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The feature selection problem is a major component in disease surveillance

since data sources are so costly. This report describes several existing methods for

performing feature selection along with software that implements these methods. To

help make experimenting with different algorithms easy, we have created a feature

selection wrapper package in Python. This wrapper allows the user to easily try

different algorithms on the same data set and visualize the results. Experiments are

performed to validate that the methods perform as expected.
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Chapter 1

Introduction

1.1 Introduction to the Surety BioEvent App Project

The work described in this master’s report is motivated by an influenza surveil-

lance method described by Scarpino et. al [11]. There, the underlying problem is

feature selection. The state of Texas has a network of healthcare providers, known

as ILINet, who provide real-time influenza data to the state and the U.S. Centers for

Disease Control and Prevention (CDC). Typically a year after receiving the ILINet

data, the CDC receives hospitalization data that describes the number of patients

hospitalized due to influenza across the state. Because CDC does not have hospital-

ization data for the current year, a key public health goal is to estimate that missing

hospitalization data from data available in real time — the ILINet data. Histori-

cal hospitalization data can be used to select the most effective set of health care

providers to include in ILINet, where the effectiveness of a set is measured by its

accuracy in predicting the missing hospitalization data.

Though motivated by influenza, the main purpose of this report is to detail

feature selection. This report describes the feature selection problem and existing

solution methods. In addition, the report gives documentation for Python software

to ease further development of feature selection.
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Statewide Influenza Activity Map 
Figure 4: Texas Map Displaying the Highest Level of Influenza or ILI Activity Reported by County for the Week Ending February 28, 2015 (MMWR 
Week 08) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Please note: The majority of influenza cases are not reportable by law in Texas. This map contains data from sentinel sites and only 
displays influenza and ILI cases that were reported to public health. Positive laboratory results are reported according to specimen 
collection date, or date received in the laboratory if the former is unknown. 
 

Figure 1.1: This map illustrates influenza activity reported by the Texas ILINet.
ILINet is a group of primary healthcare providers that report to the state the number
of patients with influenza-like-illness symptoms that visit their office on a weekly basis
[1].

1.2 Feature Selection Problem in Influenza Surveillance

To predict missing hospitalization data, there are many data sources of po-

tential use. However, using all data sources may be expensive, or may over-fit the

data. The problem of choosing the most informative data sources is called the feature

selection problem. Feature selection is also referred to as subset selection, feature se-

lection, variable selection, and attribute selection in various fields. Applying feature
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selection to ILINet aims to produce the most informative surveillance system while

maintaining the number of participating doctors low. Similar feature selection meth-

ods can be applied to design surveillance systems for specific geographic regions, a

variety of diseases, a variety of prediction goals besides missing hospitalization data,

and to select data sources other than primary healthcare providers. The generality

of these methods allows them to extend to electronic data sources such as Google

searches, Twitter tweets, and WordPress blogs. The government spends millions of

dollars funding influenza surveillance systems [2]. Feature selection is an integral

part of this surveillance effort.

1.3 Feature Selection

Feature selection is applicable to essentially any prediction problem. The issues

that occur in influenza surveillance are common to many applications. As an abstract

example to illustrate feature selection, let x1,i ∼ N(0, 1) for i = 1, . . ...., n. Also let

yi = x1,i, x2,i = x1,i, and x3,i ∼ N(0, 1) and independent from x1,i for i = 1, . . ...., n.

To construct a predictor of y from the x’s, one may solve the following opti-

mization problem:

min
α,β,γ

‖y − (αx1,· + βx2,· + γx3,·)‖22.

Here α = 1, β = 0, and γ = 0 provides a perfect fit. However α = 1
2
, β = 1

2
, and

γ = 0 would provide the same perfect fit. Because obtaining the x2,· data may be

resource intensive, we prefer the former solution. Furthermore, because x3,· provides

no additional predictive information, there is no reason to choose it as a feature in
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prediction. Feature selection identifies x2,· and x3,· as unnecessary data sources.

The purpose of this document is to describe existing methods for feature se-

lection. Chapter 2 describes existing feature selection methods including greedy al-

gorithms, optimization-based methods, and cross validation-based methods. Chapter

3 then outlines existing computational tools in R and Python which perform these

feature selection methods. Chapter 4 describes a feature selection wrapper I have

written in python to use easily use different feature selection algorithm. Chapter 5

illustrates how to use this wrapper through simple toy examples.
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Chapter 2

Existing Methods

This chapter summarizes popular feature selection methods. Section 1 includes

forward and backward selection algorithms where single features are added or removed

at each iteration. Section 2 describes a simple random selection which can be used to

guarantee optimality up to a desired percentage. Section 3 details how to build cross

validation into stepwise selection algorithms. Sections 4 and 5 outline algorithms

which work by penalizing non-zero regression coefficients. Section 6 concludes with a

discussion of proximity methods and orthogonal matching pursuit.

