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Abstract 

The research presented here focuses on the deployment of modern 

bioinformatics to gain a greater understanding of legume genomes and gene functions. 

While improvement of legume crops still relies on conventional breeding approaches, 

transgenesis, the introduction of a foreign piece of DNA in a host genome, is becoming 

increasingly common. Using a transgenic approach, the integration of foreign DNA into 

the host genome using Agrobacterium-mediated transformation is almost always random 

and is known to induce mutations at the insertion site, but questions have been raised 

about the potential for mutagenesis at other loci. While genetic engineering has been 

widely used for crop improvement, few studies have addressed the genome-wide effects 

of transgenesis. Chapters two and three of this thesis address this question in the 

context of Glycine max, a major agricultural crop (soybean). Specifically, chapter two 

features a reanalysis of data from a previous study that reported a large number of 

mutations in soybean transgenic plants and describes several factors that led to an 

overestimation. Chapter three addresses the effects on the genome in a series of 

soybean plants transformed with CRISPR/Cas9, the most recently developed platform 

for genome editing. The findings of this work have implications on the frequency and 

transmission of novel variation resulting from soybean biotechnology. Chapter four 

focuses on applying transcriptome network analysis for predicting the genes that 

underlie nodule development variation in the Medicago-Ensifer symbiosis. Co-

expression networks were constructed for Medicago truncatula and were integrated with 

data from genome-wide association analysis to prioritize candidate genes with a high 

likelihood of causal association with nodule development phenotypes. This approach 

sheds light on potential new genetic factors underlying an important phenotype, and 
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more broadly, could be applied to understand genomic and phenotypic variation for a 

wide range of plant species and traits.  
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Chapter 1: The use of sequencing technologies to 

understand transgenic soybeans and gene expression 

patterns in agricultural species 
 

The sections involving co-expression uses in agricultural species were written by Jean-
Michel Michno as part of the following review paper published in Biochimica et 
Biophysica Acta (BBA) 
 
Schaefer, R.J., Michno, J.M. and Myers, C.L., 2017. Unraveling gene function in 
agricultural species using gene co-expression networks. Biochimica et Biophysica Acta 
(BBA)-Gene Regulatory Mechanisms, 1860(1), pp.53-63.  
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Advances in sequencing technologies 

Over the past fifteen years, there has been a huge surge in the adoption of next-

generation sequencing (NGS) technologies across a variety of research areas. The 

introduction of these high-throughput technologies has changed the way researchers 

think about scientific approaches, similar to the paradigm shift that occurred when the 

polymerase chain reaction (PCR) was first introduced (Metzker, 2010). NGS 

technologies generate millions of sequences in parallel fashion rather than 96 at a time 

through traditional Sanger-based methods (Sanger and Coulson, 1975).   

Roche(454), Illumina and SOLiD were the first wave of platforms that were able 

to generate parallel short reads ranging from 35 - 300 bp in size (Ronaghi et al., 1996; 

Levene, 2003; Bentley et al., 2008; Mardis, 2008; Turcatti et al., 2008). As these 

technologies progressed, they became more affordable, allowing researchers to either 

sequence samples at a deeper coverage or to expand the number of samples analyzed. 

These data, in turn, were then used to map genomic reads to a reference 

genome/scaffold and identify single nucleotide polymorphisms (SNPs), 

insertions/deletions (indels), copy number variants (CNV), and/or structural variants 

(SVs). Furthermore, NGS data were used to generate reference genomes, quantify 

expression values, call variants using RNA-seq, and/or analyze epigenetic modifications 

(Morozova and Marra, 2008).  

While short-read technologies have contributed towards addressing a plethora of 

research questions, they are not without their limitations. Some limitations include the 

inability to resolve some repetitive regions, differentiate segmental duplications, and 

resolve complex structural variants. Therefore, long-read technologies (despite carrying 
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a higher cost per base) are now used to aide these analyses or serve as an alternative 

(Alkan et al., 2011; Treangen and Salzberg, 2012; Daber et al., 2013). Single molecule 

technologies have allowed researchers to generate reads as long as 100 kb using 

PacBio technologies and over 1 Mb using Nanopore MinION (Eid et al., 2009; Schneider 

and Dekker, 2012; Jiao et al., 2017; Jain et al., 2018). While these technologies are able 

to generate long-reads, their greatest limitation is their accuracy, which is much lower 

that short-read technologies (Goodwin et al., 2016).  The error rate of PacBio is currently 

between 13-15% (Weirather et al., 2017) while Nanopore is between 15-30% (Wang et 

al., 2015; Morisse et al., 2017). Synthetic technologies, which split large DNA fragments 

into smaller barcoded ones, allow for local assembly using short-read technologies. 

Illumina synthetic long-reads and 10x Genomics (Voskoboynik et al., 2013; McCoy et al., 

2014) have the ability to sequence large fragments up to ~100kb in size using this 

strategy (Koren and Phillippy, 2015; Goodwin et al., 2016). Although these synthetic 

long-read technologies are more accurate than single-molecule technologies, they rely 

on local assembly which can create challenges for distinguishing repeat structures 

(Koren and Phillippy, 2015). 

These advances in short and long-read sequencing technologies have 

contributed greatly to the fields of structural and functional genomics. The technologies 

have provided an unprecedented resolution of genomes, transcriptomes, and 

epigenomes, answering old questions while enabling new questions. One way these 

technologies have been applied is to understand the variation induced by creating 

transgenic crops.  
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Transgenics and sequencing in soybean: Understanding the 

aftermath 

Transgenic crops have played an important role in the agricultural industry. From 

generating herbicide resistant lines to altering seed composition traits, these methods 

transformed modern-day agricultural practices. While this technology has been 

successful in integrating a variety of traits such as herbicide tolerance and pest 

resistance (Shah et al., 1985; Padgette et al., 1995; Estruch et al., 1997; Vaughn et al., 

2005), they are subject to tight regulation (Kessler et al., 1992; Mauro Vigani, 2015; 

Strauss and Sax, 2016). These regulations serve as a way to ensure that genetically 

modified organisms (GMOs) are not detrimental to the environment and are safe for 

consumption (Kessler et al., 1992; Potrykus, 2017). 

In soybean, there are two main methods to create stable GMOs: biolistics or 

agrobacterium-based methods. Both methods serve as a way to introduce a foreign 

piece of DNA, known as a transgene, into random location(s) in the genome. These 

transgenes can either serve as a gain of function, where the transgene encodes a new 

functioning protein (Padgette et al., 1995), suppresses a native gene (such as through 

RNA-interference to knock down expression of a specific gene) (Nunes et al., 2006; 

Steeves et al., 2006; Flores et al., 2008; Wang and Xu, 2008; Takagi et al., 2011; 

Wagner et al., 2011; Zhang et al., 2011), or generates precise modifications (through 

using genome engineering reagents such as CRISPR/Cas9) (Kim et al., 1996; Bibikova 

et al., 2002; Bibikova et al., 2003; Bhaya et al., 2011; Cermak et al., 2011; Curtin et al., 

2011; Sander et al., 2011a; Sander et al., 2011b; Christian et al., 2012; Curtin et al., 

2012; Jinek et al., 2012; Li et al., 2012; Belhaj et al., 2013; Feng et al., 2013; Li et al., 
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2013b; Puchta and Fauser, 2013; Qi et al., 2013; Schmid-Burgk et al., 2013; Shan et al., 

2013a; Canver et al., 2014; Schiml et al., 2014; Baltes and Voytas, 2015; Cai et al., 

2015; Jacobs et al., 2015; Michno et al., 2015; Sun et al., 2015; Tang et al., 2016; Cai et 

al., 2018; Curtin et al., 2018). 

 Biolistics is a direct gene transfer mechanism that uses high-velocity 

microprojectiles to introduce foreign DNA into tissues, resulting in non-homologous 

integration of transgenic DNA into the genome. This process commonly inserts more 

than one copy of foreign DNA, partial copies of foreign DNA, as well as genomic 

structural rearrangements (Sanford, 1988; Jackson et al., 2001; Svitashev and Somers, 

2001; Makarevitch et al., 2003; Twyman and Christou, 2004; Collier et al., 2017; Jupe et 

al., 2018). Plants that result from biolistics are more likely to be chimeric which requires 

further screening in subsequent generations (Sanford, 1988; Sato et al., 1993). Unlike 

agrobacterium-mediated transformation, biolistics efficiency is less dependent on the 

genotype used during the transformation process and is also considered faster and less 

laborious (Christou, 1992; Simmonds and Donaldson, 2000; Altpeter et al., 2005; 

Homrich et al., 2012). 

Agrobacterium-mediated transformation uses a disarmed strain of either 

Agrobacterium  rhizogenes or A. tumerfacians as a means to deliver a vector containing 

a transgenic cassette (T-DNA) into the soybean host (Hinchee et al., 1988; Chee et al., 

1989; Paz et al., 2006; Veena and Taylor, 2007). Although the efficiency of these 

methods greatly depends on the soybean host genotype, other groups have combatted 

this issue in monocots (Lowe et al., 2016), which may also be applicable to soybean in 

the future. Similar to biolistics, agrobacterium-mediated transformation is prone to 

multiple insertion events (Collier et al., 2017; Curtin et al., 2018). Furthermore, its 



6 
 

generation time is longer and its efficiency slightly lower compared to biolistics (Paz et 

al., 2006; Homrich et al., 2012; Gao and Nielsen, 2013).  

Using either biolistics or agrobacterium-based delivery methods to deliver 

transgenic DNA to genomes results in random integration sites. Therefore, it is important 

to not only screen for the presence of the transgene but to also locate where and how 

often it has been integrated into the genome.  

Using sequencing to detect transgenic insertion events within a genome 

 Currently, PCR and protein-based methods are the most common form of 

screening for GMOs (Taylor and Sajan, 2005; Holst-Jensen, 2009; Rosa et al., 2016; 

Scholtens et al., 2017). The most predominant form of GMO screening involves 

traditional PCR and qPCR for a segment of a transgene. Other methods such as loop-

mediated isothermal amplification and ligase detection reaction have been explored as 

an alternative screening method to address PCR’s limitations (Dong et al., 2008; 

Morisset et al., 2008) Protein-based methods primarily consist of immunoassays where 

target proteins are detected by specific antibodies (Holst-Jensen, 2009). Although, these 

types of screening methods are not as popular as DNA-based methods due to the cost 

associated with developing antibodies and the amount of effort required to set up a 

screen. Both DNA and protein-based methods are useful in the detection of the 

presence of transgenic DNA or expression, but they do not give information to where the 

event has inserted itself into the genome. With the uncertainty associated with 

integration sites, it is imperative to not only locate the integration events but to also see if 

they induced any other mutations throughout the genome. 

 With advances in next-generation sequencing, groups have gained a better 

understanding of not only how to detect where a transgene event has inserted, but also 
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the variation induced from these insertion events. Several methods have been 

developed to detect transgenic DNA using paired-end sequencing (Kovalic et al., 2012; 

Wahler et al., 2013; Srivastava et al., 2014; Lambirth et al., 2015b; Pauwels et al., 2015; 

Anderson et al., 2016; Guttikonda et al., 2016; Willems et al., 2016). These studies have 

allowed researchers to analyze the various outcomes of T-DNA integration events, such 

as complete T-DNA insertions, fragmented insertions, insertions within genes, duplicated 

insertions, multiple insertions, deletions and additions (Anderson et al., 2016; Schouten 

et al., 2017; Curtin et al., 2018) 

While there has been plenty of interest in the detection of transgenic insertion 

events, relatively few studies have investigated the impacts of transgenesis genome-

wide. Although there is a consensus that somaclonal variation can result from certain 

aspects of the transformation process (e.g., through cell introducion/maintenance in 

tissue culture), there has been inconsistant reports about the number of mutations 

induced genome-wide due to transformation (Labra et al., 2004; Jiang et al., 2011; Sabot 

et al., 2011; Miyao et al., 2012; Kawakatsu et al., 2013; Endo et al., 2015; Kashima et 

al., 2015). The majority of mutations recorded in these studies were either SNPs or 

indels, but they all demonstrate that variation occurs not only at the transgene insertion 

site but also genome-wide. The discrepancies between studies do not just pose an 

academic debate. Indeed, these findings can be used to inform real-world issues of 

safety, risk, and regulation of transgenic plants. This is particularly relevant to address 

whether there may be unintended consequences resulting from the development of a 

transgenic product, and what standards should be imposed in the process of 

deregulating a given event.  
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Current applications of co-expression networks in crops species 

RNA-seq technology for expression analysis 

The ability for technologies to not only capture but quantify genome-wide 

expression profiles has matured significantly. Measurement/quantification of these 

expression profiles across tissues, cultivars, and environments can give insight into their 

function.  RNA-seq has gained traction in the community as a way to use high-

throughput systems to quantify the transcriptome (Wang et al., 2009). A standard RNA-

seq protocol consists of converting RNA to a library of cDNA fragments where 

sequencing adaptors are attached on either or both ends of the fragment. These 

fragments are then sequenced using a form of high-throughput technology and then 

processed later on by mapping reads to a reference genome then quantifying expression 

levels as fragments per kilobase per million reads (FPKM) (Wang et al., 2009).  

 As with any genome-scale technology, RNA-seq has limitations, which must be 

considered in interpreting the resulting data.  Some of the limitations include the 

underrepresentation of small transcripts in RNA-seq libraries, difficulty in assigning 

overlapping transcripts between genes, and mapping reads among conserved 

paralogous genes (Hirsch et al., 2015).  This paralogy issue is particularly problematic in 

plant species, as most crop genomes are either polyploid or have experienced a 

relatively recent whole genome duplication event and have maintained multiple copies of 

the same gene. 

Co-expression networks in agricultural species 

Historically, large scale microarray experiments have extensively been used to 

characterize co-expression networks in the plant model Arabidopsis thaliana (Schena et 
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al., 1995). Broadly, experiments surveyed genome-wide expression response to abiotic 

stress (Kilian et al., 2007), plant tissue and development (Schmid et al., 2005) as well as 

response to different plant hormones (Goda et al., 2008). In general, analysis of patterns 

of gene expression identified an enrichment for co-expression among genes that are co-

annotated in both KEGG terms (Lee, 2003) as well as the Gene Ontology (Schmid et al., 

2005). These proof of principle approaches blazed in model systems naturally extend to 

analogous experiments performed in agricultural species.  

To date, gene co-expression networks have been used to rapidly predict gene 

function in many non-model plant species, many of which have agricultural importance. 

Most networks were built with the purpose of discovering and characterizing highly 

connected subnetworks or modules to better understand various phenotypes or 

functions or to provide a general resource to the community. Such studies have now 

been completed for a variety of agronomic species including soybean, poplar, grape, 

alfalfa, rice, maize, tomato, and barley (Zhu et al., 2002; Ficklin et al., 2010; Ozaki et al., 

2010; Ficklin and Feltus, 2011; Mochida et al., 2011; Fukushima et al., 2012; Swanson-

Wagner et al., 2012; Obayashi et al., 2014; Schaefer et al., 2014). A typical study 

involves using either publicly or self-generated expression data to build a network, 

looking for functional enrichment within modules, then focuses directly on a module of 

interest for biological interpretation. 

Changes in gene expression can occur from introducing variation stemming from 

many different sources.  As with model species, this variation can be examined in the 

context of co-expression networks to assess the putative functional impact of different 

experimental conditions in crop species. Recent studies performed in crops generally 

survey gene expression variation that arises from several major sources reviewed here: 
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changes in environmental conditions; developmental and organ based variation; and 

variation due to population and ecological dynamics. 

Co-expression in response to environmental conditions 

Co-expression networks can be built with the intent of discovering various 

modules in response to environmental conditions. Factors such as diseases and/or 

abiotic stressors can have a very broad impact on the development and phenotype of a 

plant, causing expression profile changes that differ among individuals with different 

genetic variation or those exposed to different environmental conditions. Co-expression 

networks can be built by measuring transcriptomic changes under these conditions to 

generate environmental specific co-expression networks (Zheng and Zhao, 2013; Sarkar 

et al., 2014). For example, Mochida et al. assembled a global co-expression network 

from 1,347 experiments surveying both diverse environmental conditions and stresses in 

barley (Mochida et al., 2011). They discovered functional modules using gene ontology 

enrichment as well as Triticeae-specific network modules using comparative 

approaches.  

Zheng et al. studied citrus response to one of its most destructive diseases, 

Huanglongbing, more commonly known as citrus greening (Zheng and Zhao, 2013). 

Using various transcriptome datasets and a set of genes that are up-regulated in early 

stages of inoculation, they were able to construct and identify several modules that 

provided insights into the mechanism of immune response to citrus greening. Sarkar et 

al. studied rice’s response to heat stress discovering various genes/modules that could 

help provide insight in mechanistic changes in response to stress (Sarkar et al., 2014). 

Gene expression profiles from rice exposed to two different durations of heat stress were 
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used to discover several modules consisting of functionally correlated genes, which 

included previously documented genes involved in heat stress.  

