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Abstract

The discrete choice model has been an important tool to model customers’ demand

when facing a set of substitutable choices. The random utility model, which is the most

commonly used discrete choice framework, assumes that the utility of each alternative

is random and follows a prescribed distribution. Due to the popularity of the random

utility model, the probabilistic approach has been the major method to construct and

analyze choice models. In recent years, several choice frameworks that are based on

convex optimization are studied. Among them, the most widely used frameworks are

the representative agent model and the semi-parametric choice model. In this disser-

tation, we first study a special class of the semi-parametric choice model – the cross

moment model (CMM) – and reformulate it as a representative agent model. We also

propose an efficient algorithm to calculate the choice probabilities in the CMM model.

Then, motivated by the reformulation of the CMM model, we propose a new choice

framework – the welfare-based choice model – and establish the equivalence between

this framework and the other two choice frameworks: the representative agent model

and the semi-parametric choice model. Lastly, motivated by the multi-product pricing

problem, which is an important application of discrete choice models, we develop an

online learning framework where the learning problem shares some similarities with the

multi-product pricing problem. We propose efficient online learning algorithms and es-

tablish convergence rate results for these algorithms. The main techniques underlying

our studies are continuous optimization and convex analysis.
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Chapter 1

Introduction

Discrete choice models are widely used to describe people’s behaviors when they have

to make choices among a finite set of alternatives. As examples, this includes exam-

ining which product to purchase for a consumer, and which mode of transportation

to take for a passenger. In the past few decades, discrete choice models have attracted

much research attention in economics, marketing, operations research, and management

science communities. Specifically, such models have been viewed as the behavioral foun-

dation in many operational decision-making problems, such as transportation planning,

assortment optimization, multiproduct pricing, etc.

In the past few decades, researchers have proposed a variety of discrete choice mod-

els. Among them, the most popular one is the random utility model, in which a utility

value is assigned to each alternative. In the random utility model, the utility value is

composed of a deterministic part and a random part. Each individual then chooses

the alternative with the highest utility value, given the realization of the random part.

Different choice models arise when different distributions for the random part are used.

Some examples of random utility model can be found in McFadden (1974, 1980) and

Daganzo (1980). Another popular choice model is the representative agent model, in

which a representative agent makes the choice on behalf of the population. In the rep-

resentative agent model, there is again a utility associated with each alternative, and

the representative agent maximizes a weighted utility value of the choice (which is a

vector of proportions for each alternative) plus a regularization term, which typically

encourages diversification of the choice (see e.g. Anderson et al. 1988). More recently,
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a class of semi-parametric choice models has been proposed (see Natarajan et al. 2009).

This model is similar to the random utility model in that it also assumes that the u-

tility value is composed of a deterministic part and a random part. However, instead

of specifying a single distribution for the random utility, a set of distributions is con-

sidered. Then they choose one extreme distribution in that set to determine the choice

probabilities. There are other choice models based on the dynamics of choice decisions

or other non-parametric ideas. We will provide a more detailed review of these models

in Chapter 2.

In the classical discrete choice modeling literature, convex optimization is main-

ly applied to the estimation of choice models. For example, McFadden et al. (1973)

showed that the maximum likelihood estimation (MLE) under the multinomial logit

choice model is a convex program. Daganzo and Kusnic (1993) showed that the MLE

under the nested logit model is also a convex program if the scale parameters are fixed.

In recent years, there have been numerous research papers which study the applications

of convex optimization in discrete choice modeling. For instance, Evgeniou et al. (2007)

proposed a semidefinite program based convex optimization formulation to address cus-

tomer heterogeneity in choice estimation; Natarajan et al. (2009), Mishra et al. (2012)

proposed several classes of semi-parametric models and reformulated the models into

convex programs; Mishra et al. (2014) studied the marginal distribution model (MDM),

a special class of the semi-parametric choice model, and proved the convexity of the

MLE under various MDM models with some mild conditions.

In this dissertation, we further apply convex optimization to several different as-

pects of discrete choice modeling, the details of which are listed in Section 1.1. These

approaches of applying convex optimization provide some new insights on how the de-

velopment of convex optimization theories can help the development of discrete choice

modeling.

1.1 Organization

In Chapter 2, we review three important classes of discrete choice models: the ran-

dom utility model, the representative agent model and the semi-parametric choice

model. Though proposed many years ago, the representative agent models and the
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semi-parametric models have not been studied or applied satisfactorily in the academic

literature, as compared to the random utility models. A thorough understanding of

these models is an underlying motivation of this dissertation.

In Chapter 3, we propose a representative agent representation for the CMM model,

which provides a different angle for the CMM model, rather than just an approximation

of the multinomial probit model. More importantly, we find some desirable properties

of the objective function in the representative agent form. With these properties, we

prove that in terms of computing the choice probabilities, the gradient ascent algorithm

with inexact line search enjoys local linear convergence. Numerical results show that

the new algorithm can compute the choice probabilities for a choice set of a size up

to several thousands, while the existing approach could not deal with the choice set as

large as 200. More justifications on the CMM model when the number of alternatives

is large are provided.

In Chapter 4, we propose a welfare-based framework to analyze the discrete choice

model. The welfare-based framework could be viewed as a new choice framework that

is derived from a welfare (potential) function. We show that it is equivalent to the

representative agent model and the semi-parametric choice model, thus establishing the

equivalence between the latter two existing choice frameworks. The equivalence can

explain the known fact that most existing semi-parametric models can be reformulated

as representative agent models. We further study the relations between these choice

frameworks and the random utility model. We find that these frameworks are indeed

more flexible in modeling the complementarity behavior. Moreover, it provides a theo-

retical justification for the general nested logit model where some scale parameters may

exceed one, which is known to be inconsistent with the random utility model.

In Chapter 5, we consider the online learning problem where the loss functions could

be non-convex. We apply the non-stationary regret as the performance metric. We

propose different algorithms under different assumptions on the information available

regarding the loss functions. A sublinear regret bound for online learning with non-

convex loss functions and non-stationary regret measure is established.
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1.2 Notation

Throughout the dissertation, the following notations will be used. We use R to denote

the set of real numbers, and R̄ = R ∪ {−∞,+∞} to denote the set of extended real

numbers. We use e to denote a vector of all ones, ei to denote a vector of zeros except 1

at the ith entry, and 0 to denote a vector of all zeros (the dimension of these vectors will

be clear from the context). Also, we write x ≥ y to denote a componentwise relationship

and ∆n−1 to denote the (n−1)-dimensional simplex, i.e., ∆n−1 = {x | eTx = 1,x ≥ 0}.
In our discussions, ordinary lowercase letters x, y, . . . denote scalars, boldfaced lowercase

letters x,y, . . . denote vectors.



Chapter 2

Discrete Choice Models

In this chapter, we review several prevailing classes of discrete choice models that are

related to the study presented in this proposal.

2.1 The Random Utility Model

Perhaps the most popular class of discrete choice models is the random utility model

(RUM), proposed first in Thurstone (1927) and later studied in a vast literature in

economics (see Anderson et al. 1992 for a comprehensive review). In such a model, a

random utility is assigned to each of the alternatives, and an individual will pick the

alternative with the highest realized utility. Here, the randomness could be due to the

lack of information of the alternatives for a particular individual or to the idiosyncrasies

of preferences among a population. As the output, the random utility model predicts a

vector of choice probabilities among the alternatives, rather than a single deterministic

choice. Mathematically, suppose there are n alternatives in a choice set denoted by

N = {1, 2, ..., n}, then the random utility model assumes that the utility of alternative

i takes the following form:

ui = µi + εi, ∀i ∈ N , (2.1)

where µ = (µ1, ..., µn) is the deterministic part of the utility and ε = (ε1, ..., εn) is the

random part. In the random utility model, it is assumed that the joint distribution θ

5
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of ε = (ε1, ..., εn) is known. Then the probability that alternative i will be chosen is:

qi(µ) = Pε∼θ
(
i = argmax

k∈N
(µk + εk)

)
, ∀i ∈ N . (2.2)

To ensure the above equation is well-defined, we assume θ is absolutely continuous, an

assumption we make for all the random utility models we discuss later.

Random utility models can be further classified by the distribution function of the

random components. The most widely used one is the multinomial logit (MNL) mod-

el, first proposed in McFadden (1974). The MNL model is derived by assuming that

(ε1, ..., εn) follow independent and identically distributed Gumbel distributions with s-

cale parameter η. Given that assumption, the choice probability in (2.2) can be further

written as follows:

qmnl
i (µ) =

exp(µi/η)∑
k∈N

exp(µk/η)
, ∀i ∈ N .

It can also be computed that the expected utility an individual can get under the MNL

model is:

wmnl(µ) = Eε∼θ
[
max
i∈N

µi + εi

]
= η log

(∑
i∈N

exp(µi/η)

)
.

The existence of closed-form formula for the MNL model makes it a very popular

choice model. We refer the readers to Ben-Akiva and Lerman (1985), Anderson et al.

(1992) and Train (2009) for more discussions on properties of the MNL model.

While the MNL choice probability is known in closed form and possesses desirable

properties such as concavity of the log-likelihood function, it also suffers from draw-

backs. One of the well-known properties of MNL is the Independence of Irrelevant

Alternatives (IIA) property which implies that the ratio of the choice probabilities for

any two alternatives is independent of the utilities of the other alternatives:

pmnl
i

pmnl
j

= eµi−µj , ∀i 6= j.

When the alternatives have correlated utilities, the IIA property of MNL gives rise to
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misleading choice predictions.

A popular choice model that can incorporate correlation information is the Gener-

alized Extreme Value (GEV) model, which is a generalization of the MNL model. The

GEV model was first proposed in McFadden (1978). The random part of the utility vec-

tor ε is assumed to follow the generalized extreme value distribution. The GEV model

includes various popular models, including the MNL model, the nested logit model, etc.

An equivalent definition of the GEV model is given as follows (see McFadden 1980):

Definition 1 (GEV model) A choice model q(µ) is a GEV model if and only if there

exists a function H(y) : Rn+ 7→ R such that

q(µ) = η∇µlogH(eµ1 , . . . , eµn), (2.3)

where H(y) satisfies the following properties:

1. H(y) ≥ 0 for all y ∈ Rn+.

2. H(y) is homogeneous of degree 1/η, i.e., H(αy) = α1/ηH(y).

3. H(y)→∞ as yj →∞ for any j.

4. The kth-order cross-partial derivatives of H(y) exist for all 1 ≤ k ≤ n, and for

all distinct i1, ..., ik,

(−1)k
∂kH(y)

∂yi1 ...∂yik
≤ 0.

Under appropriate specifications of H(·), various known choice models can be ob-

tained from the GEV model. We list the MNL model and the nested logit model as

examples (see Train 2009).

• The MNL model. If one chooses H(y) =
∑

i∈N y
1/η
i , then the corresponding

choice model is the MNL model with the choice probabilities:

qi(µ) =
exp(µi/η)∑

k∈N
exp(µk/η)

, ∀i ∈ N .
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• The Nested Logit model. Suppose the n alternatives are partitioned into K nests

labeled B1, ..., BK . If one chooses H(y) =
∑K

l=1

(∑
i∈Bl y

1/λl
i

)λl
, then the corre-

sponding choice model is the nested logit model with the choice probabilities:

qi(µ) =
exp(µi/λk)(

∑
j∈Bk exp(µj/λk))

λk−1∑K
l=1

(∑
j∈Bl exp(µj/λl)

)λl , ∀i ∈ N .

Although the correlation structure of the random term in the GEV model is flexible,

one can not easily incorporate the correlation information in the GEV model. A model

that accounts for any valid correlation matrix is the Multinomial Probit (MNP) model

in which ε is assumed to be normally distributed with mean 0 and covariance matrix Σ,

namely u ∼ Normal (µ,Σ). The MNP model is flexible in terms of modeling dependence

and does not possess the IIA property. However the choice probabilities do not have a

closed-form expression and Monte Carlo simulation is the most commonly used method

to find the choice probabilities. The reader is referred to Hajivassiliou et al. (1996) for an

in-depth discussion of simulation techniques used to approximate the choice probabilities

in MNP models with the Geweke-Hajivassiliou-Keane (GHK) simulator being the most

commonly used technique among them (see Geweke 1989, Hajivassiliou and McFadden

1998, Keane 1994) .

Besides these models, there are other choices of the random part in (2.1) that lead

to alternative choice models. The examples includes the mixed logit model (where ε

is chosen to be Gumbel distributions with a correlated term, see, e.g., McFadden and

Train 2000, and Train 2009) and the exponomial choice model (in which ε is chosen to

be negative exponential distributions, see Alptekinoğlu and Semple 2016).

2.2 The Representative Agent Model

Another popular way to model choice is to use a representative agent model (RAM).

In such a model, a representative agent makes a choice among n alternatives on behalf

of the entire population. In particular, this agent may choose any fractional amount

of each alternative, or equivalently, his choice is a vector x = (x1, ..., xn) on ∆n−1. To

make his choice, the agent takes into account the expected utility while preferring some
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degree of diversification. More precisely, the representative agent solves an optimization

problem as follows:

wr(µ) = maximizex∈∆n−1 µTx− V (x). (2.4)

Here µ = (µ1, ..., µn) is the deterministic utility of each alternative, which is similar

to that in the random utility model and V (x) : ∆n−1 7→ R is a regularization term

that rewards diversification. We denote the optimal value of (2.4) by wr(µ), which

is the utility a representative agent can obtain if the deterministic utility vector is µ.

In this dissertation, without loss of generality, we assume V (x) is convex and lower

semi-continuous. 1 Moreover, if for any µ, there is a unique solution to (2.4), then we

define

qr(µ) = arg max
{
µTx− V (x)

∣∣x ∈ ∆n−1

}
(2.5)

to be the choice probability vector given by the representative agent model.

A recognized close connection exists between the random utility model and the

representative agent model. In Anderson et al. (1988), the authors show that the choice

probabilities from an MNL model with parameter η can be equally derived from a

representative agent model with V (x) = η
∑n

i=1 xi log xi. Or equivalently, we can write

qmnl(µ) = arg max

{
µTx− η

n∑
i=1

xi log xi

∣∣∣ x ∈ ∆n−1

}
.

In Hofbauer and Sandholm (2002), the authors further extend the result to general

random utility models. They show that for any random utility model with continuously

distributed random utility, there exists a representative agent model that yields the

same choice probability. The precise statement of their result is as follows:

Proposition 2.2.1 Let q(µ) : Rn 7→ ∆n−1 be the choice probability function defined

in (2.2) where the random vector ε admits a strictly positive density on Rn and the

1 If V (x) is not convex or lower semi-continuous, then we can replace V (x) by a convex and lower
semi-continuous function V ∗∗(x) = supy{yTx−wr(y)} and the equation (2.4) still holds (see Borwein
and Lewis 2010). Therefore, it is without loss of generality to assume that V (x) is convex and lower
semi-continuous.
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function q(µ) is continuously differentiable. Then for all µ there exists V (·) such that:

q(µ) = arg max
{
µTx− V (x)

∣∣∣ x ∈ ∆n−1

}
.

They also show that the reverse statement of Proposition 2.2.1 is not true:

Proposition 2.2.2 (Proposition 2.2 in Hofbauer and Sandholm 2002) When n ≥
4, there does not exist a random utility model that is equivalent to the representative

agent model with V (x) = −
∑n

i=1 log xi.

It follows from the above two propositions that the representative agent model strict-

ly subsumes the random utility model as a special case.

Recently, inspired from the entropy formulation for the MNL model, Fudenberg

et al. (2015) have proposed the use of a general additive perturbation function in the

representative agent model as a simple and tractable approach to model choice under

uncertainty. Under this approach, the choice probability vector is defined as the optimal

solution to the following problem:

q = argmax

{
µTx−

∑
i∈N

Vi(xi)
∣∣∣ x ∈∆n−1

}
, (2.6)

where the functions Vi(·)s are assumed to be strictly convex in the interval [0, 1], con-

tinuously differentiable in (0, 1) with limxi→0 V
′
i (xi) = −∞. The entropy maximization

problem is a special case of this model. Under the assumptions on the functions Vi(·),
the choice probability vector is unique and lies in the relative interior of the simplex (see

Rockafellar 1970). Furthermore, Fudenberg et al. (2015) provide an axiomatic justifi-

cation of formulation (2.6) by showing its equivalence to two conditions, one condition

generalizing an acyclicity condition derived from the strong axiom of revealed prefer-

ences and the second condition generalizing Luce’s IIA condition. A weaker form of the

perturbation function by relaxing the condition that limxi→0 V
′
i (xi) = −∞ is also stud-

ied in Fudenberg et al. (2015), which allows for some choice probabilities to take a value

of 0. Fudenberg et al. (2015) show that such framework rules out some random utility

models even with independent and identically distributed random terms. Natarajan

et al. (2009) provide an alternative justification for formulation (2.6) by relaxing the
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standard assumption that the joint distribution of the random components in the utility

model is known, as we shall discuss in the next section.

2.3 The Semi-Parametric Choice Model

Recently, a new choice framework, the semi-parametric choice model (SCM), is proposed

in Natarajan et al. (2009). Unlike the random utility model where a certain distribution

of the random utility ε is specified, in the semi-parametric choice model, one considers

a set of distributions Θ for ε. Given the deterministic utility vector µ, one defines the

maximum expected utility function ws(µ) as follows:

ws(µ) = sup
θ∈Θ

Eε∼θ
[
max
i∈N

µi + εi

]
. (2.7)

Note that in the random utility model, the maximum expected utility function can

be defined in a similar way, but only with a single distribution θ. Thus the semi-

parametric choice model can be viewed as an extension of the random utility model.

Let θ∗(µ) denote the distribution (or a limit of a sequence of distributions) that attains

the optimal value in (2.7). The choice probability for alternative i under this model is

given by (provided it is well-defined):

qsi (µ) = Pθ∗(µ)

(
i = argmax

k∈N
(µk + εk)

)
. (2.8)

Several special cases of semi-parametric choice models have been studied recent-

ly. One such model, called the marginal distribution model (MDM), is proposed in

Natarajan et al. (2009). In the MDM, the distribution set Θ contains all the distri-

butions that have certain marginal distributions. The following proposition proved in

Natarajan et al. (2009) shows that the marginal distribution model can be equivalently

represented by a representative agent model:

Proposition 2.3.1 Suppose Θ = {θ | εi ∼ Fi(·), ∀i} where Fi(·)s are given continuous

distribution functions. Then we have:

ws(µ) = max
x

{
µTx+

n∑
i=1

∫ 1

1−xi
F−1
i (t)dt

∣∣∣∣∣ x ∈ ∆n−1

}
. (2.9)
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Furthermore, the choice probabilities qs(µ) in (2.8) can be obtained as the optimal so-

lution x∗ in (2.9).

Another semi-parametric model proposed by Natarajan et al. (2009) is the marginal

moment model (MMM), in which only the first and second moments of the marginal

distributions are known and Θ comprises all distributions that are consistent with the

marginal moments. In Natarajan et al. (2009), the authors show that the MMM can also

be represented as a representative agent model (without loss of generality, we assume

that the marginal mean of εi is 0 for all i):

Proposition 2.3.2 Suppose the marginal standard deviation of εi is σi for all i. Then

we have

ws(µ) = max
x

{
µTx+

n∑
i=1

σi
√
xi(1− xi)

∣∣∣∣∣ x ∈ ∆n−1

}
. (2.10)

Furthermore, the choice probabilities qs(µ) can be obtained as the optimal solution x∗

in (2.10).

In order to incorporate covariance information, Mishra et al. (2012) propose the

cross moment model (CMM), in which Θ is the set of distributions with mean zero and

known covariance matrix Σ. In this choice model, the joint distribution of ε is assumed

to be only partially specified to the modeler. Specifically, the available information on

the joint distribution is the first two moments of ε. Let ε ∼θ (0,Σ) denote the set of

probability distributions for ε that satisfies the following two conditions: Eθ [ε] = 0 and

Covθ [ε] = Σ. The modeler is then assumed to solve the optimization problem:

(CMM) wcmm = max
ε∼θ(0,Σ)

Eθ
(

max
i∈N

(µi + εi)

)
. (2.11)

The outer optimization in (2.11) is over all joint distributions of the random compo-

nents that are consistent with the two moment information. Hence, problem (2.11) is

equivalent to finding a joint distribution for the random components that maximizes

the expected agent utility2.

2The problem of finding the joint distribution of the random components that minimizes the expected
agent utility with the first two moment information reduces to Jensen’s bound. This is uninteresting
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Mishra et al. (2012) solve the moment problem (2.11) by reformulating it as the

following semidefinite program:

(CMM) wcmm = max
∑
i∈N

eTi vi

s.t.
∑
i∈N

(
W i vi

yTi xi

)
=

(
Σ + µµT µ

µT 1

)
(
W i vi

vTi xi

)
� 0 ∀i ∈ N ,

(2.12)

where ei is a vector with 1 in the ith position and 0 otherwise. Let {W ∗
i ,v
∗
i , x
∗
i } for

i ∈ N be an optimal solution to the above semidefinite program. The joint distribution

of the random utilities u that maximizes the expected utility is a mixture of multivariate

normal distributions given as:

u =

{
Normal

(
v∗i
x∗i
,
W ∗

i

x∗i
− v

∗
i

x∗i

v∗Ti
x∗i

)
, with probability x∗i , ∀i ∈ N .

}
(2.13)

More importantly, they show that the optimal decision vector x∗ in the SDP formulation

is the choice probability vector for the mixture of multivariate normal distributions

in (2.13) which maximizes the expected agent utility. Mishra et al. (2012) provide

applications of this formulation to problems in route choice, random walk theory and

product line selection with the number of alternatives up to a hundred. Numerical

experiments in Mishra et al. (2012) show that the CMM model captures correlation

information in predicting choices and provides insights often qualitatively similar to

MNP. Natarajan and Teo (2017) propose an equivalent SDP formulation with smaller

size. The details would be reviewed in next chapter.

2.4 Other Choice Models

Before we end this chapter, we comment that there are other types of choice models

in the literature in addition to those mentioned above, such as the Markov chain-based

choice model (see Blanchet et al. 2016), the two-stage choice model (see Jagabathula

from a discrete choice modelling perspective since all the agents then choose the alternative with the
highest mean.
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and Rusmevichientong 2013), the generalized attraction model (see Gallego et al. 2014)

and the non-parametric model (see Farias et al. 2013). Some of those models are also

more general than the RUM model. However, they suit different purposes. In particular,

they do not take the form of mapping a utility vector to a choice probability vector.

Thus we choose not to discuss those models in this dissertation.



Chapter 3

The Reformulation of the CMM

Choice Model

As shown in Chapter 2, a popular discrete choice model that incorporates correlation

information is the Multinomial Probit (MNP) model where the random utilities of the

alternatives are chosen from a multivariate normal distribution. Computing the choice

probabilities is challenging in the MNP model when the number of alternatives is large

and simulation is a popular technique used to approximate the choice probabilities. As

described in Section 2.3, Mishra et al. (2012) have recently proposed a semidefinite

optimization approach to compute choice probabilities for the distribution of the ran-

dom utilities that maximizes expected agent utility given only the mean and covariance

information. Their model is referred to as the Cross Moment (CMM) model. Comput-

ing the choice probabilities with many alternatives is challenging in the CMM model

since one needs to solve large scale semidefinite programs. In this chapter, we develop

a simpler formulation of CMM as a representative agent model, which maximizes over

the choice probabilities in the unit simplex where the objective function is the sum of

the expected utilities and a strongly concave perturbation function. By characterizing

the perturbation function for the CMM model and its gradient, we develop a simple

first-order gradient method with inexact line search to compute choice probabilities.

We establish local linear convergence of this algorithm under mild assumptions on the

15
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choice probabilities. An implication of our results is that inverting the choice prob-

abilities to compute the mean utilities is straightforward given any positive definite

covariance matrix. Numerical experiments show that this method can compute the

choice probabilities for a large number of alternatives within a reasonable amount of

time. Numerical results also show CMM explicitly captures the correlation informa-

tion, regardless of the number of alternatives. Comparisons with simulation methods

for MNP and semidefinite programming methods for CMM indicate the efficacy of the

method.

3.1 A Representative Agent Formulation for the Cross

Moment (CMM) Model

Recall that Mishra et al. (2012) solve the moment problem (2.11) by reformulating it

as the following semidefinite program:

(CMM) wcmm = max
∑
i∈N

eTi vi

s.t.
∑
i∈N

(
W i vi

yTi xi

)
=

(
Σ + µµT µ

µT 1

)
(
W i vi

vTi xi

)
� 0 ∀i ∈ N ,

(3.1)

where ei is a vector with 1 in the ith position and 0 otherwise. Natarajan and Teo

(2017) further reduce the size of formulation (3.1) and show that it can be equivalently

computed as the following formulation:

(CMM) wcmm = max trace(Y )

s.t. x ∈ ∆n−1
Σ + µµT Y T µ

Y Diag(x) x

µT xT 1

 � 0,

(3.2)
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where trace(Y ) is the trace of the matrix Y and Diag(x) is a diagonal matrix with

the entries of x along the diagonal. For completeness, we provide the proof of the

equivalence of the semidefinite programs (3.1) and (3.2) in the Section 3.5. Since the

multivariate normal distribution is a feasible distribution in the CMM formulation,

wcmm is an upper bound on the expected consumer utility in MNP. Computationally

these models differ in the way the choice probabilities are computed. In the MNP model,

simulation techniques are usually used to compute the choice probabilities. On the other

hand, the CMM model uses convex optimization techniques to solve the semidefinite

program.

