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The world will long be, but of you and me

No sign, no trace for anyone to see;

The world lacked not a thing before we came,

Nor will it miss us when we cease to be.

–KHAYYAAM
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Abstract

Stochastic computing (SC), a paradigm first introduced in the 1960s, has received

considerable attention in recent years as a potential paradigm for emerging technologies

and “post-CMOS” computing. Logical computation is performed on random bitstreams

where the signal value is encoded by the probability of obtaining a one versus a zero. This

unconventional representation of data offers some intriguing advantages over conventional

weighted binary. Implementing complex functions with simple hardware (e.g., multipli-

cation using a single AND gate), tolerating soft errors (i.e., bit flips), and progressive

precision are the primary advantages of SC. The obvious disadvantage, however, is latency.

A stochastic representation is exponentially longer than conventional binary radix. Long

latencies translate into high energy consumption, often higher than that of their binary

counterpart. Generating bit streams is also costly. Factoring in the cost of the bit-stream

generators, the overall hardware cost of an SC implementation is often comparable to a

conventional binary implementation.

This dissertation begins by proposing a highly unorthodox idea: performing com-

putation with digital constructs on time-encoded analog signals. We introduce a new,

energy-efficient, high-performance, and much less costly approach for SC using time-

encoded pulse signals. We explore the design and implementation of arithmetic operations

on time-encoded data and discuss the advantages, challenges, and potential applications.

Experimental results on image processing applications show up to 99% performance

speedup, 98% saving in energy dissipation, and 40% area reduction compared to prior

stochastic implementations. We further introduce a low-cost approach for synthesizing

sorting network circuits based on deterministic unary bit-streams. Synthesis results

show more than 90% area and power savings compared to the costs of the conventional

binary implementation. Time-based encoding of data is then exploited for fast and

energy-efficient processing of data with the developed sorting circuits.

Poor progressive precision is the main challenge with the recently developed determin-

istic methods of SC. We propose a high-quality down-sampling method which significantly

improves the processing time and the energy consumption of these deterministic methods

by pseudo-randomizing bitstreams. We also propose two novel deterministic methods
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of processing bitstreams by using low-discrepancy sequences. We further introduce

a new advantage to SC paradigm-the skew tolerance of SC circuits. We exploit this

advantage in developing polysynchronous clocking, a design strategy for optimizing the

clock distribution network of SC systems. Finally, as the first study of its kind to the best

of our knowledge, we rethink the memory system design for SC. We propose a seamless

stochastic system, StochMem, which features analog memory to trade the energy and

area overhead of data conversion for computation accuracy.
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Chapter 1

Introduction

Stochastic Computing (SC), first advocated by Gaines [11, 12] and Poppelbaum [13]

in 1967, has received renewed attention in recent years [14, 15, 2, 16, 4, 17, 18, 19].

This is due to the growing uncertainty in design parameters, and therefore, in design

functionality, as induced by imbalances in modern technology scaling. Image and video

processing [1, 4, 20, 21, 22], digital filters [23, 24, 25], low-density parity check decoding

and error correction [26, 27, 28, 29, 30] and neural networks [31, 32, 33, 34, 35, 36, 37,

38, 39, 40, 41] have been the main target applications for SC.

In SC, circuits operate on randomized bitstreams. Independent of the length (and

interleaving of 0s and 1s), the ratio of the number of 1s to the length of the stream

determines the value of the bitstream. Computation accuracy increases with the length

of the bitstream. In contrast to conventional binary radix, all digits of a bitstream have

the same weight. In the “unipolar” representation, a real-valued number x (0 ≤ x ≤ 1) is

represented by a stream in which each bit has probability x of being one and probability

1− x of being zero. In the “bipolar” representation, a real-valued number y (−1 ≤ y ≤ 1)

is represented by a stream in which each bit has probability y+1
2 of being one and

probability 1 − y+1
2 of being zero. For example, 1101010000 is a representation of 0.4

in the unipolar and -0.2 in the bipolar format. While the unipolar format can only be

used for representing positive data, the bipolar format can deal with both positive and

negative values. With the same length bit-stream, however, the precision of unipolar

format is twice that of the bipolar format. To represent a real number with a resolution

of 2−M in the unipolar format, a stream of 2M bits is required.