Tissue and developmental atlases for agricultural crops 

Different developmental time points and/or tissues have also been used to build 

and study modules within a co-expression network. Just like different environmental 

conditions, different developmental time points and/or tissues can have varying 

expression patterns. Expression data from these categories have been applied to a 

variety of agricultural crops to look for tissue enriched modules (Brady et al., 2007; Fu 

and Xue, 2010; Childs et al., 2011; Sekhon et al., 2013; Zheng and Zhao, 2013; 

Schaefer et al., 2014; Cho et al., 2016). As an example, Ozaki et al. built a tomato 

network using microarray data and discovered that 75 out of their 199 modules had 

significant functional enrichment (Ozaki et al., 2010). They further investigated a module 

related to the flavonoid biosynthetic pathway and compared genes within that module to 

a transgenic cultivar identifying genes that were up-regulated in flavonoid biosynthesis. 

Downs et al. and Sekhon et al. sampled the expression of different tissue types 

and developmental stages to discover tissue enriched modules (Sekhon et al., 2011; 

Downs et al., 2013). Downs et al. used maize tissue from 50 different developmental 

time points to build developmental co-expression networks. Using those tissues, they 

were able to discover 24 modules where subsets of genes were associated with specific 

tissues or different developmental stages of a tissue. Sekhon et al., similarly, surveyed 

60 tissue/time points and found that many genes displayed organ specific expression 

patterns (Sekhon et al., 2011). Schaefer et al. leveraged co-expression networks to 

identify general functional modules derived from both developmental as well as 

genotypic diversity. They built networks using publicly available developmental and 
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genotypic expression data in maize to not only show functional enrichment within 

modules but also to demonstrate differences across networks as a way to capture 

biological function.  

Comparative based co-expression approaches 

Co-expression networks can also be built with the purpose of discovering 

conserved modules across species. Even though the majority of genes for agronomic 

species do not have a functional annotation, investigators can use modules composed of 

well-defined functionally annotated genes from one species to compare and discover 

similar modules in another.  These comparisons are not only limited to using co-

expression networks from model species such as Arabidopsis (Ruprecht et al., 2011; 

Leal et al., 2014; Obertello et al., 2015; Righetti et al., 2015), but can be applied using 

other species if they are using genes with well-defined functional annotations (Swanson-

Wagner et al., 2012; Itkin et al., 2013). 

Obertello et al. built rice and Arabidopsis nitrogen regulatory networks to discover 

genes that are directly related to nitrogen use. They first identified genes that were 

induced or repressed by nitrogen regulators using both rice and Arabidopsis expression 

data. Conserved, nitrogen-related gene clusters and predicted transcription factors were 

identified by creating a cross-species functional network that combined putative protein-

protein and regulatory interaction from both rice and Arabidopsis, including data from 

gene expression, using orthologous genes to share interaction evidence across species. 

Similarly, Itkin et al. used comparative co-expression network analysis to identify genes 

related to steroidal glycoalkaloids (SGA), a toxic substance found in some tubers and 

tomatoes (Itkin et al., 2013). Using homologs (SGT1/GAME1) in tomato and potato as 

seed genes, the authors discovered highly co-expressed genes in each species that are 
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involved in SGA biosynthesis. Targeting these co-expressed genes, they were able to 

successfully reduce SGA concentrations in both species using virus-induced gene 

silencing. 

Evolutionarily conserved functional modules can also be discovered by 

integrating a wide variety of species-specific co-expression networks (Ruprecht et al., 

2011). More recently, Ruprecht et al. used multiple plant species together to discover a 

wide variety of conserved modules, with an emphasis on modules related to cell wall 

formation (Ruprecht et al., 2016). In a similar approach, Leal et al. used gene expression 

data from Arabidopsis, Maize, soybean, rice, tomato, and cassava to identify conserved 

genes involved in immune response under pathogenic stress (Leal et al., 2014). Using 

the networks that were built from the expression data, they were able to find functional 

similarities in the immune response across species. 

Co-expression analysis has also been leveraged to gain meaningful insight 

between a domesticated agricultural species and its crop wild relative. For example, 

Swanson-Wagner et al. used 38 diverse maize genotypes and 24 teosinte genotypes to 

generate separate co-expression networks for maize and teosinte, its wild relative. They 

were able to identify gene clusters that were rewired between maize and its crop wild 

ancestor, suggesting modulated regulation could have played a role during 

domestication (Swanson-Wagner et al., 2012). The genes identified by this differential 

co-expression analysis complemented those identified through standard differential 

expression analysis. Cho et al. used transcriptome and metabolite data to profile sprouts 

from three evolutionarily divergent potato cultivars to characterize genes involved in 

anthocyanin production. Comparing these data, they were able to find 119 genes that 

were strongly correlated with anthocyanin-related metabolites (Cho et al., 2016).  
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As newer technologies increase the output and precision of both transcriptional 

as well as other types of functional data, interdisciplinary collaborations will be more 

important than ever. Furthermore, as the techniques and tools used to develop and 

analyze co-expression networks mature, publicly available datasets will play an integral 

role in profiling the functions of genes across many different experimental contexts. 

These advances will give opportunities to increase agricultural output and address the 

future demands of the global food supply.  
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Chapter 2: The importance of genotype identity, genetic 

heterogeneity, and bioinformatic handling for properly 

assessing genomic variation in transgenic plants 
 

Preface 

 
Background: The advent of –omics technologies has enabled the resolution of fine 

molecular differences among individuals within a species.  DNA sequence variations, 

such as single nucleotide polymorphisms or small deletions, can be tabulated for many 

kinds of genotype comparisons.  However, experimental designs and analytical 

approaches are replete with ways to overestimate the level of variation present within a 

given sample.  Analytical pipelines that do not apply proper thresholds nor assess 

reproducibility among samples are susceptible to calling false-positive variants.  

Furthermore, issues with sample genotype identity or failing to account for heterogeneity 

in reference genotypes may lead to misinterpretations of standing variants as 

polymorphisms derived de novo.   

 

Results: A recent publication that featured the analysis of RNA-sequencing data in three 

transgenic soybean event series appeared to overestimate the number of sequence 

variants identified in plants that were exposed to a tissue culture based transformation 

process.  We reanalyzed these data with a stringent set of criteria and demonstrate 

three different factors that lead to variant overestimation, including issues related to the 

genetic identity of the background genotype, unaccounted genetic heterogeneity in the 

reference genome, and insufficient bioinformatics filtering.   
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Conclusions: This study serves as a cautionary tale to users of genomic and 

transcriptomic data that wish to assess the molecular variation attributable to tissue 

culture and transformation processes.  Moreover, accounting for the factors that lead to 

sequence variant overestimation is equally applicable to samples derived from other 

germplasm sources, including chemical or irradiation mutagenesis and genome 

engineering (e.g., CRISPR) processes. 

 

 

This work was published in BMC Biotechnology in June 2018, with full citation 

information given below. This work was a collaborative effort, with Jean-Michel Michno 

and Dr. Robert Stupar. JMM and RMS designed the experiment, JMM performed the 

analysis, and JMM and RMS wrote the manuscript. 

Michno, JM and Stupar, RM, 2018. The importance of genotype identity, genetic 

heterogeneity, and bioinformatic handling for properly assessing genomic 

variation in transgenic plants. BMC Biotechnology, 18(1), p.38. 
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Background 

 
The process of genetic transformation typically involves inserting DNA 

sequences originating from one species into the genome of another species. This tool 

has been used to add traits into crop species, such as herbicide tolerance in soybean 

and root worm tolerance in corn (Shah et al., 1986; Padgette et al., 1995; Estruch et al., 

1997; Vaughn et al., 2005). The commercialization of transgenic products is subject to 

tight regulation, as transgenic strains must undergo intense safety testing before being 

brought to market (James and Krattiger, 1996). The testing phase involves confirmation 

of the intended trait encoded by the transgene, and confirmation that the transgenic 

plant does not have unintended consequences that may be detrimental to the 

environment or to the consumer (Kessler et al., 1992). Adverse effects are generally 

characterized in two categories:  effects from the transgene itself, and effects that arise 

from mutations resulting from gene insertion or the tissue culture process.   As a result, 

safety testing ensures that unintended DNA-level changes are not present in 

commercialized products (Weber et al., 2012; Glenn et al., 2017). 

With the recent revolution in high-throughput sequencing technology, there is 

now increased interest in understanding the molecular nature of transgenic events, and 

identifying possible safety implications of unintended molecular changes that may result. 

This information may be useful in assessing the likelihood that a particular event will 

express the intended trait(s) without detrimental unintended effects. 

Molecular studies have previously characterized the effects of transgenesis in 

several different plant species, focusing on the sequence changes at transgene 

integration sites (Nacry et al., 1998; Clark and Krysan, 2010) and/or the sequence 
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changes genome-wide (Labra et al., 2004; Jiang et al., 2011; Sabot et al., 2011; Miyao 

et al., 2012; Kawakatsu et al., 2013; Zhang et al., 2014; Endo et al., 2015; Kashima et 

al., 2015; Schouten et al., 2017). While no clear consensus has emerged, studies 

utilizing sequence-level resolution have reported a range of possible sequence changes 

in transgenic plants, including frequent observations (e.g., small deletions occuring 

adjacent to the integration site) and less frequent occurances (e.g., translocations 

between chromosomes).  

A curious discrepancy in genome-wide sequence polymorphisms has been 

observed in recent resequencing studies of transgenic soybean.  One study, published 

by our group (Anderson et al., 2016), resequenced two independent transgenic T1 

plants, and respectivley found only two and 18 single nucleotide polymorphisms (SNPs) 

genome-wide (along with deletions adjacent to the integrated transgene, as has been 

previously observed in other plant transformation studies). In contrast, Lambirth et al. 

(Lambirth et al., 2015a; Lambirth et al., 2016) reported high rates of molecular variation 

among transgenic soybean plants, both in terms of transcriptomic changes and DNA 

sequence changes. The authors analyzed RNA-sequencing (RNA-seq) data on families 

from three different transgenic events and reported thousands of sequence variants per 

plant, focusing on SNPs and small insertion-deletion (indel) variants. They reported tens 

of thousands of sequence variants in these plants, including approximately 1,000 to 

7,700 variants that were unique to each of the three event series. This contrast between 

studies is even more surprising considering that Anderson et al. 2016 searched genome-

wide while Lambirth et al. 2016 searched only the transcribed portion of the genome. 

Both groups were studying the same species (soybean) transformed by similar methods 
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(Agrobacterium-mediated transformation of cotyledonary nodes) (Paz et al., 2006) and 

resequenced using similar chemistries (Illumina short-read). 

Given the importance and real-world relevance of this topic, it is imperative to 

resolve the discrepancy between the Anderson et al. 2016 and Lambirth et al. 2015 and 

2016 studies. We are not aware of any transgenic resequencing studies that have 

reported mutation rates similar to those published by Lambirth et al. 2016. Therefore, the 

current study focuses on a reanalysis of the Lambirth et al. 2016 dataset, applying a 

more stringent analytical pipeline. The outcome of this reanalysis demonstrates that the 

Lambirth et al. 2015 and 2016 studies overestimated the transcriptional and DNA 

sequence variation in the transgenic plants. These findings provide insight into the 

importance of identity preservation of genotypes, awareness of genomic heterogeneity 

within cultivars, and leveraging bioinformatics filters and replicated data as a way to 

minimize false positives.  

Results and Discussion 

 

Primary source of variation in transgenic event series 764: incorrectly identified 
genetic background 

Lambirth et al. 2015 and 2016 performed RNA-seq analyses of 27 transgenic 

plants, including nine individuals each selected from three different transgenic series 

known as ST77, ST111, and 764. They reported that all three of these transgenic series 

were developed in the genetic background of cultivar ‘Williams 82’.  As a control, they 

also performed RNA-seq on nine individuals of ‘Williams 82’, thus resulting in a total of 

36 RNA-seq samples in the study. As ‘Williams 82’ was also the genotype used to 

develop the soybean reference genome (Schmutz et al., 2010), all of the mutations 

reported by Lambirth et al. 2016 were identified simply by comparing their transcriptome 

sequence to the reference genome.  The authors reported surprisingly high mutation 
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frequencies in both the transgenic and control plants, particularly the 764 transgenic 

event series. As de novo mutations caused by the tissue culture or transgenesis 

pathway are expected to be unique to a given event, the authors calculated the number 

of unique event-specific mutations in each series compared to the other groups/series in 

the study (i.e., the number of mutations in one series that is not shared by the other two 

series of transformants or the control ‘Williams 82’ plants). They reported a unique 

polymorphic SNP count of 981 in event ST77, 927 in event ST111, and 7,717 in event 

764. This discrepancy matched their earlier analysis of gene expression variation among 

three series, where series 764 exhibited much greater expression variation as compared 

to controls than did the other two transgenic groups (Lambirth et al., 2015a). 

Two findings in the Lambirth et al. 2016 mutation analysis stand out: (1) The SNP 

frequencies were much higher than other similar studies of soybean (Anderson et al., 

2016) and model plant species wide (Labra et al., 2004; Jiang et al., 2011; Sabot et al., 

2011; Miyao et al., 2012; Kawakatsu et al., 2013; Zhang et al., 2014; Endo et al., 2015; 

Kashima et al., 2015; Schouten et al., 2017), particularly considering that only the 

transcribed portion of the genome was being analyzed; (2) Even with the generally high 

mutation rates reported, the 764 series is still an outlier. To cross-validate the findings of 

this analysis, we downloaded and reanalyzed the raw RNA-seq data from these studies.  

Using the GATK Best Practices workflow (DePristo et al., 2011; Van der Auwera 

et al., 2013), we re-generated polymorphic SNP lists from all 36 samples of RNA-seq 

data used (Lambirth et al., 2015a; Lambirth et al., 2016). As stated above, de novo 

SNPs generated by tissue culture or transformation would be expected to be unique to 

each respective transgenic event. Therefore, we focused our analysis on SNPs that 

were unique to only one of the four groups (e.g., SNPs observed as an alternative base 
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in one transgenic series, while matching the reference genome sequence in the other 

two transgenic series and the ‘Williams 82’ controls).  Given that the transgenic plants 

were self-pollinated for several generations after transformation, the SNPs derived from 

the tissue culture or transformation process are expected to be predominantly 

homozygous. Therefore, we filtered our initial lists for homozygous SNPs that are 

uniquely polymorphic relative to the reference genome, compared to the other 

transgenic lines and ‘Williams 82’ controls (Figure S1 in Appendix 1). This analysis and 

filtering pipeline differed from the Lambirth et al. 2016 pipeline in at least four critical 

ways: (1) The GATK Best Practices workflow imposed a higher standard for calling 

variants (see Methods section); (2) we did not include heterozygous calls; (3) we did not 

include heterogeneous SNPs among the nine samples of any group (the three 

transgenic series or controls); (4) we required at least six out of the nine samples within 

each group to exhibit the same homozygous base call. 

The analysis and filtering pipeline described above was designed to prevent 

false-positive SNP calls.  Nevertheless, the pipeline was able to detect nearly 10,000 

SNPs among the transgenic samples (Table 1). However, the distribution of SNPs 

among the genotypes was substantially different than what was reported previously 

(Lambirth et al., 2016). Almost all of the unique SNPs that we identified were found in 

transgenic series 764 (9,738 out of the 9,884 SNPs).  Meanwhile, only 143 and 3 SNPs, 

respectively, were identified in ST77 and ST111 (Table 1). 

We postulated that the discrepancy exhibited by the 764 series might have 

resulted from experimental error rather than biological factors. To test this, we compared 

the list of SNPs we generated (Table 1) with a list of pre-ascertained SNPs that were 

previously used to genotype the entire USDA soybean germplasm collection (Song et 
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al., 2013). We found that 525 of the SNPs that were unique to series 764 also matched 

the genome positions on the pre-ascertained SNP list (Table 1). We compared the SNP 

profile of these 525 SNPs for series 764 with all of the accessions in the USDA 

collection.  One genotype, cultivar ‘Thorne’ (PI 564718) (McBlain et al., 1993), was a 

nearly perfect match to series 764 (521 of the 525 SNPs match; Figure 1).  The four 

SNPs that did not match between series 764 and ‘Thorne’ were clustered together 

between positions ~4.9 Mb and ~5.9 Mb on chromosome 15.  It is likely that this interval 

on chromosome 15 represents a region of genetic heterogeneity between the individual 

of ‘Thorne’ used for transformation in the development of the 764 event and the 

individual(s) of ‘Thorne’ sampled for the USDA genotyping effort (Song et al., 2013).  

While the series 764 profile was a 99.2% match to ‘Thorne’ across the 525 SNPs, the 

next closest match was 'Washita' (PI 618809) (Farno et al., 2003), which was only a 

74.2% match. Both ‘Williams’ and ‘Williams 82’ had a 0% match rate to the 525 SNPs in 

the 764 series (Figure 1), as would be expected because the reference genome is based 

on ‘Williams 82’ and these SNPs were initially identified as polymorphic between the 764 

series and the reference genome. 

The clear conclusion from this analysis is that series 764 was developed in 

‘Thorne,' rather than ‘Williams 82’.  ‘Thorne’ is commonly used for soybean 

transformation (e.g., (Paz et al., 2006)).  It is clear that the high polymorphism rate 

reported in event series 764 is not an unintended consequence of tissue culture or 

transgenesis. Instead, the majority (if not all) of the variation reported in this line is 

simply standing variation that exists between ‘Thorne’ and ‘Williams 82’. This statement 

can be applied to all previous reports of variation observed between these plants, 
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including gene transcription (Lambirth et al., 2015a), mutations (Lambirth et al., 2016), or 

any other characteristic.  

