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Abstract 2. BACKGROUND

Collocation algorithms for efficiently solving stochastii-  2.1. Stochastic Differential Equations

ferential equations arising from modeling uncertainty in  Uncertainty can be incorporated into dynamical systems
large-scale systems are presented. The resulting saddi@n by modeling them with stochastic differential equations, [1
integrated to compute statistical moments, from which sen18]. From a general perspective, we seek the solutiof2 x
sitivity can be inferred, and interpolated to propagate BDF O+ — O to

We give a detailed exposition of this approach, focusing on

the dimension-adaptive algorithm of [10]. We give applica- L(t,w;u) = f(t,w), UW=g(w), tel", weQ, (1)
tions on a double pendulum, an integrated shipboard power

system, and a pulse power system. wherelL is the differential operator an@ the random space
[26]. Statistical moments, such as means and variances, and
1. INTRODUCTION PDF’s are the typical information gained from solutions to

Large-scale engineered systems pose a class of desi %).Equa’uon (1) may contain both random variables and pro-
esses. A random process may be represented by a random

problems for which there is currently no existing compre- ariable at each moment in time- this however makes the sam-
hensive approach. Dimensionality renders the space of—possv : intime; thi Wev

ble realizations for such systems immense, placing therh wef)lta,[|SF)"’1(:E‘Q mﬁmée ;j|g1en3|on;al,tla feﬁtu[fhthit cznnot bf di-
outside the computational limits of traditional technigue rectly accommodated computationaty. The rarhunen-1-oeve

The all-electric ship is a representative example of Iarge_expansmn [11] offers a means to approximate random pro-

scale systems, and its development is of significant inté&ves gztsjgz uesé?galaeflngisngrr?kl)—‘la(; Oé r:rn?ﬁ_z] g/aar:l%télesnln_; dtru;-s
the control and simulation communities [6, 16]. Its superio P xpansion. However, thi unwieidy,

ity over current ships includes high efficiency power transf accurately representing a random process tends to dramati-

through the ship, rapid reconfiguration, layout flexibiléyd cally increase the dimension f

azimuthing thrusters providing enhanced maneuvering and

hydrodynamic efficiency; presently, this is only a potentia 2.2, Collocation

To find designs and corresponding control strategies that at Collocation approximates solutions to (1) by calculating

tain this potential, the system must be considered as a wholg ) sions of deterministic differential equations copresd-

this requirement makes the electric ship a large-scalesyst ing to special points in the random spa@eand then using
In addition to large design spaces, numerous environmeny, <o so|utions to construct a function o@rat each mo-

tal interactions and inaccurate system information make UNent in time. Monte Carlo methods differ only in the choice

certainty a necessary consideration. Solving the regultin ¢ o,ints ysing pseudo- or quasi-random points rather than

stochastic differential equations is essentially a pmob®E . 1ocation points. At this point, it is sensible to simplihe

representing the system as a function over a random spacgis.;ssion from stochastic differential equations to fims;

Collocation algorithms accomplish this by sampling the-sys 5 ¢tion to a stochastic differential equation at a fixeteti

tem over its random space at special points, where in the cage osqentially a function over a random space, and in the case

of Iarge_-ﬁcale systems a ‘sample’ is a sm(;glaﬂonhor IeXpe_”bf collocation, finding that solution amounts to approximat
ment with uncertain parameters set according to the latatio;,, 5 fnction at each instant in time. Two basic settings in

of the sample. Simulation of and experimentation with large i, coliocation algorithms are used are numerical irgtegr
scale systems is expensive, S0 we seek an accurate represeRt 2 interpolation of functions

tion of the system from a minimal number of samples. There

are multiple approaches, including b_rUte force Monte Ce_‘rlo 1A Matlab implementation of the collocation algorithms iristipaper is
polynomial chaos [25], and collocation, the latter of which available at http://web.mit.edu/hovergroup/docs.html.
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2.2.1. Numerical Integration 2.2.3. One-dimensional Function Approximation

