the user also

needs to specify the initial work items.
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Figure 4.12: Baseline vertex-program implementations for 2 devices. Gray boxes
indicate cross-device communication. (a) shows the baseline version, whereas (b)
shows the combiner version.
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Figure 4.13: Different optimization for vertex-program implementations on 2 de-
vices. Gray boxes indicate cross-device communication. (a) shows the delayed
synchronization strategy and (b) shows the vertex-cut implementation.

1 void sssp-operator(Graph & g, Node & n, MsgQ & msg){
2 min_dist = INFINITY;
3 for(Msg m : msg[n]){
4 min_dist = min(msg, min_dist);
5 }
6 if(n.dist > min_dist){
7 n.dist = min_dist;
8 for(Edge e : g.out_nbrs(n){
9 msgs.send(n, e.dest, e.wt+n.dist);

10 }
11 }
12 }

Figure 4.14: A Pregel program for single source shortest path.
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In the Pregel programming model, the program is specified as an operation

over a node and a list of messages. Each node communicates with its neighbors by

sending messages. The execution of a program proceeds as follows. The operator

is applied to the initial set of active nodes. Since there are no messages destined to

the active nodes, the message list for each operator instance is empty. The operator

instance goes over all the incoming messages, update the node, and if necessary,

send messages to its neighbors. The act of sending a message to a node enables

the node. These nodes receiving a message will be active in the next round. The

runtime has to guarantee that all the messages in the current round will be delivered

to their destinations before the next round starts. Termination occurs when no node

is active and has no pending messages have to be delivered.

4.7.1 Base implementation

Now we describe a baseline implementation of vertex-programs on a hetero-

geneous system as illustrated in Fig. 4.12(a). We partition the nodes of the graph

across all the devices such that each device has a range of consecutive identifiers.

This makes looking up a nodes owner efficient. Each device keeps a copy of the

whole graph, though it only need to keep the subgraph incident on the nodes of the

its partition. Each device also maintains its own work-list of active nodes. First,

each device will execute the operator over the nodes in its work-list. Since the

work-list is private to each device, it does not need to check whether the node be-

longs to its partition. As the operator is applied to the active nodes, messages to

neighbors of the node are also generated. Some of the neighbors may reside in the
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same partition and others may not. Each device filters the outgoing messages to a

local message queue and a non-local message queue.

Once all the items in the work-list have been processed by each device,

the messages generated need to be routed to their destination. At this point, each

device will send a copy of its non-local messages to all the peers. Now, each device

di counts the number of local messages for each node it has generated for itself

by scanning over the local message queue. Next, each device goes over all the

non-local messages generated by every other device dj, (j ≠ j) and update the

count of number of messages destined for each node in its partition. Once this is

done, the device has a count of the number of messages intended for each node

in its partition. A prefix sum is performed to compute the indices of the compact

incoming messages. This prefix sum is used to populate the incoming messages

in a compact manner for each device. Finally, each node with a non-zero message

count is added to the active work-list for the next round, and the operator is applied

to all the active vertices, and the process repeats. Termination occurs when there

are no messages generated for all devices at a particular round.

4.7.2 Combiners

1 void sssp-combiner(MsgQ & in_msg, Arr& out_msg){
2 for(Msg m : in_msg){
3 if(is_owned(m.dest)){
4 wl.push_back(m.dest);
5 out_msg[m.dest]= min(m.val, m.dest.dist);
6 }
7 }
8 }

Figure 4.15: A combiner implementation for single source shortest path.
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For many algorithms, we can reduce the overhead of maintaining the mes-

sages by applying the combiner to each message. In the base implementation above,

we need to copy the messages twice (or have dedicated buffers on each device for

every other device) – once for counting the messages, and then after the indices

have been computed to place the messages into the correct slots. By applying the

combiner as shown in Fig. 4.12(b), we can reduce all the messages destined for

a particular node to a single message. An eager strategy applies the combiner as

soon as the message is generated. However, this requires separate tracking of the

destination of the messages, which has to be managed for each device and this will

be exchanged. There is a large overhead associated with this since the reduced

messages from a device di targeted to device dj are not coalesced, and the whole

range of reduced messages has to be copied. A lazy approach is to not reduce the

messages when they are generated. This is better for data transfer as the amount

of data transferred across devices is proportional to the number of messages. Once

the messages are delivered to a device, they are combined to a single message. The

reduction at the target device also allows the target device to track the active nodes

for the next round.

Fig. 4.15 shows the combiner implementation for single source shortest path

algorithm. This is called, on the device, after the computation have been performed

on all the devices, and the non local messages have been exchanged. Each device

goes over all the non local messages it has received from its peers, and checks if a

message is intended for a node owned by the current device. For such messages,

the destination is added to the work-list for the next round. Note that this can be
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implemented by a dense map to avoid duplicates. Since single source shortest path

is only concerned with the least incoming edge or message, the combiner updates

the value of the message for the destination to be the minimum of the original and

the new message. The message can also be stored using a dense array as there will

be at most one message for each node. The out_msg array however needs to be

initialized with the correct value prior to each combiner round (for single source

shortest path the INFINITY value).

Once the combiner has gone over all the messages from all the peers, in-

cluding itself, the operator can be applied to the nodes in the work-list, and the

process is repeated.

4.7.3 Synchronization

The primary bottleneck in a heterogeneous execution with discrete devices

is the communication overhead. Both implementations described above synchro-

nize the messages across all the devices at every round. For some algorithms, it is

not necessary to synchronize at every round. Instead, different devices can delay

the synchronization of messages without violating the correctness of the program.

For example, in the case of single source shortest path, each device can process its

local messages right away while accumulating the non local messages over rounds.

As long as the non local messages are eventually delivered to the correct desti-

nation, the execution will produce the correct results. The benefit of this delayed

synchronization is the reduced communication volume which allows devices to in-

dependently make progress, which can be very useful when devices are operating
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at different speeds; faster devices can execute more rounds in the same time as

slower devices. The principal drawback, however, is the wasted work that a de-

vice performs only to find out after a synchronization event that a message from a

peer device requires the computation to be performed again. For instance, in the

case of single source shortest path, suppose a device has started from a node x and

propagated the update to several levels of its neighbors over several rounds. Now if

upon a synchronization event, the distance of x has to be lowered due to a non local

message, the updates propagated earlier are wasted as the new updates have to be

propagated.

The algorithm specification can guide as to when a synchronization event

should take place. For single source shortest path, we can maintain the mini-

mum and maximum distance computed at each device and compare them across

devices to track if any device is computing distances too large, potentially perform-

ing wasted work. There are implementation constraints as well which may trigger

synchronization. The buffers that store outgoing messages are bounded, and if full

should be delivered to peers to be processed. Similarly, if the work-list for a device

is empty, it should request a synchronization across all the devices should take place

so it does not sit idle.

Fig. 4.13(a) shows the structure of an implementation where synchroniza-

tion is delayed. The sync? box identifies where the decision to synchronize or not

is made.

109



(a) Original hub

x

(b) Partitioned hub

xa

xb

replica-sync

Figure 4.16: Vertex cut implementations. (a) shows a high degree node x, also
known as a hub, whereas (b) shows the hub split into two low degree nodes xa and
xb.

4.7.4 Partitioning

The implementations described above assign nodes to threads, and each

thread goes over the incoming messages (equivalent to the number of incoming

neighbors), as well as generate outgoing messages if required (equal to the number

of outgoing neighbors). This works well for uniform degree graphs where the num-

ber of neighbors of a node does not vary greatly. For scale-free graphs however, the

number of nodes with a particular number of neighbors obeys a power-law distribu-

tion. This means that most of the nodes have a small out-degree but a large number

of high-degree nodes, called hubs, also exist. The hub nodes can introduce a large

load imbalance on the GPU as the entire work-group has to wait for the thread to

terminate. Furthermore, the device assigned these hubs will also suffer from poor

performance since the device will take a longer time to generate messages, and if

the hub has a high in-degree, also require a large number of messages from other

devices.

To alleviate the impact of hubs on the performance of graph applications, we
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can perform a vertex cut on the graph prior to partitioning. The idea, as illustrated

in Fig. 4.16, is to split each hub node x to multiple delegate nodes xa and xb,

each having a smaller (close to average) number of neighbors. However, now the

implementation needs to synchronize the delegates at each round to ensure that all

the devices see the same version of the hub.

