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Abstract

The ubiquity of healthcare data allows for complex analyses of a variety of topics

ranging from healthcare cost to cognitive decline in dementia patients. Healthcare

datasets are often highly skewed and heteroskedastic posing great challenges for statis-

tical analyses. Quantile regression is an effective tool for analyzing healthcare datasets

because, compared with mean regression, quantile regression has weaker assumptions

which are more appropriate for complex data. Additionally, quantile regression mod-

els conditional quantiles of the response variable providing a more complete picture of

the conditional distribution. In this dissertation, we propose three solutions to chal-

lenges in healthcare data analysis. All three solutions either directly rely on quantile

regression or extend existing methodology and algorithms.

Motivated by the Medical Expenditure Panel Survey containing data from indi-

viduals’ medical providers and employers across the United States, we propose a new

semiparametric procedure for predicting whether a patient will incur high medical

expenditure. The common practice is to artificially dichotomize the response. We

propose a new semiparametric prediction rule to classify whether a future response

occurs at the upper tail of the response distribution. The new method can be consid-

ered a semiparametric estimator of the Bayes rule for classification and enjoys some

nice features. It incorporates nonlinear covariate effects and can be adapted to con-

struct a prediction interval and hence provides more information about the future

response.

Next, we extend semiparametric quantile regression methodology to longitudinal

studies with non-ignorable dropout. Dropout occurs when a patient leaves a study

prior to its conclusion. Non-ignorable dropout occurs when the probability of dropout
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depends on the response. Failing to account for non-ignorable dropout can result in

biased estimation. To handle dropout, we propose a weighted semiparametric quantile

regression estimator where the weights are inversely proportional to the estimated

probability remaining in the study. We show that this weighted estimator gives

unbiased estimates of linear effects. We illustrate the advantages of the proposed

method on a subset of the National Alzheimer’s Coordinating Center Uniform Data

Set tracking cognitive decline in dementia patients.

Lastly, we turn our attention to the issue of analyzing very large datasets with a

large number of covariates and sample size. Penalized quantile regression is often used

to simultaneously select variables and estimate effects by fitting models at many values

of a tuning parameter. Existing algorithms have focused on improving computation

time at one value of a tuning parameter, however obtaining model estimates for all

values of the tuning parameter can still be prohibitively time-consuming. Instead

of attempting to solve the penalized quantile regression problem for each value of a

tuning parameter, we propose a sparsity path algorithm to approximate the solution

allowing for fast exploration of candidate models at many different sparsity levels.

Simulations show that the true model is always contained in the set of candidate

models returned by the proposed sparsity path algorithm.
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Chapter 1

Introduction

Researchers have been collecting and analyzing data to provide answers to a wide

variety of problems in healthcare for decades. These data come from a variety of

sources including clinical studies, large government sponsored panel surveys, and

observations of patients during doctor visits. Analysis of these datasets can determine

the efficacy of a new treatment for a disease, inform and influence healthcare policy,

and predict future outcomes for individuals.

Healthcare data typically consist of observations with a single response and many

covariates. A well known approach for analyzing a response conditional on covariates

is mean regression. Typically ordinary least squares methods are used to estimate

the conditional mean or variance and make inference or predictions about future

observations. Ordinary least squares methods typically require strong assumptions on

the distribution of the error. It is common to assume that the errors are identically and

independently distributed, Other times, like in weighted least squares, the variance

of the error for a particular observation is assumed to be proportional to a scalar

which must be estimated from the data [Weisberg, 2005]. Inference and prediction

can be inaccurate and misleading if these assumptions are violated. Healthcare and

healthcare expenditure data, however, are often skewed and heterogeneous [Zhou

et al., 2001], violating a key assumption of ordinary least squares.

1



1.1. Applications in healthcare 2

Additionally, healthcare and healthcare expenditure analysis often requires esti-

mation and inference of other features of the conditional distribution of the response

beyond just the mean. For example, infants with extremely low birth weight need

special medical attention immediately upon birth. In this case, estimation of the

lower quantiles of the conditional birth weight distribution is needed. Another fa-

miliar example is the construction of growth charts for children’s height and weights.

All quantiles of the growth chart conditioned on age, gender, and potentially other

covariates are needed to properly understand a child’s growth in the context of his or

her age and sex.

Quantile regression is a method that allows for estimation and prediction of all

quantiles of the distribution of the response conditioned on covariates without making

strong distributional assumptions on the response. Additionally, quantile regression

allows for heteroscedastic errors. A benefit of allowing for heteroscedasticity means

that covariates can effect the response differently at different quantiles. For example,

a patient’s sex can have a large effect on the median weight, but have a very small

effect on weight at a high quantile. Put simply, the median weight of boys and girls

can be different, but the heaviest boys can have similar weights as the heaviest girls.

Going one step further, it is also possible that some covariates have a large effect

for some quantiles and no effect at others [Wang et al., 2012]. These two features

of quantile regression make quantile regression an appealing approach for analyzing

healthcare and healthcare cost data.

1.1 Applications in healthcare

In the past two decades, researchers have applied quantile regression to a variety of

problems in healthcare. In a study tracking neuropsychological performance, Sher-

wood et al. [2016] used quantile regression to model a patient’s decline in cognitive
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ability over time. To track if a patient is experiencing more cognitive decline than

expected, a patient’s baseline cognitive ability is first matched to a quantile. As the

patient ages, his or her cognitive ability is compared to this same quantile. A patient

is said to be experiencing unnatural cognitive decline (a sign of cognitive impairment

or dementia) if he or she fails to maintain performance at this quantile. Sherwood

et al. [2016] found that neuropsychological performance decreased much faster over

time for high performers than for middle or lower performers. Exploratory analysis

of the data suggested that the data was heteroscedastic, violating a key assumption

of mean regression. Had mean regression been used here, a large number of patients

with high cognitive ability would have been mislabeled with cognitive impairment.

Understanding the effect of the economic recession of 2007-2009 on healthcare ex-

penditure can help policy makers better plan for future recessions. Chen et al. [2014]

analyzed healthcare expenditure during this time period using quantile regression and

found that the recession was associated with reductions in expenditure for the lower

quantiles, but that the recession did not effect expenditure for the higher quantiles.

This means that the recession decreased spending among patients who were already

spending little on healthcare, but did not effect the spending of those with high ex-

penditure. An analysis using mean regression would not have detected the differences

in the recession’s effect on low and high spenders.

The above analyses assumed that the effects of the covariates on the response are

linear. However, relationships between covariates and the response are not always

linear. Consider a patient’s age. When younger, a patient requires annual checkups

and frequently has a health related problem. As the patient ages into adulthood, he or

she probably does not need as much medical attention. But once the patient reaches a

certain age, medical attention becomes much more necessary and frequent again. To

handle these nonlinear relationships, He and Shi [1996] extended quantile regression to

allow for the estimation of nonlinear effects. We use the term semiparametric quantile
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regression to refer to situations when both linear and nonlinear effects are estimated.

We will discuss semiparametric quantile regression in more detail in Section 2.2.

Noting that children do not grow linearly over time, Wei et al. [2006b] modeled

children’s growth charts using semiparametric quantile regression allowing for age to

have a nonlinear effect on growth. Sherwood and Wang [2016] extended the semi-

parametric quantile regression model to the high-dimensional case and estimated dif-

ferent quantiles of birthweight by allowing the mother’s age to have a nonlinear effect.

The semiparametric quantile regression model is also useful for analyzing longitudinal

data. He et al. [2002] proposed a method for estimating the conditional quantiles with

longitudinal data using semiparametric quantile regression and analyzed a hormone

study.

Another challenging feature of healthcare and healthcare cost data is missing data.

Sometimes some covariates are not always observed or sometimes patients drop out of

a longitudinal study before completion. We will discuss different kinds of missing data

and methods for handling missingness in more detail in Section 2.3. When missing

data is ignored, estimates can be biased leading to incorrect conclusions. Sherwood

et al. [2013] showed a method for consistently estimating the quantiles of healthcare

costs when not all covaraites are always observed when all effects are linear. This

method was later extended to the semiparametric quantile regression model when

some covariates are not always observed and was used to model the time patients

spend in a rehabilitation center [Sherwood, 2016]. In a longitudinal study where

some patients dropped out prior to conclusion of the study, Lipsitz et al. [1997] used

similar techniques to estimate the conditional quantiles of the CD4 cell count of HIV

patients.

As researchers collect more and more data, they are often faced with the challenge

of selecting which variables to include in models. Variable selection is a rich area in

the statistical literature and there are many methods to help select a model. In the
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past year alone, two competing algorithms for variable selection have been proposed

[Gu et al., 2017, Yu et al., 2017]. However, not all these methods and algorithms

perform well when datasets are large [Fan et al., 2014]. Fast algorithms that work

well on large datasets are essential for analysis of healthcare data.

1.2 Overview

The outline of this dissertation is as follows. In Chapter 2, we formally introduce and

review quantile regression as it pertains to the rest of this dissertation. Motivated

by the Medical Expenditure Panel Survey containing data from individuals’ medical

providers and employers across the United States we propose a new semiparametric

procedure for predicting whether a patient will incur high medical expenditure in

Chapter 3. In particular, we propose a new semiparametric prediction rule to classify

whether a future response occurs at the upper tail of the response distribution.

Next in Chapter 4, we extend seimparametric quantile regression methodology

to longitudinal studies with non-ignorable dropout. Dropout occurs when a patient

leaves a study prior to its conclusion and non-ignorable dropout occurs when the

probability of dropout depends on the response. Failing to account for non-ignorable

dropout can result in biased estimation. To handle dropout, we propose a weighted

semiparametric quantile regression estimator where the weights are inversely propor-

tional to the estimated probability remaining in the study. We illustrate the advan-

tages of the proposed method on a subset of the National Alzheimer’s Coordinating

Center Uniform Data Set tracking cognitive decline in dementia patients. Patients in

this study are more likely to dropout as their cognitive abilities decline.

Lastly, we turn our attention to the issue of analyzing very large datasets with a

large number of covariates and sample size in Chapter 5. Penalized quantile regres-

sion is often used to simultaneously select variables and estimate effects by fitting



1.2. Overview 6

models at many values of a tuning parameter. Existing algorithms have focused on

improving computation time at one value of a tuning parameter, however obtaining

model estimates for all values of the tuning parameter can still be prohibitively time-

consuming. Instead of attempting to solve the penalized quantile regression problem

for each value of a tuning parameter, we propose a sparsity path algorithm to approx-

imate the solution at increasing values of the tuning parameter. We conclude this

dissertation in Chapter 6 with a discussion of our contributions and future extensions

of our work.



Chapter 2

Review: Quantile Regression

In this chapter, we will review quantile regression and basic properties that are rel-

evant to this dissertation. We will begin the review in Section 2.1 with quantile

regression when all the covariates have linear effects on the repsonse. We will extend

linear quantile regression to semiparametric quantile regression in Section 2.2 which

relaxes the linear assumption and allows some covariates to have nonlinear effects on

the response. The review of semiparametric quantile regression will focus on partially

linear additive quantile regression, a subclass of semiparametric quantile regression.

Finally we will review different types of missing data and some methods for han-

dling missingness in the quantile regression framework in Section 2.3. Computational

methods will also be discussed.

First, we will introduce some notation. Let (Y,X ′) be a random variable where

Y ∈ R and X ∈ Rp. The conditional distribution function of Y given X is FY |X(y) =

P (Y ≤ y|X). For a given τ ∈ (0, 1), the τth conditional quantile of Y given X is

defined as QY |X(τ) = inf{t : FY |X(t) ≥ τ}. The conditional median corresponds to

QY |X(0.5). Interpretation of the conditional quantile is straightforward. For example,

given the vector of covariates X = x and τ = 0.9, 90% of observations of Y with

associated X = x fall below QY |X(0.9). A useful property of the quantile function is

the invariance property. For any monotone function h(·), for example the logarithm

7
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function, Qh(Y )|X(τ) = h
(
QY |X(τ)

)
; the analog for the conditional mean is not always

true, i.e., in general E[log(Y )|X] 6= log(E[Y |X]).

2.1 Linear quantile regression

Given the random sample (Yi, X
′
i)
′, i = 1, . . . , n, the classical linear quantile regression

model assumes thatQYi|Xi(τ) = X ′iβ(τ) where β(τ) is a vector of unknown coefficients.

Alternatively, we can write

Yi = X ′iβ(τ) + εi

where the errors {εi}ni=1 are independent and satisfy the quantile constraint P (εi <

0|Xi) = τ . Because there is no assumption on any parametric distribution for εi

and no restriction on homogeneity of variance, quantile regression is an attractive

model for modeling heteroscedastic and nonnormal data. When εi are independent

and identically distributed, the coefficient vector β(τ) does not depend on τ except

the intercept; while for heteroscedastic data, the coefficient vector usually varies for

different values of τ . By studying different choices of τ , we can gain a more complete

understanding of the relationship between Y and X.

Koenker and Bassett [1978] proved that the estimator for β(τ) can be obtained

by solving the following convex optimization problem

β̂(τ) = arg min
β∈Rp

n∑
i=1

ρτ (Yi −X ′iβ), (2.1)

with loss function ρτ (u) = u(τ − I{u < 0}). Figure 2.1 depicts the quantile loss

function, which is a weighted L1 objective function. The optimization problem in

(2.1) can be effectively solved by linear programming [Koenker and d’Orey, 1987,

1994, Koenker and Park, 1996]. The R package quantreg provides functions for
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τ − 1 τ

ρτ(u)

u

Figure 2.1: Plot of quantile loss function.

obtaining the estimator [Koenker, 2013].

Before stating a key asymptotic property of β̂(τ), we first need two mild conditions.

(Conditions on the random error) The random error εi conditioned on the co-

variates Xi has the distribution function Fi and continuous conditional density

function fi. The fi are uniformly bounded away from 0 and infinity in a neigh-

borhood of zero and its first derivative f ′i has a uniform upper bound in a

neighborhood of zero, for 1 ≤ i ≤ n.

(Conditions on the covariates) Let D be a compact subset of Rp and Xi ∈ D

for i = 1, . . . , n.

Under these two conditions, Theorem 4.1 of Koenker [2005] proves that if

n−1
∑n

i=1XiX
′
i

p→ Σ and n−1
∑n

i=1 fi(0)XiX
′
i

p→ Σ1, then

√
n
(
β̂(τ)− β(τ)

)
d→ N

(
0, τ(1− τ)Σ−1

1 ΣΣ−1
1

)
.

It is important to note that this result does not require the errors to be identically

distributed.
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If a distributional assumption can be made on the errors, then mean regression

can be used to estimate the quantiles in addition to the mean. To understand this

point, consider data generated from the following simple model:

Yi = X ′iβ + εi, (2.2)

where Xi ∈ R is an observed covariate, β is the unknown coefficient, and εi
iid∼

N(0, σ2). This model meets the assumptions of ordinary least squares (OLS) and can

be rewritten as Yi|Xi ∼ N(Xiβ, σ
2). Let β̂OLS denote the OLS estimator of β and σ̂2

be the OLS estimate of σ2. Then the estimate of E[Yi|Xi = xi] is xiβ̂
OLS. Because

we assumed a normal distribution for Yi|Xi, the estimate of QYi|Xi=xi(τ) = xiβ̂
OLS +

Φ−1(τ)σ̂, where Φ−1(τ) is the τth quantile of the standard normal distribution. If

the errors are not identically distributed, the estimates of the conditional quantiles

relying on OLS estimation will be incorrect.

Below we will analyze a food expenditure dataset to demonstrate the importance

of directly estimating the conditional quantile function using the estimator in (2.1)

and not relying on distributional assumptions of the errors. The food expenditure

dataset contains 235 observations from 19th century Belgium working class house-

holds about annual income and annual food expenditure in Belgian francs [Koenker

and Bassett Jr, 1982]. We will estimate the conditional distribution of food expen-

diture given annual income. Though not a healthcare dataset, this simple example

illustrates the complexity of expenditure data in general and the need to estimate

conditional quantiles directly. Figure 2.2 contains estimates of the 0.9 and 0.1 con-

ditional quantiles from directly estimating the quantiles and from using the OLS

method discussed above.

We first notice that the two methods result in two different estimates of the condi-

tional quantiles for different incomes. The estimated quantiles from the OLS method
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Figure 2.2: Estimated conditional 0.9 (upper lines) and 0.1 (lower lines) quantiles
using direct estimates of the quantiles and OLS. The solid lines are the quantile
estimates from (2.1) and the dashed lines are the quantile estimates obtained using
OLS.

are parallel while the direct estimates are not. Directly estimating the quantiles allows

for the effects of covariates to be different at different quantiles. From the definition

of a quantile, we can expect that about 90% of the data is below the 0.9 quantile

line and about 10% below the 0.1 quantile line. We see that the OLS estimated

quantile lines bound the expenditures for low incomes and only contain the middle

expenditures for large incomes. However, the directly estimated conditional quantiles

maintain the correct proportion of the expenditures below the lines for all incomes.

The quantile lines are not parallel because the variance is heteroscedastic.

2.2 Partially linear additive quantile regression

To incorporate nonlinear effects, we make use of the flexible partially linear additive

quantile regression model. More specifically, we write Xi = (V ′i , Z
′
i)
′ ∈ Rp+q, where Vi
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denotes a p-vector of covariates with linear effects and Zi = (Zi1, . . . , Ziq)
′ denotes a q-

vector of covariates with nonlinear effects. The first element of Vi is 1 and corresponds

to the intercept. The partially linear additive quantile regression model assumes that

QYi|Xi(τ) = V ′i β(τ) +

q∑
k=1

gk(Zik), (2.3)

where gk(·) is an unknown smooth nonparametric function, k = 1, . . . , q. For iden-

tifiability, it is often assumed that E(gk(Zik)) = 0. The semiparametric quantile

regression models considered by He and Shi [1996], He et al. [2002], Wang et al.

[2009], among others, are useful for incorporating nonlinearity while avoiding the

curse of dimensionality.

To approximate the unknown nonparametric components gk(·), we use a linear

combination of basis spline (B-spline) functions. Schumaker [1981] details the con-

struction and many properties of B-splines. Here we provide a description of the

construction and relevant results about the approximations of B-spline basis func-

tions. We assume that each covariate Zik is bounded above and below. We can then,

without loss of generality, standardize the Zik covariates to be in the interval [0,1].

To define the B-spline functions, we first select a dregree r to use for the B-spline

functions and the number of internal knots mn − 1 used to divide the support of

Zik into mn intervals. The number of internal knots selected should grow with the

sample size, but in practice a small integer works well. Then we place r knots on

the lower and upper bound of the support. Let t1 ≤ t2 ≤ . . . ≤ t2r+mn−1 be the

sequence of knots. It is common to choose the internal knots to create mn equally

spaced intervals or to correspond to mn−1 quantiles of Zik. This procedure results in

a total of Jn = r+mn basis functions. The formula for the basis functions br1, . . . , b
r
jn
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Figure 2.3: Plot of cubic B-splines with Jn = 8.

is defined recursively below:

br1(z) =

1, if ti ≤ z ≤ ti+1,

0, otherwise ,

bri (z) =
z − ti

ti+r−1 − ti
br−1
i (z) +

ti+r − z
ti+r − ti+1

br−1
i+1 (z).

Figure 2.3 displays eight cubic B-Splines on a support of [0, 1] with four evenly placed

internal knots.