Numerical integration [3] is essentially a problem of effi- A system often has multiple sources of uncertainty, yield-
ciently characterizing a function over a space by sampling iing a multi-dimensional random space. With the exception
at discrete points. All collocation algorithms considehedle  of Monte Carlo, multi-dimensional algorithms are gengrall
have implementations in numerical integration which can becomprised of one-dimensional techniques extended to mul-
expressed at as a sum of weighted function evaluations, sudiple dimensions via tensor, or, in the case of a hypercube,

that the integral of a functiof is approximated by Cartesian products. In one-dimensional numerical integra
tion, the set of evaluation points and weights is often refir
/ fedx~ S wif(xi). (2)  to as a quadrature. Well known one-dimensional quadratures
1

include Simpson’s rule and Newton-Cotes formulas. Poly-
where thex; are points at whicH is evaluated and the; cor- nomial based approaches, which evaluate functions at roots
responding weights. A key product of solving stochastie dif Of polynomials, often have more attractive rates of conver-
ferential equations is obtained through numerical intégna ~ 9ence, particularly when the solutiar(Q,t) is a smooth
the statistical moments of solutions. In addition to knayvin function of Q. Polynomial based methods are measured by
mean behaviors, variance trajectories are indicative gsa s the order polynomial they will approximate exactly using
tem’s sensitivity to uncertainty as a function of time. We ut @ fixed number of points; this is known as polynomial ex-

lize integral and maximum definitions of sensitivity: actness. Gaussian quadrature uses orthogonal polynomials
and has a high polynomial exactness of-21 [3, 12, 21].
Integral Sensitivity= / var(x(t))dt, (3)  Clenshaw-Curtis quadrature, which uses Chebyshev polyno-
mials, achieves only exactness, but is nested, an advanta-
Maximum Sensitivity= mtax{var(x(t))}. (4)  geous feature when using sparse grid or dimension-adaptive

o _collocation [2, 24]. Gauss-Kronrod-Patterson quadratame
Later, we make use of these quantities in our analyses in thginer nested sequence, begins with Gaussian quadrature and
applications section. inserts Kronrod extension points to form a nested sequence
of quadratures that has a polynomial exactnessief 2+ m,
2.2.2. Interpolation wheren is the number of Gaussian quadrature points mnd
Interpolation [1, 4, 14] is very like numerical integration the number of extension points [7, 19].
except that we are now evaluating rather than integrating a
function approximation. In the context of interpolationnt- 2.2.4. Multi-dimensional Algorithms

tion approximations are often referred to as interpolants. As stated, multi-dimensional collocation algorithms are

The one-dimensional barycentric interpolation formula of .o structed by taking tensor products of one dimensional
the second form is preferable for its numerical stabilitgan gyadratures. The most basic technique is the full grid: it is
computationally efficiency. Itis given by a straightforward Cartesian product of each dimensionés on

5, I f(x) 1 dimensional basis quadratudg, and can be written
X=X
= ! |

=S =l © ©

Interpolation can be used to approximate PDF's via hisFO" numerical integration, it can be expressed as a weighted

tograms. A direct way to accomplish this without interpo- sum of function evaluations at each collocation point:

lation is with Monte Carlo: evaluate a function or simulate g My My

a system at random points and sort the outcomes into bins. Falfl= > -+ > Wiy wig FOp, %), (7)
However, direct evaluation can be costly; instead apply tdon =1 ig=1

Carlo to the interpolant, which is always cheap to evalu-wheremy is the number of points in the one-dimensional ba-
ate, and generate histograms of interpolated functioregalu sis quadraturég. The full grid formulation is written here as

or system simulations. Consider the Pulse Power Simulinkaving identical component quadratures in each dimension
model, which is studied in section 3.3.; one evaluationgake for notational concision, but this is not a requirement; any
ten minutes, so directly applying Monte Carlo to create aevel of any valid rule may be used. This is often advanta-
1,000 point histogram would be time consuming. Suppose thgeous to keep in mind; a function that is poorly behaved in
response can be characterized with fair accuracy using 10ébme dimensions and relatively smooth in others can be more
collocation points. The simulation can now be interpolatedefficiently approximated by using high resolution approaim
1,000 times to produce nearly the same histogram (the acctions in troublesome dimensions and lower resolution appro
racy increases with the number of collocation points used) i imations in the others, rather than by using the same high res
the time it takes to simulate the system 100 times. olution quadrature in every dimension.



