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Abstract
Collocation algorithms for efficiently solving stochasticdif-
ferential equations arising from modeling uncertainty in
large-scale systems are presented. The resulting solutions are
integrated to compute statistical moments, from which sen-
sitivity can be inferred, and interpolated to propagate PDF’s.
We give a detailed exposition of this approach, focusing on
the dimension-adaptive algorithm of [10]. We give applica-
tions on a double pendulum, an integrated shipboard power
system, and a pulse power system.

1. INTRODUCTION
Large-scale engineered systems pose a class of design

problems for which there is currently no existing compre-
hensive approach. Dimensionality renders the space of possi-
ble realizations for such systems immense, placing them well
outside the computational limits of traditional techniques.
The all-electric ship is a representative example of large-
scale systems, and its development is of significant interest to
the control and simulation communities [6, 16]. Its superior-
ity over current ships includes high efficiency power transfer
through the ship, rapid reconfiguration, layout flexibility, and
azimuthing thrusters providing enhanced maneuvering and
hydrodynamic efficiency; presently, this is only a potential.
To find designs and corresponding control strategies that at-
tain this potential, the system must be considered as a whole;
this requirement makes the electric ship a large-scale system.

In addition to large design spaces, numerous environmen-
tal interactions and inaccurate system information make un-
certainty a necessary consideration. Solving the resulting
stochastic differential equations is essentially a problem of
representing the system as a function over a random space.
Collocation algorithms accomplish this by sampling the sys-
tem over its random space at special points, where in the case
of large-scale systems a ’sample’ is a simulation or experi-
ment with uncertain parameters set according to the location
of the sample. Simulation of and experimentation with large-
scale systems is expensive, so we seek an accurate representa-
tion of the system from a minimal number of samples. There
are multiple approaches, including brute force Monte Carlo,
polynomial chaos [25], and collocation, the latter of which

we focus on here1.

2. BACKGROUND
2.1. Stochastic Differential Equations

Uncertainty can be incorporated into dynamical systems
by modeling them with stochastic differential equations [15,
18]. From a general perspective, we seek the solutionu : Ω×
ℜ+ → ℜ to

L(t,ω;u) = f (t,ω), u0 = g(ω), t ∈ ℜ+, ω ∈ Ω, (1)

whereL is the differential operator andΩ the random space
[26]. Statistical moments, such as means and variances, and
PDF’s are the typical information gained from solutions to
(1). Equation (1) may contain both random variables and pro-
cesses. A random process may be represented by a random
variable at each moment in time; this however makes the sam-
ple spaceΩ infinite dimensional, a feature that cannot be di-
rectly accommodated computationally. The Karhunen-Loeve
expansion [11] offers a means to approximate random pro-
cesses using a finite number of random variables in a trun-
cated spectral expansion. However, this can be unwieldy, as
accurately representing a random process tends to dramati-
cally increase the dimension ofΩ.

2.2. Collocation
Collocation approximates solutions to (1) by calculating

solutions of deterministic differential equations correspond-
ing to special points in the random spaceΩ and then using
those solutions to construct a function overΩ at each mo-
ment in time. Monte Carlo methods differ only in the choice
of points, using pseudo- or quasi-random points rather than
collocation points. At this point, it is sensible to simplify the
discussion from stochastic differential equations to functions;
a solution to a stochastic differential equation at a fixed time
is essentially a function over a random space, and in the case
of collocation, finding that solution amounts to approximat-
ing a function at each instant in time. Two basic settings in
which collocation algorithms are used are numerical integra-
tion and interpolation of functions.

1A Matlab implementation of the collocation algorithms in this paper is
available at http://web.mit.edu/hovergroup/docs.html.
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2.2.1. Numerical Integration
Numerical integration [3] is essentially a problem of effi-

ciently characterizing a function over a space by sampling it
at discrete points. All collocation algorithms consideredhere
have implementations in numerical integration which can be
expressed at as a sum of weighted function evaluations, such
that the integral of a functionf is approximated by

∫
f (x)dx ≈ ∑

i
wi f (xi). (2)

where thexi are points at whichf is evaluated and thewi cor-
responding weights. A key product of solving stochastic dif-
ferential equations is obtained through numerical integration:
the statistical moments of solutions. In addition to knowing
mean behaviors, variance trajectories are indicative of a sys-
tem’s sensitivity to uncertainty as a function of time. We uti-
lize integral and maximum definitions of sensitivity:

Integral Sensitivity=
∫

var(x(t))dt, (3)

Maximum Sensitivity= max
t
{var(x(t))}. (4)

Later, we make use of these quantities in our analyses in the
applications section.