Let w(z) = (b1(z), . . . , bkn+l+1(z))′ denote a vector of normalized B-spline ba-

sis functions of order l + 1 with kn quasi-uniform internal knots on [0, 1]. Then

gk(Zik) can be approximated by w(Zik)
′ξk, where ξk are to be estimated from the

data, k = 1, . . . , q. The B-spline approximation is known to be flexible and compu-

tationally efficient. For simplicity, we use the same number of basis functions for all

nonparametric components, but this is not necessary in practice.
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To estimate the partially linear additive quantile regression model, we obtain

{
β̂(τ), ξ̂1(τ), . . . , ξ̂q(τ)

}
=

arg min
{β,ξ1,...,ξq}∈Rp+(kn+l+1)q

n∑
i=1

ρτ

[
Yi −

{
V ′i β +

q∑
k=1

w(Zik)
′ξk

}]
. (2.4)

The estimator for the nonparametric function gk is

ĝk(Zik) = w(Zik)
′ξ̂k(τ)− n−1

n∑
i=1

w(Zik)
′ξ̂k(τ), (2.5)

for k = 1, . . . , q; where the centering is the sample analog of the identifiability condi-

tion E[gk(Zik)] = 0. In the sequel, we will omit the dependence on τ in notation for

simplicity when the quantile level of interest is clear from the context. The asymp-

totic theory of the estimators is systematically investigated in Sherwood and Wang

[2016]. For consistency, it is required that the number of basis functions kn → ∞,

but in practice usually the choice of a small integer works well.

Many statistical software packages such as R, SAS and STATA can be adapted to

obtain estimates of β̂ and ĝk(Zik). To estimate the partially linear additive quan-

tile regression model, we recommend using the plaqr function inside the R package

plaqr we developed [Maidman, 2016]. Nonlinear effects can be plotted using the

nonlinEffect and plot functions.

2.3 Quantile regression with missing data

Before describing existing methods for estimating conditional quantile function in

the presence of missing data, we first need to define different types of missing data.

There are three main types of missing data: missing completely at random (MCAR),

missing at random (MAR), and missing not at random (MNAR). The missing data
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is usually a subset of the covariates that is not always observed. For example, a

variable indicating race is usually an optional question on surveys and thus may

not be observed for every patient. A variable is MCAR if the probability of it not

being observed does not depend on its value or on the values of any of the other

variables (including the response). A variable is MAR if the probability of it not

being observed only depends on the values of all or a subset of the always observed

variables (including the response). A variable is MNAR if the probability of it not

being observed depends on variables which are not always observed (including its own

value).

To define the different types of missingness formally, we will first introduce some

notation. Using notation defined previously in this chapter, we write Xi = (s′i,m
′
i)
′

where si is always observed and mi is the vector of sometimes missing covariates which

are not always observed. Let Ri = 1 if mi is fully observed and Ri = 0 otherwise. Let

Ti ⊆ (Yi, X
′
i)
′ be the vector of always observed variables that effect the probability

not fully observing mi. We can now formally define the missing types of data below:

(MCAR) P (Ri = 1 | Yi, Xi) = P (Ri = 1),

(MAR) P (Ri = 1 | Yi, Xi) = P (Ri = 1 | Ti).

For a variable that is MNAR, it is not possible to simplify P (Ri = 1 | Yi, Xi).

When data is MCAR, standard quantile regression techniques can be used on the

subset of completely observed data. Though this results in a loss in efficiency because

not all the subjects are used for estimation, there is no bias in the estimation. There

are no methods for estimating the conditional quantile function when data is MNAR.

Assuming the data is MCAR can sometimes be too strong of an assumption, so it is

common to assume that missing data is MAR. We will focus our discussion of missing

data for the MAR setting.
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Two common techniques for handling MAR data are imputation and inverse prob-

ability weighting. Imputation is a technique that attempts to fill in the missing data

so a “complete” dataset can be used for estimation. Research on imputation for

quantile regression has begun only recently (see Wei et al. [2012] and Wei and Yang

[2014]). Inverse probability weighting does not rely on estimating the missing data.

Instead, the goal is to estimate P (Ri = 1 | Ti) and assign weights to each fully ob-

served case inversely to the estimate of P (Ri = 1 | Ti). Robins et al. [1994] first used

inverse probablity weighting to estimate the conditional mean when some covariates

are MAR. Inverse probability weighting was extended to the linear quantile regres-

sion case [Sherwood et al., 2013] and later to the partially linear additive quantile

regression model case [Sherwood, 2016].

To formally define the inverse probability weighting quantile regression estimator,

first define P (Ri = 1 | Ti) = π(Ti). We can obtain an estimate π̂(Ti) of π(Ti) using

logistic regression. We then can consistently estimate β by solving a weighted version

of (2.1):

β̂(τ) = arg min
β∈Rp

n∑
i=1

Ri

π̂(Ti)
ρτ (Yi −X ′iβ). (2.6)

Another kind of missing data can occur with longitudinal data. Consider a study

on cognitive decline that expects to measure cognitive ability of a patients every

year for ten years. Once a patient reaches a certain level of cognitive decline it is

common for the patient to drop out of the study and cease returning for all future

appointments. The probability of dropout usually depends on the value of the re-

sponse and possibly other covariates as well. As a result, the dropout cannot be

ignored. Lipsitz et al. [1997] originally proposed using inverse probability weighting

where the probability of dropout needs to be estimated in order to estimate the condi-

tional quantile function in the longitudinal setting with dropout. These results relied
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upon a heuristic explanation. A consistent estimator for longitudinal partially linear

additive quantile regression is porposed in He et al. [2002]. Yi and He [2009] used

weighted estimating equations to estimate the the conditional median in longitudinal

studies with dropout. The weights used in their article are the inverse of the esti-

mated probability of dropout. There remains a gap in the literature for estimating

the conditional quantiles in a longitudinal model with dropout when not all covari-

ates are linear. Chapter 4 seeks to fill in that gap and apply the method to analyzing

cognitive decline and the potential onset of dementia.



Chapter 3

Semiparametric Method for
Predicting High-Cost Patients

3.1 Introduction

In this chapter, we propose a new semiparametric prediction procedure using train-

ing data from the past one or two years to classify a patient’s next-year expenditure

into the class of “high-cost” or “not-high-cost”. A threshold value c determined by

a field expert, typically corresponding to a high quantile of the expenditure distribu-

tion, separates the two classes. This problem differs from the traditional classification

problem in two important aspects. First, the actual values of the response variable

on a continuous scale are available in the training data set, not solely class labels.

Second, the two classes are severely imbalanced with high-cost patients in the minor-

ity. Ignoring the first issue results in efficiency loss; while ignoring the second issue

results in a classification rule with low sensitivity, i.e. low probability of identifying

the high-cost patients. An additional difficulty inherent in expenditure data is skew-

ness and heteroscedasticity which pose challenges for statistical analysis [Zhou et al.,

2001] and prediction at the tails of the distribution.

A popular approach in the literature for predicting if a new subject will be lo-

cated in the tails of the response distribution relies on binomial regression using a

18
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logistic link function, e.g. Fleishman and Cohen [2010], Meenan et al. [1999], and

Hosmer Jr and Lemeshow [2004]. Other link functions such as the complementary

log-log function may be used as well. Given the threshold c, the binomial regression

approach first artificially discretizes medical expenditure by assigning a value of 1 if

the expenditure is greater than c and 0 otherwise. A binomial regression model is

then fit to the 0-1 response data and a new patient can be classified as high-cost if his

or her predicted probability of being a high-cost patient is more likely than not. By

artificially dichotomizing the response, binomial regression results in efficiency loss

and it is not clear whether the artificially modified data satisfy modeling assumptions.

Modeling English inpatient healthcare expenditure using the generalized beta dis-

tribution of the second kind and the generalized gamma distribution was found to

have potential in predicting tail probabilities [Jones et al., 2015]. These methods can

suffer from high variability without very large sample sizes. Bertsimas et al. [2008]

took algorithmic approaches to predicting future healthcare expenditure using classi-

fication trees [Breiman et al., 1984] and clustering algorithms [Kannan et al., 2004].

While clustering algorithms are useful for identifying similar groups of patients, they

cannot predict if a future patient belongs to a class defined a priori.

If 10% of all patients are high-cost, the naive classification rule that classifies every

patient as not-high-cost has merely a 10% error rate. However, it completely misses

the minority class of high-cost patients rendering it unsuitable for many applications

[Vickers and Elkin, 2006]. Let r be the ratio of costs of a false positive (a not-high-cost

patient predicted to be high-cost) and a false negative (a high-cost patient predicted

to be not-high-cost). Simply taking r = 1 can result in classification rules with low

sensitivity.

We propose a novel procedure that takes into account the missclassification error

costs and leads to increased performance of sensitivity and overall classification. Our

procedure uses training data to obtain a semiparametric estimation of the
(

1
1+r

)
th
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conditional quantile function. The classification rule amounts to comparing the(
1

1+r

)
th conditional quantile of the response with the given threshold c. We show

that this semiparametric procedure consistently estimates the Bayes rule. The new

prediction procedure does not require dichotomization of the response and fully uses

the information contained in the expenditure data. It does not require parametric

distributional assumptions and is possibly more robust. The proposed procedure can

be modified to create prediction intervals for future expenditure yielding richer in-

formation. In contrast, binomial regression provides little extra information beyond

predicting whether the future expenditure is below or above the threshold.

In Section 3.2, we introduce the new semiparametric classification procedure and

its connection to binomial regression. We demonstrate the performance of our new

estimator with Monte Carlo simulations in Section 3.4. Section 3.5 reports a detailed

analysis of MEPS. We conclude with a discussion in Section 3.6. Numerical results

in Section 3.4 demonstrate that the new classification procedure is better able to

correctly classify new patients, particularly high-cost patients, compared to existing

parametric and algorithmic procedures. Proofs of theoretical results are included in

Section 3.7.

3.2 New semiparametric prediction procedure

3.2.1 Bayes rule for classification

A patient is considered as high-cost if his or her next-year medical expenditure, de-

noted by Y , is greater than a predetermined threshold c. We consider a loss function

that allows for unequal weighting of a false positive and a false negative. For a new pa-

tient with covariates X∗, let φ(X∗) ∈ {1,−1} be the prediction: −1 for not-high-cost
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and 1 for high-cost. The loss function of the decision rule φ(X∗) is

L(φ(X∗)) =


r−1, if φ(X∗) = −1 and Y ∗ > c,

1, if φ(X∗) = 1 and Y ∗ ≤ c,

0, otherwise.

Without loss of generality, the cost of a false positive is 1. Hence, r is the ratio of the

cost of a false positive to a false negative. Taking r = 1 can result in classification rules

with low sensitivity. Smaller ratios that weight the cost of a false negative heavier

than that of a false positive (e.g. ratio of 4:1) result in classification rules with higher

sensitivity. The ratio can be supplied by field experts or estimated from a pilot study.

Similar to the threshold c, the ratio r is driven by the domain of application, not by

the data.

The Bayes rule for classification minimizes the expected weighted 0-1 loss function,

E [L(φ(X∗))] = I (φ(X∗) = 1)
[
1− P (Y ∗ > c | X∗)(1 + r−1)

]
+ r−1P (Y ∗ > c | X∗).

It is straightforward to show that the decision rule φ(X∗) that minimizes E [L(φ(X∗))]

is given by

φ(X∗) =


1, if P (Y ∗ > c | X∗) > r

1+r
,

−1, if P (Y ∗ > c | X∗) ≤ r
1+r

.

(3.1)

3.2.2 The new prediction method

We want to classify a new patient with known predictors X∗ as high-cost if Y ∗ > c.

Note that the Bayes rule classifies a new patient with covariates X = x∗ as high-cost if
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P (Y ∗ > c | x∗) > r
1+r

. When r = 1 (equally weighted errors), the patient is classified

as high-cost if P (Y ∗ > c | x∗) > P (Y ∗ ≤ c | x∗).

Our new approach can be viewed as a semiparametric method for estimating the

Bayes rule without directly estimating the class probability P (Y ∗ > c | x∗). This is

based on the important observation that

sign

[
P (Y ∗ > c | X∗)− r

1 + r

]
= sign

[
QY ∗|X∗

(
1

1 + r

)
− c
]
. (3.2)

This equivariance suggests that we can estimate the Bayes rule by obtaining a semi-

parametric estimate of QY ∗|X∗
(

1
1+r

)
and comparing our estimate to the given thresh-

old c. The approach is semiparametric in the sense that it does not assume a specific

parametric distribution model for Y given X.

The classification rule is constructed from the training data (Yi, X
′
i)
′, i = 1, . . . , n,

and the observed vector of predictors X∗ = (V ∗
′
, Z∗

′
)′ for the new patient in the

following three step algorithm.

1. Fit model (2.3) on the training data and obtain β̂ and ĝk, k = 1, . . . , q for

τ = 1
1+r

.

2. For the new patient, we estimate Q̂Y ∗|X∗
(

1
1+r

)
= V ∗

′
β̂ +

∑q
k=1 ĝk(Z

∗
k).

3. Make the prediction: If Q̂Y ∗|X∗
(

1
1+r

)
> c, we classify the new patient as high-

cost; otherwise, we classify him or her as not-high-cost.

Useful byproducts of the partially linear additive quantile regression model are

prediction intervals. A (1− α)× 100% prediction interval for next-year expenditure

for a new patient with predictors X∗ is
(
Q̂Y ∗|X∗ (α/2) , Q̂Y ∗|X∗ (1− α/2)

)
. Though

not necessary for classifying a future patient, the prediction interval provides useful

information for the analyst.
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Many statistical software packages such as R, SAS and STATA can be adapted for the

first step of the prediction procedure. We recommend using the R package plaqr we

developed [Maidman, 2016]. A complete implementation of the prediction procedure

using plaqr is given in Section 7.1.

3.2.3 Connection to the binomial regression approach

An alternative approach to this prediction problem relies on binomial regression with

artificially dichotomized binary response variables. The underlying model with a

logistic link function assumes that

log

(
P (Y ∗ > c | X∗)

1− P (Y ∗ > c | X∗)

)
= X∗

′
α

and with a complementary log-log link function that

log {− log [1− P (Y ∗ > c | X∗)]} = X∗
′
α

for some unknown parameter α. In practice, α is usually estimated using the likeli-

hood method to yield an estimator of the class probability P (Y ∗ > c|X∗).

However, different from the ordinary binary classification problem for which only

class labels are observed, in our setting, we also have complete information on the

magnitude of the response variable. Our proposed semiparametric procedure fully

uses the information in the response variable to make predictions. As binomial re-

gression requires artificially dichotomizing the response variable, loss of information

is expected.



3.3. Asymptotic properties 24

3.3 Asymptotic properties

Note that (3.2) is stated for the unknown population conditional quantile function

QY ∗|X∗ . In order to prove large sample results for the proposed semiparametric pro-

cedure, we first state some conditions on the model.

We can write Yi = V
′
i β +

∑q
j=1 gj(Zij) + εi, where the εi are independent and

satisfy the constraint P (εi ≤ 0|Xi) = τ , where Xi = (V ′i , Z
′
i)
′ with Vi = (Vi1, . . . , Vip)

′

and Zi = (Zi1, . . . , Ziq)
′.

Definition 3.3.1

Let r ≡ m+v, where m is a positive integer and v ∈ (0, 1]. Define Hr as the collection

of functions h(·) on [0, 1] whose mth derivative h(m)(·) satisfies the Hölder condition

of order v. That is, for any h(·) ∈ Hr, there exists some positive constant C such

that

∣∣h(m)(z′)− h(m)(z)
∣∣ ≤ C|z′ − z|v, ∀ 0 ≤ z′, z ≤ 1.

Definition 3.3.2

Given Z = (Z1, . . . , Zq)
′, the function g(Z) is said to belong to the class of functions G

if it has the representation g(Z) = α+
∑q

k=1 gk(Zk), α ∈ R, gk ∈ Hr and E[gk(Zk)] =

0. �

Let h∗j(·) = arg inf
hj(·)∈G

∑n
i=1 E [fi(0)(xij − hj(Zi))2] , where fi(·) is the probability

density function of εi given Xi. Let mj(Z) = E [xij|Zi = Z], then it can be shown

that h∗j(·) is the weighted projection of mj(·) into G under the L2 norm, where the

weights fi(0) are included to account for the possibly heterogeneous errors. Define

δij ≡ Xij − h∗j(Zi). Let V be the n× p matrix of the linear covariates. Let H be the

n× q matrix with the (i, j)th element Hij = h∗j(Zi), and write V = H + ∆.
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The following conditions are imposed for deriving the properties stated in Section

3.3. These conditions are similar to those in Sherwood and Wang [2016].

(C1) (Conditions on the random error) The random error εi has the conditional

distribution function Fi and continuous conditional density function fi . The fi

are uniformly bounded away from 0 and infinity in a neighborhood of zero and

its first derivative f ′i has a uniform upper bound in a neighborhood of zero, for

1 ≤ i ≤ n.

(C2) (Conditions on the covariates) There exist positive constants M1 and M2 such

that |Vij| ≤ M1, ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ p and E[δ4
ij] ≤ M2, ∀ 1 ≤ i ≤ n,

1 ≤ j ≤ q. For a matrix X, define λmax(X) to be the maximum eigenvalue of

X. There exist finite positive constants C1 and C2 such that with probability

one

C1 ≤ λmax
(
n−1V V ′

)
≤ C2, C1 ≤ λmax

(
n−1∆∆′

)
≤ C2.

(C3) (Condition on the non-linear functions) For r = m+ v > 1.5, g0 ∈ G.

(C4) (Condition on the B-Spline basis) The dimension of the spline basis kn satisfies

kn ≈ n1/(2r+1). and n−1k3
n = o(1).

Sherwood and Wang [2016] showed that in this setting,
√
n
(
β̂ − β

)
converges in

distribution to a Normal random variable and that

n−1
∑n

i=1 (
∑q

k=1 ĝk(zik)−
∑q

k=1 gk(zik))
2

= Op(n
−1kn). In order to prove that our

proposed procedure classifies a new patient consistently, we need to strengthen these

results. First we will state a key lemma that proves that we are uniformly estimating

the nonlinear functions accurately.



3.4. Monte Carlo studies 26

Lemma 3.3.3

For a model and function g1, . . . , gq satisfying conditions (C1)-(C4),

sup
z∈[0,1]q

∣∣∣ q∑
k=1

ĝk(zk)−
q∑

k=1

gk(zk)
∣∣∣ = op(1).

In other words, the difference between the estimated nonlinear functions and the

true value of the nonlinear functions goes to zero uniformly as the sample size in-

creases to infinity. This property is essential to ensure that Q̂Y ∗|X∗(τ) accurately

estimates QY ∗|X∗(τ), hence the sign function can be predicted correctly with proba-

bility approaching one. This leads directly to the theorem proving consistency of the

proposed procedure.

Theorem 3.3.4

Under Conditions (C1)-(C4),

sign
[
Q̂Y ∗|X∗ (τ)− c

]
= sign

[
P (Y ∗ > c|X∗)− r

1 + r

]
+ op(1). (3.3)

�

Hence, the proposed semiparametric procedure consistently estimates the Bayes rule.

The proofs of Lemma 3.3.3 and Theorem 3.3.4 are included in Section 3.7.

3.4 Monte Carlo studies

3.4.1 Simulation setup

We compare our proposed new method (denoted by PLAQR) with five alternative

parametric or semiparametric procedures, linear logistic regression (LLOG), partially

linear additive logistic regression (PLALOG), linear complementary log-log regression

(LCLOG), partially linear additive complementary log-log regression (PLACLOG),
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and the proposed prediction algorithm using classical linear quantile regression (LQR)

[Koenker and Bassett, 1978], as well as a classification tree (TREE) in Monte Carlo

experiments. The classification tree procedure incorporates different choices of r by

treating the unequal cost of errors as a priori known class probabilities [Breiman et al.,

1984] and is implementable in many software packages. For the binomial regression

and classification tree approaches, the continuous response is dichotomized using a

predetermined threshold c. The simulation results are based on 10,000 runs.

Mimicking the setting of the real data example in Section 5, we generate the

response variable, next-year expenditure Y from the following model

Y = exp
(
3V1 + 1.5V2 + 2V3 + b

[
sin (2πZ1) + Z3

2

]
+ ε
)
, (3.4)

where V1 ∼ Bernoulli(0.5), V2, V3
iid∼ N(0, 1), Z1 ∼ Uniform(0, 1), and

Z2 ∼ Uniform(−1, 1). We consider three different choices for the random error dis-

tributions: (1) ε ∼ N(0, 1), (2) ε ∼ t3, and (3) ε ∼ V2 ξ, where ξ ∼ N(0, 1). Case

(2) corresponds to a heavy-tailed error distribution, and case (3) corresponds to a

heteroscedastic error distribution. We consider four different choices of b: 1, 2, 3, and

5, which provide varying magnitudes of nonlinearity. In each simulation scenario, the

size of the training and testing data are both 200. A new patient is referred to as

high-cost if his or her expenditure exceeds a threshold c. Here, we consider a choice

of c corresponding to approximately the marginal 0.9 quantile of Y .

