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Supervisor:  Laura J. Suggs 

 

The development of novel, peptide based structures for tissue engineering 

materials has been widely researched, and its popularity can be attributed to 

advancements in technological analysis methods.  Using principles based on protein 

structure and organization, this work describes the novel self-assembly of depsipeptides, 

which incorporate alternating esters within a native peptide backbone.  

Chapter 1 introduces and reviews peptide mimics for their utility for tissue 

engineering applications.  Chapter 2 describes the methodology in synthesizing and 

characterization a depsipeptide library using both solution and solid phase methods.  

Chapter 3 discusses the effects of depsipeptide length, concentration, and sequence 

within a range of ionic concentrations and pH ranges on the self-assembly of 

depsipeptides into spherical nanostructures, fibers, or hydrogels.  Chapter 4 describes 

proposed methods to increase the rate of gelation, followed by discussions of 

biocompatibility studies from other self-assembling peptide and modified-peptide 

systems in vitro and in vivo. 

The work described in this dissertation demonstrates that the synthesis and self-

assembly of a depsipeptide family which alternates esters into a native peptide backbone 

does not disrupt the formation of higher order structures.  This study illustrates the 
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potential to synthesize a wide range of depsipeptides with variable side chains and 

hydrophobic character, as understanding these effects on self-assembly is imperative to 

the development of biomimetic materials for tissue engineering applications. 
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Chapter 1. Peptide Mimics as Biomaterials 

1.1 INTRODUCTION 

Peptide-based biopolymers are a relatively new class of biomaterials, partly 

driven by our increasingly sophisticated understanding of protein structure and function. 

[1-3].  These next generation biomaterials are developed for a variety of applications, 

including tissue regeneration and drug delivery (Figure 1.1).  Research on peptide-based 

materials for tissue engineering applications is devoted to synthesizing new materials 

from both natural and synthetic sources.    Peptide-based materials possess the unique 

property of self-assembly, whereby the self-organization into higher ordered structures is 

influenced by the length, sequence, and composition of the chemical backbone within 

specific environmental conditions.  In addition, the self-assembly and directed-assembly 

of peptides has been reported to yield functional biomaterials, as seen with leucine 

zipper-based materials, peptide amphiphiles, β-sheet forming ionic oligopeptides, and β-

hairpin peptides.  More details on the self-assembly of various peptide families will be 

provided in Chapter 3.     

Peptide-based materials offer many potential advantages over synthetic materials.  

Short peptide motifs such as RGD, KNEED, YIGSR are ubiquitous ligands for cell 

receptors and mediate cellular behaviors such as attachment and spreading [4-7].  A table 

describing the 20 amino acids with their respective one letter and three letter symbols is 

provided (Table 1.1).  Many peptide-based biomaterials are easily degraded by the body, 

thus making them desirable as drug delivery vehicles and tissue engineering scaffolds.   
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Figure 1.1  Unique features and potential applications of protein-based biomaterials.  
While the examples shown above are derived from recombinant DNA 
technology, the overall strategy of developing complex, functional, and 
biologically relevant materials can be applied to synthetically made peptide 
based systems.  Used with permission. [3].   
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Amino acid One letter symbol Three letter symbol 
Alanine A Ala 
Arginine R Arg 
Asparagine N Asn 
Aspartic acid D Asp 
Cysteine C Cys 
Glutamic acid E Glu 
Glutamine Q Gln 
Glycine G Gly 
Histidine H His 
Isoleucine I Ile 
Leucine L Leu 
Lysine K Lys 
Methionine M Met 
Phenylalanine F Phe 
Proline P Pro 
Serine S Ser 
Threonine T Thr 
Tryptophan W Trp 
Tyrosine Y Tyr 
Valine V Val 
 

Table 1.1. Abbreviations of the 20 common amino acids.  
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This chapter is intended to highlight the work of peptide mimics for their use in 

tissue engineering applications.  Examples of naturally derived peptides based on elastin 

and silk will be discussed.  Work on peptoids and β-peptides on tissue engineering 

applications will also be described in an effort to illustrate the self-assembling processes 

of peptide mimics with modified peptide backbones.  The motivation to develop modified 

peptides with ester resides for the self-assembly of a hydrogel scaffold will also be 

described.   

1.2  NATURALLY OCCURRING PEPTIDE MIMICS 

1.2.1  Elastin-like mimics 

Elastin-like polypeptide (ELP) based materials are an interesting family of 

peptides that have been investigated for self-assembly [1, 8].  Elastin is one of the most 

abundant extracellular matrix macromolecules, along with glycosaminoglycans (GAGs) 

and collagens, and it has the unique mechanical property of allowing repeated extension 

followed by elastic recoil.   Elastin-like polypeptides are derived from the repeating 

motif, VPGXG, where X can be any amino acid other than proline [9].  Other derivatives 

of ELPs include KGGVG [10] and LGGVG [11] which both exhibit elastin-like 

properties despite substituting the first two residues of the peptide motif.  The ability to 

synthesize an array of hydrogels with well-defined and varied properties allows these 

ELPs to be used in a wide range of applications.  For example, ELPs have been shown to 

be ideal materials for cartilage scaffolds [12, 13].  Chondrocytes were encapsulated in 

ELP gel and maintained morphology and phenotype in vitro (Figure 1.2).   
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           A                        B                         C     

Figure 1.2  Histological section of ELP-chondrocyte constructs. Sections stained for: 
(A) cell morphology with H&E, S-GAG using toluidine blue (B), and 
collagen and extracellular matrix using Masson's trichrome (C). The scale 
bar is 50 μm.  Used with permission. [12]  
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After 15 days, the cells showed sulfated glycoaminoglycan (GAG) and collagen type 

II[12] production, and they also promoted the differentiation of human adipose-derived 

adult stem cells into chondrocytes [13].  Other applications of ELP hydrogels include 

small-diameter vascular grafts [14], urinary bladders [15], and stem cell sheets {Zhang, 

2006 #818.   

1.2.2  Silk-like mimics 

Silk-like polymers (SLPs) aim to replicate the unique mechanical and physical 

properties of the natural protein.  These features are in part due to its elastic properties 

exhibited by the presence of α-helix and β-turns, as the strong intramolecular bonds 

within the folding regions are thought to be responsible for the stiffness of the 

fibers {Sponner, 2007 #822}.  Β-sheet peptide motifs have also been derived from silk 

((GAGAGAS)m(GVGVP)n) [1, 16, 17], and modifications with peptide sequences or 

synthetic polymers do not alter functionality.  For example, introducing 

polyethyleneglycol (PEG) [18] or polyethyleneoxide (PEO) and GAGA peptide 

sequences [19] within SLPs show that the native β-sheet structure was maintained.  The 

relative ease of these modifications makes silk an ideal candidate for a range of tissue 

engineering applications, such as corneal regeneration [20], vascular grafts [21], bone 

regeneration [22], and drug delivery [23].    

Peptide mimics based on naturally occurring proteins are synthesized through 

recombination techniques or with chemical methods.  Recombinant DNA techniques 

have the advantages of high specificity in sequence, stereochemistry, and molecular 

weight [1], but are limited in how well the polypeptide of interest can be expressed.  For 
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example, one of the main challenges in producing silk in large quantities is challenging 

due to the level of expression. The repeating gene sequence that codes for silk is not 

efficiently translated in E. coli, the most extensively used expression host.  

1.3  PEPTIDOMIMETIC FAMILIES 

1.3.1  Introduction 

The structure and function of peptide structures can be enhanced or mimics upon 

modification of the native peptide backbone [24].   Unlike the ELPs and SLPs discussed 

earlier, these classes of peptides are often extensions of the peptide structure or 

substitutions of the amide bond (Figure 1.3).  Discussions of peptoids, β-peptides, and 

depsipeptides are presented with the motivation to use non-native polymer backbones in 

the development of self-assembling biomaterials.   

1.3.2  Peptoids 

Poly-N-substituted glycines, or peptoids, substitute functionality at the amide 

nitrogen.   Peptoids have been reported for use as anti-cancer therapeutics [25] and lung 

surfactants [26].  An advantage of using peptoids, besides their resistance to proteomic 

enzymes [27], is that naturally occurring surfactants are expensive and vary batch to 

batch [26]. Peptoids have been reported to form helical secondary structures that are 

maintained among a family of structures [28].  Peptoid 1 [H-(NLys-Nspe-Nspe)4-NH2] is 

a 12-residue structure composed of Nspe and NLys, peptoid analogs of Phe and Lys 

respectively (Figure 1.4).  When dissolved in 10 mM Tris buffer, the CD spectra reveals 
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α-helical structure, evident by the peak at 192 nm and 2 negative troughs at 206 and 220 

nm.   

 

Figure 1.3 Chemical structures of peptidomimetic families.  The structure of a native 
peptide backbone is provided for comparison. 
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A 

 

B 

C 

 
Nspe15-NGlu15 
 

Figure 1.4  Secondary structure and self-assembly of peptoid families.  The chemical 
structures of the peptoid resides are illustrated (A).  CD of the tested 
peptoids (B) show that secondary folding is maintained despite changes to 
the backbone.   Peptoid 1 is [H-(NLys-Nspe-Nspe)4-NH2] and is modified 
by substituting Pro at the 6 position (1-Pro6), NHis at the 6 and 12 position 
(1-NHis6,12), or NGlu at the 4 and 10 position (1-NGlu4,10) [28]. A model 
of the proposed self-assembly process for the peptoid Nspe15-NGlu15 [29] 
(C). The hydrophobic and hydrophilic regions are represented in green and 
red respectively. The aromatic regions align with a distance of 1.66 nm 
while the distance between each chain is 4.8 Å.  As self-assembly continues, 
the chains arrange into 2-D sheets with a height of 7.8 nm and become 
layered to form superhelices. Dimensions were verified with AFM and X-
ray scattering.  Both images used with permission.  
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Interestingly, α-helical structure is maintained for all of the tested peptoids, including an 

enantiomeric analog. These results show that while peptoid backbones eliminate 

backbone chirality and hydrogen bonding, the formations of helical secondary structures 

through incorporations of bulky side chains are not hindered.  [30, 31].  

The supramolecular assembly of peptoids has also been reported [32-34].  The 

role of electrostatic and hydrogen bonding interactions in the hydrophilic block was 

found to be important in the self-assembly process of peptoid Nspe15-NGlu15 (Figure 

1.4A and C) [29].  Upon dissolution in water and analysis with scanning electron 

microscopy (SEM), atomic force microscopy (AFM), and X-ray scattering, sheet-like 

structures were observed within 24 hours and superhelical structures appeared after 4−7 

days.  A computational model suggests that during the self-assembling process, the sheets 

form a bilayer in which the hydrophobic groups are embedded in the interior of the sheet 

while the charged hydrophilic residues are exposed to the aqueous solution.  These sheets 

are then layered within helices to form helical structures. 

1.3.3  β-peptides 

β-peptides are named such as the amino group is positioned at β-carbon.  β-

peptides have been reported to fold into a number of secondary formations [35-37] and 

display higher resistance to enzymatic degradation.  For example, the β-peptide 

equivalent of Boc-(Val-Ala-Leu)2-OMe was characterized with CD, NMR, and X-ray 

crystallography to yield β-sheet-like or left-handed helices in solid or solution states 

respectively [38].  Interestingly, structural analysis of the native peptide shows the 

formation of random coils in solution.  The β-peptide was stable to enzymatic 
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degradation at low pH for over 2 days, while the native peptide shows immediate 

cleaving.   

1.4  DEVELOPING MIMICS WITH ESTER FUNCTIONALITY  

1.4.1 Depsipeptides for tissue engineering applications 

Depsipeptides are a class of peptides in which the chemical backbone is 

composed of ester and peptide bonds.  Early work of synthetic depsipetides have been 

reported in its polymer form as polydepsipeptides (PDPs) [39-54].  PDPs are unique, as 

they combine the synthetic characteristics of poly(α-hydroxy acids) and biological 

properties of polypeptides, such as tailored degradation rates[55] and protein 

structure[56] respectively.  The chemical and biological properties of PDPs will be 

discussed in further detail in Chapters 2 and 3.  Reports of detailed analysis of PDP 

secondary structure and subsequent self-assembly into higher order structures is scarce.  

The ability to control and maintain regular folding of a synthetic polymer is the first 

step towards engineering its biologic functionality, thus it is imperative to 

investigate to what extent the ester substitution affects the folding of depsipeptide 

structures. 

This project investigated short depsipeptides for their propensity to self-assemble into 

higher order structures.  The despipeptide library was synthesized with solid phase 

methods with depsi-dipeptides as the coupling building block.  Solid phase methods 

granted higher synthetic control of the total depsipeptide length and sequence, both of 

which would have been challenging with traditional polymerizations.  The depsipeptides 
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were composed of hydrophilic and hydrophobic regions, motivated by the design of self-

assembling peptides reported in the literature.   

1.4.2  Ease of synthesis 

The synthetic tools for peptide design have become widely available, allowing 

research groups to develop vast libraries of peptide structures.  These developments are 

primarily due to the accessibility and optimization of solid phase peptide synthesis 

(SPPS).  Optimization of depsipeptide synthesis relied on the principles of SPPS, as 

each coupling step allows for complete control of the growing sequence.  The 

depsipeptides studied in this work were designed with alternating ester and peptide 

bonds, thus requiring the custom-development of depsi-dipeptides building blocks.  The 

synthesis details are discussed in Chapter 2.      

1.4.3  Controlled degradation of depsipeptides for future applications 

Altering the peptide backbone with non-native substitutions can offer 

advantageous properties while preserving certain secondary folding characteristics.  

However, as seen with peptoids and β-peptides, these materials are often more resistant to 

degradation than their peptide counterparts.  Depsipeptides have the ability to provide a 

more hydrolytically sensitive structure while maintaining secondary structure.  The 

unique self-assembling processes of depsipeptides are discussed in Chapter 3. 

Hydrolytic degradation of a mimetic biomaterial may have specific advantages for 

use in tissue engineering and specifically as an injectable, degradable hydrogel.  