Source of variation in transgenic event series ST77: genetic heterogeneity 
between different individuals of ‘William 82.'  

The relatively lower polymorphism rates found in the reanalysis of S77 and S111 

compared to that of 764 (Table 1) indicated that these groups are likely derived from the 

‘Williams 82’ background. However, standing variation can persist within soybean 

cultivars (Haun et al., 2011), as the breeding process typically involves bulk harvesting 

of breeding populations prior to full fixation of homozygosity through single seed 

descent. Therefore, most soybean cultivars are expected to exhibit slight differences 

from plant to plant (Fasoula and Boerma, 2005; Fasoula and Boerma, 2007), as 

heterogeneous sub-lines fix different haplotypes within relatively small (but sometimes 

large) genomic intervals.  For example, previous genotyping of four different ‘Williams 

82’ sub-lines revealed specific regions of genomic variation on chromosomes 3, 7, 15 

and 20 (Haun et al., 2011). 

It is relatively intuitive to identify genomic heterogeneity between sub-lines of a 

cultivar, as sub-lines will show nearly complete homogeny throughout the genome, 

interrupted by specific regions with (sometimes dense) clusters of polymorphisms.  We 

investigated whether the 143 SNPs identified in our reanalysis of group ST77 could be 

explained by this type of standing heterogeneity between the ‘Williams 82’ controls used 

in the study and the ‘Williams 82’ individual that was used for the original ST77 

transformation event (Lambirth et al., 2015a; Lambirth et al., 2016).  Indeed, 140 of the 

143 SNPs and all 16 indels were clustered at a single locus between positions 1.4 Mb 

and 2.2 Mb on chromosome 15 (Figure 2). This cluster overlaps with a previously 

reported region of heterogeneity in ‘Williams 82’ (Haun et al., 2011). These results 
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suggest that these variants are not associated with transgenesis, but represent natural 

standing heterogeneity between the ‘Williams 82’ plant used to generate the ST77 

transformation event and the ‘Williams 82’ individuals used as controls by Lambirth et al. 

2016.  

Therefore, after filtering for genotype identity and background heterogeneity, we 

found three SNPs each in S77 and S111 that could not be explained by these factors. 

Follow-up analysis of S77 revealed one SNP within an intron, one synonymous SNP 

within an exon, and one non-synonymous SNP within an exon (M to V amino acid 

change in the sixth exon of Glyma.10G150500). Analysis of S111 revealed two SNPs 

within introns, and one non-synonymous SNP within an exon (T to G amino acid change 

in the fourth exon of Glyma.04G134800). 

Source of variation in all transgenic series: bioinformatics handling and threshold 
parameters 
 The previous two sections addressed our reanalysis of RNA-seq data (Lambirth 

et al., 2015a; Lambirth et al., 2016), focusing on the subset of unique SNPs and indels 

within any one transgenic series.  However, the majority of the analysis reported, 

discussed and interpreted in the Lambirth et al. 2016 paper (including the base 

substitution profile, the predicted effect of each polymorphism, and gene ontology 

enrichment analysis) used the original full set of SNPs and indels identified, rather than 

the “unique” subset.  Hence it is necessary to focus on the factors that inflated the 

overall higher number of SNPs and indels discovered by their bioinformatic pipeline.  

While we would expect the authors to identify polymorphisms due to the reasons 

outlined in the previous sections (e.g., the ‘Thorne’ background of series 764 and the 

genetic heterogeneity between ST77 and the control ‘Williams 82’ plants), the reported 

polymorphism counts were unexpectedly high.  For example, the plants in the 764 series 
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averaged 38,188 SNPs and 2,390 indels per plant.  Obviously, this number will be higher 

than the other two transgenic series because it is the ‘Thorne’ genetic background.  

However, the ST77 series averaged 21,666 SNPs and 1,829 indels, and the ST111 

series averaged 20,208 SNPs and 1,750 indels.  Furthermore, the untransformed 

‘William 82’ control plants exhibited counts of 20,707 SNPs and 1,863 indels.  Therefore, 

this section is devoted to addressing the sources of these high estimates. 

We retrieved the variant calls for each of the 36 samples used in their analysis 

(http://de.iplantcollaborative.org/dl/d/533570A3-1EFB-4864-B9A9-

9D82F17E09A8/snpeffgenes.zip). Initial analyses of genotype calls revealed that there 

was a higher number of heterozygous variants than homozygous variants for the 

alternate allele compared to the reference genome. ST77 and ST111 were respectively 

advanced to the T8 and T4 generation before sequencing. We can estimate the 

expected proportion of heterozygous variants in these generations if we assume the 

following: all of the mutations induced by transgenesis were heterozygous in the T0 

generation, the variants are not subject to segregation distortion, and the variants have 

negligible effects on organismal fitness. Under these assumptions, we would expect 

approximately 0.39% of the ST77 variants to be heterozygous at the T8 generation, and 

6.25% of the ST111 variants to be heterozygous at the T4 generation. However, the 

retrieved data showed that 50.21% and 48.62% of the variants were called as 

heterozygous for ST77 and ST111, respectively. The proportion of heterozygous 

variants were far higher than what was expected, and were most likely false positives 

resulting from the analysis method.  

We further investigated whether the authors filtered their variants for read depth 

and/or quality. Although read depth alone is not sufficient to determine whether a variant 
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is real, calls based on low read depth are more likely to be false positives than calls 

based on higher read depths.  False positives can arise from reads that map poorly to 

the genome, or bases that are of low quality at the site of a polymorphism.  When 

analyzing the depth of variant calls for all 36 samples in the study, 43.2% of variants 

were called at a depth of one read, and 20.2% of variants were called with a depth of 

two reads (Figure 3). Similarly, when analyzing the distribution of quality scores across 

all 36 samples, 55.3% of variant calls had a quality score of 10 or lower (Figure S2 in 

Appendix 1).  A quality score is represented on a log-based Phred scale where, for 

example, a quality score of 10 indicates that there is a 10% chance of the variant being 

incorrect and a quality score of 20 indicates that there is a 1% chance of the variant 

being incorrect.  Further investigation into the authors’ methods revealed that the variant 

calls lacked any type of depth or quality filter. This further reinforces the likelihood that a 

large portion of these variants at low depth and quality are most likely false positives.  

The experiments in these studies (Lambirth et al., 2015a; Lambirth et al., 2016) 

included the sequencing of nine samples per transgenic series (or the ‘Williams 82’ 

controls), consisting of three sibling seeds taken from three plants each. As mutations 

induced by transformation or tissue culture would presumably occur in the T0 

generation, one would expect the vast majority of these loci to be fixed as homozygotes 

by the T4-T8 generations. Therefore, it may be intuitive to exclude any variants that were 

not observed in all three siblings. While the authors reported on average ~20,000 SNPs 

and ~1,800 indels per individual plant for ST77, ST111, WT, and ~40,000 SNP’s and 

~2,400 indels per individual plant for 764 compared to the reference genome, the 

majority of variants were detected as polymorphic in only one of the 36 samples in the 

study. Figure 4A shows a comparison of the variants from three selected ST77 plants, 
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each derived from a different T7 individual. In this case, over 20,000 variants were called 

for each plant, but only 2,807 of the variants were common across all three plants 

(Figure 4A).  Similar findings were observed for the ST77 “D” series siblings (all derived 

from a T7 plant designated as “D”), in which a relatively small proportion (4,356 out of 

64,636) of the variants were in common to all three siblings (Figure 4B). These trends 

were observed across all sibling groups in the study (Figure S3 in Appendix 1). Series 

764 exhibited a greater proportion of variants shared among the siblings, which would be 

expected for a plant from a different genetic background than ‘Williams 82,’ i.e., these 

plants have more “true” sequence variants that can be faithfully detected among the 

different siblings.  

Another indication of the high frequency of false positives called in the Lambirth 

et al. 2016 study relates to the structure of the indels that were called as polymorphic. Of 

the 70,486 indels that were called, 52.9% of them were heterozygous and 59.6% of 

them had a read depth of 3 or less. Interestingly, all of the indels reported in the study 

exhibited polymorphisms that were either 1 bp insertions (22,809 calls), 2 bp insertions 

(8,480 calls), 1 bp deletions (13,427 calls) or 2 bp deletions (25,770 calls). The high 

number of only 1- or 2-bp indels are likely a consequence of the read mapping software 

and bioinformatics pipeline used (Sun et al., 2016).  

 

Conclusions 

 
In the present study, we re-examined an existing data set that was previously 

used to report high mutation counts from three transgenic plant series.  We identified 

three major factors that inflated the estimates of molecular variation in the transgenic 

plants from these studies.  These factors included residual heterogeneity, genotype 
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misidentification, and insufficient data filtering. The issue of genotype identity is obvious 

and intuitive, but requires caution, both for those handling and maintaining the materials 

(e.g., seeds, tissue, DNA) and those handling the computational analysis. Errors in 

genotype identity can be diagnosed using strictly molecular approaches, but situations 

where the identity of the material has been compromised or misinterpreted can be 

problematic (see commentaries (Bergelson et al., 2016; Lareau et al., 2018)). The issue 

of genetic heterogeneity within lines and seed stocks can create more subtle 

complications in analysis, as has been documented in the soybean line ‘Williams 82’ 

(Haun et al., 2011).  When properly accounted for, heterogenetity does not disrupt 

accurate analysis and interpretation.  However, when not properly accounted for, this 

issue may be problematic in assessing genomic, transcriptomic, and other types of 

variation.  Within-line genetic heterogeneity can be an issue in many species, particularly 

those in which a reference genome is presumed to be perfectly representative of every 

individual in the seed stock.  Lastly, data handling can be a major source of variation 

leading to inflated variant calls.  Informatics pipelines generate large data sets, and 

users should be aware of quality control measures, and commonly used filtering 

parameters. Furthermore, experimental designs that provide replicated samples or 

comparisons among near-isogenic materials (e.g., the sibling lines discussed in this 

study) can be used to further differentiate the high-confidence and low-confidence 

variant calls. 

While the present reanalysis focused specifically on comparisons between 

transgenic lines, all the factors addressed in this paper need also be considered when 

conducting any type of expression and/or genomic comparisons. This includes studies 

that focus on the effects of mutagenesis, on-target and off-target effects of genome 
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engineering technologies, assessments of standing/natural variation, or other 

comparisons of germplasm sources.  This is particularly true for experiments on 

materials within the realm of biotechnology, as the findings may be used to inform 

regulatory agencies about the intended and unintended consequences of using these 

technologies. Evaluation for the presence of unintended changes at the DNA level 

continues to be a part of the safety evaluation for transgenic plants, and whole-genome 

sequencing has been proposed as a tool for this purpose (Pauwels et al., 2015). 

However, technical issues may make this problematic in crop species, which have 

complex, highly variable, and often heavily duplicated genomes.  Furthermore, as 

demonstrated by the present study, the analysis and interpretation of whole-genome 

sequencing data may be inconsistent among research groups.  While Lambirth et al. 

2016 reported high rates of mutation in transgenic soybean lines, our reanalysis of their 

data concluded that there are relatively few sequence variants detected in these lines 

that might be attributed to the transformation process. It will be difficult to standardize a 

regulatory methodology that accounts for every complication that will arise across 

research groups and species (e.g., standing genetic heterogeneity within a parental 

seed stock) that may be incorrectly attributed to the genetic transformation process. 

 

Methods 

 

Variant and indel detection 

RNA-seq from (Lambirth et al., 2015a) was downloaded from the National Center 

for Biotechnology Information Sequence Read Archive using project number 

PRJNA271477 and reanalyzed as described below. Sequencing adapters and low-

quality bases were removed using Cutadapt with minimum read length set to 40 and 
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quality cutoff set to 20 (Martin, 2011). Using the GATK Best Practices workflow for RNA-

seq (DePristo et al., 2011; Van der Auwera et al., 2013), reads were aligned to assembly 

version two of the reference genome (Wm82.a2) from www.soybase.org using the STAR 

aligner (Dobin et al., 2013).  Read-group identifications were added and duplicate reads 

were marked using Picard tools. Reads were then split into exon segments, overhanging 

intronic segments were hard clipped, and mapping qualities were reassigned using the 

SplitNCigarRead tool from the GATK Genome Analysis Toolkit with -RMQF set to 255 -

RMQT set to 60 and enabling the -U ALLOW_N_CIGAR_READS flag (McKenna et al., 

2010). SNPs and indels were called using GATK HaplotypeCaller with the -

dontUseSoftClippedBases flag and -stand_call_conf set to 20. The resulting VCF file 

was then split into separate files for SNPs (Additional File 3) and indels (Additional File 

4) and then filtered using VariantFiltrations from the Genome Analysis Toolkit with 

parameters set to window of 35, cluster of 3, filter parameters of FS > 30, and QD <  2.0 

for SNPs. Similar parameters were used for indel filtration, except FS filter was set to  > 

200 for all 36 samples. Variants that passed filtration were then used for downstream 

analysis.  

Accession identification 

Genotype calls from the filtered SNP list were extracted using a custom python 

script then loaded into R statistical software.  The dataset was filtered for homozygous 

SNPs that are uniquely polymorphic to the reference compared to the other transgenic 

lines and ‘Williams 82’ controls. SNPs were removed from the analysis if there was more 

than 33% missing data for a given line and if there was no consensus genotype call 

between plants and replicates (Figure S1 in Additional File 1). The resulting SNPs were 

used to identify positions that overlapped within the SoySNP50k iSelect BeadChip (Song 

http://www.soybase.org/
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et al., 2013) VCF file using the Wm82.a2 coordinates downloaded from 

www.Soybase.org. SNP calls for each of the 20,087 accessions in the 50k dataset were 

compared to the SNP calls for the 764 series to identify the accession with the highest 

level of SNP identity.   

Analysis of data from previous studies 

The Lambirth et al. 2016 supplementary data was downloaded from 

http://de.iplantcollaborative.org/dl/d/533570A3-1EFB-4864-B9A9-

9D82F17E09A8/snpeffgenes.zip, and each of the 36 samples VCF files were parsed for 

depth, quality, and genotype information using a custom python script.   

Software and figures 

 Parallelization of commands was run using GNU parallel. Data that was 

generated using R statistical software was plotted using the ggplot2 package (Wickham, 

2011). The genome distribution of SNPs was created by using Phenogram (Wolfe et al., 

2013). 

Data availability 

 Software versions, options, thresholds, workflow details and custom scripts can 

be found at https://github.com/MeeshCompBio/The_Other_WPT_Study.  
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 764 ST77 ST111 Williams 
82 

“Unique” SNPs found in the whole RNA-
Seq dataset 

9738 143 3 0 

“Unique” SNPs found in the RNA-Seq 
dataset that overlap with 50k SNP 
positions 

525 11 0 0 

Table 1.  Number of SNPs identified as unique for each transgenic line based on 
reanalysis of the RNA-Seq dataset. 
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Figure 1. Reanalysis of series 764 reveals that its genetic background comes from 

genotype ‘Thorne’ rather than genotype ‘Williams 82’.  525 SNPs were identified that 

met two criteria: (1) they were consistently polymorphic between series 764 plants and 

the ‘Williams 82’ reference genome in the RNA-seq dataset; (2) they were previously 

genotyped across the USDA germplasm (Song et al. 2015).  A comparison of these 

SNPs to the all of the accessions in the USDA soybean accessions revealed ‘Thorne’ as 

a near-perfect match (99.2% identity), with a substantial gap to the next closest match 

(Washita at 74.2%).  The reanalysis also confirmed that this panel of SNPs is completely 

polymorphic between the 764 series and ‘Williams 82’ (0% match). 
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Figure 2. Distribution of unique SNPs across transgenic series ST77. The distribution of 

the 143 unique SNPs identified in ST77 is shown among the 20 chromosomes. Almost 

all of the ST77 SNPs (140 out of 143) cluster at a single locus on chromosome 15, which 

is a typical signature of genetic heterogeneity among the ‘Williams 82’ parental lines 

used in this study. The clustering of SNPs at specific, rather than random, positions is 

indicative of heterogenous standing variation that has previously documented in the 

‘Williams 82’ cultivar (Haun et al., 2011). 
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Figure 3. Depth of sequence coverage for all polymorphic variants (SNPs and indels) 

called in the Lambirth et al. (2016) study.  The polymorphic calls shown here were made 

between each sample and the reference genome ‘Williams 82’, without consideration for 

the uniqueness of the call among series or reproducibility among different plants within 

the series.  Homozygous calls are shown in blue and heterozygous calls are shown in 

red.  Each bar sums the number of polymorphisms across the nine plants that were 

called at each read depth (e.g., we are showing the ~211,448 total variants called in 

series ST77 across the nine plants; ST77 averaged 23,494 variants per plant).  Note the 

larger peak in the 21+ category for the 764 series; many of these (mostly homozygous) 

calls likely represent standing variants between lines ‘Thorne’ and ‘Williams 82’.  The 

21+ peaks in the other three groups (ST77, ST111, and ‘Williams 82’ controls) may 

derive from various factors, most obviously the clusters of variants that are found within 

heterogeneous regions of different sub-lines of ‘Williams 82’. 
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Figure 4. Number of overlapping polymorphisms in the Lambirth et al. (2016) study. A) 

Venn diagram showing of the number of sequence variants alternate to the reference 

genome that overlapped between three T8 individuals derived from transgenic event 

ST77. Heterozygous and homozygous alternate calls are not differentiated in this 

analysis. B) A similar Venn diagram of the number of polymorphism that overlapped 

between the T7:8 siblings in the ST77D family. 
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Chapter 3: Integration, abundance, and transmission of 

mutations and transgenes in a series of CRISPR/Cas9 

soybean lines 

 

Preface 

As with many plant species, current genome editing strategies in soybean are initiated 

by stably transforming a gene that encodes an engineered nuclease into the genome. 