The synchronization of the delegates appears similar to message exchanges

between devices. The delegates can be arbitrarily distributed in the partition of the

devices. Furthermore, each delegate has a different number of peer delegates which

may be resident on other devices. We address both of these issues by maintain-

ing a separate replica-buffer, and a mapping from the delegates to locations in the

replica-buffer. Now we can gather the delegates for each device to its replica-buffer,

merge the replica-buffers from different devices and scatter the replica-buffer back

to the delegates. This allows the remaining implementation of the system to remain

agnostic of the existence of delegates as shown in Fig. 4.13(b).

4.7.5 Results

We compare the relative runtime for different schemes on two inputs – a

road network (FLA) with uniform degree distribution and a scale-free input (RMAT20)

with power-law degree distribution. The number of nodes, number of edges and the

maximum degree of the inputs are tabulated in Fig. 4.17(b). The relative runtimes

are displayed in Fig. 4.17(a). The baseline for the runtime is the base version.

The combiner version performs significantly better than the base version.

This can be attributed to the reduced data-movement across the devices and reduced
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(b) Inputs & Vertex-cut threshold.
Input characteristics

∣V ∣ ∣E∣ Dmax

FLA 1,070,376 2,712,798 8
RMAT20 1,048,579 18,649,382 614

VertexCut threshold
Davg 2Davg 3Davg

FLA
Runtime(s) 14.224 11.0041 10.6031
NewNodes 145,863 28 0
Replicas 291,288 42 0

RMAT20
Runtime(s) 0.4390711 0.3836058 0.36065675
NewNodes 518,883 280,458 157,363
Replicas 850,238 379,679 196,185

Figure 4.17: (a) Relative runtime for different schemes compared to a base-version.
Lower is better. (b)Characteristics of the input and impact of degree threshold
vertex-cut performance.

kernel invocations. The number of messages generated across the devices for the

base version and the combiner version are very similar as shown in Fig. 4.18 and

Fig. 4.19.

The diffracted version performs better than the combiner version on FLA,

but only by a very small amount. This is due to the large number of synchronization

triggered by a wide graph such as FLA. As discussed earlier, the delayed synchro-

nizations can potentially lead to useful messages being delayed. This leads to more

wasted work. The x-axis of the schemes shows the number of passes made for

the diffracted version is 6,000 compared to 3,000 for all the other version. Given

that the number of rounds executed by the implementation doubles, but the overall

performance is still better, the utility of diffracted synchronization is valuable if ex-

ploited properly. For RMAT20, the situation is similar, but since it is a low diameter
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Figure 4.18: Performance metrics for SSSP on two K40s for FLA road input. The
time-step is along the x-axis, and the size of the data structure (work queue - left,
local messages - center, and non-local messages - right) are shown along the y-axis.
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Figure 4.19: Performance metrics for SSSP on two K40s for RMAT20 input. The
time-step is along the x-axis, and the size of the data structure (work queue - left,
local messages - center, and non-local messages - right) are shown along the y-axis.
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graph, the impact of the delayed propagation of useful messages is larger. Here, the

diffracted version takes 100 rounds compared to 35 for other versions.

Finally, for the vertex-cut, we observe that FLA performs poorly. This can

be attributed to the overhead in delegate synchronization. Fig. 4.17(b) lists the

number of new nodes (NewNodes) and the size of the buffer used for synchroniza-

tion of delegates (Replicas). For large diameter graphs, this introduces additional

synchronization at every step. If we lower the number of new nodes created by

the vertex-cut by increasing the threshold from average-degree (Davg) to twice or

thrice, the runtime also reduces. For the scale-free input RMAT20, the performance

is better than the diffracted state even though NewNodes and Replicas are rela-

tively large. Similarly, the performance can be further improved by increasing the

threshold.

4.8 Conclusion

In this chapter, we studied the impact of the choice of synchronization strat-

egy on the performance of two graph applications. First, we evaluate SGD, a widely

used topology-driven kernel in machine learning. It is a step towards the ulti-

mate goal of providing guidelines to GPU programmers for making implementation

choices when coding irregular graph programs. We implemented seven synchro-

nization strategies for this application and evaluated them on two GPU platforms

using both road networks and social network graphs as input. The synchroniza-

tion strategies can be classified as offline strategies and online strategies. Offline

strategies pre-process the graph to find independent tasks that can be run in parallel
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with barrier synchronization. Online strategies do not require preprocessing and

use fine-grain synchronization to ensure that tasks execute atomically. We build on

these schedules to investigate performance on a heterogeneous system built with

multiple GPUs.

Although conventional wisdom tells us that online strategies are not com-

petitive because of the cost of fine-grain synchronization on GPUs, we found that

this was true only on one of the GPUs in our study. On the other GPU, the cost

of synchronization was small enough that online schedules could be competitive,

and in fact they outperformed offline schedules, particularly for power-law graphs.

Furthermore, our results showed that power-law and road networks required differ-

ent online schedules because of an interaction between load-balancing and locality.

This motivated us to invent a hybrid online schedule that dominated the other sched-

ules.

Even on devices with slow atomics, the exact choice of offline schedule

is not clearcut. For computations that involve scale-free graphs, customizing the

lock-free schedule to the device, as we do with the SGM strategy, to better utilize

the hardware, can improve performance significantly.

Next, we evaluate the execution of SSSP, a data driven graph analytics ap-

plication on a heterogeneous system. For applications such as SSSP, where not all

nodes are active in every iteration, synchronization can be tuned specifically for the

application. We presented several strategies for reducing the synchronization over-

head - reducing messages to be sent, delaying synchronization, and reducing the

critical path in a vertex-program.
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Chapter 5

Pipeline-parallel execution with FPGAs1

The previous two chapters have focused on integrated (Chapter 3) and dis-

crete (Chapter 4) GPUs to accelerate graph applications. Although GPUs are de-

signed to accelerate graphics applications, their architecture is very similar to a

general purpose CPU. Both the CPU and the GPU have a Von-Neumann organiza-

tion, executing instructions through a pipelined structure. An Field Programmable

Gate Array (FPGA), on the other hand presents a different architecture compared

to the CPU. In this chapter we describe accelerating graph algorithms through the

use of an FPGA, demonstrating how the versatility in computational resources on a

heterogeneous system can be utilized to address bottlenecks for each device.

5.1 Introduction

Heterogeneous platforms containing both CPUs and FPGAs present a unique

challenge to the application developer. CPUs and FPGAs have very different perfor-

mance characteristics as well as programming models. A CPU provides the illusion

of sequential instruction execution, which is a natural fit to sequential program-

1Initial versions of this work have been presented as work-in-progress at Design Automation
Conference’17.
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ming languages. In CPU-based programming, threading and parallelism requires

programming effort, whereas sequencing is built into the execution model. An

FPGA contains a sea of parallel gates and registers, which is a natural fit to implic-

itly parallel programming used by hardware description languages like Verilog and

VHDL. In FPGA-based programming, parallelism is free whereas sequencing must

be implemented using state machines.

Modern CPUs operate at frequencies that are in the GHz range, whereas ap-

plications implemented on commercial FPGAs typically operate in the 0.1–0.3 GHz

range. Core operations for both integer and floating-point arithmetic have dedicated

datapaths in CPUs, and therefore significantly outperform their FPGA counterparts.

Memory access is a major performance bottleneck in CPUs. To counteract this,

modern processors have deep memory hierarchies with multiple levels of on-chip

cache memory. Multiple pending memory requests are also supported via on-chip

data structures such as miss status handling registers (MSHRs) [Kroft, 1981], and

sophisticated pre-fetching approaches are employed that anticipate future memory

access requests using both hardware and software techniques [Hennessy and Pat-

terson, 2011]. When these mechanisms are effective, a naive implementation of

the same computation on an FPGA could quickly become performance limited by

off-chip memory access. However, an FPGA can compensate for its low frequency

using two techniques: (i) using massive parallelism (sometimes referred to as spa-

tial computing), and (ii) customization of the hardware to the application. A single

clock cycle of the FPGA might perform a computation that take a CPU tens or

hundreds of instructions.
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Both CPUs and FPGAs have benefits and drawbacks, which is why hetero-

geneous platforms include both. However, making effective use of such heteroge-

neous platforms is a non-trivial task. CPUs and FPGAs have very different pro-

gramming models, and also very different performance models. These differences

present a high barrier to entry for users of heterogeneous hardware.