Materials used for tissue engineering applications should be designed with rules that 

dictate their behavior under various conditions.  In an effort to enhance the current library 
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of depsipeptides, synthetic methods to increase the overall hydrophobicity of the structure 

are provided in Chapter 4.  In vitro and in vivo studies from other self-assembling peptide 

systems are also discussed to provide a template for future biocompatibility experiments 

and alternative applications. 
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Chapter 2. Synthesis of Alternating Depsipeptides: Incorporating 
Regular Esters into a Native Peptide Backbone through the Coupling of 

Depsi-dipeptide Building Blocks 

2.1  CHAPTER SUMMARY 

2.1.1  Introduction  

The depsipeptides designed for this project have alternating esters and peptides 

and are intended for use as hydrogel scaffolds.  The synthesis of depsipeptides has been 

reported in the literature, but little work has been focused on relatively short depsipeptide 

sequences with regular repeats of esters.  Optimizing a methodology such as this will not 

only control the synthesis, but also offer control over maintaining or modifying physical 

and biological properties associated with the ester bond. 

The sequences of these structures are designed to alternate with hydrophobic and 

hydrophilic residues, namely lactic acid and either lysine or aspartic acid residues 

respectively.  The following work describes the solution and solid phase peptide 

synthesis to produce the depsi-dipeptides building blocks and final structures 

respectively.  This section will begin with a general discussion of solid phase peptide 

synthesis to briefly describe the aspects that apply to the depsipeptide system, namely the 

coupling methods, deprotection conditions, and resin characteristics.   

2.1.2  Goals 

The focus of this chapter is the synthesis of a family of depsipeptides in moderate 

yields using both solution and solid phase chemistry.  Self-assembly of the purified 

products will be discussed in the next chapter. 
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2.1.3  Approach 

 Design principles of dipeptides, didepsipeptides, and oligopeptides reported in the 

literature were used for our methodology.  Coupling was achieved with either DCC or 

DIC, and the solid phase synthesis proceeded with general Fmoc-peptide strategies.  The 

peptides of interest were charged in nature, thus careful selection of protecting groups 

were maintained throughout all synthesis processes.  Efforts were taken to prevent 

hydrolysis of the ester bond, both in the solution and solid phase methods.     

2.1.4  Results 

Several strategies for the synthesis of the depsipeptide building block were 

investigated.  First, the ester of the Fmoc-peptide was activated with either 

pentafluorophenol or benzotriazole under various coupling conditions.  While the final 

depsidipeptide was achieved with these strategies, purification was difficult.  Lactic acid 

was protected with benzyl chloride, and upon coupling with the Fmoc-peptide, a 

protection version of the depsi-dipeptide was synthesized.  Upon removing the benzyl 

group with hydrogenesis, the depsipeptide building blocks were purified with a silica 

column and characterized with NMR and MS.   

The synthesis of depsipeptides proceeded with general Fmoc-peptide methods. 

The coupling methods and selection of cleaving cocktails were optimized to reduce the 

effect of hydrolysis on the ester moiety.  Depsipeptides were synthesized using standard 

Fmoc-peptide synthesis and were characterized and purified by HPLC and LCMS.   
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2.2  BACKGROUND  

2.2.1  Polydepsipeptides: Challenges in Synthesis and Homopolymerizations 

 

Polydepsipeptides (PDPs) are a unique set of resorbable polymers that have been 

developed for biomedical engineering applications.  PDPs incorporate esters within a 

peptide backbone and can be synthesized through ring-opening polymerizations (ROPs) 

of morpholine-2,5-diones (MDs).  MDs are 6-membered cyclic structures with an oxygen 

and amine at the 1- and 4-position and carbonyl groups at the 2- and 5-position (Figure 

2.1).  Functionality of the MD is designed within the 3- and 6-positions and successful 

synthesis of PDP homopolymers is dependent on the bulkiness of the side chains. For 

simplicity, PDPs will be described first by the ester side chain followed by the peptide 

moiety.  Poly(glycolic acid-Asp(OBzl)) was synthesized with 78% conversion [1] while 

homopolymers of poly(lactic acid-Asp(OBzl)), poly(lactic acid-Lys(Z)), and poly(lactic 

acid-Cys(OBzl)) gave low monomer conversion rates (36-57%) [2].  Isolating the PDP 

was also difficult due to steric hindrance of the peptide side chains. 

Repeatability of PDP synthesis among different research groups was challenging 

for the poly(glycolic acid-alt-Asp(OBzl)), as Ouchi et al. synthesized this PDP with a 

molecular weight range of 2200-3280 g/mol [1] while Wang et al. achieved higher 

molecular weights of 5800-13500 g/mol [3].  These differences may be attributed to 

hydrogen bonding of the MD, which was recrystallized in different solvents.   
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Figure 2.1  General chemical structure of a MD   
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Slight differences of the FTIR shift of the N-H region were observed, specifically 3196 

cm-1 for the higher molecular weight PDP and 3358 cm-1 for the lower.  The authors 

suggest that the monomer associated with the N-H stretch at the lower wavelength 

indicates a stronger hydrogen bond, which in turn affects the polymerization process to 

yield the PDP with higher molecular weights.  Similarly, MDs of lactic acid and benzyl- 

protected aspartic acid recrystallized in ethyl acetate were successfully polymerized with 

a molecular weight range of 3200-4100 g/mol, while the same MD recrystallized in 

toluene did not polymerize [2, 4].   

The yields of the MDs described above decrease with increasing functionality at 

the 3- and 6-positions (8-24.9%).  Our group has successfully synthesized MDs with 

varying side chains using solid phase peptide synthesis [5]; however, forming the 

homopolymer of the PDP remains unsuccessful in terms of high yield and purification.  

The limitations of PDPs described above have been addressed with copolymerizations of 

polyesters and polypeptides [6-13]  

In the case of developing a sequence of alternating esters and peptides of precise 

length and sequence, the synthesis of depsipeptides with less than 16 residues has been 

reported with general solid phase peptide chemistry methods.  Kuilse et al. coupled α-

hydroxy acid protected lactic acid or mandelic acid to Boc-protected α-amino acids on a 

Wang resin using diisocarbodiimide (DIC) and dimethylaminopyridine (DMAP) [14].  

Spengler et al. devised a machine-assisted protocol for a family of depsipeptides based on 

a sequence of 26 residues with up to 6 ester substitutions [15].  The highest yields (30%) 

of the final product were seen with 1 or 2 ester substitutions, depending on the 
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depsipeptide sequence.  Both bodies of work show that single and multiple esters are 

successfully incorporated into a peptide backbone without modification of traditional 

SPPS methods.   

2.2.2  Solid Phase Peptide Synthesis  

Solid phase peptide synthesis (SPPS) has revolutionized peptide chemistry [16-

18] partly due to the seminal work of Merrifield describing the assembly of peptides onto 

a solid phase in 1963 [19].  SPPS allows reactions to be carried out rapidly using an 

excess of the activated amino acid derivative, which is removed at the end of the reaction 

by simple washing operations.  The synthesis steps can be performed in the same vessel 

without any transfer of materials, adding to the convenience of this method. 

Commercially available resins are modified with appropriate handles, which 

enable anchoring of the protected C-terminal amino acid residue by the formation of ester 

or amide bonds.  The first coupling step is one of the driving factors that influence the 

value of the final yield.  To address this issue, pre-loaded, protected amino acids are 

available.  Upon the first coupling to the resin, the chain grows from the C-terminus to 

the N-terminus as the protecting group is removed and coupled to another building block.  

This deprotection/coupling process is repeated until the desired sequence is obtained. In a 

final step, the peptide is released from the resin and, if applicable, the side chain 

protecting groups are removed simultaneously.  Two main strategies are used for the 

temporary/permanent protecting groups: N-tert-butoxycarbonyl/benzyl (Boc/Bzl) or 

fluorenylmethyloxycarbonyl/tert-butyl ester (Fmoc/OtBu).  For the Boc/Bzl strategy, 

both groups are acid labile with Boc removed by trifluoroacedic acid and Bzl removed by 
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a stronger acid such as hydrofluoric acid.  The Fmoc/OtBu method uses two different 

methods for removal, base or acid labile, respectively.   

2.3 RESULTS 

2.3.1 Solution phase synthesis of Fmoc-depsidipeptides 

A general strategy towards the synthesis of depsipeptides includes the synthesis of 

unique building blocks and their incorporation into a peptide chain with common 

methods [20].   Design of the depsi-dipeptide building block must take into consideration 

the sensitivity of the ester bond and also the appropriate protecting strategies that will be 

used with SPPS as removal of base-labile groups has been shown to affect the 

stereochemistry of the ester bond [14, 21] while deprotection of acid-labile groups may 

hydrolyze the ester bond.  Overall yield is also an important factor, as these materials 

would be used to couple using SPPS in a relatively high equivalence.  

The initial synthesis of depsi-dipeptides was influenced by Fmoc-dipeptides with 

pentafluorophenol (Pfp)-activated esters [22] (Scheme 2.1).  The synthesis and 

purification methods allowed for bulk synthesis in the absence of conditions that may 

affect the sensitivity of the ester bond.  The esters of Fmoc-Lys(Z)-OH and Fmoc-

Asp(OBzl)-OH were activated with Pfp and dicyclohexylcarbodiimide (DCC), 

recrystallized, and coupled to lactic acid (Lac) in dichloromethane (DCM).  The coupling 

conditions were investigated with diisocarbodiimde (DIC) or diisopropylethylamine 

(DIPEA) in the presence or absence of the coupling agents dimethylaminopyridine 

(DMAP) or Oxyma Pure.  The liquid chromatography and mass spectrometry (LC/MS) 

data show that the samples coupled with DIC were difficult to purify (Figure 2.2).  
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Scheme 2.1 Fmoc-depsidipeptide synthesis, where by a) Fmoc-peptide in DCM, 
DIC/DMAP, 0ºC for 1 hr, 16 hours at room temperature.  The sample was purified on a 
silica column in hexanes and ethyl acetate (67-82%); b) Pd/C in H2 at 5 or 15 psi for up 
to 16 hours in dry methanol, and purified on a silica column in DCM and methanol (33-
67%); c) Couple with Lac in DCM with DIPEA 0ºC for 1 hour, then 16 hours at room 
temperature.  Purification was attempted on a silica column in hexanes and ethyl acetate 
in combination with recrystallization.  The synthesis of structures 1 [23] and 3 [22] have 
been described elsewhere.  
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Crude samples yielded structures with multiple lactic acid repeats at the C-terminal, i.e. 

Fmoc-Asp(OBzl)-Lac-Lac-OH and Fmoc-Asp(OBzl)-Lac-Lac-Lac-OH, and samples 

with DIC/DMAP and DIC/Oxyma Pure further increased the number of lactic acid 

repeats at the C-terminal.  These by-products were not observed in DIPEA coupled 

samples, however the rate of conversion was relatively low.   

The purification of Fmoc-Lys(Z)-OPfp was attempted on a silica column, 

however a significant amount of Fmoc-Lys(Z)-OH remained in all sample mixtures 

(Figure 2.2 B and C).  Purification by recrystallization via vapor diffusion chamber in 

ethyl acetate or diethyl ether and hexanes was not successful.  Alternative protection 

strategies to the Fmoc-peptides were examined.  Benzotriazole (Bt) was coupled to the 

Fmoc-peptide with thionyl chloride in THF [24].  Upon multiple aqueous extractions and 

purification on a silica plug, Fmoc-Lys(Boc)-Bt was obtained with approximately 60% 

purity and 40% yield.  Protecting with Bt has the advantage over the OPfp method in that 

excess peptide is not present.  However, washing with aqueous HCl removes 

approximately 6% of the Boc protecting groups and excess Bt remains (Figure 2.3) 

Protecting the ester moiety with a benzyl (Bn) group was another option in 

developing Fmoc-depsidipeptide building blocks.  This method requires careful design of 

protection groups.  N-terminal and side chain protecting groups must be unaffected upon 

final purification of the building block, as those ends will need to remain protected 

throughout SPPS.  Thus, the cleaving method of the protecting group of the C-group of 

the depsidipeptide must neither affect the ester bond nor the other protecting groups.   
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Figure 2.3  MS of Fmoc-Lys(Boc)-Bt.  Bt referes to benzotriazole, M is the mass of 
interest, M – Boc is without the protecting group, and the mass addition of 23 is due to a 
sodium adduct. 
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The carbonyl group of Lac was initially investigated with benzyl chloroformate in 

pyridine [25].  Initial results show successful protection of Lac, however purification was 

difficult.  The synthesis proceeded with benzyl chloride and lactic acid ethyl acetate with 

TEA [23].  The mixture was refluxed for 5 hours and purified via distillation.  Pure Lac-

Bn was synthesized and matched the proton nuclear magnetic resonance (1H-NMR) 

spectra as reported in the literature (Figure 2.4). 

As stated earlier, coupling with Lac-Bn required a change to the original 

protection of the peptides used in the Pfp-activation methods.  Excess Lac-Bn was 

coupled with Fmoc-Lys(Boc)-OH or Fmoc-Asp(OtBu)-OH in DCM with DIC and 

DMAP.  The reactions were monitored by thin layer chromatography (TLC) and 

completed upon disappearance of the Fmoc-amino acid, as observed under UV.  The 

samples were filtered to remove dicyclohexylurea, reduced under vacuum, and purified 

on silica in hexanes and ethyl acetate.  The Bn group was removed in dry methanol with 

10% palladium on activated carbon (Pd/C) under hydrogen gas (H2) and monitored with 

TLC.  Hydrolysis products, specifically the Fmoc-amino acid, was evident in 

deprotections using commercial grade methanol, thus the absence of water is imperative 

for this step.  The final depsi-dipeptide was purified on a silica column in DCM and 

methanol and was evaluated with 1H-NMR and LC/MS.  

2.3.2  Optimizing SPPS protocols for the Synthesis of Depsipeptides 

A library of depsipeptides was synthesized from the depsi-dipeptide building 

blocks described in the previous section (Figure 2.5).   
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Figure 2.5   Depsipeptide library. These depsipeptides have been successfully purified 
with HPLC.  The structures are named according to the presence of functional groups 
starting at the N-terminal.  For example, depsipeptide 1 has alternating lysine (K) and Lac 
residues, with a total sequence of 8.  Alanine (A) is terminal amino acid.  Aspartic acid 
(D) is represented by its standard one letter code.  
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The depsipeptides investigated in this study incorporate alternating esters, thus a 

few conditions for SPPS must be determined.  Optimization of these protocols proceeded 

with standard Fmoc strategies with ninhydrin monitoring.  The target initial length of the 

depsipeptide was determined with segmented coupled SPPS (Figure 2.6A).  It should be 

noted that the units used for coupling were not purified, which may affect the optimal 

length that could be achieved with this system.   