There has been an increasing interest in the literature on discrete choice models that

deal with a large number of alternatives. Examples that have been studied includes the

choice of lake recreation sites in the state of Wisconsin involving 589 alternatives (see

Parsons and Kealy 1992), choice of car models involving 689 alternatives (see Brown-

stone et al. 2000) and choice of messenger bags involving 3584 alternatives (see Toubia

et al. 2003). Models that treat products as bundles of characteristics with an additive

error term that accounts for variation in the taste for the products in conjunction with

variation in taste for the characteristics of the products results in choices where the

number of products (alternatives) is exponential in the number of characteristics. In

terms of CMM, although the size of the SDP is reduced, the computation of formula-

tion (3.2) is still challenging when the size of alternatives is large. In a recent paper,

Ahipaşaoğlu et al. (2015) used the CMM model as an alternative to MNP for comput-

ing choice probabilities in a traffic equilibrium problem and showed that it provides a

practical alternative to MNP in estimating traffic flows. The correlation information in

their model arises from origin-destination paths (alternatives) sharing common roads

(characteristics). The number of paths in such networks might be exponential in the

number of roads. In our computational experiments, we have found that solving the

semidefinite program (3.2) using state of art interior point method based solvers such

as SDPNAL+ version 0.3 (see Yang et al. 2015) in MATLAB R2014 on a laptop with

an Intel(R) i7-5600U CPU processor (2.6 GHz) with 4GB RAM works well when the

number of alternatives is up to two hundred roughly. Solving large semidefinite pro-

grams with matrix size up to a few thousands still remains a computational challenge

and is a subject of intense research in the optimization community.
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3.1.1 Optimization over the Unit Simplex

In this subsection, we develop a representative agent formulation for the CMM model

that transforms the semidefinite program to a nonlinear maximization problem over the

unit simplex.

Theorem 3.1.1 Assume that Σ � 0. Then the maximum expected consumer utili-

ty wcmm in the CMM model is the optimal objective value to the following nonlinear

optimization problem over the unit simplex:

(CMM) wcmm = max

{
µTx+ trace

((
Σ1/2 S(x) Σ1/2

)1/2
) ∣∣∣ x ∈ ∆n−1

}
, (3.3)

where S(x) = Diag(x) − xxT � 0 and B = A1/2 is the unique positive semidefinite

square root of a matrix A � 0 such that A = B2. Furthermore the optimal decision

vector x∗ is the choice probability vector for the distribution that maximizes the expected

agent utility.

Proof:

Applying Schur’s lemma to the positive semidefinite matrix in formulation (3.2), we

obtain the equivalent nonlinear semidefinite program:

wcmm = max trace(Y )

s.t. x ∈ ∆n−1(
Σ Y T − µxT

Y − xµT Diag(x)− xxT

)
� 0.

(3.4)

Define a transformation of the variables by letting Ŷ = Y − xµT . Then, trace(Ŷ ) =

trace(Y )− µTx. This transforms the problem to the equivalent nonlinear semidefinite

programming formulation:

wcmm = max µTx+ trace(Ŷ )

s.t. x ∈ ∆n−1(
Σ Ŷ

T

Ŷ S(x)

)
� 0,

(3.5)
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where S(x) = Diag(x)−xxT . The matrix S(x) is positive semidefinite for all x ∈ ∆n−1

since:

vTS(x)v =
∑
i∈N

v2
i xi −

(∑
i∈N

vixi

)2

≥ 0, ∀v ∈ Rn,

where the last inequality comes from E(v2) ≥ E(v)2 where the random variable v is

defined to take value vi with probability xi for i ∈ N . The semidefinite program in

(3.5) can be reformulated as a two-stage optimization problem of the form:

wcmm = max
{
µTx− V (x)

∣∣∣ x ∈ ∆n−1

}
, (3.6)

where x ∈ ∆n−1 is the first stage decision vector and V (x) is the optimal value to the

following second stage problem where Ŷ is the second stage matrix decision variable:

V (x) = min −trace(Ŷ )

s.t.

(
Σ Ŷ

T

Ŷ S(x)

)
� 0.

(3.7)

The second stage semidefinite program in (3.7) for a given value of x has a closed-form

solution (see Dowson and Landau 1982, Olkin and Pukelsheim 1982 and Shapiro 1985).

Applying this result since range(S(x)) ⊆ range(Σ), the optimal second stage solution

is given as:

Ŷ ∗T = ΣS(x)1/2

((
S(x)1/2ΣS(x)1/2

)1/2
)†
S(x)1/2, (3.8)
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where (·)† denotes the Moore-Penrose pseudoinverse of a matrix. Hence, the optimal

value of formulation (3.7) is:

V (x) = −trace

(
ΣS(x)1/2

((
S(x)1/2ΣS(x)1/2

)1/2
)†
S(x)1/2

)

= −trace

((
S(x)1/2ΣS(x)1/2

)((
S(x)1/2ΣS(x)1/2

)1/2
)†)

= −trace

((
S(x)1/2ΣS(x)1/2

)1/2
)

= −trace

((
Σ1/2S(x)Σ1/2

)1/2
)
,

(3.9)

where the second equality comes from the invariance of the trace under cyclic permuta-

tions, the third equality comes from the property of the pseudo-inverse that A(A1/2)† =

A1/2A1/2(A1/2)† = A1/2 and the last equality comes from the observation that for any

n×n real square matrixA, the matricesAAT andATA have the same set of eigenvalues

(see Horn and Johnson 1985). By substituting into (3.6), we obtain:

wcmm = max

{
µTx+ trace

((
Σ1/2 S(x) Σ1/2

)1/2
) ∣∣∣ x ∈ ∆n−1

}
.

2

Remark 3.1.2 The second stage problem in (3.7) has been studied in Dowson and

Landau (1982); Olkin and Pukelsheim (1982); Shapiro (1985) in the following context:

Given two n-dimensional random vectors with covariance matrices Σ and S(x), find the

cross moment matrix Ŷ
T

between the two random vectors that minimizes the expected

L2 distance between the vectors. In the proof of Theorem 3.1.1, the two vectors in the

second stage correspond to the random component of the utility vector ε and the random

choice vector which chooses ei (alternative i) with probability xi. The first stage problem

corresponds to finding the best probability vector x. For completeness, we provide a proof

for the optimality of the solution in (3.8) in Section 3.5.
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3.1.2 Strong Concavity of the Objective Function

In this section, we prove strong concavity of the objective function in the representative

agent formulation for the CMM model. The result is based on the following definitions of

functions of (positive semidefinite) matrices. Consider a symmetric positive semidefinite

matrix A with an eigendecomposition QDiag(λ)QT where Q is an orthonormal matrix

and λ is the vector of nonnegative eigenvalues. Given a function h(·) : [0,∞)→ [0,∞),

the matrix function is defined as h(A) = QDiag(h(λ))QT where the function h(·) is

applied to the eigenvalues in the diagonal matrix. As is the convention, we use A � B
to denote A−B � 0.

Definition 2 Consider a function h : [0,∞)→ [0,∞).

(a) The function h(·) is operator monotone if for all A,B � 0:

A � B =⇒ h(A) � h(B).

(b) The function h(·) is operator concave if for all A,B � 0 and λ ∈ [0, 1]:

h ((1− λ)A+ λB) � (1− λ)h(A) + λh(B).

An example of a matrix function that is both operator monotone and operator concave

is the square root function.

Theorem 3.1.3 The function h(t) = t1/2 is both operator monotone and operator con-

cave.

This theorem is a special case of the Löwner-Heinz Theorem (see Löwner 1934 and

Heinz 1951). Before we introduce a key result of this section, we recall the definition of

strong convexity.

Definition 3 A function V (x) : D → R where D is a convex subset of Rn is strongly

convex if for all x,y ∈ D and λ ∈ (0, 1), there exists a constant m > 0 such that

V (λx+ (1− λ)y) ≤ λV (x) + (1− λ)V (y)− m

2
λ(1− λ)‖x− y‖2.
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This brings us to the following theorem for the objective function in formulation (3.3),

the proof of which would be given in section 3.5.

Theorem 3.1.4 The function V (x) = −trace

((
Σ1/2S(x)Σ1/2

)1/2
)

defined on the

unit simplex x ∈ ∆n−1 is strongly convex for Σ � 0.

3.1.3 Optimality Conditions and Their Implications

One of the key advantages in developing the representative agent formulation for the

CMM model is that it transforms a semidefinite program to a nonlinear strongly concave

maximization problem over the unit simplex. In this section, we provide a character-

ization of the directional derivatives of the objective function and prove optimality

conditions for the model. In addition, we show that as we approach the boundary of

the feasible region from its interior, the (projected) gradient of the objective function

blows to infinity. These results have important implications to the algorithm we shall

propose in Section 3.2.

Projected Gradient of the Objective Function

Consider a vector x in the relative interior of the simplex and restrict the direction of the

perturbation to be in the tangent space of ∆n−1 defined as ∆n−1 =
{
v ∈ Rn

∣∣ eTv = 0
}

.

Let ||v||2 = 1, then the directional derivative of V (x) in the direction v is defined as:

∇vV (x) = lim
ε→0

V (x+ εv)− V (x)

ε
.

To compute the directional derivative, observe that:

V (x+ εv)

= −trace
(
Σ1/2 S(x+ εv) Σ1/2

)1/2

= −trace

(
Σ1/2S(x)Σ1/2 + εΣ1/2

(
Diag(v)− xvT − vxT

)
Σ1/2

−ε2Σ1/2vvTΣ1/2

)1/2

= −trace (T (x) +Ev(ε,x))1/2 ,
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where:

T (x) = Σ1/2S(x)Σ1/2

and

Ev(ε,x) = εΣ1/2
(
Diag(v)− xvT − vxT

)
Σ1/2 − ε2Σ1/2vvTΣ1/2.

The next lemma provides a characterization of the null space of the matrix T (x) and

its relation to the null space of the matrix Ev(ε,x). This lemma is needed for the main

result of this and the next section.

Lemma 3.1.5

(a) Let x =
(
0
x

)
∈ ∆n−1, where 0 is a vector of r zeros and x ∈ Rn−r++ is a strictly

positive vector for some integer r such that 0 ≤ r ≤ n− 1. Then the null space of

the matrix T (x) is given as:

Null(T (x)) =

{
kΣ−1/2z

∣∣∣ z =

(
z1

e

)
, z1 ∈ Rr

}
,

where e is a vector of ones of dimension n− r and rank(T (x)) = n− r − 1.

(b) Particularly, when x is in the relative interior of the simplex denoted by int(∆n−1),

then rank(T (x)) = n− 1 and Null(T (x)) ⊆ Null(Ev(ε,x)).

To prove the main theorem of this section, we make use of the Fréchet derivative of a

matrix function which is defined as follows.

Definition 4 The Fréchet derivative of a real matrix function g : Rn×n 7→ Rn×n at

X ∈ Rn×n is a linear mapping Lg : Rn×n 7→ Rn×n such that g(X + E) − g(X) −
Lg(X,E) = o(||E||) for all E ∈ Rn×n.

The Fréchet derivative, if exists, is known to be unique. The Fréchet derivative for the

matrix square root function, which exists when X is positive definite, is the unique

solution to the Sylvester equation (refer to Kenney and Laub 1989, Higham 2008):

X1/2L1/2(X,E) + L1/2(X,E)X1/2 = E.

Next, we derive the first order derivative of V (·).
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Theorem 3.1.6 Define:

g(x) = −1
2diag

(
Σ1/2(T 1/2(x))†Σ1/2

)
+ Σ1/2(T 1/2(x))†Σ1/2x, (3.10)

where diag(·) is the column vector formed by the diagonal elements of the matrix and

T (x) = Σ1/2S(x)Σ1/2. The directional derivative of V (x) at x ∈ int(∆n−1) in the

direction v ∈ ∆n−1 is ∇vV (x) = g(x)Tv, and its projected gradient on the tangent

space is:

∇V (x) = g(x)− 1
ne

Tg(x)e. (3.11)

Optimality Conditions

The representative agent formulation for the CMM model is:

Z∗ = max
{
f(x)

∣∣∣ x ∈ ∆n−1

}
where f(x) = µTx− V (x).

Since the objective function is strongly concave and the first-order derivatives of the

objective function has been established in Theorem 3.1.6, we can now write down the

first-order optimality conditions for the CMM model as follows:

∇f(x) =

(
µ− 1

n
eTµe

)
−
(
g(x)− 1

n
eTg(x)e

)
= 0 and x ∈ ∆n−1, (3.12)

where ∇f(x) is the projected gradient of f(·) onto the tangent space of the feasible

region. Next, we will discuss some of the implications of these optimality conditions.

Mapping between Mean Utilities and Choice Probabilities

In this subsubsection we show a one-to-one correspondence between the mean utility

vector µ under certain appropriate normalization and the choice probability vector x

in the relative interior of the simplex in the CMM model. This is important from the

modeling viewpoint since it shows that the CMM model is capable of generating all

the choice probability vectors in the relative interior of the unit simplex. Furthermore,

this is important in identification and estimation of demand parameters (see Berry

1994). We show that under mild assumptions on the covariance matrix, inverting the
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choice probability vector in the CMM model is fairly easy. Towards this, we first prove

the following lemma that characterizes the gradient of the objective function in the

representative agent formulation of the CMM model near the relative boundary of the

simplex.

Theorem 3.1.7 Assume that Σ � 0. As x approaches the relative boundary of the

unit simplex, the projected gradient of V (·) blows up to +∞.

We are now ready to prove the main result of this section. Hofbauer and Sandholm

(2002) have shown that given any joint distribution of the noise terms, the mapping

from the deterministic components of the utilities µ (under appropriate normalization)

to the set of choice probabilities in the relative interior of the simplex is surjective,

namely any vector of choice probabilities can be obtained by selecting suitable mean

values. We show in the next theorem that under mild assumptions on the covariance

matrix, there is a one-to-one correspondence between the mean utility vectors under

the normalization condition µ1 = 0 and the choice probability vectors in the relative

interior of the simplex for the CMM model.

Theorem 3.1.8 Assume that Σ � 0. Without loss of generality, set µ1 = 0. Let

q = P (µ) : {0} × Rn−1 → ∆n−1 be the mapping from the mean utilities to the choice

probabilities in the CMM model. Then P (·) is a bijection between {0} × Rn−1 and

the relative interior of the simplex ∆n−1, namely there is a one-to-one correspondence

between the mean utility vectors and the choice probability vectors.

Proof:

(a) We first show that every mean vector in {0}×Rn−1 in the CMM model results in

a unique vector of choice probabilites in the relative interior of the unit simplex.

From the strong concavity of the objective function in the representative agent

formulation of the CMM model (Theorems 3.1.1 and 3.1.4) and the observation

that the gradient of the objective function blows up to infinity near the relative

boundary of the simplex (Theorem 3.1.7), the choice probability vector in the

CMM model lies strictly in the relative interior of the simplex and is unique.

(b) We next show that every choice probability vector in the relative interior of the

simplex maps to a unique mean vector in {0}×Rn−1 in the CMM model. From the
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optimality conditions in (3.12) and with µ1 = 0, by multiplying with the vector e1

we have:

1

n
eTµ =

1

n
eTg(x)− g1(x).

Plugging in back to the optimality conditions, we obtain the mean utilities from

the choice probabilities as follows:

µ = g(x)− g1(x)e. (3.13)

Put together, these results imply that there is a one-to-one correspondence between

the set of deterministic utilities in {0} × Rn−1 and the set of choice probabilities

in the relative interior of the unit simplex. 2

For the MNL model, the mean utility vector is uniquely identified from the following

simple formula:

µi = ln(qmnl
i )− ln(qmnl

1 ), ∀i ∈ N .

A similar result exists for identifying the mean utility vector from the nested logit model

(see Berry 1994). For the CMM model, the mean utility vector is uniquely identified

from the simple calculation in (3.13) where

g(x) = −1

2

(
diag

(
Σ1/2(T 1/2(x))†Σ1/2

)
− 2Σ1/2(T 1/2(x))†Σ1/2x

)
.

To the best of our knowledge, no such easily computable formula is available for the

MNP model.
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3.2 Calculating the Choice Probabilities in the CMMmod-

el

3.2.1 The Gradient Ascent Algorithm

In this section we present a projected gradient ascent method 1 to calculate the choice

probabilities in the CMM model. The algorithm is given in Algorithm 1 in which

stepsizes are chosen according to the well-known Armijo’s line search rule.

Algorithm 1: Projected gradient ascent algorithm with Armijo search

Input: µ,Σ, starting point x0, initial step size α0 ∈ (0, 1], β ∈ (0, 1), τ ∈ (0, 1),
tolerance ε > 0.

Output: Optimal solution x∗.
1 Initialize stopping criteria: criteria← ε+ 1;
2 while criteria > ε do
3 α← α0

4 x← x0 + α∇f(x0),

5 while x /∈ int(∆n−1) or f(x) < f(x0) + τα‖∇f(x0)‖2 do
6 α← βα

7 x← x0 + α∇f(x0),

8 x0 ← x
9 criteria← ‖x− x0‖.

From Theorem 3.1.7, we know that the choice probability vector lies in int(∆n−1).

The algorithm presented in Algorithm 1 converges to the optimal solution (see Iusem

2003). While the objective function has a nice curvature (it is strongly concave), it does

not have a Lipschitz continuous gradient near the relative boundary. In fact, the function

itself does not satisfy the Lipschitz continuity condition near the relative boundary (see

Theorem 3.1.7). In the next section, we show that if x is sufficiently far away from

the relative boundary of the feasible region, then the algorithm converges linearly for

appropriately chosen parameters within a local neighborhood. As we show numerically

in Section 5, this helps explain the good behavior of the algorithm in most cases while

1Note that the presentation here is slightly different than the one in classical references such as
Section 2.3 of Bertsekas (1999), but the algorithm is the same since the projection is onto an affine
subspace, i.e., ProjAx=b(x̂+∇f) = x̂+ ProjAx=0(∇f) for Ax̂ = b.
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for some ill-conditioned problems where for example one of the choice probabilities is

very low, the algorithm tends to be slower.

3.2.2 Local Linear Convergence of the Algorithm

We first show that with τ ∈ [0.5, 1), the distance between the solution at successive

iterations and the optimal solution is non-increasing.

Lemma 3.2.1 Let dk = ||xk−x∗||, where x∗ is the optimal solution and xk is the k-th

iterate. Then dk ≤ dk−1 for all k > 0 if τ ≥ 0.5.

We are now ready to discuss the rate of convergence of the algorithm by choosing

the parameter τ carefully.

Theorem 3.2.2 If there exists a γ ∈ (0, 1) such that ||x0 − x∗|| ≤ γx∗min where x∗min =

mini x
∗
i and if τ = 0.5, then

f(x∗)− f(xk) ≤ θk
(
f(x∗)− f(x0)

)
,

where θ = 1 − min{m,βm/L} with m defined as the strong convexity constant in the

proof of Theorem 3.1.4 and

L =
9n

4(1− γ)x∗minσ1

∥∥∥Σ1/2
∥∥∥4

+
n

((1− γ)x∗minσ1)1/2

∥∥∥Σ1/2
∥∥∥2
,

where σ1 = λ1(Σ).

Proof: From Lemma 3.2.1, we know that ||xk − x∗|| ≤ γx∗min for all k > 0. So we can

restrict the feasible region to X = ∆n−1∩{x : ||x−x∗|| ≤ γx∗min}. It is easily seen that

for all x ∈ X , mini xi ≥ (1− γ)x∗min and, therefore, X ⊂ int(∆n−1). Applying Theorem

3.5.4 given in Section 3.5,∇f(xk) is Lipschitz continuous over X with Lipschitz constant

L =
9n

4(1− γ)x∗minσ1

∥∥∥Σ1/2
∥∥∥4

+
n

((1− γ)x∗minσ1)1/2

∥∥∥Σ1/2
∥∥∥2
.

The result follows from the linear convergence rate result (see Boyd and Vandenberghe

2004) for τ ≤ 0.5, with θ = 1 −min{2mτ, 2βτm/L}, where m is the strong convexity
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constant. In our case, τ = 0.5, so we have

f(x∗)− f(xk) ≤ θk
(
f(x∗)− f(x0)

)
,

where θ = 1−min{m,βm/L} with m being the constant in the proof of Theorem 3.1.4.

2

Since the algorithm converges globally (see Iusem 2003), Theorem 3.2.2 shows that there

exists a large enough integer M , such that, after M iterations the algorithm converges

linearly. The algorithm is thus locally linearly convergent. The typical behavior of the

algorithm is presented in Figure 3.1. We provide a more detailed computational study

regarding the convergence of the algorithm in the next section.
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Figure 3.1: Local convergence of the algorithm for a random instance with n = 100.
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3.3 Computational Results

In the first set of numerical experiments, we compare the computational times and

accuracy of the gradient ascent method developed in this chapter for the CMM model

with an SDP solver that is suitable for solving large scale SDPs. In the second set of

experiments, we numerically test the convergence of the gradient method for the CMM

model. In the third set of experiments, we compare the choice probabilities from the

CMM and MNP model. The results help illustrate the efficacy of the model.

3.3.1 Comparison of SDP and the Gradient Method for the CMM

Model

The SDP in (3.2) was solved using the SDPNAL+ version 0.3 (beta) while the code for

the gradient ascent method was developed in MATLAB R20142. The computational

experiments were run on a laptop with an Intel(R) i7-5600U CPU processor (2.6 GHz)

with 4GB RAM.

The number of alternatives n was varied in the set {100, 200, . . . , 1000}. The mean of

the utilities was randomly generated in [0, 1]n. The covariance matrix Σ = V Diag(d)V T

was randomly generated by choosing the eigenvalues in the vector d uniformly in (0, 1]n

and the eigenvectors in V using an orthogonalization of a random n by n matrix with

each entry in [−1, 1]. For each size n, 9 instances were randomly generated. In the

computational experiments, we used the default settings for SDPNAL+ version 0.3.

For the gradient method, the parameters were set as α0 = 0.1, τ = 0.5, β = 0.6 with

ε = 10−4. To compare the accuracy of the methods, we evaluated the error measured

in L2-distance between the choice probability vector obtained from the SDP solver and

the gradient ascent method:

errorprob = ‖x∗sdp − x∗grd‖2,

where x∗sdp and x∗grd are the solutions obtained from the SDP solver and the gradient

ascent method, respectively. We also evaluated the difference in the optimal objective

2The code for the gradient method and the test instances can be obtained from the webpages of the
authors.
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value as follows:

errorobj = |f(x∗sdp)− f(x∗grd)|.