2.1 Stepwise Selection

For the purposes of describing stepwise selection, we introduce the following

notation:

indices:
i ∈ P data sources from which to choose

j ∈ {1, . . . , n} data index

Data:
Pi data for data source i
Pi,j data point j for data source i
G target data
Gj data point j for target data

5



k number of data sources to choose

Decision Variable:
S ⊂ P subset of data sources chosen

Model:
max
S⊂P

R2(G,S)

s.t. |S| = k,
(2.1)

where αi are the regression coefficients from fitting G using the Pi’s.

The objective function, R2(G,S) =
Var(G)−Var(G−

∑
i∈S αiPi)

Var(G)
, is just one potential

measure of the prediction accuracy. Of course, one could substitute other measures,

but for the purposes of simplicity we use R2 to describe the method. One advantage

of R2 over other measures is that it is submodular over the set of subsets of P [5].

A candidate algorithm for a subset selection problem with a submodular ob-

jective function is forward selection. Nemhauser proves that, under reasonable as-

sumptions, the greedy forward selection algorithm is a good approximation to the

optimal solution when the objective function is submodular [10].

Algorithm 1 Forward Selection Algorithm
1: function Forward Selection(k, P )
2: Set S = ∅
3: while |S| < k do
4: Set e = argmax

e∈P−S
R2(G,S ∪ {e})

5: Set S = S ∪ {e}
return S

Intuitively, forward selection works because a submodular function exhibits
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the marginal returns property for adding single features.

A similar greedy algorithm which works by removing single features is back-

ward elimination:

Algorithm 2 Backward Selection Algorithm
1: function Backward Selection(k,P )
2: Set S = P
3:
4: while |S| > k do
5: Set e = argmax

e∈S
R2(G,S − {e})

6: Set S = S − {e}
return S

Even though backward elimination is also a popular method, it does not have

the same approximation guarantees as forward selection, even when the objective

function is submodular.

2.2 Random Selection

Since the feature selection problem has
(
P
k

)
solutions, exhaustive search is

inefficient. However, if we choose a sufficiently large number of subsets then we are

guaranteed to be in a desired upper percentile of solutions with a reasonably large

probability. More specifically, let α be a desired percentile and n be a number of

samples subsets. Then the probability that one of those subsets is in the upper α

percentile is

p = 1− (1− α)n (2.2)
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For example, we can be in the top ten percentile with a probability of 0.995 with just

50 samples. The random selection algorithm is

Algorithm 3 Random Selection Algorithm
1: function Random Selection(α, p)
2: Determine n
3: for i = 1...n do
4: Choose a random subset S with |S| = k
5: if R2(G,S) > R2(G,Sbest) then
6: Replace Sbest with S

return Sbest

Even though random selection is not efficient at finding the optimal solution, it

guarantees a probabilistic solution quality regardless of the structure of the objective

function.

2.3 Cross-Validation Based Stepwise Selection

Forward selection proves to be relatively efficient for solving equation (2.1).

However, forward selection alone does not address the problem of overfitting. Since

linear regression is done using every data point, as we add more and more predic-

tors, we will get a better and better fit on those points. However, when testing on a

never-before seen data point, the fit may be very bad. Using cross-validation within

an optimization scheme can help to avoid overfitting.

Using the same setup as in forward regression, a cross validation-based forward

selection algorithm is
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Algorithm 4 Forward Selection with Cross-Validation
1: function Forward Selection CV(k, P )
2: Store 20% of all data to validate that the algorithm is effective at the end
3: Set S = ∅ and set N to a large number for sampling
4: while |S| < k do
5: for e ∈ P − S do
6: Set T = S ∪ {e}
7: for i do = 1...N:
8: Randomly split the remaining 80% of data into a set D with
9:

10: 30% of the data and a set E with 70% of the data
11:
12: Do a least squares fit of the data sources in T to G using E
13:
14: Using the coefficients from the fit, create a predictor
15:
16: Calculate the mean-squared-error(MSE) between the predictor and

G on D
17:
18: Let m be the average of the MSE values. Use that value in place of R2

as an objective function value
19: Choose the e which gave the largest m value and let S = S ∪ {e}
20: Do a least square fit using S and the 20% that was stored. If the MSE is

reasonably small, then consider this algorithm successful
21: return S

Though this algorithm helps to avoid overfitting, it has less theoretical justifi-

cation than both random selection and stepwise selection. Experiments using all four

optimization schemes are performed in Section 5.