2.2.2. Interpolation
Interpolation [1, 4, 14] is very like numerical integration,

except that we are now evaluating rather than integrating a
function approximation. In the context of interpolation, func-
tion approximations are often referred to as interpolants.

The one-dimensional barycentric interpolation formula of
the second form is preferable for its numerical stability and
computationally efficiency. It is given by

Pq[ f ](x) =
∑i

l i
x−xi

f (xi)

∑i
l i

x−xi

, l i = ∏
j 6=i

1
xi −x j

. (5)

Interpolation can be used to approximate PDF’s via his-
tograms. A direct way to accomplish this without interpo-
lation is with Monte Carlo: evaluate a function or simulate
a system at random points and sort the outcomes into bins.
However, direct evaluation can be costly; instead apply Monte
Carlo to the interpolant, which is always cheap to evalu-
ate, and generate histograms of interpolated function values
or system simulations. Consider the Pulse Power Simulink
model, which is studied in section 3.3.; one evaluation takes
ten minutes, so directly applying Monte Carlo to create a
1,000 point histogram would be time consuming. Suppose the
response can be characterized with fair accuracy using 100
collocation points. The simulation can now be interpolated
1,000 times to produce nearly the same histogram (the accu-
racy increases with the number of collocation points used) in
the time it takes to simulate the system 100 times.

2.2.3. One-dimensional Function Approximation
A system often has multiple sources of uncertainty, yield-

ing a multi-dimensional random space. With the exception
of Monte Carlo, multi-dimensional algorithms are generally
comprised of one-dimensional techniques extended to mul-
tiple dimensions via tensor, or, in the case of a hypercube,
Cartesian products. In one-dimensional numerical integra-
tion, the set of evaluation points and weights is often referred
to as a quadrature. Well known one-dimensional quadratures
include Simpson’s rule and Newton-Cotes formulas. Poly-
nomial based approaches, which evaluate functions at roots
of polynomials, often have more attractive rates of conver-
gence, particularly when the solutionu(Ω,t) is a smooth
function of Ω. Polynomial based methods are measured by
the order polynomial they will approximate exactly using
a fixed number of points; this is known as polynomial ex-
actness. Gaussian quadrature uses orthogonal polynomials,
and has a high polynomial exactness of 2n− 1 [3, 12, 21].
Clenshaw-Curtis quadrature, which uses Chebyshev polyno-
mials, achieves onlyn exactness, but is nested, an advanta-
geous feature when using sparse grid or dimension-adaptive
collocation [2, 24]. Gauss-Kronrod-Patterson quadrature, an-
other nested sequence, begins with Gaussian quadrature and
inserts Kronrod extension points to form a nested sequence
of quadratures that has a polynomial exactness of 2n−1+m,
wheren is the number of Gaussian quadrature points andm
the number of extension points [7,19].

2.2.4. Multi-dimensional Algorithms
As stated, multi-dimensional collocation algorithms are

constructed by taking tensor products of one dimensional
quadratures. The most basic technique is the full grid: it is
a straightforward Cartesian product of each dimension’s one
dimensional basis quadratureΦq, and can be written

Fd
q = Φq⊗·· ·⊗Φq. (6)

For numerical integration, it can be expressed as a weighted
sum of function evaluations at each collocation point:

Fd
q [ f ] =

mq

∑
i1=1

· · ·
mq

∑
id=1

wi1 · . . . ·wid f (xi1, . . . ,xid), (7)

wheremq is the number of points in the one-dimensional ba-
sis quadratureΦq. The full grid formulation is written here as
having identical component quadratures in each dimension
for notational concision, but this is not a requirement; any
level of any valid rule may be used. This is often advanta-
geous to keep in mind; a function that is poorly behaved in
some dimensions and relatively smooth in others can be more
efficiently approximated by using high resolution approxima-
tions in troublesome dimensions and lower resolution approx-
imations in the others, rather than by using the same high res-
olution quadrature in every dimension.