The first steps of the synthesis were referenced from earlier work published on the 

synthesis of morpholine-diones [5].  Lac was coupled to a trityl-chloride resin with 

DIPEA, followed by coupling with Fmoc-amino acid and DIC/DMAP coupling and dried 

overnight.  Three-fourths of the dried resin was transferred to a clean reaction vessel, 

cleaved off the resin, and used as the building block, S1.  The remaining one-fourth of the 

depsipeptide was treated with 20% piperidine in DMF to remove the Fmoc group and 

coupled to S1 with DIC and Oxyma Pure.  This process was repeated once, and MS of 

the crude samples revealed that the depsipeptide could be synthesized with 8 residues 

using this method.  MS also shows a mass of 687, which may be excess S2 as fluorenyl 

groups are often cleaved due to the ionization process.  The final yield of product with 

segmented coupling is very limiting, thus the synthesis of depsipeptides proceeded with 

linear growth (Scheme 2.2).    

The ester group may be sensitive to the harsh solvents used with SPPS.  

Preliminary tests were conducted with crude samples of the depsi-dipeptide synthesized 

with Pfp-activated esters to ensure the Fmoc-depsipeptide was stable under general SPPS 

conditions.   
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Scheme 2.2  Synthesis of oligodepsipeptides via standard Fmoc-SPPS methods.  
Coupling was achieved on a trityl chloride resin, whereby a) DIPEA (1 equiv) for 1.5 
hours with mixing, followed by DMF and DCM washes; b) 20% piperidine in DMF for 5 
minutes (x 3) followed by DMF and DCM washes; c) DIC (4 equiv) and DMAP (0.01 
equiv) for 2 hours with mixing, followed by DMF and DCM washes; d) DIC (4 equiv) 
and Oxyma Pure (0.1 equiv) for 2 hours with mixing followed by DCM washes; e) 
mixing with cleaving cocktail (A: TFA/TIPS – 95/5; B: TFA/Water/TIPS – 95/2/3; C: 
TFA/DCM/TIPS – 95/2/3; D: TFA/DCM/TIPS – 50/48/2) for 3 hours followed by 
precipitation in cold ether or extraction in chloroform.       
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Trityl chloride resin was coupled with lactic acid with DIPEA, then subsequently coupled 

with Fmoc-Lys(Z)-OH or Fmoc-Asp(OBzl).  After the washing and deprotection steps, 

the depsi-dipeptide was coupled/deprotected two additional times to obtain Fmoc-

(Lys(Z)-Lac)6 or Fmoc-(Asp(OBzl)-Lac)6.   

The crude MS for Fmoc-(Asp(OBzl)-Lac)6 shows a mass pertaining to the desired 

depsipeptide as well as those with an additional mass unit of 72, which is indicative of 

additional Lac residues (Figure 2.7).  Fragmented MS was used on Fmoc-(Lys(Z)-Lac)6  

to determine if the mass pattern was an aspect of fragmentation or if the ester bonds were 

hydrolyzed (Figure 2.8).  This method is one way to monitor the ionization patterns that 

often occur with MS analysis.  Before fragmentation, the dominating values from the 

crude sample are masses that pertain to Fmoc-(Lys(Z)-Lac)6 and Fmoc-(Lys(Z)-Lac)4-

Lys.  The sample was isolated and ionized, resulting in ionization of the fluorenyl group 

to yield (Lys(Z)-Lac)6.  The sample was again ionized to yield a mass of (Lys(Z)-Lac)4-

Lys, which could pertain to ionization of the C-end ester or ionization of the fluorenyl 

group from Fmoc-(Lys(Z)-Lac)4-Lys.  After the last ionization step, the dominating mass 

was of Fmoc-(Lys-Lac)6, resulting in ionization of the Z-group.  These results suggest 

that the final sample consists of two different masses, Fmoc-(Lys(Z)-Lac)6 and Fmoc-

(Lys(Z)-Lac)4-Lys, with the latter being a deletion product as a result of the SPPS 

conditions.  The fragmentation results also suggest that neither the end nor internal esters 

were ionized during the analysis.  Replacing lactic acid with Fmoc-Ala-OH in the first 

coupling step facilitated the purification process, as fewer deletion products were 

detected in the crude MS samples (data not shown). 
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Figure 2.7  MS of crude Fmoc-(Asp(OBzl)-Lac)6.  Arrows represent an increase of 
mass unit 72, which is equivalent to a Lac residue.  
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Figure 2.8  Fragmentation data of Fmoc-(Lys(Z)-Lac)6.  Before fragmentation, the MS 
show masses associated with Fmoc-(Lys(Z)-Lac)6 and Fmoc-(Lys(Z)-Lac)4-Lys (A).  
Masses are isolated and ionized to investigate the identity of fragmentation products (B) 
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SPPS of depsipeptides proceeded using Fmoc/OtBu strategies on a trityl-chloride resin.  

This new strategy required optimization of the cleaving cocktail, as higher acidic 

concentration is needed to simultaneously cleave the sequence off the resin and remove 

the Boc or OtBu protecting groups without hydrolyzing the ester bonds.   

Four standard cleaving mixtures were tested on Fmoc-K-Lac-8 for 1 hour and 

show partial cleavage of the Boc-groups (Figures 2.9-2.12).  The mixtures were 

composed of trifluoracetic acid (TFA), dichloromethane (DCM), triisopropylsilane 

(TIPS), and/or water.  Follow-up studies revealed that cocktails B and C completely 

removed the Boc groups after 2.5 hours (data not shown).  Synthesis and cleavage of 

Fmoc-K-Lac-16 suggests that longer depsipeptide sequences are successfully synthesized 

with our method and the internal esters are not significantly affected by hydrolysis.  Both 

Fmoc-D-Lac-8 and Fmoc-D-Lac-6 did not precipitate well in ether upon cleavage.  The 

samples were extracted in chloroform prior purification attempts with HPLC.  

Purification was difficult and solubility characteristics varied batch to batch.  Peptide 

sequences that contain the Asp residue commonly show the formation of lactam by-

products, however attempts to identify this side reaction were not successful.  Changes in 

a loss of oxygen, i.e. 16 mass units, would be expected for lactam formation, but this 

trend was not evident with MS.  It is highly speculative that cyclization occurred, as both 

Asp-based depsipeptides were insoluble in water.  It is interesting to note that despite the 

challenges of purifying Fmoc-D-Lac-8 or Fmoc-D-Lac-6, the addition of Lys to the 

sequences facilitates solubility, as seen with Fmoc-K-Lac-D-A-8 and Fmoc-K-Lac-D-A-

16.  
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The recovered yield of depsipeptides synthesized on the trityl chloride resin gave 

very low yields, thus a preloaded Fmoc-Ala-Wang resin was replaced by the trityl-

chloride bead.  The same strategies as stated above were utilized, with the exception of 

eliminating the first coupling step with Fmoc-Ala-OH.  After purification with HPLC, the 

yield of Fmoc-K-Lac-8 increased from 4% to 36%.  Fmoc-Ala-Wang resin was used for 

all other depsipeptides, showing additional evidence that our method can be used for a 

variety of depsipeptide sequences (Table 2.1) [26].   

2.4  CONCLUSIONS 

 This chapter summarizes the design and synthesis of a family of depsipeptides to 

be further investigated for their ability to self-assemble into ordered hydrogels.  The 

described methodology synthesized depsi-dipeptides in solution as building blocks for 

solid phase peptide synthesis.  The solution methods gave relatively high yields, were 

repeatable, and did not disturb the stability of the ester bond.  The building block was 

synthesized on the gram scale, which is ideal because of the relatively high coupling 

equivalences required for solid phase methods. 

 Solubility was affected by the sequences of the final depsipeptides.  Depsipeptides 

designed with only Asp and Lac yield poor solubility and could not be purified, but both 

limitations were addressed upon the addition of adjacent Lys residues.  The described 

work will be used in future studies to continue the development of novel depsipeptide 

structures.  
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Depsipeptide 
 

Sequence Gradient Yield 

Fmoc-K-Lac-8 Fmoc-Lys-Lac-Lys-Lac-Lys-Lac-Lys-Ala 

 

28-30% 36% 

Fmoc-K-Lac-16 Fmoc-Lys-Lac-Lys-Lac-Lys-Lac-Lys-Lac-

Lys-Lac-Lys-Lac-Lys-Lac-Lys-Ala 

 

25-26% *2% 

Fmoc-K-Lac-D-A-8 Fmoc-Lys-Lac-Lys-Lac-Asp-Lac-Asp-Ala 

 

32-33% *15% 

Fmoc-K-Lac-D-A-16 Fmoc-Lys-Lac-Lys-Lac-Lys-Lac-Lys-Lac-

Asp-Lac-Asp-Lac-Asp-Lac-Asp-Ala 

 

35-37% *3% 

 

Fmoc-D-Lac-K-A-8 Fmoc-Asp-Lac-Asp-Lac-Lys-Lac-Lys-Ala 

 

35-36.5% 52% 

Fmoc-D-Lac-K-A-16 Fmoc-Asp-Lac-Asp-Lac-Asp-Lac-Asp-

Lac-Lys-Lac-Lys-Lac-Lys-Lac-Lys-Ala 

 

33-35% *14% 

Table 2.1 Depsipeptide purification details.  Lactic acid is represented by Lac, and the 
gradient refers to the percentage of solvent B at which the depsipeptide was 
collected during HPLC.  The yield was calculated from the equivalence 
value of the Fmoc-Ala-Wang resin which varied by lot, unless otherwise 
noted*. 
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2.5  EXPERIMENTAL METHODS 

Abbreviations: Boc: tert-butyloxycarbonyl; OtBu: tert-butyl; Bn: benzyl; DCC, 

N,N'-Dicyclohexylcarbodiimide; DCM, dichloromethane; DMAP, 4-

Dimethylaminopyridine; DMF, dimethylformamide; DIC, N,N'-

Diisopropylcarbodiimide; DIPEA, N,N-diisopropylethylamine; Fmoc, 9-

Fluorenylmethyloxycarbonyl; HPLC, high pressure liquid chromatography; Lac, lactic 

acid; Pd/C, palladium on carbon; Pfp, pentafluorophenol; TFA, trifluoroacetic acid; TIPS, 

triisopropylsilane.  TFA, DCM, DMF, ethyl acetate, and diethyl ether were from Fisher 

Scientific.  DIPEA, Pfp, and R-mandelic acid were from Acros Organics.  Pd/C was 

purchased from Aldrich.  Fmoc-amino acids, DMAP, and Oxyma Pure were purchased 

from EMD Biosciences.  The side chain protecting groups were chosen as: Boc or Z for 

lysine and OtBu or OBzl for aspartic acid.  Trityl chloride resin, Fmoc-Ala-Wang resin, 

and DIC were from Anaspec.  Piperidine was from Alfa Aesar.  L-lactic acid was from 

Biosynth.   

  Analytical thin layer chromatography (TLC) was performed on Whatman 

aluminum backed silica plates (UV254, 250 µm).  Spots were visualized with UV light or a 

permanganate potassium stain.  Column chromatography was performed manually on 

silica gel (230-400 mesh size, grade 60).  1H-NMR,13C-NMR, and two dimensional 

spectra were obtained on a Varian 500 MHz and 500 MHz spectrometers. Chemical shifts 

are given in ppm with respect to internal standard TMS for 1H-NMR and 13C-NMR.  

Analytical HPLC was performed using an automatic HPLC system (Beckman System 

Gold) with an analytical reversed-phase column, an UV detector operating at 214 nm, at a 
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flow rate of 1 mL/min. A Vydac C18 column (300 Å, 5 μm, 3.1 x 150 mm) was used.  

Preparative HPLC was performed using a GE Biosciences AKTA 10 system on a Biorad 

HiPore RP C18 column (300 Å, 5 μm, 3.1 x 150 mm), and an UV detector operating at 

214 nm or Biorad BioLogic DuoFlow on a Gemini C18 column (300 Å, 5 μm, 250 x 

10mm) and a UV detector operating at 214 nm.  The depsipeptides were characterized 

using liquid chromatography mass spectroscopy (LC-MS) and electrospray mass 

spectrometry (ESI-MS).  They were performed on an Aglient 1200 series HPLC, an 

Agilent 6130 single quadrupole mass spectrometer or a Gemini column (C18, 55 μm, 2.1 

x 50 mm), operating in a positive or negative ionization mode. 

General procedure for the removal of protecting groups for solid phase 

synthesis. The Fmoc-protecting group was removed from the N-terminus with 20% 

piperidine in DMF.  The solution was mixed for 5 minutes three times.  The resin was 

washed with DMF.  Cleavage of butyl-groups was investigated using the following 

cocktails: A: TFA/TIPS – 95/5; B: TFA/Water/TIPS – 95/2/3; C: TFA/DCM/TIPS – 

95/2/3; D: TFA/DCM/TIPS – 50/48/2. The filtrate was precipitated into cold ether and 

purified with HPLC.   
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Fmoc-Asp(OtBu)-Lac-Bn (3a) 

 

Fmoc-Asp(OtBu)-OH (1.2 mmol) and  Lac-Bn (1.0 mmol) was dissolved in DCM and 

placed on an ice bath.  DIC (1.2 mmol) and DMAP (0.01 mmol) was added to the cold 

mixture and mixed for 1 hour.  The reaction was stirred for 5 hours at room temperature 

and monitored by TLC.  The solution was filtered and concentrated.  The crude oil was 

purified on silica gel hexanes and ethyl acetate (67%).  1H-NMR (500 MHz, d6-DMSO) δ 

(ppm): 1.33-1.43 (m, 12H), 2.58 and 2.78 [dd, J = 4.76, 2H, CH2CH2CO], 4.24 [t, J = 

6.83, 1H, CH(Fmoc)], 4.34 [d, J = 6.66, 2H, CH2(Fmoc)], 4.54 [m, J = 4.76, 1H, 

NHCHCH2], 7.32-7.44 (m, 9H), 7.70 [q, J = 7.07, 2H, HAr(Fmoc)], 7.89 [d, J = 7.51, 2H, 

HAr(Fmoc)], 7.96 [d, J = 8.24, 1H, NH]; 13C-NMR (125 MHz, d6-DMSO) δ (ppm): 

170.77, 169.90, 168.75, 155.00, 143.74, 140.79, 135.50, 128.51, 128.26, 127.90, 127.87, 

127.10, 125.18, 120.15, 80.63, 69.09, 66.44, 65.84, 50.43, 46.63, 36.81, 27.66, 16.59.  