In addition to feature selection, cross validation can also be used for model

selection. In particular, cross validation can be used to select parameters in any of

the methods discussed in 2.4 and 2.5

9



2.4 Parameter Minimization Based Methods

The methods in this section work by minimizing the least square error plus

a penalty on non-zero coefficients. The idea is to drive the coefficient value of data

sources that do not provide much benefit to zero. All of these methods have the same

general approach. The objective function they minimize is a sum of the squared error,

plus a penalty term for non-zero coefficients. The only difference from one method

to another is the penalty term they use.

2.4.1 Ridge Regression

One possible penalty term is the L2 norm of the parameter vector. In opti-

mization, this technique is known as Tikhonov regularization while in statistics, it is

known as ridge regression. For a given penalty term weight λ ∈ R, the ridge regres-

sion problem is

min
β

n∑
j=1

(
Gj −

∑
i∈P

βiPi,j

)2

+ λ‖β‖22

Model (2.4.1) is an unconstrained quadratic convex program, so it has an analytic

solution. Even though, by design, ridge regression shrinks the regression coefficients,

it does not usually shrink the coefficients all the way down to zero. One may ignore

features with small coefficients, but that alters the prediction output. If one performs

feature selection by removing the small coefficients, re-adjusting the remaining coef-

ficients through another parameter estimation may be advisable. For more details on

ridge regression, see either the original paper on ridge regression [8] or the original

paper on LASSO [12].
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2.4.2 LASSO

In 1994 Robert Tibshirani developed a modified version of ridge regression,

LASSO, which enjoys the benefits of ridge regression while remedying some of its

downfalls. The LASSO model is

min
β

n∑
j=1

(
Gj −

∑
i∈P

βiPi,j

)2

+ λ‖β‖1 (2.3)

For a given λ ≥ 0, Model (2.3) is equivalent to

minβ
n∑
j=1

(
Gj −

∑
i∈P

βiPi,j

)2

s.t. ‖β‖1 ≤ t

(2.4)

for some t > 0. In particular, let β̂ be a solution to (2.3). Then t = 1
λ
‖β̂‖1 is such a

t that makes (2.3) and (2.4) equivalent.

Tibshirani demonstrates that both theoretically and in practice, LASSO shrinks

coefficients all the way down to zero [12]. Intuitively, this can be understood by com-

paring the constraint sets of ridge regression and LASSO. The constraint set for ridge

regression is a ball, while the constraint set for LASSO is a rotated hypercube. Opti-

mality occurs where a contour of the objective function, an ellipsoid, first intersects

the constraint set. Ellipsoids are much more likely to intersect a hypercube at a point

on an axis than a ball.

Unlike ridge regression, LASSO does not lend itself to a closed-form analytic

solution. Both models are convex optimization problems. However, model (2.4) does
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not have a differentiable constraint function. The constraint could be rewritten as

2|P | linear constraints. A row generation algorithm for solving the resulting convex

problem with an exponential number of constraints is given by Tibshirani [12]. This

row generation algorithm is guaranteed to converge in exponential time. However as

with many row generation algorithms, it converges more quickly in practice.

A feature of LASSO is that it will only choose one out of a collection of highly

correlated features. In addition, it usually does not perform well when the number of

data sources available is much larger than the number of observations. LASSO also

tends to perform poorly in terms of prediction when the number of data sources with

large LASSO coefficients is small [14].

2.4.3 Elastic Net

Nearly a decade after the creation of LASSO, Zou and Hastie developed a

similar model designed to mitigate the problems encountered by ridge selection and

LASSO. Elastic net, not surprisingly, is a hybrid of ridge regression and LASSO. Zou

and Hastie developed elastic net by first introducing the naive elastic net model [14]

minβ
n∑
j=1

(
Gj −

∑
i∈P

βiPi,

)2

+ λ1‖β‖1 + λ2‖β‖2. (2.5)

They note that this problem is equivalent to

minβ
n∑
j=1

(
Gj −

∑
i∈P

βiPi,j

)2

s.t. α1‖β‖1 + α2‖β‖2 ≤ t

(2.6)

where α1 =
λ1

λ1+λ2
and α2 =

λ2
λ1+λ2

for some t ∈ R.