With some information about the function being integrated, Full grid Sparse grid
the integration error for full grid collocation with polyntal oo R RN
based component quadratures can be bounded. For functior . : .
in C" (functions with bounded mixed derivatives up to order

r), the error of full grid collocation is estimated by

I[f] = F[f]] = O(n~"/9) (8)

wherel [f] is the exact integral armithe total number of func-

tion evaluations. The dimension faciin the exponentis a Figure 1. Left: Full grid with Legendre polynomial Gaus-

manifestation of what is known as 'The Curse of Dimension-sian quadrature. Right: Sparse grid with Gauss-Kronrod-

ality’. As dimension grows, error order grows as well at anpatterson quadrature.

exponential rate. For low dimensional, smooth integraads,

full grid is often the best choice among non-adaptive meth-

ods. is the difference quadratutedefined above. Fig. 2 illustrates
In 1963, Smolyak introduced what is now known asthe behavior of the algorithm on the function

Smolyak’s formula and is the underlying formulation of all 5

sparse grid methods [9, 14, 23]. Rather than using one high f(x) =exp(— S |x —0.5]). (11)

order tensor product, the sparse grid is a sum of lower or- i;

der products, and tends to perform better in slightly higher o ) ) . o ]
dimensions than full grid approaches. Define the Iéwif-  This function is a two dimensional instantiation of one of si

ference quadrature standard test functions from [8] widely used to evaluate the
performance of numerical integration schemes.
A =D —Di_g, A=

Grid points Evaluations
Smolyak’s formula can then be written : :

lil1<q+d

gz Z Diy ® -+ @ Dig, (©) : l T I :

whereli|; = i1+ +ig. PRl

At this point it becomes clear why nested component e
guadratures are preferable for sparse grids. Nesting sause : :
points of different grids in the sum to coincide, and the num-
ber of common points increases with both the level and difigure 2. Nine element Clenshaw-Curtis dimension-
mension of the sparse grid. adaptive integration of the two dimensional instantiatisn

The error for a sparse grid with polynomial based compo+ test function from [8]. The grid chosen by the algorithm
nent quadratures can be estimated in the same fashion as th& shown on the left, and the function evaluations at those
full grid case: points on the right.

[1f] = S[f]| = O(n"log(n) 4D +Y), (10)

To demonstrate the versatility of the algorithm, the space

As with full grid collocation, the factod eventually causes "2S been divided into nine identical elements, inside each
sparse grids to fall to "The Curse’ as well, but not as seyerel ©f Which the dimension-adaptive algorithm was executed.
The penalty incurred by dimension is mitigated by kbg(n) Multi-elements [13] is another powerful approach to sadvin

term, and consequently sparse grid collocation is oftersup Stochastic different_ialoequations, but which is not exgébr
rior in mid-dimensional situations. Fig. 1 shows the evalua N€ré- The function i€ along the central axes of the space,
tion points for a full and sparse grid. and analytic elsewhere. Grids that are of high order in the di

Reference [10] presents a dimension-adaptive algorithd'€NSion perpendicular to t& ridges are evaluated, while
which places points according to online estimation of its-co relatively low order grids are computed where the funct®n i
vergence. Grids are chosen which have high resolution in dio€tter behaved.
mensions over which the function is difficult to approximate
and low resolution in easier dimensions. Dimensional cou2.3. Appropriateness of Each Method
pling is reacted to as well through high resolution jointigri Full grids perform well in low dimensions and sparse
The basic building block of the dimension-adaptive aldgont  grids in mid dimensions. In many situations, the dimension-



adaptive algorithm is superior to both, or at the least pertions. Deterministic solutions to the system equationokt ¢
forms as well as the worst of the non-adaptive collocatioriocation points, i.e. realizations of the system, were gztiee
schemes. Nested basis quadratures are desirable for spatsing the fourth order Runge-Kutta scheme. 177 realization
and dimension-adaptive grids despite their slightly lowerwere necessary for the adaptive algorithm to attain an error
polynomial exactness, because they permit reuse of functiotolerance of 103.
evaluations or system simulations. Fig. 4 shows mean trajectories with standard deviation en-
It should be noted that due to 'The Curse of Dimension-velopes for this system. Notice that at about 2.3 seconds the
ality’, Cartesian product based methods will invariably be standard deviation grows very large. This is because the sys
come ineffective in high enough dimension for all but triv- tem after that time is sensitive to the prescribed uncestain
ial functions. Although it is not the focus of this paper, it meaning that it can exhibit a wide range of behavior depend-
is worth discussing the high-dimensional alternative: kon ing on where in the random space the system is realized.
Carlo. Pure Monte Carlo, or pseudo-randomness, converges
according to the central limit theorem at,I'n, independently Mean solutions with standard deviation
of dimension. Monte Carlo methods also do not depend on the 20
smoothness of the integrand, and for badly behaved furgtion
are sometimes superior even in low dimensions. Quasi-Monte