Expression of the transgene results in a double-stranded break and repair at the 

targeted locus, oftentimes resulting in mutation(s) at the intended site. As soybean is a 

self-pollinating species with 20 chromosome pairs, the transgene(s) in the T0 plant are 

generally expected to be unlinked to the targeted mutation(s), and the 

transgene(s)/mutation(s) should independently assort into the T1 generation, resulting in 

Mendelian combinations of transgene presence/absence and allelic states within the 

segregating family. This prediction, however, is not always consistent with observed 

results. In this study, we investigated inheritance patterns among three different 

CRISPR/Cas9 transgenes and their respective induced mutations in segregating 

soybean families. Next-generation resequencing of four T0 plants and four T1 progeny 

plants, followed by broader assessments of the segregating families, revealed both 

expected and unexpected patterns of inheritance among the different lineages. These 

unexpected patterns included: (1) A family with nearly complete transmission of the 

CRISPR/Cas9 transgene in the T1 generation, presumably caused by the integration of 

multiple unlinked transgenes; (2) A family in which the transgene integrated directly into 

two paralogous CRISPR target break sites, leading to a complete co-segregation of the 

transgenes and knockout mutations of the target genes; (3) A family in which mutations 
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were observed and transmitted, but without evidence of transgene integration nor 

transmission. These patterns and the mechanisms that drive them are discussed.  

This work was a collaborative effort, with Jean-Michel Michno, Dr. Kamaldeep Virdi, 

Adrian O. Stec, Dr. Junqi Liu, Dr. Xiaobo Wang, Yer Xiong and Dr. Robert M. Stupar. 

JMM and RMS designed the experiment, JMM, JL, XW, and KV created CRISPR 

constructs, YX transformed constructs into soybean lines, AOS and KV extracted DNA 

and ran PCR assays, JMM performed all of the bioinformatics, JMM and RMS wrote the 

manuscript, JMM and KV created figures. 
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Introduction 

 
Genome editing/engineering provides a toolkit for modifying DNA in a gene-

specific manner, allowing researchers, geneticists, and breeders to move beyond the 

ordinary boundaries of germplasm and genetic variation. In crop plant species, the 

majority of trait-driven editing applications have focused on creating targeted gene 

knockouts, with many such efforts using CRISPR/Cas9 editing reagentsCS (Belhaj et al., 

2013; Feng et al., 2013; Mao et al., 2013; Shan et al., 2013b; Schiml et al., 2014; 

Cermak et al., 2017). Oftentimes, this process involves delivering a transgene to the 

plant genome that encodes the CRISPR gRNA(s) and Cas9 protein. Expression of these 

reagents in the T0 generation can generate mutation(s), which can be transmitted to 

subsequent generations. Moreover, the CRISPR/Cas9 transgene will likely not be linked 

to the mutation(s). Therefore the breeder/geneticist can specifically select for 

segregating individuals that carry the desired mutated allele and no longer harbor the 

transgene.  

Soybean genes have been successfully modified using CRISPR/Cas approaches 

in both somatic and germline transmissible cells and for a variety of agronomic traits (Cai 

et al., 2015; Jacobs et al., 2015; Li et al., 2015; Michno et al., 2015; Sun et al., 2015; 

Tang et al., 2016; Cai et al., 2018; Curtin et al., 2018). One recent study (Curtin et al., 

2018) carefully tracked the transmission of mutations and transgenes from T0 soybean 

plants to the next generation. In this study, Agrobacterium was used to transform 

CRISPR/Cas9 into whole soybean plants to knockout genes involved in small RNA 

pathways. Curtin et al. (2018) targeted three genes, GmDrb2a, GmDrb2b and GmDcl3a 

and generated mutations at each target site in the T0 generation. 
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The GmDrb2 CRISPR construct used two guide-RNAs that each recognized both 

GmDrb2ba and GmDrb2b loci. The resulting transformation yielded two T0 plants, 

WPT590-1 and WPT590-4 that were derived from the same cluster of cells. From these 

two events, Curtin et al. 2018 detected 1, 4, 7, and 8 bp deletions in both transgenic 

events at the GmDrb2a locus. Screening of the GmDrb2b locus reveled a 4 and 7 bp 

deletion shared between transgenic events and a 6 bp deletion unique to WPT 590-1. 

Using next-generation sequencing, they identified three separate transgenic insertion 

events on chromosomes 4, 13 and 15 in the same locations for both WPT590-1 and 

WPT 590-4. After selfing the T0 progeny to the T1 generation, PCR screening for 

mutations revealed that only the 1 and 7 bp deletions were heritable while the 4 and 8 bp 

deletions did not transmit. Similarly, when screening T1 progeny at the GmDrb2b locus, 

only the 4 and 7 bp deletions were heritable while the 6 bp deletion was not. Further 

analysis of each of the three transgenic insertion events in the T1 generation revealed 

that each event was heritable.  

Meanwhile, a different CRISPR/Cas9 construct was designed to target GmDcl3a. 

Analysis of the GmDcl3a CRISPR mutations in two separate events WPT527-1 and 

WPT 527-2, resulted in a 1 and 13 bp deletion for WPT 527-1 and a 4 bp deletion and 1 

bp insertion for WPT 527-2. PCR screening and next-generation sequencing of the 

WPT527-1 GmDcl3a event gave evidence of a transgenic insertion event on 

chromosome 9.  Similar analysis for WPT527-2 did not result in the identification of any 

transgenic insertion events using sequencing. The authors then analyzed 60 T1 plants 

from each event and failed to identify any heritable mutations or transgene integration 

events. 
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In this study, we expanded upon Curtin et al. (2017) and sequenced four T0 

parents and four offspring of transgenic CRISPR/Cas9 lines to study the effects of 

CRISPR/Cas9 at gRNA target sites, as well as variation induced due to transgenic 

insertion events into the genome. The transformed lines studied in this experiment 

demonstrate the potential outcomes of Agrobacterium-mediated transgenesis using 

CRISPR/Cas9.  

Results 

 

Identification of CRISPR mutations at target sites in T0 plants 

 
Three separate whole-plant transformation (WPT) series named WPT536, 

WPT553, and WPT608 were generated using the expression vectors diagramed in 

Figure 1. Each vector used a constitutive promoter (Gmubi or Califlower mosaic double 

35S (Benfey and Chua, 1990; Hernandez-Garcia et al., 2009)), a Cas9 endonucleases 

(Soybean codon optimized (Michno et al., 2015)) or Arabidopsis codon optimize (Li et 

al., 2013a)), single or double gRNA cassette (Curtin et al., 2018) driven either by the 

Arabidopsis U6 or 7sL promoter, and either a Glufosiante (BAR) or Hygromycin plant 

selectable marker (Figure 1, Table S1 in Appendix 2). Guide-RNA (gRNA) cassettes 

were constructed and inserted into each WPT destination vector. WPT536 and WPT553 

each targeted a single locus on one gene model, Glyma16g12160, and 

Glyma.18g041100, respectively (Table 1). WPT608 included two gRNAs targeting gene 

model Glyma.16G209100, which were also a perfect match to its paralog gene model 

Glyma.09G159900. Each destination vector was transformed into the background 

BertMN-01, and DNA was extracted from putatively transformed T0 plants.  
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PCR-based gel assays (see Methods for details) were used to screen for 

mutations at the intended sites for each T0 plant. Four T0 plants were identified with 

putative mutations, one each from the WPT536 (individual WPT536-2) and WPT553 

(individual WPT553-6) series, and two from the WPT608 series (individuals WPT608-1 

and WPT608-3). Sequencing of PCR amplicons at each of the target sites for these four 

T0 plants revealed mutations (details are provided in the sections below). These four 

plants and some of their progeny were tracked for the inheritance of the targeted 

mutations and transgene integration loci. 

WPT536-2: Expected transmission and segregation patterns from single 

transgene and mutation events 

 
WPT536-2 was a T0 plant transformed with a Gmubi-driven Glycine max codon-

optimized Cas9 and a single gRNA targeting Glyma16g12160 (herein known as 

GmRin4b). PCR confirmed the presence of the Cas9 and plant-selectable marker 

(Figure 2A), indicating successful transformation of the construct. Sequencing of a PCR 

amplicon from the gRNA target site revealed a 2 bp deletion. WGS of the T0 plant 

confirmed the previously identified 2 bp deletion along with evidence of a 1 bp insertion 

at the target site (Figure 2B, Figure S1 in Appendix 2). Furthermore, WGS revealed a 

single CRISPR/Cas9 transgene integration site localized to an interval on chromosome 

11 (Figure 2C, Figure S2 in Appendix 2). The interval had a 35 bp hemizygous deletion 

and within it, a 4 bp and 17 bp addition flanking the transgenic insertion (Table 2). The 

reads spanning the genome into the transgene indicate that a complete cassette 

between the RB to LB was inserted within the deleted region. Given the presence of 

both a transgene and mutation, the generation of this plant was renamed T0/M0.  



43 
 

Screening of GmRin4b mutations in the segregating T1/M1 and T2/M2 

generations revealed germline transmission of the transgene (Figure 2A). WGS was 

performed on two progeny plants that were identified from the PCR assay as no longer 

carrying the transgene. To further validate that there was no trace of transgenic DNA, 

reads from WGS were mapped directly to the transgene for each sequenced plant 

(Figure S3 in Appendix 2). Only the T0 parent had consistent coverage across the 

transgene, while the progeny plants lacked any reads mapping to the transgene, except 

for the Gmubi promoter where similar sequences are located on chromosomes 10 and 

20 of the genome. Furthermore, the WGS revealed that WPT536-2-13-16 retained the 2 

bp mutation at the CRISPR target site while WPT536-2-13-15 segregated back to 

homozygosity for the wild-type allele. Given these findings, it was determined that plant 

WPT536-2-13-16 is a simple M2 generation plant (contains a mutation, but no 

transgene), while plant WPT536-2-13-15 is neither a transgenic or mutant individual. 

This segregation represents expected Mendelian patterns, wherein the respective 

transgenic and mutated loci could be selected for or against in subsequent generations.  

WPT608-1: T0 transgenes and mutations were not transmitted to progeny 

 
Gene model Glyma.16G209100 and Glyma.09G159900 was targeted by 

CRISPR Cas9 using a nearly-identical construct to that used by Curtin et al. (2018), with 

the only modification being the gRNA target site. PCR screening revealed that two lines, 

WPT608-1, and WPT608-3, had evidence for mutations at identical recognition sites on 

Chromosomes 9 and 16 from a single gRNA, as well as evidence of transgene 

integrations into the genome. WGS of 608-1 confirmed the presence of a 1 bp insertion 

and two different 4 bp deletions as seen by PCR (Figure 3A). Furthermore, an additional 
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target site on the paralogous gene model Glyma.09G159900, which has an identical 

gRNA recognition site, also showed some evidence for mutations (Figure 3A).  

WGS identified a single transgene integration site on chromosome 17 for 

WPT608-1 (Figure 3B). The T-DNA segment induced a 1 bp deletion at the transgene 

integration site with a 9 bp insertion flanking the transgenic segment (Table 2). Reads 

that were spanning the genomic-transgene junction revealed that a portion of the right 

border inserted itself into that location. The transgenic sequence at the left junction was 

undetectable due to the lack of any chimeric reads aligning to that segment of the 

genome.  

PCR assays could not detect any presence of mutations or the transgene in the 

T1 generation among 22 tested plants, suggesting that neither the mutations nor the 

transgenic insertion event were germline transmissible (Figure S6 A and B in Appendix 

2). Therefore, the WPT608-1 event appears to be an instance where the reagents may 

have been delivered and expressed transiently, or the T0 plant was chimeric, and the 

transgenic sector did not produce seeds. In either case, mutations may have been 

produced in some somatic cells of the T0 plant but did not reach the germline.  

WPT608-3: Mutations and transgene integrations at the CRISPR target sites 

 
WGS of 608-3 revealed four separate transgene insertion events on 

chromosomes 6, 9, 16, and 18 (Figure 3C in Appendix 2). The event on chromosome 6 

induced an 8 bp deletion in the host genome while inserting 3 and 20 bp addition on 

either side of the transgene integration site (Table 2). Analysis of the reads spanning the 

genomic/transgene junctions suggests that there was a partial insert of half of the 

transgene from the RB to halfway through the cassette. The transgenic insertion event 
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on chromosome 18 deleted 3 bp of the host genome and created a more complex 

transgenic insertion event. The transgenic sequence detected on the left junction was in 

the antisense orientation while the sequence on the right junction was in the sense 

orientation, suggesting that there were multiple insertions/rearrangements of the 

transgene at that location (Figure 3C).  

The transgene integration site on chromosome 16 was observed within the 

CRISPR gRNA target site on gene model Glyma.16G209100. The sequenced regions 

flanking the transgene integration site indicated that 1 bp of the host genome was 

deleted while inserting a full transgene cassette. Furthermore, the transgene integration 

site on chromosome 9 was also observed within a CRISPR gRNA target site on the 

paralogous gene model Glyma.09G159900, except that it created a 10 bp deletion in the 

host genome. There was also an 11 bp insertion flanking the sequence of one end of the 

chromosome 9 transgene integration site (Table 2). Reads spanning the junctions of 

both the chromosome 9 and chromosome 16 events suggest that a full transgene 

cassette was inserted into both locations.  

Due to the transgene integrating itself into the gRNA target site for 

Glyma.16G209100, three of the six WPT608-3 T1 progeny were homozygous for the 

transgene integration event and were unable to be amplified for screening (Figure 7A in 

Appendix 2). PCR assays for two of T1/M1 progeny from WPT603-1 confirmed germline 

transmission of the 1 bp insertion on Glyma.16G209100 (Figure S7 B and C in Appendix 

2). To detect transmission of the transgene in the T1 generation, primers were 

developed using genomic coordinates of each transgenic insertion event and confirmed 

the heritability of each transgene across six T1/M1 progeny (Figure S8 in Appendix 2). 
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In summary, WPT608-3 represents a unique T0 plant in which two of the four 

transgene integration sites were located at the gRNA target site. Presumably, this was 

caused by CRISPR/Cas9 induction of double-stranded breaks at the paralogous target 

sites that were repaired by transgene integration during the transformation process.  

WPT553-6: Unresolved transgene inheritance in line with germline mutations 

 
The CRISPR/Cas9 construct targeting Glyma.18g041100 (herein known as GS1) 

was developed as a result of a previous study and shown to be effective at generating 

mutations in soybean somatic hairy root tissues (Michno et al., 2015). We used the 

same construct in whole-plant transformation to generate the WPT553 series of plants 

for the present study. PCR screening and WGS of the WPT553-6 T0 plant revealed two 

different 7 bp deletions at the target site (Figure 4A, Figure S9 in Appendix 2). 

Sequencing of the progeny plants 553-6-8 and 553-6-11 identified a 2 bp and a 6 bp 

mutation in the respecitve plants. Neither of these mutated alleles were identified in the 

T0 parental plant (Figure S9 in Appendix 2). Furthermore, the plant-selectable marker 

and the Cas9 were not detected by PCR in the 553-6-8 and 553-6-11 plants, nor were 

these transgene components detected in any of the 31 putative T1/M1 offspring (Figure 

5B). Aside from the 553-6-8 and 553-6-11 individuals, none of these plants showed 

evidence for mutations at the target site. 

To help detect chimeric transgenic or mutation events, leaf tissue was pooled 

from different parts of plant WPT553-6, and DNA was prepared for WGS. Similar pooling 

strategies were also applied within each of the 553-6-8 and 553-6-11 offsping plants. 

WGS analyses were not able to identify any transgene integration sites in the WPT553-6 

T0 plant nor the 553-6-8 and 553-6-11 offspring. When mapping the DNA of each plant 
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directly to the transgene (Figure S10 in Appendix 2), only the WPT553-6 T0 plant had 

reads that consistently mapped to the transgene. However, the average read coverage 

for the transgene was far below the WPT plants described in previous sections that 

exhibited heritable transgenic insertion events. WGS mapping of reads to the transgene 

sequence for 553-6-8 and 553-6-11 respectively yielded only 7 and 1 reads that mapped 

(Figure S10 in Appendix 2). This extremely low mapping coverage may be better 

explained by trace levels of sample contamination rather than the presence of a stably 

integrated transgene. Therefore, we speculate that the initial mutagenesis observed in 

the WPT553-6 T0 plant may have been derived from a non-integrated CRISPR/Cas9 

transgene, which may explain the transmission of mutated alleles with minimal evidence 

for transmission of any transgene components. 