This model reduces to ridge regression if λ1 = 0 and LASSO if λ2 = 0. Incidentally,
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the naive elastic net model is no more difficult to solve than LASSO. Model (2.5) can

be transformed into a model of the same form as model (2.3) through an augmenta-

tion and multiplication [8].

Model (2.5) is described as naive since it only predicts well in terms of min-

imizing MSE on test data when either α1 or α2 are close to zero. This is to say

that naive elastic net is only good when it is mimicking ridge regression or LASSO.

However, after multiplying all components of a naive elastic net solution by 1√
1+λ2

,

this is no longer the case. The technique of solving the naive elastic net and then

scaling its solution is known as elastic net.

Elastic net performs well in terms of prediction and driving coefficients all the

way down to zero. In addition, as opposed to LASSO, it either includes or excludes

an entire collection of highly correlated features [14].

2.4.4 Nonnegative Garrote

Around the time that LASSO was developed, Leo Breiman developed a method

known as the nonnegative garrote (nng) [4]. This solution method takes an initial

solution of β values and performs a linear regression while shrinking data source

coefficients all the way down to zero. One candidate for an initial solution is the

least square coefficients. Alternatively, one can obtain a ridge regression solution and

apply the nng to shrink the small coefficients all the way down to zero.
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2.5 Other Methods
2.5.1 Proximity methods

All methods mentioned so far are supervised: they work by optimizing the

coefficients β to fit a target G. One may also take a different approach to feature

selection. Instead of using a target, some measure of proximity can be used to pick

features which are close to one another. Typical proximity measures include the

correlation coefficient, mutual information, and pointwise mutual information. These

measures tend to choose the data sources which maximize information [7]

2.5.2 Orthogonal Matching Pursuit

The orthogonal matching pursuit (OMP) is a greedy algorithm originally in-

troduced for sparse representation of a signal. OMP views both the goal G and the

data sources Pi as long vectors, with length equal to the number of observations. The

algorithm works projecting G onto each of the Pi vectors, and picking the Pi that

gives the longest projection. It then subtracts that projection from G, calls the result

the residual G, and repeats the process with by projecting the residual G onto the

remaining Pi. See Tropp for more details on using OMP to approximate a signal [13].
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Chapter 3

Existing Software

3.1 Scikit Learn and R

There are several existing software solutions that implement the feature se-

lection algorithms mentioned in Chapter 2. Two popular tool sets are Python’s

Scikit Learn module and R. R has various machine learning algorithms implemented

throughout several packages. Both R and Scikit Learn are open source and have a

large community continuing to use and develop machine learning tools. For documen-

tation on how to use Scikit Learn’s feature selection tools, see the “Feature Selection”

and “Generalized Linear Model” sections from the Scikit API page [3].

There is a folklore belief that forward selection does not perform well. This

belief is substantiated by lack of a forward selection implementation in both Scikit

Learn and R. In addition, the example shown in Figure 5.3 from Chapter 5 illustrates

forward selection producing a suboptimal solution. On the same example, all other

algorithms mentioned in Chapter 2 produce the optimal solution.
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To ease development of feature selection in Python, this report introduces a

Python feature selection wrapper. This wrapper is designed to allow a developer to

easily implement feature selection on top of any prediction method – whether or not

it is one already in Scikit Learn or R, or a custom method. The full software details

are given in Chapter 4.
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Chapter 4

Custom Feature Selection Wrapper

Generally, there are several components that can be used in feature selection.

A predictive function creates a model for a target data source from a set of features. A

widely-used example of a predictive function is the linear regressor from least squares

regression. An objective function can then be used to compare two models to see

which is better. The R2 function from Chapter 2 is a useful example of an objective

function. Finally, an optimization algorithm uses an objective function in order to

pick subsets of features based on previous evaluations until the objective function is

small enough.

4.1 Wrapper Layout

The custom feature selection wrapper package is designed to separate data,

modeling, and optimization components. The first step in using the software is to

customize the data import function. Once data is imported, the user has the capa-

bility to easily run different optimization algorithms. The feature selection wrapper

package has the following directory structure:

data_retriever.py.................Used for importing data.
__init__.py

17



optimization
__init__.py
problem.py
objective_functions.py........Contains objective functions.
optimization_algs.py..........Contains feature selection algorithms.
predictive_functions.py ......Contains predictive functions.