The results are provided in Table 3.1 which clearly indicates that both methods are

very close in terms of choice probabilities and the objective value. In Table 3.2, the

computational times for the two methods are provided which illustrate that the gradient

method converges much faster for this set of instances in comparison to the SDP solver.

n error 1 2 3 4 5 6 7 8 9
100 Prob 1.63e-5 2.46e-5 3.69e-5 0.743e-5 3.08e-5 0.84e-5 2.92e-5 2.04e-5 2.47e-5

Obj 0.0056 0.0071 0.0055 0.0020 0.0054 0.0076 0.0067 0.0056 0.0057
200 Prob 2.67e-5 2.53e-5 8.76e-5 2.36e-4 2.109e-4 2.672e-4 1.867e-4 2.06e-5 3.32e-5

Obj 0.0071 0.0077 0.0077 0.0060 0.0050 0.0067 0.0046 0.0075 0.0085
300 Prob 9.40e-5 1.53e-4 0.88e-5 1.14e-4 2.34e-4 1.19e-4 1.04e-4 1.53e-4 2.08e-4

Obj 0.0033 0.0021 0.0065 0.0018 0.0016 0.0004 0.0028 0.0004 0.0052
400 Prob 1.73e-4 2.89e-4 7.14e-5 0.95e-5 4.17e-5 3.78e-5 5.23e-5 1.43e-4 3.75e-5

Obj 0.0031 0.0028 0.0006 0.0055 0.0028 0.0041 0.0026 0.0039 0.0033
500 Prob 8.79e-5 5.30e-5 2.95e-5 1.80e-5 3.54e-4 3.01e-5 4.29e-4 3.28e-5 1.51e-4

Obj 0.0027 0.0099 0.0026 0.0070 0.0086 0.0065 0.0104 0.0073 0.0024
600 Prob 2.14e-05 2.10e-05 2.21e-06 2.82e-05 2.52e-05 2.70e-03 2.13e-05 2.27e-05 3.70e-05

Obj 0.0055 0.0042 0.0021 0.0190 0.0044 0.1066 0.0047 0.0046 0.0047
700 Prob 7.16e-05 4.61e-05 1.45e-04 3.99e-05 2.31e-05 3.63e-05 1.82e-04 2.60e-05 5.60e-05

Obj 0.0015 0.0012 0.0016 0.0010 0.0066 0.0019 0.0051 0.0074 0.0093
800 Prob 4.49e-05 1.78e-04 3.01e-05 2.19e-04 4.32e-04 4.51e-05 2.84e-04 6.64e-04 5.08e-04

Obj 0.0015 0.0000 0.0010 0.0058 0.0166 0.0017 0.0163 0.0013 0.0113
900 Prob 1.12e-04 4.53e-05 4.08e-05 7.41e-04 4.86e-05 3.72e-04 3.06e-05 2.79e-04 6.29e-05

Obj 0.0137 0.0108 0.0055 0.0299 0.0120 0.0171 0.0009 0.0038 0.0008
1000 Prob 3.88e-05 3.60e-04 3.62e-05 2.53e-04 7.74e-05 3.45e-05 5.56e-05 1.16e-04 6.13e-05

Obj 0.0019 0.0088 0.0084 0.0004 0.0045 0.0024 0.0158 0.0036 0.0098

Table 3.1: Comparison of SDPNAL+ and the gradient method in terms of accuracy for
9 instances for each n.

n Time (s) 1 2 3 4 5 6 7 8 9
100 Grad 0.40 0.34 0.34 0.34 0.37 0.37 0.34 0.37 0.37

SDP 11.82 6.78 8.23 65.49 6.22 7.84 6.35 8.22 5.85
200 Grad 1.43 1.17 1.23 1.38 1.27 1.35 1.29 1.26 1.21

SDP 31.31 30.38 29.53 33.97 34.25 31.63 32.85 29.79 30.84
300 Grad 2.51 2.68 2.27 2.60 2.24 2.46 2.71 2.58 2.34

SDP 114.45 99.74 101.27 114.67 116.59 121.58 113.42 111.21 120.35
400 Grad 4.35 3.60 3.47 3.86 3.83 3.49 3.65 5.24 4.21

SDP 274.00 314.95 282.51 256.59 271.39 266.01 284.29 297.44 176.16
500 Grad 6.44 8.39 5.75 5.17 4.96 5.05 5.44 4.91 5.30

SDP 617.63 548.72 527.94 477.75 585.20 467.12 521.08 462.04 499.21
600 Grad 13.61 14.24 12.62 12.94 13.35 13.35 13.49 14.22 19.07

SDP 715.00 683.00 17903.00 2864.00 755.00 1829.00 655.00 649.00 891.00
700 Grad 23.16 23.49 20.87 19.92 21.38 20.51 19.84 20.73 20.87

SDP 1220.30 1564.10 1692.80 1423.60 1163.10 1484.60 1264.40 1569.90 1186.40
800 Grad 33.08 33.83 33.86 38.14 39.65 43.21 39.65 29.87 33.80

SDP 2304.20 1880.30 2330.00 2091.30 2812.10 2325.40 2717.60 2715.70 2600.10
900 Grad 49.18 52.07 53.41 48.36 52.50 48.95 53.83 48.90 47.92

SDP 3665.10 3595.60 3663.40 3809.30 3728.10 3406.50 3571.90 3890.80 3233.50
1000 Grad 60.60 71.76 71.93 66.79 63.91 61.58 63.19 82.55 79.03

SDP 4846.90 5220.90 5325.90 5398.60 4999.20 4840.20 4954.00 4815.50 5220.80

Table 3.2: Comparison of SDP solver SDPNAL+ and the gradient method in terms of
computational times for 9 instances for each n.
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3.3.2 Convergence of the Gradient Method for the CMM Model

In the second set of numerical experiments, we study the convergence behavior of the

algorithm. Theorem 3.2.2 shows that the region of linear convergence for the algorithm

depends on x∗min, which is the distance between the optimal solution and the relative

boundary. To study the effect of x∗min, we plot the number of iterations versus the level of

accuracy achieved by the algorithm within those iterations, i.e., the tolerance ε, in Figure

3.2. To plot Figure 3.2, we pick n = 100 and randomly generate a covariance matrix Σ.
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Figure 3.2: Average behavior of the algorithm with different x∗min.

Next, we choose a facet which is the convex combination of 10 randomly picked extreme

points, and let the center of the facet be xbd. We consider three scenarios: In the ‘opt

center’ scenario, we let x∗ = 0.9xct + 0.1xbd, where xct = {1/100, . . . , 1/100} is the

center of the unit simplex; in the ‘opt midway’ scenario, we let x∗ = 0.5xct + 0.5xbd;

in the ‘opt boundary’ scenario, we let x∗ = 0.1xct + 0.9xbd. Note that we can choose

µ = g(x∗) = −1

2
diag

(
Σ1/2(T 1/2(x∗))†Σ1/2

)
+ Σ1/2(T 1/2(x∗))†Σ1/2x∗,
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to ensure that the optimal solution is x∗. Clearly, x∗min = 0.009, 0.005 and 0.001 for

these three scenarios. We randomly generate a starting point x0. We then vary ε from

10−2 to 10−9 and record the corresponding number of iterations. Figure 3.2 is obtained

by averaging the results of 20 independent replications. From the plot, we can clearly

observe the local linear convergence behavior for all three scenarios. As the optimal

solution approaches to the boundary, the slope of the plot increases indicating that the

constant in the linear convergence rate result increases as x∗min decreases. This is also

predicted by the theoretical results.

To study the influence of the starting point, we plot the average number of iterations

and computation times versus the location of the starting point in the Figure 3.3. To
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Figure 3.3: Average number of iterations and CPU time versus the location of the initial
point.

obtain Figure 3.3, we adopt the settings as in Figure 3.2. Instead of varying the optimal

solution, we randomly generate µ once to use in all experiments but choose various

starting points on a line segment between a boundary point and the center of the

simplex by setting x0 = λxct + (1 − λ)xbd and varying the parameter λ. We fix the
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tolerance to ε = 10−6. From the figure, we find that required number of iterations to

achieve the fixed tolerance level and the corresponding CPU times do not change much

with respect to the starting point. The figure indicates that the location of the optimal

solution seems to play a more important role for convergence than the location of the

initial starting point.

3.3.3 Comparison of the CMM Model and MNP Model

In the last set of numerical experiments, we compare the choice probabilities for the

MNP model obtained with the results obtained by simulation and for the CMM model

obtained with the gradient ascent method.

Small size examples from Börsch-Supan and Hajivassiliou (1993)

We first provide a comparison of the MNP and CMM choice probabilities for small

size examples taken from Börsch-Supan and Hajivassiliou (1993). A popular alternative

to the simple frequency simulator for MNP is the GHK simulator (see Geweke 1989,

Geweke 1992, Hajivassiliou and McFadden 1998, Keane 1990 and Keane 1994). The

GHK simulator makes use of draws from truncated univariate normal distributions and

requires evaluation of univariate integrals. Börsch-Supan and Hajivassiliou (1993) have

provided four examples with 5 alternatives to show that the GHK simulator produces

probability estimates with substantially smaller variances than the simple frequency

simulator. The details of the examples are provided in Table 3.3. Example 1 involves

mild correlations and has a small choice probability for the first alternative; Example 2

has slightly higher correlations; Example 3 has some large correlation coefficients while

Example 4 has a choice probability close to 0.5 with mild correlations. Comparison

of the choice probabilities obtained from the GHK simulator for the MNP model and

the gradient ascent method for the CMM model are provided in Table 3.3. The results

indicate that the choice probability estimate for alternative 1 from the two models are

fairly close to each other though developed under different assumptions on the utilities.

For Examples 1 and 2, where the choice probability of alternative 1 is small, the CMM

model gives a higher choice probability for alternative 1 to be the most preferred one

in comparison with the MNP model. On the other hand, for Examples 3 and 4, where

the choice probability of alternative 1 is larger, the CMM model gives a slightly lower
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chance for alternative 1 to be the most preferred one in comparison with the MNP

model.

Example Parameters MNP CMM

1 ∆µ =


−1.00
−0.75
−0.50
−0.20

 ,∆Σ =


1 0.2 0.3 0.1

0.2 1 0.4 0.3
0.3 0.4 1 0.5
0.1 0.3 0.5 1

 0.02409 (0.00068) 0.05366

2 ∆µ =


0
0
0
0

 ,∆Σ =


1 0.2 0.2 0.2

0.2 1 0.4 0.4
0.2 0.4 1 0.6
0.2 0.4 0.6 1

 0.15037 (0.00444) 0.15668

3 ∆µ =


1.0
1.0
1.0
1.0

 ,∆Σ =


1 0.9 0 0

0.9 1 0 0
0 0 1 0.95
0 0 0.95 1

 0.64773 (0.00773) 0.63789

4 ∆µ =


1.50
0.75
0.50
0.75

 ,∆Σ =


1 0.5 0.2 0.1

0.5 1 0.5 0.2
0.2 0.5 1 0.5
0.1 0.2 0.5 1

 0.49716 (0.01394) 0.47787

Table 3.3: Comparison of the choice probability for alternative 1 between the MNP and
CMM model. ∆µ and ∆Σ are the mean and the covariance matrix for the utilities
(u1 − u2, u1 − u3, u1 − u4, u1 − u5)T . The number in parenthesis indicates the standard
deviation of the estimator.

Larger example from Jester rating dataset

In this example, we compare the choice probabilities from the CMM and the MNP model

where data is available regarding the utilities of a large number of alternatives. We use

the rating dataset from the Jester Online Joke Recommender System, in particular

Dataset 2+3. The data set consists of more than 2 million continuous ratings for 150

jokes collected from over 50000 individuals. Each individual provides ratings between

-10 and 10 for a subset of the jokes, 10 of the jokes have never been rated and therefore

excluded from the dataset.

To generate the utility parameter, we capture the data in a matrix of size 50000 by

140, whose the (i, j)th entry corresponds to the rating of individual i for joke j, if it

exists. For the ratings that are incomplete, we use the standard Collaborative Filtering

(CF) method, which is widely used in recommendation engines. The user-based version

of CF estimates a missing rating from individual i for joke j based on existing ratings

for joke j from a set of individuals who are similar to individual i. Alternatively, the

item-based version of CF uses the existing ratings of individual i for other items. We use

3http://eigentaste.berkeley.edu/dataset/
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the item-based CF in our application, since it is more suitable in situations where the

number of items is significantly smaller than the number of individuals (see Ekstrand

et al. 2010 for a recent extensive survey on the topic).

To begin with, let us provide the details of the item-based CF. Let rj denote the jth

column of the data matrix and r(i, j) the existing rating from individual i for joke j.

We calculate the estimated rating r̂(i, j) for individual i and joke j as follows:

r̂(i, j) =

∑
k∈Ji w(j, k)r(i, k)∑

k∈Ji |w(j, k)|
,

where Ji is the set of jokes that have been rated by individual i and w(j, k) is a measure

of similarity between jokes j and k. Although there are other similarity measures in the

literature, we use the cosine similarity, defined as w(j, k) =
rj .rk

‖rj‖2‖rk‖2 , for its simplicity,

popularity, and good predictive properties. Similarly, the ratings can be estimated with

alternative methods as well, nevertheless, the weighted average approach is a popular

choice.

We use the completed data matrix to estimate the mean ratings µ ∈ R140 over all

users and the corresponding covariance matrix Σ ∈ R140×140. Using these two parameter

values, we calculate the choice probabilities, i.e., the probability that a joke j is the most

prefered among all jokes,

1. Using the CMM and the gradient ascent algorithm developed in this chapter with

tolerance level ε = 10−3 and the rest of the parameters as in the previous section.

2. Using the MNP model and the GHK simulator described above with 50000 sam-

ples.

We also calculate a basic in-sample statistic corresponding to the number of times a

joke has the highest rating divided by the number of individuals. (Whenever there is a

tie between l jokes for the highest rating, the count is incremented by 1/l instead of 1.)

The choice probabilities from the CMM and MNP models together with the in-sample

probabilities are provided in Figure 3.4. From the figure, we observe that the alternatives

with very small choice probabilities in MNP take on higher choice probability values in

the CMM model. On the other hand, the alternatives with larger choice probabilities in

MNP take on smaller choice probability values in the CMM model. These results mirror
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the observations from the previous section. A possible explanation for this observation

is that the distribution of the random utilities that maximizes expected agent utility

in the CMM model is a mixture of multivariate normal distributions. The mixture of

normals is a fat-tailed distribution and tends to give higher probabilities to the events

that are low probability events in the standard normal distribution. In terms of the

trend, however the results clearly indicate that the alternatives that are more preferred

in one model are also more preferred in the other model.
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Figure 3.4: Choice Probabilities from CMM, MNP, and In-Sample for the Jester Dataset

3.4 Conclusion

In this chapter, we described a convex optimization approach to compute choice proba-

bilities with correlated utilities. The choice model was derived for the joint distribution

of the random utilities that maximizes expected agent utility given only the mean,

variance and covariance information. Unlike MNP, the assumption of normality was

dropped in this model. In contrast to MNP models where the choice probabilities are

evaluated through simulation, we used a simple gradient ascent method to find the
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choice probabilities. The biggest advantage of the convex optimization approach is that

one can compute choice probabilities for many alternatives with correlated utilities in a

reasonable amount of time. In our time, consumers have increasingly more alternative

to choose from and the have an increasing amount of information available. Therefore,

the method proposed in this chapter provide a viable approach to computing choice

probabilities that scales well with size. The next research question is to develop efficient

inference techniques for the CMM model.

3.5 Technical Proofs

Proof [Equivalence of formulations (3.1) and (3.2)]

Step 1: To show that optimal value of (3.1) ≤ optimal value of (3.2).

Consider an optimal solution to the semidefinite program in (3.1) denoted by {W ∗
i ,v
∗
i , x
∗
i }

for i ∈ N . We consider the case with all the x∗i values being strictly positive. Let xi = x∗i

and Y Tei = v∗i for all i. We start by verifying that the following matrix in (3.2) is pos-

itive semdefinite: 
Σ + µµT Y T µ

Y Diag(x) x

µT xT 1

 � 0,

To see this, observe that:(
Σ + µµT µ

µT 1

)
−

(
Y T

xT

)
Diag(x)−1

(
Y x

)
=

(
Σ + µµT − Y TDiag(x)−1Y µ− Y Te

µT − eTY 1− eTx

)

=

 Σ + µµT −
∑

i
v∗iv∗i

T

x∗i
µ−

∑
i v
∗
i

µT −
∑

i v
∗
i
T 1−

∑
i x
∗
i


=

(
Σ + µµT −

∑
i
v∗iv∗i

T

xi
0

0T 0

)
� 0,

where the third equality comes from the feasibility condition in (3.1) and the posi-

tive semidefiniteness of the matrix in the last step follows from Schur’s lemma since
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W ∗
i � v∗iv∗i

T /xi for i ∈ N . Thus the solution {Y ,x} is feasible to the semidefinite pro-

gram (3.2) with the same objective value. The case with some of the variables x∗i = 0

is handled similarly by dropping the rows and columns corresponding to the zero entries.

Step 2: To show that optimal value of (3.1) ≥ optimal value of (3.2).

Consider an optimal solution to the semidefinite program in (3.2) denoted by {Y ∗,x∗}.
Consider the case where all the x∗i values are strictly positive. From Schur’s lemma,

the positive semidefiniteness of the matrix in (3.2) is equivalent to the following two

conditions:
Λ = Σ + µµT − Y ∗TDiag(x∗)−1Y ∗ � 0,

Y ∗Te = µ.

Define: (
Wi yi

yTi xi

)
=

(
Y ∗Teie

T
i Y

∗/x∗i + Λ/n Y ∗Tei

eTi Y
∗ x∗i

)
, ∀i ∈ N .

This is a feasible solution to the semidefinite program (3.1) with the same objective

value. As before, the case with some of the x∗i = 0 can be handled by dropping the rows

and columns corresponding to the zero entries. Coming together, we obtain the desired

result. 2

Proof [Optimality of (3.8) for formulation (3.7)]

The dual formulation for the semidefinite program (3.7) is given as:

V ∗D(x) = min Σ · Y1 + S(x) · Y2

s.t.

(
Y1 −I/2
−I/2 Y2

)
� 0,

where I is an identity matrix of size n × n. The optimality conditions for the primal

and dual semidefinite programs are given as:
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1. Primal feasibility: (
Σ Ŷ ∗T

Ŷ ∗ S(x)

)
� 0.

2. Dual feasibility: (
Y ∗

1 −I/2
−I/2 Y ∗

2

)
� 0.

3. Complementary slackness:(
Σ Ŷ ∗T

Ŷ ∗ S(x)

)(
Y ∗

1 −I/2
−I/2 Y ∗

2

)
= 0.

Expanding the complementary slackness condition, we get

(a) ΣY ∗
1 − Ŷ ∗T /2 = 0

(b) −Σ/2 + Ŷ ∗TY ∗
2 = 0

(c) Ŷ ∗Y ∗
1 − S(x)/2 = 0

(d) −Ŷ ∗/2 + S(x)Y ∗
2 = 0.

From conditions (a) and (b), we get the equality:

ΣY ∗
1 Y

∗
2 = Σ/4.

The matrices Y ∗
1 and Y ∗

2 are hence nonsingular, related through an inverse: Y ∗
1 =

Y ∗
2
−1/4. Condition (a) implies that Y ∗

1 = Σ−1Ŷ ∗T /2. Using condition (c), we obtain

the matrix equality:

Ŷ ∗Y ∗
1 = S(x)/2 = Ŷ ∗Σ−1Ŷ ∗T /2.

The solution to this quadratic matrix equation is given as:

Ŷ ∗T = ΣS(x)1/2

((
S(x)1/2ΣS(x)1/2

)1/2
)†
S(x)1/2.

Also,

Y ∗
1 = Y ∗

2
−1/4 =

1

2
S(x)1/2

((
S(x)1/2ΣS(x)1/2

)1/2
)†
S(x)1/2.
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2

Proof of Theorem 3.1.4

For all x,y ∈ ∆n−1 with x 6= y and λ ∈ (0, 1), we have:

S(λx+ (1− λ)y)

= Diag (λx+ (1− λ)y)− (λx+ (1− λ)y) (λx+ (1− λ)y)T

= λDiag (x) + (1− λ)Diag (y)− λ2xxT − (1− λ)2yyT − λ(1− λ)(xyT + yxT )

= λ
(
Diag (x)− xxT

)
+ (1− λ)

(
Diag (y)− yyT

)
+ λ(1− λ)(x− y)(x− y)T

= λS(x) + (1− λ)S(y) + λ(1− λ)(x− y)(x− y)T .

Pre-multiplying and post-multiplying by Σ1/2 implies that:

Σ1/2S(λx+ (1− λ)y)Σ1/2

= Σ1/2
(
λS(x) + (1− λ)S(y) + λ(1− λ)(x− y)(x− y)T

)
Σ1/2.

(3.14)

Now let A = Σ1/2S(λx+ (1− λ)y)Σ1/2, B = λΣ1/2S(x)Σ1/2 + (1− λ)Σ1/2S(y)Σ1/2,

ρ = λ(1 − λ) and w = Σ1/2(x − y). Using this notation, we can rewrite the equation

(3.14) as:

A = B + ρwwT .

Let λ1(A) ≤ λ2(A) · · · ≤ λn(A) denote the eigenvalues of A (and respectively λi(B)

for B). For ρ > 0 with a rank one perturbation, Bunch et al. (1978) have shown that:

λi(A) ≥ λi(B), ∀i ∈ N .

Let a = ρwTw. Then there exists a vector β ≥ 0 with
∑

i βi = a such that

λi(A) = λi(B) + βi, ∀i ∈ N .
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Hence a lower bound on the sum of the square roots of the eigenvalues of the matrix A

is obtained by solving the optimization problem:

∑
i∈N

λi(A)1/2 ≥ minβ
∑
i∈N

(λi(B) + βi)
1/2

s.t.
∑
i∈N

βi = a,

βi ≥ 0, ∀i ∈ N .

The right hand side of the above inequality corresponds to minimizing a concave function

over a simplex. Therefore the minimizer must be attained by at least one of the vertices

of the simplex. This gives:

∑
i∈N

λi(A)1/2 ≥ min
j∈N

∑
i 6=j

λi(B)1/2 + (λj(B) + a)1/2


≥ min

j∈N

{∑
i∈N

λi(B)1/2 +
a

2
√
λj(B) + a

}
=

∑
i∈N

λi(B)1/2 +
a

2
√
λn(B) + a

,

where the second inequality is from the supergradient inequality for the concave square

root function. Clearly there exists a positive number M1, such that a = λ(1 − λ)(x −
y)TΣ(x − y) ≤ M1 for all λ ∈ (0, 1) and x,y ∈ ∆. Similarly, there exists a positive

number M2, such that λn(B) = maxi λi(B) ≤ M2, for all λ ∈ (0, 1) and x,y ∈ ∆.

Letting α = 1√
M1+M2

, we have

∑
i∈N

λi(A)1/2 ≥
∑
i∈N

λi(B)1/2 +
α

2
λ(1− λ)(x− y)TΣ(x− y). (3.15)
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Since trace(A1/2) =
∑

i∈N λi(A)1/2, by (3.15) we obtain

trace
(
Σ1/2S(λx+ (1− λ)y)Σ1/2

)1/2

≥ trace
(
λΣ1/2S(x)Σ1/2 + (1− λ)Σ1/2S(y)Σ1/2

)1/2

+
α

2
λ(1− λ)(x− y)TΣ(x− y)

≥ λtrace
(
Σ1/2S(x)Σ1/2

)1/2
+ (1− λ)trace

(
Σ1/2S(y)Σ1/2

)1/2

+
α

2
λ(1− λ)(x− y)TΣ(x− y),

where the last inequality is from the concavity of the square root function. Let λmin(Σ)

be the smallest eigenvalue of Σ. Since Σ is positive definite, then λmin(Σ) > 0 and

‖Σ1/2(x− y)‖2 ≥ λmin(Σ)‖x− y‖2.

Then by the definition of the function V (·), we obtain

V (λx+ (1− λ)y) ≤ λV (x) + (1− λ)V (y)− α

2
λmin(Σ)λ(1− λ)‖x− y‖2,

and therefore the function V (x) is strongly convex on its domain for Σ � 0, where the

strong convexity parameter depends on the matrix Σ. 2

Proof of Lemma 3.1.5

(a) Let A ◦B denote the Hadamard product of two matrices of the same dimension.

Any vector z ∈ Rn can be expressed as z = Σ−1/2
(
z1

z2

)
, for some z1 ∈ Rr and

z2 ∈ Rn−r. Then:

T (x)z = Σ1/2
(

Diag(x)Σ1/2z − xxTΣ1/2z
)

= Σ1/2x ◦
(
Σ1/2z − xTΣ1/2ze

)
,
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where the last equality comes from the observation that Diag(x)(Σ1/2z) = x ◦
(Σ1/2z) and x(xTΣ1/2z) = x ◦ (xTΣ1/2z)e. This is equivalent to

T (x)z = Σ1/2

(
0

x

)
◦

((
z1

z2

)
−
(

0

x

)T(
z1

z2

)
e

)
.

Since x > 0, T (x)z = 0 implies that:

z2 − (xTz2)e = 0.

Solving this equation gives z ∈ Null(T (x)) = {kΣ−1/2z | z =
(
z1

e

)
} where z1 ∈ Rr.

Therefore, rank(Null(T (x))) = r + 1 and the rank-nullity theorem implies that

rank(T (x)) = n− r − 1.

(b) For x ∈ int(∆n−1), all the entries are nonzero. To show that Σ−1/2e lies in the

null space of the matrix Ev(ε,x), observe that:

Ev(ε,x)Σ−1/2e

= εΣ1/2
(
Diag(v)− xvT − vxT

)
Σ1/2Σ−1/2e− ε2Σ1/2vvTΣ1/2Σ−1/2e

= εΣ1/2
(
Diag(v)e− xvTe− vxTe

)
− ε2Σ1/2vvTe

= 0,

where the final equality comes from the observation that eTx = 1 and vTe = 0.

Hence, Null(T (x)) ⊆ Ev(ε,x). 2

Proof of Theorem 3.1.6

Lemma 3.1.5 implies that for the given symmetric matrices T (x) and Ev(ε,x), there

exists an orthogonal matrix P with PP T = P TP = I such that

T (x) = P

(
0 0T

0 Λ(x)

)
P T and Ev(ε,x) = P

(
0 0T

0 Ev(ε,x)

)
P T ,

where Λ(x) is a diagonal matrix of size (n − 1) × (n − 1) containing the non-zero

eigenvalues of T (x) and P is the matrix of eigenvectors of matrix T (x) with the first
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eigenvector equal to Σ−1/2e
||Σ−1/2e||2

. The matrixEv(ε,x) is however not necessarily diagonal.

Thus, we obtain:

V (x+ εv)− V (x)

= −trace
(

(T (x) +Ev(ε,x))1/2
)

+ trace
(
T (x)1/2

)
= −trace

(
P

(
0 0T

0 Λ(x) +Ev(ε,x)

)
P T

)1/2

+ trace

(
P

(
0 0T

0 Λ(x)

)
P T

)1/2

= −trace

(
0 0T

0 Λ(x) +Ev(ε,x)

)1/2

+ trace

(
0 0T

0 Λ(x)

)1/2

= −trace
((

Λ(x) +Ev(ε,x)
)1/2 −Λ

1/2
(x)
)
.

To evaluate the last expression, let L1/2(Λ(x),Ev(ε,x)) denote the Fréchet derivative

for the matrix square root which is the unique solution to the Sylvester equation:

Λ
1/2

(x)L1/2(Λ(x),Ev(ε,x)) + L1/2(Λ(x),Ev(ε,x))Λ
1/2

(x) = Ev(ε,x).

The existence of solution is guaranteed since Λ(x) � 0. The Sylvester equation can

then be expressed as:

L1/2(Λ(x),Ev(ε,x)) + Λ
−1/2

(x)L1/2(Λ(x),Ev(ε,x))Λ(x)1/2 = Λ
−1/2

(x)Ev(ε,x).