Step (1) of the prediction procedure described in Section 3.2 requires estimating

a partially linear additive (or linear for LQR) quantile regression model from the

training data. Geraci and Jones [2015] proposes a one-parameter symmetric mono-

tonic transformation of the response to achieve linearity for R+ valued responses. In

each iteration, we estimate the transformation parameter for each value value of τ .

Letting Ỹ denote the transformed response, we estimate the quantile function for Ỹ .
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To simplify computations, transformations for the PLAQR procedure are estimated

for the model with three basis functions.

Motivated by Lee et al. [2014], we select the order of the basis functions m used

to approximate each nonlinear component in the partially linear additive quantile

regression model by minimizing

BIC(m) = log

(
n∑
i=1

ρτ

(
Ỹi −

[
V ′i β̂

(m) +

q∑
k=1

π(Zik)
(m)′ξ

(m)
k

]))

+ (p+ 1 + qm)
log n

2n
,

where the superscript (m) denotes estimates from the model with basis functions of

order m.

3.4.2 Simulation results

Different procedures are compared by plotting modified decision curves (see Vickers

and Elkin [2006]). For each procedure and choice of r, let th and fh denote the number

of correctly and incorrectly predicted high-cost patients, respectively, and n denote

the size of the prediction set. The decision curves are a plot of the net benefit for

each prediction procedure:

Net Benefit =
th
n
− fh

n
r.

This measure reflects the simultaneous goals of achieving high sensitivity and high

specificity by weighting the number of false positives by the relative cost of an er-

ror, r. Higher values indicate better prediction performance. We consider nine

choices of r: 1, 9/11, 8/12, 7/13, 6/14, 5/15, 4/16, 3/17, and 2/18 (corresponding to

τ = .50, .55, .60, . . . , .90, respectively), reflecting situations when the cost of mis-



3.4. Monte Carlo studies 29

classifying a high-cost patient is equal to nine times higher than misclassifying a

not-high-cost cost patient.

We report the decision curves for all values of b and the three types of errors

in Figure 3.1. The decision curves for all values of b follow similar patterns. We

summarize the major observations below for the case when b = 5.

First, we observe the importance of incorporating the nonlinear covariate effects.

The more flexible semiparametric approach to classification outperforms the linear

model based approaches and the classification tree, resulting in larger net benefit.

Even when the nonlinear effects are milder (b=1 or 2), we observe the semiparametric

models outperforming the linear models and classification tree. As the magnitude of

nonlinearity increases, the increase in net benefit using the semiparametric approach

becomes more evident.

Second, we observe that when the main interest is to predict if a future observation

belongs to a small class, it is important to consider different weights for a false positive

and a false negative in order to increase sensitivity. The increased sensitivity does not

necessarily come at the cost of dramatically reduced specificity. When r = 2/18, our

proposed new semiparametric procedure achieves a fine balance between sensitivity

and specificity, resulting in the largest net benefit.

Finally, the most interesting and important observation is that PLAQR, PLA-

LOG, and PLACLOG all perform similarly with respect to specificity; but PLAQR

has higher sensitivity, particularly when r = 2/18. The poor performance of TREE

can be explained by its low sensitivity for all choices of r, making it unusable in ap-

plication. To better understand the relative performance of PLAQR versus PLALOG

and PLACLOG, we consider a hypothetical situation in which 10,000 patients need

to be classified as high-cost or not-high-cost, of which 1,000 are high-cost. When

b = 5 with heteroscedastic errors and r = 2/18, PLAQR has mean sensitivity (SN)

0.981 and mean specificity (SP) 0.958, PLALOG has SN=0.864 and SP=0.964, and
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Figure 3.1: Decision curves for the LLOG, PLALOG, LCLOG, PLACLOG, LQR,
TREE, and PLAQR procedures for simulations with standard normal errors, t3 errors,
and heteroscedastic errors when b = 1, 2, 3, 5.All standard errors are less than 2.7 ×
10−4.
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PLACLOG has SN=0.851 and SP=0.966. Translating these results into the above

hypothetical setting, PLAQR predicts 19 false negatives and 378 false positives; while

PLALOG predicts 136 false negatives and 324 false positives and PLACLOG predicts

149 false negatives and 306 false positives. Hence, applying PLALOG or PLACLOG

results in 117 or 130 more high-cost patients falsely predicted as not-high-cost. With

normal errors, applying PLALOG or PLACLOG results in 116 or 121 more high-cost

patients being misclassified. With t3 errors, applying PLALOG or PLACLOG results

in 71 or 74 more high-cost patients being misclassified.

3.4.3 Sensitivity analysis

In the following we perform a sensitivity analysis to investigate the performance of

the proposed semiparametric classification method when the underlying model does

not have additive nonlinear effects. In particular, we consider responses generated

from the log-linear model

Y = exp (3V1 + 1.5V2 + 2V3 + Z1 + Z2 + ε) ,

and the model with nonadditive effects on the log scale

Y = exp (3V1 + 1.5V2 + 2V3 + Z1 + Z2 + Z1Z2 + ε) ,

where the covariates, errors, training and testing data sample sizes, and number

of iterations are the same as in Section 3.4.1. The log-linear model is a special

case of the partially linear additive assumption while the nonadditive effects model

violates it. We compare our proposed method with the correctly specified quantile

based procedure (denoted ORACLE QR). The one-parameter symmetric monotonic

transformation is used to estimate transformations [Geraci and Jones, 2015]. Decision
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Figure 3.2: Decision curves for the ORACLE QR and PLAQR procedures for log-
linear and log-nonadditive model simulations with standard normal errors, t3 errors,
and heteroscedastic errors.All standard errors are less than 2.3× 10−4.

curves are plotted in Figure 3.2.

When all effects are linear on the log scale, PLAQR and ORACLE QR have

almost identical estimated net benefits for all three errors. It is not surprising that

PLAQR performs nearly as well as ORACLE QR in this setting because the class

of partially linear additive models contains the class of linear models. Even with

nonadditive effects on the log scale, PLAQR only has slightly lower net benefit than

ORACLE QR. The results from this sensitivity analysis suggest that our proposed

semiparametric classification procedure works well even when the model does not

contain nonlinear effects or has nonadditive effects.
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Figure 3.3: A histogram of next-year medical expenditures (second year of Panels 1,
2, and 3).

3.5 Analysis of Medical Expenditure Panel Survey

We now apply the proposed procedure to analyze medical expenditure from MEPS.

Each panel consists of data from an individual over a two year span. In our analysis,

we consider 1,985 male patients aged 65 or older in Panels 1, 2, and 3 from years

2006-2007 (724 patients), 2007-2008 (568 patients), and 2008-2009 (693 patients),

respectively. We use the data from Panels 1 and 2 to predict if patients in Panel 3

will be high-cost in 2009. A threshold of US $28,520 corresponding to the marginal

approximate 0.9 quantile of the next-year expenditure in Panel 3 is used to define

patients as high-cost or not-high-cost.

Next-year expenditure among the three panels ranges from US $0 to US $314,400

(mean and median are US $10,110 and US $3,900, respectively). Nearly all of next-

year expenditures are less than US $150,000 and about 4% of next-year expenditures
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are US $0. The first and third quantiles are US $1,539 and US $10,586, respectively.

A histogram of next-year expenditure excluding the one expenditure greater than US

$150,000 (to obtain sufficient resolution on the x-axis) is given in Figure 3.3. Its dis-

tribution is highly skewed. We use the following eight predictors observed in the first

year of each panel: rgn (region of the country: northeast, midwest, south, west), insr

(type of medical insurance: Medicare, private, Medicaid, uninsured), chrnc (number

of chronic conditions: 0,1,. . . ,8,9+), prscrpt (number of prescriptions: 0,1,2,3,4+), er

(number of visits to the emergency room), health (summary score of self-described

physical health), age, and rrs (relative risk adjustment score to account for inflation).

The relative risk adjustment score, rrs, is a prospective measure of disease burden re-

lying on health condition categories. Studies have shown that individuals with higher

relative risk scores go on to use more hospital resources. These variables are impor-

tant in the medical cost literature for their predictive power [Fleishman and Cohen,

2010].

First, we compare the prediction performance of the seven procedures LLOG,

PLALOG, LCLOG, PLACLOG, TREE, LQR, and PLAQR discussed in Section 3.4.

For each of the seven procedures, we use the training data to fit the prediction model.

To reflect the panel-to-panel changes in the next-year expenditure distribution and

the goal of predicting patients with next-year expenditure greater than US $28,520

in Panel 3, we artificially dichotomize the next-year expenditure in Panels 1 and 2

according to their respective marginal approximate 0.9 quantiles (US $29,630 and US

$24,000) for the binomial regression and TREE procedures. We assume nonlinear

effects for age and rrs based on exploratory data analysis.

Transformations for the quantile regression procedures require strictly positive

responses. Because some patients in the training data have US $0 expenditure,

we add 1 to each response and apply the recommended one-parameter symmetric

transformation [Geraci and Jones, 2015] for each value of τ under consideration.
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Figure 3.4: Lack-of-fit diagnostic QQ plot for PLAQR.

The 95% bootstrap confidence intervals for the transformation parameters suggest

that the transformation ỹi ≡ log(yi + 1) is appropriate for all quantiles. By the

equivariance property of quantile regression, the conditional quantile of y is given by

QY |X,Z(τ) = exp
(
QỸ |X,Z(τ)

)
− 1.

We assess the overall lack-of-fit for the PLAQR model via the simulation based

graphical method proposed by Wei et al. [2006a]. More specifically, we generate a

random τ̃ from the Uniform(0,1) distribution and estimate Q̂Y |X (τ̃) for a randomly

sampled X in the training data. We repeat this process 5000 times to produce 5000

simulated responses from the assumed model and plot the quantiles of the sample

responses against the quantiles of the simulated respones in Figure 3.4. The points

in the QQ plot fall nearly along the identity line suggesting no lack-of-fit.

We evaluate the performance of all seven procedures for choices of r ranging from

1/9 to 1. When r = 1 (τ = .5) none of the seven procedures is able to accurately

predict high-cost patients. For smaller choices of r, the prediction procedures achieve

a better balance of sensitivity and specificity. When r = 1/9 (τ = .9), the procedures
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Figure 3.5: Plots of the estimated nonlinear effects.

identify high-cost patients at an acceptable rate without sacrificing much ability to

identify not-high-cost patients. Sensitivity from the PLACLOG procedure was 0.671

and from the PLAQR procedure 0.729. PLAQR is able to correctly predict 5.8%

more high-cost patients than PLACLOG while maintaining adequate specificity. The

specificities of PLACLOG and PLAQR were 0.713 and 0.724, respectively. PLALOG

had a sensitivity and specificity of 0.657 and 0.713, respectively. Consistent with

findings in Section 3.4.2, the TREE procedure’s low sensitivity rendered it inviable

as a prediction procedure.

To better understand the practical importance of this increased sensitivity, con-

sider that the subpopulation of males aged 65 and older in the U.S. in 2014 was about

20 million [U.S. Census Bureau, 2016]. If about 10% of patients had high-cost medical

expenditure, then PLAQR correctly identifies about 116,000 more high-cost patients

than PLACLOG while correctly identifying slightly more not-high-cost patients.

Next, to gain more insight into this data, we further explore the estimated con-

ditional 0.9 quantile of next-year expenditure in Panel 3 using the partially linear

additive quantile regression model. The estimated coefficients for the linear effects

and the estimated nonlinear functions ĝ1 and ĝ2 are given in Table 3.1 and Figure 3.5,
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Table 3.1: Coefficient estimates of linear effects for MEPS model when τ = 0.9 (90%
confidence intervals in parentheses).

Coefficient Estimate
(Intercept) 8.088 (7.128, 8.913)
rgnMW 0.163 (−0.445, 0.124)
rgnS −0.048 (−0.337, 0.188)
rgnW −0.332 (−0.614, − 0.093)
insrprvt 0.298 (−0.534, 0.727)
insrMdcd −3.634 (−13.806, − 2.519)
insrunin 0.683 (−0.904, 2.056)
chrnc1 2.198 (1.532, 3.348)
chrnc2 2.700 (1.681, 3.649)
chrnc3 2.279 (1.606, 3.296)
chrnc4 2.582 (1.834, 3.580)
chrnc5 2.768 (2.060, 3.831)
chrnc6 3.093 (2.359, 4.160)
chrnc7 2.856 (2.030, 3.950)
chrnc8 2.696 (1.993, 3.865)
chrnc9+ 2.893 (2.101, 3.994)
prscrpt1 −0.844 (−1.664, − 0.388)
prscrpt2 −0.972 (−1.608, − 0.481)
prscrpt3 −1.076 (−1.747, − 0.590)
prscrpt4+ −0.884 (−1.567, − 0.387)
er 0.079 (−0.045, 0.201)
health −0.013 (−0.022, − 0.006)
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Figure 3.6: 90% prediction intervals for next-year expenditure in Panel 3 of MEPS.

respectively. Dashed lines are one standard deviation above and below the estimated

effects. The pointwise standard deviations and confidence intervals are estimated

from 999 bootstrapped samples using the wild bootstrap [Feng et al., 2011]. Dashed

lines in the plot of ĝ2 do not cover the whole range of observed relative risk adjust-

ment score due to sparsity in the large values of the observed relative risk adjustment

score causing error estimation to be difficult and untrustworthy.

We conclude our analysis of MEPS by investigating prediction intervals. We

computed and plotted 90% prediction intervals for patients’ next-year expenditure

in Panel 3 in Figure 3.6. About 87% of the prediction intervals cover the true next-

year expenditure for each patient. As an example, consider a typical patient with

rgn = northeast, insr = Medicare, chrnc = 4, prscrpt = 3, er = 0, age = 75, rrs =

2.5, and health = 55. The 90% prediction interval of this patient’s next-year medical

expenditure is (US $2, 550, US $47, 728) with a predicted 0.9 quantile of US $38, 155.
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3.6 Discussion

Motivated by a real data application to identify potential future high-cost patients, we

propose a new semiparametric procedure to predict whether a new response falls in the

tail of the response variable distribution. We prove that the proposed semiparametric

procedure is a consistent estimator of the Bayes rule for classification while avoiding

estimating the class probability. Empirically, we show that the proposed procedure

outperforms popular binomial regression and classification tree based classification

procedures. Furthermore, the semiparametric approach incorporates nonlinear co-

variate effects. As suggested by simulation results, ignoring nonlinear effects may

substantially increase the misclassification error rates.

In the real data application, we formulate the problem as a binary prediction

problem as the intervention policy (whether to introduce an intervention program)

only depends on whether the patient’s future expenditure falls in the upper tail of the

expenditure distribution. We then consider a decision theory framework to minimize

the loss due to misclassification, where the two types of misclassification errors are

weighted according to their potential consequences. If we can estimate the effect

of the intervention as a percentage of the potential spending, then it is possible to

formulate the decision theory framework as in Section 2.3 of Ehm et al. [2016] to take

into account the magnitude of gains and losses. This approach will be useful in the

future when information about medical expenditure reductions as a result of policy

changes is available, for example, from a pilot program. This will be an interesting

future research direction.
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3.7 Proofs

Proof of Lemma 3.3.3

To facilitate the proof, we will make use of the theoretically centered B-spline basis

functions (e.g., Xue and Yang [2006]). More specifically, we consider the B-spline

basis functions bj(·) in Section 2 and let Bj(zik) = bj+1(Zik) − E[bj+1(Zik)]

E[b1(Zik)]
b1(Zik) for

j = 1, . . . , kn + l. Then E(Bj(Zik)) = 0. For a given covariate Zik, let w(Zik) =

(B1(Zik), ..., Bkn+l(Zik))
′ be the vector of basis functions, and W(Zi) denote the Jn-

dimensional vector
(
k
−1/2
n ,w(Zi1)′, ...,w(Ziq)

′
)′

, where Jn = q(kn + l) + 1.

By the result of Schumaker [1981] (p. 227), there exists a vector γ0 ∈ RJn and a

positive constant C0, such that supt∈[0,1]d |
∑q

k=1 gk(t)−W(t)′γ0| ≤ C0k
−r
n . Let

(ĉ1, γ̂) = argmin
(c1,γ)

n−1

n∑
i=1

ρτ
(
Yi − V ′i c1 −W(Zi)

′γ
)
. (3.5)

We write γ = (γ0,γ
′
1, . . . ,γ

′
d)
′, where γ0 ∈ R, γj ∈ Rkn+l, j = 1, . . . , d; and we write

γ̂ = (γ̂0, γ̂
′
1, . . . , γ̂

′
d)
′ the same fashion. Let g̃j(Zij) = w(Zij)

′γ̂j be the estimator of

gj, j = 1, ..., q. Let g̃(Zi) = W(Zi)
′γ̂ = g̃0 +

∑q
j=1 g̃j(Zij); and ĝ(Zi) =

∑q
j=1 ĝj(Zij).

It can be derived that ĝ = g̃.

sup
z

∣∣∣ q∑
j=1

ĝj(z)−
q∑
j=1

gj(z)
∣∣∣ = sup

z

∣∣∣g̃(z)−
q∑
j=1

gj(z)
∣∣∣

= sup
z

∣∣∣W(z)′(γ̂ − γ0)
∣∣∣

≤ sup
z
||W(z)|| · ||γ̂ − γ0||.

Let Bn = diag(f1(0), . . . , fn(0)) be the n× n diagonal matrix;

W = (W(Z1), . . . ,W(Zn))′ ∈ Rn×Jn , and W 2
B = W ′BnW ∈ RJn×Jn . It follows from
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Sherwood and Wang [2016] that ||WB(γ̂ − γ0)|| = Op(
√
kn)|. Hence,

||γ̂ − γ0|| = ||W−1
B WB(γ̂ − γ0)||

≤
√
knn−1Op(kn) = Op(k

3/2
n n−1/2).

In our setting, supz ||W(z)|| = Op(1).

Thus supz

∣∣∣∑q
j=1 ĝj(z)−

∑q
j=1 gj(z)

∣∣∣ = Op(k
3/2
n n−1/2) = op(1). Hence 3.3.3 is verified.

�

Proof of Theorem 3.3.4

The proof of 3.3.4 is a direct consequence of 3.3.3. We have

sign[Q̂Y ∗|X∗(0.5)− c]

= sign[QY ∗|X∗(0.5)− c+ V ∗
′

i (β̂ − β) +

q∑
j=1

(ĝj(Zij)− gj(Zij))]

= sign[QY ∗|X∗(0.5)− c] + op(1)

since β̂ and ĝj, j = 1, . . . , q, are estimated on the training data and are independent

of (Y ∗, X∗). �



Chapter 4

Longitudinal Quantile Regression
with Dropout

4.1 Introduction

Many datasets in healthcare arise from longitudinal studies in which the same subject

is measured repeatedly over time. For example, the Uniform Data Set (UDS) main-

tained by the National Alzheimer’s Coordinating Center tracks patients’ cognitive

decline over a period of ten years. Subsets of the Medical Expenditure Panel Survey

track individuals’ healthcare expenditures over a period of time. A subset of the

Medical Expenditure Panel Survey was analyzed in Chapter 3, but the data included

only one previous observation and longitudinal techniques were not needed. Ignoring

the longitudinal structure of the data can result in biased estimation. Missing data is

another inherent challenge that can yield biased estimates if not handled properly. As

discussed in previous chapters, semiparametric quantile regression is a popular tool

for analysis. Despite this, the literature lacks a theoretically justified semiparametric

quantile regression estimator for the longitudinal setting with missing data.