1
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Weighted binary radix has been the dominant format for representing numbers in

the field of computer engineering since its inception. The representation is compact;

however, computing on this representation is relatively complex, since each bit must be

weighted according to its position. A stochastic representation is much less compact than

conventional weighted binary radix. However, complex operations can be performed with

remarkably simple logic. For example, a single standard AND gate performs multiplication

with the unipolar representation; a single XNOR gate performs multiplication with the

bipolar representation. A multiplexer implements scaled addition and subtraction.

Complex functions, such as exponentials and trigonometric functions, can be computed

through polynomial approximations with less than a dozen gates [42, 4]. Over a wide range

of arithmetic functions, a reduction in area of 50× or 100× compared to conventional

implementations is common [6], [4].

In addition to producing simple and compact logic, a stochastic representation offers

the advantage of error tolerance [2, 21, 4, 1]. In a noisy environment, bit flips will affect

all the bits with equal probability. With a conventional binary radix representation,

the high-order bits represent a large magnitude; accordingly, faults in these bits can

produce large errors. In contrast, with a stochastic representation, all the bits are equally

weighted. Hence, a single flip results in a small error. This error tolerance scales to high

error rates so that multiple bit flips produce only small and uniform deviations from the

nominal value.

Progressive precision [1] is another interesting advantage of computation on stochastic

bit-streams. The quality of the results improves as the computation proceeds. This is

because short sub-sequences of long random bit-streams provide low-precision estimates

of the streamsâĂŹ values. This property can be exploited in making quick decisions on

the input data and so increasing the processing speed.

Given an input value, say in binary radix, the conventional approach for generating a

stochastic bitstream with probability x is as follows. Obtain an unbiased random value

0 ≤ r ≤ 1 from a random [43][44] or pseudorandom source [45, 46]; compare it to the

target value x; output a one if r ≤ x and a zero otherwise. Figure 1.1 illustrates the

approach. The “random number generator” is usually a linear-feedback shift register

(LFSR), which produces high quality pseudo-randomness [45]. Assuming that the pseudo-

random numbers are uniformly distributed between 0 . . . 2M − 1, the value stored in
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Figure 1.1: Stochastic Number Generator.

the constant number register should be 2M · x. In the output, each bit is one with

pseudo-probability 2M · x/2M = x [12, 31].

The obvious disadvantage of SC, however, is the latency. A stochastic representation

is exponentially longer than conventional binary radix. This translates to long operation

times, particularly if high accuracy is required. Long bitstreams can be compensated

for, to some extent, by shortened clock cycles. Nevertheless, long latencies translate

into high energy consumption which is often higher than that of its binary counterpart.

Another disadvantage is the cost overhead of generating bitstreams. While the hardware

to perform the computation is simple, generating random bitstreams is costly. Indeed, in

prior work, stochastic bitstream generators accounted for as much as 80% of the area and

power of stochastic circuit designs [2]. Factoring in the cost of the bit-stream generators,

the overall hardware cost of an SC implementation is often comparable to that of a

conventional binary implementation.

Recent work has shown that the same constructs used for computation on stochastic

bit-streams can be used for computation on deterministic bitstreams, if these bitstreams

are generated in some specific ways [47, 48]. The results are completely accurate with

no inaccuracy caused by random fluctuation or correlation. While these deterministic

methods are able to provide completely accurate results, they do not offer progressive

precision. The output converges to the expected correct value slowly. This slow conver-

gence makes the deterministic approaches inefficient for applications that can tolerate

some inaccuracy (e.g., image processing and neural network applications).

Furthermore, the common focus of SC proposals from 1960s onwards has been

stochastic logic (arithmetic), neglecting memory, which represents a crucial system

component. Due to the difference in data representation, integrating conventional memory

(designed and optimized for non-SC) in SC systems inevitably incurs a significant data

conversion overhead.
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This dissertation provides some new views to SC paradigm to address the above-

mentioned limitations and challenges. We introduce novel synthesis methodologies and

research directions to SC with the goal of mitigating the hardware cost overhead, reducing

the processing time and energy consumption, and improving the accuracy. The remainder

of this dissertation is organized as follows.

• In Chapter 2, we introduce a new, energy-efficient, high-performance, and much less

costly approach for performing SC using time-encoded pulse signals. We explore

the performance of different stochastic operations for data processing of time-

encoded inputs. We discuss the advantages, challenges, and potential applications

for computation on such time-encoded signals.

• In Chapter 3, we propose a novel area- and power-efficient approach for synthesizing

sorting network circuits based on deterministic unary-style bit-streams. To mitigate

the long latency of processing input digital bitstreams, we exploit the idea of

time-encoding data. We validate the method with two implementations of an

important application of sorting, median filtering.