With some information about the function being integrated,
the integration error for full grid collocation with polynomial
based component quadratures can be bounded. For functions
in Cr (functions with bounded mixed derivatives up to order
r), the error of full grid collocation is estimated by

|I [ f ]−F[ f ]| = O(n−r/d) (8)

whereI [ f ] is the exact integral andn the total number of func-
tion evaluations. The dimension factord in the exponent is a
manifestation of what is known as ’The Curse of Dimension-
ality’. As dimension grows, error order grows as well at an
exponential rate. For low dimensional, smooth integrands,a
full grid is often the best choice among non-adaptive meth-
ods.

In 1963, Smolyak introduced what is now known as
Smolyak’s formula and is the underlying formulation of all
sparse grid methods [9, 14, 23]. Rather than using one high
order tensor product, the sparse grid is a sum of lower or-
der products, and tends to perform better in slightly higher
dimensions than full grid approaches. Define the leveli dif-
ference quadrature

∆i = Φi −Φi−1, ∆1 = Φ1.

Smolyak’s formula can then be written

Sd
q = ∑

|i|1<q+d

∆i1 ⊗·· ·⊗∆id, (9)

where|i|1 = i1 + · · ·+ id.
At this point it becomes clear why nested component

quadratures are preferable for sparse grids. Nesting causes
points of different grids in the sum to coincide, and the num-
ber of common points increases with both the level and di-
mension of the sparse grid.

The error for a sparse grid with polynomial based compo-
nent quadratures can be estimated in the same fashion as the
full grid case:

|I [ f ]−S[ f ]|= O(n−r log(n)(d−1)(r+1)). (10)

As with full grid collocation, the factord eventually causes
sparse grids to fall to ’The Curse’ as well, but not as severely.
The penalty incurred by dimension is mitigated by thelog(n)
term, and consequently sparse grid collocation is often supe-
rior in mid-dimensional situations. Fig. 1 shows the evalua-
tion points for a full and sparse grid.

Reference [10] presents a dimension-adaptive algorithm
which places points according to online estimation of its con-
vergence. Grids are chosen which have high resolution in di-
mensions over which the function is difficult to approximate,
and low resolution in easier dimensions. Dimensional cou-
pling is reacted to as well through high resolution joint grids.
The basic building block of the dimension-adaptive algorithm

Full grid Sparse grid

Figure 1. Left: Full grid with Legendre polynomial Gaus-
sian quadrature. Right: Sparse grid with Gauss-Kronrod-
Patterson quadrature.

is the difference quadrature∆ defined above. Fig. 2 illustrates
the behavior of the algorithm on the function

f (x) = exp(−
2

∑
i=1

|xi −0.5|). (11)

This function is a two dimensional instantiation of one of six
standard test functions from [8] widely used to evaluate the
performance of numerical integration schemes.

Grid points Evaluations

Figure 2. Nine element Clenshaw-Curtis dimension-
adaptive integration of the two dimensional instantiationof
a test function from [8]. The grid chosen by the algorithm
are shown on the left, and the function evaluations at those
points on the right.

To demonstrate the versatility of the algorithm, the space
has been divided into nine identical elements, inside each
of which the dimension-adaptive algorithm was executed.
Multi-elements [13] is another powerful approach to solving
stochastic differential equations, but which is not explored
here. The function isC0 along the central axes of the space,
and analytic elsewhere. Grids that are of high order in the di-
mension perpendicular to theC0 ridges are evaluated, while
relatively low order grids are computed where the function is
better behaved.

2.3. Appropriateness of Each Method
Full grids perform well in low dimensions and sparse

grids in mid dimensions. In many situations, the dimension-



adaptive algorithm is superior to both, or at the least per-
forms as well as the worst of the non-adaptive collocation
schemes. Nested basis quadratures are desirable for sparse
and dimension-adaptive grids despite their slightly lower
polynomial exactness, because they permit reuse of function
evaluations or system simulations.