In this chapter, we explore the use of heterogeneous systems for graph an-

alytics applications. These applications are interesting for parallel computing be-

cause although there is a lot of parallelism in graph applications, they are very

memory-intensive and perform relatively little computation compared to computa-

tional science applications. We illustrate these points in Sec. 5.2 using the Single

Source Shortest Path(SSSP) algorithm as our running example. One obvious way

to use heterogeneous CPU/FPGA systems for graph applications is to divide the

graph between the CPU and the FPGA, and let both devices perform the same com-

putations but on different graph partitions. This Data-parallel execution model is

described in Sec. 5.3.1. This approach off-loads some of the work from the CPU

to the FPGA, so the FPGA can be considered to be an accelerator for the CPU.

However this approach does not exploit the very different hardware characteristics

of the CPU and FPGA described above.

In Sec. 5.3.2 and Sec. 5.3.3, we describe two different approach that we call

the Gather-Apply and Apply-Scatter execution model respectively. In the Gather-

Apply model, the FPGA marshals data from memory and performs some compu-

tations, leaving the CPU to work only on the compute-intensive part of the appli-

cation. Intuitively, this system architecture treats the CPU as an accelerator for the
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FPGA! Alternatively, for applications that perform scatters, the traditional offload-

ing of writes to the FPGA accelerates the execution of these graph applications.

In Sec. 5.4, we evaluate the presented approaches on four graph analytics applica-

tions, comparing performance with that obtained from a conventional Data-parallel

approach. Our results show that this approach performs substantially better than the

Data-parallel approach, and that the amount of performance improvement depends

on the characteristics of the input graph and algorithm. Sec. 5.5 presents a summary

of our findings.

5.2 Bottleneck Analysis

We now turn to observing the execution of the two different variants of Sin-

gle Source Shortest Path (SSSP), pull-topology and push-topology, on two differ-

ent classes of inputs. These variants are described in detail in Sec. 2.4 The classes

of inputs represent different graph properties. The LKS input represents a road net-

work characterized by uniform degree distribution. The RMAT18 input represent a

small-world input, where the degree distribution follows a power-law distribution.

We evaluate the applications on a CPU and measure the micro-architectural coun-

ters that represent the pipeline stalls (frontend and backend stalls). These are plotted

in Fig. 5.1, where each bar represents the value of the measured metric across the

kernel.

The results for the pull implementation, as described in Fig. 2.7, are shown

in Fig. 5.1(a) for the two inputs. The bars labelled Pull represent the CPU imple-

mentation - the second bar will be discussed later in Sec. 5.3.3. The first observation
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Figure 5.1: SSSP front-end and back-end stalls for pull and push versions on scale-
free and road network inputs. The bars for GA and AS shows the breakdown of
metric for the two phases using different colors.

we can make is the difference in the number of front-end(FE) and back-end stalls

(BE). The back-end stalls are about 3 orders of magnitude greater than the front-

end stalls. This suggest that the key performance bottleneck is in the operand fetch

phase for the pipeline. The best performance gain can be obtained by addressing

the back-end stalls instead of the front-end stalls. The result for the push implemen-

tations, as described in Fig. 2.10, are shown in Fig. 5.1(b) show a similar difference

in the front-end and back-end stalls.

5.3 Execution Models

Given a graph algorithm such as Single Source Shortest Path, the device

level parallelism inherent in a heterogeneous system can be exploited to speed up

computations. We explore different strategies to distribute computations on such
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1 void gather(Graph g){
2 for(int e=0; e< g.num_edges(); ++e){
3 int src = g.neighbors[e];
4 buf[e].first =g.node_data[src].dist;
5 buf[e].second=g.edge_data[e];
6 }
7 }
8 void apply(Graph g){
9 for(int n=0; n<g.num_nodes(); ++n){

10 int min_dist=INT_MAX;
11 for(int e=g.indices[n];e<g.indices[n+1];++e){
12 min_dist = min(min_dist, buff[e].first + buff[e].second);
13 }
14 g.node_data[n].dist = min(min_dist, g.node_data[n].dist);
15 }
16 }

Figure 5.2: A simple gather-apply implementation for Single Source Shortest
Path.

devices next.

5.3.1 Data-parallel Execution

In the data-parallel execution model, all the hardware devices in a hetero-

geneous system are treated as similar computational resources. Work is divided

between the devices by partitioning either nodes or edges between them. Thus all

devices in the system perform the same type of computation, although more pow-

erful devices may have more work assigned to them than less powerful ones. For

example, in a system with an FPGA and a CPU, graph nodes can be partitioned into

two sets: one processed by the FPGA, and the other processed by the CPU.

For graph-applications such as SSSP, the unit of work is more accurately

approximated by the number of edges. Hence, a better strategy may be to partition

the graph based on the number of edges. Partitioning based on nodes works well

for uniform-degree graphs like those found in road networks, whereas partitioning
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1 void gather(Graph g){
2 for(int e=0; e< g.num_edges(); ++e){
3 int src = g.neighbors[e];
4 buf[e]=g.node_data[src].dist+
5 g.edge_data[e];
6 }
7 }
8 void apply(Graph g){
9 for(int n=0; n<g.num_nodes(); ++n){

10 int min_dist=INT_MAX;
11 for(int e=g.indices[n];e<g.indices[n+1];++e){
12 min_dist=min(min_dist, buff[e]);
13 }
14 g.node_data[n].dist = min(min_dist, g.node_data[n].dist);
15 }
16 }

Figure 5.3: An optimized implementation of Single Source Shortest Path where
some computation is performed in the gather implementation reducing the overall
traffic to the apply.

based on edges works well for scale-free graphs where the edge distribution follows

a power-law behavior.

We will explore both pull and push based data-parallel implementations for

graph applications. Note that the push based implementations require atomic up-

dates to be performed to the destination of an edge whereas the pull based imple-

mentations do not have concurrent writes.

As described earlier, the FPGA and the CPU have very different strengths

and weaknesses. The data-parallel execution model is fairly oblivious to these dif-

ferences. Ideally, we would like the execution model to optimize the utilization of

the capabilities offered by each device.
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5.3.2 Gather-Apply Execution

We start by observing the different actions required on the edges and the

nodes in the graph. For Single Source Shortest Path pull implementation, the length

of the path from each destination along an edge is collected, and the minimum of

those distances is used to update the source of the edge. These two different access

patterns can be separated, since the node loop, for a topology-driven algorithm, is

regular. The inner loop, which goes over the edges, is irregular as the destination

of the edges are not sequential. We can break the algorithm into two parts. The

first part, which we call gather, goes over the edges and reads the contribution

from each edge, placing them in a buffer sequentially. The second part, which we

call apply, goes over the buffer sequentially, accumulating the updates for each

node, and then applying them to the source node. This eliminates the irregularity

encountered when accessing the destination of an edge.

Once we have rewritten the algorithm using the gather and apply as shown

in Fig. 5.2, we can profile the execution of Single Source Shortest Path on the two

inputs LKS and RMAT18. Fig. 5.1 shows the results of profiling the gather-apply

(bars labelled GA) implementation and the serial implementation (bars labelled

Pull). The gather-apply results are broken down into the two components rep-

resenting the gather(red) and apply(blue) phase respectively. We note that while

the overall front-end stalls do increase, the back-end stalls decrease. Furthermore,

most of the back-end stalls are in the gather(red) phase. Recall that the gather

phase performs the irregular accesses, whereas the apply phase performs a sequen-

tial update of the nodes hence reducing the back-end stalls.
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The execution time for a gather-apply is higher than a serial implementa-

tion, which we discuss in more detail in Sec. 5.4. But we note that executing the

two phases sequentially is not a good idea. Similarly, executing the two phases con-

currently on different cores in a multi-core system will not address the performance

bottleneck - the irregularity in accessing the destination of the edges. For an SoC

equipped with an FPGA and a multi-core CPU, we can utilize the FPGA to perform

the gather and let the mutli-core CPU perform the apply.