Hence:

trace
(
L1/2(Λ(x),Ev(ε,x))

)
=

1

2
trace

(
Λ
−1/2

(x)Ev(ε,x)
)
.
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Using the definition of the Fréchet derivative we have:

V (x+ εv)− V (x)

= −1

2
trace

(
Λ
−1/2

(x)Ev(ε,x)
)

+ o
(
||Ev(ε,x)||

)
= −1

2
trace

((
0 0T

0 Λ
−1/2

(x)

)(
0 0T

0 Ev(ε,x)

))
+ o

(
||Ev(ε,x)||

)
= −1

2
trace

((
0 0T

0 Λ
−1/2

(x)

)
P TEv(ε,x)P

)
+ o

(
||Ev(ε,x)||

)
= −1

2
trace

(
P

(
0 0T

0 Λ
−1/2

(x)

)
P TEv(ε,x)

)
+ o

(
||Ev(ε,x)||

)
= − ε

2
trace

(
(T 1/2(x))†Σ1/2

(
Diag(v)− xvT − vxT

)
Σ1/2

)
+ o

(
||Ev(ε,x)||

)
= − ε

2

(
diag

(
Σ1/2(T 1/2(x))†Σ1/2

)T
− 2xTΣ1/2(T 1/2(x))†Σ1/2

)
v

+o
(
||Ev(ε,x)||

)
.

Hence, we obtain the expression for the directional derivative in the direction v ∈ ∆n−1

as:

∇vV (x) = lim
ε→0

V (x+ εv)− V (x)

ε

= −1

2

(
diag

(
Σ1/2(T 1/2(x))†Σ1/2

)T
− 2xTΣ1/2(T 1/2(x))†Σ1/2

)
v

= g(x)Tv,

where g(x) = −1
2

(
diag

(
Σ1/2(T 1/2(x))†Σ1/2

)
− 2Σ1/2(T 1/2(x))†Σ1/2x

)
. Since this is

true for all v ∈ ∆n−1, we obtain ∇V (x) by projecting g(x) onto the tangent space

∆n−1. 4 2

4We abuse the notation slightly here since the gradient of V (x) does not exist outside the feasible
region. For all theoretical and algorithmic purposes, the mathematical quantity that we calculate,
i.e., ∇V (x), behaves as the projected gradient. To achieve mathematical rigor, one would embed the
function into the affine subspace eTx = 1 by substituting for one of the decision variables, but this
approach is notationally cumbersome in exposition.
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Proof of Theorem 3.1.7

Suppose that the sequence of interior points {xk}k=1,...∞ approaches a point x̂ on the

relative boundary of the unit simplex, along the direction −z ∈ Rn. Assume that x̂ has

exactly m zeros. Any such z must satisfy eTz = 0 and x̂i = 0⇒ zi > 0. We first prove

that:

lim
t→0+

V (x̂)− V (x̂+ tz)

t
= +∞.

Let z0 = mini:x̂i=0 zi and σ1 = λ1(Σ). We have:

T (x̂+ tz) = Σ1/2S(x̂+ tz)Σ1/2

= Σ1/2Diag(x̂+ tz)Σ1/2 −Σ1/2(x̂+ tz)(x̂+ tz)TΣ1/2.

It is clear that mini{x̂i+tzi} = mini:x̂i=0 tzi = tz0 if t is sufficiently small. From Lemmas

3.5.2 and 3.5.3, both given in the section 3.5, this implies that

λ2(Σ1/2S(x̂+ tz)Σ1/2) ≥ λ1(Σ1/2Diag(x̂+ tz)Σ1/2) ≥ tσ1z0 > 0

since Σ1/2S(x̂ + tz)Σ1/2 is a rank one update of Σ1/2Diag(x̂ + tz)Σ1/2. Therefore,

together with Lemma 3.1.5, we have:

λ1(T (x̂+ tz)) = 0, λ2(T (x̂+ tz)) ≥ tσ1z0

and

λ3(T (x̂+ tz)), . . . , λn(T (x̂+ tz)) > 0.

Recall also that Lemma 3.1.5 gives:

λ1(T (x̂)) = · · · = λm+1(T (x̂)) = 0 and λm+2(T (x̂)), . . . , λn(T (x̂)) > 0.

Furthermore, from standard results for the continuity of the matrix eigenvalue function

(see Golub and Loan 1996), we know that ‖λj(T (x̂ + tz)) − λj(T (x̂))‖ ≤ O(t), for all
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j. Combining above facts,

lim
t→0+

V (x̂)− V (x̂+ tz)

t

= lim
t→0+

n∑
j=1

(√
λj(T (x̂+ tz))−

√
λj(T (x̂))

)
t

≥ lim
t→0+

√
tσ1z0 +

n∑
j=m+2

(√
λj(T (x̂)) +O(t)−

√
λj(T (x̂))

)
t

→ +∞,

since the ratio
√
t/t diverges to +∞ as t approaches 0 and limt→0+ O(t)/t = 0.

We next show that

lim
t→0+

|∇zV (x̂+ tz)| = lim
t→0+

lim
s→0+

(
V (x̂+ tz)− V (x̂+ (t+ s)z)

s

)
= +∞.

Suppose this is not the case. Since V (x̂) is convex, ∇zV (x̂ + tz) is monotone in t,

which implies that

lim inft→0+ lims→0+

(
V (x̂+tz)−V (x̂+(t+s)z)

s

)
= lim supt→0+ lims→0+

(
V (x̂+tz)−V (x̂+(t+s)z)

s

)
.

Therefore, there must exists a finite M such that

lim
s→0+

(
V (x̂+ tz)− V (x̂+ (t+ s)z)

s

)
≤M, ∀t > 0 with x̂+ tz ∈ int(∆n−1). (3.16)

However, since limt→0+
V (x̂)−V (x̂+tz)

t = +∞, there exists t0 > 0 such that

V (x̂)− V (x̂ + t0z)

t0
> 2M.

In addition, since V is continuous on ∆n−1, it is also uniformly continuous on ∆n−1.

Therefore, there exists δ > 0 such that |V (x̂) − V (x̂ + sz)| < t0M for all s ∈ [0, δ). It
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is without loss of generality to assume that δ < t0. Therefore,

lim
s→0+

(
V (x̂+ δ

2z)− V (x̂+ ( δ2 + s)z)

s

)
≥

(
V (x̂+ δ

2z)− V (x̂+ t0z)

t0 − δ
2

)

≥

(
V (x̂+ δ

2z)− V (x̂+ t0z)

t0

)

>

(
V (x̂)− t0M − V (x̂+ t0z)

t0

)
> M.

This is in contradiction with equation (3.16). Therefore, the theorem is proven. 2

Proof of Lemma 3.2.1

From the definition of dk, we have

d2
k+1 = ||xk+1 − x∗||2

= ||xk + αk∇f(xk)− x∗||2

= d2
k + α2

k||∇f(xk)||2 − 2αk∇f(xk)T (x∗ − xk).
(3.17)

Since f(·) is concave, we have

∇f(xk)T (x∗ − xk) ≥ f(x∗)− f(xk) = εk.

Note that εk ≥ 0 by definition. Combined with inequality (3.17), we have

d2
k+1 ≤ d2

k − αk(2εk − αk||∇f(xk)||2).

By the result of the Armijo’s rule, we have

f(xk+1) ≥ f(xk) + ταk‖∇f(xk)‖2.

Therefore,

αk‖∇f(xk)‖2 ≤ 1

τ
(f(xk+1)− f(xk)) =

1

τ
(εk − εk+1).
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Hence, we have

d2
k+1 ≤ d2

k − αk(2εk − αk||∇f(xk)||2)

≤ d2
k − αk

(
2εk −

1

τ
(εk − εk+1)

)
≤ d2

k − αk (2εk − 2(εk − εk+1))

≤ d2
k − 2αkεk+1

≤ d2
k,

where the third inequality uses the fact that τ ≥ 0.5. 2

Note that the above proof is very similar to the proof of Proposition 9.1.2 in Ben-Tal

and Nemirovski (2001) for the unconstrained convex case.

Lemmas for Sections 3.1.3 and 3.2

Lemma 3.5.1 Suppose x > 0 and let xmin = mini xi, xmax = maxi xi. Then:

||L1/2(Diag(x),E)|| ≤ ||E||
2x

1/2
min

,

and

||L−1/2(Diag(x),E)|| ≤ n||E||
2x

3/2
min

.

Proof: The Fréchet derivative for the matrix inverse function is given as:

L−1(X,E) = −X−1EX−1.

The Fréchet derivative for the matrix square root function, which exists when X is

positive definite, is the unique solution to the Sylvester equation (refer to Kenney and

Laub 1989, Higham 2008):

X1/2L1/2(X,E) + L1/2(X,E)X1/2 = E. (3.18)
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Following the chain rule (Theorem 3.4 in Higham Higham (2008)), we have

L−1/2(X,E) = L1/2(X−1, L−1(X,E)) = L1/2(X−1,−X−1EX−1),

and therefore,

X−1/2L−1/2(X,E) + L−1/2(X,E)X−1/2 = −X−1EX−1. (3.19)

Combining equations (3.18) and (3.19), we have

L−1/2(X,E) = −X−1/2L1/2(X,E)X−1/2. (3.20)

Define L = L1/2(Diag(x),E). From equation (3.18), we have:

Diag(x)1/2L+LDiag(x)1/2 = E,

which implies that

Li,j =
Ei,j

x
1/2
i + x

1/2
j

≤ Ei,j

2x
1/2
min

.

Therefore, we have

||L|| =
√∑

i,j

L2
i,j ≤

√√√√∑
i,j

E2
i,j

4xmin
=
||E||
2x

1/2
min

.

In addition, by equation (3.20), we have

||L−1/2(Diag(x),E)|| = ||Diag(x)−1/2LDiag(x)−1/2||

≤ ||Diag(x)−1/2||2||V L||

=
n||E||
2x

3/2
min

.

2
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Lemma 3.5.2 Let B = A− uuT . Then λ1(B) ≤ λ1(A), and

λi−1(A) ≤ λi(B) ≤ λi(A), ∀i = 2, . . . , n.

Proof: The proof can be found on page 97-98 of Wilkinson (1965).

Lemma 3.5.3 Let D = Diag(d1, ..., dn) be a diagonal matrix with di > 0, ∀i ∈ N . Let

Σ be a positive definite matrix. Then λ1(Σ1/2DΣ1/2) ≥ λ1(Σ) mini{di}.

Proof: Since the set of eigenvalue of AAT coincides with that of ATA, we have

λ1(Σ1/2DΣ1/2) = λ1(D1/2ΣD1/2).

But

D1/2ΣD1/2 � λ1(Σ)D1/2ID1/2 = λ1(Σ)D.

Therefore, for all v with ||v|| = 1, we have

vTD1/2ΣD1/2v ≥ vTλ1(Σ)Dv ≥ λ1(Σ) min
i
{di}.

2

Theorem 3.5.4 Assume that Σ � 0. For any feasible direction v ∈ ∆n−1 with ‖v‖ = 1

and x ∈ int(∆n−1),

|f ′′x,v(0)| ≤ 9n

4xminσ1

∥∥∥Σ1/2
∥∥∥4

+
n

(xminσ1)1/2

∥∥∥Σ1/2
∥∥∥2
,

where fx,v(t) = V (x+ tv) > 0, σ1 = λ1(Σ) and xmin = mini xi.

Proof: Let g(x) = g1(x) + g2(x) where

g1(x) = −1

2
diag

(
Σ1/2(T 1/2(x))†Σ1/2

)
, g2(x) = Σ1/2(T 1/2(x))†Σ1/2x.
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From the proof of Theorem 3.1.6, we know that:

g1(x+ εv)Tv − g1(x)Tv

= −1

2
vTdiag

(
Σ1/2(T 1/2(x+ εv))†Σ1/2

)
+

1

2
vTdiag

(
Σ1/2(T 1/2(x))†Σ1/2

)
= −1

2
vTdiag

(
Σ1/2

(
(T 1/2(x+ εv))† − (T 1/2(x))†

)
Σ1/2

)
= −1

2
vTdiag

(
Σ1/2P

(
0 0T

0
(
Λ(x) +Ev(ε,x)

)−1/2 −Λ(x)−1/2

)
P TΣ1/2

)

= −1

2
vTdiag

(
Σ1/2P

(
0 0T

0 L−1/2

(
Λ(x),Ev(ε,x)

)
+ o

(
||Ev(ε,x)||

) )P TΣ1/2

)

= −1

2
vTdiag

(
Σ1/2P

(
0 0T

0 L−1/2

(
Λ(x),Ev(ε,x)

) )P TΣ1/2

)
+ o(ε).
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Therefore, we have:

||g1(x+ εv)Tv − g1(x)Tv||

= || − 1

2
vTdiag

(
Σ1/2P

(
0 0T

0 L−1/2

(
Λ(x),Ev(ε,x)

) )P TΣ1/2

)
+ o(ε)||

≤ 1

2
||v|| ·

∥∥∥Σ1/2
∥∥∥2
·

∥∥∥∥∥P
(

0 0T

0 L−1/2

(
Λ(x),Ev(ε,x)

) )P T

∥∥∥∥∥+ o(ε)

≤ 1

2

∥∥∥Σ1/2
∥∥∥2
·

∥∥∥∥∥P
(

0 0T

0 L−1/2

(
Λ(x),Ev(ε,x)

) )P T

∥∥∥∥∥+ o(ε)

≤ 1

2

∥∥∥Σ1/2
∥∥∥2
·
∥∥L−1/2

(
Λ(x),Ev(ε,x)

)∥∥+ o(ε)

≤ 1

2

∥∥∥Σ1/2
∥∥∥2
· n||Ev(ε,x)||

2λ
3/2
2 (T (x))

+ o(ε)

=
1

2

∥∥∥Σ1/2
∥∥∥2
· n||Ev(ε,x)||

2λ
3/2
2 (T (x))

+ o(ε)

=
1

2

∥∥∥Σ1/2
∥∥∥2
·
n||εΣ1/2

(
Diag(v)− xvT − vxT

)
Σ1/2||

2λ
3/2
2 (T (x))

+ o(ε)

≤ ε

2

∥∥∥Σ1/2
∥∥∥4
· n||v||(1 + 2||x||)

2λ
3/2
2 (T (x))

+ o(ε)

≤ ε

2

∥∥∥Σ1/2
∥∥∥4
· 3n

2λ
3/2
2 (T (x))

+ o(ε).
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Note that the last inequality holds since ||x|| ≤ 1 for all x ∈ ∆n−1. On the other hand,

g2(x+ εv)Tv − g2(x)Tv

= vTΣ1/2(T 1/2(x+ εv))†Σ1/2(x+ εv)− vTΣ1/2(T 1/2(x))†Σ1/2x

= vTΣ1/2P

(
0 0T

0
(
Λ(x) +Ev(ε,x)

)−1/2

)
P TΣ1/2(x+ εv)

−vTΣ1/2P

(
0 0T

0 Λ(x)−1/2

)
P TΣ1/2x

= vTΣ1/2P

(
0 0T

0 L−1/2

(
Λ(x),Ev(ε,x)

) )P TΣ1/2x

+εvTΣ1/2P

(
0 0T

0 Λ(x)−1/2

)
P TΣ1/2v + o(ε).

Therefore, we have

∥∥g2(x+ εv)Tv − g2(x)Tv
∥∥

≤

∥∥∥∥∥vTΣ1/2P

(
0 0T

0 L−1/2

(
Λ(x),Ev(ε,x)

) )P TΣ1/2x

∥∥∥∥∥
+ε

∥∥∥∥∥vTΣ1/2P

(
0 0T

0 Λ(x)−1/2

)
P TΣ1/2v

∥∥∥∥∥+ o(ε)

≤ ‖x‖
∥∥∥Σ1/2

∥∥∥2 ∥∥L−1/2

(
Λ(x),Ev(ε,x)

)∥∥+ ε
∥∥∥Σ1/2

∥∥∥2 ∥∥∥Λ(x)−1/2
∥∥∥+ o(ε)

≤
∥∥∥Σ1/2

∥∥∥2
· n||Ev(ε,x)||

2λ
3/2
2 (T (x))

+ ε
∥∥∥Σ1/2

∥∥∥2 n

λ2(T (x))1/2
+ o(ε)

≤ ε
∥∥∥Σ1/2

∥∥∥4
· 3n

2λ
3/2
2 (T (x))

+ ε
∥∥∥Σ1/2

∥∥∥2 n

λ2(T (x))1/2
+ o(ε).

In addition, from Lemma 3.5.2 and Lemma 3.5.3, we have

λ2(T (x)) = λ2(Σ1/2S(x)Σ1/2) ≥ λ1(Σ1/2Diag(x)Σ1/2) ≥ xminσ1 > 0.
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Therefore, we have

∣∣f ′′x,v(0)
∣∣ =

∣∣∣∣ lim
ε→0+

g1(x+ εv)Tv − g1(x)Tv + g2(x+ εv)Tv − g2(x)Tv

ε

∣∣∣∣
≤

∣∣∣∣ lim
ε→0+

g1(x+ εv)Tv − g1(x)Tv

ε

∣∣∣∣+

∣∣∣∣ lim
ε→0+

g2(x+ εv)Tv − g2(x)Tv

ε

∣∣∣∣
≤ 9n

4λ
3/2
2 (T (x))

∥∥∥Σ1/2
∥∥∥4

+
n

λ2(T (x))1/2

∥∥∥Σ1/2
∥∥∥2

≤ 9n

4(xminσ1)3/2

∥∥∥Σ1/2
∥∥∥4

+
n

(xminσ1)1/2

∥∥∥Σ1/2
∥∥∥2
.

2

Remark 3.5.5 Theorem 3.5.4 develops an upper bound for the absolute value of the

second order derivatives in direction v ∈ ∆n−1. The significance of the theorem is that

the second order derivative of V (x) is bounded for all points x ∈ int(∆n−1), with the

bound associated with the minimum components of x.



Chapter 4

Analysis of Discrete Choice

Models: A Welfare-Based

Approach

Based on the observation that many existing discrete choice models admit a welfare

function of utilities whose gradient gives the choice probability vector, we propose a new

perspective to view choice models by treating the welfare function as the primitive. We

call the resulting choice model the welfare-based choice model. The welfare-based choice

model is meaningful on its own by providing an alternative way to construct choice

models. Moreover, it provides considerable convenience in analyzing the connections

among existing choice models. By using convex analysis theory, we prove that the

welfare-based choice model is equivalent to the representative agent choice model and

the semi-parametric choice model, thus establishing the equivalence of the latter two as

well. We show that these three models are all strictly more general than the random

utility model. In case when there are only two alternatives, those four models are

equivalent. Moreover, the welfare-based choice model subsumes the nested logit model

with positive dissimilarity parameters. We then introduce a new notion for choice

modeling: substitutability/complementarity between alternatives. We show that the

random utility model only allows substitutability between different alternatives, while

the welfare-based choice model allows more flexible substitutability/complementarity

57
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patterns. We argue that such flexibility is desirable in capturing certain practical choice

patterns, such as the halo effects. We also present ways to construct new choice models

using our approach.

4.1 Research Questions and Main Contribution

In the previous chapter, we established a closed-form representative agent model for the

CMM model. Together with the MDM and MMM model proposed in Natarajan et al.

(2009), we understand that most of the existing semi-parametric choice models can be

reformulated as representative agent models. This motivates us to study the relations

between these two models. In particular, we try to answer the following questions in

this chapter:

1. What is the relation between the representative agent model and the semi-parametric

model? It has been shown that for several special cases, the semi-parametric mod-

el can be represented as a representative agent model. However, it is unknown

whether this is generally true or not.

2. It is known that both the representative agent model and the semi-parametric

model are more general than the random utility model. What exactly is the

distinction between these models?

3. What choice pattern is restricted in the random utility model? Can we easily

construct choice models that relax those restrictions?

In this chapter, we present precise answers to the above questions. We view from

another perspective of choice models and consider a welfare-based approach. The welfare-

based approach is based on the observation that many existing choice models take the

form of mapping a utility vector to a probability vector and admit a welfare function

of the utilities whose gradient gives the choice probability vector. By summarizing

properties that are satisfied by welfare functions of existing choice models, we define

the class of welfare-based choice models. We show that the welfare-based choice model is

not only meaningful on its own, but also offer considerable convenience in establishing

connections among existing choice models.
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First, by using the welfare-based choice model as an intermediate model, we show

that the classes of choice models defined by: 1) the welfare-based choice model, 2)

the representative agent model and 3) the semi-parametric model, are the same. More

precisely, under mild regularity assumptions, given any of the following three: a choice

welfare function (which defines a welfare-based choice model), a regularization function

(which defines a representative agent model) or a distribution set (which defines a semi-

parametric model), one can construct the other two to define exactly the same choice

model. This means that the class of representative agent models and the class of semi-

parametric models are equivalent to each other, which is somewhat surprising because

they appears to have originated from very different sources. In addition, our proof of the

equivalence of these three models is constructive, therefore, it gives a way to convert

one model to another constructively, potentially alleviating the pain of establishing

correspondences in a case by case manner as is done in the literature.

Second, we study the relation between the above three models and the random

utility model. We show that when there are only two alternatives, the random utility

model is equivalent to the above three models. We also demonstrate that this is not

true in general if there are more than two alternatives, in which case the above three

models strictly subsume the random utility model. In particular, we point out the exact

distinction between these three models and the random utility model, which lies in the

higher-order derivatives of the choice function.

Finally, by examining the difference between the welfare-based choice model and

the random utility model, we identify an important property that is restricted in the

random utility model but is flexible in the other three models. We call the property

substitutability and complementarity of alternatives. Specifically, this property examines

whether the choice probability of another alternative will increase or decrease when the

utility of one alternative increases. We show that random utility models only allow

substitutability between alternatives. However, in certain applications, it might be

desirable to allow some alternatives to exhibit complementarity in certain range, in

order to explain certain phenomenon observed in practice, such as the halo effect (or

the synergistic effect). Therefore, we derive conditions under which a choice model

exhibits substitutable/complementary properties. In addition, we show a few examples

of choice models that allow complementarity between alternatives (in a certain range)
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and propose a few ways to construct choice models with complementary patterns. As

far as we know, this is the first formal study of such properties in choice models, and

we believe that this study will open new possibilities in the design of choice models by

enlarging its horizon and capturing more practical choice patterns.

The remainder of this chapter is organized as follows. In Section 4.2, we define the

welfare-based choice model and study its relation with other choice models. In Section

4.3, we study the relation between the welfare-based choice model and the random utility

model. In Section 4.4, we propose the concept of substitutability and complementarity

between choice alternatives and derive conditions under which each model exhibits such

properties. We show some examples of non-substitutable choice models as well as ways

to construct them in Section 4.5. We conclude the chapter in Section 4.6. All the proofs

in this chapter are relegated to Section 4.7.

4.2 Welfare-Based Choice Model

In this section, we propose an approach to unify the various choice models reviewed

in Chapter 2. We first notice that although the choice models reviewed in Chapter 2

are based on different ideas, they are all essentially functions from a vector of utilities

µ to a vector of choice probabilities q(µ). Moreover, each of these models allows a

welfare function w(µ) that captures the expected utility an individual can get from the

choice model, and the choice probability vector can be viewed as the gradient of w(µ)

with respect to µ. Our proposed approach is based on these observations. We start by

making the following definition:

Definition 5 (Choice Welfare Function) Let w(µ) be a mapping from Rn to R̄. We

call w(µ) a choice welfare function if w(µ) satisfies the following properties:

1. (Monotonicity): For any µ1, µ2 ∈ Rn and µ1 ≥ µ2, w(µ1) ≥ w(µ2);

2. (Translation Invariance): For any µ ∈ Rn, t ∈ R, w(µ+ te) = w(µ) + t;

3. (Convexity): For any µ1, µ2 ∈ Rn and 0 ≤ λ ≤ 1, λw(µ1) + (1 − λ)w(µ2) ≥
w(λµ1 + (1− λ)µ2).

In addition to the three properties, if w(µ) is also differentiable, then we call w(µ) a

differentiable choice welfare function.



61

Here we make a few comments on the three conditions in Definition 5. The mono-

tonicity condition is straightforward. It requires that the welfare is higher if all alter-

natives have higher deterministic utilities. The translation invariance property requires

that if the deterministic utilities of all alternatives increase by a certain amount t, then

the choice welfare function will increase by the same amount. This is reasonable given

that choice is about relative preferences, therefore, increasing the utilities of all alterna-

tives by the same amount will not change the relative preferences but will only increase

the welfare by the amount of the increment. We will see later that this condition is

necessary to guarantee well-defined choice probabilities. The last condition of convexity

basically states that the average welfare at two utility vectors is greater than the welfare

at the average utility vector. If we view the welfare as the maximal utility one can ob-

tain from the alternatives, then this property is equivalent to saying that the weighted

optimal value of two maximization problems (of the utilities of the alternatives) is larger

than the optimal value of the weighted one, which is true since the maximal operator

is a convex one.

In the following, we show that a choice welfare function has two equivalent repre-

sentations: a convex optimization representation and a semi-parametric representation.

This result will be instrumental for us to derive the relations among choice models.

Theorem 4.2.1 The following statements are equivalent:

1. w(µ) is a choice welfare function;

2. There exists a convex function V (x) : ∆n−1 7→ R̄ such that

w(µ) = max
{
µTx− V (x)

∣∣x ∈ ∆n−1

}
; (4.1)

3. There exists a distribution set Θ such that

w(µ) = sup
θ∈Θ

Eε∼θ
[
max
i∈N

µi + εi

]
. (4.2)

The proof of Theorem 4.2.1 uses several results in convex analysis and optimization.