It should be noted that due to ’The Curse of Dimension-
ality’, Cartesian product based methods will invariably be-
come ineffective in high enough dimension for all but triv-
ial functions. Although it is not the focus of this paper, it
is worth discussing the high-dimensional alternative: Monte
Carlo. Pure Monte Carlo, or pseudo-randomness, converges
according to the central limit theorem at 1/

√
n, independently

of dimension. Monte Carlo methods also do not depend on the
smoothness of the integrand, and for badly behaved functions
are sometimes superior even in low dimensions. Quasi-Monte
Carlo [17] methods offer improvement to 1/n optimally and
log(n)d/n in the worst case. None of these are attractive rates,
but in high dimensions they are often the best there is.

3. APPLICATIONS
We now demonstrate the use of these algorithms on three

example systems: for illustrative purposes, a double pendu-
lum, the Office of Naval Research Integrated Power System
Testbed Simulink model (from Purdue), and a pulse power
system Simulink model (from University of Texas at Austin).

3.1. Double Pendulum
Consider a freely falling double pendulum [22] with±1%
uniform uncertainty in the initial position and mass of
each arm (Fig. 3). Initial conditions were[θ1,θ2, θ̇1, θ̇2] =
[π/2,π/2,0,0]. Note that because there are four uncertain pa-
rameters, the system’s random space is four-dimensional.

Figure 3. Double pendulum with uniform uncertainty in the
initial positions and masses.

Dimension-adaptive collocation was used to compute a so-
lution to the resulting system of stochastic differential equa-

tions. Deterministic solutions to the system equations at col-
location points, i.e. realizations of the system, were generated
using the fourth order Runge-Kutta scheme. 177 realizations
were necessary for the adaptive algorithm to attain an error
tolerance of 10−3.

Fig. 4 shows mean trajectories with standard deviation en-
velopes for this system. Notice that at about 2.3 seconds the
standard deviation grows very large. This is because the sys-
tem after that time is sensitive to the prescribed uncertainty,
meaning that it can exhibit a wide range of behavior depend-
ing on where in the random space the system is realized.
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Figure 4. Mean solution with standard deviation envelope
for a double pendulum with uniform initial position and mass
uncertainty.

Fig. 5 shows 5,000 point histograms of each state at 2.5
seconds. Each used identical Monte Carlo points, that on the
left generated by interpolation and on the right by direct sim-
ulation. The histograms agree fairly well. All have multiple
modes, meaning that each arm can have substantially differ-
ent positions and velocities depending on where in the ran-
dom space the system is realized, and the interpolated his-
tograms have captured this; this capability is critical forap-
proaching real applications with confidence.

3.2. Integrated Power System Testbed
The Office of Naval Research Integrated Power System

testbed Simulink model from Purdue (ONR IPS) [16, 20]
(Fig. 6) describes the operation of a notional power system
for the next generation all-electric ship. We examine uncer-
tainty in the system by analyzing the statistical moments of
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Figure 6. Schematic for ONR IPS Testbed.
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Figure 5. Interpolated and direct Monte Carlo histograms of
double pendulum states at 2.5 seconds.

its responses. We vary parameters from the port and star-
board AC systems, which contains the starboard generator,
bus, and propulsion. In zone three, a constant power load,
a proportional-integral controller, and two ship service con-
verter modules are turned on, all at 0 seconds. At time 0.1

seconds, the motor and motor control turn on. At 0.4 seconds,
the system is loaded from the ship service inverter module in
zone one.

We give results from a three dimensional, level four full
grid collocation simulation varying each uncertain parameter
uniformly ±1% from its nominal value. We considered all
possible triples (220 total runs) drawn from the set:

• Bus
1, 7)C - Shunt Capacitance
2, 8)Cf - Filter Capacitance
3, 9)L f - Filter Inductance

• Propulsion
4, 10)C - Filter Capacitance
5, 11)L - Filter Inductance
6, 12) Induction Motor Mechanical Load

where parameters 1-6 are starboard and 7-12 port.
There are many ways to structure results from this sort of

simulation, for example the most sensitive triple for a specific
output: we find that triple{1,2,3} is in fact the most influen-
tial triple for the starboard generator currents accordingto
the integrated variance metric, and{1,2,5} by the maximum
metric. We present results that that are amenable to graphical
analysis, but they are not the only perspectives.