Discussion 

 
The results described above highlight the range of outcomes one might expect 

from strategies that rely on stable transformation of a DNA editing construct. Such 

experiments can be complicated, as they typically require a minimum of two loci of 

interest, the transgene integration site(s) and the targeted region(s). This quickly 

becomes more complex when there are multiple unlinked transgene integrations and 

when there are multiple gene editing targets. 

Resequencing of four T0 plants and selected progeny provided a high-resolution 

view of transgene integration structures and gene editing events. The four T0 plants 

each exhibited a different outcome, though each outcome parallels similar findings in the 

recent crop genome editing literature. Plant WPT536-2 exhibited the most straight-

forward scenario, in which a single transgene integration produces frameshift mutations 
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at a single target site. The transgene and mutations transmitted and segregated in the 

progeny, as is generally the desired outcome for the majority of such experiments and 

has often been reported in previous studies (Feng et al., 2014; Wang et al., 2014; Xing 

et al., 2014; Butler et al., 2015; Chandrasekaran et al., 2016; Osakabe et al., 2016; Pyott 

et al., 2016; Yan et al., 2016; Zhang et al., 2016b; Yin et al., 2017; Cai et al., 2018; 

Curtin et al., 2018).  

Plant WPT608-1 exhibited evidence for a single transgene integration and 

targeted mutations at two paralogous loci. However, neither the transgenes nor 

mutations were recovered in the progeny. This type of negative result may be 

commonplace in genome editing projects, but it is an undesirable outcome for most 

projects and is likely to be unreported in scientific articles (Curtin et al., 2018). There are 

different mechanisms that may explain this result, including the possibility that WPT608-

1 was a chimeric plant in which the transgene and mutations were part of a sector that 

did not produce seeds. It is noteworthy that the DNA used to resequence plant WPT608-

1 was pooled from five different leaflets growing on different branches of the plant. 

Perhaps only one or two branches harbored the transgene and mutations, and these 

failed to produce seeds. Alternatively, the transgene integration and/or mutations may 

have disrupted a critical process for gametophyte or early sporophyte survival, thus 

purifying the progeny into only wild-type segregants. While these hypotheses remain 

untested, there are many other such hypotheses that could be suggested to explain the 

observed result. 

Plant WPT608-3 exhibited an unexpected phenomenon in which two paralogous 

CRISPR target sites were each found to harbor CRISPR/Cas9 transgenes. The process 

to create such loci is somewhat analogous to a previously described non-homologous 
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end-joining strategy used to insert a specific T-DNA segment into a specific genomic 

locus (Bortesi and Fischer, 2015). In this strategy, the editing reagent (e.g., the 

CRISPR/Cas9) is designed to simultaneously cut both the intended T-DNA segment 

from the transgene and the genomic target where the T-DNA is to be inserted. In effect, 

the released T-DNA segment acts as a donor molecule that can be integrated into the 

genomic target site during the double-stranded break repair. In the case of plant 

WPT608-3, it appears that when the full transgene was delivered to the cell it generated 

double-stranded breaks at the intended paralogous loci, and then copies of the 

transgene were used to repair the targeted double-stranded breaks. This phenomenon 

has been previously reported in the literature (Chilton, 2003; Tzfira, 2003; Cai et al., 

2009; D’Halluin et al., 2013). However, it is not common and we are unaware of any 

examples in which two unlinked (in this case, paralogous) target sites acted as 

transgene integration loci in a single cell. Importantly, all four transgenic loci in the T0 

plant were shown to segregate in subsequent generations. Furthermore, a simple 

frameshift allele for gene model Glyma.16G209100 was also shown to segregate in 

these generations. Therefore, a researcher could select for progeny that specifically 

carry the frameshift allele and no longer harbor the transgenes, if such an outcome is 

desired. 

Plant WPT553-6 exhibited a unique outcome in which the T0 plant exhibited the 

presence of mutations at the targeted locus (Glyma.18g041100). However, 

resequencing data could not confirm integration of the CRISPR/Cas9 transgene. 

Analysis of progeny indicated that a small number of plants (two out of 31) carried 

mutations, while none of the plants harbored the transgene. On the surface, this appears 

to be a highly favorable outcome, as transmissible mutations were recovered in an 



50 
 

apparently non-transgenic background. However, this may be a difficult result to 

reproduce, as it would require transient expression of the transgene without integrating 

into the host genome, thereby generating mutations in a non-transgenic background. 

Zhang et al. (2016) reported a purposeful identification of such plants in wheat, wherein 

the authors specifically screened plants bombarded with CRISPR/Cas9 constructs for 

individuals carrying mutations and no transgenes (Zhang et al., 2016a). This process 

was able to identify plants of this type but required extensive screening of large 

populations to identify these rare events. In the case of WPT553-6, it is also possible 

that the transgene did insert stably into the genome but was located in a region of the 

genome difficult to map and/or a structurally rearranged T-DNA was inserted such that it 

was not detected by PCR or resequencing. Alternatively, as discussed for WPT608-1 

above, it is possible that the WPT553-6 transgene integration may have disrupted a 

critical process for gametophyte or early sporophyte survival and was thus not able to be 

recovered in the progeny. This would not entirely explain the inability to identify the 

transgene integration site in the T0 plant but would provide an explanation for the failure 

to transmit the transgene to progeny. 

Despite the complications of working with these complex plants, there is a high 

probability to recover a desired product using the CRISPR/Cas9 technology in soybean. 

In this study, we used two different Cas9 endonucleases that yielded similar mutation 

profiles between events. While the size of mutations seen were all under 7 bp in size, all 

but one mutation induced at a gRNA target site created a frame-shift mutation, most 

likely knocking out the function of the target gene. In the case of multiple transgene 

insertions, it may be difficult to completely segregate away from all copies. However, 

additional backcrosses or outcrosses can be used to remove these loci, as 
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demonstrated by Curtin et al. (2018). This is a relatively minor inconvenience, given the 

capacity to generate vast and novel allelic diversity for so many loci. 

Material and Methods 

 

Generation of whole plant transformant expression vectors 

 
Plant expression vectors were created using three different binary vectors; 

PMDC123, PMDC32, and pNB96 (Curtis, 2003; Curtin et al., 2011). The expression 

vector used to create WPT536 was a modified version of the Cas9 MDC123 found on 

addgene.org (https://www.addgene.org/59184/).  The vector was modified by replacing 

the 2x35S Cas9 promoter with a Glycine max ubiquitin promotor (Hernandez-Garcia et 

al., 2009) and adding the Rin4b (Glyma16g12160) gRNA recognition sites.  The 

WPT553 expression vector, MDC32/GUS/GmCas9, was originally developed and used 

in (Michno et al., 2015). WPT 608-1 and 608-3 used the same pSC218GG construct 

used in (Curtin et al., 2018), except with different gRNA recognitions sites for the 

Glyma.16G209100 (and Glyma.09G159900) target sites.  

Identification of CRISPR/Cas9 target sites  

 
CRISPR target sites were identified using a soybean CRISPR design website 

(http://stuparcrispr.cfans.umn.edu/CRISPR/) (Michno et al., 2015). Glyma numbers from 

version two of the soybean assembly were input into the webtool, and target-sites were 

screened for unique restriction sites designed to cut 3-5 bp upstream of the proto-spacer 

adjacent motif.  

http://stuparcrispr.cfans.umn.edu/CRISPR/
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Delivery of expression vectors to soybean whole-plants 

 
Constructs were delivered to the Bert-MN-01 background using 18r12, a 

disarmed k599 Agrobacterium rhizogenes strain (Veena and Taylor, 2007). Methods for 

delivery and growth of whole-plant transformants were performed as previously 

described (Curtin et al., 2011).  

DNA extraction and identification of transgene insertion sites using next-

generation sequencing 

 

Leaf tissue was harvested from five different soybean branches for each whole-

plant transformant and extracted with a Qiagen DNeasy plant kit (item 69106). DNA 

samples were sent to the University of Minnesota Genomics Center for sequencing 

using an Illumina HiSeq2500 with v4 chemistry to generate 125bp parried-end reads. 

Reads were checked for initial quality using Fastqc version 0.11.5 and Illumina Truseq 

adapters were trimmed using cutadapt version 1.8.1 with a minimum read length set to 

40bp and quality cutoff set to a phread score of 20 (Andrews, 2010; Martin, 2011). To 

map reads to the soybean reference genome (Wm82.a2.v1), we used bwa version 

0.7.12 with band width set to 100, mark shorter splits as secondary, and penalty for 

mismatch set to 6 (Li and Durbin, 2009). Samtools version 1.6 was used to convert SAM 

file format to BAM format, sort, and index files (Li et al., 2009). Identification of transgene 

insertion sites was performed in a manner similar to Srivastava et al. 2014 (Srivastava et 

al., 2014). Fasta files were created using the transgene cassette with 100 bp flanking 

backbone sequence to serve as our reference genome. Sequenced reads were then 

mapped to transgene reference using the same programs and parameters used to map 

reads to the reference genome.  Orphaned reads were extracted using a modified 

version of extract_unmapped_mates.pl (Srivastava et al., 2014), to accept bam files as 
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input. Orphaned reads we then mapped to the Wm82.a2.v1 reference using bowtie2 

version 2.2.4 using  -- local -- very-sensitive-local (Langmead et al., 2009). SAM files 

were then converted to BAM file format, sorted and indexed in the same manner 

mentioned above. Orphaned reads that mapped to the reference were further 

investigated upon using IGV version 2.3.90 (Robinson et al., 2011). Orphaned read 

mapping was then compared to read mapping to the soybean reference and the parental 

line (Bert-MN-01) as a control.  Deletions were investigated using IGV at each CRISPR 

site throughout the genome. To automate this process, a custom bash script was 

created called TransGeneMap (https://github.com/MeeshCompBio/Soybean_Scripts) 

that allows users to input only the forward and reverse reads, indexed reference 

genome, and transgene sequence to automate the analysis.  
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Plant 
number 

Transgene 
integration Target gene(s) Target 1  Target 2 

536-2 Chr11 Glyma16g12160 2 bp ∆ , 1bp + NA 
536-2-13-
15 NA Glyma16g12160 wt NA 
536-2-13-
16 NA Glyma16g12160 2 bp ∆ NA 

553-6 NA Glyma.18g041100 7 bp ∆, 7 bp ∆ NA 

553-6-8 NA Glyma.18g041100 2 bp ∆ NA 

553-6-11 NA Glyma.18g041100 6 bp ∆ NA 

608-1 Chr17 
Glyma.16G209100, 
Glyma.09G159900 4 bp ∆ , 4bp ∆, 1 bp + 4 bp ∆ 

608-3 
Chr06, 09, 16, 
18  

Glyma.16G209100, 
Glyma.09G159900 3bp ∆, 1 bp +, TGI* TGI* 

*TGI: Transgene integration    
Table 1. Mutation profiles induced by CRISPR/Cas9 and number of transgene insertions 

for each transgenic series 
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Plant Integration Type Genic 
Flanking 
insert sizes 

536-2 
Chr11:2,511,324-
2,511,349 35bp ∆ + 4 bp, 17 bp 

608-1 Chr17:37,687,748 1bp ∆ - missing, 9 bp 

608-3 
Chr06:3,498,485-
3,498,492 8bp + 3 bp, 20 bp 

608-3 
Chr09:38,390,575-
38,390,586 10bp ∆ * + 0bp, 11 bp 

608-3 Chr16:36,848,517 1bp ∆ * + NA 

608-3 
Chr18:55,616,603-
55,616,607 3bp ∆ - NA 

*TGI: Transgene integration    
Table 2. Types of variation induced for each transgene insertion event 
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Figure 1. Transformation vectors used in whole-plant transformations. Plant expression 

cassettes used to integrate transgenic DNA through agrobacterium-based whole-plant 

transformation methods. Boxes in shades of blue represent promoters, boxes in shades 

of orange represent Cas9 endonucleases, boxes in shades of green represent plant-

selectable markers, and boxes in shades of pink represent guide RNA’s. 
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Figure 2. Screening of markers and mutations in the Rin4b transgenic series. A) PCR 

assay screening for presence absence or the Cas9 endonuclease, BAR plant-selectable 

marker, and actin control for the transformation vector, Rin4b T0 parent and the Rin4b 

T2 offspring. B) Sequence of transgenic plants and BertMN-01 control at gRNA target 

site. Dashes represent a deletion within a sequence, green text represents and insertion. 

Percentages on the right of sequences signify the proportion of reads representing the 

allele in the transgenic plant. C) Diagram depicting WGS detection of the transgene 

insertion event and the variation induced at the insertion site. 
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Figure 3. Screening of mutations and transgene insertions in the Glyma.16G209100 

transgenic series. A) Sequence of transgenic plants and BertMN-01 control at 

Glyma.16G209100 and Glyma.09G159900 gRNA target sites. Dashes represent a 

deletion within a sequence, green text represents and insertion. Percentages represent 
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the proportion of reads representative of the sequence. The Glyma.16G209100 

sequence targets the sense strand while Glyma.09G159900 target the antisense strand. 

B) Diagram depicting WGS detection of the transgene insertion event and the variation 

induced at the insertion site for WPT 608-1. C) Diagram depicting WGS detection of the 

transgene insertion events as well as PCR detection of primers flanking the transgene 

insertion event/junction for WPT608-3. Colored bars in each PCR, represent the primers 

used and their respective locations. 
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Figure 4. Screening of markers and mutations in the GS1 transgenic series. A) 

Sequence of transgenic plants and BertMN-01 control at gRNA target site. Dashes 

represent a deletion within a sequence. Percentages represent the proportion of reads 

representative of the sequence. B) PCR assay screening for presence absence or the 

Cas9 endonuclease, BAR plant-selectable marker, and actin control for the 

transformation vector, GS1 T0 parent and the GS1 T2 offspring 
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Chapter 4: Identification of candidate genes underlying 

nodulation-specific phenotypes in Medicago truncatula 

through integration of genome-wide association studies and 

co-expression networks 
 

Preface 

 
Genome-wide association studies (GWAS) have proven to be a valuable approach for 

identifying genetic intervals associated with phenotypic variation in Medicago truncatula. 

These intervals can vary in size, depending on the historical local recombination near 

each significant interval. Typically, significant intervals span numerous gene models, 

limiting the ability to resolve high-confidence candidate genes underlying the trait of 

interest. Additional genomic data, including gene co-expression networks, can be 

combined with the genetic mapping information to successfully identify candidate genes. 

Co-expression network analysis provides information about the functional relationship of 

each gene through its similarity of expression patterns to other well-defined clusters of 

genes. In this study, we integrated data from GWAS and co-expression networks to 

pinpoint candidate genes that may be associated with nodule-related phenotypes in 

Medicago truncatula. We further investigated a subset of these genes and confirmed 

that several had existing evidence linking them nodulation, including MEDTR2G101090 

(PEN3-like), a previously validated gene associated with nodule number. 
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Introduction 

The ability to fix nitrogen into the soil makes legumes an integral part of the plant 

ecosystem. Unfortunately, the expected increase in human population size by the year 

2050 will require a higher amount of nitrogen than current legume cropping systems can 

fulfill (Smil, 1999). This increase in demand requires researchers to better understand 

and improve nitrogen fixation in current legume species.  One species in particular, 

Medicago truncatula, is widely considered a model species for understanding nitrogen 

fixation due to its diploid nature, seed to seed generation time, small genome size, and 

the vast amount of genomic resources (Young and Udvardi, 2009). Although previous 

studies have identified genes associated with nodulation (Oldroyd et al., 2001; 

VandenBosch, 2003; Elise et al., 2005; Combier et al., 2006; Wasson, 2006; Curtin et 

al., 2017), the trait is highly polygenic, and a large number of genes involved in 

nodulation remain to be discovered. One way researcher have tried to overcome this 

obstacle is through the use of Genome-wide association studies (GWAS).   

Genetic analysis performed on standing collections of diverse lines or accessions 

reveals the locations of historical recombination that differentiate each genotype. GWAS 

leverage this information to discover associations between genetic markers and a 

phenotype of interest that exhibits variation within the population. However, these strong 

associations typically implicate genomic regions that are too large to allow for the 

identification of the specific gene that underlies this variation (Flint-Garcia et al., 2005; 

Visscher et al., 2012; Breseghello and Coelho, 2013). In most cases, further 

investigation is required to identify genes surrounding each marker that may be 

associated with the phenotype.  Furthermore, it is possible that numerous markers truly 
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associated with the trait are not identified as significant in GWAS, due to stringent 

statistical cutoffs (Storey and Tibshirani, 2003; Johnson et al., 2010; Sham and Purcell, 

2014). Conversely, lowering the statistical threshold introduces false positives that are 

problematic for further analysis (Korte and Farlow, 2013).  