The FPGA’s design, without a hardware cache, suits the irregular access pat-

terns for the destination of the edges. By issuing multiple memory requests, we can

keep many memory requests in flight and convert the irregular accesses to a regular

access. The gather phase on the FPGA can perform these irregular accesses, and

convert them to sequential accesses by appending the values returned from mem-

ory into a buffer. The apply phase can perform the computation by going over the

buffer instead of the graph nodes themselves, avoiding the irregular accesses.

In case of Single Source Shortest Path, the irregular accesses read the dist

field of the source of the edge as well as the edge weight. The gather phase of

the partitioned operator goes over all the edges, and for each source of the edge,

appends the two components (dist, wt) to the buffer as described in Fig. 5.2. The

apply phase goes over all the nodes, and for each entry in the buffer correspond-

ing to an incoming edge populated by the gather phase, applies the update. This

converts the irregular access to a sequential access for the apply phase.

For an application such as Single Source Shortest Path, we also observe

that the apply phase performs an addition on the two values read from the buffer.
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Instead of storing both fields and performing the addition in the apply phase, we

can perform the addition in the gather phase. This reduces the amount of data

communicated between the two phases while simultaneously shifting computation

from the apply to the gather phase. The pseudo-code for Single Source Shortest

Path with this optimization is shown in Fig. 5.3. As described in Table 5.2, many

graph applications have both computations per-edge as well as computations per-

node. These computations can be moved between the gather and apply phases

depending on the relative cost of data movement.

5.3.2.1 Implementation choices

Like the data-parallel execution model, the Gather-Apply execution model

can be implemented on the CPU alone, on the FPGA alone, or on both the CPU and

FPGA. However, the trade-offs are quite different.

Performing Gather followed by Apply on the CPU alone is unlikely to im-

prove performance. While it does reduce the irregularity of accesses for the apply

phase, the total number of memory accesses increases as values are written to and

read from the buffer.

If both phases are implemented on the FPGA, there are several choices for

implementing the buffer. We observe that the buffer needs to satisfy only one

requirement: it should implement first-in first-out behaviour. This is necessary as

the apply phase expects values in the same order as in the neighbors array. While

Fig. 5.2 and Fig. 5.3 use an array, any data structure, such as a queue will work

just as well. In fact, for an implementation where both the gather and the apply are
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executed on the FPGA, we rely on OpenCL channels to communicate the gathered

values. However, for a heterogeneous implementation, where such a channel is not

available for communication, we rely on an array backed by coherent memory for

communication.

For a heterogeneous systems equipped with a multi-core CPU and an FPGA,

we can perform the gather on the FPGA and perform the apply on the CPU. This

may be beneficial because the performance of the irregular accesses on the CPU is

detrimental to performance, and by utilizing the FPGA to convert these to sequential

accesses, the CPU can focus on performing the apply efficiently.

By partitioning the computation into gather and apply, we can also assign

some arrays of the CSR representation of the graph to different devices instead

of sharing them across both devices. Specifically, the neighbors and edge-data

arrays are only accessed by the gather phase, whereas the indices array is only

accessed by the apply phase. This permits the data-structure to use non-coherent

memory for these data structures, and only the node-data and the shared buffer

need to be backed by coherent memory as they are accessed by both phases. How-

ever, in a bulk-synchronous parallel (BSP) implementation, the apply phase can

write to its private copy of node-data and commit/merge the changes at the end of

a phase.

Finally, we note that we can increase the utilization of the CPU by parti-

tioning the graph into multiple partitions and having a different thread perform a

gather–apply phase pair.
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5.3.3 Apply-Scatter implementation

As described earlier, push work-list driven algorithms are more work-efficient

for many graph algorithms such as Single Source Shortest Path. While this is an

improvement, we observe from Fig. 5.1 that the back-end stalls are significantly

higher than front-end stalls. We can perform the same analysis as we did for the

pull variants. A push algorithm has a slightly different structure as the computa-

tion on the source of the edge is performed first, and the result is propagated to its

neighbors.

The presence of the inner loop, which goes over the outgoing edges of a

node and updates the value on the destination of the edge, is likely an irregular ac-

cess. Upon profiling the application, we see a pattern similar to the pull algorithms,

where back-end stalls dominate the execution time.

We can proceed to decompose the push algorithm in a manner similar to the

pull algorithm described earlier. The key differences here are that the apply phase

is performed first to compute the update to be sent to the outgoing neighbors, and

the operation to be performed over the neighbors is a write compared to a read for a

gather-apply implementation. A push algorithm can also be broken down into two

phases - apply and scatter.

The apply phase goes over nodes and computes the updates to be propagated

to its outgoing neighbors, appending them to a shared buffer. The scatter phase

reads the values from the shared buffer and sends them to the outgoing neighbors.

Fig. 5.4 shows the pseudo-code for a SSSP work-list driven implementation using
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1 SharedBuffer scatter_buffer = ;//initialize
2 void sssp_apply(Graph g){
3 for(Node n : g.nodes){
4 new_dist = n.dist;
5 scatter_buff.append(new_dist)
6 }//end for-n
7 }//end sssp_apply
8 void ssp_scatter(Graph g, WorkList wl){
9 for(Node n : g.nodes){

10 new_dist = scatter_buff.pop_back();
11 for(Edge e: n.out_edges() ){
12 int wt = e.wt;
13 if(e.destination.dist>new_dist+wt){
14 e.destination.dist= new_dist+wt;
15 }//end if
16 }//end for-e
17 }//end for-n
18 return ;
19 }//end sssp_scatter
20 /////////////////////////////
21 Graph g(...);//load graph
22 while(){
23 sssp_apply(g,wl);
24 }

Figure 5.4: Single Source Shortest Path topology-driven apply-scatter algorithm.

apply-scatter. A topology-driven implementation would eliminate the work-list,

and go over all the nodes in both phases.

If we profile the execution of the apply-scatter implementation, we imme-

diately observe that the number of instructions and the back-end stalls go down

significantly. The decrease in the number of instructions executed is attributed to

the work efficiency of a work-list driven algorithm. The topology-driven imple-

mentations, both push and pull versions, do approximately the same number of in-

structions. A work-list driven implementation significantly reduces the number of

instructions executed, particularly for large diameter graphs such as road networks

where only a small fraction of the nodes are active at any time.

The back-end stalls, as discussed earlier, are due to the cache lockups. We
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1 SharedBuffer scatter_buffer = ;//initialize
2 void sssp_apply(Graph g, WorkList wl){
3 for(Node n : wl){s
4 new_dist = n.dist;
5 scatter_buff.append(new_dist)
6 }//end for-n
7 }//end sssp_apply
8 WorkList ssp_scatter(Graph g, WorkList wl){
9 WorkList next_wl;

10 for(Node n : wl){
11 new_dist = scatter_buff.pop_back();
12 for(Edge e: n.out_edges() ){
13 int wt = e.wt;
14 if(e.destination.dist>new_dist+wt){
15 e.destination.dist= new_dist+wt;
16 next_wl.push_back(e.destination);
17 }//end if
18 }//end for-e
19 }//end for-n
20 return next_wl;
21 }//end sssp_scatter
22 /////////////////////////////
23 Graph g(...);//load graph
24 WorkList wl(...);//initialize
25 while(!wl.empty()){
26 sssp_apply(g,wl);
27 wl = sssp_scatter(g,wl);
28 }

Figure 5.5: Single Source Shortest Path work-list driven apply-scatter algorithm.
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Table 5.1: Application node and edge data. The initial work-list sizes for the work-
list driven implementations are also shown.

App WL Data
Node Edge

PR |V| float∶rank
int∶nout void

BFS 1 int:level void
SSSP 1 int:dist int:wt
CC |V| int:label void

Table 5.2: Application node and edge computations. The push implementations
require atomic updates on the edges.

App Compute
Pull Push

Edge Node Edge Node
PR rank/nout res*(1-α)+α add xchg,+,×
BFS level min(res,level+1) min(res,level+1) level
SSSP wt+dist min(dist,res) min(res+wt,dist) dist
CC label min(res,label) min(res,lable) label

see that decomposing a push-topo implementation into a apply and scatter shows

that majority of the backend stalls are in the scatter phase. Note however, compared

to a gather phase for a pull algorithm, the stalls are larger in a scatter phase. This is

because the scatter contains irregular writes, which means that cache entries have

to be written back upon eviction. This is not the case for a gather phases as the

entries can be dropped since they have not been modified.