Carlo [17] methods offer improvement tg'd optimally and 0
log(n)d/nin the worst case. None of these are attractive rates, 10
but in high dimensions they are often the best there is. s _
o 0 R
3. APPLICATIONS -10
We now demonstrate the use of these algorithms on three 10

example systems: for illustrative purposes, a double pendu
lum, the Office of Naval Research Integrated Power System
Testbed Simulink model (from Purdue), and a pulse power
system Simulink model (from University of Texas at Austin).

50
3.1. Double Pendulum >0 N~ - -
Consider a freely falling double pendulum [22] with1% © ‘ | B |
uniform uncertainty in the initial position and mass of _500 05 1 15 2 25
each arm (Fig. 3). Initial conditions wer@1,02,61,6,] = Seconds

[/2,11/2,0,0]. Note that because there are four uncertain pai:_ 4 M ut ith dard deviati |
rameters, the system’s random space is four-dimensional. '9ure 4. Mean solution with standard deviation envelope
for a double pendulum with uniform initial position and mass

uncertainty.

Fig. 5 shows 5,000 point histograms of each state at 2.5
seconds. Each used identical Monte Carlo points, that on the
left generated by interpolation and on the right by direet-si
ulation. The histograms agree fairly well. All have mulépl
modes, meaning that each arm can have substantially differ-
ent positions and velocities depending on where in the ran-
dom space the system is realized, and the interpolated his-
tograms have captured this; this capability is critical &pr
proaching real applications with confidence.

X

3.2. Integrated Power System Testbed
Figure3. Double pendulum with uniform uncertainty inthe  The Office of Naval Research Integrated Power System
initial positions and masses. testbed Simulink model from Purdue (ONR IPS) [16, 20]
(Fig. 6) describes the operation of a notional power system
Dimension-adaptive collocation was used to compute a scfor the next generation all-electric ship. We examine uncer
lution to the resulting system of stochastic differentigia-  tainty in the system by analyzing the statistical moments of
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Bus
500 V
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| SSIM | MC CPL
SKW 5KW 5 KW

PS

Starboard
Bus
00V Zone 1 Zone 2 Zone 3
PS: Power Supply SSIM: Ship Service Inverter Module
(3-0 AC to DC) (DC-AC Converter)
SSCM: Ship Service Conerter Module LB: Local Bank
(DC-DC Converter) MC: Motor Controller

CPL: Constant Power Load
Figure6. Schematic for ONR IPS Testbed.

Interpolated histograms  Directly evaluated histograms seconds, the motor and motor control turn on. At€econds,
the system is loaded from the ship service inverter module in
o zone one.
We give results from a three dimensional, level four full
6 8 10 6 8 10 grid collocation simulation varying each uncertain partane
uniformly +1% from its nominal value. We considered all
Y ‘ ‘ possible triples (220 total runs) drawn from the set:
e Bus
2 0 2 2 0 2 1, 7)C - Shunt Capacitance
=) 2, 8)Cs - Filter Capacitance
g 3, 9)L¢ - Filter Inductance
-5 0 5 10 15 -5 0 5 10 15 ¢ Propulsion
5 4, 10)C - Filter Capacitance
" 5, 11)L - Filter Inductance
6, 12) Induction Motor Mechanical Load
-40 -20 O -40 -20 0

where parameters 1-6 are starboard and 7-12 port.