In the following, we establish its implication to discrete choice models. In this chapter,

we refer to discrete choice models as the entire set of functions q(µ) : Rn 7→ ∆n−1,
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mapping a utility vector to a choice probability vector. We first propose the following

choice model based on the choice welfare function:

Definition 6 (Welfare-based Choice Model) Suppose w(µ) is a differentiable choice

welfare function. Then the welfare-based choice model derived from w(µ) is defined by

q(µ) = ∇w(µ). (4.3)

Note that when w(·) is differentiable, we have ∇w(µ) ∈ ∆n−1 by the translation

invariance property of w(µ). Therefore q(µ) defined by (4.3) is indeed a valid choice

model. Next we show the equivalence of various choice models. We first introduce the

following definitions (see Rockafellar 1974):

Definition 7 (Proper Function) A function f : X 7→ R̄ is proper if f(x) < ∞ for

at least one x ∈ X and f(x) > −∞ for all x ∈ X.

Definition 8 (Essentially Strictly Convex Function) A proper convex function f

on Rn is essentially strictly convex if f is strictly convex on every convex subset of

dom(∂f) =
{
x
∣∣ ∂f(x) 6= φ

}
,

where ∂f(x) is the set of subgradients of f at x, and φ is the empty set.

Note that any strictly convex function is essentially strictly convex. Next we have

the following theorem:

Theorem 4.2.2 For a choice model q : Rn 7→ ∆n−1, the following statements are

equivalent:

1. There exists a differentiable choice welfare function w(µ) such that q(µ) = ∇w(µ);

2. There exists an essentially strictly convex function V (x) such that

q(µ) = arg max
{
µTx− V (x)

∣∣∣x ∈ ∆n−1

}
;
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3. There exists a distribution set Θ such that

q(µ) = ∇µ
{

sup
θ∈Θ

Eθ
[
max
i∈N

µi + εi

]}
.

The next corollary follows immediately from Theorem 4.2.2 and Propositions 2.2.1

and 2.2.2.

Corollary 4.2.3 Let q(µ) be a random utility model with absolutely continuous dis-

tribution θ and w(µ) be the corresponding expected utility an individual can get under

this model. Then w(µ) is a differentiable choice welfare function, and q(µ) = ∇w(µ).

Moreover, the reverse statement is not true, i.e., there exists a differentiable choice

welfare function w(µ) such that there is no random utility model that gives the choice

probability q(µ) = ∇w(µ).

In Theorems 4.2.1 and 4.2.2, with the help of the welfare-based choice model, we

establish the connection between two existing choice models, the representative agent

model and the semi-parametric model. In particular, we show that those two classes

of choice models are equivalent. This result explains the prior results that for every

known semi-parametric model, there is a corresponding representative agent model. In

addition, it asserts that the reverse is also true, which is quite surprising in some sense.

Therefore, in terms of the scope of choice models that can be captured, those three

models (the welfare-based choice model, the representative agent model and the semi-

parametric model) are the same. We believe this result is useful for the theoretical study

of discrete choice models.

In light of the equivalence of the three classes of choice models, we could have more

versatile ways to construct a choice model. In particular, we can pick any of the three

representations to start with. For the welfare-based choice model, one needs to choose a

choice welfare function w(µ) which satisfies the three conditions. For the representative

agent model, one needs to choose a (strictly) convex regularization function. And for the

semi-parametric model, one needs to choose a set of distributions. In different situations,

it might be easier to use one representation than the other in order to capture certain

properties of the choice model. In addition, by Corollary 4.2.3, the welfare-based choice

model strictly subsumes the random utility model, thus it is possible to construct new
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choice models that have certain interesting properties that a random utility model could

not accommodate. We will further study this issue in Sections 4.3 and 4.4.

The next theorem studies one desirable property of choice models and investigates

how it can be reflected to the construction of the three choice models. We start with

the following definition:

Definition 9 (superlinear choice welfare function) A differentiable choice welfare

function w(µ) is called superlinear if there exist bi, i = 1, ..., n, such that for any µ ∈ Rn:

w(µ) ≥ µi + bi, ∀ i = 1, ..., n.

This property is desirable in most applications. It requires that the utility one can

get from a set of alternatives is not much less than the utility of each alternative. After

all, for each alternative i, one can always choose it and obtain the corresponding utility.

We have the following theorem:

Theorem 4.2.4 For a choice model q : Rn 7→ ∆n−1, the following statements are

equivalent:

1. There exists a superlinear differentiable choice welfare function w(µ) such that

q(µ) = ∇w(µ);

2. There exists an essentially strictly convex function V (x) that is upper bounded on

∆n−1 such that

q(µ) = arg max
{
µTx− V (x)

∣∣∣x ∈ ∆n−1

}
;

3. There exists a distribution set Θ containing only distributions with finite expecta-

tion (i.e., Eθ|εi| <∞ for all i and θ ∈ Θ) such that

q(µ) = ∇µ
{

sup
θ∈Θ

Eθ
[
max
i∈N

µi + εi

]}
.

Moreover, if either of the above cases holds, then q(µ) can span the whole simplex, i.e.,

for all x in the interior of ∆n−1, there exists µ such that q(µ) = x.
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Theorem 4.2.4 further develops the equivalence of choice models obtained in The-

orem 4.2.2 by narrowing down the discussion to welfare-based choice models with the

superlinear property. In particular, we find that a superlinear differentiable choice wel-

fare function has a semi-parametric representation, of which the distribution set only

contains distributions with finite expectation, a property that is desirable in practice.

The last statement that q(µ) spans the whole simplex is related to the results in Hof-

bauer and Sandholm (2002), Norets and Takahashi (2013) and Mishra et al. (2014).

These papers provide conditions under which q(µ) defined from the RUM or the MD-

M can span the whole simplex. Theorem 4.2.4 extends these results to more general

conditions.

4.3 Relation to the Random Utility Model

In the last section, we proposed the welfare-based choice model. In particular, by

Corollary 4.2.3, the class of welfare-based choice models strictly subsumes the random

utility model. In this section, we investigate further the relation between the welfare-

based choice model and the random utility model. In particular, we study under what

conditions a welfare-based choice model can be equivalently represented by a random

utility model. This study will help us understand clearly the relations between various

choice models and the random utility model and design new choice models that do not

necessarily have a random utility representation.

First, we show that when there are only two alternatives, the class of random utility

models is equivalent to the class of welfare-based choice models.

Theorem 4.3.1 For any differentiable choice welfare function w(µ1, µ2), there exists a

distribution θ of {ε1, ε2} such that:

w(µ1, µ2) = Eθ[max{µ1 + ε1, µ2 + ε2}]. (4.4)

In addition, if w(µ1, µ2) is superlinear, then there exists a distribution θ with finite

expectation (i.e., Eθ|ε1| <∞ and Eθ|ε2| <∞) that satisfies (4.4).

By Proposition 2.2.2, when n ≥ 4, the welfare-based choice model strictly subsumes

the random utility model. In fact, as we will see in some examples later (Examples
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4.5.4, 4.5.6 and 4.5.7 in Section 4.5), this is also true for n = 3. In light of this relation

between these two classes of choice models, it would be interesting to know exactly the

difference between them. In other words, it would be interesting to know what property

is restricted in the random utility model but not in the welfare-based choice model,

as we shall proceed next. The following result is a direct consequence of the result in

McFadden (1980) (as well as Williams 1977 and Daly and Zachary 1978):

Proposition 4.3.2 Let w(µ) : Rn 7→ R be a differentiable function. Then ∇w(µ) is

consistent with a random utility model if and only if w(·) satisfies the monotonicity,

translation invariance, convexity properties, and for any k ≥ 1 and i1, ..., ik all distinct,

(−1)k
∂kw(µ)

∂µi1 · · · ∂µik
≤ 0.

Proposition 4.3.2 is also known as the Williams-Daly-Zachary theorem in the lit-

erature. By Proposition 4.3.2 and the above discussions, the difference between a

random utility model and a welfare-based choice model (thus also the representative

agent model and the semi-parametric model by Theorem 4.2.2) lies in the requirement

on the higher-order derivatives of w(·). In particular, a random utility model requires

that the higher-order cross-partial derivatives of w(·) have alternating signs, while the

welfare-based choice model only requires that the Hessian matrix of w(·) be positive

semidefinite, and there is no requirement on other higher-order derivatives. This char-

acteristic helps us better understand the difference between those models and later

construct choice models with new properties.

Remark. Note that when n = 2, for any welfare-based choice model with choice

welfare function w(·), we have ∂w(µ)
∂µ1

+ ∂w(µ)
∂µ2

= q1(µ) + q2(µ) = 1. By taking another

derivative with respect to µ1, we have ∂2w(µ)
∂µ2

1
+ ∂2w(µ)

∂µ1∂µ2
= 0. Since ∂2w(µ)

∂µ2
1
≥ 0 by the

convexity of w(·), we get ∂2w(µ)
∂µ1∂µ2

≤ 0 when n = 2. Thus by Proposition 4.3.2, any welfare-

based choice model is also a random utility model when n = 2, which is consistent with

Theorem 4.3.1.
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4.4 Substitutability and Complementarity of Choices

In the previous section, we have seen that the distinction between the welfare-based

choice model and the random utility model lies in the property of the higher-order

derivatives of the choice welfare function. In particular, the random utility model has

stronger requirements on the higher-order derivatives. In this section, we will discuss

more in depth the practical meaning of such properties. We introduce two concepts,

which we call the substitutability and complementarity of choices. We show that if

a choice model is derived from a random utility model, then the alternatives can only

exhibit substitutability. However, the welfare-based choice model allows for more flexible

substitutability or complementarity patterns. We also show how this property can be

reflected through the choice welfare function in a welfare-based choice model or through

the regularization term in a representative agent model. Before we formally introduce

these two notions, we first introduce the definition of local monotonicity:

Definition 10 (local monotonicity) A function f(x) : R 7→ R is locally increasing

at x if there exists δ > 0 such that

f(x− h) ≤ f(x) ≤ f(x+ h), ∀ 0 < h < δ.

Similarly, f(x) is locally decreasing at x if there exists δ > 0 such that

f(x− h) ≥ f(x) ≥ f(x+ h), ∀ 0 < h < δ.

Now we introduce the definition of substitutability and complementarity in choice

models:

Definition 11 Consider a choice model q(µ) : Rn 7→ ∆n−1. For any fixed µ and

i, j ∈ N :

1. (Substitutability) If qj(µ) is locally decreasing in µi at µ, then we say alternative

i is substitutable to alternative j at µ. Furthermore, if qj(µ) is locally decreasing

in µi for all µ, then we say alternative i is substitutable to alternative j;

2. (Complementarity) If qj(µ) is locally increasing in µi at µ, then we say alternative

i is complementary to alternative j at µ. Furthermore, if qj(µ) is locally increasing
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in µi for all µ, then we say alternative i is complementary to alternative j.

3. (Substitutable and Non-Substitutable Choice Model) If alternative i is substitutable

to alternative j for all i 6= j, then we say q(µ) is a substitutable choice model.

Otherwise, we say q(µ) is a non-substitutable choice model.

We note that the complementarity property is closely related to the halo effect,

which is first conceptualized in Thorndike (1920). The halo effect is a cognitive bias in

which an observer’s overall impression of a person, a company, a brand or a product

influences the observer’s feelings and thoughts about that entity’s character or properties

(see McShane and Von Glinow 2015). For a comprehensive review and discussion about

the halo effect, we refer the readers to Rosenzweig (2014). In the context of consumer

theory and marketing, the halo effect is the phenomenon that the choice probabilities

of certain existing products increase after a new product (usually of the same brand)

is introduced.1 In a choice model that maps a vector of utilities to a vector of choice

probabilities, introducing a new product can be viewed as increasing the utility of that

product from −∞ to some finite value. Therefore, the notion of complementarity defined

in Definition 11 provides an alternative characterization of the halo effect in the context

of choice modeling. We believe that this notion could provide new insights on such

phenomena.

In the following, we investigate some basic facts about substitutability and comple-

mentarity.

Proposition 4.4.1 Consider a choice model q(µ) : Rn 7→ ∆n−1 that is derived from

a differentiable choice welfare function w(µ). For any i, alternative i must be com-

plementary to itself. Furthermore, if w(µ) is second-order continuously differentiable

and alternative i is substitutable (complementary, resp.) to alternative j at µ, then

alternative j must be substitutable (complementary, resp.) to alternative i at µ.

Proposition 4.4.1 implies that when w(µ) is second-order continuously differentiable,

the substitutability (complementarity, resp.) property is a reciprocal property. In these

cases, we shall say i and j are substitutable (complementary, resp.) in the subsequent

discussions.

1Such phenomenon is also called the synergistic effect, see Davis et al. (2014).
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In the following, we investigate the substitutability and complementarity of choice

models. First we show that random utility models are all substitutable:

Theorem 4.4.2 Any random utility model q(µ) is a substitutable choice model.

Theorem 4.4.2 directly follows from Proposition 4.3.2. It states that in a random

utility model, if the utility of one alternative increases while the utilities of all other

alternatives stay the same, then it must be that the choice probabilities of all other

alternatives decrease. This is plausible intuitively, especially if µ is interpreted as how

much a consumer values each product. However, as we show in the following example,

sometimes it might be desirable to allow different alternatives to exhibit certain degrees

of complementarity. This is especially true if we allow more versatile interpretations of

the utility µ.

Example 4.4.3 Suppose a customer is considering to buy a camera from the following

three alternatives: a Canon-A model, a Canon-B model and a Sony-C model. On a

certain website, there are customer review scores for each model, which we denote by

v1, v2 and v3, respectively. We assume that the customer’s choice is solely based on

those review scores (suppose other factors are fixed). That is, the choice probability q is

a function of v = (v1, v2, v3). Suppose at a certain time, a new review for the Canon-A

model comes in, rating it favorably. How would it change the purchase probability of the

Canon-B model?

The answer to the above question may depend. There might be two forces. On

one hand, due to a new favorable rating given to the Canon brand, the probability of

choosing the Canon-B model might increase. On the other hand, the favorable rating

for the Canon-A model might switch some customers from the Canon-B model to the

Canon-A model. Either force might be dominant in practice. If the former force is

stronger, then it is plausible that one additional favorable rating for the Canon-A model

might increase the choice probability of the Canon-B model (this scenario can be viewed

as a case of the halo effect). 2

The above example illustrates that sometimes it might be desirable to have a choice

model in which a certain pair of alternatives exhibit complementarity. One may notice

that the above example may be reminiscent of the nested logit model, in which the
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customers first choose a nest (in this case, the brand), and then choose a particular

product. When increasing the utility of another product in the same nest, the tradeoff

is between the probability of choosing the nest (which will be higher) and the probability

of choosing the individual product given that the nest is chosen (which will be lower).

However, we note that the nested logit model with dissimilarity parameters within (0, 1]

is essentially a random utility model (with the randomness ε chosen to be an extreme

value distribution, see, e.g., Anderson et al. 1992). Therefore, it is impossible to capture

complementarity between alternatives through such a nested logit model. In Section 6,

we show that complementarity of alternatives can be captured through a general nested

logit model, in which the dissimilarity parameters are allowed to be greater than one.

We also show other ways to construct choice models with complementarity property

through our welfare-based approach.

Before we end this section, we study conditions for a choice model to be substi-

tutable or non-substitutable. In the following discussion, we only consider choice mod-

els q(µ) that are derived from differentiable choice welfare functions w(µ). We provide

necessary (sufficient, resp.) conditions for a choice model to be substitutable, and con-

sequently also obtain sufficient (necessary, resp.) conditions for a choice model to be

non-substitutable. We first review the concepts of supermodularity and submodularity:

Definition 12 (Supermodularity and Submodularity) A function f : Rn 7→ R ∪
{∞} is called supermodular if for any x,y ∈ Rn, f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y),

where x ∨ y and x ∧ y denote the componentwise maximum and minimum of x and y,

respectively. A function f : Rn 7→ R∪{−∞} is called submodular if −f is supermodular.

We have the following theorem:

Theorem 4.4.4 Consider a choice model q(µ) : Rn 7→ ∆n−1 that is derived from a

differentiable choice welfare function w(µ). Then

1. q(µ) is a substitutable choice model if and only if w(µ) is submodular.

2. If q(µ) is a substitutable choice model, then there exists an essentially strictly

convex V (·) with V̄i(·) supermodular on Rn−1 for all i, such that

q(µ) = arg max
{
µTx− V (x)

∣∣∣x ∈ ∆n−1

}
,
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where

V̄i(z) =

 V
(
z1, z2, ..., zi−1, 1−

∑n−1
j=1 zj , zi, ..., zn−1

)
, if eTz ≤ 1 and z ≥ 0,

+∞, otherwise.

Furthermore, the reverse is true if n = 3.

Theorem 4.4.4 provides some sufficient and necessary conditions for q(µ) to be

substitutable. We note that the supermodularity of V̄i(·) has nothing to do with the

supermodularity of V (·). In fact, since V (x) is only defined on ∆n−1, it can always be

extended to a supermodular function in Rn by defining V (x) = +∞ for all x /∈ ∆n−1.

The definition of V̄i(·) reduces a redundant variable in V (·), making the operations

“x ∨ y” and “x ∧ y” meaningful.

Next we provide an easy-to-check sufficient condition for a choice model to be sub-

stitutable. We note that in the MDM and the MMM introduced in Propositions 2.3.1

and 2.3.2, the corresponding V (·)s are separable. The following theorem shows that

choice models derived from such V (·)s are always substitutable:

Theorem 4.4.5 If V (x) =
∑

i∈N Vi(xi) on ∆n−1 where Vi(xi) : [0, 1] 7→ R is a strictly

convex function for all i ∈ N . Then q(µ) defined by

q(µ) = arg max
{
µTx− V (x)

∣∣x ∈ ∆n−1

}
(4.5)

is a substitutable choice model.

Now we have obtained some general conditions for a choice model to be substitutable/non-

substitutable. In the next section, we will discuss several concrete examples of non-

substitutable choice models as well as ways to construct them. As we will see, such

choice models have the potential to capture more flexible choice patterns, thus may be

of interest in practice.
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4.5 Examples and Constructions of Non-Substitutable Choice

Models

In this section, we show different ways of constructing non-substitutable choice models.

Some specific models are presented as examples to show how they could be used to

explain certain choice scenarios in practice.

4.5.1 General Nested Logit model

The nested logit model, first proposed in Ben-Akiva (1973), is perhaps the most widely

used choice model other than the MNL model. In this model, it is assumed that the

set of alternatives is partitioned into K subsets (nests) denoted by B1, B2, ..., BK . The

probability of choosing alternative i, given that i ∈ Bk is

qnl
i (µ) =

exp(µi/λk)
(∑

j∈Bk exp(µj/λk)
)λk−1

∑K
l=1

(∑
j∈Bl exp(µj/λl)

)λl , (4.6)

where λk is called the dissimilarity parameter for the k-th nest. Train et al. (1987) in-

terpret the dissimilarity parameters as a measure of substitutability among alternatives:

if λk ∈ (0, 1), then the substitution is greater within nests than across nests, while if

λk > 1, then the substitution is greater across nests than within nests. In addition, in

the nested logit model, the independent of irrelevant alternatives (IIA) property holds

within each nest, but not across nests. The following result by McFadden (1977) states

that λk must lie in the unit interval in order for the nested logit model to be consistent

with the RUM.

Lemma 4.5.1 (McFadden 1977) The nested logit model qnl(µ) is consistent with the

RUM for all µ ∈ Rn if and only if λk ∈ (0, 1] for all k = 1, ...,K.

There have been many studies on the case where λk is greater than one for some k. Most

of those studies focus on how to relate this case with the RUM. For example, Börsch-

Supan (1990) show that qnl(µ) is consistent with the RUM for certain ranges of µ.

Kling and Herriges (1995) and Herriges and Kling (1996) provide tests for consistency

of the nested logit model with utility maximization. Train et al. (1987), Lee (1999),
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Tiwari and Hasegawa (2004) and Yates and Mackay (2006) fit the nested logit model

to consumer data and show that λk could be indeed greater than one in real data set.

When λk > 1 for some k, the nested logit model can possess some interesting

properties. In particular, when a new product is introduced to a nest k with λk > 1,

the probability of choosing certain existing products in that nest may increase in some

circumstances, thus certain pairs of products may exhibit complementarity relationship

(see Davis et al. 2014). In fact, as the next proposition shows, complementarity property

exists in any nested logit model with certain dissimilarity parameter greater than one.

Proposition 4.5.2 Consider a nested logit model with at least two nests. For any nest

k with dissimilarity parameter λk > 1 and any two distinct alternatives i and j in that

nest, there always exists µ ∈ Rn such that
∂qnl
i (µ)
∂µj

> 0.

One implication of Proposition 4.5.2 is that it provides an alternative proof that

the nested logit model is not consistent with the RUM if some dissimilarity parameters

exceed one. Nevertheless, we show next that the nested logit model is always consistent

with the welfare-based choice model. We have the following result:

Proposition 4.5.3 The nested logit model with λk > 0 for all k = 1, ...,K is a welfare-

based choice model with the choice welfare function defined as

wnl(µ) = log

 K∑
k=1

∑
i∈Bk

exp(µi/λk)

λk
 .

In addition, it can be expressed as a representative agent model with

V nl(x) =
K∑
k=1

(1− λk)
∑
i∈Bk

xi log

∑
j∈Bk

xj

+ λk
∑
i∈Bk

xi log xi

 .

We note that the function V nl(x) appears in Verboven (1996) when the author s-

tudies the nested logit model with dissimilarity parameters less than one. However,

the discussion does not cover whether the convexity of V nl(x) still holds when some

dissimilarity parameters exceed one. Therefore, it was not clear whether V nl(x) contin-

ues to hold for the representative agent form for that case. Proposition 4.5.3 gives an
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affirmative answer to this question, thus providing a complete characterization of the

nested logit model for all positive dissimilarity parameters.

Before we end this section, we show an example of a nested logit choice model

with some dissimilarity parameters greater than one. In particular, we illustrate the

complementarity property in such a model as well as the different representations based

on Proposition 4.5.3.

Example 4.5.4 We consider a nested logit model with three products and two nest-

s. The first nest, with dissimilarity parameter λ1 = 2, consists of products 1 and 2;

while the second nest, with dissimilarity parameter λ2 = 1, only consists of produc-

t 3. From Proposition 4.5.3, the choice welfare function for this model is wnl(µ) =

log
(

(exp(µ1/2) + exp(µ2/2))2 + exp(µ3)
)

, and the corresponding regularization term

in the representative agent model is V nl(x) = −(x1 + x2) log (x1 + x2) + 2(x1 log x1 +

x2 log x2) + x3 log x3. The choice probability of product 1 is given by:

q1(µ) =
exp(µ1/2)(exp(µ1/2) + exp(µ2/2))

(exp(µ1/2) + exp(µ2/2))2 + exp(µ3)
.

We note that ∂q1(µ)
∂µ2

> 0 is equivalent to exp(µ1/2) + exp(µ2/2) < exp(µ3/2).

In Figure 4.1, fixing µ3 = 3, we show the regions in which ∂q1(µ)
∂µ2

> 0 (product-

s 1 and 2 are complementary) or ∂q1(µ)
∂µ2

< 0 (products 1 and 2 are substitutable).

Now we relate this model to Example 4.4.3 and provide some explanations. Consid-

er products 1 and 2 in this model to be the Canon-A and Canon-B models in Exam-

ple 4.4.3 respectively, and product 3 to be the Sony-C model. Then this model will

capture a scenario in which when the reviews of the Canon brand are generally low

(exp(µ1/2) + exp(µ2/2) < exp(µ3/2)), increasing the review score of one Canon model

will have significant impact on its brand image, thus will increase the demand of the

other Canon model. However, when some Canon models have already received high re-

view score (exp(µ1/2) + exp(µ2/2) > exp(µ3/2)), this brand effect dwindles, and the

two products become substitutable to each other. We believe this model provides some

plausible explanation to the situation described in Example 4.4.3. 2

In addition, Example 4.5.4 shows that even when n = 3, there exist welfare-based

choice models that do not have a random utility representation (remember all random
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Figure 4.1: Substitutability/Complementarity for Different Values of (µ1, µ2) in Exam-
ple 4.5.4 (µ3 = 3)

utility models are substitutable choice models). Therefore, the welfare-based choice

model (thus also the representative agent model and the semi-parametric choice model)

strictly subsumes the random utility model, even for n = 3. This result is an extension

of the result obtained by Hofbauer and Sandholm (2002), which only showed the result

for n ≥ 4.

Finally we note that the results on the one level nested logit model could be extended

to the case of d-level nested logit model. We omit the formal discussion here and leave

it for future research.
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4.5.2 Quadratic Regularization

Another way to generate non-substitutable choice models is to start from the represen-

tative agent model and to choose V (·) as a convex quadratic function. Remember that

V (·) has to be a convex function in the representative agent model. Thus, a convex

quadratic function could be used as an approximation. We have the following proposi-

tion about the substitutability and complementarity in such models.

Proposition 4.5.5 Consider a choice model q(µ) = arg max
{
µTx− V (x)

∣∣x ∈ ∆n−1

}
with V (x) = xTAx strictly convex with A � 0. If the choice model is substitutable,

then Ajk−Aik−Aij +Aii ≥ 0 for all distinct i, j, k ∈ N , where Aij is the (i, j)-th entry

of A. Furthermore, the reverse is true if n = 3.