5.4 Evaluation

To evaluate the implementation schemes for graph analytics applications

described in this chapter, we use a DE1-SoC from Terasic. This is an ARM based
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Table 5.3: Inputs and their key properties.

∣V ∣ ∣E∣
∣E∣
∣V ∣ Din Dout

Scale-free
rmat18 262K 4M 16 3,198 1,436,138
rmat19 524K 8M 16 4,016 2,716,495

Road
LKS 2M 6M 2.49 8 8
E 3M 8M 2.43 9 9

system-on-chip with an Altera Cyclone V SoC. It comprises of a dual-core ARM

Cortex-A9 MPCore processor as well as an Altera CycloneV FPGA. There is a 1G

DDR3 SDRAM connected via a 32-bit data bus. The kernel has contiguous mem-

ory allocator (CMA) support which allows large virtual memories to be mapped

to contiguous physical addresses. Memory accesses within a coherency window

(512MB region starting at 2000000h physical address) from the CPU are inter-

cepted by the snoop control unit (SCU). All OpenCL allocations are served by the

coherent memory region, and hence limited to 512MB. The host code is compiled

using gcc-4.6.3, and runs on Linux (kernel version 3.13). The device (OpenCL)

code is compiled using Altera OpenCL SDK version 14.0.196.

5.4.1 Applications

We evaluate the performance of our scheme using four different graph ana-

lytics applications.

1. Page-Rank (PR): computes the rank of each node in a graph representing

pages. The edges represent hyper-links from one page to another.
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2. Breadth first search (BFS): we use the node with identifier 0 as the start node.

3. Single source shortest path (SSSP): the running example for the chapter.

4. Connected components (CC): a node labelling algorithm in which all nodes

in a component are given the same label. We use a label-propagation algo-

rithm in which initially each node is in its own component. In each round,

the node scans its immediate neighbors for the minimum label, and assigns

the minimum of its neighbors’ labels and its own label to itself.

The data associated with the nodes and edges for each application is shown in Ta-

ble 5.1 and the computations performed in each application are summarized in Ta-

ble 5.2. The applications also have different number of nodes initially active, as

shown in the column labeled WL. For SSSP and BFS, only the source node is ac-

tive initially whereas PR and CC have all the nodes active in the initial phase. This

does not affect the topology-driven implementations. We also tabulate the different

read and write accesses for both regular and random accesses for topology-driven

implementations of applications in Table 5.4. We only account for the node labels

and the updates propagated for the gather-apply and apply-scatter versions.

We use two classes of inputs for the evaluation: scale-free(RMAT) graphs

and road(ROAD) networks. Key features of the inputs are given in Table 5.3. We

present results for the smaller of the two inputs. Results on the larger input are

similar.
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Figure 5.6: Geometric means of relative execution time for all variants of different
applications on RMAT networks. The fastest variant is at 1. The logic synthesized
for Hetero-AS-WL variant for PR did not fit the area, hence was not executed.
Lower is better.
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Figure 5.7: Geometric means of relative execution time for all variants of different
applications on ROAD networks. The fastest variant is at 1. The logic synthesized
for Hetero-AS-WL variant for PR did not fit the area, hence was not executed.
Lower is better.
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Table 5.4: Differences in the number of regular and random reads and writes for
the node labels of each variant.

Variant Regular Random
Reads Writes Reads Writes

Pull - V E -
Push V - - E
GA E E,V E -
AS V,E E - E

5.4.2 Overall performance

We first present an overall comparison of the different variants for the four

applications. The relative execution time for ROAD are presented in Fig. 5.7 and

for RMAT in Fig. 5.6. For PR, the Hetero-AS-WL could not fit on the FPGA we

used for the evaluation, hence the results cannot be reported.

The RMAT variant benefits greatly from the reduced synchronization in a

pull implementation. The push variants, as well as the data-driven variants suffer

from the overhead of synchronization and large work per round respectively.

The ROAD network, two of the applications, BFS and SSSP, benefit from

a data-driven approach. This is attributed to the work-efficiency of a data-driven

for these applications on a high-diameter graph such as the road networks. For these

applications, a small number of the nodes are active at each round on the execution.

In contrast, for CC, a large fraction of the nodes are active during execution, mak-

ing a pull implementation more efficient as the work-list management overhead is

eliminated and synchronization is reduced. PR performs best with a pull imple-

mentation as the push versions uses an atomic add over floats. This is not supported
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natively and requires a compare-and-exchangee loop over type casted values which

presents a large performance overhead.

5.4.3 Data-parallel implementations

We first explore the performance of a data-parallel heterogeneous execution

in which graph edges are partitioned between the FPGA and the CPU. Fig. 5.8 show

the overall execution time for all applications on one input from the two categories.

The applications are labelled on top of the grid, and the input as well as variant

(push or pull) is labelled on the left. For each of the 16 plots, the x-axis denotes

the percentage of edges offloaded to the FPGA and the y-axis denotes the total

execution time in seconds. The overall execution time is the larger of the execution

time for the FPGA and the CPU.

We see a similar patter for all pull variants on the two inputs. For the

RMAT18 input, a larger portion of the edges on the FPGA gives the best perfor-

mance.This can be attributed to the skewed degree distribution in the graph. For the

road network LKS which has a more uniform degree distribution, we see a more

balanced distribution of edges between the CPU and the FPGA. This is because

of the uniform distribution of nodes as well as edges between the two partitions

leading to a more balanced workload.

For the push variants, the situation is similar for both input categories for all

applications except for PR. PR performs best when executed on the CPU because

of the atomic addition of a floating point required as part of the computation. Since

residuals are atomically added to the destination, an atomic_add(float) is required.

137



SSSP BFS CC PR

Pu
ll-

R
M

A
T

18

0 20 40 60 80 10
0

0

2

4

6

0 20 40 60 80 10
0

0

1

2

3

4

0 20 40 60 80 10
0

0

1

2

3

4

0 20 40 60 80 10
0

0

1

2

3

4

5

Pu
ll-

L
K

S

0 20 40 60 80 10
0

0

10

20

30

40

50

0 20 40 60 80 10
0

0

10

20

30

40

50

0 20 40 60 80 10
0

0

10

20

30

40

50

0 20 40 60 80 10
0

0

20

40

60

Pu
sh

-R
M

A
T

18

0 20 40 60 80 10
0

0

5

10

15

0 20 40 60 80 10
0

0

5

10

15

0 20 40 60 80 10
0

0

5

10

15

0 20 40 60 80 10
0

0

20

40

60

80

100

Pu
sh

-L
K

S

0 20 40 60 80 10
0

0

20

40

60

80

100

0 20 40 60 80 10
0

0

20

40

60

80

100

0 20 40 60 80 10
0

0

20

40

60

80

0 20 40 60 80 10
0

0

100

200

300

400

500

Figure 5.8: Absolute runtime for different edge-distribution of the graph on a het-
erogeneous system. x-axis shows the percentage of edges processed on the FPGA
and y-axis shows the absolute execution time.
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Figure 5.9: Relative execution time for different configurations of gather and
apply relative to the best implementation, lower is better.

OpenCL does not provide such a construct natively, so a atomic_cmp_xchg with

unions is used instead. Native support of the operation is expected to improve the

performance on the FPGA. All the other applications use integer atomic operations

which are supported natively in OpenCL.

In general, all the pull variants are faster than the push variants for topology-

driven applications because of less synchronization required.

5.4.4 Gather-Apply implementations

There are three gather-apply implementations we consider.

1. CPU-GA: A complete CPU implementation of the gather and the apply where

the CPU first goes over the destination of the edges, gathers the results into an

array and then goes over the nodes applying the update. This is the baseline
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for Fig. 5.9.

2. FPGA-GA: A scheme where both the gather and apply are performed on

the FPGA.

3. Hetero-GA: A heterogeneous implementation of gather-apply where the

gather is performed on the FPGA and the apply is performed on the CPU.

The two phases communicate via a memory buffer in coherent memory. This

implementation exploits both cores on the CPU, and moves non-shared arrays

to non-coherent memory as described in Sec. 5.3.2.1.

4. MIN-DP: The best execution time for a data-parallel pull implementation as

shown in Fig. 5.8.