There are many ways to structure results from this sort of
simulation, for example the most sensitive triple for a gec
output: we find that triplg 1,2, 3} is in fact the most influen-
tial triple for the starboard generator currents accordong
the integrated variance metric, afit] 2,5} by the maximum
its responses. We vary parameters from the port and stametric. We present results that that are amenable to gralphic
board AC systems, which contains the starboard generatagnalysis, but they are not the only perspectives.
bus, and propulsion. In zone three, a constant power load, Taking the most influential triple according to the integral
a proportional-integral controller, and two ship serviom<¢ metric, we compare the sensitivity of different output etat
verter modules are turned on, all at 0 seconds. At timie 0 Since we are now comparing distinct outputs with different

Figure5. Interpolated and direct Monte Carlo histograms of
double pendulum states at 2.5 seconds.



units, we normalize the integrated variance by the integfral near eightfold increase only occurs-a1% uncertainty, and
the square of the deterministic solution at the center of thestays below two beyon#5% uncertainty.

random space. The output states corresponding to each num-

ber are listed below. State 15 State 16 State 17

e Zone 3 DC states 0.06 0.03 0.03
1) Load Voltage '
2) Starboard \oltage 0.04 0.02 0.02
3) Starboard Current 0.02 0.01 0.01

4) Port \oltage
5) Port Current 0.050.10.1_5 N 0.050.10.15 _ _0.050.10.15
% individual parameter variation

NIV

e Starboard AC system states

6-8) Voltagesa, b, ¢ 6 5 5
9-11) Generator Currentsb,c D, 4 4
12-14) Propulsion Currentsb,c = 3 3
15-17) Power Supply Currenssb, c 2 2 2
The top plot in Fig. 7 shows the normalized integrated 0.050.10.15 ! 0.050.10.15 ! 0.050.10.15
variances (NIV) of the output states, from which it is seen % individual parameter variation

that the three most sensitive outputs to the tridle?, 3} are
the power supply currents. The lower plot is of the multi-
dimensional integral sensitivity (MIS), which we define as
the square root of the normalized variance divided by the sum
of the variance of the uncertain parameters in the simudatio
This reflects the ratio of the standard deviation of the mea3.3. Pulse Power System
sured states to the standard deviation of the uncertairtsnpu  We analyze uncertainty in a Simulink model (from the Uni-
It appears that there is an eightfold increase in the variaif  versity of Texas at Austin) describing the operation of gdar
pulse load reflecting the power consumption of a rail gun [5].
« 10~ Normalized integrated variance The alternator is charged by accelerating its rotor to 1@,00
— ‘ — rpm, at which point the inverter and charging motor are dis-
connected from the alternator and a shot is fired.
A six dimensional dimension-adaptive simulation using
! Clenshaw-Curtis quadrature was run, with0% uniform un-
ﬂﬂﬂ certainty in the alternator field winding resistance, priyna
i i [ generator one field winding leakage inductance, inductance
I N ; 89 10b11121314151617 of charging motor switches, and charging motor phase resis-
Multi=dimensional tiﬁttzgrl;';ns:r:sitivity parameter tance, and-5% uniform uncertainty in the 'on’ configuration
————————— — output rectifier diode resistance and charging motor excita

Figure 8. Multi-dimensional integral sensitivity (MIS) of
starboard power supply currents fad — 17% uncertainty.

NIV

6 tion flux.
w4 Fig. 9 shows mean trajectories with standard deviations for
= a few states, and 10 shows histograms-at30 seconds. A
2r H HHHHHHH total of 53 system evaluations were required to attain an er-
ol [ 1.1 ﬂ ror tolerance of 10° for the charging motor phase one stator
1234567 891011121314151617 current. In most dimensions, the algorithm expended kttie

State number fort, the highest order joint grid evaluated being levelrfiou

Figure 7. Starboard AC system normalized integratedthe dimension corresponding to the charging motor exoitati

variances (NIV) and multi-dimensional integral sensigivi flux and level three in that corresponding to the diode resis-
(MIS). tance, indicating some coupling between those paraméters.

level three full grid would have used 729 points, taking much
the power supply currents, which is not very reassuring. Butnore time to achieve a comparable level of accuracy.
this is only for+1% uncertainty. Fig. 8 shows the integrated It can be seen from Fig. 9 that the primary generator phase
variances (above) and multi-dimensional sensitivitieddqly)  voltage and the generator field winding voltage are semesitiv
of the power supply currents farl — 17% uncertainty. The to the simulated uncertainty, the first during charging befo



the shot is fired and the latter afterward. The distributians
30 seconds appear to mostly be Gaussian, with the exceptio
of the generator speed, which is nearly uniform.

amps
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1000 ‘ ‘ : ‘ :
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Figure10. Histogram of rail gun states ait= 30 seconds.

Figure 9. Mean trajectories with variance envelopes of ral REEFERENCES
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