Advances in next-generation sequencing technologies have allowed researchers 

to generate numerous reference genomes for a variety of plant species. However, many 

of the genes within these species remain functionally uncharacterized, limiting the 

amount of biological information available to interpret a gene’s effect on a specific 

phenotype. Using technologies such as RNA-seq and microarrays, it is possible to 

measure quantitative levels of expression throughout the genome across multiple 

samples. Using these large-scale genomic datasets, it is possible to develop a functional 

network where one can infer a gene’s function using “guilt by association.” More 

specifically, it is possible to use transcription-based expression data from various 

tissues, species, and environments to capture expression profiles of genes (Stuart, 

2003; Usadel et al., 2009) and then calculate a similarity metric between pairs of genes 

to identify if they are co-expressed with each other.  Eventually, a network can be 

developed from these relationships where each node is a gene, and each edge would 

represent how well the pair of genes are co-expressed with one another (Aoki et al., 

2007).  

Most co-expression networks were built with the purpose of discovering and 

characterizing highly connected subnetworks or modules to better understand various 

phenotypes to provide a general resource to the community (Aoki et al., 2007; Benedito 

et al., 2008; Mao et al., 2009; Childs et al., 2011; Swanson-Wagner et al., 2012; 

Schaefer et al., 2017).  Networks can also be built for multiple different purposes, such 
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as capturing gene function in response to environmental changes or stresses (Mochida 

et al., 2011; Zheng and Zhao, 2013), using a developmental network with the intent of 

understanding expression of various biological processes during plant development 

(Brady et al., 2007; Fu and Xue, 2010; Sekhon et al., 2011; Downs et al., 2013; Schaefer 

et al., 2014; Cho et al., 2016), or to compare and contrast networks from different 

species to identify conserved modules (Movahedi et al., 2012).  

A recent study described a new framework to integrate co-expression networks 

with GWAS as a means to identify candidate genes (Schaefer et al., 2018). In Maize, 

Schaefer et al. (2018) ran a GWAS to identify a panel of SNPs associated with 

elemental accumulation in seeds. Although they were able to identify significant makers 

associated with regions of the genome, they would have had to manually sift through 

candidate genes for prioritization unless they integrated a separate source of data. They 

further built three co-expression networks, two from publicly available data and one from 

root tissue designed to represent the phenotype measured in the respective GWAS. By 

using the guilt by association principle from clusters of genes within a co-expression 

network as well as a panel of significant markers from their GWAS, Schaefer et al. 2018 

combined these two datasets using their Camoco framework to identify and better 

prioritize candidate genes associated with elemental accumulation. We apply this 

framework to Medicago truncatula using publicly available expression datasets, and 

markers from a previously published GWAS focused on nodulation traits aiming to 

provide a functional context to the networks and further identify candidate genes 

associated with nodulation. 
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Results and Discussion 

Integration of nodule focused genome-wide association study with co-expression 

networks 

To identify candidate genes associated with nodulation traits, we used a 

previously published GWAS (Stanton-Geddes et al., 2013) as well as two publicly 

available RNA-seq datasets. The GWAS consisted of 226 M. truncatula accessions that 

were previously grown in replicate and phenotyped for five different nodulation traits as 

well as flowering time, trichrome density and height. By manually sifting through their 

most significant 50-200 SNPs based on p-value rank, the authors discovered sets of 

genes near significant SNP’s that were previously associated with nodulation traits 

(Stanton-Geddes et al., 2013). Similar to other GWAS studies, the authors focused on 

genes that either contained or were directly adjacent to significant markers even though 

other genes may also be plausible candidates given their linkage to the significant 

markers (Branca et al., 2011). We selected a subset of these traits and markers from the 

study to serve as input for the GWAS/co-expression pipeline using Camoco 

(https://github.com/LinkageIO/Camoco) (Schaefer et al., 2018) (Table S1 in Appendix 3).  

To measure the similarity of expression profiles between genes across different 

tissues and treatments, we used two publicly available RNA-seq expression data sets to 

assemble co-expression networks. The data consisted of 138 samples consisting of 

three different genotypes, three different tissues, four different rhizobium treatments, and 

presence-absence of nitrogen (Table S2 in Appendix 3). We then built six different co-

expression networks using Camoco (Schaefer et al., 2018). Four of the six networks 

were constructed from a single tissue type (Leaf, Root, Nodule, JQL_Nodule), and the 

https://github.com/LinkageIO/Camoco
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other two networks (referred to as the “General” network and “JQL” network) were 

constructed from a combination of different tissue types (Table S3 in Appendix 3). The 

diversity of tissue types within each co-expression network allows for the detection of 

signals corresponding to different biological processes that may have remained 

undiscovered if all samples were combined into one large network (Schaefer et al., 

2014; Schaefer et al., 2018).  

The total number of genes that passed the co-expression network construction 

phase was relatively consistent among the four networks, with the general network 

consisting of roughly 22,000 genes each (Table S3 in Appendix 3). Genes that were 

excluded from each network were either not expressed, or there was not enough 

variation in expression between samples to robustly measure covariation. The smaller 

number of genes within the nodule-specific network was expected, as fewer genes are 

expressed in nodule tissue relative to other tissues (Benedito et al., 2008).  

To test whether each network was capturing biologically meaningful 

relationships, we measured each network for functional enrichment. Using sets of genes 

coannotated to the same Gene Ontology (GO) term, the relative density (how highly an 

established set of functionally related genes are co-expressed with each other) was 

measured and compared to density values of randomly sampled gene sets of the same 

size. All six networks demonstrated functional enrichment of at least ten-fold within each 

network (Figure S1 in Appendix 3), indicating many more GO terms exhibited evidence 

of co-expression than expected by chance for all six networks.   

Using the six co-expression networks and selected GWAS markers, we applied 

the Camoco pipeline to prioritize candidate causal genes. Briefly, Camoco, which was 
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originally described in Schaefer et al. 2018, evaluates candidate genes linked to 

significant GWAS marker on the basis of their co-expression with genes linked to other 

significant GWAS marker based on the assumption that some causal genes should 

exhibit strong co-expression relationships with other genes associated with the trait. 

Camoco is depicted in Figure 1, and the details of this analysis are provided in the 

Methods section. Any genes reported by Camoco with an FDR < 0.35 in the resulting 

analysis were considered candidate genes and included in further analysis.  

The results of the Camoco framework yielded 489 discoverable genes across all 

GWAS trait and network combinations. Analysis of the Nod_A trait (strain occupancy in 

the top 5 cm of roots) with the Mt_JQL_Nodule network combination, revealed a high 

amount of network connectivity between genes (Z-score > 2.5). Further analysis of one 

of these genes, MEDTR2G101090, demonstrates how discoverable genes are identified 

(Figure 3). The supporting evidence that MEDTR2G101090 underlies a GWAS peak as 

well as being highly co-expressed with other genes across chromosomes that also 

underlie different GWAS peaks strongly suggests that these sets of genes are 

functionally related to each other and that the Camoco framework is discovering 

meaningful relationships.   

Importance of trait and tissue specificity in co-expression networks 

The number of high-confidence candidate genes discovered by Camoco varied 

significantly across different combinations of traits, networks, and parameters (Figure 2). 

It is interesting that the nodule based Mt_JQL_Nodule co-expression network discovered 

a consistent number of candidate genes when using a nodule focused GWAS trait, 

Nod_A. While this result produced the most consistent number of significant genes 

across parameters out of all of the network and trait combinations, this combination also 
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made the most biological sense since we would expect nodule tissue co-expression 

interactions to be representative of the GWAS trait.  

Surprisingly, the root based network performed the worst when we would expect 

there to be biological relevance to nodulation based traits. It was the poorest performer 

across all GWAS traits, only exhibiting few candidate genes for the Nod_B trait (strain 

occupancy below the top 5 cm of roots). This result could possibly be due to the 

timepoint in which RNA was extracted from the roots. If RNA was extracted at an earlier 

timepoint when nodules were still early in development, there might have been different 

expression patterns within the samples allowing for the discovery candidate genes. 

The leaf network was the only network that consistently identified candidates for 

the height trait. While this is biologically unsurprising, it is important to point out that it 

discovered significant genes for a few nodulation traits, suggesting that there may be 

some form of connection between the top of the plant and bottom of the plant when it 

comes to nodulation signaling. The General network which consisted of the largest 

number of samples and tissue types only generated consistent candidates for the Nod_B 

phenotype although the number of candidates was low. 

These results suggest that the type of network, as well as the GWAS phenotype 

play an important role in discovering significant interactions. Combining many different 

types of tissue into one large network does not perform well as a smaller, more concise 

network. One reason for this is that combining expression data from very different 

contexts introduces more variation across each gene’s profile but that variation 

essentially results in very generic modules that represent whole tissues.  What is needed 

instead is a highly specific tissue, especially one that's relevant for the phenotype in the 
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GWAS. The use of highly specific tissue(s) will result in more subtle variation that 

reveals more specific functional relationships that would otherwise be lost in larger 

networks. 

GWAS marker significance and proximity to genes are variable when integrating 

co-expression analysis 

A common approach to interpreting GWAS studies is to manually inspect the 

most significant markers and look for candidates that are closest in proximity to the 

marker of interest. Unfortunately, the closest genes to GWAS markers may not always 

be the ones that are causally driving the association with the phenotype. When looking 

at the height trait in the leaf network, we see an increase in signal (i.e., number of 

Camoco-identified high-confidence candidate genes) as we increase the number of 

flanking genes surrounding each marker (Figure S2 in Appendix 3). When the window 

size is increased from 10 kb to 20kb, we see that the signal drastically increases, 

indicating that there are genes further out from the marker that are highly co-expressed 

with a subset of these genes. However, when an even larger 50kb window is used, no 

high-confidence genes are reported. The loss of signal at the largest interval (50kb) is 

expected as the number of potential candidate genes per locus increases sharply (the 

large majority of them being false positive as one considers candidates further from the 

locus peak). Ultimately, this large number of false candidate genes obscures the 

identification of co-expression relationships among true causal genes, and the approach 

no longer works. This analysis suggests that several of the GWAS loci implicated for 

these traits are likely driven by causal genes that are not directly adjacent to the GWAS 

peaks. 
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Similarly, the constraint of only focusing on the most significant markers leaves 

other candidates that are truly associated with the phenotype neglected. The Camoco 

framework is better able to differentiate false negatives and false positives at a lower 

significance threshold, by integrating associations from two different data sources. For 

instance, if we used the common GWAS p-value cutoff of  5 × 10^(-8) (Barsh et al., 

2012; Panagiotou and Ioannidis, 2012; Fadista et al., 2016) we would only consider 

analyzing two GWAS markers from the entire Nod_A phenotype, instead, we are able to 

use 292 SNPs (p-value 3.00E-05 or lower) using the 10kb window parameter (Table S1 

in Appendix 3) and discover candidate genes that would otherwise be ignored. 

Furthermore, the number of markers to include as input to identifying genes can also 

influence the analysis. If the trait is not highly quantitative, then it will prove difficult to 

find multiple genes showing similar expression profiles if many markers are included. 

Even quantifying the number of markers to include in the analysis can prove to be 

challenging. While a conservative number of markers may seem like the obvious choice, 

it is important to consider the false negative markers that would be excluded from a 

stringent cutoff could drive co-expression between sets of genes (Park et al., 2010; 

Visscher et al., 2012).  On the other hand, if too many markers are included in the 

analysis, there is potential that the signal will be masked by incorporating too many 

spurious genes.  

Identification of nodulation-related genes using co-expression and GWAS 

To identify a small set of the most promising high confidence candidate genes for 

more investigation, we further narrowed candidate genes lists for the Nod_A trait by 

identifying genes that were consistently discovered across different parameter settings. 

Using the JQL_Nodule network, we narrowed the candidate gene lists by identifying 
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candidate genes that appeared in at least three out of the nine 10kb, 20kb, 50kb by 1,2,5 

flanking gene combinations of parameter settings (Figure S1 in Appendix 3); this 

process resulted in 25 genes for further investigation (Table1). When viewing the 

strength of co-expression between these 25 genes (Z-score of 2.5 or higher) within the 

nodule network, it was observed that the majority of the genes were connected and 

formed a single module (Figure 4).   

Interestingly, among those 25 candidate genes from the Nod_A analysis, was 

PEN3-like (MEDTR2G101090; Table 1), a gene that was associated with the most 

significant GWAS marker for the Nod_A trait (Stanton-Geddes et al., 2013). Functional 

validation of PEN3-like using CRISPR and Tnt1-mutated plants previously confirmed 

that loss-of-function of this gene resulted in decreased nodule number (Curtin et al., 

2017). Another strong candidate within the module was the hub gene (gene with the 

highest number of connections), MEDTR7G109130, which is annotated as a P-loop 

nucleoside triphosphate hydrolase superfamily protein and is known to play a role in 

nodulation (Jayaraman et al., 2017).  

Because multiple co-ex networks were able to support the discovery of strong 

candidate genes for Nod_B, we defined a short list of high-confidence candidates by 

requiring high confidence genes to be consistently considered candidates across all 

networks in the Nod_B trait instead of a single network, as was used in the previous 

example. Using every parameter that had candidate genes in the Nod_B trait, we looked 

for any genes that were a candidate across more than four parameters (Table 2). One 

promising gene, MEDTR1G012530, appeared as a candidate for 9 out of the 20 

parameter settings that resulted in at least one candidate gene discovery. This gene is 

annotated as a TPX2 (targeting protein for Xklp2) family protein and has been shown to 
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be highly expressed during nodule formation (Jardinaud et al., 2016).  Another promising 

candidate, MEDTR4G073400, which also appeared as a candidate nine times, is 

annotated as Synaptotagmins-1-related, which play a role in the formation of root 

nodules (Gavrin et al., 2017). 

  Overall, these results demonstrate that the co-expression/GWAS integration was 

able to discover genes putatively associated with nodulation processes. The genes that 

are directly connected to PEN3-like would serve as valuable candidates for follow-up 

studies due to their similarity in expression profiles across tissues. Another approach 

would be to look at the significance of each marker associated with a candidate gene as 

a way to prioritize candidate genes resulting from the Camoco analysis (Table 1). Since 

the Camoco pipeline generates candidate based of GWAS marker locations and density 

scores, candidates can be further prioritized based on their associated GWAS marker’s 

significance value. For instance, the gene associated with the marker with the highest 

significance was the PEN3-like gene while our P-loop nucleoside triphosphate hydrolase 

superfamily protein hub gene was ranked 270 out of 523 based on the number of 

markers input into the analysis.  

Conclusions 

Using an M. truncatula GWAS focused on nodulation traits as well as expression 

data from different tissues, rhizobium strains, nitrogen treatments and accessions, we 

were able to identify a subset of genes surrounding GWAS markers that are highly co-

expressed with one another. From these lists, we discovered a previously validated 

nodulation gene PEN3-like as well as several other genes whose annotations are 
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associated with nodulation. Uncharacterized genes within our high-confidence lists are 

worthy of more in-depth follow-up studies using Tnt1 or CRISPR knockouts.   

Schaefer et al. 2018 developed the Camoco framework and integrated co-

expression networks and GWAS in maize in order to capture variation associated with 

elemental uptake in seeds. Our current study used a higher-density GWAS that focused 

on a different phenotype, different plant species, and an expression data set that was 

not explicitly created for this study. One common theme between the studies is that the 

choice of the co-expression network matters; specifically, tissue-relevant networks 

derived from expression variation across diverse genotypes appear to perform the best 

in ranking candidate genes. This was true in maize, and we report here that this is also 

true in Medicago. We believe this result is likely to generalize to many other contexts, 

and it suggests as a community, more emphasis in the generation genotype-focused 

networks would be worthwhile if we hope to build resources for functional interpretation 

of phenotype-associated variants. It is also important to mention that we were able to 

generate a panel of high confidence candidate genes using two independent datasets 

that were not generated for this study. Having the ability to combine independent public 

datasets and detect novel candidate genes can prove to be resourceful to the research 

community.   

 The majority of candidate genes discovered in this analysis would have most 

likely been neglected by traditional GWAS analyses unless they were under the most 

significant markers. By combining co-expression networks with GWAS, the functional 

relationship between genes related to the GWAS phenotype are more likely to be 

discovered.  The Camoco framework also demonstrated that the nearest gene to a 

marker is not always the one associated with phenotype. Camoco is better able to 
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differentiate which genes are associated with the phenotype through the use the 

information generated from co-expression networks. By leveraging the information 

obtained from a second source of data independent of the GWAS, candidates generated 

through this method are worth investigating due to the support generated from co-

expression. Our results imply that the methods developed by Schaefer et al. 2018 can 

be used on a variety of GWAS. Through these findings, we believe that this whole 

approach developed by Schaefer et al. 2018 can be generalized to many different 

contexts, and it is worth applying to a wide variety of species and traits.  

 

Acknowledgments 

We would like to thank the University of Minnesota Office of Information Technology for 

accommodating our data storage needs and the Department of Computer Science at the 

University of Minnesota for server maintenance and support.  