Fig. 5.9 presents the relative execution time for the different versions of gather-

apply across all applications for the two classes of inputs. We present the relative

execution time for the different combinations separately for each class of inputs

(RMAT and ROAD). The baseline for the bar is the best execution time of any

version of the algorithm.

We see that the heterogeneous version Hetero-GA outperforms the other

versions on both categories of inputs and applications. Compared to the best data-

parallel implementation, the additional edge-data access for SSSP benefits most

from offloading the gather phase onto the FPGA since the data can be combined

on the FPGA and the result shipped to the CPU via a shared buffer. BFS and CC

are very similar in performance as the gather portion of these two applications is
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Figure 5.10: Relative execution time for different configurations of apply and
scatter relative to the best implementation, lower is better.

identical and the apply is very similar. Here too, shifting the irregular accesses to

the FPGA helps the performance.

One feature that stands out for all but PR is the performance of the Hetero-

GA and FPGA-GA on RMAT inputs. As described in Table 5.3, the number of

edges per node for RMAT inputs is 16 compared to ROAD inputs. Offloading

the gather to the FPGA moves a larger number of irregular accesses to the FPGA

thus reducing the overall execution time. Hetero-GA implementations provide an

average of 7× speedup (average geomean) compared to 6× for FPGA-GA on RMAT

inputs. On the other hand, LKS input benefit from the exploitation of multiple

threads with average speedup of 4× for Hetero-GA compared to 3× for FPGA-

GA.
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5.4.5 Apply-Scatter implementations

We consider four different versions of the apply-scatter implementations:

1. CPU-AS: A complete CPU implementation of the apply and scatter phases.

The CPU first goes over the graph performing the apply, collecting the up-

dates to be scattered in a buffer. Next, the CPU goes over the shared buffer

and performs the writes in a scatter phase.

2. FPGA-AS: A complete FPGA implementation where the apply and scatter

are executed on the FPGA. We use a memory buffer for the scatter buffer.

3. Hetero-AS: A heterogeneous implementation where the CPU performs the

apply, and the FPGA performs the scatter. Both devices use a common

shared buffer.

4. MIN-DP: The best execution time for a data-parallel push implementation as

shown in Fig. 5.8.

Fig. 5.10 presents the relative execution time for apply-scatter implementa-

tions. We observe that PR performs poorly on the FPGA. This, as explained earlier,

is due to the atomic addition over floats required in the edge update (scatter). The

MIN-DP implementation of PR prefers to offload most of the computation to the

CPU.

The apply-scatter versions perform more random reads as shown in Ta-

ble 5.4. Furthermore, the writes from the CPU to the shared buffer in the ap-

ply phase are more costly than the reads for a gather-apply implementation. For
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applications other than PR on the scale-free input RMAT18, we observe that the

FPGA-AS implementation performs the best. In contrast to the pull versions, the

push implementations require atomic updates to the destinations. This significantly

increases the overhead of the edge computation part of the scatter operation.

On the road network LKS, we see that the Hetero-AS implementation per-

forms the best for all applications except PR. Here, the workload on the CPU in the

apply phase which includes the node computation as well as the writes to the shared

buffer, is reduced leading to more balanced execution and hence better performance

than the FPGA-SA implementation.

The heterogeneous apply-scatter implementation does not utilize both cores

on the CPU as the presence of atomics in the scatter implementation utilizes sig-

nificanlty more logic. This inhibits instantiation of mutliple instaces of the scatter

logic on the FPGA which can be utilized in a multithreaded implementation.

5.4.6 Work-list driven implementations

We also evaluate the work-list driven implementations for the applications.

We group the applications into two based on the number of items in the initial

work-list as shown in Table 5.1.

For the RMAT18 input, there isn’t a significant benefit to using a work-list

driven implementation on BFS and SSSP because of the small diameter. The ben-

efit of using a work-list is minimal as most of the vertices are active during the

execution, instead the overhead of maintaining the work-list dominates the execu-

tion. The performance on CC and PR is similar. PR shows poor performance on
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horizontal line indicates 1.

144



[BFS,SSSP] [CC,PR]

FP
G
A
-W
L

C
PU

-W
L

FP
G
A
-A
S-
W
L

C
PU

-A
S-
W
L

M
IN
-D
P-
Pu
sh

0

1

2

3

4

5

6

7

8

9

10

481

507

1844

1943

64128

77832

BFS
SSSP

FP
G
A
-W
L

C
PU

-W
L

FP
G
A
-A
S-
W
L

C
PU

-A
S-
W
L

M
IN
-D
P-
Pu
sh

0

2

4

6

8

10

44

CC
PR

Figure 5.12: Relative execution time for different configurations of apply and
scatter relative to the best implementation on LKS, lower is better. The red hori-
zontal line indicates 1.

145



FPGA as already discussed.

The work-list driven implementation show order of magnitude improvement

for LKS input on BFS and SSSP because of the large diameter meaning a small

fraction of nodes are active for these algorithms.

5.5 Conclusion

With the emergence of heterogeneous systems featuring FPGAs and CPUs,

it has become necessary to explore the optimal implementation of applications on

these systems. Graph applications present an opportunity for harnessing the het-

erogeneity in these systems. In this chapter, we described a novel execution model

in which the FPGA is a peer of the CPU instead of an accelerator. Graph appli-

cations are expressed in a producer-consumer model, where one device produces

values, while the other consumes it. The roles of the producer and consumer are

determined by the application characteristics. For pull algorithms, the application

essentially runs under the control of the FPGA, and the CPU is treated as an acceler-

ator for compute-intensive tasks. Conversely, in a push algorithm, the applications

primarily executes on the CPU, streaming updates to the FPGA to be committed

to memory. In particular, by performing irregular accesses on the FPGA, we free

up the CPU to perform computations more efficiently. Our experimental results

showed that this approach does a better job of exploiting the different strengths

of components in a heterogeneous system than the more conventional data-parallel

execution model in which the FPGA is treated essentially as an accelerator for the

CPU.
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While coherent memory and accessible APIs such as OpenCL greatly re-

duce the job of the programmer, our study also suggests that designers of hetero-

geneous systems should consider implementing mechanisms that give the FPGA

the ability to launch computations on the CPU, since this will allow even greater

flexibility in scheduling of computations in a heterogeneous system. With such sup-

port, execution of gather on the FPGA can directly launch the associated apply

computation on the CPU, and the CPU can be better utilized by not having to busy

poll on the shared buffer. This will not only free up the CPU to perform other

computations, but also save power consumption on the CPU. Alternatively, the cur-

rent offload model works sufficiently well for push algorithms when expressed as

apply-scatter instead of the conventional data-parallel implementations.
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Chapter 6

Related work

6.1 Graph programming models

The work in this dissertation relies on amorphous data parallelism [Pingali

et al., 2011] to express parallelism in graph algorithm. For local computation that

can be expressed as vertex-programs, Pregel [Malewicz et al., 2010], Gemini [Zhu

et al., 2016] and PowerGraph [Gonzalez et al., 2012] describe frameworks for effi-

cient execution of multi-core systems. Lu et. al. [Lu et al., 2014] compare several

large-scale distributed graph computing systems including PowerGraph[Gonzalez

et al., 2012], GPS [Salihoglu and Widom, 2013], and GraphChi [Kyrola et al.,

2012] and conclude that no single system is the best at large scale. Nguyen et.

al. [Nguyen et al., 2013] show that the Galois framework can be used to implement

most of these systems for shared-memory systems, and provides more flexibility, al-

lowing it to outperform other systems. For large graphs that do not fit into memory,

X-stream [Roy et al., 2013] describes a streaming engine for graphs.

6.2 GPU programming

Accelerator [Tarditi et al., 2006] describes on of the earliest systems to sup-

port general purpose computations on GPU. The system translates side-effect free
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operations over arrays to shader programs, which can be executed on the GPU. Exo-

CHI[Wang et al., 2007] describe an architecture and programming model for GPUs,

where some tasks (address translation and exception handling) are executed on the

CPU. Owens et.al [Owens et al., 2008] present a comprehensive survey of general

purpose computations on the GPU prior to 2008. With the introduction of CUDA,

many applications have been ported to the GPU including machine learning [Raina

et al., 2009, Catanzaro et al., 2008, Steinkrau et al., 2005, Zastrau and Edelkamp,

2012] and graph analytics [Merrill et al., 2012, Davidson et al., 2014]

MapGraph [Fu et al., 2014] explains an implementation of Pregel for GPUs.