• Chapter 4 addresses an important challenge with the recently developed determin-

istic methods of SC, the poor progressive precision of processing unary bitstreams.

We improve the progressive precision property of these deterministic methods by

generating pseudo-random and low-discrepancy deterministic bitstreams. Experi-

mental results show a significant improvement in the processing time and energy

consumption compared to prior work when the application can tolerate slight

inaccuracy.

• Chapter 5 introduces a new advantage to SC paradigm, the skew tolerance of SC

circuits. We develop Polysynchronous Clocking, a design strategy for optimizing

the clock distribution network (CDN) of stochastic systems. By removing and

relaxing the clock network, we achieve a significant improvement in the latency,

area, and energy consumption of stochastic systems while keeping the quality of

the results. We show that circuits designed with either of these polysynchronous

approaches are as tolerant of errors as conventional synchronous stochastic circuits.

• In Chapter 6, we rethink the memory system design for SC by integrating analog
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memory with conventional stochastic systems. A seamless stochastic system,

StochMem, is introduced which features analog memory to trade the energy and

area overhead of data conversion for computation accuracy. StochMem can reduce

the energy wasted in the conversion units significantly at the cost of a slight loss in

computation accuracy.

• Chapter 7 summarizes the contributions of this dissertation and present important

future directions.



Chapter 2

Time-Based Computing with

Stochastic Constructs

This chapter explores an evolution of the concept of stochastic computing (SC). Instead

of encoding data in space, as random bitstreams, we encode values in time. Computation

is performed on analog periodic pulse signals. We review the performance of different

stochastic operations including operations with independent inputs and operations with

correlated input for data processing of time-encoded data. We show how input data

from a sensing circuit can be converted to time-encoded data and processed with digital

stochastic logic. We discuss the advantages, challenges, and potential applications for

computation on time-encoded signals. This chapter’s material has been published in [48],

[49],[18], and [50].

2.1 Motivation

A premise for SC is the availability of stochastic bitstreams with the requisite prob-

abilities. Sensing circuits, such as image sensors, convert the sensed data (e.g., light

intensity) to an analog voltage or current. The voltages or currents are then converted

to digital form, as binary radix, with costly analog-to-digital convertors (ADCs). Finally,

stochastic bitstream generators, consisting of random number generators (i.e., LFSRs)

and comparators, are used to convert the data from binary radix format to stochastic

bitstreams. Generating streams with a resolution of 2M requires a generator that can

6
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produce 2M unique values. Even ignoring the cost of ADCs which are similarly required

in the conventional binary radix-based systems, the high cost of the pseudo-random

number generation diminishes one of the main advantages of SC: low hardware cost. A

high hardware cost also means a significant amount of power. Prior work has shown

that bitstreams 256 to 1024 bit long are often required to satisfy output quality with SC

circuits [4, 2]. Noting that energy = power × time, the long run-time of stochastic cir-

cuits, together with the high power consumption of the SNGs, could lead to significantly

higher energy use than their conventional binary counterparts [51].

In this chapter, we introduce a new, energy-efficient, high-performance, and much less

costly approach for generating stochastic bitstreams using analog periodic pulse signals.

As technology has scaled and device sizes have gotten smaller, the supply voltages have

dropped while the device speeds have improved [52]. Control of the dynamic range in the

voltage domain is limited; however, control of the length of pulses in the time domain can

be precise [52, 53]. Encoding data in the time domain may be more accurate and efficient

than converting signals into binary radix. This time-based representation is an excellent

fit for low-power applications that include time-based sensors, such as image processing

circuits in vision chips. Converting a variety of signals from an external voltage to a

time-based representation can be done much more efficiently than a full conversion to

binary radix.