 

Material and Methods 

Medicago experimental design and sample extraction 

Three accessions from the Medicago HapMap project (HM56, HM101, HM340) were 

grown in greenhouse conditions. Rhizobium strains S. meliloti (KH46c) and S. medicae 

(WSM419), as well as nitrogen, were applied to the soil shortly after planting. Tissues 

was harvested and frozen in liquid nitrogen 31 days after planting. RNA was extracted 

using the Qiagen RNeasy Plant mini kit (Product ID: 74903). Individual nodules we 

pooled and extracted as a single sample for each plant. 
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Generation of expression data 

RNA from 138 samples were sent to the University of Minnesota’s Genomic Center for 

sequencing using Illumina HiSeq2500 100bp single-end reads. One sample required 

resequencing (L88) which resulted in 125bp reads.  Samples were barcoded and 

multiplexed using Illumina TruSeq HT adapters. Fastq files were checked with Fastqc 

version 0.11.5 and adapters were trimmed using cutadapt version 1.8.1 with non-default 

parameters -m 40 and -q 30 (Andrews, 2010; Martin, 2011). Reads were then aligned to 

Mt_4.0 gene models and reference (http://jcvi.org/medicago/) using STAR 2.5.3a (Dobin 

et al., 2013), then filtered based off unique mapping scores, sorted and indexed using 

samtools version 1.6 (Li et al., 2009). FPKM values were generated using Cufflinks 

version 2.2.1 using non-default  parameters of -I 20000 and --min-intron-length 5.  Raw 

sequencing files are publicly available at (PRJNA449544). 

Co-expression network construction and genome-wide association study 

integration 

Methods used were similar to those in the previously mention co-expression GWAS 

integration study (Schaefer 2017). Briefly, Camoco takes a set of SNP’s as input and 

uses their location within a genome as well the number of genes flanking a marker within 

a given window size to extract genes lists for testing (Figure 2). If there are multiple 

SNPs overlapping within the same window size, then all but the most significant SNP is 

discarded, varying the number of tested SNPs for each window size (Table S1 in 

Appendix 3). Once genes are selected for testing; each gene is then measured to see 

how well it is co-expressed with other genes selected within a given network. Once a 

density a score is generated, Camoco will resample a random set of genes equal in size 

to the testing set and compare the density score of the resample genes verses the 
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observed. This process was iterated 1000 times to generate an FDR for a single gene 

then repeated for each gene, GWAS trait, and network combination. To account for the 

varying amount of linkage disequilibrium within different regions of the population, we 

used multiple different window sizes and number of flanking genes (Stanton-Geddes et 

al., 2013). Any gene that had an FDR < 0.35 was called “candidate” and included in 

further analysis. 

FPKM expression tables were used as input into Camoco 

(https://github.com/LinkageIO/Camoco) using the Mt_4.1 reference genome. Non-default 

parameters used to build each network included rawtype='RNASEQ', 

max_gene_missing_data=0.5, max_accession_missing_data=0.5,  

min_single_sample_expr=1, min_expr=0.001, quantile=False, max_val=300, sep=',’.  

Network health statistics were generated using, GO terms from (http://jcvi.org/medicago) 

and 1000 bootstraps.  SNPs were integrated into camoco using built-in functions, and 

per gene, density measurements were run with 1,000 bootstraps, 10kb, 20kb and 50kb 

window sizes and 1, 2, and 5 flanking genes. Figures were created using ggplot2 

(Wickham, 2006).  

  

https://github.com/LinkageIO/Camoco
http://jcvi.org/medicago
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Gene Number of 
connections 
(Z-score 2.5 
or higher) 

SNP_position GWAS -
log10(p.val) 

Rank 
(out 
of 
523) 

Annotation 

MEDTR2G101090 8 chr2:43448968 7.591607 1 drug resistance 
transporter-like ABC 
domain protein 

MEDTR8G074920 4 chr8:31665171 6.753532 11 receptor-like kinase 
theseus protein 

MEDTR2G100280 4 chr2:43061039 6.743592 12 RNA exonuclease-like 
protein 

MEDTR4G018770 4 chr4:5776217 6.509395 19 GDP-mannose 
transporter GONST3 

MEDTR3G026650 6 chr3:8183997 6.177657 53 GDP-fucose protein O-
fucosyltransferase 

MEDTR4G059870 4 chr4:22091245 5.827601 114 C2H2 and C2HC zinc 
finger protein, putative 

MEDTR4G019910 4 chr4:6362962 5.7494 139 SnoaL-like domain 
protein 

MEDTR5G076270 1 chr5:32504251 5.707181 156 auxin response factor 2 

MEDTR6G084440 2 chr6:31605458 5.678609 161 DUF1666 family protein 

MEDTR2G090960 9 chr2:39088095 5.657328 171 TCP family transcription 
factor 

MEDTR4G104350 2 chr4:43099392 5.512627 210 DNA polymerase III 
subunit gamma/tau 

MEDTR7G102310 6 chr7:41285876 5.493289 220 rhodanese/cell cycle 
control phosphatase 
superfamily protein 

MEDTR5G093580 5 chr5:40860194 5.415629 252 co-factor for nitrate, 
reductase and xanthine 
dehydrogenase 

MEDTR3G019490 5 chr3:5482913 5.410043 257 S-locus lectin kinase 
family protein 

MEDTR7G109130 16 chr7:44591633 5.381151 270 P-loop nucleoside 
triphosphate hydrolase 
superfamily protein 

MEDTR8G027385 1 chr8:9668134 5.239786 350 Endomembrame Family 
Protein 

MEDTR4G126160 11 chr4:52449376 5.231223 358 cytokinin 
oxidase/dehydrogenase-
like protein 

MEDTR7G076250 5 chr7:28686036 5.221541 366 zinc finger, C3HC4 type 
(RING finger) protein 

MEDTR4G058970 10 chr4:21744831 5.102555 448 homeodomain leucine 
zipper protein 

MEDTR7G075580 13 chr7:28296141 5.067043 470 cytochrome P450 family 
protein 

MEDTR1G075610 5 chr1:33462984 5.06158 474 cyclin-dependent kinase 

MEDTR2G096950 8 chr2:41430755 5.050944 485 kinase 1B 

MEDTR1G070455 9 chr1:31235133 5.044264 491 WRKY transcription 
factor 

MEDTR3G111650 10 chr3:52196531 5.019337 507 hypothetical protein 

MEDTR1G080690 0 chr1:35874811 5.009149 517 TPX2 (targeting protein 
for Xklp2) family protein 

Table 1: List of genes that were discoverable across all six parameters (10kb, 20kb and 

1,2,5 flanking genes) for the Nod_A phenotype using the Mt_JQL Nodule GWAS. 
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Gene Numer of hits 
across parameters 
and terms 

Annotation 

MEDTR4G027195 10 N/A 

MEDTR4G035980 10 pectinesterase/pectinesterase inhibitor 

MEDTR1G012530 9 TPX2 (targeting protein for Xklp2) family 
protein 

MEDTR4G073400 9 Synaptotagmin-1-related 

MEDTR2G073540 8 cysteine-rich RLK (receptor-like kinase) 
protein 

MEDTR1G028960 6 glycolipid transfer protein (GLTP) family 
protein 

MEDTR1G037520 5 N/A 

MEDTR1G040105 5 methylenetetrahydrofolate reductase 

MEDTR2G048855 5 pentatricopeptide (PPR) repeat protein 

MEDTR2G090960 5 TCP family transcription factor 

MEDTR2G450720 5 SAM domain (sterile alpha motif) protein, 
putative 

MEDTR3G088820 5 PPR containing plant-like protein 

MEDTR4G087510 5 O-acetylserine (thiol) lyase 

MEDTR5G053950 5 allene oxide cyclase 

MEDTR5G065080 5 purine permease 

MEDTR5G094290 5 tubulin folding cofactor A 

MEDTR6G023600 5 short-chain dehydrogenase/reductase 

MEDTR6G048290 5 PPPDE thiol peptidase family protein, 
putative 

MEDTR7G039370 5 origin recognition complex subunit 6 

MEDTR8G432620 5 methyltransferase 

Table2: List of genes that were discoverable for at least 5 different parameters across all 

networks for the Nod_B trait 
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Figure 1. GWAS and co-expression pipeline. 

GWAS/co-expression pipeline using Camoco. A) Manhattan plot represents DNA 

markers used as input for Camoco, bold black circles represent a subset of markers 

used for illustrative purposes. B) Regions along a chromosome from previously selected 

markers are represented as grey bars, genes are represented as black rectangles. C) 

Genes from previously identified intervals are then selected from the co-expression 

network for per-gene density measurements. Colored lines represent the strength of co-

expression between two genes in a co-expression network. Wider lines, represent genes 

that are more strongly co-expressed. The red box represents the current gene being 

measured for density. D) Per-gene density measurement of random sub-networks equal 

in size to the testing set. E) Other GWAS traits and networks used for analysis. 
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Figure 2. Co-expression/GWAS discoverable gene summary. 

Number of discoverable genes (FDR < 0.35) obtained from co-expression/GWAS 

integration. Colors represent the window size parameters used for our analysis. 
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Figure 3. Nodule_A discoverable genes in the Mt_JQL_Nodule network. 

Polywas diagram of the connectivity of discoverable genes (FDR < 0.35) to 

MEDTR2G101090 within the JQL_nodule network for the Nod_A trait. Grey circles 

represent GWAS markers, colored circles represent genes, with MEDTR2G101090 in 

red, its first neighbors in orange, and other discoverable genes in purple. Grey lines 

represent co-expression between genes (minimum Z-Score of 2.5); the wider the line, 

the stronger the co-expression between genes. 

 

  



83 
 

 

Figure 4. Overlap of Nod_A candidates in the Mt_JQL_Nodule network 

Candidate genes for the JQL_nodule network for the Nod_A trait. Purple circles 

represent genes and grey lines represent co-expression between genes (minimum Z-

Score of 2.5). The larger the circle, the more connections it has with other genes. The 

wider the line, the stronger the co-expression between genes. 
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Conclusions and future work 
 

While significant progress has been made towards understanding the genomes 

and transcriptomes of legume species, the majority of genes still remain functionally 

uncharacterized. To meet the demands of the global food supply by the year 2050, 

significant progress must be made to achieve the desired agricultural output. One way 

researchers are trying to achieve this is through creating genetically modified organisms 

(GMO). While GMOs are widely used throughout the US, they are under tight regulation 

due to the concern with its safety.  

Chapter two addressed an important issue that impacts the safety of GMO use in 

agriculture. Specifically, we investigated mutations rates within agrobacterium-mediated 

soybean lines by reanalyzing a publicly available dataset where the previous authors 

reported tens of thousands of mutations transcriptome-wide. Through reanalysis, we 

discovered that almost all mutations reported in their analysis were not due to 

transgenesis, but were due to improper genotype identity, heterogeneity, and non-

optimal bioinformatic handling of the data. Their misinterpretation of the data highlights 

an important issue with using next-generation sequencing analysis for GMO regulation. 

Using two different analysis methods led to two different results, demonstrating that 

analysis pipelines for GMO regulations must be closely analyzed to reduce the number 

of false positives and/or false negatives. Further studies applying next-generation 

sequencing to study the GMO process would be beneficial, e.g. analyzing the variation 

induced though transgenesis, but our work highlights the importance of robust 

bioinformatics pipelines in drawing conclusions that can have broad impact on the GMO 

regulatory environment.  
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Chapter three explores the type of variation induced through CRISPR/Cas9-

based mutagenesis by focusing on transgene integration sites in a series of 

CRISPR/Cas9 soybean lines. Through this analysis, we were able to see similar types of 

variation as reported in previous literature including deletions, insertions, duplications, as 

well as two independent instances where a transgene was inserted into a CRIPSR target 

site. Over half of the transgene insertions identified by this work occurred within different 

gene models, stressing the importance of knowing where transgenes are inserted in the 

genome when phenotyping lines that still contain transgene(s).  

While Chapter three as well as other literature address the idea that 

agrobacterium mediated transformation induces variation at transgene integration sites, 

it remains to be seen if there is variation induced genome-wide. While our preliminary 

results appear to show evidence of off-targeting in CRISPR lines based on comparison 

to non-CRISPR lines, the number of samples needed to draw a generalizable conclusion 

is too low. More CRISPR lines will need to be sequenced in the future to follow up on our 

initial findings.  

Chapter four explores the concept of integrating genome-wide association 

studies (GWAS) with co-expression networks. By combining two separate sources of 

data, we were able to prioritize candidate genes underlying GWAS peaks that we 

believe to be associated with nodulation. One of the genes identified, PEN-3-like, was 

previously validated by a different group using knockouts to demonstrate its functional 

role in nodulation. Similarly, other genes identified through this pipeline had annotations 

that could be directly associated with the phenotype. 
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Using these advances, we can now attempt to find new genes to target for 

breeding purposes. Instead of having to manually scan under each GWAS and trying to 

decide which gene(s) to target, researchers will be able to systematically prioritize 

candidate lists for future studies. This concept can be applied to a variety of different 

quantitative traits and a variety of different agricultural species to identify genes of 

interest with the intent of improving elite breeding lines to meet the future demands of 

the global food supply.  
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Appendix 

 

Appendix 1: 

 
Chapter 2 supplemental figures 

 

Figure S1. Pipeline to identify the background genotype of 764. The steps used to 

narrow down consensus calls between each of the four lines where only one of the four 

exhibited an alternate allele compared to the ‘Williams 82’ reference genome. The 

intersect between the resulting SNP positions and positions within the 50k data were 

then used to calculate the percentage of SNPs that match the 764 series. 
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Figure S2. Quality scores for all polymorphic variants (SNPs and indels) called in the 

Lambirth et al. (2016) study.  The polymorphic calls shown here were made between 

each sample and the reference genome ‘Williams 82’, without consideration for the 

uniqueness of the call among series or reproducibility among different plants within the 

series.  Homozygous calls are shown in blue and heterozygous calls are shown in red.  

Each bar sums the number of polymorphisms across the nine plants that were called at 

each read depth (e.g., we are showing the ~211,448 total variants called in series ST77 

across the nine plants; ST77 averaged 23,494 variants per plant).  Note the larger peak 

in the 35+ category for the 764 series; many of these (mostly homozygous) calls likely 

represent standing variants between lines ‘Thorne’ and ‘Williams 82’.  The 35+ peaks in 

the other three groups (ST77, ST111, and ‘Williams 82’ controls) may derive from 

various factors, most obviously the clusters of variants that are found within 

heterogeneous regions of different sub-lines of ‘Williams 82’. 
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Figure S3. Number of overlapping polymorphisms in the Lambirth et al. (2016) study 

within each of the 12 sibling families studied. A) Venn diagram showing of the number of 

sequence variants alternate to the reference genome that overlapped between three 

different groups of three siblings each of ‘Williams 82’, the wild type (WT) control in this 

study. Heterozygous and homozygous alternate calls are not differentiated in this 

analysis. B-D) Similar Venn diagrams of the number of polymorphism that overlapped 

between the F7:8 siblings in each of the ST77D (B), ST111 (C), and 764 (D) transgenic 

families. 
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Chapter 3 supplemental tables 
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Table S1. Whole-plant transformation construct metadata 
Chapter 3 supplemental Figures 

 

Figure S1. Rin4b gRNA target site. IGV screenshot of WGS at the gRNA target site for 

the Rin4b T0 and two of its T2 progeny.   
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Figure S2. Rin4b transgene insertion event. IGV screenshot of the transgene insertion 

event using WGS. Red bar at the top of the figure represents where the transgene 

inserted itself into the genome.   

  



110 
 

 

Figure S3. Rin4b transgene mapping coverage. IGV screenshot of WGS read mapped 

directly to the transgene sequence. 
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Figure S4. IGV screenshot of Glyma.16G209100 gRNA target site and transgene 

insertion on chromosome 16. 
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Figure S5. IGV screenshot of the Glyma.16G209100 paralog gRNA target site and 

transgene insertion on chromosome 9. 
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Figure S6. PCR assay for transgene presence in 608-1 offspring. A) PCR assay to 

amplify a portion of the BAR gene belonging to the transgenic cassette as well as an 

Actin control. B) 608-1 T0 and T1 family CAPS assay using Sty1 to test for the presence 

of mutations. The T0 parent and two different branches from each T1 progeny plant 

were tested. 
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Figure S7. WPT608-1 amplification of gRNA target site on chromosome 16.  A) PCR of 

markers flanking the guide RNA target site for gene target Glyma.16G209100. B) The 

proportions of subclones sequenced from PCR amplification as well as the detected 

mutations. C) Sanger sequencing results of the subclones for WPT608-3, WPT608-3-1 

and WPT608-5. 
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Figure S8. PCR assay to for detection of the transgene in all offspring for 608-3. PCR 

assay to amplify transgene insertion events identified from next-generation sequencing. 

Two set of primers were used for each event; one pair flanking either side of the 

transgene insertion event, and the other pair using one primer flanking the transgene 

insertion event and the other within the transgene insertion event (red). 
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Figure S9. GS1 mutations at the gRNA target site mutations induced by CRISPR/Cas9. 