To properly refer to the longitudinal structure we will introduce some new nota-

42
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tion. Following along the lines of the semiparametric model of (2.3), let

Yij = V ′ijβ +

q∑
d=1

gd (Zijd) + εij, (4.1)

where i = 1, . . . , n denotes the subjects, j = 1, . . . ,mi denotes the longitudinal struc-

ture of the observations, d = 1, . . . , q denotes the dth nonlinear function, and εij is in-

dependent of εkj when i 6= k and satisfies the quantile constraint P (εij < 0 | Xij) = τ .

He et al. [2002] showed that a slight modification of the estimator in (2.4) to

{
β̂(τ), ξ̂1(τ), . . . , ξ̂q(τ)

}
=

arg min
{β,ξ1,...,ξq}∈Rp+(kn+l+1)q

n∑
i=1

mi∑
j=1

ρτ

[
Yij −

{
V ′ijβ +

q∑
k=1

w(Zijk)
′ξk

}]

is a consistent estimator of the conditional quantile function even if the dependence

structure of the errors is not specified. This modification handles the longitudinal

structure, but does not take into account any missingness.

In longitudinal studies, not every patient returns for repeated observations through-

out the entire duration of the study. It is very common for a patient to miss a

scheduled appointment and then drop out of the study [Hogan et al., 2004]. Of the

5350 patients in the UDS to attend the first appointment for observation, about 75%

dropped out after four follow up visits. Only about 10% of patients remained in the

study for eight follow up visits, and less than 2% of the original 5360 patients made

it to all nine follow up visits.

Often the probability of dropout is not independent of other covariates. Variables

like age or even the repsonse can increase or decrease the probability of dropout.

To handle the missing data or dropout, we assume that the probability that an

observation is missing only depends on data that is always observed. This assumption

is called missing at random. Let Rij = 1 if (Yij, X
′
ij) is completely observed and 0
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otherwise. Let tij ⊆ (Yij, X
′
ij)
′ and Tij = (t′i1, . . . , t

′
ij)
′. Formally, the missing at

random assumption is that

P (Rij = 1 | Yi1, . . . , Yij, Xi1, . . . , Xij) = P (Rij = 1 | Tij).

In the case where the data does not arise from a longitudinal study, Sherwood

et al. [2013] proposed using weighted quantile regression to estimate the conditional

linear quantile function. The weights used are the inverse of the estimated probability

that Ri = 1 and are estimated using logistic regression. The intuition behind this idea

being that an observation that is unlikely to be observed receives higher weighting to

account for the other similar observations that were not completely observed. Inverse

probability weighting was extended to the partially linear additive quantile regression

model in Sherwood [2016].

In the longitudinal setting, Chen and Zhou [2011] proposed a doubly robust es-

timator for binary responses in that consistent estimators will be provided if either

the missing data model or the missing covariate model is correctly specified. This ap-

proach was extended for generalized estimating equations with ordinal data [da Silva

et al., 2015].

In the longitudinal setting with dropout, Lipsitz et al. [1997] used the inverse

probability weighting method with weights being the inverse of the estimated prob-

ability of dropout. Yi and He [2009] took a similar approach in estimating the con-

ditional median. In this chapter, we propose a theoretically justified estimator of

the partially linear additive quantile regression model with dropout. Section 4.2 for-

mally defines the dropout model and provides intuition for the proposed estimator.

Asymptotic properties are presented in Section 4.3. We demonstrate the performance

of our estimator with Monte Carlo sumulations in Section 4.4 and analyze the UDS

in Section 4.5. We conclude with a discussion in Section 4.6 and relegate proofs to
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Section 4.7.

4.2 Estimation

Inverse probability weighting is a two-step procedure. First, the probability that the

ith patient is observed at the jth time point needs to be estimated. These estimated

weights are then used to estimate the conditional quantile of the response. We will

first discuss estimation of missingness.

4.2.1 Dropout

Let π(Tij) = P (Rij = 1 | Tij) be the probability that the ijth data point is observed.

To relax the notation, we write πij0 ≡ π(Tij). The inutition behind inverse probability

weighting is that for every observed data point with probability πij0 of being observed,

1/πij0 data points with the same covariates are expected to be observed if there were

no missing data. For example, an observed data point with πij0 = 1/2 is given the

weight of two observations. This accounts for the other observation with similar

covariates that is not observed.

Another explanation for not ignoring missingness is to consider the naive estimator

which only incorporates the observed data points. For simplicity, we will consider the

case with only linear effects

β̂N(τ) = arg min
β∈Rp

n∑
i=1

m∑
j=1

Rijρτ
[
Yij − V ′ijβ

]
. (4.2)

Equation (4.2) implies that β̂N(τ) approximately solves the estimating equation

GN (β) =
n∑
i=1

m∑
j=1

RijVijψτ
[
Yij − V ′ijβ

]
,
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where ψτ (u) = τ − I(u < 0) is the gradient function of ρτ (u). Assuming covariates

are missing at random,

E

{
n∑
i=1

m∑
j=1

RijVijψτ
(
Yij − V ′ijβ

)}

=
n∑
i=1

m∑
j=1

E
{

E
[
RijVijψτ

(
Yij − V ′ijβ

)
| Tij

]}
=

n∑
i=1

m∑
j=1

E
{
π(Tij)Vijψτ

(
Yij − V ′ijβ

)}
.

Although E
{
Vijψτ

(
Yij − V ′ijβ

)
| Vij

}
= 0, because π(Tij) is a function of Yij, gen-

erally E
{
π(Tij)Vijψτ

(
Yij − V ′ijβ

)
| Vij

}
6= 0. When inverse probability weights are

included, the estimating equation becomes

G (β) =
n∑
i=1

m∑
j=1

Rij

πij0
Vijψτ

[
Yij − V ′ijβ

]
.

The expectation of G(β) is 0 by the same technique.

In the longitudinal model with dropout, the jth observation in the ith individual

can only be observed if all previous observations are observed. We also assume that

the first observation for each individual is always observed (πi10 = 1). Formally, for

2 ≤ j ≤ m,

P

(
Rij = 1 | Tij,

j−1∏
k=1

Rik = 0

)
= 0.

Let ηij0 = P (Rij = 1 | tij, Ri1 = . . . = Rij−1 = 1). In this section we assume the

probability can be modeled using a logistic regression, i.e.,

ηij0 ≡ η(tij, γj0) =
exp

(
t′ijγj0

)
1 + exp

(
t′ijγj0

) .
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We let η̂ij ≡ η(tij, γ̂j) be the estimate of P (Rij = 1 | tij, Ri1 = . . . = Rij−1 = 1).

We then have that πij0 =
∏j

k=1 ηij0 and we let π̂ij =
∏j

k=1 η̂ij be the estimate of

P (Rij = 1|Tij).

4.2.2 An unbiased estimator

The next step is to incorporate estimates of probabilities of completely observing a

case into the estimation of a conditional quantile. Let N0 =
∑n

i=1

∑m
j=1Rij be the

total number of observations. Following the proposed estimators of He et al. [2002] for

the longitudinal model and Sherwood [2016] for the independent model with missing

covariates, we define the following estimator

{
β̂W (τ), ξ̂W1 (τ), . . . , ξ̂Wq (τ)

}
=

arg min
{β,ξ1,...,ξq}∈Rp+(kn+l+1)q

n∑
i=1

n∑
i=1

Rij

π̂ij
ρτ

[
Yij −

{
V ′ijβ +

q∑
k=1

w(Zijk)
′ξk

}]
. (4.3)

The estimator for the nonparametric function gk is

ĝk(Zijk) = w(Zijk)
′ξ̂k(τ)−N−1

0

n∑
i=1

m∑
j=1

Rijw(Zik)
′ξ̂k(τ), (4.4)

for k = 1, . . . , q. Lipsitz et al. [1997] proposed an inverse probability weighted estima-

tor similar to our proposed estimator in Equation (4.3), but estimated the probability

of dropout instead of the probability of observing the ijth data point. The asymptotic

results of the next section still hold for this model as well.
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4.3 Asymptotic properties

The estimator in Equation (4.3) is unbiased under similar conditions as the procedure

proposed in Chapter 3. We will need an additional assumption on the probability

of dropout and the estimator of the weights. We state the additional conditions and

restate the conditions from Chapter 3 for clarity.

Define the set Hq
r = {

∑q
d=1 hk(z) | hk ∈ Hq

r} and

h∗k(·) = arg inf
hk∈Hqr

n∑
i=1

m∑
j=1

E
[
fij(0 | xij, zij) {xijk − hk(zij)}2] .

Let tk(z) = E(xijk | zij), then h∗k is the weighted projection of tk(·) into Hq
r under

the L2 norm, where the weights fij(0 | xij, zij) are included to account for possibly

heterogeneous errors. Let xijk be the element of X at the (m(i − 1) + j)th row

and k column. Define δijk ≡ xijk − h∗k(zij), δij = (δij1, . . . , δijp)
′ ∈ Rp, and ∆n =

(δi1, . . . , δnm)′ ∈ Rmn×p. Define H as the mn×p matrix with (m(i−1)+j, k)th element

Hm(i−1)+j,k = h∗k(zij). Then X = H + ∆n. Additionally, define ψτ (u) = τ − I(u < 0)

and ψτ (εi) = (ψτ (εi1), . . . , ψτ (εim))′.

(C1) (Conditions on the random error) The random error εij has the conditional

distribution function Fij and continuous conditional density function fij . The

fij are uniformly bounded away from 0 and infinity in a neighborhood of zero

and its first derivative f ′ij has a uniform upper bound in a neighborhood of zero,

for 1 ≤ i ≤ n.

(C2) (Conditions on the covariates) There exist positive constants M1 and M2 such

that |Vijk| ≤ M1, ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ p and E[δ4
ij] ≤ M2,

∀ 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ p. For a matrix X, define λmax(X) to be

the maximum eigenvalue of X. There exist finite positive constants C1 and C2
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such that with probability one

C1 ≤ λmax
(
n−1XX ′

)
≤ C2, C1 ≤ λmax

(
n−1∆∆′

)
≤ C2.

(C3) (Condition on the non-linear functions) For r = m+ v > 1.5, g0 ∈ G.

(C4) (Condition on the B-Spline basis) The dimension of the spline basis kn satisfies

kn ≈ n1/(2r+1) and n−1k3
n = o(1).

(C5) (Condition on the dropout probability) There exist 0 < α` and αu < 1 such

that α` < πij0 < αu for all (i, j) ∈ {1, . . . , n} × {1, . . . ,m} and πi10 = 1.

(C6) (Condition on the estimator of weights) Assume a logistic relationship between

ηij and P (Rij = 1 | tij) for j ≥ 2 and ||∂ηij(tij, γ)/∂γ|| and ||∂2ηij(tij, γ)/∂γ∂γ′||

are bounded in a neighborhood of γj.

Define ψτ (u) = τ − I(u ≤ 0) as the gradient of ρτ (u). Let Fi be a m × m

diagonal matrix with diagonal entries fi1(0 | Xi1, Zi1), . . . , fim(0 | Xim, Zim), ki =

(ψτ (εi1), ψτ (εi2)Ri2/πi20, . . . , ψτ (εim)Rim/πnm0), and

Σ1 = E [δiFiδ
′
i]

Σ2 = E
[
(k′iδi)

′
k′iδi

]
Σ3jk = I(k ≤ j)E

[
ηij0 (1− ηij0)

πij0
ψτ (εij)δijt

′
ik

]
for k = 2, . . . ,m

Σ3j = (Σ3j2, . . . ,Σ3jm).

Theorem 4.3.1

Let Σm = Σ2 −
∑m

j=2 Σ3jI(γ0)−1Σ′3j . Under conditions (C1)-(C6),

√
n(β̂ − β0)→ N

(
0,Σ−1

1 ΣmΣ−1
1

)
(4.5)
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1

N0

n∑
i=1

m∑
j=1

Rij (ĝk(zij)− g0(zij))
2 = Op

(
n−2/(2r+1)

)
(4.6)

�

Theorem 4.3.1 proves that using inverse probability weights will yield a consistent

estimator of the conditional quantile in the presence of dropout.

4.4 Monte Carlo studies

We perform a simulation study to compare the proposed method for estimating effects

with existing ones in the literature. We consider a setting with n = 300 individu-

als. We consider four covariates with linear effects, X1, . . . , X4 and two covariates

with nonlinear effects, Z1, Z2 that do not change across timepoints. X1 is distributed

Uniform(0, 1) and X2, X3, X4 follow the standard normal distribution. Z1 is dis-

tributed Uniform(0, 1) and Z2 is distribtued Uniform(−1, 1). The jth response for

the ith is determined as follows,

Yij = β2X2i + β3X3i + β4X4i + sin(2πZ1i) + Z3
2i + εij,

where (β2, β3, β4) = (2, 1, 2). Letting (ξi1, . . . , ξim) ∼ Nm(0,Σ) where the (i, j)th

element of Σ is ρ|i−j|, we consider two settings for the errors: (1) εij = 2ξij and (2)

εij = 2X1ijξij which reflect the case with homogenous errors and heterogeneous errors.

With homogenous errors, β1 = 0 and with heterogeneous errors, β1 = Φ−1
2 (τ) where

Φσ is the CDF of the Normal distribution with mean 0 and variance σ2. We explore

settings with ρ = .75, ρ = .5, and ρ = .25.

The probabilities of returning at time j are generated from the following model,

P (Rij = 1 | Ri,j−1 = 1) =
exp (2 + 2X1i + 2X2i − bjYi,j−1)

1 + exp (2 + 2X1i + 2X2i − bjYi,j−1)
,
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where b2 = 1, b3 = 2, b4 = 2, and b5 = 3. This model implies that an individual with

higher responses is more likely to dropout.

We consider two different methods of estimating effects: the proposed inverse

probability weighting method (IPW) and the method which ignores the dropout and

only uses the complete observations (Naive). The Naive method would yield con-

sistent estimates if the data were missing completely at random. Additionally, we

compare results results to the setting in which all data is observed (Oracle). This

hypothetical situation is unattainable in practice but is useful for comparing the IPW

and Naive methods to the gold standard.

We estimate the τ = .5 and τ = .7 quantiles for the settings when m = 2 and

m = 3 and n = 300. We run the simulation for 10, 000 replications. We report the

bias of the estimator for each coefficient (β̂j), the mean squared error of the estimator

for the linear coefficient vector (MSE), and the mean squared error of the estimator

of the nonlinear functions (gMSE). Simulation results are contained in Table 4.1 and

Table 4.2. Table 4.3 and Table 4.4 contain the ranges of individuals still in the study

at each timepoint. All standard errors for the estimates of the bias were less than

0.002.

In both the homogeneous error setting and the heteroscedastic errors setting,

the proposed weighted quantile regression estimator has less bias in estimating the

linear coefficients than the Naive method for most of the simulations. One surprising

observation is that the Naive method almost always has the least bias in estimating

β2. This is likely an artifact of generated data as the Naive method has much more

bias than the oracle and proposed estimator in estimating the other linear effects.

In the model with heterogeneous errors, the X1i variable causes the heterscedasticity

making β1 a challenging coefficient to estimate. Unsurprisingly, the Oracle method

has the least bias, but the IPW method is still acceptable as the Oracle method is

unusable in practice.
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Table 4.1: Summary of the simulation study with homogenous errors.

Method τ m ρ β̂1 β̂2 β̂3 β̂4 MSE gMSE
Oracle 0.5 2 0.75 0.004 0.003 0.006 0.001 0.243 0.102
Naive 0.5 2 0.75 0.057 0.001 0.034 0.079 0.258 0.106
IPW 0.5 2 0.75 0.016 0.004 0.006 0.025 0.309 0.134
Oracle 0.7 2 0.75 0.000 0.003 0.006 0.001 0.267 0.111
Naive 0.7 2 0.75 0.059 0.002 0.033 0.078 0.275 0.111
IPW 0.7 2 0.75 0.020 0.005 0.015 0.044 0.380 0.161

Oracle 0.5 3 0.75 0.001 0.003 0.006 0.002 0.207 0.088
Naive 0.5 3 0.75 0.076 0.020 0.055 0.124 0.245 0.096
IPW 0.5 3 0.75 0.029 0.026 0.032 0.074 0.304 0.130
Oracle 0.7 3 0.75 0.001 0.003 0.005 0.002 0.227 0.095
Naive 0.7 3 0.75 0.078 0.017 0.052 0.120 0.252 0.098
IPW 0.7 3 0.75 0.040 0.025 0.041 0.092 0.363 0.152

Oracle 0.5 2 0.50 0.000 0.005 0.005 0.001 0.212 0.088
Naive 0.5 2 0.50 0.036 0.003 0.020 0.051 0.226 0.094
IPW 0.5 2 0.50 0.008 0.007 0.002 0.018 0.283 0.120
Oracle 0.7 2 0.50 0.000 0.005 0.007 0.000 0.231 0.096
Naive 0.7 2 0.50 0.037 0.003 0.019 0.049 0.243 0.100
IPW 0.7 2 0.50 0.016 0.007 0.009 0.032 0.325 0.139

Oracle 0.5 3 0.50 0.001 0.004 0.005 0.000 0.164 0.070
Naive 0.5 3 0.50 0.045 0.017 0.032 0.077 0.193 0.081
IPW 0.5 3 0.50 0.019 0.021 0.019 0.047 0.268 0.115
Oracle 0.7 3 0.50 0.003 0.005 0.007 0.001 0.179 0.076
Naive 0.7 3 0.50 0.042 0.016 0.029 0.075 0.202 0.084
IPW 0.7 3 0.50 0.024 0.022 0.023 0.062 0.310 0.132

Oracle 0.5 2 0.25 0.005 0.006 0.006 0.001 0.182 0.078
Naive 0.5 2 0.25 0.014 0.004 0.006 0.023 0.200 0.085
IPW 0.5 2 0.25 0.001 0.005 0.001 0.008 0.255 0.109
Oracle 0.7 2 0.25 0.001 0.006 0.004 0.002 0.198 0.086
Naive 0.7 2 0.25 0.019 0.004 0.007 0.022 0.214 0.092
IPW 0.7 2 0.25 0.008 0.005 0.005 0.020 0.278 0.121

Oracle 0.5 3 0.25 0.006 0.006 0.005 0.002 0.129 0.058
Naive 0.5 3 0.25 0.015 0.011 0.011 0.033 0.159 0.070
IPW 0.5 3 0.25 0.000 0.012 0.005 0.020 0.241 0.103
Oracle 0.7 3 0.25 0.003 0.004 0.004 0.002 0.141 0.063
Naive 0.7 3 0.25 0.021 0.009 0.012 0.033 0.168 0.074
IPW 0.7 3 0.25 0.007 0.013 0.010 0.030 0.261 0.115
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Table 4.2: Summary of the simulation study with heterogeneous errors.