Taking the most influential triple according to the integral
metric, we compare the sensitivity of different output states.
Since we are now comparing distinct outputs with different



units, we normalize the integrated variance by the integralof
the square of the deterministic solution at the center of the
random space. The output states corresponding to each num-
ber are listed below.

• Zone 3 DC states
1) Load Voltage
2) Starboard Voltage
3) Starboard Current
4) Port Voltage
5) Port Current

• Starboard AC system states
6-8) Voltagesa,b,c
9-11) Generator Currentsa,b,c
12-14) Propulsion Currentsa,b,c
15-17) Power Supply Currentsa,b,c

The top plot in Fig. 7 shows the normalized integrated
variances (NIV) of the output states, from which it is seen
that the three most sensitive outputs to the triple{1,2,3} are
the power supply currents. The lower plot is of the multi-
dimensional integral sensitivity (MIS), which we define as
the square root of the normalized variance divided by the sum
of the variance of the uncertain parameters in the simulation.
This reflects the ratio of the standard deviation of the mea-
sured states to the standard deviation of the uncertain inputs.
It appears that there is an eightfold increase in the variation of

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

2

4

x 10
−3 Normalized integrated variance

State number

N
IV

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

2

4

6

Multi−dimensional integral sensitivity parameter

State number

M
IS

Figure 7. Starboard AC system normalized integrated
variances (NIV) and multi-dimensional integral sensitivity
(MIS).

the power supply currents, which is not very reassuring. But
this is only for±1% uncertainty. Fig. 8 shows the integrated
variances (above) and multi-dimensional sensitivities (below)
of the power supply currents for±1−17% uncertainty. The

near eightfold increase only occurs at±1% uncertainty, and
stays below two beyond±5% uncertainty.
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Figure 8. Multi-dimensional integral sensitivity (MIS) of
starboard power supply currents for±1−17% uncertainty.

3.3. Pulse Power System
We analyze uncertainty in a Simulink model (from the Uni-

versity of Texas at Austin) describing the operation of a large
pulse load reflecting the power consumption of a rail gun [5].
The alternator is charged by accelerating its rotor to 18,000
rpm, at which point the inverter and charging motor are dis-
connected from the alternator and a shot is fired.

A six dimensional dimension-adaptive simulation using
Clenshaw-Curtis quadrature was run, with±10% uniform un-
certainty in the alternator field winding resistance, primary
generator one field winding leakage inductance, inductance
of charging motor switches, and charging motor phase resis-
tance, and±5% uniform uncertainty in the ’on’ configuration
output rectifier diode resistance and charging motor excita-
tion flux.

Fig. 9 shows mean trajectories with standard deviations for
a few states, and 10 shows histograms att = 30 seconds. A
total of 53 system evaluations were required to attain an er-
ror tolerance of 10−3 for the charging motor phase one stator
current. In most dimensions, the algorithm expended littleef-
fort, the highest order joint grid evaluated being level four in
the dimension corresponding to the charging motor excitation
flux and level three in that corresponding to the diode resis-
tance, indicating some coupling between those parameters.A
level three full grid would have used 729 points, taking much
more time to achieve a comparable level of accuracy.

It can be seen from Fig. 9 that the primary generator phase
voltage and the generator field winding voltage are sensitive
to the simulated uncertainty, the first during charging before



the shot is fired and the latter afterward. The distributionsat
30 seconds appear to mostly be Gaussian, with the exception
of the generator speed, which is nearly uniform.
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Figure 9. Mean trajectories with variance envelopes of rail
gun states.

4. CONCLUSION
We have presented collocation algorithms for efficiently

solving stochastic differential equations with medium dimen-
sional random spaces, and detailed how they can be applied
to the uncertainty analysis of large-scale engineered systems,
namely by computing statistical moments and PDF’s from the
solutions. Applications were given on a double pendulum, an
integrated power system, and a pulse power system.
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