By Proposition 4.5.5, we know that when n = 3 and V (x) = xTAx with A � 0,

the choice model defined by q(µ) = arg max
{
µTx− V (x)

∣∣x ∈ ∆n−1

}
is substitutable

if and only if

A12 +A33 ≥ A13 +A23, A13 +A22 ≥ A12 +A23 and A23 +A11 ≥ A12 +A13.

Note that the above condition is different from A being positive semidefinite. Indeed,

the following example shows a case where the choice model is not substitutable even if

V (x) is strictly convex and supermodular:

Example 4.5.6 Consider q(µ) = arg max
{
µTx− V (x)

∣∣x ∈ ∆n−1

}
, where V (x) =

xTAx with

A =


3 2 0

2 3 2

0 2 3

 � 0.

It is easy to see that V (x) is strictly convex and supermodular. However, it doesn’t

satisfy that A13 +A22 ≥ A12 +A23. By some further calculations, we obtain that

V̄2(z) = zT

(
2 −1

−1 2

)
z − [−2;−2]Tz + 3,

which is not supermodular.



77

Therefore q(µ) is not a substitutable choice model by Theorem 4.4.4. In fact, when

we fix µ2 = µ3 = 0 and plot the choice probabilities against µ1 in the range of values

[−2, 2] as shown in Figure 4.2, it is observed that q3 increases in µ1 in the range of

[−1.5,−1], i.e., alternative 3 is complementary to alternative 1 in that interval. 2
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Figure 4.2: Choice Probabilities in Example 4.5.6 with µ2 = µ3 = 0

4.5.3 Crossing Transformation

Next, we provide a systematic way to generate non-substitutable choice models from

existing substitutable choice models by using the welfare-based approach. Let A be an

m× n matrix with Aij ≥ 0 and Aen = em, where e` refers to an `-dimensional column

vector of ones. Given an existing choice welfare function w̄(·) : Rm 7→ R̄ and its choice

probabilities q̄(·), we can easily verify that

w(µ) = w̄(Aµ)
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is still a choice welfare function that maps Rn to R̄ and the corresponding welfare-based

choice model is

q(µ) = ∇w(µ) = AT∇w̄(Aµ) = AT q̄(Aµ).

By some calculation, we have:

∇2w(µ) = AT∇2w̄(Aµ)A.

Even if w̄(µ) is submodular, i.e., the off-diagonal entries of ∇2w̄(µ) are all nega-

tive, it is still possible to construct matrix A such that AT∇2w̄(Aµ)A has positive

off-diagonal entries. Therefore, by choosing some proper matrix A, we can construct

non-substitutable choice model w(µ) from substitutable choice model w̄(µ). We call

this method the crossing transformation and the corresponding matrix A the crossing

matrix.

In the following, we give an example of constructing a non-substitutable choice model

from the MNL model using the crossing transformation.

Example 4.5.7 Let w̄(x) = log (ex1 + ex2 + ex3 + ex4) be the choice welfare function

for an MNL model for 4 alternatives. Let the crossing matrix be

A =


1 0 0

0 1 0

0 0 1

0.5 0.5 0

 .

Then the new welfare-based choice model becomes:

w(µ) = log
(
eµ1 + eµ2 + eµ3 + e0.5(µ1+µ2)

)
.

It is easy to see that w(µ) is monotone, translation invariant and convex. Therefore

it is a choice welfare function. Also, it is differentiable with the corresponding choice



79

probability:

q(µ) =
1

eµ1 + eµ2 + eµ3 + e0.5(µ1+µ2)

(
eµ1 +

1

2
e0.5(µ1+µ2), eµ2 +

1

2
e0.5(µ1+µ2), eµ3

)
.

Furthermore, the second-order derivative of w(µ) with respect to µ1 and µ2 is

∂2w(µ)

∂µ1∂µ2
=
∂q1(µ)

∂µ2
=
∂q2(µ)

∂µ1
=
e0.5(µ1+µ2)(−eµ1 − eµ2 + eµ3 − 4e0.5(µ1+µ2))

4(eµ1 + eµ2 + eµ3 + e0.5(µ1+µ2))2
.

It is positive if and only if eµ3 ≥ 4e0.5µ1+0.5µ2 + eµ1 + eµ2. When µ3 = 3, this inequality

is satisfied in the region below the curve in Figure 4.3. Therefore, under this choice

model, when both µ1 and µ2 are small enough (compared to µ3), alternatives 1 and 2

are complementary. Otherwise, they are substitutable. Similar to the discussions in the

Example 4.5.4, this model could also provide an explanation to Example 4.4.3, in which

the substitutability and complementarity between products 1 and 2 depend on the current

review level of the brand. However, this model is different from that in Example 4.5.4

(they have a different choice welfare function).2

Finally, we note that this example shows that the RUM is not closed under the cross-

ing transformation, i.e., even if q̄(·) has an RUM representation, q(µ) may not. Thus,

the crossing transformation also provides a way of generating choice models outside the

random utility family.

4.6 Conclusion

In this chapter, we proposed a welfare-based approach to study discrete choice models.

We showed that the welfare-based choice model is equivalent to the representative agent

model and the semi-parametric model, thus establishing the equivalence between the

latter two. We also showed that the welfare-based choice model subsumes the random

utility model by relaxing its requirement on properties of higher-order cross-partial

derivatives of the choice welfare function. In particular, we showed that when there are

2In this case, it is possible to construct a crossing matrix A to make the resulting choice model
equivalent to that in Example 4.5.4, which is a nested logit model. However, we note that this is because
the dissimilarity parameters in Example 4.5.4 are all integers. In general, it is not always possible to
construct a nested logit model from an MNL model by only applying the crossing transformation.
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Figure 4.3: Substitutability/Complementarity for Different Values of (µ1, µ2) in Exam-
ple 4.5.7 (µ3 = 3)

only two alternatives, the welfare-based choice model is equivalent to the random utility

model. Furthermore, we introduced a new notion for choice models – substitutability

and complementarity – and showed that with the help of the welfare-based choice model,

we can construct choice models with complementary alternatives, thus enabling us to

capture more flexible choice patterns. We believe that this approach provides useful

insights for the study of choice models.

From an application perspective, we notice that the parameter estimation for discrete

choice models is a very important issue, attracting much attention in the literature. In

practice, with given data, it is likely that one will first choose a certain parametric model
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and then the parameter estimation problem will become a regression problem. In our

current work, the main focus is on the study of the theoretical relation between choice

models and the inherent choice patterns. We leave the parameter estimation problem

using the available data to be a future research topic.

4.7 Technical Proofs

Proof of Theorem 4.2.1: First we show that the w(µ) defined in (4.1) and (4.2) are

choice welfare functions. To see this, we note that the monotonicity and translation

invariance properties are immediate from (4.1) and (4.2). For the convexity, we note

that w(µ) defined in (4.1) is the supremum of linear functions of µ thus is convex in µ.

In (4.2), for each ε, maxi∈N {µi + εi} is a convex function in µ, and so is the expectation.

Therefore, if w(µ) is defined by (4.1) or (4.2), then it must be a choice welfare function.

Next we show the other direction. That is, if w(µ) is a choice welfare function,

then it can be represented in the form of (4.1) and (4.2). First we note that if a

choice welfare function w(µ) = +∞ for some µ, then for any µ′, we have w(µ′) ≥
w(µ+mini(µ

′
i−µi)e) = w(µ)+mini(µ

′
i−µi) = +∞, where the first inequality uses the

monotonicity property and the first equality uses the translation invariance property.

Thus w(µ) = +∞ for all µ. In that case, we can choose V (x) = −∞ and Θ = {θ∞}
where θ∞ is a singleton distribution taking value on (∞, ...,∞). Therefore, w(µ) can be

represented by (4.1) and (4.2) in that case. Similarly, if w(µ) = −∞ for some µ, then it

must be that w(µ) = −∞ for all µ, and we can take V (x) =∞ and Θ = {θ−∞}, where

θ−∞ is a singleton distribution on (−∞, ...,−∞). Therefore, w(µ) can be represented

in (4.1) and (4.2) in this case too.

In the remainder of the proof, we focus on the case where w(µ) is finite for all µ.

In this case, by Proposition 1.4.6 of Bertsekas (2003), w(µ) must be continuous. The

remainder of the proof is divided into two parts:

1. We show that any choice welfare function w(µ) can be represented by (4.1). Since

w(µ) is monotone and translation invariant, the following holds:

w(µ) = min
y

{
w(y) + max

i
{µi − yi}

}
= min

y

{
w(y) + max

x∈∆n−1

(µ− y)Tx

}
.
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Here the first equality holds since for any y,

w(µ) = w(µ−max
i
{µi − yi} e) + max

i
{µi − yi}

by the translation invariance property. Furthermore, by the monotonicity property,

w(µ−max
i
{µi − yi} e) ≤ w(y)

and the equality holds when y = µ.

Next we define L(x,y) = w(y) + (µ− y)Tx. We have for fixed x, L(x, ·) is convex

in y (by the convexity of w(·)); and for fixed y, L(·,y) is convex and closed in x.

Furthermore,

inf
y

max
x∈∆n−1

L(x,y) = w(µ) <∞

and the function q(u) = infy maxx∈∆n−1

{
L(x,y)− uTx

}
= w(µ − u) is continuous.

Therefore, by Proposition 2.6.2 of Bertsekas (2003), the minimax equality holds, i.e.,

inf
y

max
x∈∆n−1

L(x,y) = max
x∈∆n−1

inf
y
L(x,y).

Therefore, we have:

w(µ) = max
x∈∆n−1

{
µTx+ inf

y

{
w(y)− yTx

}}
= max
x∈∆n−1

{µTx− V (x)}

where

V (x) = sup
y
{yTx− w(y)}

is a convex function.

2. Next we show that any choice welfare function can be represented by (4.2).

Since w(µ) is convex, there exists a subgradient for any µ. We denote the subgradient

vector by d(µ) = (d1(µ), . . . , dn(µ))T . Here it is possible that the choice of d(µ) is not

unique, when we can choose any one of them. Furthermore, by taking the derivative

with respect to t in the translation invariance equation, and by applying the chain rule

(see Proposition 4.2.5 of Bertsekas 2003), we have for any subgradient d(µ), it must

hold that eTd(µ) = 1. Similarly, by the monotonicity property of w(µ), we must have
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d(µ) ≥ 0. By the definition of subgradient and the convexity of w(µ), we must have:

w(µ) ≥ (µ− z)Td(z) + w(z), ∀z ∈ Rn,

where the equality holds when z = µ. Define l(z) = w(z) − zTd(z). By reorganizing

terms, we have

w(µ) = sup
z
{µTd(z) + l(z)}. (4.7)

Now we define the distribution set as follows: Let Θ = {θz
∣∣z ∈ Rn}, where θz is an

n-point distribution with

Pθz
(
ε = εiz

)
= di(z), for i = 1, ..., n

where

εiz(j) =

{
l(z) if j = i,

−∞ if j 6= i.

That is, εiz is a vector of all −∞’s except l(z) at the ith entry. Therefore, for any z, we

have

Eθz [max
i

µi + εi] =
n∑
i=1

di(z)(µi + l(z)) = µTd(z) + l(z).

Then by (4.7), we have

w(µ) = sup
z
{µTd(z) + l(z)} = sup

z
Eθz [max

i
µi + εi] = sup

θ∈Θ
Eθ[max

i
µi + εi].

Therefore, the theorem is proved. 2

Proof of Theorem 4.2.2: The equivalence between 1 and 3 directly follows from

Theorem 1. Next we show that 1 ⇒ 2. If w(µ) is a differentiable choice welfare

function, by Theorem 4.2.1, we know that

w(µ) = max
{
µTx− V (x)

∣∣x ∈ ∆n−1

}
,
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where V (x) = supy {yTx − w(y)}. Therefore, V (x) is the convex conjugate of w(µ).

By Theorem 6.3 in Rockafellar (1974), we know that w(µ) is essentially differentiable

if and only if V (x) is essentially strictly convex. Also, from the envelope theorem (see

Mas-Colell et al. 1995),

∇w(µ) = ∇µ
(
µTx− V (x)

) ∣∣
x=x∗

= x∗,

where x∗ = argmax
{
µTx− V (x)

∣∣x ∈ ∆n−1

}
. Therefore,

q(µ) = ∇w(µ) = argmax
{
µTx− V (x)

∣∣x ∈ ∆n−1

}
.

Last, we show that 2 ⇒ 1. Given an essentially strictly convex V (x), by Theorem

4.2.1, we know that

w(µ) = max
{
µTx− V (x)

∣∣x ∈ ∆n−1

}
is a choice welfare function. Again, by Theorem 6.3 in Rockafellar (1974), we know that

w(µ) is essentially differentiable. Moreover, in our case, w(µ) is a convex and finite-

valued function in Rn, thus essentially differentiability is equivalent to differentiability.

Again, by applying the envelope theorem, q(µ) = ∇w(µ). Therefore the theorem is

proved. 2

Proof of Theorem 4.2.4: First we show the equivalence between 1 and 2. Based on

Theorem 4.2.2, it suffices to prove that w(µ) is superlinear if and only if V (x) defined

by maxy{yTx − w(y)} is upper bounded. If w(µ) is superlinear, we have, for any

x ∈ ∆n−1,

w(µ) ≥
∑
i∈N

xi(µi + bi) = xTµ+ xT ≥ xTµ+ min
i
bi.

By reorganizing terms, we have

xTµ− w(µ) ≤ −min
i
{bi} = max

i
{−bi}.

Therefore, V (x) = maxy{yTx− w(y)} ≤ maxi{−bi}, i.e., V (x) is upper bounded.

To show the other direction, if V (x) is upper bounded by a constant u, then we
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have

w(µ) ≥ max
{
µTx− u

∣∣x ∈ ∆n−1

}
≥ µi − u, ∀i,

i.e., w(µ) is superlinear. Therefore, the equivalence between 1 and 2 is proved.

Next we show the equivalence between 1 and 3. We first show that for any superlinear

differentiable choice welfare function w(µ), we can find a distribution set Θ consisting of

only distributions with finite expectation such that w(µ) can be represented as w(µ) =

supθ∈Θ Eθ [maxi∈N µi + εi] .

First, since w(µ) is convex with q(µ) = ∇w(µ), we have

w(µ) = sup
z
{µTq(z) + l(z)}, (4.8)

where l(z) = w(z)−zTq(z). Now we define a distribution set Θ that is slightly different

from that of Theorem 4.2.1. Specifically, let Θ = {θz
∣∣z ∈ Rn}, where θz is an n-point

distribution with Pθz
(
ε = εiz

)
= qi(z), ∀i ∈ N (Note that by the monotonicity and the

translation invariance properties, q(z) = ∇w(z) must satisfy q(z) ≥ 0 and eTq(z) = 1).

Here,

εiz(j) =

{
l(z) if j = i,

l(z)−M(z) if j 6= i.

where

M(z) = max

{
1 + max

i,j
{zi − zj},

l(z)−mini {bi}
t∗(z)

}
, (4.9)

with

t∗(z) = min{qi(z)|qi(z) > 0}. (4.10)

Since M(z) > zi − zj , for all i, j, we have i = argmaxj (zj + εiz(j)). Therefore,

Eθz [max
j

zj + εj ] =

n∑
i=1

qi(z)(zi + l(z)) = zTq(z) + l(z) = w(z).

Next we show that:

Eθz [max
i

µi + εi] ≤ w(µ), ∀µ.

For any given µ, define k(i) , argmaxj (µj + εiz(j)) (we break ties arbitrarily). There
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are two cases:

1. For all i such that qi(z) > 0, k(i) = i. In this case, we have

Eθz [max
j

µj + εj ] =
∑
i∈N

qi(z)(µi + l(z)) = µTq(z) + l(z) ≤ w(µ),

in which the last inequality is due to the convexity of w(·).

2. There exists some i such that qi(z) > 0, but k(i) 6= i. In this case, from the

construction of θz, we have

Eθz [max
j

µj + εj ] =
∑

i∈N ,qi(z)>0

qi(z)(µk(i) + l(z)−M(z)I{k(i)6=i})

≤ max
i
{µi}+ l(z)− t∗(z)M(z)

≤ max
i
{µi}+ min

j
{bj}

≤ max
i
{µi + bi}

≤ w(µ),

where the first inequality follows from the fact that M(z) > 0 and

∑
i∈N

qi(z)I{qi(z)>0,k(i)6=i} ≥ t∗(z),

where the second inequality is because of the definition of M(z) and the last

inequality follows from the definition of superlinear function.

Based on the analysis of these two cases, we have

Eε∼θz [max
i

µi + εi] ≤ w(µ), ∀µ.

Then by equation (4.8) we have

w(µ) = sup
z
{µTq(z) + l(z)} = sup

z
Eθz [max

i
µi + εi] = sup

θ∈Θ
Eθ[max

i
µi + εi].

Therefore, we have proved that statement 1 implies statement 3.
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Finally, we prove that statement 3 implies statement 1. Suppose there exists a

distribution θ̂ ∈ Θ such that Eθ̂|εi| < +∞ for ∀i ∈ N , then for µ ∈ Rn we have

sup
θ∈Θ

Eθ
[
max
i∈N

µi + εi

]
≥ Eθ̂

[
max
i∈N

µi + εi

]
≥ Eθ̂ [µj + εj ] = µj + Eθ̂[εj ], ∀j.

Therefore we can conclude that w(µ) = supθ∈Θ Eθ [maxi∈N µi + εi] is superlinear.

It remains to prove the last statement. We show that for any

x ∈ int(∆n−1) , {x
∣∣eTx = 1, xi > 0, ∀i ∈ N },

there exists µx such that q(µx) = ∇w(µx) = x. Fix x ∈ ∆◦n−1, we consider

V (x) = max
µ
{µTx− w(µ)}. (4.11)

Clearly, V (x) ≥ −w(0), since µ = 0 is a feasible solution. Moreover, since w(µ) is

translation invariant, we can restrict the feasible region of (4.11) to L , {µ|eTµ = 0}.
For all µ ∈ L, we have µj ≤ 0 for some j ∈ N . Thus

µTx ≤
∑
i 6=j

µixi ≤
∑
i 6=j

xi max
k
{µk} ≤ (1−min

i
{xi}) max

k
{µk}.

However, by superlinearity of w(µ), we have:

w(µ) ≥ max
k
{µk + bk} ≥ max

k
{µk}+ min

k
{bk}.

Thus, for all µ ∈ L, we have:

µTx− w(µ) ≤ −min
i
{xi}max

k
{µk} −min

k
{bk}.

Let K = w(0)−mink{bk}
mini{xi} . In order for µ to be optimal to (4.11), by the above argu-

ments, we would have µi ≤ K for all i. Thus we can further restrict the feasible set of

(4.11) to {µ|eTµ = 0, µi ≤ K ∀i ∈ N}, which is a compact set. Since w(µ) is continu-

ous, there exists µx ∈ {µ|eTµ = 0, µi ≤ K ∀i ∈ N} that attains maximum in problem

(4.11). By the first-order necessary condition, ∇w(µx) = x. This concludes the proof. 2
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Proof of Theorem 4.3.1: Define v(x) , w(x, 0). Since w(·) is differentiable, by the

chain rule, we have

v′(x) =
∂w

∂µ1
(x, 0).

Since w(µ1, µ2) is convex and satisfies the translation invariance property, we have

v′(x) ∈ [0, 1] and is increasing. We define a distribution θ of {ε1, ε2} as follows:

{ε1, ε2} =
{
v0 −max{ξ, 0}, v0 −max{−ξ, 0}

}
,

where v0 = v(0) = w(0, 0) and ξ is a random variable with c.d.f. Fξ(x) = P(ξ ≤ x) =

v′(x). Note F (·) is a well-defined c.d.f. since w(·) is convex and differentiable, thus v′(x)

must be continuous and increasing (see Rockafellar 1974).

Now we compute Eθ[max{µ1 + ε1, µ2 + ε2}]. We have

Eθ[max{µ1 + ε1, µ2 + ε2}] = µ1 + v0 + Eθ[max{−max{ξ, 0}, µ2 − µ1 −max{−ξ, 0}}]

= µ1 + v0 + Eθ[max{0, µ2 − µ1 + ξ} −max{ξ, 0}],

where the last step can be verified by considering ξ ≥ 0 and ξ ≤ 0, respectively.

Now we compute the last term. For x ≥ 0, we have (let I(·) be the indicator

function):

Eθ[max{0, x+ ξ} −max{0, ξ}] = xP(ξ > 0) + Eθ[(x+ ξ) · I(−x < ξ ≤ 0)]

= xP(ξ > 0) +

∫ 0

−x
(x+ ξ)dv′(ξ)

= x(1− v′(0)) + (x+ ξ)v′(ξ) |0−x −
∫ 0

−x
v′(ξ)dξ

= x− v0 + v(−x).
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Similarly, for x ≤ 0, we have

Eθ[max{0, x+ ξ} −max{0, ξ}] = xP(ξ > −x) + Eθ[−ξ · I(0 < ξ ≤ −x)]

= xP(ξ > −x)−
∫ −x

0
ξdv′(ξ)

= x(1− v′(−x))− ξv′(ξ) |−x0 +

∫ −x
0

v′(ξ)dξ

= x− v0 + v(−x).

Therefore, Eθ[max{µ1 + ε1, µ2 + ε2}] = µ1 +v0 +(µ2−µ1)−v0 +v(µ1−µ2) = w(µ1, µ2).

To prove the last statement, it suffices to show that both Eθ[max{0, ξ}] and

Eθ[max{0,−ξ}] are finite if w(µ) is superlinear. If w(·) is superlinear, then we have

v(t)− t = w(0,−t) is decreasing in t and lower bounded, thus L1 = limt→+∞(v(t)− t)
exists and is finite. Similarly, v(t) = w(t, 0) is increasing in t and lower bounded, thus

L2 = limt→−∞ v(t) exists and is finite. Therefore, we have:

Eθ[max{0, ξ}] =

∫ +∞

0
Pθ (ξ ≥ t) dt =

∫ +∞

0
(1− v′(t))dt = (t− v(t))

∣∣+∞
0

= v(0)− L1,

and

Eθ[max{0,−ξ}] =

∫ +∞

0
Pθ (−ξ ≥ t) dt =

∫ +∞

0
v′(−t)dt =

∫ 0

−∞
v′(t)dt = v(0)− L2.

Thus, the theorem is proved. 2

Proof of Proposition 4.4.1: Since w(µ) is convex and differentiable, for any µ ∈ Rn

and any t > 0, we have

w(µ+ tei)− w(µ) ≥ teTi ∇w(µ) = tqi(µ),

w(µ)− w(µ+ tei) ≥ −teTi ∇w(µ+ tei) = −tqi(µ+ tei).

From these two inequalities, we have qi(µ+ tei)− qi(µ) ≥ 0, for all t > 0 and µ. Thus,

alternative i is complementary to itself.
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Furthermore, if w(µ) is second-order continuously differentiable, then we have

∂qi
∂µj

=
∂2w

∂µi∂µj
=

∂2w

∂µj∂µi
=
∂qj
∂µi

.

Thus, if alternative i is substitutable (complementary, resp.) to alternative j at µ, then

alternative j is substitutable (complementary, resp.) to alternative i at µ. 2

Proof of Theorem 4.4.4: In this proof, we use the following lemma from Murota

(2003).

Lemma 4.7.1 Let f : Rn 7→ R ∪ {∞} be a function such that there exists at least one

µ such that f(µ) < ∞. Let g(x) = maxµ{µTx − f(µ)} be the convex conjugate of f .

We have

1. If f is submodular, then g is supermodular.

2. If n = 2 and f is supermodular, then g is submodular.

Now we use this lemma to prove the theorem. To prove the first part, by Simchi-Levi

et al. (2014), a differentiable function w(µ) is submodular in µ if and only if ∂w(µ)
∂µi

is

decreasing in µj for all i 6= j. By the definition of q(µ) = ∇w(µ), the result holds.

For the second part, let V (x) = maxµ{µTx − w(µ)} be the convex conjugate of

w(µ). From Theorem 4.2.2, V (x) is essentially strictly convex and

q(µ) = arg max
{
µTx− V (x)

∣∣∣x ∈ ∆n−1

}
.

For any y ∈ Rn−1 and i ∈ N , define fi(y) = w(y1, y2, ..., yi−1, 0, yi, ..., yn−1). Also define

µ−i = (µ1, ..., µi−1, µi+1, ..., µn), then we have

V̄i(z) = max
µ
{µT−iz + µi(1− eTz)− w(µ)}

= max
µ,µi=0

{µT−iz + µi(1− eTz)− w(µ)}

= max
y
{yTz − fi(y)},

where the second equality is due to the translation invariance property of w(µ). The

submodularity of w(µ) implies the submodularity of fi(y) for all i ∈ N . Thus V̄i(z), as



91

the convex conjugate of fi(y), is supermodular by Lemma 4.7.1.

For the last statement, since V (·) is an essentially strictly convex function,

q(µ) = arg max
{
µTx− V (x)

∣∣∣x ∈ ∆n−1

}
is well-defined. By Theorem 4.2.2, q(µ) = ∇w(µ) where

w(µ) = sup
{
µTx− V (x)

∣∣x ∈ ∆n−1

}
.