Method τ m ρ β̂1 β̂2 β̂3 β̂4 MSE gMSE
Oracle 0.5 2 0.75 0.001 0.005 0.010 0.005 0.043 0.013
Naive 0.5 2 0.75 0.077 0.001 0.001 0.010 0.050 0.014
IPW 0.5 2 0.75 0.007 0.004 0.009 0.003 0.050 0.015
Oracle 0.7 2 0.75 0.059 0.004 0.010 0.004 0.050 0.014
Naive 0.7 2 0.75 0.149 0.000 0.000 0.012 0.070 0.015
IPW 0.7 2 0.75 0.075 0.004 0.007 0.002 0.064 0.017

Oracle 0.5 3 0.75 0.002 0.005 0.011 0.006 0.036 0.013
Naive 0.5 3 0.75 0.147 0.004 0.005 0.021 0.061 0.015
IPW 0.5 3 0.75 0.054 0.007 0.002 0.005 0.052 0.017
Oracle 0.7 3 0.75 0.054 0.004 0.010 0.004 0.042 0.013
Naive 0.7 3 0.75 0.222 0.002 0.006 0.022 0.091 0.015
IPW 0.7 3 0.75 0.129 0.007 0.002 0.011 0.074 0.019

Oracle 0.5 2 0.50 0.001 0.005 0.011 0.005 0.035 0.011
Naive 0.5 2 0.50 0.052 0.001 0.005 0.005 0.040 0.012
IPW 0.5 2 0.50 0.005 0.004 0.010 0.004 0.043 0.014
Oracle 0.7 2 0.50 0.053 0.005 0.010 0.004 0.041 0.012
Naive 0.7 2 0.50 0.111 0.001 0.004 0.006 0.053 0.013
IPW 0.7 2 0.50 0.068 0.004 0.007 0.001 0.054 0.016

Oracle 0.5 3 0.50 0.003 0.005 0.011 0.006 0.027 0.011
Naive 0.5 3 0.50 0.094 0.003 0.001 0.011 0.040 0.013
IPW 0.5 3 0.50 0.036 0.006 0.005 0.002 0.042 0.015
Oracle 0.7 3 0.50 0.050 0.005 0.010 0.005 0.031 0.012
Naive 0.7 3 0.50 0.151 0.003 0.000 0.012 0.056 0.013
IPW 0.7 3 0.50 0.098 0.006 0.002 0.006 0.056 0.017

Oracle 0.5 2 0.25 0.004 0.005 0.011 0.006 0.031 0.010
Naive 0.5 2 0.25 0.027 0.003 0.008 0.001 0.034 0.011
IPW 0.5 2 0.25 0.005 0.005 0.010 0.005 0.039 0.013
Oracle 0.7 2 0.25 0.054 0.005 0.010 0.005 0.037 0.011
Naive 0.7 2 0.25 0.079 0.003 0.007 0.000 0.043 0.012
IPW 0.7 2 0.25 0.062 0.004 0.008 0.001 0.047 0.014

Oracle 0.5 3 0.25 0.005 0.005 0.011 0.006 0.022 0.010
Naive 0.5 3 0.25 0.044 0.002 0.007 0.002 0.027 0.011
IPW 0.5 3 0.25 0.019 0.005 0.008 0.002 0.036 0.013
Oracle 0.7 3 0.25 0.047 0.005 0.010 0.005 0.026 0.010
Naive 0.7 3 0.25 0.090 0.003 0.006 0.003 0.035 0.012
IPW 0.7 3 0.25 0.073 0.005 0.005 0.002 0.044 0.015
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Table 4.3: Ranges of percent of individuals remaining by timepoint (mean in paren-
theses) with homogenous errors.

ρ Time 2 Time 3
0.75 71-87 (79) 53-70 (62)
0.50 71-86 (79) 52-69 (60)
0.25 70-87 (79) 50-67 (59)

Table 4.4: Ranges of percent of individuals remaining by timepoint (mean in paren-
theses) with heterogeneous errors.

ρ Time 2 Time 3
0.75 77-91 (84) 61-75 (68)
0.50 78-90 (84) 59-76 (67)
0.25 74-91 (84) 60-75 (67)

The IPW method’s MSE of the linear coefficients and nonlinear effects is the

largest among the three methods. This is attributed to the variability in estimating

the inverse probability weights. The simulation study suggests that though the Naive

method has larger bias, it has smaller variability because no weights are estimated.

The MSE of an estimator is important to consider if the model is being used for

prediction.

As the correlation among the errors decreases from 0.75 to 0.25, the bias and MSE

decrease. However, as the number of timepoints increases from 2 to 3, the bias and

MSE increase for the IPW and Naive methods. This may seem counterintuitive at

first, but there are two factors that are likely causing the increase. The IPW method

requires estimating the probability of dropout. At timepoint 3, only 50%-75% of

patients remain in the study. As patients dropout, estimation of the probability of

dropout becomes less acurate. The asymptotic theory shows that more patients will

decrease bias and MSE, not more timepoints. The Naive method suffers because it
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does not handle the dropout properly so more bias is introduced into the estimate.

4.5 Analysis of the Uniform Data Set

In this section we analyze data from the National Alzheimer’s Coordinating Center’s

Uniform Data Set. In particular, we are interested in the effects of covariates on

cognitive ability. To measure cognitive ability, we create a composite cognitive (CC)

score which is the sum of standardized scores from the Logical Memory IA and IIA

tests; Digit Span backwards test; animals, vegetables, and boston naming tests, Digit

Symbol, Trail A and B tests, and the mini-mental state exam ([Sano et al., 2017,

Nandipati et al., 2012, Cosentino et al., 2010]). The scores for the Trail A and B

tests are times until completion, where a shorter time is interpreted as having higher

cognitive ability unlike the other tests. To handle this discrepancy, we reverse the

scores for the standardized Trail A and B tests before using them to create the CC

score.

In the NACC dataset, data was collected on the first visit and patients were

asked to return for 9 follow-up visits spaced about one year apart. Though many

patients followed-up for one or two years, very few patients remained for all ten

visits. As a result, we restrict analysis to the first 5 follow-up visits to ensure that

there are enough observations at each timepoint for accurate estimation. To study

the covariates’ effects on cognitive decline, we define the response variable as the

difference in CC scores between the initial visit and each follow-up visit. We consider

patients aged 65 or older at the initial visit and those who did not have any missing

covariates at the follow-up visits they attended. A patient was removed if he or she

increased their CC score from the initial CC score by more than 1. This large of an

increase suggests that the score is not reliable. About 7% of patients were removed

because of this restriction.
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Table 4.5: Dropout in the Uniform Data Set.

Follow-up 1 2 3 4 5
Number of
Subjects 3581 3424 3254 2381 1728
Percent of
Subjects Remaining 100 96 91 66 48

The percent and number of patients remaining in the study at each follow-up

appointment is summarized in Table 4.5. After removing the patients from the dataset

who did not meet the inclusion criteria, there were a total of 14,368 observations made

across 3,581 unique patients and the 5 follow-up visits.

We analyze the data at the τ = 0.9 conditional quantile which corresponds to

cognitive decline among lower performing patients. Table 4.6 contains the estimates

of the linear covariates in the UDS for the proposed IPW method and the Naive

method. We also compute 90% confidence intervals for the coefficients by resampling

the patients to create the bootstrapped dataset. Interestingly at the α = 0.1 signifi-

cance level, the IPW method found that sex has a significant effect on the response

while the Naive method did not find significance. More specifically, at the τ = 0.9

conditional quantile, the difference in CC score at baseline was lower in females than

males after accounting for the other covariates.
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Table 4.6: Linear coefficient estimates with 90% boostrapped confidence intervals (in
parentheses) for the τ = 0.9 conditional quantile.

Coefficient IPW Naive
(Intercept) 0.2359 (-0.1190, 0.7450) 0.2320 (-0.1119, 0.6854)
sex -0.0469 (-0.0970, -0.0065) -0.0420 (-0.0815, 0.0003)
race2Other 0.0764 ( 0.0274, 0.1334) 0.0790 ( 0.0329, 0.1305)
hyperten 0.0169 (-0.0221, 0.0632) 0.0260 (-0.0131, 0.0665)
diabetes 0.0739 ( 0.0203, 0.1403) 0.0590 ( 0.0095, 0.1193)
stroke 0.2337 ( 0.1120, 0.3876) 0.2480 ( 0.1163, 0.4331)
depression 0.1812 ( 0.1302, 0.2342) 0.1790 ( 0.1312, 0.2226)
alcohol -0.1159 (-0.2231, 0.0456) -0.1060 (-0.2083, 0.0234)
smoke 0.0562 (-0.0513, 0.2019) 0.0480 (-0.0356, 0.1888)
education -0.0120 (-0.0184, -0.0059) -0.0130 (-0.0184, -0.0061)

4.6 Discussion

In this chapter, we propose an inversely weighted semiparametric quantile regression

estimator for longitudinal data with dropout. Dropout is a pervasive problem in

many fields and ignoring the issue often results in biased analyses. We prove that

the proposed estimator is consistent and use a bootstrap scheme to create confidence

intervals. Additionally, our proposed estimator extends work by He et al. [2002],

Lipsitz et al. [1997] in that both nonlinear effects and dropout are present in the

model.

An area of research which would be useful to the proposed estimator is produc-

ing confidence intervals for the effects. This is very difficult in practice. Bootstrap

procedures for quantile regression exist for the nonlongitudinal setting with only lin-

ear effects [Feng et al., 2011], but we are not aware of procedures that can handle a

semiparametric longitudinal model with dropout.
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4.7 Proofs

This notation will be used throughout this section. Let p be the dimension of β and

Jn be the number of spline basis functions. Define:

dn = p+ Jn ∈ N,

N = nm ∈ N,

fij(0) = fij(0 | xij, zij) ∈ R,

BN = diag {f11(0), . . . , f1m(0), . . . , fnm(0)} ∈ RN×N ,

W = (W(z11), . . . ,W(z1m), . . . ,W(znm))′ ∈ RN×Jn ,

P = W (W ′BNW )
−1
W ′BN ∈ RN×N ,

X∗ = (x∗11, . . . ,x
∗
1m, . . . ,x

∗
nm)′ = (IN − P )X ∈ RN×p,

X∗i = (x∗i1, . . . ,x
∗
im)′ ,

W 2
BN

= W ′BNW ∈ RJn×Jn ,

θ1 =
√
n (β − β0) ∈ Rp,

θ2 = WDN (ξ − ξ0) +W−1
DN
W ′DNX (β − β0) ∈ RJn ,

θ = (θ′1, θ
′
2)′ ∈ Rdn ,

x̃ij = n−1/2x∗ij ∈ Rp,

W̃(zij) = W−1
BN

W(zij) ∈ RJn ,

s̃ij =
(
x̃′ij,W̃(zij)

)′
∈ Rdn ,

uNij = W(zij)
′ξ0 − g0(zij) ∈ R,

Qij(an) = ρτ

(
εij − an

(
x̃′ijθ1 − W̃(zij)

′θ2

)
− uNij

)
∈ R,

Es (Qij) = E (Qij | xij, zij) ∈ R,

Dij(θ, an) = Qij(an)−Qij(0)− Es [Qij(an)−Qij(0)]

−an
(
x̃′ijθ1 + W̃(zij)

′θ2

)
ψτ (εij) ∈ R.
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Note that

n∑
i=1

m∑
j=1

Rij

π̂ij
ρτ (Yij − x′ijβ −W(zij)

′ξ)

=
n∑
i=1

m∑
j=1

Rij

π̂ij
ρτ (εij − x̃′ijθ1 − W̃(zij)

′θ2 − uNij),

and

(
θ̂1, θ̂2

)
= arg min

(θ1,θ2)

n∑
i=1

m∑
j=1

Rij

π̂ij
ρτ (εij − x̃′ijθ1 − W̃(zij)

′θ2 − uNij)

= arg min
(θ1,θ2)

n∑
i=1

m∑
j=1

Rij

π̂ij
ρτ (εij − x̃′ijθ1 − W̃(zij)

′θ2 − uNij)− ρτ (εij − uNij).

So we write,

θ̂1 =
√
n(β̂ − β0)

θ̂2 = WDN

(
ξ̂ − ξ0

)
+W−1

DN
W ′DNX

(
β̂ − β0

)
.

Additionally, we consider another form of the check function, ρτ (u) = 1
2
|u|+(τ − 1

2
)u.

Throughout these proofs, we will let C be a positive constant that may change

line to line. For a matrix A, let ||A|| be the spectral norm and for a vector x, let ||x||

be the Euclidean distance.

Probability of dropout

Here we will find useful quantities dealing with estimating the probability of dropout.

We assume a logistic relationship between η(Tij, γj) and P (Rij = 1 | Ri,j−1 = 1, Tij),

η(Tij, γj) =
eT
′
ijγj

1 + eT
′
ijγj
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and note that

∇η(Tij, γj) = Tije
T ′ijγj(1 + eT

′
ijγj)−2.

The log-likelihood function is

`(γ) =
n∑
i=1

m∑
j=2

Ri,j−1 {Rij log [η(Tij, γj)] + (1−Rij) log [1− η(Tij, γj)]}

=
n∑
i=1

Ri,j−1

[
RijT

′
ijγj − log

(
1 + eT

′
ijγj
)]

∇γj`(γ) =
n∑
i=1

Ri,j−1 [Rij − η(Tij, γj)]Tij

∇2
γj
`(γ) =

n∑
i=1

−Ri,j−1η(Tij, γj) [1− η(Tij, γj)]TijT
′
ij

∇γjγk`γ) = 0

I(γj) = E
[
Ri,j−1η(Tij, γj) [1− η(Tij, γj)]TijT

′
ij

]
= E

[
πi,j−1,0η(Tij, γj) [1− η(Tij, γj)]TijT

′
ij

]
,

so we have that the γ̂j are independent of one another. Let I(γ) be the block

diagonal matrix with I(γj), for j = 2, . . . ,m, on its diagonal. Let ∇γ`(γ) =

(∇γ2`(γ)′, . . . ,∇γm`(γ)′)′. For the ith subject, note that

∇γj`i(γ) = Ri,j−1 [Rij − η(Tij, γj)]Tij

∇`i(γ) = (∇γ2`i(γ)′, . . . ,∇γm`i(γ)′)
′
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Lemmas
Lemma 4.7.1

Under conditions (C5)-(C6), then

sup
ij
|π̂−1
ij − π−1

ij | = Op(n
−1/2).

Proof

Let f1(Rij; γ, Tij) be the pmf for Rij|Rik = 1 for k = 1, . . . , j − 1 and `(γj) be the

log-likelihood function for γj. Let f(Rij; γ, Tij) be the unconditional pmf for Rij. We

also note that η (Tij, γj) = exp
(
T ′ijγj

)
/
[
1 + exp

(
T ′ijγj

)]
. Then we have

f1(Rij; γ, Tij) =
{

exp
(
T ′ijγj

)
/
[
1 + exp

(
T ′ijγj

)]}Rij {1/
[
1 + exp

(
T ′ijγj

)]}1−Rij

×
j−1∏
k=1

Rik

f(Rij; γ, Tij) =
{

exp
(
T ′ijγj

)
/
[
1 + exp

(
T ′ijγj

)]}Rij {1/
[
1 + exp

(
T ′ijγj

)]}1−Rij

×
j−1∏
k=2

I(Rij = 1) exp (T ′ikγk) / [1 + exp (T ′ikγk)]

`(γj) = RijT
′
ijγj − log(1 + exp

(
T ′ijγj

)
)

+

j−1∑
k=2

log {I(Rij = 1) exp (T ′ikγk) / [1 + exp (T ′ikγk)]}

`′(γj) = Tij
{
Rij − exp

(
T ′ijγj

)
/
[
1 + exp

(
T ′ijγj

)]}
= Tij (Rij − η (Tij, γj))

`′′(γj) = −TijT ′ijη (Tij, γj) (1− η (Tij, γj))

I(γj) = E
[
TijT

′
ijη (Tij, γj) (1− η (Tij, γj))

]
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Therefore, for j = 2, . . . ,m

n1/2(γ̂j − γj)
d→ N(0, I(γj)

−1)

n1/2(T ′ij γ̂j − T ′ijγj)
d→ N

(
0, T ′ijI(γj)

−1Tij
)

n1/2 (η (Tij, γ̂j)− η (Tij, γj))
d→ N

(
0, T ′ijI(γj)

−1Tij
[
η (Tij, γj)− η (Tij, γj)

2]2)
n1/2 (π̂ij − πij)

d→ N

(
0, σ2

ij

j∏
k=2

η (Tik, γk)
2

)
n1/2

(
π̂−1
ij − π−1

ij

) d→ N
(
0, σ2

ij/π
2
ij

)
sup
ij
|π̂−1
ij − π−1

ij | = Op(n
−1/2),

where σ2
ij =

∑j
k=2 T

′
ikI(γk)

−1Tik [1− η (Tik, γk)]
2. �

Lemma 4.7.2

We have the following properties for the spline basis vector.

1. E (||W(zij)||) ≤ b1

√
kn for all (i, j) ∈ {1, . . . , n} × {1, . . . ,m} for some positive

constant b1 and large n,

2. There exist some positive constants b2 and b3 such that for all n sufficiently

large

b2k
−1
n ≤ E [λmin {W(zij)W(zij)

′}] and E [λmax {W(zij)W(zij)
′}] ≤ b3k

−1
n ,

3. E(||W−1
B ||) ≥ b4n

−1/2, for some positive constant b4 and sufficiently large n,

4. maxij ||W̃(zij)|| = Op(k
1/2
n n−1/2).

Proof

These results were proven in Lemma 2 from Sherwood and Wang [2016]. They hold

for the longitudinal model because the sample size grows with n so the constant can

absorb the m additional observations in the ith subject. �
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Lemma 4.7.3

For a positive constant L,

d−1
n sup
||θ||≤L

∣∣∣∣ n∑
i=1

m∑
j=1

Rij

πij
Dij(θ, d

1/2
n )

∣∣∣∣ = op(1).

This is similar to Lemma B.1 from Sherwood and Wang [2016]. �

Proof

We will follow the proof from Sherwood and Wang (2016). Let Fn1 denote the event

s̃(N) ≤ α1

√
dn/n, for some positive constant α1, where s̃(N) = maxij ||s̃ij||. Note that

maxij ||x̃ij|| ≤ α2

√
p/n, for some positive constant α2. This observation combined

with maxi,j ||W̃ (zij)|| = Op

(√
kn/n

)
implies that P (Fn1) → 1 as n → ∞. Let Fn2

denote the event maxij |uNij| ≤ α3d
−r
n , for some positive constant α3, then it follows

from Schumaker (1981) that P (Fn2)→ 1.

To prove the lemma, we need to show that ∀ε > 0,

P

(
d−1
n sup
||θ||≤1

∣∣∣∣ n∑
i=1

m∑
j=1

Rij

πij
Dij(θ, Ld

1/2
n )

∣∣∣∣ > ε, Fn1 ∩ Fn2

)

Define Θ∗ ≡ {θ | ||θ|| ≤ 1, θ ∈ Rdn}. We partition Θ as a union of disjoint

regions Θ1, . . . ,ΘMn , such that the diameter of each region does not exceed m0 =

εαm`
8α1Lm

√
n
. This covering can be constructed such that Mn ≤ C

(
C
√
n

ε

)dn+1

, where C is

a positive constant. Let θ∗1, . . . , θ
∗
Mn

be arbitrary points in Θ1, . . . ,ΘMn , respectively

k = 1, . . . ,Mn. Then

P

(
d−1
n sup
||θ||≤1

∣∣∣∣ n∑
i=1

m∑
j=1

Rij

πij
Dij(θ, Ld

1/2
n )

∣∣∣∣ > ε, Fn1 ∩ Fn2

)

≤
Mn∑
k=1

P

(
d−1
n sup

θ∈Θk

∣∣∣∣ n∑
i=1

m∑
j=1

Rij

πij
Dij(θ, Ld

1/2
n )

∣∣∣∣ > ε, Fn1 ∩ Fn2

)
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≤
Mn∑
k=1

P

(∣∣∣∣ n∑
i=1

m∑
j=1

Rij

πij
Dij(θ

∗
k, Ld

1/2
n )

∣∣∣∣
+ sup

θ∈Θk

∣∣∣∣ n∑
i=1

m∑
j=1

Rij

πij

(
Dij(θ, Ld

1/2
n )−Dij(θ

∗
k, Ld

1/2
n )
) ∣∣∣∣

> dnε, Fn1 ∩ Fn2

)
.

We will now show that

sup
θ∈Θk

∣∣∣∣d−1
n

n∑
i=1

m∑
j=1

Rij

πij

(
Dij(θ, Ld

1/2
n )−Dij(θ

∗
k, Ld

1/2
n )
) ∣∣∣∣I(Fn1 ∩ Fn2) ≤ ε/2.