MS (ESI+) calculated for C33H35NO8 [M+ - OtBu - H]: 517.53; found: 518.00 
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Figure 2.20  MS of Fmoc-Asp(OtBu)-Lac-Bn in positive mode. 
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Fmoc-Lys(Boc)-Lac-Bn (3b)  

 

Fmoc-Lys(Boc)-OH (1.2 mmol) and Lac-Bn (1.0 mmol) was dissolved in DCM and 

placed in an ice bath.  DIC (1.2 mmol) and DMAP (0.01 mmol) was added to the cold 

mixture and mixed for 1 hour.  The reaction was stirred for 5 hours at room temperature 

and monitored by TLC.  Diisocarbohexylurea was removed via filtration, and the mixture 

was concentrated.  The crude oil was purified on silica gel with 37.5% EtOAc in hexanes 

(82%). 1H-NMR (500 MHz, d6-DMSO) δ (ppm): 1.24-1.45 (m, 16H), 1.56-1.73 (m, 2H), 

2.88 [t, J = 5.13, 2H, CH2CH2NH], 4.04 [m, J = 7.07, 1H, NHCHCH2CO], 4.21-4.32 (m, 

3H), 5.10-5.15 (m, 3H), 6.75 [t, J = 5.61, 1H, NH], 7.31-7.45 (m, 9H), 7.71 [d, J = 7.57, 

2H, HAr(Fmoc)], 7.79 [d, J = 7.56, 1H, NH], 7.89 [d, J = 7.56, 2H, HAr(Fmoc)]; 13C-NMR 

(125 MHz, d6-DMSO) δ (ppm): 172.06, 169.96, 156.12, 155.54, 143.73, 140.68, 135.44, 

128.43, 128.17, 127.90, 127.61, 127.02, 125.19, 120.08, 77.32, 68.66, 66.31, 65.67, 

53.58, 46.58, 40.09, 30.15, 28.99, 28.23, 22.77, 16.63.  MS (ESI-) calculated for 

C36H42N2O8 [M
- - H]: 630.73; found: 629.8 
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Figure 2.26  LCMS of Fmoc-Lys(Boc)-Lac-Bn. 
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Figure 2.28  MS of Fmoc-Lys(Boc)-Lac-Bn positive mode. 
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Fmoc-Asp(OtBu)-Lac-OH (4c)  

 

(3a) was dissolved in dry methanol with 0.1 equiv Pd/C under H2 at 5 psi for 8 hours or 

as monitored with TLC.  The Pd/C was filtered through a pad of celite and concentrated 

in vacuo.  The sample was purified on silica gel with 1% MeOH in DCM to yield 4c as 

white crystals (33%).  1H-NMR (500 MHz, d6-DMSO) δ (ppm): 1.36-1.38 (m, 12H), 2.55 

and 2.79 [dd, J = 4.64, 2H, CH2CH2CO], 4.22 [t, J = 7.08, 1H, CH(Fmoc)], 4.30 [d, J = 

7.07, 2H, CH2(Fmoc)], 4.93 [q, J = 7.07, 1H, NHCHCH2], 7.31 [t, J = 7.32, 2H, 

HAr(Fmoc)], 7.41 [t, J = 7.33, 2H, HAr(Fmoc)], 7.68 [t, J = 7.08, 2H, HAr(Fmoc)], 7.87-

7.89 (d, 3H); 13C-NMR (125 MHz, d6-DMSO) δ (ppm): 171.44, 170.64, 168.74, 155.79, 

143.69, 140.68, 127.60, 127.01, 125.12, 120.09, 80.49, 69.05, 65.70, 50.33, 46.52, 36.74, 

27.61, 16.62 (shift at 54.86 ppm is residual DCM).  MS (ESI-) calculated for C26H29NO8 

[M- - H]: 483.51; found: 482.2 

  



 

Figur

 

re 2.29  1H-NNMR of Fmmoc-Asp(OtB

 

67

Bu)-Lac-OH..  Full spectrrum. 

 



 

Figur
integr

 

re 2.30  1H-N
rations. 

NMR of Fmmoc-Asp(OtB

 

68

Bu)-Lac-OH..  Magnified d from 1.1-1.7 ppm, with

 

h 



 

Figur
with 

 

re 2.31  1H-N
integrations

NMR of Fm
. 

moc-Asp(OtB

 

69

Bu)-Lac-OH..  Magnified d from 2.50-22.85 ppm, 

 



 

Figur
integr

 

re 2.32  1H-N
rations. 

NMR of Fmmoc-Asp(OtB

 

70

Bu)-Lac-OH..  Magnified d from 4.3-4.9 ppm, with

 

h 



 

Figur
integr

 

re 2.33  1H-N
rations. 

NMR of Fmmoc-Asp(OtB

 

71

Bu)-Lac-OH..  Magnified d from 7.3-8.0 ppm, with

 

h 



 

Figur

 

re 2.34  13C--NMR of Fmmoc-Asp(OtB

 

72

Bu)-Lac-OHH. 

 



 73

 

Figure 2.35  LCMS of Fmoc-Asp(OtBu)-Lac-OH. 
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Figure 2.36  MS of Fmoc-Asp(OtBu)-Lac-OH in negative mode. 
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Figure 2.37  MS of Fmoc-Asp(OtBu)-Lac-OH in positive mode. 
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Fmoc-Lys(Boc)-Lac-OH (4d)  

 

(3b) was dissolved in dry methanol with 0.1 equiv Pd/C under H2 at 12 psi for 9 hours or 

as monitored with TLC.  The Pd/C was filtered through a pad of celite and concentrated 

in vacuo.  The sample was eluted with 1-6% MeOH in DCM to yield 4d as white crystals 

in a yield of (67%).  1H-NMR (500 MHz, d6-DMSO) δ (ppm): 1.34-1.47 (m, 16H), 1.60-

1.79 (m, 2H), 2.90 [t, J = 5.96, 2H, CH2CH2NH], 4.04 [m, J = 5.03, 1H, NHCHCH2CO], 

4.32-4.22 (m, 3H), 4.93 [q, J = 7.07, 1H, CH2CHCH3], 6.75 [t, J = 5.53, 1H, NH], 7.33 [t, 

J = 7.49, 2H, HAr(Fmoc)]; 7.42 [t, J = 7.50, 2H, HAr(Fmoc)], 7.72 [t, J = 6.90, 2H, 

HAr(Fmoc)], 7.77 [d, J = 7.83, 1H, NH], 7.89 [d, J = 7.50, 2H, HAr(Fmoc)]; 13C-NMR 

(125 MHz, d6-DMSO) δ (ppm): 171.91, 171.84, 156.05, 155.47, 143.69, 140.62, 127.54, 

126.96, 125.15, 120.01, 77.25, 68.59, 65.60, 53.52, 46.53, 30.12, 28.98, 28.18, 22.72, 

16.63.  MS (ESI-) calculated for C29H36N2O8 [M
- - H]: 540.60; found: 539.00. 
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Figure 2.43  LCMS of Fmoc-Lys(Boc)-Lac-OH. 
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Figure 2.44  MS of Fmoc-Lys(Boc)-Lac-OH in negative mode 
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Figure 2.45  MS of Fmoc-Lys(Boc)-Lac-OH in positive mode 
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Preparation of depsipeptides on solid phase synthesis. The depsipeptides prepared 

with this method are shown in Figure .  Functionalized peptides were added to the resin 

with DIC/DMAP as per standard Fmoc SPPS protocols.  Fmoc-Ala-Wang resin (0.25 

equiv) was swelled in DCM.  The Fmoc group was removed with 20% pyridine in DMF 

and washed.  Fmoc-peptide-OH (1 equiv) was dissolved in DCM and DMF and was 

added to the reaction vessel with DIC (0.75 equiv) and DMAP (0.05 equiv).  After 2 

hours the sample was washed with DCM and DMF. The Fmoc group was removed with 

pyridine in DMF and washed.  Fmoc-depsidipeptide (1 equiv) was dissolved in DCM 

with Oxyma Pure (0.2 equiv) and was added to the reaction vessel upon a 2 minute 

preactivation time with DIC (0.75 equiv).  After 2 hours the sample was washed with 

DCM and DMF.  The Fmoc-removal, coupling, and washing steps were repeated with the 

Fmoc-depsidipeptide until the desired length was achieved.  The oligodepsipeptide was 

removed from the resin accordingly and purified with HPLC.   
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Figure 2.47  HPLC of depsipeptide (2). 

  



 88

 

Figure 2.48  HPLC of depsipeptide (3). 
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Figure 2.49  HPLC of depsipeptide (4). 
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Figure 2.50  HPLC of depsipeptide (5). 
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Figure 2.51  HPLC of depsipeptide (6). 
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Chapter 3. Self-Assembly of Depsipeptides into Spherical Structures, 
Fibers, or Hydrogels 

3.1 CHAPTER SUMMARY 

3.1.1 INTRODUCTION 

Depsipeptides are a unique class of materials that incorporate esters in the peptide 

backbone and have potential as self-assembling materials for tissue engineering scaffolds.  

Depsipeptides have been studied as polydepsipeptides for biomaterials or as models to 

investigate the folding and self-assembling studies of peptides with ester substitutions.  

Self-assembling peptide systems can be categorized as natural or unnatural 

systems.  Natural systems are based on structures of known natural existing proteins, 

such as β-sheets, β-turns, α-helices, and coiled-coils.  In general, self-assembly into a gel 

based on a number of factors including the ionic strength of the solution, peptide length, 

peptide sequence, temperature, and pH.  Unnatural systems include peptide families that 

incorporate the covalent linking of other molecules, peptide amphiphiles, or π-π 

interactions.   

3.1.2 Goals 

The goal of this work is to observe the self-assembly of depsipeptides into 

biologically relevant hydrogels.  The depsipeptides under investigation are designed with 

hydrophilic and hydrophobic groups that have been shown to promote higher order 

structures with different families of peptides.  Investigation of these structures will 

support the notion that self-assembling materials are not isolated to structures with native 

peptide backbones. 
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3.1.3 Approach 

Gelation was investigated for depsipeptides 1-6 under various ionic 

concentrations and pH values.  The self-assembly process was analyzed with emission 

spectra, IR, CD, and TEM.  Emission spectroscopy was used to observe the orientation of 

the fluorenyl group.  IR and CD are commonly used methods to detect the secondary 

structure of proteins and peptides.  These strategies are based on X-ray crystallography 

data from native peptide backbones, thus folding patterns such as those seen for α-

helices, β-sheets, and random coils may not be applicable to our system.  Instead, these 

methods were used to detect the differences between two depsipeptides or changes in 

orientation due to environmental conditions.  TEM was used to observe the morphology 

of the nanostructures under various pH, ionic concentrations, and depsipeptide 

concentrations over time.  

3.1.4 Results 

The self-assembly of peptides into higher order structures, such as hydrogels, is a 

dynamic process.  A common feature of self-assembling families is the order of the 

chemical groups, often identified by the secondary structure of the peptide under various 

environmental conditions.  Results show that the order of depsipeptides influenced the 

formation of higher order structures into micelles, fibers, or hydrogels.  Spherical 

nanostructures were observed in depsipeptide (3) when prepared in a high ionic solution 

at pH 7.  The fluorenyl groups were oriented in a parallel manner, which has been 

reported to promote the formation of micelles in Fmoc-dipeptides.  Depsipeptide (5) was 

the only structure within the reported synthetic library that formed a gel under certain 
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conditions.  Gels were observed as soon as 18 hours or after 3 weeks.  The formation of 

fibers were also detected in non-gelling samples of depsipeptide (5).  The structures of 

the longest sequences within our library, depsipeptide (4) and (6), did not show signs of 

gelation.   

3.2 BACKGROUND 

3.2.1 Depsipeptides as Self-Assembling Materials 

Ester substitutions within peptides are a common strategy to analyze protein folding, 

function, and self-assembly [1, 2].  Peptide folding and self-assembly is driven by non-

covalent interactions such as hydrogen-bonding, π-π, electrostatic, or hydrophobic 

interactions between peptides, peptide side chains, and/or terminal protecting groups.  

The incorporation of esters into the peptide backbone reduces the potential for hydrogen 

bonding interactions, however depsipeptides have been shown to form a variety of 

ordered secondary structures.  In the case of the family of (Leu-Leu-Lac)n residues, 

secondary structure is dependent on the length of the repeating unit [3-5].  Crystals of the 

depsipeptides were formed under various solvent conditions, and under x-ray 

crystallography, a transition from β-strands to α-helices was observed when n=3.  A 

computational study of a (Gly-Lac)6 and (Lys-Lac)6 show the potential for regular, 

helical folding patterns (Figure 3.1) using quantum mechanics calculations and molecular 

modeling  [6].  Under simulated annealing, (Gly-Lac)6 folded into well-defined, left-

handed and right-handed helices, while (Lys-Lac)6 formed a polyproline-II like helical 

structure.   
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A 

 

B 

Figure 3.1  Molecular dynamics model of (Gly-Lac)6 (A) and (Lys-Lac)6 (B). (Gly-
Lac)6 (A) folds into a left- or right-handed helix and (Lys-Lac)6 has a 
polyproline II-type structure.  Used with permission. [6]   
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Hydrogel formation from depsipeptides of amyloid derivatives was dependent on 

the number and location of the ester substitutions within the 10 residue sequence [2].  