The main module, problem.py, contains a class called FS_problem, which

includes the test data and functions for interacting with the data. A user can

import data into an instance of FS_problem through the data_retriever mod-

ule and then perform optimization and visualization. A user can then add fea-

ture selection algorithms into optimization_algs.py and objective functions into

objective_functions.py. In addition, the user can add predictive functions such

as least squares regressors into predictive_functions.py.

4.2 Adding Data to an Instance

Once an instance of FS_problem is created, a list of data sources is automat-

ically stored in the instance’s data variable. A data source must be in the form of a

dictionary as

{
"metadata": {

"name": "data_name"
},
"data": {

"times": [times],
"values": [values]

}
}

18



where data_name is the name of the data source, and times and values are

parallel lists which give the data for a time series. The code expects all data sources

to have associated time series that match in length and time-points. However, data

sources may contain additional key-value pairs anywhere in the dictionary structure,

but the above core structure is required to be present. For the rest of this report a

data source refers to such a dictionary with.

The data_retriever module contains a single function called get_data()

which returns a two-tuple. The first component of this tuple is a list of data sources

for use in feature selection, and the second component is the target data source. How

to import the data sources and the target is up to the user. Currently, get_data()

creates the data sources from csv files and prompts the user to choose one as a target.

Once a target data source is chosen, it is removed from the list of data sources so

that it will not be used in feature selection.

4.3 Setting up a Problem and Performing Feature Selection

Suppose the user creates an instance of FS_problem called “problem” with the

command

import optimization.problem as problem

problem = problem.FS_problem()

During instantiation, data is automatically imported into problem through a call to

get_data().

19



The user is now ready to begin performing optimization. Since all methods

from Chapter 2 have been implemented in the wrapper, the user can use any of

them to perform feature selection. Alternatively, the user can extend our wrapper

by adding new optimization algorithms and use those algorithms with their problem

instance. This report gives details on how to extend our wrapper in Section 4.4.

4.3.1 Specifying an Objective Function

Suppose the user decides to perform forward selection with R2 as an objective

function. TheR2 objective function has been implemented within objective_functions.py,

and its docstring is

def R_squared(problem, subset, **kwargs):
"""Returns the coefficient of determination R^2

Description
-----------
This statistical quantity tests how well predictive data fits
model data

Parameters
----------
:param problem: problem being solved
:param subset: data for prediction

:type problem: FS_problem
:type subset: list of data sources

:return: R_squared correlation of determination
:rtype: float

20



Reference
---------
http://en.wikipedia.org/wiki/Coefficient_of_determination
"""

Since the name of the R2 function is R_squared, the user would issue the

command

problem.objective_function = "R_squared"

Now any optimization algorithm that requires an objective function will use the

R_squared function.

4.3.2 Specifying a Predictive Function

Suppose the user wants to use a least squares regressor with R_squared. One

of the functions within predictive_functions.py is

def lin_reg(goal_series, series_collection):

’’’Returns a predictive function using least_squares

Description

-----------

Returns Ax* where x* = argmin_{x}( || Ax - b ||_2 )

The matrix, A, is obtained by putting the lists from series_collection

into a column of A. The vector b is simply goal_series

21



Parameters

----------

:param goal_series: the vector b

:param series_collection: list of column vectors of A

:type goal_series: list of floats

:type series_collection: list of list of floats

:return: least squares coefficients and a preditive time series

:rtype: (list of floats, numpy.array)

’’’

To use this predictive function, the user would issue the command

problem.predictive_function = "lin_reg"

Now any time a predictive function is required, the lin_reg function will be used.

4.3.3 Performing Feature Selection

Forward selection is one of the optimization algorithms implemented in

optimization_algs.py. Its docstring is

def forward_selection(problem, **kwargs):
"""Forward selection heuristic

Requirements

22



------------
kwargs[’choose’] is a positive integer which specifies exactly how many
data sources to choose in feature selection

Parameters
----------
:param problem: problem to be solved

:type problem: FS_problem

:return: (optimal subset, optimal objective value)
:rtype: (list of data sources, float)

Reference
---------
"Optimizing Provider Recruitment for Influenza Surveillance Networks"
"""

Since choose is a required parameter to forward_selection, it will be re-

quired as a keyword argument to optimize(). To perform feature selection, the user

will use the command

problem.optimize("forward_selection", choose = 3)

The keyword choose is given since it is a requirement of forward selection. If there

are any requirements for the objective function used by an optimization algorithm, it

should be specified in the call to optimize() as well. Since the R_squared objective

function has no requirements, only choose is specified in this call to optimize().