Using bounds on ||x̃ij||, ||W̃ (zij)||, and π−1
ij , we have

sup
θ∈Θk

∣∣∣∣d−1
n

n∑
i=1

m∑
j=1

Rij

πij

(
Dij(θ, Ld

1/2
n )−Dij(θ

∗
k, Ld

1/2
n )
) ∣∣∣∣I(Fn1 ∩ Fn2)

= d−1
n sup

θ∈Θk

∣∣∣∣ n∑
i=1

m∑
j=1

Rij

πij

1

2

[∣∣εij − x̃′ijθ1L
√
dn − W̃(zij)

′θ2L
√
dn − uNij

∣∣
−
∣∣εij − uNij∣∣]

−
n∑
i=1

m∑
j=1

Rij

πij

1

2
Es

[∣∣εij − x̃′ijθ1L
√
dn − W̃(zij)

′θ2L
√
dn − uNij

∣∣− ∣∣εij − uNij∣∣]
+

n∑
i=1

m∑
j=1

Rij

πij
L
√
dn

(
x̃′ijθ1 − W̃(zij)

′θ2

)
ψτ (εij)

−
n∑
i=1

m∑
j=1

Rij

πij

1

2

[∣∣εij − x̃′ijθ
∗
k1L
√
dn − W̃(zij)

′θ∗k2L
√
dn − uNij

∣∣− ∣∣εij − uNij∣∣]
+

n∑
i=1

m∑
j=1

Rij

πij

1

2
Es

[∣∣εij − x̃′ijθ
∗
k1L
√
dn − W̃(zij)

′θ∗k2L
√
dn − uNij

∣∣
−
∣∣εij − uNij∣∣]

−
n∑
i=1

m∑
j=1

Rij

πij
L
√
dn

(
x̃′ijθ

∗
k1 − W̃(zij)

′θ∗k2

)
ψτ (εij)

∣∣∣∣I(Fn1 ∩ Fn2)
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≤ d−1
n

( n∑
i=1

m∑
j=1

Rij

πij

1

2
m0

√
dns̃(N)L+

n∑
i=1

m∑
j=1

Rij

πij

1

2
m0

√
dns̃(N)L

+
n∑
i=1

m∑
j=1

Rij

πij
m0

√
dns̃(N)L

+
n∑
i=1

m∑
j=1

Rij

πij

1

2
m0

√
dns̃(N)L+

n∑
i=1

m∑
j=1

Rij

πij

1

2
m0

√
dns̃(N)L

+
n∑
i=1

m∑
j=1

Rij

πij
m0

√
dns̃(N)L

)
I(Fn1 ∩ Fn2)

≤ d−1
n nmα−m`

(
4m0

√
dns̃(N)L

)
I(Fn1 ∩ Fn2)

≤ d−1
n nmα−m` 2m0

√
dnα1

√
dn/nL

= ε/2.

We now need to show

Mn∑
k=1

P

(∣∣∣∣ n∑
i=1

m∑
j=1

Rij

πij
Dij(θ

∗
k, Ld

1/2
n )

∣∣∣∣ > dnε/2, Fn1 ∩ Fn2

)
→ 0.

We have

max
ij

∣∣∣∣Rij

πij
Dij(θ

∗
k, Ld

1/2
n )

∣∣∣∣I(Fn1 ∩ Fn2)

≤ max
ij

Rij

πij

[∣∣εij − x̃′ijθ
∗
k1L
√
dn − W̃(zij)

′θ∗k2L
√
dn − uNij

∣∣− ∣∣εij − uNij∣∣]
+ max

ij

Rij

πij
L
√
dn

(
x̃′ijθ

∗
k1 − W̃(zij)

′θ∗k2

)
ψτ (εij)

∣∣∣∣I(Fn1 ∩ Fn2)

≤ 2Lα−m`
√
dns̃(N)I(Fn1 ∩ Fn2)

≤ Cdnn
−1/2,

for a positive constant C.
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Define

Vij(θ
∗
k, an) = Qij(an)−Qij(0) + an

(
x̃′ijθ

∗
k1 − W̃(zij)

′θ∗k2

)
ψτ (εij).

It follows that Dij(θ
∗
k, an) = Vij(θ

∗
k, an)− Es [Vij(θ

∗
k, an)] and

Es

[
Rij
πij
Dij(θ

∗
k, an)

]
= 0 using iterative expectations. Thus

n∑
i=1

Var

(
m∑
j=1

Rij

πij
Dij(θ

∗
k, an)I(Fn1 ∩ Fn2) | xi, zi

)

≤
n∑
i=1

Es

( m∑
j=1

Rij

πij
Vij(θ

∗
k, an)I(Fn1 ∩ Fn2)

)2


Using Knight’s Identity,

Vij(θ
∗
k, L
√
dn)

= L
√
dn

(
x̃′ijθ

∗
k1 − W̃(zij)

′θ∗k2

)
[I(εij − uNij < 0)− I(εij < 0)]

+

∫ L
√
dn(x̃′ijθ∗k1−W̃(zij)

′θ∗k2)

0

[I(εij − uNij < s)− I(εij < 0)] ds

≡ Vij1 + Vij2.

To find the variance, we need to consider all the cross product terms.

For (j, w) = {1, . . . ,m} × {1, . . . ,m}, we have

n∑
i=1

∑
j,w

Es

[
RijRiw

πijπiw
Vij1Viw1I(Fn1 ∩ Fn2)

]

=
n∑
i=1

∑
j,w

Es

[
RijRiw

πijπiw
L2dn

(
x̃′ijθ

∗
k1 − W̃(zij)

′θ∗k2

)(
x̃′iwθ

∗
k1 − W̃(ziw)′θ∗k2

)
× |I(εij − uNij < 0)− I(εij < 0)| |I(εiw − uNiw < 0)− I(εiw < 0)|

×I(Fn1 ∩ Fn2)

]
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≤ 2L2dn

n∑
i=1

∑
j,w

Es

[
RijRiw

πijπiw
s̃2

(N) |I(εij − uNij < 0)− I(εij < 0)|

× |I(εiw − uNiw < 0)− I(εiw < 0)| I(Fn1 ∩ Fn2)

]
≤ CL2d2

nn
−1

n∑
i=1

∑
j,w

Es

[
I(0 ≤ |εij| ≤ |uNij|)I(0 ≤ |εiw| ≤ |uNiw|)I(Fn1 ∩ Fn2)

]

≤ CL2d2
nn
−1

n∑
i=1

∑
j,w

Es

[
I(0 ≤ |εij| ≤ |uNij|)I(Fn1 ∩ Fn2)

]

≤ CL2d2
nn
−1

n∑
i=1

∑
j,w

∫ |uNij |
−|uNij |

fij(s) ds

≤ Cd2
nk
−r
n .

Note that Vij2 is always nonnegative and

maxij

∣∣∣∣√dnL(x̃′ijθ
∗
k1 − W̃(zij)

′θ∗k2

) ∣∣∣∣ ≤ α1Ldnn
−1/2, then Vij2 ≤ Cdnn

−1/2.

n∑
i=1

∑
j,w

Es

[
RijRiw

πijπiw
Vij2Viw2I(Fn1 ∩ Fn2)

]

= Cdnn
−1/2

n∑
i=1

m∑
j=1

Es [Vij2I(Fn1 ∩ Fn2)]

≤ Cdnn
−1/2

n∑
i=1

m∑
j=1

∫ √dnL(x̃′ijθ∗k1−W̃(zij)
′θ∗k2)

0

[Fij(s+ uNij)− Fij(uNij)]

×I(Fn1 ∩ Fn2) ds

≤ Cdnn
−1/2

n∑
i=1

m∑
j=1

∫ √dnL(x̃′ijθ∗k1−W̃(zij)
′θ∗k2)

0

(fij(0) + o(1)) (s+O(s2)) ds

≤ Cd2
nn
−1/2

[
θ∗k1
′

(
n∑
i=1

m∑
j=1

fij(0)x̃ijx̃
′
ij

)
θ∗k1

+θ∗k2
′

(
n∑
i=1

m∑
j=1

fij(0)W̃(zij)W̃(zij)
′

)
θ∗k2

]
(1 + o(1))



4.7. Proofs 68

≤ Cd2
nn
−1/2

[
θ∗k1
′

(
n∑
i=1

m∑
j=1

fij(0)||x̃ij||2
)
θ∗k1 + θ∗k2

′W−1
BN
W ′BNWW−1

BN
θ∗k2

]
×(1 + o(1))

≤ Cd2
nn
−1/2

[
θ∗k1
′

(
n∑
i=1

m∑
j=1

n−1

)
θ∗k1 + θ∗k2

′Iθ∗k2

]
(1 + o(1))

≤ Cd2
nn
−1/2

[
||θ∗k1||2 + ||θ∗k2||2

]
(1 + o(1))

≤ Cd2
nn
−1/2(1 + o(1)).

We now check the last term.

n∑
i=1

∑
j,w

∣∣∣∣Es

[
RijRiw

πijπiw
Vij1Viw2I(Fn1 ∩ Fn2)

] ∣∣∣∣
≤ C

n∑
i=1

∑
j,w

∣∣∣∣Es

[
L
√
dn

(
x̃′ijθ

∗
k1 − W̃(zij)

′θ∗k2

)
[I(εij − uNij < 0)− I(εij < 0)]

×Viw2I(Fn1 ∩ Fn2)

]∣∣∣∣
≤ C

n∑
i=1

∑
j,w

∣∣∣∣Es

[
L
√
dns̃(N)Viw2I(Fn1 ∩ Fn2)

]∣∣∣∣
≤ Cdnn

−1/2

n∑
i=1

∑
j,w

∣∣∣∣Es

[
Viw2I(Fn1 ∩ Fn2)

]∣∣∣∣
≤ Cd2

nn
−1/2(1 + o(1)).

Therefore,

n∑
i=1

Var

(
m∑
j=1

Rij

πij
Dij(θ

∗
k, an)I(Fn1 ∩ Fn2) | xij, zij

)
≤ Cd2

nk
−r
n .

We now check the maximum value of

∣∣∣∣∑m
j=1

Rij
πij
Dij(θ

∗
k, Ld

1/2
n )

∣∣∣∣.
Vij(θ

∗
k, Ld

1/2
n ) ≤ CLdnn

−1/2,
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therefore ∣∣∣∣ m∑
j=1

Rij

πij
Dij(θ

∗
k, Ld

1/2
n )

∣∣∣∣ ≤ CLdnn
−1/2.

We can now use Bernstein’s inequality,

Mn∑
k=1

P

(∣∣∣∣
(

n∑
i=1

m∑
j=1

Rij

πij
Dij(θ

∗
k, Ld

1/2
n )

)∣∣∣∣ > dnε/2, Fn1 ∩ Fn2

)

≤ 2
Mn∑
k=1

exp

(
−d2

nε
2/8

Cd2
nk
−r
n + Cεd2

nn
−1/2

)

≤ 2
Mn∑
k=1

exp
(
−Ckrn − Cn1/2

)
≤ 2

Mn∑
k=1

exp (−Ckrn)

= 2Mn exp (−Ckrn)

≤ C

(
C
√
n

ε

)dn+1

exp (−Ckrn)

= C exp
(
(dn + 1) log

(
C
√
n/ε
)
− Ckrn

)
≤ C exp (C(dn + 1) log (n)− Ckrn) ,

which goes to 0 as n → ∞ because dn is of the same order as kn. Thus the proof is

complete. �

Proof of second part of Theorem 4.3.1

Proof

This is similar to Lemma 4 of Sherwood and Wang [2016] and Lemma A.1 of Sherwood

[2016].
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We consider

d−1
n

n∑
i=1

m∑
j=1

Rij

π̂ij
ρτ (εij − d1/2

n x̃′ijθ1 − d1/2
n W̃(zij)

′θ2 − uNij)− ρτ (εij − uNij).

By Knight’s Identity,

d−1
n

n∑
i=1

m∑
j=1

Rij

π̂ij
ρτ (εij − d1/2

n x̃′ijθ1 − d1/2
n W̃(zij)

′θ2 − uNij)− ρτ (εij − uNij)

= d−1
n

n∑
i=1

m∑
j=1

Rij

π̂ij

∫ −√dn(x̃′ijθ1+W̃(zij)
′θ2)−uNij

−uNij
ψτ (εij + s) ds

= d−1
n

n∑
i=1

m∑
j=1

Rij

πij

{
Qij

(√
dn

)
−Qij (0)

}
+d−1

n

n∑
i=1

m∑
j=1

Rij

(
1

π̂ij
− 1

πij

)∫ −√dn(x̃′ijθ1+W̃(zij)
′θ2)−uNij

−uNij
ψτ (εij + s) ds

= K1 +K2.

We want to show that ∀η > 0, there exists an L > 0 such that

P

(
inf
||θ||=L

(K1 +K2) > 0

)
≥ 1− η.

Note that

inf
||θ||=L

(K1 +K2) ≥ inf
||θ||=L

K1 − sup
||θ||=L

|K2|

so we can show the above result by proving that there exists an η∗ such that

P

(
inf
||θ||=L

K1 > η∗
)
≥ 1− η1

and P

(
sup
||θ||=L

|K2| ≤ η∗

)
≥ 1− η2



4.7. Proofs 71

for large n and all positive values of η1 and η2.

We will first examine K1.

d−1
n

n∑
i=1

m∑
j=1

Rij

πij

{
Qij

(
d1/2
n

)
−Qij (0)

}
= d−1

n

n∑
i=1

m∑
j=1

Rij

πij
Dij(θ, d

1/2
n )

+d−1
n

n∑
i=1

m∑
j=1

E

[
Rij

πij

(
Qij

(
d1/2
n

)
−Qij (0)

)
| X,Z

]

+d−1
n

n∑
i=1

m∑
j=1

Rij

πij

(
x̃′ijθ1 + W̃(zij)

′θ2

)
ψτ (εij)

= G1 +G2 +G3.

By Lemma 4.7.3 we have that sup||θ||≤L |G1| = op(1). Next we analyze G3. We

have that

E

[
Rij

πij

(
x̃′ijθ1 + W̃(zij)

′θ2

)
ψτ (εij)

]
= E

[
E

(
Rij

πij

(
x̃′ijθ1 + W̃(zij)

′θ2

)
ψτ (εij) | X,Z, Y

)]
= E

[(
x̃′ijθ1 + W̃(zij)

′θ2

)
ψτ (εij)

]
= 0

=⇒ E(Gn3) = 0

By (C1),

θ′2

n∑
i=1

m∑
j=1

W̃(zij)W̃(zij)
′θ2 ≤ Cθ′2

n∑
i=1

m∑
j=1

fij(0)W̃(zij)W̃(zij)
′θ2

= C||θ2||2.
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Thus we have,

E(G2
n3) ≤ Ck−1

n E
[
n−1θ1X

∗′X∗θ1 + ||θ2||2
]

= O(k−1/2
n ||θ||2)

=⇒ Gn3 = Op(k
−1/2
n ||θ||2)

We next analyze Gn2,

Gn2 = k−1
n

n∑
i=1

m∑
j=1

E

[
Rij

πij

(
Qij

(
k1/2
n

)
−Qij (0)

)
| X,Z

]

= k−1
n

n∑
i=1

m∑
j=1

E
[(
Qij

(
k1/2
n

)
−Qij (0)

)
| X,Z

]
.

By Knight’s Identity twice,

Gn2 = k−1
n

n∑
i=1

m∑
j=1

E

[
−
{√

kn

(
x̃′ijθ1 + W̃(zij)

′θ2

)
+ uNij

}
ψτ (εij)

+

∫ √kn(x̃′ijθ1+W̃(zij)
′θ2)+uNij

0

[I(εij < s)− I(εij < 0)] ds

+uNijψτ (εij)−
∫ uNij

0

[I(εij < s)− I(εij < 0)] ds | X,Z
]

= k−1
n

n∑
i=1

m∑
j=1

E
[ ∫ √kn(x̃′ijθ1+W̃(zij)

′θ2)+uNij

uNij

[I(εij < s)

− I(εij < 0)] ds | X,Z
]

= k−1
n

n∑
i=1

m∑
j=1

∫ √kn(x̃′ijθ1+W̃(zij)
′θ2)+uNij

uNij

E
[
I(εij < s)

− I(εij < 0) | X,Z
]
ds

= k−1
n

n∑
i=1

m∑
j=1

∫ √kn(x̃′ijθ1+W̃(zij)
′θ2)+uNij

uNij

[∫ s

0

fij(x) dx

]
ds
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= k−1
n

n∑
i=1

m∑
j=1

∫ √kn(x̃′ijθ1+W̃(zij)
′θ2)+uNij

uNij

[∫ s

0

fij(0)(1 + o(1)) dx

]
ds

= k−1
n

n∑
i=1

m∑
j=1

∫ √kn(x̃′ijθ1+W̃(zij)
′θ2)+uNij

uNij

fij(0)s ds(1 + o(1))

= k−1
n

n∑
i=1

m∑
j=1

fij(0)

[
1

2
kn

(
x̃′ijθ1 + W̃(zij)

′θ2

)2

+uNij
√
kn

(
x̃′ijθ1 + W̃(zij)

′θ2

)]
(1 + o(1)).

We consider the cross product term,

k−1
n

n∑
i=1

m∑
j=1

fij(0)kn

(
θ′1x̃ijW̃(zij)

′θ2

)
= θ′1

(
n∑
i=1

m∑
j=1

fij(0)x̃ijW̃(zij)
′

)
θ2

= θ′1
(
n−1/2X∗′BnWW−1

Bn

)
θ2

= θ′1
(
n−1/2X ′(Inm − P ′)BnWW−1

Bn

)
θ2

= θ′1
(
n−1/2X ′(BnW −BnW )WW−1

Bn

)
θ2

= 0.

Returning to Gn2 and expanding the quadratic term,

Gn2 = Cθ′1

(
n−1

n∑
i=1

m∑
j=1

fij(0)X∗iX
∗
i
′

)
θ1 × (1 + o(1))

+Cθ′2

(
n∑
i=1

m∑
j=1

fij(0)W̃(zij)W̃(zij)
′

)
θ2 × (1 + o(1))

+k−1/2
n

n∑
i=1

m∑
j=1

fij(0)uNij

(
x̃′ijθ1 + W̃(zij)

′θ2

)
= Cθ′1

(
n−1X∗′M̂nBX

∗
)
θ1 × (1 + o(1)) + C||θ2|| × (1 + o(1))
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+k−1/2
n

n∑
i=1

m∑
j=1

fij(0)uNij

(
x̃′ijθ1 + W̃(zij)

′θ2

)
.

There exists a constant c > 0, such that

Cθ′1
(
n−1X∗′BnX

∗) θ1 × (1 + o(1)) + C||θ2|| × (1 + o(1)) ≥ c||θ||2

with probability one.

Let Un = (un11, . . . , unnm)′. By Schumaker, we know that

||Un|| = O
(
n1/2k−rn

)
. We have

k−1/2
n

n∑
i=1

m∑
j=1

fij(0)uNijx̃
′
ijθ1 = k−1/2

n n−1/2θ′1X
∗′BUn

≤ k−1/2
n n−1/2||θ1|| · ||X∗||||BUn||

= Op(k
1/2
n n1/2k−rn )||θ||

= Op(||θ||).

Similarly,

k−1/2
n

n∑
i=1

m∑
j=1

fij(0)uNijW̃(zij)
′θ2 = Op(||θ||).

Thus, for large n, the quadratic term will dominate, and we have that

k−1
n

∑n
i=1

∑m
j=1

(
Qij(k

1/2
n )−Qij(0)

)
has an asymptotic lower bound of cL2.

We can then conclude that for any η1 > 0

P

(
inf
||θ||=L

K1 > cL2

)
≥ 1− η1.
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We now need to show that for any η2 > 0,

P

(
sup
||θ||=L

K2 ≤ cL2

)
≥ 1− η2.