Specifically, amylin(20-29) derivatives were modified at positions 24, 26, and 28 by 

incorporation of ester bond moieties (Figure 3.2).  These newly designed amylin 

derivatives did not form traditional amyloid fibrils but gave rise to the formation of 

helical ribbons and peptide nanotubes, as observed by transimission electron microscopy 

(TEM).  Amyloid fibril formation of the modified depsipeptides was unexpected, as a 

single amide bond replacement prevented gelation.  Interestingly, the depsipeptide did 

not exhibit beta-sheet conformation, which is traditionally observed for amylin fibers. 

These results suggests that self-assembly is sensitive to the location of the ester 

substitution, and that folding other than β-sheet character is responsible for the self-

assembly of the depsipeptide derivative .   

3.2.2 Self-assembling peptides: Families and mechanisms 

3.2.2.1 Amphiphilic peptides: balance of charge and hydrophobicity 

A unique family of short self-assembling peptides with alternating hydrophobic 

and hydrophilic residues have been termed EAK, RAD, and KFE, based on the repeat of 

amino acids and are well citied in the literature [7] [8-10].  EAK16-II was first discovered 

while studying the left-handed Z-DNA binding protein zuotin [11].   
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A 

 

B 

 

Figure 3.2  Self-assembly of a depsipeptide-amylin derivative.  The chemical structure 
of the derivative with ester substitutions at the 24, 26, and 28 position (A).  TEM shows 
the formation of helical nanotubes formed by the amylin(20-29) derivative (B).  Arrow a: 
single strand; arrow b: two strands starting to intertwine; arrow c: helical ribbon; arrow d: 
(closed) peptide tube; arrows e and f; two helical tapes with pitches of 500 and 330 nm, 
respectively.  Samples were aged for 3 weeks.  Scale bar: 1 µm. Used with permission. 
[2] 
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CD studies of EAK16-II indicate strong β-sheet characteristics, suggesting the 

hydrophobic Ala side chains are on one side of the sheet and the charged Lys and Glu 

side chains are on the other.  The β-sheet conformation further proposes that 

complementary patterns with pairs of positively and negatively charged ionic groups may 

be staggered, promoting specific interactions and packed fibril formations.   

The self-assembly of EAK16-II motivated the design of other peptides within this 

family.  For example, RAD-I replaces the positively charged Lys residue with Arg and 

the negatively charged Glu with Asp.  RAD-1 has been shown to promote vascularization 

and the recruitment of endothelial cells in a rabbit heart model [12] and is now 

commercially available as PuraMatrix.  RAD-I organizes into a hydrophobic and 

hydrophilic face, similar to the EAK16-II peptide.  The structure adopts a β-sheet 

configuration through self-complementary ionic interactions, resulting in ordered 

nanostructures, which further assemble to form the nanofiber scaffold (Figure 3.3). 

Predicting the self-assembly of a material is not straight forward, as illustrated by 

the folding studies of KFE [13].  Replacing Ala with Phe results in a more hydrophobic 

peptide, resulting in slightly different self-assembly trends.  The driving forces for the 

self-assembly of KFE12 is driven by the hydrophobic nature of Phe groups and efficient 

masking of the charged side chains under various conditions.  The critical coagulation 

concentration (CCC) was observed for KFE8, KFE12, and KFE16 (Figure 3.3).  The 

KFE8 and KFE16 exhibit the same CCC, while KFE12 has a lower value from 0.1-1.0 

mM NaCl.   
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Consistent with other peptide families in this system, each molecule must pack 

together as a β-strand with other oligopeptides to form a β-sheet, suggesting that KFE8 is 

not long enough to maintain this structure.  On the other hand, KFE16 may cause the 

bond angles to become less flexible, preventing the stabilization of β-strand due to chain 

entanglements.  These results suggest that an optimal length for peptide systems exist, 

and increasing the number of ionic interactions does not necessarily drive self-assembly.    

Analysis of self-assembled structures often focuses on changes to physical 

properties or secondary structure.  However, these factors may not have the same 

influences on morphology.  RAD16-1 was found to assemble into a gel after dissolved in 

water and Tris-HCl buffer, as observed with circular dichroism (CD) and AFM [16].  The 

samples were exposed to 30 minutes of sonication, which can break hydrogen, ionic, and 

hydrophobic bonds.  While analysis with CD shows that β-sheet characteristic was 

maintained under all tested conditions, the fiber length was significantly shortened from 

microns to the nanometer scale (Figure 3.4).  The fibers reassembled to original 

dimensions after 2 hours.  Similar trends were observed with the same peptide under pH 

changes [17].  CD results indicate that β-sheet structures were maintained within a broad 

range of pH values, with a slight increase in unordered folding from pH 4.5-9.5.  Within 

this pH range, the presence of both short nanofibers and aggregates were observed.  The 

distorted β-strand and unordered structures seen at higher pH may due to the formation of 

salt bridges.  These results suggest that careful selection of analysis techniques must be 

considered to investigate self-assembling peptides, as secondary folding data may not 

accurately reflect the morphological changes of the fiber networks. 
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3.2.2.2 Fmoc-peptides: role of aromatic interactions that drive self-assembly 

Self-assembly has been studied on short peptide structures with conjugated 

aromatic groups at the N-terminal, such as with Fmoc or naphthalene.  The next section 

will discuss the organizational properties associated with Fmoc-peptides familes.   

These small molecules should be easily removed through the renal system upon 

implantation as biomaterials, making them ideal for tissue engineering applications.  

Investigation of Fmoc-peptides as implantable materials was motivated from the study of 

12 Fmoc-amino acids as anti-inflammatory agents [18].  Within a range of inflammation 

models in animals, the activities of the Fmoc-amino acids were shown to block 

recruitment of T-lymphocytes and neutrophiles from inflammatory lesions and also 

inhibit enzymes in the synthetic pathway.   

Fmoc-peptides are relatively small molecules, with a molecular weight of less 

than 1000 Da and usually self-assemble in water to form long, fibrous structures.  In 

general, the ability to form a stable gel is determined by the overall hydrophobicity of the 

Fmoc-dipeptide [19].  Gelation was investigated in with Fmoc-dipeptides composed of 

Gly, Ala, Val, Leu, or Phe.  Syneresis was observed in less hydrophobic Fmoc-dipeptides 

while self-supporting gels resulted within the intermediate hydrophobic structures and 

very hydrophobic structures.  In addition, the dipeptides were found to assemble at 

different rates, possibly due to differences in pKa.   

The fluorenyl group plays an important role in self-assembly into hydrogels 

within these short peptide families.  The mechanism of self-assembly leading to 

hydrogelation has been proposed on Fmoc-Phe-Phe [20-22] which has found to be 
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generally consistent for a range of gelled Fmoc-dipeptides.  It is important to note that 

while the Fmoc-group helps in the ordering of the peptide backbone, the residues of the 

side chains can affect gelation and gelation strength.  The Fmoc-Phe-Phe model proposes 

the peptide as a dimensional ribbon, formed by lateral association of nanotubes (Figure 

3.5).  This hierarchical assembly is based on the secondary structure data collected from 

IR, fluorescence, and CD [21].  IR data suggest that anti-parallel β-sheets are formed 

between dipeptides while emission spectra reveal that the Fmoc groups are stacked in an 

anti-parallel manner.  CD analysis shows induced chirality of the Fmoc groups as well as 

a signal consistent with the formation of β-sheets.  The model suggests that pairs of 

Fmoc-Phe-Phe structures are stacked in an anti-parallel sheet with another stack of Fmoc-

Phe-Phe pairs positioned alongside the first sheet.  The arrangement is staggered by one 

peptide, allowing the fluorenyl groups to interlock.  The second sheet is rotated such that 

the fluorenyl groups interact along their full length and this twist, along with the 

incorporation of additional β-sheets, form a cylinder.  This higher order structure has a 

width of approximately 30Å, 28 monomers per turn, and an inner diameter of 7Å 

diameter.  The dimensions of the model were confirmed with TEM and WAXS. 

Derivatives of Fmoc-Phe-Phe gels have been investigated by incorporating Fmoc-

Arg-Gly-Asp within multicomponent systems [23]).  Similar to the Fmoc-Phe-Phe model, 

the peptide sequences are self-assembled through inter-molecular hydrogen bonds 

forming anti-parallel β-sheet structures (Figure 3.6 ).  The Fmoc-groups on both peptides 

interacted with one another and formed π-π stacks to interlock the β-sheets.   
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Figure 3.6 The self-assembled hydrogel of Fmoc-FF/RGD.  The chemical structures of 
the hydrogel building blocks (A).  Upon mixing, Fmoc-FF and Fmoc-RGD 
self-assemble into a translucent hydrogel at 37ºC (B) AFM shows an 
overlapping mesh of nanofibers, with bundles and entanglements (C) while 
TEM shows that the nanofibers as ‘flat ribbons’ (D).  The proposed 
supramolecular model demonstrates the formation of the 3 nm fibrils and 
their further lateral assembly into larger ribbons (E).  RGD sequences are 
presented on the fiber surface in red and the FF peptides are illustrated in 
blue. Used with permission. [23]    
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As illustrated with the Fmoc-Phe-Phe model, the inherent twisted nature of β-sheets led 

to a cylindrical structure of 3 nm in diameter.  These then further extended longitudinally 

into a supramolecular nano-fibrils with Arg-Gly-Asp sequences presented at the surface, 

aligning parallel to each other into larger flat ribbons.  As suggested by the model, the 

exposure of the Arg-Gly-Asp sequences may present high accessibility to the cells.   

The fluorenyl groups of Fmoc-dipeptides is a strong factor for self-assembly.  A 

library of seven Fmoc-dipeptides was evaluated as gels for cell culture [20].  The samples 

were prepared by suspending Fmoc-dipeptides derived from with Gly, Ala, Leu, and Phe 

in purified water.  Gelation was highly dependent on the interaction of the fluorenyl 

groups, as CD of all gels gave rise to peaks indicative of π-π transitions in the Fmoc 

structure.  In samples that did not form gels, no contribution from the aromatic region 

was observed with spectroscopic methods.  Chondrocytes in either culture media alone or 

with Fmoc-dipeptides show cell proliferation for up to 7 days under both methods (Figure 

3.7).   

An important driving force in Fmoc-dipeptide self-assembly is the orientation of 

the fluorenyl group, but the design rules dictating assembly is not clear.   For example, 

Fmoc-Phe-Gly forms a gel under 2 conditions while a simple change in the sequence to 

Fmoc-Gly-Phe does not [19].  In addition, a computational model of Fmoc-Ala-Ala 

suggests that self-assembled organizations converge into a condensed fibril structure 

mainly driven by stacking of Fmoc groups and hydrogen bonding between residues and 

with water rather than a hollow nanofiber [24].   
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These results further illustrate the complexity of self-assembly and how changes in 

hydrophobicity and environmental conditions affect the kinetics of the organizational 

process.   

3.3 RESULTS 

3.3.1 Depsipeptides (1) and (2): Effect of weak hydrophobic residues on charged 
residues 

 

No gelation was found for depsipeptides (1) and (2) under conditions A – H 

(Table 3.1).  The emission spectrum of depsipeptide (1) does not differ from the 

fluorescence data of the starting materials (Figure ). Gelation of short peptide families is 

often influenced by the degree of hydrophobicity of the side chains.  For example, 

gelation with alternating Val, Leu, or Ala with Lys was investigated on various peptide 

lengths in water and saline concentrations [26]  

Rigid gels were formed with peptides Leu-Lys-13, Val-Lys-9, Val-Lys-11, and 

Val-Lys-13 sequences.  Ala-Lys-13 did not gel under the tested conditions, which further 

supports the influence of hydrophobicity on self-assembly.  Interestingly, Val-Lys-10 and 

Val-Lys-12 also did not gel.  The even numbered sequences have positive charges at both 

ends of the sequence, which may affect gelation in this system.   
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Solution Conditions Osmolarity 
(mmol/kg) 
 

A PBS, pH 6 295 
B PBS, pH 7 302 
C PBS, pH 8 303 
D PBS, pH 9 301 
E PBS + 10 mM NaCl, pH 6 510 
F PBS + 10 mM NaCl, pH 7 520 
G PBS + 10 mM NaCl, pH 8 520 
H PBS + 10 mM NaCl, pH 9 504 

Table 3.1  Summary of self-assembly tests on depsipeptide (1) and depsipeptide (2).  
No gelation was observed.  As a reference, physiological osmolarity is 
around 280-310 mmol/kg.  
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A C 

 

B 

Figure 3.8  Emission spectra of Fmoc-peptides and Fmoc-depsidipeptides (A) and 
Fmoc-K-Lac-8 (B).  The chemical structures and short-hand labels for the 
Fmoc-peptides and Fmoc-depsidipeptide are provided (C).    
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However, when N-terminal of Val-Lys-10 was capped with an acetyl group, the peptide 

sufficiently self-assembled to a gel [27].   

3.3.2 Depsipeptide (3): Formation of spherical nanostructures  

  

Depsipeptide (3) also did not form a gel under conditions A-L at 10 or 20 mg/ml 

(Table 3.2).  The emission spectrum show no dependence on pH or salt concentration, 

however the 20 mg/ml samples yield a higher intensity at 370 nm (Figure A).  Peaks 

within this region have been reported as parallel-alignment of the fluorenyl groups, which 

contribute to the self-assembly of select Fmoc-dipeptides into micelles [28, 29], with the 

Fmoc groups inside the core and the hydrophilic groups are in contact with the solvent 

(Figure 3.9 E).  It is interesting to note that the broad shoulder at 370 nm observed in the 

emission spectra is absent in depsipeptide (1) (Figure 3.8), suggesting that the addition of 

Asp residues contributes to the parallel stacking of the fluorenyl groups.   