The names of the three data sources chosen by forward selection are then

displayed along with a graph containing G and the least squares fit of the three data
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sources to G.

Figure 4.1: The output of a call to optimize() using forward selection and choose
parameter of three. The features chosen by this run are Ebay, Facebook, and Twitter.
The target data source is shown in green, and the model created from the chosen data
sources is shown in blue.
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4.3.4 Switching Feature Selection Algorithms

Suppose the user now wants to see which subset LASSO chooses, as compared

to forward selection. The currently-implemented LASSO algorithm uses the Scikit

Learn LASSO function, so it is not necessary to specify an objective function or predic-

tive function. However, as is documented in the LASSO docstring, ridge_reg_coef

must contain a nonnegative float. The user can run LASSO with a command such

as

problem.optimize("LASSO", LASSO_reg_coef=0.5, coef_tolerance=0.05)

The user can continue trying different feature selection algorithms by specifying pa-

rameters as keyword arguments as necessary according to the algorithms’ docstrings.

See Figure 4.2 for the output.

4.4 Extension

A user can add new optimization algorithms into optimization_algs.py, new

predictive functions into predictive_functions.py, and new objective functions

into objective_functions.py. When adding these, it is important to be explicit in

the docstring about the required parameters since the user needs these in order to

run the algorithm.
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Figure 4.2: The output of a call to optimize() using LASSO
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Chapter 5

Experiments

5.1 Toy model

In this chapter, we use a small toy example to illustrate how the feature

selection wrapper can be used as well as to validate the optimization algorithms. The

data sources for this problem are closing stock prices for nine different companies.

Figure 5.1: The data sources used in this experiment are weekly closing stock prices
for December 2014-January of 2014.
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One way to test that the implemented optimization algorithms work is to test them

with a G that is constructed from a linear combination of some data sources. In this

toy example, G is constructed as

Gj = Yelpj + 2 ∗ Twitterj + 3 ∗ Facebookj

Intuitively, we expect a good feature selection algorithm to choose Yelp, Twitter, and

Facebook—assuming that all of the data sources are linearly independent.

Figure 5.2: The constructed data, G, in light blue, is constructed from a linear
combination of Yelp, Twitter, and Facebook

All models discussed in Chapter 2 along with their cross-validation counter-

parts are implemented in the current version of the feature selection wrapper
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All algorithms except for forward selection with an R2 objective function choose Yelp,

Twitter, and Facebook. When the choose parameter for forward selection is set to

three, forward selection chooses Ebay, Facebook, and Yelp (see Figure 4.1). However,

when the choose parameter is set to four, Ebay, Facebook, Twitter, and Yelp are

chosen. This simple example illustrates the benefit of performing feature selection

with multiple algorithms, to validate the robustness of the set of output features.

Figure 5.3: Forward selection with an R2 objective value and a choose parameter
of four selects Ebay, Facebook, Twitter, and Yelp. This is a perfect fit, yet Yelp,
Twitter, and Facebook give a perfect fit

29



Chapter 6

Discussion

This report surveys only a subset of feature algorithms. More feature selec-

tion algorithms can be explored by considering other predictive functions, objective

functions, and optimization algorithms. Additional predictive functions to consider

are logistic regression and various nonlinear regression types. Various norms and sta-

tistical quantities can be used for objective functions as appropriate for applications.

Finally, for each feature selection problem, there are usually various applicable opti-

mization algorithms that can be used.

Because Python and R are so popular in the scientific computation commu-

nity, Scikit Learn and the R packages were the only tools discussed in this report.

There are numerous programming languages and computational tools which have

their own feature selection libraries. In particular, more low-level language such as

C and Java may be better for solving large problems. Additionally, feature selection

tools in MATLAB and Mathematica can be used in applications where codes are

already written using these tools.
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There were several software design decisions made in favor of the application

funding this work. Future effort would include providing a better separation of the

data from the feature selection wrapper. Users may wish to use some other data

structure in place of the dictionary structure imposed by the feature selection wrap-

per. Additionally, it may be more convenient to replace the strings used to specify

objective and predictive functions with actual functions to provide even greater flex-

ibility.

The software developed through this masters report can be used to easily apply

many feature selection algorithms to a feature selection problem. The data structure

imposed on the user is simple and useful, and extending the software to include

additional algorithms has been made simple and transparent. In addition, the user

can easily add in extra capabilities since the code is modular and well-documented.
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