We have that

|K2| = k−1
n

∣∣∣∣ n∑
i=1

m∑
j=1

Rij

(
1

π̂ij
− 1

πij

)

×
∫ −k1/2n x̃′ijθ1−k

1/2
n W̃(zij)

′θ2−uNij

−uNij
ψτ (εij + s) ds

∣∣∣∣
≤ k−1

n

n∑
i=1

m∑
j=1

Rij

∣∣∣∣ ( 1

π̂ij
− 1

πij

) ∣∣∣∣
×
∣∣∣∣ ∫ −k1/2n x̃′ijθ1−k

1/2
n W̃(zij)

′θ2−uNij

−uNij
ψτ (εij + s) ds

∣∣∣∣
Note that

max
ij

∣∣∣∣ ∫ −k1/2n x̃′ijθ1−k
1/2
n W̃(zij)

′θ2−uNij

−uNij
ψτ (εij + s) ds

∣∣∣∣
≤ |k1/2

n x̃′ijθ1|+ |k1/2
n W̃(zij)

′θ2|+ 2|uNij|

We will look at each piece individually.

from Schumaker p 227 max
ij
|uNij| = O(k−rn )

max
i,j
|k1/2
n W̃(zij)

′θ2| ≤ k1/2
n ||θ|| max

i,j
||W̃(zij)||

= Op

(
||θ|| knn−1/2

)
max
i,j
|k1/2
n x̃′ijθ1| ≤ k1/2

n ||θ|| max
i,j
||x̃ij||

= Op

(
||θ|| k1/2

n n−1/2
)
.
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Thus

max
ij

∣∣∣∣ ∫ −k1/2n x̃′ijθ1−k
1/2
n W̃(zij)

′θ2−uNij

−uNij
ψτ (εij + s) ds

∣∣∣∣ = Op

(
knn

−1/2 ||θ||
)
.

We now have

sup
||θ||=L

|K2| ≤ k−1
n

n∑
i=1

m∑
j=1

RijOp

(
n−1/2

)
Op

(
||θ||knn−1/2

)
= Op(||θ||).

Therefore, for any η2 > 0,

P

(
sup
||θ||=L

K2 ≤ L

)
≥ 1− η2.

By convexity implies ||θ̂|| = Op(k
1/2
n ). Therefore, it follows that

||WB(γ̂ − γ)|| = Op(k
1/2
n ).

Now

1

n

n∑
i=1

m∑
j=1

Rijfij(0)

(
q∑

d=1

ĝd(Zij)−
q∑

d=1

gd(Zij)

)2

= n−1

n∑
i=1

m∑
j=1

fij(0)
(
W̃(zij)

′(γ̂ − γ)− uNij
)2

≤ n−1(γ̂ − γ)′W 2
B(γ̂ − γ) +Op(n

−2r/(2r+1))

= Op(n
−2r/(2r+1)).

We have that 1
n

∑n
i=1

∑m
j=1 Rij (

∑q
d=1 ĝd(Zij)−

∑q
d=1 gd(Zij))

2
= Op(n

−2r/(2r+1)) be-

cause fij(0) has a lower and upper bound.
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Now θ̂1 =
√
n(β̂ − β) and it also follows that ||θ̂1|| = Op(k

1/2
n ). Thus

||β̂ − β|| = Op(n
−1/2k1/2

n ). �

We now prove asymptotic normality from the first part of Theorem 4.3.1. First

we state some necessary lemmas.

Lemma 4.7.4

n−1/2X∗ = n−1/2∆n + op(1)

and n−1X∗′BnX
∗ = Σ1 + op(1).

Proof

By definition,

n−1/2X∗ = n−1/2 (X − PX)

= n−1/2 (H + ∆n − PX)

= n−1/2∆n + n−1/2 (H − PX)

Now let γ∗k ∈ RJn be defined as γ∗k = arg minγ∈RJn
∑n

i=1

∑m
j=1 (Rij/π̂ij) fij(0 |

xij, zij) {Xijk −W(zij)
′γ}2. Let ĥk(zij) = W(zij)

′γ∗k and notice that (PX)m(i−1)+j,k =

ĥk(zij). It follows that

n−1||H − PX||2 = n−1λmax

{
(H − PX)′ (H − PX)

}
≤ n−1trace

{
(H − PX)′ (H − PX)

}
= n−1

n∑
i=1

m∑
j=1

p∑
k=1

(
h∗k(zij)− ĥij(zij)

)2
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= Op

(
pn−2r/(2r+1)

)
= op(1).

For the second equation, note that

n−1X∗′BnX
∗ = n−1 (∆n + op(1))′Bn (∆n + op(1))

= n−1 [∆′nBn∆n + ∆′nBnop(1) +Bn∆nop(1) +Bnop(1)]

= n−1∆′nBn∆n + op(1)

= Σ1 + op(1)

�

We define the following variables:

R̃ = diag
(
R11π̂

−1
11 , . . . , Rnmπ̂

−1
nm

)
ψτ (ε) ≡ (ψτ (ε11), . . . , ψτ (εnm))′

θ̃1 =
√
n
(
X∗TBnX

∗)−1
X∗T R̃ψτ (ε)

Q∗ij(θ1, θ̃1, θ2) = ρτ

{
εij − x̃′ijθ1 − W̃ (zij)

′θ2 − unij
}

−ρτ
{
εij − x̃′ij θ̃1 − W̃ (zij)

′θ2 − unij
}

We want to show that θ̂1 is asymptotically equivalent to θ̃1. The following lemmas

are similar to Lemmas A2-A5 in Sherwood [2016].

Lemma 4.7.5

Define ∆(B)n = n−1∆′nBn∆n. Then,

sup
||θ1−θ̃1||≤M
||θ2||≤C

√
dn

∣∣∣ n∑
i=1

m∑
j=1

Rij

π̂ij
Es

{
Q∗ij(θ1, θ̃1, θ2)

}
− 1

2

{
θ′1∆(B)nθ1 − θ̃1∆(B)nθ̃1

} ∣∣∣ = op(1).
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Proof

n∑
i=1

m∑
j=1

Rij

π̂ij
Es

{
Q∗ij(θ1, θ̃1, θ2)

}
=

n∑
i=1

m∑
j=1

Rij

π̂ij
Es

[∫ −{x̃′ijθ1+W̃(zij)
′θ2+unij}

−{x̃′ij θ̃1+W̃(zij)′θ2+unij}
ψτ (εij + s) ds

]

= −
n∑
i=1

m∑
j=1

Rij

π̂ij

∫ −{x̃′ijθ1+W̃(zij)
′θ2+unij}

−{x̃′ij θ̃1+W̃(zij)′θ2+unij}
[Fij(−s | xij, zij)− Fij(0 | xij, zij)] ds

=
1

2

n∑
i=1

m∑
j=1

Rij

π̂ij
fij(0 | xij, zij)(1 + o(1))

[ (
x̃′ijθ1 + W̃(zij)

′θ2 + unij

)2

−

(
x̃′ij θ̃1 + W̃(zij)

′θ2 + unij

)2 ]
=

1

2

n∑
i=1

m∑
j=1

Rij

π̂ij
fij(0 | xij, zij)

×
[(

x̃′ijθ1

)2 −
(
x̃′ij θ̃1

)2

+ 2
(
W̃(zij)

′θ2 + unij

)(
x̃′ijθ1 − x̃′ij θ̃1

)]
(1 + o(1))

=
1

2

n∑
i=1

m∑
j=1

(
Rij

πij
+
Rij

π̂ij
− Rij

πij

)
fij(0 | xij, zij)[(

x̃′ijθ1

)2 −
(
x̃′ij θ̃1

)2

+ 2
(
W̃(zij)

′θ2 + unij

)(
x̃′ijθ1 − x̃′ij θ̃1

)]
(1 + o(1))

=
1

2

(
θ′1∆(Bn)θ1 − θ̃′∆(Bn)θ̃1

)
(1 + o(1))

+ n−1/2(θ1 − θ̃1)′)
n∑
i=1

m∑
j=1

Rij

πij
fij(0 | xij, zij)δijunij(1 + o(1))

+
1

2

n∑
i=1

m∑
j=1

(
Rij

π̂ij
− Rij

πij

)[(
x̃′ijθ1

)2 −
(
x̃′ij θ̃1

)2
]

+ n−1/2(θ1 − θ̃1)′
n∑
i=1

m∑
j=1

(
Rij

π̂ij
− Rij

πij

)
fij(0 | xij, zij)δijunij(1 + o(1)).

Now we examine each piece individually. First, we have that δij = xij − h∗(zij) and
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E(xij) = 0 and E(h∗(zij)) = 0, thus E(δij) = 0 and

E

[
n−1/2(θ1 − θ̃1)′)

n∑
i=1

m∑
j=1

Rij

π̂ij
fij(0 | xij, zij)δijunij(1 + o(1))

]
= 0.

Note that maxij |unij| = O(k−rn ) so

Var

[
n−1/2(θ1 − θ̃1)′)

n∑
i=1

m∑
j=1

Rij

π̂ij
fij(0 | xij, zij)δijunij(1 + o(1))

]
= o(1)

=⇒ n−1/2(θ1 − θ̃1)′)
n∑
i=1

m∑
j=1

Rij

π̂ij
fij(0 | xij, zij)δijunij(1 + o(1)) = op(1).

The rest of the proof follows Sherwood [2016] (Lemma A2). �

Lemma 4.7.6

Under the conditions of Theorem 4.3.1, then for any given positive constants M and

C,

sup
||θ1−θ̃1||≤M
||θ2||≤C

√
dn

∣∣∣ n∑
i=1

m∑
j=1

Rij

π̂ij

[
Q∗ij(θ1, θ̃1, θ2)− Es

{
Q∗ij(θ1, θ̃1, θ2)

}
+ x̃′ij(θ1 − θ̃1)ψτ (εij)

] ∣∣∣
op(1).

Proof

The proof follows Sherwood [2016] (Lemma A3). �

Lemma 4.7.7

Under the conditions of Theorem 4.3.1,

θ̂1 − θ̃1 = op(1).

Proof
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The proof follows Sherwood [2016] (Lemma A4). �

Lemma 4.7.8

Under the conditions of Theorem 4.3.1,

n−1/2

n∑
i=1

m∑
j=1

Rij

π̃ij
δijψτ (εij)

= n−1/2

n∑
i=1

n∑
j=1

Rij

πij
δijψτ (εij)

−n−1/2

n∑
i=1

m∑
j=1

Rij − πij
πij

E [δijψτ (εij) | tij] + op(1)

Proof

The proof follows Sherwood [2016] (Lemma A5). �

Lemma 4.7.9

Let Hij(γ
∗) ≡ ∇2

γ
1
πij0

(γ∗) be the Hessian matrix evaluated at γ∗. Under the condi-

tions of Theorem 4.3.1,

n−1/2

n∑
i=1

m∑
j=1

Rij

π̂ij
δijψτ (εij) = n−1/2

n∑
i=1

n∑
j=1

Rij

πij0
δijψτ (εij)

+n−1/2

n∑
i=1

m∑
j=1

Rij
1

πij0
(γ̂ − γ)′∇γ

1

πij0
δijψτ (εij)

+op(1).

Proof

n−1/2

n∑
i=1

m∑
j=1

Rij

π̂ij
δijψτ (εij) = n−1/2

n∑
i=1

m∑
j=1

Rij

πij
δijψτ (εij)



4.7. Proofs 82

+n−1/2

n∑
i=1

m∑
j=1

Rij

(
1

π̂ij
− 1

πij

)
δijψτ (εij).

Note that, Tij = (T ′i2, . . . , T
′
ij)
′, π(Tij,γj) =

∏j
k=2 e

T ′ikγk/(1 + eT
′
ikγk), and

∇γk

1

πij0
=
−1

πij0
I(k ≤ j)η (Tik, γk) e

−T ′ikγkTik

∇γk,γd

1

πij0
=

1

πij0
I(k ≤ j)I(d ≤ j)η (Tik, γk) η (Tid, γd) e

−T ′ikγk−T
′
idγdTikT

′
id

∇2
γk

1

πij0
=

1

πij0
I(k ≤ j)η (Tik, γk) e

−T ′ikγkTikT
′
ik.

Let γ̂ = (γ̂′2, . . . , γ̂
′
m)′. By Taylor’s Expansion,

1

π̂ij
− 1

πij
= (γ̂ − γ)′∇γ +

1

2
(γ̂ − γ)′∇2

γ
(
γ̂j − γj

)
+ op(1).

By Taylor’s Theorem,

1

π̂ij
− 1

πij
= (γ̂ − γ)′∇γ +

1

2
(γ̂ − γ)′Hij(γ

∗)
(
γ̂j − γj

)
for some γ∗j = γj + t(γ̂j − γj) for t ∈ [0, 1]. We now have that

n−1/2

n∑
i=1

m∑
j=1

Rij

(
1

π̂ij
− 1

πij

)
δijψτ (εij)

= n−1/2

n∑
i=1

m∑
j=1

Rij (γ̂ − γ)′∇γδijψτ (εij)

+n−1/2

n∑
i=1

m∑
j=1

Rij
1

2
(γ̂ − γ)′Hij(γ

∗)
(
γ̂j − γj

)
δijψτ (εij)

We now show that
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n−1/2
∑n

i=1

∑m
j=1Rij

1
2

(γ̂ − γ)′Hij(γ
∗)
(
γ̂j − γj

)
δijψτ (εij) = op(1).

n−1/2

n∑
i=1

m∑
j=1

Rij
1

2
(γ̂ − γ)′Hij(γ

∗)
(
γ̂j − γj

)
δijψτ (εij)

=
√
n (γ̂ − γ)′

[
m∑
j=1

1

n
√
n

n∑
i=1

Rij
1

2
Hij(γ

∗)δijψτ (εij)

]
√
n (γ̂ − γ)

Assuming that γ̂ for γ satisfies the regularity conditions of asymptotic normality

of MLEs for exponential family models, then the problem is reduced to showing for

any element of the standard basis, ed, ek that

m∑
j=1

1

n
√
n

n∑
i=1

Rij
1

2
e′dHij(γ

∗)ekδijψτ (εij) = op(1).

We know that γ∗
P→ γ and that ||H(γ0)|| < C < ∞ for some constant C. Thus

P (||H(γ∗)|| < C)→ 1. Thus by the Law of Large Numbers,

m∑
j=1

1

n
√
n

n∑
i=1

Rij
1

2
e′dHij(γ

∗)ekδijψτ (εij) = op(1).

We have now shown that

n−1/2

n∑
i=1

m∑
j=1

Rij

π(Tij, γ̂j)
δijψτ (εij)

= n−1/2

n∑
i=1

n∑
j=1

Rij

π(Tij,γj)
δijψτ (εij)

+n−1/2

n∑
i=1

m∑
j=1

Rij

[
1

π(Tij,γj)

(
γ̂j − γj

)′
H(γ∗)Tij

]
δijψτ (εij)

+op(1).

�
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Proof of second part of Theorem 4.3.1

We now continue with proving asymptotic normality of β̂. Noting that

θ̂1 =
√
n(β̂ − β), by Lemma 4.7.7,

√
n
(
β̂ − β

)
=
√
n
(
X∗BnX

∗T )−1
X∗T R̃ψτ (ε) + op(1)

=

(
1

n
X∗BnX

∗T
)−1

1√
n
X∗T R̃ψτ (ε) + op(1)

By Lemma 4.7.4,

√
n
(
β̂ − β

)
= {Σ1 + op(1)}−1 n−1/2

n∑
i=1

m∑
j=1

Rij

π̂ij
δijψτ (εij) {1 + op(1)} ,

and by Lemma 4.7.9,

√
n
(
β̂ − β

)
= {Σ1 + op(1)}−1

{
n−1/2

n∑
i=1

m∑
j=1

Rij

πij0
δijψτ (εij)

+n−1/2

n∑
i=1

m∑
j=1

Rij
1

πij0
(γ̂ − γ)′∇γ

1

πij0
δijψτ (εij) + op(1)

}
= {Σ1 + op(1)}−1

{
n−1/2

n∑
i=1

m∑
j=1

Rij

πij0
δijψτ (εij)

+

[
n−1

n∑
i=1

m∑
j=1

Rij
1

πij0
δijψτ (εij)∇γ

1

πij0

′
]
√
n (γ̂ − γ)

+op(1)

}

From MLE theory, we have that

√
n (γ̂ − γ) =

1√
n
I(γ)−1

n∑
i=1

∇`i(γ) + op(1).
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Now let D2jk = E
[
I(k≤j)η(Tik,γk)

πij0
(1− η(Tik, γk))ψτ (εij)δijT

′
ik

]
and

D2j = (D2j2, . . . , D2jm). By the WLLN,

n−1

n∑
i=1

m∑
j=1

Rij
1

πij0
δijψτ (εij)∇γ

1

πij0

′
=

m∑
j=2

D2j + op(1).

Putting things back together, we have

n−1/2

n∑
i=1

m∑
j=1

Rij
1

πij0
(γ̂ − γ)′∇γ

1

πij0
δijψτ (εij)

=
1√
n

m∑
j=2

D2jI(γ)−1

n∑
i=1

∇`i(γ) + op(1).

We now consider the expectation and variance of
√
n
(
β̂ − β

)
. Let

ki = (ψτ (εi1), ψτ (εi2)Ri2/π(Ti2,γ2), . . . , ψτ (εim)Rim/π(Tim,γm))′ and Ki be an m×

m diagonal matrix with ki on the diagonal. Also, note that δi = (δi1, . . . , δim)′,

Ri1 = 1, and π(Ti1,γ1) = 1.

E

[
1√
n

m∑
j=2

D2jI(γ)−1

n∑
i=1

∇`i(γ)

]
= 0

E

[
n−1/2

n∑
i=1

m∑
j=1

Rij

πij0
δijψτ (εij)

]
= 0

Var

[
1√
n

m∑
j=2

D2jI(γ)−1

n∑
i=1

∇`i(γ)

]
=

m∑
j=1

D2jI(γ)−1D′2j

Var

[
n−1/2

n∑
i=1

m∑
j=1

Rij

πij0
δijψτ (εij)

]
= E [δ′ikik

′δi]

≡ D3
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For the covariance

Cov

[
1√
n

m∑
j=2

D2jI(γ)−1

n∑
i=1

∇`i(γ), n−1/2

n∑
i=1

m∑
j=1

Rij

πij0
δijψτ (εij)

]

= Cov

[
m∑
j=2

D2jI(γ)−1∇`i(γ), δ′iki

]

= E

[
m∑
j=2

D2jI(γ)−1∇`i(γ)k′iδi

]

=
m∑
j=2

D2jI(γ)−1D′2j.

We finally show normality by using the Lindeberg-Feller CLT. Let

Dni = Σ−1
1

{
n−1/2

m∑
j=1

Rij

πij0
δijψτ (εij)

+

[
n−1

m∑
j=1

Rij
1

πij0
δijψτ (εij)∇γ

1

πij0

′
]
√
n (γ̂ − γ)

}

and we know that

Var(Dni) =
1

n
Σ−1

1

(
D3 −

m∑
j=2

D2jI(γ)−1D′2j

)
Σ−1

1 .

Let s2
n = nVar(||Dni||) and C be a constant that can change from line to line.

1

s2
n

n∑
i=1

E
[
||Dni||2I(||Dni|| > εsn)

]
≤ 1

s2
n

n∑
i=1

E
[
||Dni||4

]
E [I (||Dni|| > εsn)]

=
1

s2
n

n∑
i=1

E
[
||Dni||4

]
P (||Dni|| > εsn)
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≤ 1

s4
nε

2

n∑
i=1

E
[
||Dni||4

]
Var (||Dni||)

=
s2
n

ns4
nε

2

n∑
i=1

E
[
||Dni||4

]
=

1

ns2
nε

2

n∑
i=1

E
[
||Dni||4

]
= C (nε)−2

n∑
i=1

E
[
||Dni||4

]
≤ C(nε)−2

n∑
i=1

E
[
||δi||4

]
= o(1)

Thus we have met the Lindeberg-Feller Condition and shown asymptotic normality.
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Chapter 5

Sparsity Path Algorithm for
Penalized Quantile Regression

5.1 Introduction

In this dissertation, we have discussed methods and theoretical results for semipara-

metric quantile regression and have ignored the challenges of computing the quan-

tile regression estimators. Additionally, we focused on model estimation and did not

worry about model selection. Model selection is an important part of analysis because

estimators of smaller models that include only relevant covariates are more accurate

and have better prediction performance. As the number of potentially important

covariates grows thereby increasing the number of combinations of the covariates,

model selection becomes more difficult. In this chapter, we turn our attention to the

model selection problem and propose an algorithm for model selection in quantile

regression.