The CD spectra of depsipeptide (3) shows increased chiral character in the 

concentrated depsipeptide samples (Figure 3.9 B).  The negative peak at 234 nm does not 

correlate to commonly characterized secondary structures, although the peak patterns of 

the starting materials are quite similar.  Charge repulsions or steric hindrance of the Lys 

side chains may prevent this structure to gel.   
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Solution Conditions Osmolarity (mmol/kg) 
 

A PBS, pH 6 295 
B PBS, pH 7 302 
C PBS, pH 8 303 
D PBS, pH 9 301 
E PBS + 10 mM NaCl, pH 6 510 
F PBS + 10 mM NaCl, pH 7 520 
G PBS + 10 mM NaCl, pH 8 520 
H PBS + 10 mM NaCl, pH 9 504 
I PBS + 2.5 mM NaCl, pH 6 337 
J PBS + 2.5 mM NaCl, pH 7 349 
K PBS + 2.5 mM NaCl, pH 8 346 
L PBS + 2.5 mM NaCl, pH 9 346 

Table 3.2  Summary of self-assembly tests on depsipeptide (3).  Spherical 
nanostructures were observed in solution F. As a reference, physiological osmolarity is 
around 280-310 mmol/kg. 
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For example, Fmoc-KKRGDK did not form a gel in ionic solutions within the pH range 

of 4-11, while Fmoc-GRDGG and Fmoc-VRDGV gelled at pH 3.4 (Xu, J Phys Chem, 

2010).  Authors suggest that the balance between hydrophobicity and hydrophilicity was 

extremely important for gelation, and that the polar characteristic of the Lys residue was 

not a driving force towards self-assembly.   

The morphology of depsipeptide (3) was investigated with TEM with 20 mg/ml 

samples in sample F (Figure F-H).  The sample was aged for over 4 weeks and show the 

presence of both straight fibers and spherical nanostructures with dimensions of about 50 

and 250 – 500 nm in diameter, respectively.  The self-assembly of the spherical 

nanostructures is supported by earlier reports of micelle formation for Fmoc-families 

[29], although the formation of the fibers is not easily explained.  It is possible that 

depsipeptide (3) forms fibers within weeks of sample preparation, but additional 

experiments are needed to understand the self-assembly process.  Future observations of 

these formations will be evaluated at earlier time points to investigate the effect of 

morphology on depsipeptide concentration.  Dynamic light scattering tests will also be 

used to monitor the possible transition of spherical particles into fibers.   

3.3.3 Depsipeptide (4): Ordered morphology within ionic solutions 
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Preliminary data on depsipeptide (4) was investigated with TEM after 18 hours at 

pH 7 under various ionic concentrations (Table 3.3).  Gelation was not evident after 18 

hours when prepared in solutions B, F, and W.  TEM images show unordered aggregates 

in solution W (Figure 3.10).  Upon the addition of salt, samples in solution B show 

globular-like aggregates with diameters of about 25 nm while higher order aggregates are 

observed upon the addition of 10 mM NaCl in solution F.  Possible formation of these 

aggregates was captured in the F solution.  Short fiber-like structures, 200-500 nm in 

length are found within the unordered aggregates and begin to form an interlaced-like 

network.  These fibers are relatively flexible with lengths in the microns.   

The formation of fibrils from spherical structures has been reported with amyloid 

peptides [30] and could offer insight on the self-assembly of depsipeptide (4).  The 

purified protein contained oligomers as granular particles in 20-25 um in diameter, and 

grew to 35-40 nm just before fusion.  Immediately after fusion, the diameter of the 

resulting particle was reduced to 20-25 nm while the length increased to 110 nm.  

Changes to the morphology dimensions indicate structural reorganization, which most 

likely involves changes in hydrogen-bonding.  Elongation continued to give fibers up to 1 

µm in length with a further reduction in diameter to 17-20 nm.  On day 9, the fiber grew 

to more than 4 µm, but the diameter remained constant.  While the TEM images collected 

on depsipeptide (4) do not show evidence of lateral fusion between particles, it is clear 

that well-defined fibers are sprouting from the unordered aggregates.   
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Solution Conditions Osmolarity 
(mmol/kg) 
 

Observations 

B PBS, pH 7 302 Globular aggregates 
F PBS + 10 mM NaCl, pH 7 520 Short fibers  
W Water 30 Unordered aggregates 

Table 3.3  Summary of self-assembly experiments on depsipeptide (4) at 10 mg/ml.  
As a reference, physiological osmolarity is around 280-310 mmol/kg 
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Figure 3.10  TEM images of depsipeptide (4).  The sample in water (A), PBS (B), PBS 
and 10 mM NaCl (C-F).  The formation of amyloid fibers may provide 
insight on the self-assembly processes of depsipeptide (4), as seen with the 
lateral growth of granular aggregates into amyloid fibers (G). Used with 
permission. [30]  
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Further examination on the self-assembly of depsipeptide (4) would include time-

dependent analysis with emission, IR, and CD to observe changes in hydrogen-bonding 

patterns.  DLS studies would also be used to monitor fiber formation. 

3.3.4 Depsipeptide (5): Self-assembly of a novel gel structure  

3.3.4.1 Gelation in ionic concentrations from pH 6-9 

 

Gelation was observed in depsipeptide (5) after 2 days in solutions F-H and after 

6 days in solutions A-D (Table 3.4).  After 2 days, the samples were observed under 

fluorescence.  The gelled samples show a slight red shift from 310 nm to 330 nm as well 

as a decrease in intensity (Figure 3.11).  The appearance of the shift at 330 nm is 

representative of anti-parallel alignment of the fluorenyl groups, which is further 

supported by the loss of intensity of the broad shoulder at 370 nm.  Similar emission 

trends have been reported in Fmoc-families upon gelation [29].    Fmoc-Phe-Tyr was 

phosphorylated, contributing to its solubility in water.  Gelation was observed upon 

dephosphorylation, and this transition was observed with fluorescence.  Specifically, 

there was a loss of intensity at both 320 nm 370 nm, further supporting the observed gel 

formation.  CD spectra of the gelled samples were collected after 2 weeks and show a 

unique pattern from 302 nm-250 nm.   
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Solution Conditions Osmolarity 
(mmol/kg) 

Observations in 10 mg/ml unless 
noted 
 

A PBS, pH 6 295 Gel after 6 days 
B PBS, pH 7 302 Gel after 6 days 
C PBS, pH 8 303 Gel after 6 days 
D PBS, pH 9 301 Gel after 6 days 
E PBS + 10 mM 

NaCl, pH 6 
510 Gel after 2 days 

F PBS + 10 mM 
NaCl, pH 7 

520 Gel after 2 days 

G PBS + 10 mM 
NaCl, pH 8 

520 Gel after 2 days 

H PBS + 10 mM 
NaCl, pH 9 

504 Gel after 2 days 

M PBS + 100 mM 
NaCl, pH 7 

447 Gel after 1 day at 5 and 20 mg/ml 

N PBS + 10 mM 
NaCl, pH 3 

484 Flexible fibers at 20 mg/ml  

O Water, buffered to 
pH 3 

30 No gel, flexible fibers 

W Water 30 Gel after 3 weeks 

Table 3.4  Summary of self-assembly experiments for depsipeptide (5).  As a 
reference, physiological osmolarity is around 280-310 mmol/kg. 
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Figure 3.11   Self-assembling data for depsipeptide (5).  The emission spectra (A) was 
collected 2 days after the sample was prepared.  The peak at 330 nm is indicative of anti-
parallel stacking of the Fmoc-groups.  Helical packing of the fluorenyl groups is evident 
in the CD data collected on 5-20 mg/ml (B and C) and is consistent with data reported in 
other Fmoc-gelling families [31].  The sampled in its gelled form takes the shape of the 
vial (D).  The molar ellipticity of the CD data in (B and C) is in units of deg cm2/dmol.   
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CD spectra of other Fmoc-peptide families also have this unique pattern at higher 

wavelengths, which has been reported as helical stacking of the fluorenyl groups[31]. 

Depsipeptide (5) was also prepared at 5 mg/ml and 20 mg/ml in solution F, with 

the latter forming a gel overnight.  Upon collecting the CD spectra, the gelled sample 

shows similar patterns at higher wavelengths while the 5 mg/ml sample has a negative 

peak at 200 nm, suggesting that fluorenyl packing is concentration dependent.  The gelled 

sample was analyzed with 1H-NMR (Figure 3.12).  A 10 mg/ml sample was prepared in a 

D2O with PBS salts and NaCl to replicate solution F, but gelation was not observed even 

after 2 weeks.  1H-NMR was also collected in a 5% D2O sample in solution F, which 

gelled after 4 days.  Results show broadening of the chemical shifts, further supporting 

gel formation [32].  This is an important feature, as preparation of the samples was not 

successful for rheological analysis.  The stability of gelled product was analyzed in buffer 

F with MS, and results show no significant changes after 4 days (Figure 3.13).  

Additional studies investigating both the enzymatic and ester hydrolysis of buffer F may 

be investigated in the future.   

Molecular interactions of depsipeptide (3) and a gelled sample of depsipeptide (5) 

was investigated with IR (Figure 3.14).  Interestingly, the shifts are quite different 

considering both structures possess the same functional groups.  IR of Fmoc-peptides and 

Fmoc-depsidipeptides were prepared in methanol and compared against the self-

assembled samples.   
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Figure 3.12 1H-NMR of depsipeptide (5) in solution (A) and in gelled (B) states.  (A) was 
prepared in D2O with PBS and NaCl salts and (B) was prepared in solution 
F with 5% D2O. 
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B 

 
 

Figure 3.13   MS of depsipeptide (5) in buffer F in ungelled (A) and gelled (B) form.  
The structure is stable for up to 4 days.  
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Figure 3.14   IR data for depsipeptides (3) and (5).   Fmoc-peptides and Fmoc-
depsidipeptides were dissolved in methanol and dried on gold-coated silica (A).  
Depsipeptide (3) was collected on a GATR accessory on a geranium crystal and plotted 
against depsipeptide (5) for comparison (B).  Depsipeptide (5) was collected using both 
methods and plotted against each other (C), suggesting that the gel in the dried or solution 
state have similar folding patterns.  The IR shifts of depsipeptide (5) in (B) and (C) were 
normalized at 1545 cm-1. 
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Depsipeptide (5) was investigated in both solution and dried states.  The peaks were 

subtracted from buffer F and bare gold respectively and normalized at 1545 cm-1.  Results 

show very little difference between the solution and dried samples, suggesting that the 

backbone configuration is not affected by the drying process.  The depsipeptide was also 

prepared in buffer F at a relatively low concentration immediately before collecting on 

the IR, and the sample showed very little difference in the peaks in the Amide I and 

Amide II region.  This may suggest that the self-assembly process begins immediately 

with specific backbone preferences.   

The depsipeptides under investigation contain multiple ester substitutions, which 

reduce the number of hydrogen bonding sites.  Considering that depsipeptide (3) and (5) 

share the same functional groups, the sequence of the depsipeptides not only affects the 

potential for gelation, but also the folding characteristics of the backbone.  Future work to 

investigate these effects could be investigated on the peptide equivalent to determine how 

secondary structure changes with the presence of the ester bond.  For example, the 

position and number of ester substitutions has been shown to affect the self-assembly of 

amylin(20-29) derivatives [2].  Despite lacking the traditional β-sheet structure of 

amyloid fibers, the authors suggest the structure may have formed anti-parallel β-sheet-

like tapes, which in turn self-assembled into helical ribbons due to the intrinsic chirality 

of the depsipeptide.   

TEM images of depsipeptide (5) were collected in sample F at various time points 

to observe the morphology of fibers throughout the gelation process (Figure 3.15).   

  



 128

A B 

 
C D 

 
E 

Figure 3.15  Fibril formation for depsipeptide (5).  TEM images were collected at various 
times after sample preparation: 18 hours (A), 4 days (B and C), and 3 weeks 
(D) WAXS data (E) shows d-spacing of 4.3 Å and 3.26 Å, the latter of 
which is associated with the crystal structure of NaCl from the buffer.  The 
former value has been reported to be the distance between π-π bonds of the 
fluorenyl group or between β-sheet forming peptides.  The insert was 
collected on the gel.  
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Short fiber networks, with approximately 25 nm diameters, were evident 18 hours after 

the depsipeptide was prepared.  A dense network formed after 4 days, and large fibers on 

the order of microns in diameter were observed after more than 3 weeks.   

The gel was also analyzed with wide angle x-ray scattering to gain additional 

information on the fiber network.  Upon analysis, the sample was left to dry at ambient 

temperature for over 48 hours.  Results show a d-spacing value of 4.3 Å, which has been 

described as the distance between peptides within beta-sheets for a variety of Fmoc-

dipeptide families [21, 33].  Fmoc-SF-OMe, Fmoc-SL-OMe, Fmoc-TF-OMe, and Fmoc-

TL-OMe have reported the planar π-stacking of the Fmoc group to be correlated with a d-

spacing of 7.6 Å and 3.8 Å (Hughes), which could be correlated to the d-spacing of 7 Å 

for depsipeptide (5).  Further interpretation of this data is difficult due to the broadness of 

the peaks, thus additional experiments are needed.  The distance of the π-π stacking 

between the Fmoc groups has also been reported with a d-spacing of 4.3 Å [24, 34].  This 

observation may be more accurate for the depsipeptide structure, as typical β-sheet 

structure was not observed in CD or IR data.  While it is clear that despipeptide (5) self-

assembles into an ordered structure upon fiber formation and gelation, no techniques 

currently exist to investigate the secondary folding of a depsipeptide backbone.   

Titration tests were conducted on depsipeptide (3) and (5) in water, PBS, and PBS 

+ 10 mM NaCl to investigate changes in pH under ionic environments (Figure 3.16).  The 

titration curves of depsipeptide (3) have 2 isoelectric points, 8.33-8.10 and 4.96-4.65, 

among the 3 solutions tested.   
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Figure 3.16  Titration curves for Depsipeptide (3) (A) and depsipeptide (5) (B).  The red 
curve was prepared with 10 mM NaCl.  
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The decrease in pH becomes greater at pH less than 7.28 and 6.3 in the water and the 

ionic samples, respectively.  The charged residues of depsipeptide (3) are screened by the 

ionic environments of both PBS and PBS with NaCl, illustrated by the shifts of both ionic 

curves when the pH is less than 10.52 [35, 36].  The titration curves of depsipeptide (5) 

also have 2 isoelectric points, 8.41-8.04 and 4.68-4.44.  The rapid decrease in pH varies 

for all three solutions.  The PBS solution screens the charges of the Lys and Asp residues 

in depsipeptide (5) at pH < 6.93, whereas the PBS+NaCl solution shows a much rapid 

change at all pH values tested.   