For any y ∈ Rn−1 and i ∈ N , define fi(y) = w(y1, y2, ..., yi−1, 0, yi, ..., yn−1). Also define

x−i = (x1, ..., xi−1, xi+1, ..., xn), then we have

fi(y) = max
x∈∆n−1

{
xT−iy + 0(1− eTx−i)− V (x)

}
= max

x∈∆n−1

{
xT−iy − V̄i(x−i)

}
= max

eTn−1x−i≤1, x−i≥0

{
xT−iy − V̄i(x−i)

}
= max

z

{
yTz − V̄i(z)

}
,

where the last equality holds since V̄i(z) = +∞ for all z /∈ {β ∈ Rn−1|eTn−1β ≤ 1, β ≥ 0}.
From Lemma 4.7.1, given that n = 3 and thus y ∈ R2, fi(y) is submodular. It remains

to show that w(µ) is also submodular. According to Theorem 4.4.4, it suffices to show

that qi(µ) is locally decreasing with µj for all j 6= i for all µ. Fix i, j and let k 6= i, j.

We assume i > j without loss of generality. We have qi(µ − µke) = qi(µ) from the

translation invariance property. But qi(µ − µke) =
∂fk(µi−µk,µj−µk)

∂µi
is non-decreasing

with µj due to the submodularity of fk. Thus w(µ) is submodular and q(µ) = ∇w(µ)

is a substitutable choice model. 2

Proof of Theorem 4.4.5: We first consider the case where Vi(xi) is differentiable for

all i ∈ N . Let λ(µ) be the Lagrangian multiplier of the constraint
∑

i xi = 1. The KKT



92

conditions (see Bertsekas 2003) for problem (4.5) can be written as:

µi − V ′i (qi(µ))− λ(µ) ≤ 0, ∀i ∈ N ;

µi − V ′i (qi(µ))− λ(µ) = 0, ∀i s.t. qi(µ) 6= 0;

qi(µ) ≥ 0, ∀i ∈ N ;∑
i∈N qi(µ) = 1.

Now we consider any two points µ0 and µ0 + tei where ei is a unit vector along the

i-th coordinate axis and t > 0. Suppose that there exists a j 6= i such that qj(µ0+tei) >

qj(µ0). Since Vj is strictly convex, V ′j (qj(µ0+tei)) > V ′j (qj(µ0)). There are two possible

cases for qj(µ0):

• qj(µ0) > 0: In this case, we have µj − V ′j (qj(µ0 + tei)) − λ(µ0 + tei) = 0 and

µj − V ′j (qj(µ0))− λ(µ0) = 0, therefore, we have λ(µ0 + tei) < λ(µ0).

• qj(µ0) = 0: In this case, µj − V ′j (qj(µ0)) − λ(µ0) ≤ 0, which implies that µj −
V ′j (qj(µ0 + tei)) − λ(µ0) < 0. But µj − V ′j (qj(µ0 + tei)) − λ(µ0 + tei) = 0, we

have λ(µ0 + tei) < λ(µ0).

In both cases, λ(µ0 + tei) < λ(µ0). This implies that qj(µ0 + tei) ≥ qj(µ0) for all

j 6= i. Note that we also have qi(µ0 + tei) > qi(µ0) by Proposition 4.4.1. Therefore, we

have
∑

j∈N qj(µ0 + tei) >
∑

j∈N qj(µ0) = 1, which contradicts with that q(µ0 + tei) ∈
∆n−1. Thus we have qj(µ0 + tei) ≤ qj(µ0) for all j 6= i. Since this is true for all µ0 and

t > 0, q is substitutable.

If Vi(xi) is not differentiable, we need to replace the derivative with the subgradient

in the above argument. Since Vi is strictly convex, g1 > g2 for all g1 ∈ ∂Vi(x1) and

g2 ∈ ∂Vi(x2) if x1 > x2, the above argument is still valid. 2

Proof of Proposition 4.5.2 : By simple algebra, we have:

∂qnl
i (µ)

∂µj
= K(µ)

− 1

λk

∑
s∈Bk

exp(µs/λk)

λk

+
λk − 1

λk

∑
l 6=k

∑
s∈Bl

exp(µs/λl)

λl
 ,
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where

K(µ) =
exp ((µi + µj)/λk)

(∑
s∈Bk exp(µs/λk)

)λk−2

(∑K
l=1

(∑
s∈Bl exp(µs/λl)

)λl)2 > 0.

Clearly,

− 1

λk

∑
s∈Bk

exp(µs/λk)

λk

< 0

and

λk − 1

λk

∑
l 6=k

∑
s∈Bl

exp(µs/λl)

λl

> 0.

Therefore, when µ is chosen such that∑
s∈Bk

exp(µs/λk)

λk

≤ (λk − 1)
∑
l 6=k

∑
s∈Bl

exp(µs/λl)

λl

and
∂qnl

i (µ)

∂µj
≥ 0.

Finally we note that one can always choose µ such that the inequality holds. This is

because we can choose µs large enough for some s ∈ Bl, l 6= k. 2

Proof of Proposition 4.5.3: In this proof, we use the following Lemma (see Boyd

and Vandenberghe 2004).

Lemma 4.7.2 Define f(·) to be a log-convex function if log f(·) is a convex function.

Then f(x) =
∑n

i=1 fi(x) is log-convex if fi(x) is log-convex for all i = 1, ..., n.

Now we use the lemma to prove the proposition. We start by proving the first part.

It can be easily verified that wnl(µ) is differentiable and qnl(µ) = ∇µwnl(µ). Now we

need to verify that wnl(µ) satisfies the three properties in Definition 5. First, wnl(µ) is

clearly monotone since λk > 0 for all k = 1, ...,K. The translation invariance property
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is also true since

wnl(µ+ te) = log

 K∑
k=1

∑
j∈Bk

exp((µj + t)/λk)

λk


= log

 K∑
k=1

∑
j∈Bk

exp(µj/λk) exp(t/λk)

λk


= log

 K∑
k=1

∑
j∈Bk

exp(µj/λk)

λk

exp(t)

 = wnl(µ) + t.

Now it remains to show that wnl(µ) is convex, or equivalently

K∑
k=1

∑
j∈Bk

exp(µj/λk)

λk

is log-convex. Note that we have

log


∑
j∈Bk

exp(µj/λk)

λk
 = λk log

∑
j∈Bk

exp(µj/λk)

 ,

which is convex due to Lemma 4.7.2 since exp(µj/λk) is log-convex. This in turn

implies that
(∑

j∈Bk exp(µj/λk)
)λk

is log-convex for all k. Applying Lemma 4.7.2

again concludes the proof for the wnl(·) part.

We next prove the second part. From Theorem 4.2.2, qnl(µ) is consistent with a

representative agent model with

V nl(x) = sup
y
{yTx− wnl(y)}, for all x ∈ ∆n−1. (4.12)

Since wnl(·) is convex, the first order optimality condition ∇wnl(y∗) = x is necessary
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and sufficient for an y∗ to be optimal to (4.12). We now verify that

y∗i = λk log xi + (1− λk) log

∑
j∈Bk

xj

 ,

for i ∈ Bk is an optimal solution, i.e., ∇wnl(y∗) = x. We note that,

wnl(y∗) = log

K∑
k=1

∑
i∈Bk

exp(y∗i /λk)

λk

= log

K∑
k=1

∑
i∈Bk

xi

∑
j∈Bk

xj

(1−λk)/λk

λk

= log
K∑
k=1

∑
i∈Bk

xi = 0,

where the last equality is because x ∈ ∆n−1. Thus,

∂wnl(y∗)

∂yi
=

exp(y∗i /λk)
(∑

j∈Bk exp(y∗j /λk)
)λk−1

∑K
l=1

(∑
j∈Bl exp(y∗j /λl)

)λl
= xi

∑
j∈Bk

xj

(1−λk)/λk
∑
j∈Bk

xj

(λk−1)/λk

= xi.

Therefore, y∗ is an optimal solution. So we have

V nl(x) = (y∗)Tx− wnl(y∗)

=

K∑
k=1

(1− λk)
∑
i∈Bk

xi log

∑
j∈Bk

xj

+ λk
∑
i∈Bk

xi log xi

 . 2

Proof of Proposition 4.5.5: According to Theorem 4.4.4, it suffices to prove that

V̄i(z) =

 V
(
z1, z2, ..., zi−1, 1−

∑n−1
j=1 zj , zi, ..., zn−1

)
, if eTz ≤ 1 and z ≥ 0,

+∞, otherwise
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is supermodular if and only if Aj,k − Ai,k − Ai,j + Ai,i ≥ 0 for all distinct i, j, k ∈ N .

For i ∈ N , V̄i is an n − 1 variate quadratic function. Let H i denote the Hessian

matrix of V̄i(z). For j, k ∈ {1, 2, ..., n − 1} and j 6= k, the off-diagonal element H i
j,k =

Aj̃,k̃ −Ai,k̃ −Ai,j̃ +Ai,i, where

j̃ =

{
j, if j < i,

j + 1, if j ≥ i;
and k̃ =

{
k, if k < i,

k + 1, if k ≥ i.

Thus, V̄i(z) is supermodular if and only if H i
j,k ≥ 0 for all j, k ∈ {1, 2, ..., n − 1} and

j 6= k, which is equivalent to Aj,k −Ai,k −Ai,j +Ai,i ≥ 0 for all distinct i, j, k ∈ N . 2



Chapter 5

Online Learning with

Non-Convex Losses

In previous chapters, we develop a number of theoretical and practical results regarding

discrete choice models. In this chapter , we consider an important application of discrete

choice models: the multi-product pricing problem. The multi-product pricing problem

is a fundamental decision problem in revenue management and thus has been widely

studied in the literature; see for example Talluri and Van Ryzin (2004). In the multi-

product pricing problem, a retail store sells a set of substitutable products labeled as

{1, 2, ..., n}. The store is a price setter, i.e., it can set the prices for all n products as

p1, p2, ..., pn. After observing the prices of different products, consumers come to the

store and pick the product they want. Without loss of generality, we assume that each

consumer picks one product at a time. Note that consumers can also choose not to buy

any products in this store. This option is referred to as the outside option. We denote

the vector of purchase probabilities as π(p) = (π1(p), π2(p), ..., πn(p)). Therefore, the

loss (the negative of the revenue) of the store is

C(p) = −
n∑
i=1

piπi(p). (5.1)

The goal of the store is to minimize the loss.

The customer demand function πi(p) is a critical component of the pricing problem.

97
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It is usually assumed that consumers choose products according to a discrete choice

model. The deterministic utility of the customer picking product i is usually assumed

to linearly decrease in the price of that product, i.e., for any i, µi = ai − bipi, where

bi > 0 is called the price sensitivity parameter for product i. It is shown in Hanson and

Martin (1996) that C(p) under MNL model is not even quasi-convex. Therefore, several

other papers propose to inverse the functional relationship between p and π, and then

optimize the loss function over π. Song and Xue (2007) and Dong et al. (2009) show

that the loss function is convex in π when the demand is MNL. Li and Huh (2011)

extend this method to the pricing problem under the nested logit model and show that

the loss function is still convex when scale parameters are in the unit interval and price

sensitivity parameters are the same for the products in the same nest.

In reality, however, the customer demand is usually not known as a priori and thus

has to learned from pricing experiments. Instead of developing models specifically on

dynamic pricing with demand learning (see den Boer 2015 for a recent survey of this

stream of literature), we adopt a more general framework rooted in the well celebrated

online learning literature. Among the existing online learning models, online convex

optimization (OCO) has been studied extensively in the literature. In OCO, at each

period t ∈ {1, 2, . . . , T}, an online player chooses a feasible strategy xt from a decision

set X ⊂ Rn, and suffers from a loss given by ft(xt), where ft(·) is a convex loss function.

One key feature of the OCO is that the player must make a decision for period t without

knowing the loss function ft(·). The performance of an OCO algorithm is usually

measured by the stationary regret, which compares the accumulated loss suffered by

the player with the loss suffered by the best fixed strategy. Specifically, the stationary

regret is defined as

RegretST ({xt}T1 ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗), (5.2)

where x∗ is one best fixed decision in hindsight, i.e. x∗ ∈ arg minx∈X
T∑
t=1

ft(x). Several

sub-linear cumulative regret bounds measured by stationary regret have been estab-

lished in various papers in the literature. For example, Zinkevich (2003) proposed an

online gradient descent algorithm which achieves an regret bound of order O(
√
T ) for
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convex loss functions. The order of the regret can be further improved to O(log T ) if

the loss functions are strongly convex (see Hazan et al. 2007). Moreover, the bounds

are shown to be tight for the OCO with convex / strongly convex loss functions respec-

tively in Abernethy et al. (2009). One important extension of the OCO is the so-called

bandit online convex optimization, where the online player is only supposed to know

the function value ft(xt) at xt, instead of the entire function ft(·). In particular, when

the player can only observe the function value at a single point, Flaxman et al. (2005)

established an O(T 3/4) regret bound for general convex loss functions by constructing

a zeroth-order approximation of the gradient. Assuming that the loss functions are s-

mooth, the regret bound can be improved to O(T 2/3) by incorporating a self-concordant

regularizer (see Saha and Tewari 2011). Alternatively, if multiple points can be inquired

at the same time, Agarwal et al. (2010) showed that the regrets can be further improved

to O(T 1/2) and O(log T ) for convex / strongly convex loss functions respectively.

As suggested by its name, the loss functions in the OCO are assumed to be convex.

As shown in Hanson and Martin (1996), the cost function in (5.1) is not even quasi-

convex in the price vector under the simplest MNL choice model. Though the cost

function could be convex in the market share under some demand models, policies based

on market share vectors are usually difficulty to implement without the knowledge of the

demand function. Additional constraints have to be made about the demand function

(e.g., Chen et al. 2014 adopts the parametric approach) and the resulting policies are

usually complicated. Therefore, the key assumption that the cost function is convex in

OCO limits its applicability to the pricing problem. Only a handful of papers study

online learning with non-convex loss functions. In the existing works, most of the

time heuristic algorithms were proposed (see for example Gasso et al. 2011; Ertekin

et al. 2011) without focussing on establishing sublinear regret bounds. There are a

few noticeable exceptions though. Hazan and Kale (2012) developed an algorithm that

achieves O(T 1/2) and O(T 2/3) regret bounds for the full information and bandit settings

respectively, by assuming the loss functions to be submodular. Zhang et al. (2015)

showed that an O(T 2/3) regret bound still holds if the loss functions are in the form of

composition between a non-increasing scalar function and a linear function.

The stationary regret requires the benchmark strategy to remain unchanged through-

out the periods. This assumption may not be relevant in some of the applications.
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Recently, a new performance metric known as the non-stationary regret is proposed by

Besbes et al. (2015). The non-stationary regret compares the cumulative losses of the

online player with the losses of the best possible responses:

RegretNST ({xt}T1 ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ), (5.3)

where x∗t ∈ arg minx∈X ft(x). Clearly, the non-stationary regret is never less than

the stationary regret. Besbes et al. (2015) prove that if there is no restriction on the

changes of the loss functions, then the non-stationary regret is linear in T regardless of

the strategies. To obtain meaningful bounds, the authors assumed that the temporal

change of the sequence of the function {ft}T1 is bounded. Specifically, the loss functions

are assumed to be taken from the set

V :=

{
{f1, f2, . . . , fT } :

T−1∑
t=1

‖ft − ft+1‖ ≤ VT

}
, (5.4)

where ‖ft− ft−1‖ = supx∈X |ft(x)− ft−1(x)|. For nonzero temporal change VT , Besbes

et al. (2015) then proposes algorithms with sub-linear non-stationary regret bound-

s: O(V
1/3
T T 2/3), O(V

1/2
T T 1/2), and O(V

1/3
T T 2/3) respectively, for the cases where loss

functions are: convex with noisy gradients, strongly convex with noisy gradients, and

strongly convex with noisy function values. Note that VT > 0 is assumed for the bounds

to hold. More recently, Yang et al. (2016) also studied the non-stationary regret bounds

for OCO. They proposed an uncertainty set SpT of the sequence of functions in which the

worst-case variation of the optimal solution x∗t of ft(·) (referred to as the path variation)

is bounded:

SpT :=

{
{f1, f2, . . . , fT } :

maxx∗t∈arg minx∈X ft(x)

T−1∑
t=1
‖x∗t − x∗t+1‖ ≤ VT

}
.

They then proved some upper and lower bounds for the several different feedback struc-

ture and functional classes (within the convex function class). In particular, they showed

that some existing algorithms (with some modification) can achieve the VT ,
√
TVT and

√
TVT for true gradient (with smooth condition), noisy gradient and two-point bandit
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feedback, respectively. Note that VT > 0 is assumed in the bounds.

In this chapter, we consider online non-convex optimization with non-stationary

regret as the performance metric. To the best of our knowledge, such a combination

had not been studied before. For each period t, even after the decision xt is made,

the online player is not assumed to know the function ft(·); instead, only some partial

information regarding the loss at xt is revealed. Specifically, only ∇f(xt) (in the first-

order setting) or f(xt) (the zeroth-order setting) is available to the player. Similar to

Yang et al. (2016), we define the uncertainty set ST of the sequence of functions as

follows:

ST :=

{
{f1, f2, . . . , fT } : ∃x∗t ∈ arg minx∈X ft(x),

t = 1, ..., T, s.t.
T−1∑
t=1
‖x∗t − x∗t+1‖ ≤ VT

}
.

Note that SpT ⊆ ST for the same VT . In particular, consider a static sequence ft(·) =

f(·), t = 1, .., T where f(·) has multiple optimal solutions. This sequence would clearly

belong to ST even when VT = 0. However, VT would have to be linear in T in order for

this sequence to be in SpT . We propose the Online Normalized Gradient Descent (ONGD)

and the novel Bandit Online Normalized Gradient Descent (BONGD) algorithms for

the first-order setting and the zeroth-order setting respectively. For the loss functions

satisfying (5.6) and a condition to be introduced later, we show that these two algorithms

both achieve O(
√
T + VTT ) regret bound. Compared to the regret bounds in Yang et al.

(2016), our regret bound for the first-order setting is worse but is the same for the zeroth-

order setting. Note however, that our loss functions are non-convex and we use a weaker

version of variational constraints.

Regarding non-convex objective function, a related work in the literature is Hazan

et al. (2015), where the authors propose a Normalized Gradient Descent (NGD) method

for solving an optimization model with the so-called strictly locally quasi-convex (SLQC)

function as the objective. They further show that the NGD converges to an ε-optimal

minimum within O(1/ε2) iterations. This chapter generalizes the results in Hazan et al.

(2015) in the following aspects:

• Hazan et al. (2015) considers an optimization model, while this chapter considers

an online learning model.



102

• Hazan et al. (2015) assumes the objective function to be strictly locally quasi-

convex (SLQC). In this chapter we introduce the notion of weak pseudo-convexity

(WPC), which will be shown to be a weaker condition than the SLQC. We show

that the regret bounds hold if the objective function is weak pseudo-convex.

• Hazan et al. (2015) considers only the first-order setting, while our proposed

BONGD algorithm works for the bandit (zeroth-order) setting as well.

The rest of the chapter is organized as follows. Section 5.1 presents some prepara-

tions including the assumptions and notations. In Section 5.2, we present the ONGD

algorithm and prove its regret bound. In Section 5.3, we present the BONGD algorithm

for the zeroth-order setting and show its regret bound under some assumptions. Finally,

we conclude this chapter in Section 5.4.

5.1 Problem Setup

In this section, we present the assumptions underlying our online learning model that

will be used in the chapter. Let X ⊂ Rn be a convex decision set that is known to the

player. For every period t ∈ {1, 2, . . . , T}, the loss function is ft(·). Throughout the

chapter, we assume that X ⊂ Rn is bounded, i.e., there exists R > 0 such that ‖x‖ ≤ R
for all x ∈ X . We present the following definitions regarding the loss functions.

Definition 13 (Bounded Gradient) A function f(·) is said to have bounded gradient

if there exists a finite positive value M such that for all x ∈ X , it holds that ‖∇f(x)‖ ≤
M .

Note that if f(·) has bounded gradient, then it is also Lipschitz continuous with Lipschitz

constant M on the set X .

Definition 14 (Weak Pseudo-Convexity) A function f(·) is said to be weakly pseudo-

convex (WPC) if there exists K > 0 such that

f(x)− f(x∗) ≤ K∇f(x)>(x− x∗)
‖∇f(x)‖

,

holds for all x ∈ X , with the convention that ∇f(x)
‖∇f(x)‖ = 0 if ∇f(x) = 0, where x∗ is

one optimal solution, i.e., x∗ ∈ arg minx∈X f(x).
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Here we discuss some implications of the weak pseudo-convexity. If a differentiable func-

tion f(·) is Lipschitz continuous and pseudo-convex, then we have (see similar derivation

in Nesterov (2004))

f(x)− f(y) ≤M∇f(x)>(x− y)

‖∇f(x)‖
,

for all y,x with f(x) ≥ f(y), where M is Lipschitz constant. Therefore, we can simply

let K = M , and the function is also weakly pseudo-convex. Moreover, as another

example, the star-convex function proposed by Nesterov and Polyak (2006) is weakly

pseudo-convexity.

Proposition 5.1.1 If f(·) is star-convex and smooth with bounded gradient in X , then

f(·) is weakly pseudo-convex.

The proof of Proposition 5.1.1 can be found in Section 5.5. We next introduce a property

that is essentially the same as the SLQC property introduced in Hazan et al. (2015).

Definition 15 (Acute Angle) Gradient of f(·) is said to satisfy the acute angle

condition if there exists a positive value Z such that

cos(∇f(x),x− x∗) =
∇f(x)>(x− x∗)
‖∇f(x)‖ · ‖x− x∗‖

≥ Z > 0,

holds for all x ∈ X , with the convention that ∇f(x)
‖∇f(x)‖ = 0 if ∇f(x) = 0, where x∗ is

one optimal solution, i.e., x∗ ∈ arg minx∈X f(x).

The following proposition shows that the acute angle condition together with the Lips-

chitz continuity implies the weak pseudo-convexity.

Proposition 5.1.2 If f(·) has bounded gradient and satisfies the acute angle condition,

then f(·) is weakly pseudo-convex.

The proof of Proposition 5.1.2 can be found in Section 5.5. The class of weakly pseudo-

convex functions certainly go beyond the acute angle condition. For example, below is

another class of functions satisfying the WPC.
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Proposition 5.1.3 If f(·) has bounded gradient and satisfy the α-homogeneity with

respect to its minimum, i.e., there exists α > 0 satisfying

f(t(x− x∗) + x∗)− f(x∗) = tα(f(x)− f(x∗)), (5.5)

for all x ∈ X and t ≥ 0 where x∗ = arg minx∈X f(x), then f(·) is weak pseudo-convex.

The proof of Proposition 5.1.3 can be found in Section 5.5. Proposition 5.1.3 suggests

that all non-negative homogeneous polynomial satisfies WPC with respect to 0. Take

f(x) = (x2
1 + x2

2)2 + 10(x2
1 − x2

2)2 as an example. It is easy to verify that f(·) satisfies

the condition in Proposition 5.1.3, and thus is weakly pseudo-convex. In Figure 5.1, the

curvature of f(x) and a sub-level set of this function are plotted. The function is not

quasi-convex since the sub-level set is non-convex. However, this function satisfies the

acute-angle condition in Definition 15.

0
1

2

4

0.5 1

6

8

(x
1
2 + x

2
2)2 + 10 (x

1
2 - x

2
2)2

0.5

x
2

0

10

x
1

0
-0.5 -0.5

-1 -1

(x
1

2+x
2

2)2+10 (x
1

2-x
2

2)2= 4

-1.5 -1 -0.5 0 0.5 1 1.5

x
1

-1.5

-1

-0.5

0

0.5

1

1.5

x 2

Figure 5.1: Plot of a WPC function that is not quasi-convex

Note that if fi(x) is αi-homogeneous with respect to the shared minimum x∗ for all

1 ≤ i ≤ I with αi ≥ α > 0, and the gradient of fi(·) is uniformly bounded over a set

X , then
∑I

i=1 fi(x) is WPC. As a result, we can construct functions that are WPC but

do not satisfy the acute-angle condition. Consider a two-dimensional function f(x) =

x2
1 + |x2|3/2, and suppose that X is the unit disc centered at the origin. Clearly, f(x)

is differentiable and Lipchitz continuous in X . Also, it is the sum of a 2-homogeneous

function and a 3/2-homogeneous function with a shared minimum (0, 0). Thus f(x) is
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WPC. We compute that

cos(∇f(x),x− x∗) =
∇f(x)>(x− x∗)
‖∇f(x)‖ · ‖x− x∗‖

=
2x2

1 + 3
2 |x2|3/2√

(4x2
1 + 9

4 |x2|)(x2
1 + x2

2)
.

Consider a parameterized path (x1, x2) = (t1/2, t2/3) with t > 0. On this path, we have

cos(∇f(x),x− x∗) =
2x2

1 + 3
2 |x2|3/2√

(4x2
1 + 9

4 |x2|)(x2
1 + x2

2)

=
7t

2
√

(4t+ 9
4 t

2/3)(t+ t4/3)

=
7t1/6

2
√

(4t1/3 + 9
4)(1 + t1/3)

.

Therefore, along the path, as t approaches to 0, we have cos(∇f(x),x− x∗)→ 0. This

example shows that a WPC function may fail to satisfy the acute angle condition.

As we mentioned before, in order to establish some sub-linear non-stationary regret

bound, we need to confine the loss functions {ft}T1 in a unified manner. Therefore,

we introduce the uncertainty set of the loss functions ST , as a set of admissible loss

functions where their total variation of the minimizers are bounded by VT .