Consider a dataset with n samples and p covariates. In practice, all p covariates

may not have an effect on the response. A model with only the relevant covariates

will have better theoretical estimation and prediction properties than a larger model

containing covariates with no effect on the response. When p < n, a common approach

to model selection is to fit all possible 2p models and select one model using cross-

88
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validation or an information criterion such as AIC or BIC. When p is too large,

fitting all possible models becomes too computationally expensive and infeasible.

One remedy to this problem is stepwise regression, in which a model is selected by

adding or removing one covariate at a time until modifying the current model returns a

worse information criterion. Another approach which also works well even in the high-

dimensional setting (p > n) is penalized quantile regression which simulataneously

selects covariates and estimates effects. Letting Y1, . . . , Yn denote the n responses and

X1, . . . , Xn denote the p-dimensional vectors of covariates for the n cases, the effects

β are estimated by minimizing,

β̂(τ) = arg min
β∈Rp

n∑
i=1

ρτ (Yi −X ′iβ) +

p∑
j=1

pλ(βj),

where ρτ is the nonsmooth check loss function and pλ is a non-negative function that

depends a tuning parameter λ. The estimated model increases in sparsity (decreases

in size) as the value of λ increases. Common choices for the penalty function are

the least absolute shrinkage and selection operator [Tibshirani, 1996], lasso, and the

nonconvex smoothly clipped absolute deviation[Fan and Li, 2001], SCAD, and mini-

max concave [Zhang et al., 2010], MCP, penalties. Theoretical properties of the lasso

penalized quantile regression model are investigated in Belloni et al. [2011] and for

the SCAD and MCP penalized quantile regression model in Wang et al. [2012] and

Sherwood and Wang [2016].

Penalized quantile regression has also been studied when p < n [Zou and Yuan,

2008, Kai et al., 2011, Wu and Liu, 2009]. Much of the theoretical literature for

penalized quantile regression is restricted to proving consistency of the estimator and

does not consider inference. One exception is a recently proposed wild bootstrap pro-

cedure to approximate the sampling distribution of the penalized coefficient estimator

[Wang et al.].
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Inference is important in practice for testing hypotheses and creating confidence

intervals. About four decades ago Cox [1975] argued that it may be advantageous to

split data into two groups where the first group is used to generate hypotheses and the

second group is used for testing. By splitting the data into independent exploratory

and testing sets, we can obtain valid p-values for hypthesis testing. More recent

research has also ivestigated inference using data splitting [Meinshausen et al., 2009].

Post-selection inference seems to be a fruitful area of research for making inference

on penalized quantile regression estimators. In post-selection inference, one or a set

of low-dimensional (p < n) models is first selected by penalized regression and then

inference is made on the selected model or set of models using classical techniques

[Wasserman and Roeder, 2009, Berk et al., 2013, Lee et al., 2016, Tibshirani et al.,

2016, Taylor and Tibshirani, 2015].

To compute the unpenalized quantile regression estimator, Koenker and Park

[1996] proposed an interior point algorithm. Hunter and Lange [2000] proposed an

MM algorithm which majorizes the nonsmooth quantile loss function with a quadratic

function. For lasso penalized regression, Li and Zhu [2008] developed an algorithm

to compute the estimate at all values of the tuning parameter λ and Peng and Wang

[2015] combined an MM algorithm with coordinate descent to quickly compute the

estimate for nonconvex penalized quantile regression. Recently, the literature has

turned to the alternating direction method of multipliers (ADMM) algorithm for

quickly computing the penalized quantile regression estimate, e.g. Gu et al. [2017],

Yu et al. [2017], Yu and Lin [2017].

All of these algorithms are designed to exactly compute the penalized estimate

for a single value of the tuning parameter. As a solution needs to be computed for

a grid of values of the tuning parameter, the computation can be prohibitively time-

consuming as n and p become larger. In post-selection inference, the goal is to obtain

a few candidate models. Candidate models are determined by which coefficients are
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nonzero; the exact magnitude is not necessary. For penalized least squares, Hu et al.

[2016] modified an ADMM algorithm to quickly obtain a sparsity path, i.e. approx-

imate coefficient estimates at different sparsity levels. Their algorithm requires one

update for each value of the tuning parameter. This type of algorithm is very use-

ful for the first stage of post-selection inference where identifying candidate models is

more important than estimation. Motivated by their work, we also modify an ADMM

algorithm to obtain a sparsity path for penalized quantile regression.

Our proposed algorithm differs from the penalized least squares algorithm sub-

stantially. Unlike the squared loss function for least squares, the nonsmooth check

loss function drastically increases the complexity of the ADMM algorithm. We alle-

viate this problem by approximating the check function with a quadratic function,

effectively turning the optimization problem into a series of weighted least squares

problem with a ridge penalty. We show that our sparsity path returns a good set

of candidate models containing the true model and is siginificantly faster than algo-

rithms computing the exact solution.

In Section 5.2, we review the ADMM algorithm and provide intuition for modi-

fication. We derive the algorithm in Section 5.3. We demonstrate the effectiveness

of our proposed algorithm with Monte Carlo simulations in Section 5.4 and conclude

with a discussion in Section 5.5.

5.2 Review of ADMM

First introduced by Glowinski and Marroco [1975], Gabay and Mercier [1975], the

ADMM algorithm solves the optimization problem

min
x,z

f(x) + g(z) s.t. Ax+Bz = c, (5.1)
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where x ∈ Rn, z ∈ Rp, A ∈ Rm×n, B ∈ Rm×p, and c ∈ Rm. Introducing a strictly

positive augmentation parameter γ and Lagrangian multiplier u ∈ Rm, the augmented

Lagrangian function of (5.1) becomes

L(x, z, u) = f(x) + g(z) + uT (Ax+Bz − c) +
γ

2
||Ax+Bz − c||2.

Boyd et al. [2011] showed the following updates for the ADMM algorithm,

xk+1 = arg min
x

L(x, zk, uk)

zk+1 = arg min
z

L(xk+1, z, uk)

uk+1 = uk − γ(Axk+1 +Bzk+1 − c),

where (xk, zk, uk) denotes the kth iteration of the algorithm for k ≥ 0. The u variable

update is often called the dual update and ensures that the constraint Ax + Bz = c

is met.

For penalized quantile regression, it is common to define ri = Yi − XT
i β so the

ADMM algorithm is

L(β, r, u) =
n∑
i=1

ρτ (ri) +

p∑
j=1

pλ(βj) + uT (r +Xβ − Y ) +
γ

2
||r +Xβ − Y ||2,

resulting in the following updates

βk+1 = arg min
β

p∑
j=1

pλ(βj) + uk
T

(rk +Xβ − Y ) +
γ

2
||rk +Xβ − Y ||2 (5.2)

rk+1 = arg min
z

n∑
i=1

ρτ (ri) + uk
T

(r +Xβk+1 − Y ) +
γ

2
||r +Xβk+1 − Y ||2

uk+1 = uk − γ(rk+1 +Xβk+1 − Y ).
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Recognizing that ρτ (ri) = 1
2
|ri| + (τ − 1

2
)ri, the r update is easily solved using soft-

thresholding. The β update is much more challenging and is similar to solving a

lasso penalized least squares problem with “response” Yi − rki − uki /γ. Gu et al.

[2017] included a proximal term to the objective function in the β update to simplify

computation. Splitting the data into smaller subsets can also simplify the updates

and allows for computation in parallel [Yu and Lin, 2017, Yu et al., 2017]. These

algorithms solve the penalized quantile regression problem for a fixed value of the

tuning parameter.

5.3 Sparsity path

Our goal is to develop an algorithm that quickly identifies which variables have effects

on the response as the sparsity of the model increases, not necessarily to accurately

estimate the effects themselves. Sparse estimates are induced from the ADMM setup

in (5.2) because the β update is essentially a lasso penalized least squares problem.

We make a simple modification to the ADMM setup to induce sparsity that does not

require solving a computationally intensive lasso problem.

Defining z to be a copy of β, we can write the penalized quantile regression problem

as

min
x,z

n∑
i=1

ρτ (yi − xTi β) +

p∑
j=1

pλ(zj) s.t. β − z = 0,

with its associated augmented Lagrangian:

L(β, z, u) =
n∑
i=1

ρτ (yi − xTi β) +

p∑
j=1

pλ(zj) + uT (β − z) +
γ

2
||β − z||2.
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The updates are

βk+1 = arg min
β

n∑
i=1

ρτ (yi − xTi β) + uk
T

(β − zk) +
γ

2
||β − zk||2 (5.3)

zk+1 = arg min
z

p∑
j=1

pλ(zj) + uk
T

(βk+1 − z) +
γ

2
||βk+1 − z||2 (5.4)

uk+1 = uk − γ(βk+1 − zk+1).

In this framework, the z update in (5.4) induces sparsity and is simple to solve

for most sparsity inducing penalty functions. The z variable will be sparser for larger

values of λ. Candidate models are found by increasing the value of λ after one com-

plete iteration of the algorithm and saving the z update. We continue iterating and

increasing λ until the z update yields a completely sparse vector. If the algorithm is

initialized with z0 = 0, then the first β update is a ridge penalized quantile regression

problem which will yield a dense vector. Therefore, by initializing the algorithm with

a dense estimate, we can obtain a set of candidate models ranging from dense to fully

sparse.

The augmentation parameter γ is sometimes tuned to decrease the number of

iterations until convergence in traditional ADMM algorithms. However, in this set-

ting, the algorithm finishes when zk is fully sparse. Because the tuning parameter λ

controls the sparsity of z, we set γ = 1 for simplicity.

For example, if the lasso penalty, pλ(zj) = λ|zj|, is used, then the z update simply

requires a componentwise soft-threshold operation: zk+1
j = sign(βk+1

j +ukj/γ) max(|βk+1
j +

ukj/γ| − λ, 0). The u update ensures that the nonsparse β update will be shrunk to-

wards the sparse z value.
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5.3.1 Updating β

The β update does not have a closed form solution due to to the nonsmoothness of

the ρτ function. For k ≥ 0, we approximate the ρτ with the same qudratic function

that Hunter and Lange [2000] used to majorize an approximation of ρτ in their MM

algorithm for quantile regression:

ρετ (yi − xTi βk+1 | βk) =
1

4

[
(yi − x′iβ)2

ε+ |yi − x′iβk|
+ (4τ − 2)(yi − x′iβ) + c

]
,

where ε > 0 and c is chosen such that ρετ (yi − xTi β
k+1 | βk) = ρτ (yi − xTi β) −

ε
2

log(ε + |yi − xTi β|). Defining Rk
ε to be a n × n diagonal matrix with (i, i)th entry

1/(4(ε+ |yi − xTi βk|)), the β update becomes

βk+1 = arg min
β
||Y −Xβ||2Rkε − n

(
τ − 1

2

)
X̄Tβ + uk

T
(β − zk) +

γ

2
||β − zk||2,

where for a vector a and matrix B, ||a||2X ≡ aTXa. This minimization problem is a

weighted least squares problem with a ridge-like penalty whose solution is

βk+1 =
(
X ′Rk

εX +
γ

2
Ip

)−1
[
X ′Rk

εY +
n

2

(
τ − 1

2

)
X̄ +

γ

2
zk − 1

2
uk
]
.

Computing
(
X ′Rk

εX + γ
2
Ip
)−1

for each new value of λ is expensive. A recursive

algorithm relying on a Searle Identity is useful for quickly approximating the inverse

at each iteration. First, define Mk ≡
(
X ′Rk

εX + γ
2
Ip
)−1

and Bk ≡ XT
(
Rk
ε −Rk−1

ε

)
X.

Then the update for the inverse is

Mk+1 ≈ Mk −MkBkMk. (5.5)

We leave the details of the derivation to Section 5.6.

The inverse can be updated every 5 or 10 steps to decrease computation time.
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Empirical evidence suggests that a good set of candidate models can be found by not

updating Rk
ε at any point. This greatly speeds up computation.

5.4 Monte Carlo studies

In this section, we evaluate the performance of our proposed sparsity path algorithm

in a simulation study. This sparsity path algorithm will be useful in practice if it can

quickly find a good set of candidate models. All simulations were conducted on an

Intel Core i7-4790 processor (single-core, 3.6 GHz).

We consider a simulation setting similar to that in Peng and Wang [2015]. First

we generate (X̃1, . . . , X̃p)
T ∼ N(0, Ip). Then we set X1 = Φ(X̃1) and Xk = X̃k for

k = 2, . . . , p and generate the response from the following heteroscedastic model,

Y = X6 +X12 +X15 +X20 + 0.7X1ε,

where ε ∼ N(0, 1). In all simulation settings, n = 30, 000 and p is set to either 100 or

1000. Three quantiles are considered: τ = 0.3, 0.5, and 0.7. The effect of X1 is zero

when τ = .5.

In each simulation, the sparsity path algorithm is initialized with a lasso penalized

quantile regression estimate with a very small value of λ to ensure a dense estimate.

After each iteration, the tuning parameter λ is increased by 5% until a fully sparse

estimate is reached. The candidate set is chosen to be all models containing between

2 and 15 variables. A final model is chosen from among the candidate set using BIC.

In the simulation, we fix Rk
ε = R0

ε . We used the QPADM algorithm [Yu et al., 2017]

to obtain the initial dense estimate.

Table 5.1 summarizes the simulation study. We report the mean size of the selected

model, size; the percent of times that X6, X12, X15, and X20 were all included in the
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Table 5.1: Performance of the proposed sparsity path algorithm.

p τ Size P1 P2 AE M Time
100 0.3 5.010 (0.010) 100% 100% 0.163 (0.001) 100% 0.538 (0.055)
100 0.5 4.010 (0.010) 100% 1% 0.007 (0.000) 100% 0.587 (0.011)
100 0.7 5.060 (0.028) 100% 100% 0.162 (0.001) 100% 0.493 (0.015)

1000 0.3 5.030 (0.017) 100% 100% 0.163 (0.001) 100% 41.405 (1.425)
1000 0.5 4.000 (0.000) 100% 0% 0.006 (0.000) 100% 41.288 (1.791)
1000 0.7 5.010 (0.010) 100% 100% 0.162 (0.001) 100% 42.434 (1.680)

final model, P1; the percent of times that X1 was included in the final model, P2; the

`1 estimation error, AE; the percent of times that the correct model was included in

the candidate set, M; and the mean time in seconds to approximate the path, Time.

Standard errors are in parentheses.

In all simulations, the correct model was always included in the candidate set.

Because of this, the final model selection step using BIC was mostly successful in

selecting and estimating the true model. It is difficult to compare the computation

time of the proposed algorithm as we are not aware of the existence of any other

sparsity path algorithms for penalized quantile regression. However, when p = 100,

the QPADM algorithm required about 10 seconds on average compute the initial

estimate and about 115 seconds on average when p = 1000. In each simulation,

the sparsity path algorithm typically ran for about 250 iterations. Our proposed

algorithm was significantly faster than the QPADM algorithm when a fine grid of

tuning parameter values are needed and selects a good set of candidate models. The

computational burden in the sparsity path algorithm comes from computing the p×

p inverse
(
X ′Rk

εX + γ
2
Ip
)−1

which requires on the order of p3 operations. Exact

algorithms for penalized quantile regression can be too slow to use in practice when

n and p are large.
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5.5 Discussion

Motivated by the goal of quickly finding a set of candidate models when the sample

size and the number of covariates are large, we proposed a sparsity path algorithm

to approximate the model at different sparsity levels. The algorithm differs from

traditional ADMM algorithms in that sparsity is imposed on a copy variable and is

very easy to compute. The simulation study showed that the sparsity path algorithm

is much faster than existing algorithms, which can be prohibitively slow when the

dataset is large.

We leave investigation of theoretical properties of the algorithm to future works,

but intuit that a good set of candidate models is obtained by squeezing the sparse

z update and dense β update together. Ideas used in the sparsity path algorithm

may also prove useful in creating an algorithm to quickly estimate the conditional

quantile process, that is, estimate the conditional quantile function along a fine grid

of τ ∈ (0, 1). Algorithms focused on exploring the model space can be useful for very

large datasets when traditional algorithms that find exact solutions are too slow.

5.6 Derivation of the matrix inverse approxima-

tion

We derive the matrix approximation in (5.5). By the Searle Identity, for any two

square matrices A and B,

(A+B)−1 = A−1 − A−1(I +BA−1)BA−1

≈ A−1 − A−1BA−1,
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where the approximation follows if B represents a small perturbation such that I +

A−1B ≈ I. Define

Mk =
(
X ′Rk

εX +
γ

2
Ip

)−1

Bk = X ′
(
Rk
ε −Rk−1

ε

)
X.

We now have a recrusive formula for computing the inverse that is easily updated at

each iteration or every few iterations,

Mk = Mk−1 −Mk−1BkMk−1.



Chapter 6

Conclusion

In this dissertation, we proposed solutions to statistical challenges in healthcare.

Healthcare data is notoriously complex and heterscedastic making analysis difficult.

Fortunately, semiparametric quantile regression is an effective tool with mild assump-

tions that can be used to analyze healthcare data with both linear and nonlinear

effects. We applied quantile regression in a classification problem, proposed a con-

sistent estimator for semiparametric quantile regression in a longitudinal study with

dropout, and derived an algorithm to quickly find a set of candidate models for large

datasets.

The solutions posed all lead to more interesting questions and extensions. The

asymptotic covariance matrix for the longitudinal model with dropout (Chapter 4) is

very difficult to estimate in practice. A potential solution might be to approximate

the distribution of the estimator using the bootstrap. This solution, however, comes

with its own set of challenges. First, one of the terms in the covariance matrix is

the error of approximating the covariates with linear effects using the covariates with

nonlinear effects. We are not aware of any method of estimating this error. Another

challenge is handling the correlation among an individual’s observations. A nice

feature of quantile regression is that the errors need not be homoscedastic to obtain

a consistent estimator. By making no distributional assumptions, the difficulty of

100
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estimating the correlation increases greatly.

In Chapter 5, we proposed an algorithm to select a model when the dimensions of

the data are large and conventional methods do not provide an answer in a reasonable

amount of time. We did not investigate the theoretical properties of the selected

model. It would be helpful to understand these properties so that we can establish

a property similar to that of Theorem 3.3.4. In practice, variable selection is an

important part of creating a predictive model. Additionally, the idea of exploiting

the update of one variable of the variables in an ADMM algorithm to solve a problem

opens up new doors for utilizing the ADMM algorithm in other novel ways.

Healthcare data continues to be collected in new ways with more and more in-

formation being gathered each year. Proper analysis can help set effective policies,

promote better health outcomes, and understand factors effecting diseases. Methods

and algorithms need to modified, adapted, and developed to keep up with the new

challenges and questions raised by practioners. This dissertation proposed a few so-

lutions to existing problems and hopefully the methods presented here can be used

and adapted to solve future problems as well.
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Chapter 7

Appendix

7.1 Sample Code for using plaqr package

library(plaqr)

set.seed(4)

n = 1000

### Generate the covariates

x1 <- rnorm(n); x2 <- rnorm(n)

z1 <- runif(n); z2 <- runif(n, -1,1)

### Generate the response

y <- exp( x1 + x2 + sin(2*pi*z1) + z2^3 + rnorm(n) )

### Customize the settings for the spline basis functions for z1 and z2

splinesettings <- vector("list", 2)

splinesettings[[2]]$degree <- 4

splinesettings[[2]]$Boundary.knots <- c(-1,1)
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### Estimate the transformation parameter

trans <- transform_plaqr(y ~ x1 + x2, ~ z1 + z2, tau=.5,

splinesettings=splinesettings, lambda=seq(0,3,by=.05))

trans$parameter

### Save the transformed response

newy <- trans$Y

### Fit the model

fit <- plaqr(newy ~ x1 + x2, ~ z1 + z2, tau=.5,

splinesettings=splinesettings)

### Plot the nonlinear effects

plot( nonlinEffect(fit) )

### Make prediction intervals

newdata <- data.frame( x1=c(-1,1), x2=c(0,3),

z1=c(.2, .6), z2=c(-.5,-.75) )

intervals <- predictInt( fit, newdata=newdata )

### Transform the intervals back to original scale

trans_parameter(intervals, trans$parameter, inverse=TRUE)
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