Medusa [Zhong and He, 2012] provides a more general graph processing frame-

work for local-computations on the GPU. Gunrock [Wang et al., 2015] describes

a graph processing framework for GPUs. It consists of two key components —

advance-traversals and filter-traversals. An advance traversal creates a new frontier

of either the current edges or nodes by traversing their neighbors. A filter traversal

removes items in the current set using a validation test. The traversal patterns use

two optimizations; Merrill [Merrill et al., 2012] (depending on size of work-list,

mapping to a thread, warp or block) and Davidson [Davidson et al., 2014] (as-

signing edges to threads instead of vertices). Pointer analysis has also been ported

to the GPU in [Mendez-Lojo et al., 2012] showing the benefit of utilizing GPUs

even for irregular applications. Recent work [Egielski et al., 2014] has investigated

performance of applications that use GPU atomic constructs which write to one lo-

cation. A performance prediction based on modeling of multiple GPUs is presented

in [Schaa and Kaeli, 2009].
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There has also been work on providing higher abstractions on top of OpenCL.

VirtCL [You et al., 2015] describes a single device abstraction for multiple OpenCL

devices. Similarly, Maestro [Spafford et al., 2010] aims to provide a single de-

vice abstraction and dynamically distribute the work items across the difference

devices. Abstracting multiple GPUs as a single virtual device [Kim et al., 2011]

has also shown to be a useful way to support multiple GPUs.

In order to evaluate the performance of applications on heterogeneous sys-

tems, several benchmark suites such as Rodinia [Che et al., 2009], SHOC[Danalis

et al., 2010], and Paraboil [Stratton et al., 2012] have been proposed.

6.3 FPGA programming

The memory system is often a bottleneck for algorithms that have irregu-

lar data accesses. The Impulse memory controller [Carter et al., 1999] and active

memory controller [Kim et al., 2002] both propose feature-rich memory controllers

that support scatter/gather operations and improve cache performance. The only

communication between the memory controller and host processor is through the

standard address/data mechanism, with special addresses used to initiate scatter/-

gather operations.

A number of systems attempt to provide support for implementing graph

algorithms on FPGAs. GraphOps [Oguntebi and Olukotun, 2016] describes a col-

lection of hardware blocks that can be used by hardware-developers to build graph

analytics applications. FPGP [Dai et al., 2016] is a system for vertex centric graph

applications on the FPGA. The Lime[Auerbach et al., 2010] language describes
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functional extensions to support imperative languages on FPGAs. Prabhakar et.

al.[Prabhakar et al., 2016] describe transforms for improving the performance of

functional operators on FPGAs. GraphGen [Nurvitadhi et al., 2014] allows pro-

grammers to write their graph application kernels and generates logic for vertex

programs as well as partitions for specified inputs. None of these systems relies

on the heterogeneity in modern CPU/FPGA systems. Recent work[Weisz et al.,

2016] has shown the potential for utlizing both the CPU and FPGA for irregular

applications, especially for small payload workloads.

[Umuroglu et al., 2015] describes a data-driven implementation of BFS

which treats the frontier as a dense vector. They also suggest using the CPU for

small frontier sizes. Our approach uses both the CPU and FPGA regardless of the

frontier size for data-driven implementations. Our approach also proposes to use

both the CPU and the FPGAs for all steps, whereas they switch between the two

devices depending on the frontier size.

6.4 Heterogeneous execution

A number of papers describe prior work to allow the same code to run on

both the CPU and GPU with minimal programmer effort. TwinPeaks [Gummaraju

et al., 2010] and Ocelot [Diamos et al., 2010] allow GPU code to execute effi-

ciently on CPUs. [Kessler et al., 2012] compares the advantages of different ap-

proaches to portability: a library-based approach, a language-based approach, and a

component-based approach. [Virlet et al., 2011] describes a task-scheduling model

and evaluates it on synthetic tasks across heterogeneous architectures. [Silberstein
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et al., 2011] describe runtime assignment of computation to a GPU or a CPU for

one specific application from probabilistic networks.

Merge[Linderman et al., 2008] describe a dynamic work-distribution strat-

egy on top of Exo-CHI. Recently, there has been increasing efforts [Luk et al.,

2009, Augonnet et al., 2011, Phothilimthana et al., 2013, Song and Dongarra, 2012]

to make heterogeneous execution of applications more efficient. In order to deter-

mine the ideal work-distribution between the CPU and the GPU, Qilin[Luk et al.,

2009] describes a linear performance model and offline profiling to build the model.

StarPU[Augonnet et al., 2011] describe a system that supports heterogeneous ex-

ecution of workloads. It includes a data-management library and a runtime for

coordinating the execution. The programmer has to provide implementations of

the kernel for all of the devices. Dandelion[Rossbach et al., 2013] describes a

programming model for programming heterogeneous systems using the LINQ API.

The implementation generates a set of data-flow graphs where the vertices are ab-

stracted as PTasks[Rossbach et al., 2011]. A load balancing scheme for discrete

devices, HDSS, is presented in [Belviranli et al., 2013], and is similar to conver-

gence based approach described in [Kaleem et al., 2014]. [Ogata et al., 2008]

describes a model-driven 2D-FFT scheduling for matrix computations across two

devices. [Ravi and Agrawal, 2011] describes a dynamic scheduling strategy for

heterogeneous execution for generalized reductions and structured grids based on a

cost model. SKMD [Lee et al., 2013] supports execution of single kernel on multiple

devices. It relies on static analysis of kernels to determine workload distribution.

Making GPUs more accessible to programmers has been an increasingly ac-
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tive research area [Che et al., 2011, Barik et al., 2014, Dubach et al., 2012, Rossbach

et al., 2013]. Below we discuss prior work that particularly focus on scheduling and

load balancing in heterogeneous architectures. There have been increasing efforts

[Luk et al., 2009, Augonnet et al., 2011, Phothilimthana et al., 2013, Song and

Dongarra, 2012] to make heterogeneous execution of applications more efficient.

A load balancing scheme for discrete devices, HDSS, is presented in [Belviranli

et al., 2013], and is similar to our convergence based approach. [Ogata et al., 2008]

describes a model-driven 2D-FFT scheduling for matrix computations across two

devices. [Ravi and Agrawal, 2011] describes a dynamic scheduling strategy for het-

erogeneous execution for generalized reductions and structured grids based on a

cost model.

More recently, [Song and Dongarra, 2012] presents a heterogeneous library

for executing dense linear algebra. [Phothilimthana et al., 2013] presents a compiler

and runtime to address portable performance across heterogeneous systems. They

utilize evolutionary algorithms to search optimal algorithms from PetaBricks [Ansel

et al., 2009] specifications. Pandit et al. [Pandit and Govindarajan, 2014] balance

CPU and GPU workload by restricting CPU to executing work in coarse-grain

chunks with all CPU threads synchronizing at the end of each chunk. While this

approach works well for their regular PolyBench workloads, our work targets both

regular and irregular applications.

Ravi et al. [Ravi et al., 2010] use work-sharing to distribute work between

the CPU and a discrete GPU. Grewe et al. [Grewe et al., 2013] use machine learn-

ing to divide work between the CPU and GPU when there is contention from other
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programs. Scogland et al. [Scogland et al., 2012] present several scheduling tech-

niques for systems with discrete devices. In most of these schemes, offloading large

chunks to the GPU helps amortize the communication cost. Ravi et al. [Ravi and

Agrawal, 2011] describe how to determine the optimal chunk size.

Cederman et al. [Cederman and Tsigas, 2008] and Chatterjee et al. [Chat-

terjee et al., 2011] address load balancing of workloads across different execution

units on a GPU. In particular, they use work-stealing between tasks running on the

different streaming multiprocessors (SM) of a discrete GPU. The host CPU pop-

ulates the initial work-stealing queues. Each SM maintains its own work-stealing

queue and steals [Blumofe and Leiserson, 1999] work from other SMs. This is

possible due to the availability of an atomic CAS operation on the GPU between

its SMs. However, since no current hardware supports those operations between

the CPU and GPU, this approach does not extend to the general case, in particular

to integrated GPUs like ours. [Chen et al., 2010] describe a fine-grained load bal-

ancing scheme by running persistent kernels which communicate with the host via

task-queues.