Definition 16 The uncertainty set of functions ST is defined as

ST :=

{
{f1, f2, . . . , fT } : ∃x∗t ∈ arg minx∈X ft(x), t = 1, ..., T,

s.t.
T−1∑
t=1
‖x∗t − x∗t+1‖ ≤ VT

}
,

(5.6)

where VT ≥ 0.

In the zeroth-order setting to be discussed in Section 5.3, only the function val-

ue is available. Therefore, some randomized approaches are needed in the algorithm.

To account for this situation, we introduce the expected non-stationary regret for an

algorithm that outputs a random sequence {xt}T1 in the performance metric.
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Definition 17 The expected non-stationary regret for a randomized algorithm A is de-

fined as

ERegretNST ({xt}T1 ) = E

[
T∑
t=1

(ft(xt)− ft(x∗t ))

]
, (5.7)

where the expectation is taken over the filtration generated by the random sequence {xt}T1
produced by A.

5.2 The First-Order Setting

In this section, we assume that for each period, the gradient information at the current

point is available to the online player after the decision is made. Specifically, at each

period t, the sequence of the events is as follows:

1. The online player chooses a strategy xt;

2. The online player receives the feedback ∇ft(xt);

3. Regret ft(xt)− ft(x∗t ) incurs (but is not necessarily known to the online player).

We propose the Online Normalized Gradient Descend algorithm (ONGD) in this

setting. The normalized gradient descent method was first proposed in Nesterov (2004)

which can be applied to solve the pseudo-convex minimization problem. The ONGD

algorithm uses the first-order information ∇ft(xt) to compute the normalized vector

∇ft(xt)/‖∇ft(xt)‖ as the search direction. Similar to the standard gradient method,

it moves along that search direction with a specific stepsize η > 0 and then projects

the point back to the decision set X ; see Algorithm 2 for the details. Note that in

Algorithm 2,
∏
X (y) := arg minx∈X ‖y−x‖ is the projection operator. The main result

is shown in the following theorem which claims an O(
√
T + VTT ) non-stationary regret

bound for ONGD.

Theorem 5.2.1 Let VT be as defined in (5.6). For any sequence of loss functions

{ft}T1 ∈ ST where ft is weakly pseudo-convex with common constant K, let the stepsize

η =
√

4R2+6RVT
T . Then, the following regret bound holds for ONGD:

RegretNST ({xt}T1 ) ≤ K
√
T (R2 + 1.5RVT )

= O(
√
T + VTT ).
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Algorithm 2: Online Normalized Gradient Descent

Input: feasible set X , # time period T
Initialization: x1 ∈ X
for t = 1 to T do

chooses xt and receives the feedback gt = ∇ft(xt)
if ‖gt‖ > 0 then

xt+1 =
∏
X

(
xt − η

gt
‖gt‖

)
else
xt+1 = xt

end if
end for

Proof: Let x∗t , t = 1, .., T be the sequence of optimal solutions satisfying the condition

in Definition 16, and zt := ‖xt − x∗t ‖. Then we have:

z2
t+1 = ‖xt+1 − x∗t+1‖2

= ‖xt+1 − x∗t ‖2 + ‖x∗t − x∗t+1‖2 + 2(xt+1 − x∗t )>(x∗t − x∗t+1)

≤

∥∥∥∥∥∏
X

(
xt − η

gt
‖gt‖

)
− x∗t

∥∥∥∥∥
2

+ 6R‖x∗t − x∗t+1‖

≤
∥∥∥∥xt − η gt

‖gt‖
− x∗t

∥∥∥∥2

+ 6R‖x∗t − x∗t+1‖

= z2
t + η2 − 2η

g>t (xt − x∗t )
‖gt‖

+ 6R‖x∗t − x∗t+1‖.

By rearranging terms and multiplying K on both sides we have

K
g>t (xt − x∗t )
‖gt‖

≤ K

2η

(
z2
t − z2

t+1 + η2 + 6R‖x∗t − x∗t+1‖
)
. (5.8)

By Definition 14, noting that gt = ∇ft(xt), we have

ft(xt)− ft(x∗t )

≤ K
∇ft(xt)>(xt − x∗t )
‖∇ft(xt)‖

≤ K

2η

(
z2
t − z2

t+1 + η2 + 6R‖x∗t − x∗t+1‖
)
.



108

Summing these inequalities from t = 1, ..., T , we have

RegretNST ({xt}T1 )

≤ K

2η

(
z2

1 − z2
T+1 + Tη2 + 6R

T∑
t=1

‖x∗t − x∗t+1‖

)

≤ K

2η

(
4R2 + Tη2 + 6RVT

)
.

As a result, by noting η =
√

4R2+6RVT
T , we have

RegretNST ({xt}T1 ) ≤ K
√
T (R2 + 1.5RVT )

= O(
√
T + VTT ).

2

5.3 The Zeroth-Order Setting

In the previous section, it is assumed that the gradient information is available, which

may not be the case in some applications. Such exceptions include the multi-armed

bandit problem, dynamic pricing and Bayesian optimization. Therefore, in this section,

we consider the setting where the online player only receives the function value ft(xt),

instead of the gradient ∇ft(xt), as the feedback.

As mentioned above, the zeroth-order (or bandit) setting has been studied in the

OCO literature. The main technique in the OCO literature (see Flaxman et al. 2005

for example) is to construct a zeroth-order approximation of the gradient of a smoothed

function. That smoothed function is often created by integrating the original loss func-

tion with a chosen probability distribution. By querying some random samples of the

function value according to a probability distribution, the player is able to create an

unbiased zeroth-order approximation of the gradient of the smoothed function. This is,

however, not applicable in our online normalized gradient descent algorithm since what

we need is the direction of the gradient. Therefore, we shall first develop a new type
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of zeroth-order oracle that can approximate the gradient direction without averaging

multiple samples of gradients when the norm of the gradient is not too small.

To proceed, we require some additional conditions on the loss function.

Definition 18 (Error Bound) There exists D > 0 and γ > 0 such that

‖x− x∗t ‖ ≤ D‖∇ft(x)‖γ ,

for all x ∈ X , 1 ≤ t ≤ T , where x∗t is the optimal solution to ft(·), i.e., x∗t =

arg minx∈X ft(x).

Since X is a compact set, the error bound condition is essentially the requirement for a

unique optimal solution and no local minimum.

Definition 19 (Lipschitz Gradient) There exists a positive number L, such that

‖∇ft(x)−∇ft(y)‖ ≤ L‖x− y‖,

for all x,y ∈ X , where 1 ≤ t ≤ T .

We introduce some notations that will be used in subsequent analysis.

S(n): the unit sphere in Rn;

m(A): the measure of set A ⊂ Rn;

βn: the area of the unit sphere S(n);

dSn: the differential unit on the unit sphere S(n);

1A(x): the indicator function of set A;

sign(·): the sign function.

Before we present the main results, several lemmas are in order. The first lemma

considers some geometric properties of the unit sphere.

Lemma 5.3.1 For any non-zero vector d ∈ Rn and δ < 1, let Sxδ be defined as

Sxδ :=
{
v ∈ S(n)| s.t. |d>v| < δ2

}
.

If ‖d‖ ≥ δ, then there exists a constant Cn > 0, such that

m(Sxδ ) < Cnδ.
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Proof: We have

m(Sxδ ) =

∫
v∈S(n)∩Sxδ

dSn.

By the symmetry of S(n), we may assume w.l.o.g. that d = (0, . . . , 0, ‖d‖)>. Let

a = δ2

‖d‖ . Since a < 1, we have

m(Sxδ )

=

∫
v∈S(n)

1{
− δ2

‖d‖
≤vn≤ δ2

‖d‖

}(v)dSn

= 2

∫
1−a2≤v21+···+v2n−1≤1

1√
1− v21 − · · · − v2n−1

dv1 · · · dvn−1

= 2

∫
√
1−a2≤r≤1

rn−2√
1− r2

dr · dSn−1

= 2βn−1

∫
√
1−a2≤r≤1

rn−2√
1− r2

dr

≤ 2βn−1

∫
√
1−a2≤r≤1

1√
1− r2

dr

= 2βn−1

(π
2
− arcsin(

√
1− a2)

)
= 2βn−1(arcsin a) < 2βn−1

π

2
a = πβn−1

δ2

‖d‖
≤ πβn−1δ.

By setting Cn = πβn−1, the desired result follows. 2

The next lemma leads to an unbiased first-order estimator of the direction of a

vector.

Lemma 5.3.2 Suppose d ∈ Rn, and d 6= 0. Then,∫
v∈S(n)

sign(d>v)vdSn = Pn
d

‖d‖
,

where Pn is a constant.
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Proof: By the symmetry of S(n), again we may assume d = (0, . . . , 0, ‖d‖)>, and∫
v∈S(n)

sign(d>v)vdSn = 2

∫
v∈S(n)

1vn≥0(v)vdSn.

Notice that if v ∈ S(n), then u = (−v1,−v2, . . . ,−vn−1, vn)> is also in S(n). As a

result, the above integral will be on the direction of d
‖d‖ = (0, 0, . . . , 0, 1)>, and its

length is given by

2

∫
v∈S(n)

1vn≥0(v)vndSn

= 2

∫
0≤v21+···+v2n−1≤1

√
1− v21 − · · · − v2n−1dSn

= 2

∫
0≤v21+···+v2n−1≤1

√
1− v21 − · · · − v2n−1√
1− v21 − · · · − v2n−1

dv1 . . . dvn−1

= 2

∫
0≤r≤1

rn−2drdSn−1

=
2βn−1
n− 1

:= Pn.

2

Using the previous lemmas, we have the following result which constructs a zeroth-

order estimator for the normalized gradient.

Theorem 5.3.3 Suppose f(x) has Lipschitz gradient and ‖∇f(x)‖ ≥ δ at x. Let

ε = δ2

L . Then we have∥∥∥∥ES(n) [sign(f(x+ εv)− f(x))v]−Qn
∇f(x)

‖∇f(x)‖

∥∥∥∥ ≤ 2Dnδ

where v is a random vector uniformly distributed over S(n), and Qn = Pn
βn

and Dn = Cn
βn

.
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Proof: By Definition 19, we have

|f(x+ εv)− f(x)− ε∇f(x)>v| ≤ εL

2
‖v‖2

⇐⇒ ∇f(x)>v − ε

2
L ≤ f(x+ εv)− f(x)

ε
≤ ∇f(x)>v +

ε

2
L.

Since |∇f(x)>v| ≥ δ2 for v ∈ S(n) \ Sxδ , if we let ε = δ2

L , we have

∇f(x)>v − δ2

2
≤ f(x+ εv)− f(x)

ε
≤ ∇f(x)>v +

δ2

2
.

Thus,

sign
(
∇f(x)>v

)
= sign

(
∇f(x)>v − δ2

2

)
≤ sign

(
f(x+ εv)− f(x)

ε

)
≤ sign

(
∇f(x)>v +

δ2

2

)
= sign

(
∇f(x)>v

)
,

implying sign(∇f(x)>v) = sign
(
f(x+εv)−f(x)

ε

)
. Therefore,

βnES(n) [sign(f(x+ εv)− f(x))v]

=

∫
v∈S(n)\Sxδ

[sign(f(x+ εv)− f(x))v] dS(n) +

∫
v∈Sxδ

[sign(f(x+ εv)− f(x))v] dS(n)

=

∫
v∈S(n)\Sxδ

[
sign(∇f(x)>v)v

]
dS(n) +

∫
v∈Sxδ

[sign(f(x+ εv)− f(x))v] dS(n)

=

∫
v∈S(n)

[
sign(∇f(x)>v)v

]
dS(n)−

∫
v∈Sxδ

[
sign(∇f(x)>v)v

]
dS(n)

+

∫
v∈Sxδ

[sign(f(x+ εv)− f(x))v] dS(n)

= Pn
∇f(x)

‖∇f(x)‖
−

∫
v∈Sxδ

[
sign(∇f(x)>v)v

]
dS(n) +

∫
v∈Sxδ

[sign(f(x+ εv)− f(x))v] dS(n),

where the last equality is due to Lemma 5.3.2. Putting the estimations together, we
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Algorithm 3: Bandit Online Normalized Gradient Descent

Input: feasible set X , # time period T , δ
Initialization: x1 ∈ X , ε = δ2/L
for t = 1 to T do

Sample vt uniformly over S(n) ⊂ Rn;
play xt and xt + εvt;
receive feedbacks ft(xt) and ft(xt + εvt);

set Gt(xt,vt) = sign(ft(xt+εvt)−ft(xt))
Qn

vt;
update xt+1 =

∏
X (xt − ηGt(xt,vt)).

end for

have ∥∥∥∥ES(n) [sign(f(x+ εv)− f(x))v]− Pn
βn

∇f(x)

‖∇f(x)‖

∥∥∥∥
≤ 1

βn

∫
v∈Sxδ

∥∥sign(∇f(x)>v)v
∥∥ dS(n) +

1

βn

∫
v∈Sxδ

‖sign(f(x+ εv)− f(x))v‖ dS(n)

≤ 2m(Sxδ )

βn
≤ 2Cnδ

βn
.

Note that Qn = Pn
βn

and Dn = Cn
βn

, the theorem is proved. 2

Based on Theorem 5.3.3, for a given δ > 0 we have a zeroth-order estimator for the

normalized gradient given as:

Gt(xt,vt) =
sign(ft(xt + εvt)− ft(xt))

Qn
vt, (5.9)

where ε = δ2/L and vt is an uniformly distributed random vector over S(n). Theorem

5.3.3 implies that the distance between the estimator and the normalized gradient can

be controlled up to a factor of δ. Essentially, the Bandit Online Normalized Gradien-

t Descent (BONGD) algorithm replaces the normalized gradient by Gt(xt,vt) in the

ONGD algorithm.

Note that Algorithm 3 actually outputs a random sequence of vectors {xt}T1 ; hence

the notion of expected non-stationary regret is applicable here. Let us denote {Ft}T1 be

the filtration generated by {xt}T1 . Then vt is independent of Ft. Note that in Algorithm

3, at each step, it queries the function at another point xt + εvt. Therefore, besides its
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output sequence {xt}T1 , we need to include {xt + εvt}T1 in our regret. We thus define

ERegretNST ({xt}T1 , {xt + εvt}T1 )

= E

[
T∑
t=1

(ft(xt)− ft(x∗t ))

]
+ E

[
T∑
t=1

(ft(xt + εvt)− ft(x∗t ))

]
.

The following theorem shows that by choosing η and δ appropriately, we can still achieve

an O(
√
T + VTT ) expected non-stationary regret bound.

Theorem 5.3.4 Let VT be defined in (5.6). Assume that the loss functions have Lip-

schitz gradients (Definition 19), satisfying the error bound condition (Definition 18)

and are weakly pseudo-convex with bounded gradient. For any sequence of loss functions

{ft}T1 ∈ ST , applying BONGD with η = Qn

√
4R2+6RVT

T and δ = min{T−
1

2γ , T−
1
4 } where

Qn = Pn
βn

and Pn is a constant, the following regret bound holds

ERegretNST ({xt}T1 , {xt + εvt}T1 ) ≤ O(
√
T + VTT ).

Proof: Let zt := ‖xt − x∗t ‖. Then,

z2
t+1 = ‖xt+1 − x∗t+1‖2

= ‖xt+1 − x∗t ‖2 + ‖x∗t − x∗t+1‖2 + 2(xt+1 − x∗t )>(x∗t − x∗t+1)

≤ ‖xt+1 − x∗t ‖2 + 2R‖x∗t − x∗t+1‖+ 4R‖x∗t − x∗t+1‖
= ‖

∏
X (xt − ηGt(xt,vt))− x∗t ‖

2 + 6R‖x∗t − x∗t+1‖
≤ ‖xt − ηGt(xt,vt)− x∗t ‖

2 + 6R‖x∗t − x∗t+1‖
= z2

t + η2‖Gt(xt,vt)‖2 − 2ηGt(xt,vt)
>(xt − x∗t ) + 6R‖x∗t − x∗t+1‖

≤ z2
t + η2

Q2
n
− 2ηGt(xt,vt)

>(xt − x∗t ) + 6R‖x∗t − x∗t+1‖.

By rearranging the terms, we have:

KGt(xt,vt)
>(xt − x∗t ) ≤ K

2η

(
z2t − z2t+1 +

η2

Q2
n

+ 6R‖x∗t − x∗t+1‖
)
.

Now based on ‖∇ft(xt)‖, we have two different cases:
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• ‖∇ft(xt)‖ ≥ δ. In this case, by Theorem 5.3.3, we have

‖E [Gt(xt,vt)|xt]−
∇ft(xt)
‖∇ft(xt)‖

‖ ≤ 2Dn

Qn
δ.

Therefore,

ft(xt)− ft(x∗t )

≤ K
∇ft(xt)>(xt − x∗t )
‖∇ft(xt)‖

≤ KE [Gt(xt,vt)|xt]> (xt − x∗t ) +
2DnK

Qn
δ‖xt − x∗t ‖

=
K

2η

(
E
[
z2t |xt

]
− E

[
z2t+1|xt

]
+
η2

Q2
n

+ 6R‖x∗t − x∗t+1‖
)

+
2DnK

Qn
δ‖xt − x∗t ‖

≤ K

2η

(
E
[
z2t |xt

]
− E

[
z2t+1|xt

]
+
η2

Q2
n

+ 6R‖x∗t − x∗t+1‖
)

+
4DnK

Qn
Rδ. (5.10)

• ‖∇ft(xt)‖ < δ. In this case, by the error bound property (Definition 18) we have

‖xt − x∗t ‖ ≤ D‖∇ft(xt)‖γ < Dδγ .

Therefore, due to the boundedness of gradient

ft(xt)− ft(x∗t ) ≤M‖xt − x∗t ‖ ≤MDδγ , (5.11)

and

0 ≤ K

2η

(
E
[
z2t |xt

]
− E

[
z2t+1|xt

]
+
η2

Q2
n

+ 6R‖x∗t − x∗t+1‖
)
−KE [Gt(xt,vt)|xt]> (xt − x∗t )

≤ K

2η

(
E
[
z2t |xt

]
− E

[
z2t+1|xt

]
+
η2

Q2
n

+ 6R‖x∗t − x∗t+1‖
)

+K
βn
Qn

Dδγ . (5.12)

Adding (5.11) with (5.12), it follows that

ft(xt)− ft(x∗t )

≤ K

2η

(
E
[
z2t |xt

]
− E

[
z2t+1|xt

]
+
η2

Q2
n

+ 6R‖x∗t − x∗t+1‖
)

+

(
K
βn
Qn

D +MD

)
δγ .(5.13)

In view of (5.10) and (5.13), if we let U = max
{

4CnK
Pn

R, (K βn
Qn
D +MD)

}
, then in
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either case the following inequality holds:

ft(xt)− ft(x∗t ) ≤ K

2η

(
E
[
z2t |xt

]
− E

[
z2t+1|xt

]
+
η2

Q2
n

+ 6R‖x∗t − x∗t+1‖
)

+ Uδγ .

Summing these inequalities over t = 1, ..., T , we have

ERegretNST ({xt}T1 , {xt + εvt}T1 )

= E

[
T∑
t=1

(ft(xt) + ft(xt + εvt)− 2ft(x
∗
t ))

]

≤ E

[
T∑
t=1

(2ft(xt)− 2ft(x
∗
t ) +Mε‖vt‖)

]

≤ K

η

(
E
[
z21
]
− E

[
z2T+1

]
+ T

η2

Q2
n

+ 6R

T∑
t=1

‖x∗t − x∗t+1‖

)
+ 2TUδγ +MTε

≤ K

2η

(
4R2 + T

η2

Q2
n

+ 6RVT

)
+ 2TUδγ + TM

δ2

L
.

By choosing η = Qn

√
4R2+6RVT

T , and δ = min{T−
1

2γ , T−
1
4 }, we have

ERegretNST ({xt}T1 , {xt + εvt}T1 )

≤ 2K

Qn

√
T (4R2 + 6RVT ) + (2U +

M

L
)
√
T

≤ O(
√
T + VTT ).

2

Therefore, under the additional error bound condition (Definition 18) and the Lipschitz

continuity of the gradient (Definition 19) on the loss functions (e.g. the function depicted

in Figure 1 satisfies all the conditions of Theorem 3), the expected regret of BONGD

remains O(
√
T + VTT ), which matches both the upper and lower bound in Yang et al.

(2016) for the general Lipschitz continuous convex cost functions and two point bandit

feedback. Moreover, the zeroth-order estimator for the normalized gradient could be of

interest on its own.
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5.4 Concluding Remarks

In this chapter, we considered online learning with non-convex loss functions and the

non-stationary regret measure, and established O(
√
T + VTT ) regret bounds, where VT

is the total variation of the loss functions, for a gradient-type algorithm and a bandit-

type algorithm under some conditions on the non-convex loss function. As a direction

for future research, it will be interesting to find out if the same regret bound can still

be established without knowing VT in advance. Moreover, it remains open to extend

the results to the setting where the loss functions may be noisy and non-smooth.

5.5 Technical Proofs

Before we prove Proposition 5.1.1, let us recall the definition of star-convexity and show

a lemma.

Definition 20 (Star-convex functions). A function f : Rn → R is star-convex if there

is x∗ ∈ argmin
x∈X

f(x) such that for all α ∈ [0, 1] and x ∈ X ,

f((1− α)x∗ + αx) ≤ (1− α)f(x∗) + αf(x). (5.14)

The following lemma characterizes the differentiable star-convex functions.

Lemma 5.5.1 For a differentiable function f , the star convexity condition (5.14) is

equivalent to the following condition

f(x)− f(x∗) ≤ ∇f(x)>(x− x∗), (5.15)

where x∗ = argmin
x∈X

f(x).

Proof: Suppose (5.14) holds. Then we have

f(x)− f(x∗) ≤ f(x)− f((1− α)x∗ + αx)

1− α
, (5.16)

for all α ∈ [0, 1]. Note that

lim
α→1−

f(x)− f((1− α)x∗ + αx)

1− α
= ∇f(x)>(x− x∗),
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which implies (5.15). Conversely, suppose that (5.15) holds. Let us denote

d(α) := f((1− α)x∗ + αx)− f(x∗).

Clearly, (5.14) is equivalent to

d(α) ≤ αd(1), for all 0 ≤ α ≤ 1. (5.17)

It remains to show that if f is differentiable then (5.15) implies (5.17). In fact, (5.15)

leads to

f((1− α)x∗ + αx)− f(x∗) ≤ α∇f((1− α)x∗ + αx)>(x− x∗),

or,

d(α) ≤ αd′(α).

Hence, (
d(α)

α

)′
=
αd′(α)− d(α)

α2
≥ 0,

for all 0 < α ≤ 1, implying that d(α)
α is a nondecreasing function for α ∈ (0, 1]. Therefore,

d(α)

α
≤ d(1)

1
,

which proves (5.17) for α ∈ (0, 1]. Since d(0) = f(x∗) = 0, (5.17) in fact holds for all

α ∈ [0, 1]. 2

Proof of Proposition 5.1.1 From Lemma 5.5.1, we have

f(x)− f(x∗) ≤ ∇f(x)>‖x− x∗‖

≤ M
∇f(x)>(x− x∗)
‖∇f(x)‖

where the last inequality is due to the bounded gradient condition ‖∇f(x)‖ ≤ M for

x ∈ X . 2
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Proof of Proposition 5.1.2: For all x ∈ X , we have

f(x)− f(x∗) ≤ M‖x− x∗‖

≤ M

Z

∇f(x)>(x− x∗)
‖∇f(x)‖

where the first inequality follows from the bounded gradient assumption while the sec-

ond inequality is due to the acute angle condition. 2

Proof of Proposition 5.1.3: By taking the derivative of the equation (5.5) with

respective to t and letting t = 1, we have

∇f(x)>(x− x∗) = α(f(x)− f(x∗)).

Therefore, we have

f(x)− f(x∗) =
1

α
∇f(x)>(x− x∗)

≤ M

α

∇f(x)>(x− x∗)
‖∇f(x)‖

,

which satisfies the weak pseudo-convexity condition with K = M
α . 2
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Conclusion

In this dissertation, we studied the application of the convex optimization in the discrete

choice modeling. In Chapter 3, we showed that the CMM model, which had already been

reformulated as a semi-definite program by Mishra et al. (2012), can be reformulated as

maximizing a strongly concave function over a unit simplex. Several desirable properties

of the objective function allowed us to prove that the well-known projected gradient

algorithm enjoys a local linear convergence rate. In Chapter 4, we proposed the welfare-

based approach to study the choice models. The welfare-based approach starts with any

convex, monotone and translation invariant function as a potential function, and then

defines the choice probability as the gradient of the potential function. We establish

the equivalence relation among several known choice models and the proposed welfare-

based choice model. The proof of the equivalence relies on the machineries from convex

analysis. The substitutability/complementarity concept in the discrete choice model is

essentially the submodularity/supermodularity of the welfare function. In Chapter 5,

we studied the online learning problem, where loss functions are only assumed to be

weakly pseudo-convex. When the gradient of the loss function at the decision point

was available, we proposed an online normalized gradient descent algorithm to solve the

online learning problem. In another situation, when only the value of the loss function

was available, we proposed a bandit online normalized gradient descent algorithm. With

the help of continuous optimization theories, we showed that both algorithms achieve a

cumulative regret bound of O(
√
T + VTT ), where VT is the total temporal variations of

loss functions.
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