The presence of salt can effect self-assembly by screening the charges of the Lys 

and Asp residues.  It is possible that depsipeptide (5) may be more sensitive to the 

presence of salt.  The depsipeptide is much more influenced by changes in pH in 

solutions with higher salt concentrations, where significant changes were only evident in 

depsipeptide (3) at pH values less than 7.  Hofmeister effects can also contribute at high 

ionic strengths, due to the effects of ions on the properties of water.  Clearly the solution 

with PBS and NaCl influences the properties of depsipeptide (4), suggesting that 

Hofmeister effects dominate in solutions with added NaCl.   

The next set of studies investigates the role of salt and pH on fiber morphology 

and gelation of depsipeptide (5).  The effect of various salts was reported to influence the 

fiber formation of islet amyloid polypeptide at pH 5.5 and pH 8.0 [37].  Because the 

polypeptide contains positively charged residues, screening effects are likely to stabilize 

amyloids.  Results show that increasing the ionic strength of a Tris-HCl buffer increases 

the rate at which fibrils form.  For example, upon adding 20 mM NaCl to the buffer, 
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amyloid formation was observed around 22 hours.  The rate decreased to just over 2 

hours upon adding 600 mM NaCl.  The rate of fibril formation decreases with increasing 

ionic strength at pH 5.5, but variations were observed between different anions at 

constant ionic strength.  This result suggests that the effects of salt on amyloid formation 

are complex and may be due to a combination of Hofmeister and screening effects.   

3.3.4.2 Effect of high ionic concentration on self-assembly  

Solution M was prepared in PBS and 100 mM NaCl.  Solution M has the highest 

ionic concentration of all the tested conditions, although the osmolarity value is 

comparable to those with an additional 10 mM NaCl added.  Gels were formed in 

solution M after 20 hours in the 5 mg/ml and 20 mg/ml samples.  The emission spectra 

are relatively similar in shape, with the 20 mg/ml sample having a higher intensity at 320 

nm and 360 nm than the other concentrations (Figure 3.17A). CD analysis shows the 

presence of Fmoc-stacking due to the positive peaks at 300-250 nm for the gelled 

samples (Figure 3.17B), suggesting that the fluorenyl groups participate in the formation 

of gelation.  TEM images of the 10 mg/ml sample show the presence of fibers (3.17C), 

despite not forming a gel.   

3.3.4.3 Self-assembly at low pH promote gelation at lower concentrations 

Solution N was prepared in PBS with 10 mM NaCl and buffered to pH 3.  In 

solution N, the samples at 5 mg/ml and 10 mg/ml gelled after 4 days.  Emission curves 

are similar for gelled samples, while a loss of intensity and appearance of a broad 

shoulder at 370 nm is observed for the sample at 20 mg/ml (Figure 3.18A).   
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Figure 3.17   Self-assembly data of depsipeptide (5) in solution M.  Emission (A) and 
CD (B).  TEM images of the 10 mg/ml sample (C) show the formation of fibers.  The 
molar ellipticity of the CD data is in units of deg cm2/dmol.    
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Figure 3.18  Self-assembly of depsipeptide (5) in solution N.  Emission spectra (A) and 
CD data (B).  The molar ellipticity of the CD data is in units of deg 
cm2/dmol.  TEM images at 5 mg/ml (C and D), 10 mg/ml (E and F), and 20 
mg/ml (G).   
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The magnitude of the peaks collected from the CD spectra suggest higher 

fluorenyl packing for the 5 mg/ml sample (Figure 3.18B).  The self-assembling trends of 

depsipeptide (5) behave differently at various pH.  The formation of helical-like tubes are 

observed in both 5 mg/ml and 10 mg/ml samples, while the fibers in the 20 mg/ml sample 

are less stiff.  Gels were formed in 10 mg/ml and 20 mg/ml at pH 7, while gels formed in 

5 mg/ml and 10 mg/ml at pH 3.  The emission spectra of ungelled samples prepared in 

PBS and 10 mM NaCl at both pH 7 and pH 3 show a broad shoulder at 370 nm, 

suggestions that for depsipeptide (5), this observation is an indicator that gelation does 

not occur.  In addition, pH may affect the morphology of the fibers at higher 

concentrations.  At lower pH, the carboxylic acid of the C-terminal and the Asp residues 

are more likely to be protonated, suggesting that repulsion of these groups may affect the 

supramolecular assembly into ordered gels.  

3.3.4.4 Flexibile fibers are observed at low pH in water 

Solution O was prepared with deionized water and buffered to pH 3 with 0.1 HCl.  

No gels were formed in solution O.  The emission spectra is similar for samples at 5 

mg/ml and 10 mg/ml, while a broad shoulder at 370 nm is observed for the 20 mg/ml 

sample (Figure 3.19 A).  The CD data suggests the presence of Fmoc-stacking for all of 

the tested samples, although the negative troughs at 250 nm and 215-218 nm are absent in 

the 20 mg/ml samples.  TEM images of the sample at 20 mg/ml show unordered fibers 

and are less dense than the flexible fibers observed in solution N (Figure 3.18), 

suggesting that the presence of salt may affect the packing of fiber formations.    
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Figure 3.19   Self-assembly of depsipeptide (5) in solution O.  Emission spectra (A) and 
CD data (B).  The molar ellipticity of the CD data is in units of deg cm2/dmol.  TEM 
images were collected on 20 mg/ml samples (C and D).   
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This trend has been reported on the self-assembly of EAK peptides [38].  

Globular aggregates and short fibrils were observed in the absence of NaCl, while fibers 

formed in the presence of salt.  This observation was evident in only one of the evaluated 

concentrations, thus the effects of salt may also be concentration dependent.     

3.3.4.5 Self-assembly and gelation processes are slow in water 

Depsipeptide (5) was investigated in solution W at 5, 10, and 20 mg/ml.  The 

samples were dissolved in water and examined with emission spectra and TEM at 18 

hours and 4 days.  Gelation was observed after 3 weeks, suggesting that salt increases the 

rate of gelation.  The emission spectrum shows a linear concentration dependence, 

illustrated by the peak magnitude at 370 nm for the 20 mg/ml sample (Figure 3.20A).  

After 4 days, the peak intensity at 320 nm decreases, although no other changes in the 

spectrum are present.  The CD spectrum shows a positive peak from 270-310 nm (Figure 

3.20B).  TEM images of the sample at 10 mg/ml show the presence of spherical 

nanostructures after 18 hours (Figure 3.20C).  Fibers were observed in all tested 

concentrations after 4 days (Figure 3.20D-F).  The fibers have a relatively straight 

morphology, unlike the hair-like fibers observed in solution N (Figure 3.20G and H) and 

O (Figure 3.20C and D).   
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Figure 3.20 Self-assembly of depsipeptide (5) in solution W.  TEM images were 
collected on 10 mg/ml samples 18 hours (C) and 4 days (D) after dissolving 
in water.  Fibers were observed in 5 mg/ml (E) and 20 mg/ml (F) samples 
after 4 days.  Gels were observed after 3 weeks.  
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The transition from the nanospheres to fibers is not evident, considering no intermediate 

products were observed from 18 hours to 4 days.  However, it is likely that the Fmoc-

group form a hydrophobic core when first exposed to water.  Overtime, the electrostatic 

interactions from the charged Lys and Asp side chains are such that the formation of 

fibers is favorable.   

3.3.4.6 Proposed self-assembly models 

Depsipeptide (5) self-assembles into fibers and hydrogels under various ionic 

concentrations and a wide range of pH values.  These ordered structures are observed in 

water, PBS, and PBS with 10 mM NaCl.  The morphology of fibers are less stiff at lower 

pH.  The structural data reveals that the fluorenyl groups are aligned in an anti-parallel 

manner in gelled samples, while parallel stacking of the Fmoc group is observed in 

samples that do not aggregate.  Data from the gelled samples is consistent with Fmoc-

peptides that show helical stacking of the fluorenyl groups.   

The self-assembling models of well-studied peptide families have been reported 

in the literature and heavily rely on secondary folding characteristics.  Observations of 

secondary structures were absent in depsipeptide (5), however this may have been due to 

the chosen analysis methods.  Interpreting secondary structure with CD and IR are based 

on principles of a native peptide backbone.  The ester moiety of depsipeptides disrupts 

both flexibility and hydrogen bonding, thus one may argue that the backbone is too 

different to be used with these techniques.  However, the possibility of the depsipeptide 

folding into an ordered structure has not been ruled out.  Two models that are consistent 
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with the self-assembling data of depsipeptide (5) include β-sheet forming fibers and 

bottle-like brushes.   

3.3.4.6.1 β-sheet forming fibers 
 The self-assembly of β-sheet forming fibers has been reported on a number of 

Fmoc-peptide families.  The model based on the coassembly of Fmoc-VRGDV and 

Fmoc-KKRGDK [39] suggests that self-assembly was driven by the electrostatic 

attraction between the Lys and Asp residues (Figure 3.21).  The intramolecular bonding 

is highest when all of charged groups of depsipeptide (5) are exposed.  Under this state, 

self-assembly is driven by the hydrophobic interactions between the anti-parallel stacked 

fluorenyl groups and the methyl groups of Lac, the electrostatic interactions between Lys 

and Asp, electrostatic bridge interactions between residues of the same charge and salt 

[39], and hydrogen bonding from the peptide residues.  It should be noted here that 

fluorenyl groups are likely interacting with the structure on the adjacent side, as shown 

with the β-sheet model of Fmoc-dipeptides (Figure 3.5).  The fluorenyl groups interact 

along their full length and are aligned anti-parallel from another structure.  Additional β-

sheet structures are incorporated until a cylinder is formed, such that the orientation of 

the fluorenyl groups drives their helical orientation around the organized structure.   

3.3.4.6.2 Bottle-brush like chains 

At low pH, the Asp residues are protonated and the electrostatic interactions with 

Lys are eliminated.  The charge repulsion from the Lys groups may cause the fluorenyl 

groups to align in a parallel fashion, however helical stacking of the Fmoc groups are 

observed with CD (Figure 3.19 and 3.20).   
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Figure 3.21   The self-assembly of depsipeptide (5) at pH 7 is modeled by principles 
reported in β-sheet like peptides.  Self-organization is driven by an electrostatic attraction 
involving both positively and negatively charged peptide molecules in short Fmoc-
peptide families [39] (A).  For depsipeptide (5), electrostatic attractions, stacking of the 
fluroenyl groups, and hydrogen bonding may result in the formation of nanofibers with β-
sheet like superstructure (B).  The fluorenyl groups of depsipeptide (5) are highlighted in 
pink (C) and upon folding into a fiber, are aligned in a helical manner.  The modeled 
images from Fmoc-dipeptide families show similar self-assembling trends [21].  Used 
with permission.  
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The fluorenyl groups could potentially form a hydrophobic core, with rest of the 

structure exposed radially from the center (Figure 3.22) and could possible form a bottle-

like brush structure model [40].  Loss of the ionic interactions between Lys and Asp may 

result in weaker intramolecular bonding that could potentially explain the flexible 

morphologies of the fibers as observed in pH 3.   

3.3.5 Depsipeptide (6):  Self-assembly is effected by depsipeptide length 

 

Depsipeptide (6) did not show gel formation in solutions B, D, F, H, N, O, P, Q, 

or W (Table 3.5).  The emission spectra shows little change after 5 days (Figure 3.23).  

Additional work needs to be done to determine how important peptide length is for this 

depsipeptide, as sequence may be a driving factor for self-assembly.  For example, 

changes in the position of charged residues affect fiber morphology, as seen with the 

helical peptides AEAEAKAK and AEAKAEAK [41].    Long rigid fibers with an 

average width of 7-9 nm were observed for AEAEAKAK.  When the charges are 

alternated between the Ala residue as seen with the AEAKAEAK peptide, very few fibers 

are observed.   

The charged residues of AEAEAKAK are present on each side of the helix.  The 

opposing charges of Lys and Glu stabilize the α-helical structure, facilitating the α-

helices to aggregate and form supramolecular fibers through hydrophobic interactions.   
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Figure 3.22   Suggested self-assembling model for fiber of depsipeptide (5) at pH 3.  
The fluorenyl groups are stacked in a parallel fashion.  The side chains have no modes of 
interaction with each other, as expected since the Asp charges are not exposed.  It is 
likely that the rest of the molecule is exposed to the solvent, as illustrated by the bottle-
like brush structure for a surfactant model [40], where the cylindrical core is aligned as an 
α-helix and the red structures represent interactions with the solvent.  Used with 
permission 
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Solution Conditions Osmolarity (mmol/kg) 
 

P PBS, pH 3 298 
B PBS, pH 7 302 
D PBS, pH 9 301 
N PBS + 10 mM NaCl, pH 

3 
484 

F PBS + 10 mM NaCl, pH 
7 

520 

H PBS + 10 mM NaCl, pH 
9 

504 

O Water, buffered to pH 3 30 
W Water 30 
Q Water, buffered to pH 9 55 

Table 3.5  Summary of the self-assembly experiments of depsipeptide (6).  No gels 
were observed. As a reference, physiological osmolarity is around 280-310 mmol/kg. 
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Figure 3.23  Emission spectra for depsipeptide (6) under various ionic concentrations.   
The samples were observed at pH 9 (A), pH 7 (B), and pH 3 (C) at 18 hours and 5 days.  
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On the other hand, the orientation of the charged residues of AEAKAEAK are located the 

same sides of the helix.  The charge repulsion disrupts the order of the α-helix and further 

interferes with the self-assembly of this peptide in solution. 

The process of self-assembly may also be longer due to the increased length of the 

peptide.   For example, the gelation of X-VRGDV-OH was affected by length of the X 

moiety, which varied in alkyl chain length and named according to the number of carbons 

on the chain: C9, C11, C13, and C15 [42].  The pKa values of C9 and C11 were easier to 

identify than for C13 and C15, suggesting that protonation and deprotonation processes 

occur slowly for structures with higher hydrophobic regions.  At pH 7, all of the 

structures formed nanofibers.  The formation of micelles was observed upon increasing to 

pH 11 for C9 and C11.  No obvious morphology changes were observed for C13 and 

C15, suggesting that the nanofibers are tightly packed due to the strengthened 

hydrophobic interaction.  CD and IR studies indicate that all structures maintain β-sheet 

conformation at pH 7 and pH 11, despite the differences in morphology.   