The time encoding consists of periodic signals, with the value encoded as the fraction

of the time that the signal is in the high (on) state compared to the low (off) state in

each cycle. We call these pulse-width modulated (PWM) signals. By exploiting pulse

width modulation, signals with specific probabilities can be generated by adjusting the

frequency and duty cycles of the PWM signals. These signals can be treated as inputs to

the same logical structures used in SC, with the value defined by the duty cycle. The

duty cycle (0 ≤ D ≤ 1) describes the amount of time the signal is in the high (on) state

as a percentage of the total time it takes to complete one cycle. As a result, the signal is

encoded in time. The frequency f = 1
T of the PWM signal determines how long it takes

to complete a cycle T and, therefore, how fast it switches between the high and the low



8

1

Time→

0V

1V

(a) 20% duty cycle

0V

1V

(b) 50% duty cycle

1 2 3 4 5
0V

1V

(c) 80% duty cycle

Figure 2.1: PWM signals with different duty cycles. (a) 20% duty cycle. (b) 50% duty

cycle. (c) 80% duty cycle.

states. Thus, a PWM signal f(t) is defined as:

f(t) =

yhigh N.T < t ≤ N.T + (1−D).T

ylow N.T + (1−D).T < t ≤ (N + 1).T

where yhigh and ylow are the high and low values of the signal, N = 0, 1, 2, · · · are the

consecutive PWM cycles, and D is the duty cycle. Figure 2.1 shows three PWM signals

with different duty cycles D when T = 1, yhigh = 1V , and ylow = 0V .

Our approach is motivated by the following observation: a stochastic representation

is a uniform, fractional representation. All that matters in terms of the value that is

computed is the fraction of the time the signal is high. For example, if a signal is high

25% of the time, it is evaluated as 0.25 in the unipolar format. Similarly, PWM signals

can be treated as time-encoded inputs with values defined by their duty cycle. For

example, the PWM signals shown in Figure 2.1 represent 0.2, 0.5, and 0.8 in the unipolar

and -0.6, 0.0, and 0.6 in the bipolar representation.

Alaghi et al. [1] proposed a specific design of an SNG unit for vision chips. Vision

chips have image sensors that convert the perceived light intensity to an analog electrical

voltage. The sensed voltage is converted to a stochastic number by comparing it to a

random voltage generated by an LFSR-based counter and a digital-to-analog converter

(DAC). Figure 2.2 illustrates their approach. We will show that, by working with PWM
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Figure 2.2: SNG proposed in [1] for vision chips.
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Figure 2.3: A common analog PWM generator.

signals, we can eliminate both the DAC as well as the LFSR. The result is a much less

costly SNGs for applications that have analog electrical voltages as inputs.

2.2 PWM as the Stochastic Number Generator

In many electronic systems, existing analog inputs or onboard microcontrollers can be

employed to generate PWM signals [54]. The simplest way to generate a PWM signal is

to feed a sawtooth wave into the first input of an analog comparator and a control voltage

into the second. The frequency of the sawtooth waveform determines the sampling rate

of the signal. Thus, by changing the frequency of this wave, one can adjust the frequency

of the generated PWM signal.

Figure 2.3 shows a common design for an analog PWM generator. The duty cycle

of the PWM signal is set by changing the DC level of the input signal. The higher the

DC level is, the wider the PWM pulses. The range of the DC signal varies between the

minimum and maximum voltages of the triangle wave. For example, if we adjust the DC

signal to have a level exactly half-way between the minimum and maximum, the circuit

will generate a PWM signal with a duty cycle of 50%. This will correspond to an input

value of 0.5 in the unipolar and 0.0 in the bipolar representation.

Figure 2.4 shows the design of a low-cost PWM generator, consisting of a ramp

generator, a clock signal generator, and an analog comparator. The input is a current

coming from a sensing circuit that controls the duty cycle of the PWM signal. The clock
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Fig. 1: The design of our PWM generator. The duty cycle is determined by the
current coming from the sensing circuit (a photodiode, or a voltage controlled
current source, etc) and the Reset pulse defines the frequency of the PWM
signal. Vref is a fixed reference voltage.

Figure 2.4: The design of our PWM generator. The duty cycle is determined by the

current coming from the sensing circuit (a photodiode, or a voltage controlled current

source, etc) and the Reset pulse defines the frequency of the PWM signal. Vref is a fixed

reference voltage.

generator provides the required Reset signal which determines the frequency of the PWM

signal. Ring oscillators consisting of an odd number of inverter gates can be used as the

clock generator. The frequency of the Reset clock can be adjusted by either changing

the supply voltage or changing the number of inverters in the oscillator. In the 45nm

technology, a ring of approximately 89 inverter gates can generate a local clock with a

period of 1ns with a supply voltage of 1.0V.

Table 2.1 shows an area-power comparison of the proposed PWM generator shown

in Figure 2.4 with prior methods for SNGs: 1) the LFSR-based method in [2], and 2)

the method proposed for vision chips in [1]. The results are for 45nm technology. We

assume that the inputs are analog voltages or currents coming from a sensing circuit.