IGV screenshot of WGS at the gRNA target site for GS1. 
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Figure S10. GS1 transgene mapping coverage. IGV screenshot of WGS read mapped 

directly to the transgene sequence.   
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Appendix 3: 

 
Chapter 4 supplemental tables 

      SNP's included after 
collapse (window size) 

  

GWAS Trait Description Number 
of SNP's 

10kb 20kb 50kb Min p-
value 

Height Plant height 197 139 133 127 3.00E-05 

Total_Nod Total number 
of nodules 

163 124 122 119 3.00E-05 

Nod_A Total number 
of nodules in 
the top 5 cm of 
roots 

523 294 275 255 9.96E-06 

Nod_B Total number 
of nodules 
below the top 5 
cm of roots 

232 185 178 165 3.00E-05 

Flowering 
Date 

Flowering date 550 150 120 100 6.94E-06 

OccupancyA Strain 
occupancy in 
the top 5 cm of 
roots 

292 230 226 209 3.00E-05 

OccupancyB Strain 
occupancy 
below the top 5 
cm of roots 

27 17 17 14 9.61E-05 

Table S1. GWAS trait information and the number of SNP's used for analysis. "Collapse" 

refers to SNP's removed due to overlapping windows between sets of SNP's 
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Sample 
ID 

Tissue M. 
truncatula 
accession 

Sinorhizobium 
species and 
strain 

Nitrogen  D7 
Index 

Barcode D5 
Index 

Barcode 

N128 Nodule HM056 S. meliloti 
(KH46c) 

0 D701 ATTACTCG D501 TATAGCCT 

N86 Nodule HM056 S. meliloti 
(KH46c) 

0 D702 TCCGGAGA D501 TATAGCCT 

N73 Nodule HM056 S. medicae 
(WSM419) 

0 D704 GAGATTCC D501 TATAGCCT 

N137 Nodule HM056 S. medicae 
(WSM419) 

0 D705 ATTCAGAA D501 TATAGCCT 

N48 Nodule HM056 S. medicae 
(WSM419) 

0 D706 GAATTCGT D501 TATAGCCT 

N88 Nodule HM101 Both 0 D707 CTGAAGCT D501 TATAGCCT 

N103 Nodule HM101 Both 0 D708 TAATGCGC D501 TATAGCCT 

N25 Nodule HM101 Both 0 D709 CGGCTATG D501 TATAGCCT 

N9 Nodule HM101 S. meliloti 
(KH46c) 

0 D710 TCCGCGAA D501 TATAGCCT 

N121 Nodule HM101 S. meliloti 
(KH46c) 

0 D711 TCTCGCGC D501 TATAGCCT 

N39 Nodule HM101 S. meliloti 
(KH46c) 

1 D712 AGCGATAG D501 TATAGCCT 

N75 Nodule HM101 S. meliloti 
(KH46c) 

1 D701 ATTACTCG D502 ATAGAGGC 

N146 Nodule HM101 S. meliloti 
(KH46c) 

1 D702 TCCGGAGA D502 ATAGAGGC 

N83 Nodule HM101 S. medicae 
(WSM419) 

0 D704 GAGATTCC D502 ATAGAGGC 

N56 Nodule HM101 S. medicae 
(WSM419) 

0 D705 ATTCAGAA D502 ATAGAGGC 

N14 Nodule HM101 S. medicae 
(WSM419) 

0 D706 GAATTCGT D502 ATAGAGGC 

N64 Nodule HM101 S. medicae 
(WSM419) 

0 D707 CTGAAGCT D502 ATAGAGGC 

N122 Nodule HM101 S. medicae 
(WSM419) 

1 D708 TAATGCGC D502 ATAGAGGC 

N46 Nodule HM101 S. medicae 
(WSM419) 

1 D709 CGGCTATG D502 ATAGAGGC 

N41 Nodule HM101 S. medicae 
(WSM419) 

1 D710 TCCGCGAA D502 ATAGAGGC 

N107 Nodule HM101 S. medicae 
(WSM419) 

1 D711 TCTCGCGC D502 ATAGAGGC 

N62 Nodule HM340 Both 0 D712 AGCGATAG D502 ATAGAGGC 

N21 Nodule HM340 Both 0 D701 ATTACTCG D503 CCTATCCT 

N160 Nodule HM340 S. meliloti 
(KH46c) 

0 D702 TCCGGAGA D503 CCTATCCT 

N115 Nodule HM340 S. meliloti 
(KH46c) 

1 D704 GAGATTCC D503 CCTATCCT 

N131 Nodule HM340 S. meliloti 
(KH46c) 

1 D705 ATTCAGAA D503 CCTATCCT 

N143 Nodule HM340 S. meliloti 
(KH46c) 

1 D706 GAATTCGT D503 CCTATCCT 

N80 Nodule HM340 S. medicae 
(WSM419) 

0 D707 CTGAAGCT D503 CCTATCCT 

N92 Nodule HM340 S. medicae 
(WSM419) 

0 D708 TAATGCGC D503 CCTATCCT 

N26 Nodule HM340 S. medicae 
(WSM419) 

0 D709 CGGCTATG D503 CCTATCCT 

N8 Nodule HM340 S. medicae 
(WSM419) 

0 D710 TCCGCGAA D503 CCTATCCT 
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N42 Nodule HM340 S. medicae 
(WSM419) 

1 D711 TCTCGCGC D503 CCTATCCT 

N47 Nodule HM340 S. medicae 
(WSM419) 

1 D712 AGCGATAG D503 CCTATCCT 

N111 Nodule HM340 S. medicae 
(WSM419) 

1 D701 ATTACTCG D504 GGCTCTGA 

N120 Nodule HM056 S. medicae 
(WSM419) 

0 D704 GAGATTCC D502 ATAGAGGC 

N40 Nodule HM101 S. meliloti 
(KH46c) 

1 D705 ATTCAGAA D502 ATAGAGGC 

N11 Nodule HM340 S. meliloti 
(KH46c) 

0 D706 GAATTCGT D502 ATAGAGGC 

R51 Root HM101 S. meliloti 
(KH46c) 

0 D702 TCCGGAGA D504 GGCTCTGA 

R5 Root HM101 S. meliloti 
(KH46c) 

0 D705 ATTCAGAA D504 GGCTCTGA 

R125 Root HM101 None 1 D706 GAATTCGT D504 GGCTCTGA 

R171 Root HM101 None 1 D707 CTGAAGCT D504 GGCTCTGA 

R142 Root HM101 None 1 D708 TAATGCGC D504 GGCTCTGA 

R83 Root HM101 S. medicae 
(WSM419) 

0 D709 CGGCTATG D504 GGCTCTGA 

R56 Root HM101 S. medicae 
(WSM419) 

0 D710 TCCGCGAA D504 GGCTCTGA 

R14 Root HM101 S. medicae 
(WSM419) 

0 D711 TCTCGCGC D504 GGCTCTGA 

R64 Root HM101 S. medicae 
(WSM419) 

0 D712 AGCGATAG D504 GGCTCTGA 

R160 Root HM340 S. meliloti 
(KH46c) 

0 D701 ATTACTCG D505 AGGCGAAG 

R11 Root HM340 S. meliloti 
(KH46c) 

0 D702 TCCGGAGA D505 AGGCGAAG 

R44 Root HM340 None 1 D704 GAGATTCC D505 AGGCGAAG 

R13 Root HM340 None 1 D705 ATTCAGAA D505 AGGCGAAG 

R33 Root HM340 None 1 D706 GAATTCGT D505 AGGCGAAG 

R80 Root HM340 S. medicae 
(WSM419) 

0 D707 CTGAAGCT D505 AGGCGAAG 

R92 Root HM340 S. medicae 
(WSM419) 

0 D708 TAATGCGC D505 AGGCGAAG 

R26 Root HM340 S. medicae 
(WSM419) 

0 D709 CGGCTATG D505 AGGCGAAG 

R8 Root HM340 S. medicae 
(WSM419) 

0 D710 TCCGCGAA D505 AGGCGAAG 

R9 Root HM101 S. meliloti 
(KH46c) 

0 D707 CTGAAGCT D502 ATAGAGGC 

R34 Root HM340 S. meliloti 
(KH46c) 

0 D708 TAATGCGC D502 ATAGAGGC 

L70 Leaf HM056 S. meliloti 
(KH46c) 

0 D712 AGCGATAG D505 AGGCGAAG 

L128 Leaf HM056 S. meliloti 
(KH46c) 

0 D701 ATTACTCG D506 TAATCTTA 

L152 Leaf HM056 S. meliloti 
(KH46c) 

0 D702 TCCGGAGA D506 TAATCTTA 

L86 Leaf HM056 S. meliloti 
(KH46c) 

0 D709 CGGCTATG D502 ATAGAGGC 

L20 Leaf HM056 None 1 D704 GAGATTCC D506 TAATCTTA 

L59 Leaf HM056 None 1 D705 ATTCAGAA D506 TAATCTTA 

L60 Leaf HM056 None 1 D706 GAATTCGT D506 TAATCTTA 

L61 Leaf HM056 None 1 D707 CTGAAGCT D506 TAATCTTA 

L120 Leaf HM056 S. medicae 
(WSM419) 

0 D708 TAATGCGC D506 TAATCTTA 
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L73 Leaf HM056 S. medicae 
(WSM419) 

0 D709 CGGCTATG D506 TAATCTTA 

L137 Leaf HM056 S. medicae 
(WSM419) 

0 D710 TCCGCGAA D506 TAATCTTA 

L48 Leaf HM056 S. medicae 
(WSM419) 

0 D711 TCTCGCGC D506 TAATCTTA 

L88 Leaf HM101 Both 0 D712 AGCGATAG D506 TAATCTTA 

L103 Leaf HM101 Both 0 D701 ATTACTCG D507 CAGGACGT 

L25 Leaf HM101 Both 0 D702 TCCGGAGA D507 CAGGACGT 

L158 Leaf HM101 Both 0 D710 TCCGCGAA D502 ATAGAGGC 

L51 Leaf HM101 S. meliloti 
(KH46c) 

0 D704 GAGATTCC D507 CAGGACGT 

L9 Leaf HM101 S. meliloti 
(KH46c) 

0 D705 ATTCAGAA D507 CAGGACGT 

L5 Leaf HM101 S. meliloti 
(KH46c) 

0 D707 CTGAAGCT D507 CAGGACGT 

L39 Leaf HM101 S. meliloti 
(KH46c) 

1 D708 TAATGCGC D507 CAGGACGT 

L75 Leaf HM101 S. meliloti 
(KH46c) 

1 D709 CGGCTATG D507 CAGGACGT 

L146 Leaf HM101 S. meliloti 
(KH46c) 

1 D710 TCCGCGAA D507 CAGGACGT 

L40 Leaf HM101 S. meliloti 
(KH46c) 

1 D711 TCTCGCGC D507 CAGGACGT 

L125 Leaf HM101 None 1 D712 AGCGATAG D507 CAGGACGT 

L171 Leaf HM101 None 1 D701 ATTACTCG D508 GTACTGAC 

L142 Leaf HM101 None 1 D702 TCCGGAGA D508 GTACTGAC 

L83 Leaf HM101 S. medicae 
(WSM419) 

0 D711 TCTCGCGC D502 ATAGAGGC 

L56 Leaf HM101 S. medicae 
(WSM419) 

0 D704 GAGATTCC D508 GTACTGAC 

L14 Leaf HM101 S. medicae 
(WSM419) 

0 D705 ATTCAGAA D508 GTACTGAC 

L64 Leaf HM101 S. medicae 
(WSM419) 

0 D706 GAATTCGT D508 GTACTGAC 

L62 Leaf HM340 Both 0 D707 CTGAAGCT D508 GTACTGAC 

L21 Leaf HM340 Both 0 D708 TAATGCGC D508 GTACTGAC 

L118 Leaf HM340 Both 0 D709 CGGCTATG D508 GTACTGAC 

L49 Leaf HM340 Both 0 D710 TCCGCGAA D508 GTACTGAC 

L160 Leaf HM340 S. meliloti 
(KH46c) 

0 D711 TCTCGCGC D508 GTACTGAC 

L11 Leaf HM340 S. meliloti 
(KH46c) 

0 D701 ATTACTCG D501 TATAGCCT 

L34 Leaf HM340 S. meliloti 
(KH46c) 

0 D702 TCCGGAGA D501 TATAGCCT 

L44 Leaf HM340 None 1 D711 TCTCGCGC D501 TATAGCCT 

L13 Leaf HM340 None 1 D704 GAGATTCC D501 TATAGCCT 

L33 Leaf HM340 None 1 D705 ATTCAGAA D501 TATAGCCT 

L80 Leaf HM340 S. medicae 
(WSM419) 

0 D706 GAATTCGT D501 TATAGCCT 

L92 Leaf HM340 S. medicae 
(WSM419) 

0 D707 CTGAAGCT D501 TATAGCCT 

L26 Leaf HM340 S. medicae 
(WSM419) 

0 D708 TAATGCGC D501 TATAGCCT 

L8 Leaf HM340 S. medicae 
(WSM419) 

0 D709 CGGCTATG D501 TATAGCCT 
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L121 Leaf HM101 S. meliloti 
(KH46c) 

0 D706 GAATTCGT D507 CAGGACGT 

JQL01 Nodule HM101 S. meliloti 
(KH46c) 

0 NA NA NA NA 

JQL02 Nodule HM101 S. meliloti 
(KH46c) 

0 NA NA NA NA 

JQL03 Nodule HM101 S. meliloti 
(KH46c) 

0 NA NA NA NA 

JQL04 Nodule HM101 S. medicae 
(WSM419) 

0 NA NA NA NA 

JQL05 Nodule HM101 S. medicae 
(WSM419) 

0 NA NA NA NA 

JQL06 Nodule HM101 S. medicae 
(WSM419) 

0 NA NA NA NA 

JQL07 Root HM101 None 0 NA NA NA NA 

JQL08 Root HM101 None 0 NA NA NA NA 

JQL09 Root HM101 None 0 NA NA NA NA 

JQL10 Nodule HM056 S. meliloti 
(KH46c) 

0 NA NA NA NA 

JQL11 Nodule HM056 S. meliloti 
(KH46c) 

0 NA NA NA NA 

JQL12 Nodule HM056 S. meliloti 
(KH46c) 

0 NA NA NA NA 

JQL13 Nodule HM056 S. medicae 
(WSM419) 

0 NA NA NA NA 

JQL14 Nodule HM056 S. medicae 
(WSM419) 

0 NA NA NA NA 

JQL15 Nodule HM056 S. medicae 
(WSM419) 

0 NA NA NA NA 

JQL16 Root HM056 None 0 NA NA NA NA 

JQL17 Root HM056 None 0 NA NA NA NA 

JQL18 Root HM056 None 0 NA NA NA NA 

JQL19 Nodule HM340 S. meliloti 
(KH46c) 

0 NA NA NA NA 

JQL20 Nodule HM340 S. meliloti 
(KH46c) 

0 NA NA NA NA 

JQL21 Nodule HM340 S. meliloti 
(KH46c) 

0 NA NA NA NA 

JQL22 Nodule HM340 S. medicae 
(WSM419) 

0 NA NA NA NA 

JQL23 Nodule HM340 S. medicae 
(WSM419) 

0 NA NA NA NA 

JQL24 Nodule HM340 S. medicae 
(WSM419) 

0 NA NA NA NA 

JQL25 Root HM340 None 0 NA NA NA NA 

JQL26 Root HM340 None 0 NA NA NA NA 

JQL27 Root HM340 None 0 NA NA NA NA 

JQL28 Nodule HM034 S. meliloti 
(KH46c) 

0 NA NA NA NA 

JQL29 Nodule HM034 S. meliloti 
(KH46c) 

0 NA NA NA NA 

JQL30 Nodule HM034 S. meliloti 
(KH46c) 

0 NA NA NA NA 

JQL31 Nodule HM034 S. medicae 
(WSM419) 

0 NA NA NA NA 

JQL32 Nodule HM034 S. medicae 
(WSM419) 

0 NA NA NA NA 

JQL33 Nodule HM034 S. medicae 
(WSM419) 

0 NA NA NA NA 

JQL34 Root HM034 None 0 NA NA NA NA 
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JQL35 Root HM034 None 0 NA NA NA NA 

JQL36 Root HM034 None 0 NA NA NA NA 

Table S2. Metadata regarding the 138 samples used for analysis 
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Network Name Mt_General Mt_Leaf Mt_Nodule Mt_Root Mt_JQL Mt_JQL_Nodule 

Tissue type(s) Leaf, Root 
Nodule 

Leaf Nodule Root Root and 
Nodule 

Nodule 

Samples 102 45 37 20 36 24 

Genes 
included 

24,067 21,822 21,054 23,773 23,131 22,123 

Edges 289,598,211 238,088,93
1 

221,624,93
1 

282,565,87
8 

267,510,015 244,702,503 

Table S3: Statistics associated with co-expression networks built from different tissue 

types. 
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Chapter 4 supplemental figures 

 

Figure S1. Network GO term enrichment 

Distribution of p-values from density-based GO-term enrichment. A histogram of p-

values for each density-based GO-term enrichment test based on its density, relative to 

the distribution of density values from random gene sets similar in size. 
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Figure S2. Co-expression/ Height GWAS discoverable gene summary 

Flow chart of candidate gene identification in the height GWAS trait. A) Number of 

discoverable genes (FDR < 0.35) using the height GWAS with each co-expression 

network. Colors represent the window size parameter used with Camoco. B) The 

number of SNP’s and genes that were included in each analysis. 

 

 