3.4 CONCLUSIONS 

Short depsipeptide structures have been shown to self-assemble into ordered 

structures based on sequence, concentration, and pH.  The organization of depsipeptide 

(3) into spherical nanostructures is driven by the parallel alignment of the fluorenyl 

groups. Similar to assemblies reported in Fmoc-dipeptide micelles, the fluorenyl 

structures form a hydrophobic core, with the hydrophilic regions exposed to the aqueous 

solution.  Depsipeptide (5) forms into hydrogels within 18 hours-3 weeks of preparation, 

and the rate of gelation is dependent on compositions of the solution.  Flexible fibers 
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were observed at lower pH, which most likely organize into bottle-brush like structures.  

The formation of dense fiber networks was observed at pH 7.  The self-assembly process 

of these structures is driven by hydrogen bonding, electrostatic interactions, and fluorenyl 

stacking and most likely forms via β-sheet like organizations. 

3.5 EXPERIMENTAL METHODS 

Depsipeptide preparation: Samples were prepared to 5, 10, or 20 mg/ml in 200 

µl of the selected solution.  The samples were allowed to sit at room temperature until 

gelation was observed via the inverted vial method.  

Fluorescence experiments: Emission spectra were collected on a Molecular 

Dynamics plate reader provided by the DNA Sequencing Facility at the Institute of 

Cellular and Molecular Biology. Samples were read in 96-well black plates with an 

excitation of 265 nm from 300-500 nm and subtracted from the respective solution prior 

to data analysis. 

Circular dichroism (CD): CD was collected on a Jasco J-815 CD Spectrometer.  

CD spectra were measured at 10.0 nm intervals over the range 180–350 nm in a 0.1 mm 

cylindrical cuvette. The optical chamber was continually flushed with N2 gas.  The 

samples were averaged over 3 runs and subtracted from the respective solution.  

Infrared Spectroscopy (IR): IR experiments were performed in both the dry and 

solution state on a Bruker Vertex 70 Fourier transform infrared (FTIR) spectrometer 

provided by the Webb group in the Department of Chemistry.  Samples were dried on 

silicon wafers coated with chromium and gold.  The wafers were generously provided by 

the Webb group.  The surfaces were cleaned with either hydrogen flame annealing or 
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with a piranha wash.  The later method was followed by rinses in concentrated hydrogen 

chloride, high purity water, ethanol, and dried with N2.  The spectrometer was equipped 

with a A518/Q horizontal reflection (Bruker) for illuminating the sample at a grazing 

angle of 80° with respect to the surface normal. The sample chamber was purged with N2 

for 1 hour prior starting experiments and handled by methods reported in the literature 

[43, 44].  Samples were collected on using a mercury cadmium telluride (MCT) detector, 

with 100 scans between 400 and 4000 cm−1 at a resolution of 4 cm−1.  A gelled sample of 

depsipeptide (5) in solution F was analyzed on a GATR reflector cell equipped with a 

geranium crystal.  The sample (20 µl) was dropped on the surface and sandwiched with a 

wafer.  The sample was referenced to buffer F on gold.  Fmoc-Asp(OtBu)-OH, Fmoc-

Lys(Boc)-OH, Fmoc-Asp(OtBu)-Lac-OH, and Fmoc-Lys(Boc)-OH were dissolved in 

methanol to a final concentration of 0.008-0.01 mM and collected at ambient 

temperature.   

1H-NMR: Experiments were conducted on a Varian 500 MHz spectrometer. 

Chemical shifts are given in ppm.  A bulk solution of D2O (1 mL) with phosphate buffer 

solution (PBS) salt and NaCl or solution F with 5% D2O was added to depsipeptide (5) to 

a final concentration of 10 mg/ml.  Gelation under the second condition occurred the 

NMR-tube. 

Titration tests: Dilute samples of depsipeptide (3) and depsipeptide (5) were 

brought to pH below 12 to avoid the removal of the Fmoc group.  0.1 N HCl (5 µl) was 

added to the solution and mixed for 1-2 minutes before recording the pH.   
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TEM: Samples were collected on a FEI Tecnai Transmission Electron 

Microscope.  Samples (5 µl) were dropped onto glow-discharged or untreated carbon 

coated copper grids for 10 seconds, removing the excess with filter paper.  Water (5 µl) 

was dropped on the grid in solutions that contained salts.  This process was repeated 

twice, and then negatively stained with urenyl acetate (5 µl).   

X-ray scattering: Experiments on the dried gel was collected on a Scintag X1 

θ−θ powder diffractometer with a copper X-ray source fitted with a solid-state detector 

and was generously provided by Dr. Steve Swinnea from the Department of Chemical 

Enginnering.  A gelled sample of depsipeptide (5) in solution F was dried for over 48 

hours at room temperature.  Peak analysis was performed using Jade v9.1.1 (Materials 

Data Inc.) software, and d-spacings were calculated assuming an X-ray wavelength of 

1.54059 Å (Cu K-α1).  Experiments on the gel in solution state were collected on a 

Rigaku R-Axis Spider diffractometer and were generously provided by Dr. Vincent 

Lynch from the X-ray Diffraction Lab.  The instrument was equipped with an image plate 

detector using a graphite monochromator and CuKα radiation (λ = 1.5418Å) and 

controlled using Rapid/XRD diffractometer control software.  The integration of the two 

dimensional data into a one dimensional pattern was accomplished using 2DP software.   
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Chapter 4. Developing Depsipeptides as Novel Biomaterials with 
Predictable Self-Assembling Characteristics with Hydrophobicity, 

Secondary Prediction, and Biocompatbility 

 

4.1  CHAPTER SUMMARY 

The synthesis of a depsipeptide family described has been summarized in Chapter 

2.  Standard Fmoc-methods were used to synthesize the depsipeptide with despi-building 

block, which were synthesized on the gram scale.  Chapter 3 describes various 

environmental effects that promote self-assembly into spherical nanoparticles, fibers, or 

hydrogels.  Of those tested conditions, the fastest rate of gelation was observed with 20 

mg/ml of depsipeptide (4) after 18 hours in a solution with PBS and 10 mM NaCl.  This 

condition is not ideal for scaffolding vivo applications, due to the relatively long 

aggregation time.  A change in the chemical backbone may influence gelation, as seen 

with the introduction of hydrophobic residues within self-assembling peptide families.  

As we investigate the potential for these materials to be implanted into the body, 

biocompatibility studies must be conducted.  This chapter will describe some of the 

methods to increase the rate of gelation by increasing the overall hydrophobicity of 

depsipeptide (4) and also describe the in vitro and in vivo biocompatibility studies from 

other self-assembling peptide and modified-peptide systems.   
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4.2  EXPERIMENTAL RESULTS    

4.2.1  Increasing overall hydrophobicity 

Increasing the overall hydrophobicity of a molecule has been shown to influence 

gelation, gelation strength, and secondary structure.  The first, and perhaps most facile 

method to achieve this within our depsipeptide library would be with preloaded resins.  

Chapter 3 describes the use of a commercial Fmoc-Ala-Wang resin during solid phase 

synthesis, and it is not unlikely that self-assembly processes will be affected by the 

synthesis of Fmoc-Leu-Wang or Fmoc-Phe-Wang resins by adding the respective residue 

to the C-terminal.  The Phe residue may potentially stack with the fluorenyl group, as 

seen with other Fmoc-families [1-3] to drive self-assembling processes.   

Another strategy is to increase the hydrophobicity of the ester residues.  The 

synthesis methods described in Chapter 2 used L-lactic acid because of its commercial 

availability.  Other commonly used α-hydroxy acids were not appropriate, as glycolic 

acid has no side chain functionality and mandelic acid would not be the equivalent of 

phenylalanine.  The diazotization of amino acids has been reported to yield α-hydroxy-

acid equivalents [4].  The amino acid of interested will be dissolved in 2.5N sulfuric acid 

and added dropwise to a solution of sodium nitrate in water for 1 hour at 0°C.  The 

reaction will stir for 2 hours at 0°C, then 9 hours at room temperature.  The reaction 

mixture will be extracted with ether, and washed with brine, dried over magnesium 

sulfate, filtered, and concentrated.  The crude product will be purified by recrystallization 

from chloroform/hexas or ether/petroleum ether.  These methods could potentially be 

applied to commercial Fmoc-amino acids and protected with benzyl chloride as reported 
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in Chapter 2.  Diazontization will convert the L-amino acid to the D-hydroxy acid 

equivalent.  Because the synthesis methods in Chapter 2 used L-lactic acid, Fmoc-L-Ala-

OH will be used to observe any entiomeric changes.  As the overall hydrophobicity of the 

depsipeptide increases, the role of the fluroenyl group in the self-organization process 

may change.  Self-assembly requires a balance between hydrophobic and hydrophilic 

conditions, thus this modified synthesis may lead to removal of the Fmoc-group for these 

depsipeptide families. 

4.2.3  Secondary analysis and self-assembly of depsipeptides: Peptide control  

 IR and CD analysis of depsipeptides can be used to monitor changes in the 

backbone due to differences in sequence, solvent, and concentration.  However, it may 

not be accurate to dictate the secondary structure of a peptide backbone with regular ester 

substitutions.  One possible way to monitor the folding process is to observe changes of 

the native peptide structure.  Collecting CD upon substituting with the depsi-moiety may 

help determine how the presence of the ester affects secondary structure.  It is likely that 

the fluorenyl group may dominate the CD signal, thus IR will also be performed. 

The slow rate of gelation has allowed us to sufficiently monitor the self-

assembling processes over a period of days.  The rate of gelation may be affected by the 

conformational flexibility of the depsipeptides, as the torsion angle of the ester bond is 

more flexible than the peptide bond.  It would be interesting to observe how a pure 

peptide backbone influences the self-assembly of depsipeptide (4) under similar ionic and 

concentration effects.  Ester substitutions have commonly been used to monitor structural 

changes within proteins and peptide resides.  We have shown that the presence of ester 
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residues does not hinder the self-assembly of spherical nanostructures, fibers, or gels.  Do 

the esters simply slow down the process?  The steric hindrance of the fluorenyl group 

may also be a factor for the self-assembly of depsipeptide (4) and has been reported to 

influence the rate of gelation for a family of short Fmoc-peptides [5].  Fmoc-VRGDV 

and Fmoc-GRGDG formed gels at 5 mg/ml at pH 3.8.  When mixed with Fmoc-KRGDK, 

gels formed after 12 hours at pH 7 with a total peptide concentration range of 11-20 

mg/ml.  The authors suggest that the steric hindrance of the fluorenyl group may 

contribute to the relatively slow coassembly of the oppositely charged peptides.   

 4.2.3 Biocompatibility of self-assembling peptides and modified peptides 

4.2.3.1 Fmoc-FF/RGD gels as 3D scaffolds 
 

Applying self-assembled systems for tissue engineering applications requires that 

the material supports, and in some instances, drives cellular function.  Fmoc-FF/RGD  

(Figure 4.1) was examined for its utility as a biomimetic, 3D-scaffold for anchorage 

dependent cells [3].  Fmoc-FF/RGE gels were prepared as a control.   Human adult 

dermal fibroblasts (HDFa) were embedded into the hydrogels. The cell-gel constructs 

formed quickly, ensuring that cells were evenly distributed throughout the hydrogels. The 

self-assembly process did not affect cell viability after 24 hours, as confirmed with a 

Live-Dead assay. Living cells with well-defined round morphology were observed, and 

the presence of dead cells were not detected.  Cell spreading occurred within the first 24 

hours of culture in the Fmoc-FF/RGD gels, and after 48 hours the spread cells formed 

3D-networks.  The cells in the Fmoc-FF/RGE gels were rounded after 48 hours.   
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The extent of cell spreading in the coassembled Fmoc-FF/RGD gel was influenced by the 

Fmoc-RGD concentration, as 30-50% incorporation yielded over 90% cell spreading.  

RGD–integrin binding was investigated by incubating cells with a blocking antibody to 

α5β1 integrin before 3D-culture.  Results show that cells with unblocked integrins 

exhibited similar cell spreading as observed earlier while cells with blocked α5β1 

integrins failed to attach and spread.   This work shows that self-assembled hydrogels 

from short Fmoc-peptide structures are a viable scaffold for dermal fibroblasts. 

4.2.3.2 PuraMatrixTM: Commercial synthetic peptide that exhibits self-assembling 
behavior 

The self-assembling peptide RAD16 is commercially available as PuraMatrixTM 

and is derived from a family of self-assembling peptides.  Initial investigations of 

PuraMatrixTM before it was commercialized focused on understanding the influence of 

peptide sequence on nanofiber formation and stability.  PuraMatrixTM is a unique 

example showing that a firm understanding of how the properties of amino acids affect 

peptide secondary folding is imperative in the development of self-assembled, gelled 

materials [6].  

PuraMatrixTM is synthetic, sterile, and is currently manufactured in large scale 

quantities. It can be used for closed, sterile system culture in vitro or as injectable 

applications in vivo. PuraMatrixTM has been successfully used to culture variety of cell 

types, including mouse fibroblasts, bovine calf and adult chondrocytes, chicken embryo 

fibroblast, bovine endothelial cells, and human neural cells to name a few.  [6]  In a 

preliminary study, PuraMatrixTM was used as a scaffold for brain lesion repair in Syrian 
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hamsters.  The animals were treated to injection of PuraMatrixTM upon injury and 

sacrificed at 1, 3, 6, 30 and 60 days, and the histological results suggest the formation of 

new tissue.  These findings were not observed in untreated animals or those treated with 

saline as a control.   

4.3  CONCLUSIONS 

The synthesis and self-assembly of a depsipeptide family shows that incorporation 

of regular esters into a native peptide backbone does not disrupt the formation of higher 

order structures.  This initial study has demonstrated that the potential to synthesis a wide 

range of depsipeptides with variable side chains and hydrophobic character.  While the 

ultimate goal for this work is in vivo implantation, understanding how the interplay 

between hydrophobic and hydrophilic residues drive self-assembly and hydrogel 

formation is still needed.   
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