Table 2.1: Area-Power comparison of different SNGs

SNGs Unit Area (µm2) Power @1-3GHz (µW )

Conventional SNG [2]

(with 8-bit LFSR)

LFSR+Comparator 248 335-1013

ADC [55] >400,000 >10,000

Special SNG

for vision chips [1]

LFSR 167 298-892

DAC + Comparator equivalent to an ADC

PWM Generator

(1-3 GHz freq.)

Comparator 20-58 65-192

Ramp Generator 10-32 11-29

Clock Generator 124-37 ∼175
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Figure 2.5: The ENOB of the proposed PWM generator shown in Figure 2.4 when

generating PWM signals with frequencies from 0.5 to 3 GHz. More detail on the noise

modeling of the implemented PWM generator will be discussed in Section 2.5.2.

The effective number of bits (ENOB) corresponding to different frequencies of the PWM

generator is shown in Figure 2.5. Analog-to-digital convertors (ADCs) are used to obtain

a digital representation for the LFSR-based method. The cost of a 45nm SAR ADC is

taken from [55]. The special SNG proposed for vision chips resembles an ADC; we assume

that it is roughly as expensive as a SAR ADC. The Synopsys Design Compiler was used

to synthesize the SNGs. The results in Table 2.1 demonstrate that our mixed-signal

method, based on PWM generators, has much lower area and power costs than the prior

methods in cases where the inputs are in analog voltage or current form. Accordingly,

the approach is a good fit for real-time image processing circuits, such as those in vision

chips. These have image sensors that convert the perceived light intensity to an analog

voltage or current.

Note that in prior methods a counter was used to convert stochastic streams back

into real values in the digital domain. To convert the stochastic signals directly to a

value in the analog domain, prior work used a simple RC integrator circuit to average the

signal [56, 57]. For a faster response time, we use a Gm-C active integrator to average

the output from processing PWM signals and measure the fraction of the time that the

signal is high. For example, for a PWM signal with a period of T , duty cycle of D,

yhigh = 1V , and ylow = 0V , the integrator gives the average value of the first period of
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Figure 2.6: Time-based computing with stochastic constructs. An ATC converts the

sensed data to a time-encoded pulse signal. The converted signal is processed using the

stochastic circuit, and the output is converted back to a desired analog format using a

TAC.

the signal as follow:

ȳ =
1

T

∫ T

0
f(t)dt =

1

T
(

∫ (1−D)T

0
ylowdt+

∫ T

(1−D)T
yhighdt)

=
1

T
(T.(1−D).ylow + T.D.yhigh) = D

2.3 Stochastic Systems with Time-Encoding Signals

Figure 2.6 shows the flow of computing on time-encoding signals. Assuming that the

sensing circuitâĂŹs output is in voltage or current form, an analog-to-time converter

(ATC) circuit (i.e., a PWM signal generator) is used to convert the sensed data to a

time-encoded pulse signal. The converted signal is processed using the same circuit

constructs as are used in SC. The output is converted back to a desired analog format

using a time-to-analog converter (TAC) (i.e.,a voltage integrator). In what follows, we

discuss the implementation of basic stochastic operations operating with PWM signals.

Then we extend the discussion to more complex examples consisting of a multi-level

combination of stochastic operations.

2.3.1 Stochastic Operations with PWM signals

Stochastic operations can be divided into two main categories with respect to correlation

between their inputs: operations that require independent (i.e., uncorrelated) inputs

such as multiplication and scaled addition, and operations that require highly correlated

inputs such as absolute-valued subtraction, minimum and maximum value function, and

comparison.
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Multiplication

In the SC representation, a single AND (XNOR) gate performs multiplication if the

unipolar (bipolar) format is used. The multiciplication operation presumes that the

inputs are independent, uncorrelated streams [31]. Connecting two PWM signals with

the same duty cycle and the same frequency to the inputs of an AND gate will evidently

not work. It produces an output signal equal to the two inputs, not the square of the

value as required. However, as we will show, one can use PWM signals provided that

they have different frequencies (recall that we represent values by the duty cycle of PWM

signals, not their frequency).