6.5 Data partitioning and layout

The 2D partitioning describe earlier is based on [Pearce et al., 2013, Pearce

et al., 2014] which addresses scaling performance of graph applications on scale-

free graphs. The authors identify two key challenges –high-degree vertices (hubs)

and dense communication between partitions. In order to address the scale-free

nature of the graphs, the adjacency matrix of the graph is partitioned along both di-
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mensions. This can split the edge-list of the hubs across multiple partitions, each of

those partitions is an owner of the hubs edge-list. One of these owners is chosen as

the master, and all the other partitions contain replicas of the hub. The dense com-

munication is addressed by overlaying a 2D communication network and replacing

the point-point communication by a two-hop communication, which perform local

aggregation at each level. The programming model is based on a vertex-program,

and requires explicit declaration of ghost usage for hubs. The ghosts are not glob-

ally synchronized and represent only the local partitions’ view or remote hubs.

[LeBeane et al., 2015] describe a set of graph partitioning strategies and propose

using skewed partitions for heterogeneous systems.

The Sequoia[Fatahalian et al., 2006, Knight et al., 2007] system provides

a programming model to optimize for locality on large distributed systems with

multiple levels in the memory hierarchy. Dymaxion [Che et al., 2011] describe gen-

eral techniques for improving memory accesses on the GPU via data-restructuring

and memory-remapping. G-Streamline [Zhang et al., 2011] describe dynamic tech-

niques to reduce irregularities in control-flow and memory accesses to improve per-

formance on GPUs. CuSha[Khorasani et al., 2014] describes a GShards-representation

for graph-applications on the GPU based on Shards[Kyrola et al., 2012]. The CSR

representation is replaced by a partitioned representation where each partition rep-

resents the set of incoming edges for a set of nodes, sorted by the source. The DIA

format has been parallelized on a GPU [Bell and Garland, 2009] in the context of

the SpMV kernel. The block diagonal format has also been used in stencil based

solvers for partial differential equations [Lowell et al., 2013]. The derivation of the
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blocks containing non-zero entries in BlkDiag is similar to the Block-CSR format

in OSKI [Vuduc et al., 2005], where the column and row indices of each entry of

the matrix are traversed to identify the corresponding block position of the non-zero

entry.
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Chapter 7

Future work

The work presented in this dissertation is a stepping stone towards the goal

of better utilization of emerging hardware for the masses. The key challenge to-

wards achieving this goal is the need for powerful abstractions, that help domain

experts express their algorithm conveniently, that can provide portable performance

on the diverse range of hardware platforms.

As hardware architects explore different forms of heterogeneity, isolating

the application programmer from the details while allowing them to utilize the ben-

efits of each device is a challenging problem. The offload model of computation,

where the processor offloads computations to the accelerator, has been very popular.

In a data-parallel approach, a dynamic approach provides efficient execution with

respect to an off-line optimal, different optimizations can be performed to further

increase overall performance. One of the key challenges in a data-parallel execution

is to utilize the locality of work - iterations assigned to a device should access data

disjoint from other devices. This reduces the overhead of synchronization between

the devices. While the iteration space has a certain optimal partitioning across the

devices, there may exist reordering of the iterations that perform better. For in-

stance, in a graph application, nodes with similar number of neighbors will perform
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better on a GPU. Another alternative is to rely on min-cut partitions to reduce the

data shared between the different devices, and relying on coherent memory only for

shared data thus accelerating accesses to non-shared data.

Supporting graph computations that modify the structure of the graph on

the GPU by adding or removing edges and nodes requires memory management

addressing the large number of threads on the GPU. One approach, as currently

adapted by programmers, is to manually manage memory allocations. An alternate

is to support dynamic memory allocation on the GPU, which will allow allocating

and deallocating edges and nodes on the GPU.

For heterogeneous systems composed of FPGAs and CPUs, our work high-

lights the need of having hardware and API support for channels that allow the

FPGA and the CPU to communicate efficiently for producer-consumer patterns

such as Gather-Apply and Apply-Scatter. A compiler can be used to split algo-

rithms expressed as a single kernel into the appropriate pair to execute on the het-

erogeneous system. Furthermore, exposing the graph data-structure to the compiler

can allow for a broader range of optimization such as not enforcing coherency for

the graph structure in the Gather-Apply and Apply-Scatter implementations as the

structure is not modified for these local-computations.

There are two key limitations of FPGAs make them unattractive for data-

center deployment – programmability and performance. Programming FPGA is a

tedious and time consuming task, often requiring long compilation/synthesis times.

For many application domains, especially those of interest to data-centers, the general-

purpose programmability of FPGAs becomes a bottleneck. For instance, Google’s
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Tensor Processing Unit (TPU) [Jouppi and et al., 2017] is an ASIC specifically de-

signed to accelerate TensorFlow [Abadi et al., 2016] programs in the data center.

The TPU provides better power-efficiency and performance compared to an FPGA

and GPU respectively for TensorFlow programs. Alternatively, Microsoft’s Cata-

pult [Putnam et al., 2014, Caulfield et al., 2016] uses FPGAs to provide a latency

critical platform for applications. However, programming general purpose applica-

tions for FPGAs is still a challenging task, with most of the programming on the

Catapult done through Verilog. While APIs like OpenCL make programming FP-

GAs easy, understanding and tuning performance remains a challenging problem

as the high level specification is compiled down to Verilog. Debugging and per-

formance tuning at the gate level defeats the purpose of programming in high level

abstractions. Furthermore, support for multiple kernels executing simultaneously

on the FPGA requires the OpenCL kernels to be recompiled as a single unit. Due

to the high compilation overhead, this leads to resource wastage when multiple ker-

nels can be executed on the FPGA simultaneously by sharing resources. Support

of multiple kernels executing simultaneously on the FPGA requires many features

such as dynamic partial reconfiguration and memory protection.

In terms of scaling out graph applications, the work described in this disser-

tation can be utilized in building distributed systems which utilize a diverse range

of processors to accelerate applications. The complexity of non-uniform memory

and communication latencies increases the difficulty of efficient execution of appli-

cations on distributed heterogeneous platforms.
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Chapter 8

Conclusion

Parallel programming on symmetric multi-core processors, and homoge-

neous distributed systems has been enabled by decades of research and develop-

ment in both the software stack as well as hardware. Today, an application de-

veloper can conveniently write programs that can be executed on multiple threads

on a multi-core system using simple abstractions. While this approach works well

for simple applications, complex applications, especially those involving irregular

memory accesses and control paths require significantly more effort to be imple-

mented efficiently.

Heterogeneous hardware platforms pose a more challenging problem as rea-

soning about the performance on different platforms can be a strong deterrent to

application programmers. As described in Chapter 3, a simple strategy is to build

on top of existing abstractions such as the parallel_for and provide facilities for

the programmer to execute their applications on these heterogeneous platforms. A

compiler can transform the applications to native ISAs, and a runtime can dynami-

cally schedule the work-items for efficient execution.

While this approach provides a reasonable black-box solution for program-

mers, device specific optimizations may be beneficial to programmers looking to
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exploit accelerators. As demonstrated in Chapter 4, these optimizations can have

a large impact on the performance of irregular applications. Specifically, we show

that for graph applications on discrete GPUs, the choice of synchronization strate-

gies is highly dependent on the underlying device as well as input characteristics.

Utilizing heterogeneity in systems without coherent memory, such as those

with discrete GPUs, requires special attention to communication patterns. Commu-

nication strategies can be tuned through input specific optimizations such as vertex

cuts and application specific optimizations such as reductions for message aggrega-

tion and delayed synchronization.

Finally, in Chapter 5, we show how increased heterogeneity, where the ac-

celerator design is fundamentally different from the master processor, can benefit

applications by addressing the key performance bottlenecks. For graph applica-

tions, one of the key bottlenecks is the inability of the memory sub system to handle

a large number of irregular memory requests. The FPGA accelerator can be used

to perform these irregular accesses allowing the CPU to perform computations.

This approach can be conveniently expressed as a producer-consumer computa-

tions where one device produces a stream of values, and the other device consumes

those values.
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