Instead of continuous-valued time signals, assume for the sake of argument that PWM

signals are represented as bitstreams. For instance, assume an input value X = 3/5

(a signal with duty cycle of 60%) is represented by the bitstream 11100, and an input

Y = 1/2 (a duty cycle of 50%) is represented by the bitstream 1100. Note that the

stream for X has length 5 while that for Y has length 4. Suppose we multiply X and

Y with an AND gate. Let the bitstreams run for 20 clock cycles, corresponding to 4

repetitions of X and 5 repetitions of Y . Taking the bit-wise AND of the streams

X =11100111001110011100

Y =11001100110011001100

X.Y=11000100000010001100

we observe 6/20 ones in the output, the expected value, since 3/5× 1/2 = 6/20. The

results of this sort of multiplication operation is always correct if one chooses stream

lengths that are relatively prime and let them run up to the common multiple. This is

because when the length of the inputs are relatively prime, the difference between the

lengths results in a new phase between the signals in each repetition until they get to

the common multiple. A new initial phase in each repetition causes each bit of the first

bitstream to see every bit of the second stream. This is, intuitively, equivalent to sliding

one bitstream past the other. The bitstreams are therefore multiplied by convolving

through sliding and ANDing repeatedly [58, 59, 47].

Proof. Let a/m be represented by a stream of m bits consisting of a bits of 1’s with

the rest of the bits being 0. Similarly, let b/n be represented by a stream of n bits with b

bits of 1’s and the remaining bits being 0. Assume that we repeat both streams to reach
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Figure 2.7: Discretizing a continuous PWM signal.

a total of the least common multiple (LCM) number of bits, or for simplicity mn bits in

each stream. Applying an AND gate to these streams, we will have a× b bits of 1’s if and

only if the set
{
mk + i (mod n) : k = 0, 1, . . . , n− 1

}
is a complete set of residues mod

n. Here, i is the position of any 1 bit in the first stream. The first observation is that,

whether the above holds or not does not depend on i. The second observation is that,

when i = 0, this statement is true if and only if m and n are relatively prime. Therefore,

ANDing the above streams produces a
m × b

n if and only if m and n are relatively prime.

Q.E.D.

This argument can be easily expanded to analog PWM signals if the continuous

signals are discretized into bitstreams, as illustrated in Figure 2.7. A PWM signal can

be discretized into a bitstream by dividing the signal into pulses of size epsilon and

assigning 0/1 bits to these pulses. The relatively prime length rule is then applicable to

this discrete representation of the PWM signals and continues to hold as ε→ 0. Note

that in signal processing terminology, PWM signals with relatively prime periods are

inharmonic.

To illustrate this argument, we simulated multiplication on a thousand sets of random

input values represented by PWM signals in MATLAB [60]. We fixed the period of the

first PWM signal at 20 ns while varying the period of the second from 1 ns to 20 ns in

increments of 0.1 ns. For each pair of periods, we converted the randomly generated sets

into corresponding PWM signals and then performed multiplication for 1000 ns. The

accuracy of the results was verified by calculating the difference between the expected

value and the measured output value for all sets. To convert the output signals into

deterministic real values, we measured the fraction of the time that the output is high

and divided this by the total time. The average error rates for multiplication for different
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Figure 2.8: Average error rates when performing a multiplication operation using an AND

gate for 1000 ns on 1000 sets of random input values when the inputs are represented

using PWM signals. The period of the first input is set at 20 ns while the period of the

second changes from 1 to 20 ns.

pairs of periods are shown in Figure 2.8.

As can be seen in Figure 2.8, with the period of the first PWM input signal fixed at

20 ns, choosing 1 ns, 2 ns, 2.5 ns, 4 ns, 5 ns, 8 ns, 10 ns, 12 ns, 15 ns, 16 ns, or values

very close to 20 ns as the period of the second PWM input signal produces poor results.

This can be attributed to an aliasing effect that occurs with periodic signals that are

harmonically related. Eliminating these choices, the measured average error rate for

other values was always less than 0.5%. Note that these results could ideally be extended

to any other range of periods.1 For example, knowing that 20 ns and 13 ns is a good

pair, periods of 2 ns and 1.3 ns, or 10 ns and 6.5 ns would work equally well. From this

observation we make our first conclusion:

Conclusion 1. Stochastic multiplication of numbers represented by PWM signals

produces highly accurate results if the signals are not harmonically related.

With inharmonic PWM signals as inputs of multiplication, the fraction of time

that the output signal is high will converge to the expected value eventually. However,

stochastic circuits are not energy-efficient if the operations run more than what they

actually need to. The question is: How many cycles of PWM signals are required to reach

to a reasonable accuracy? Figure 2.9 shows an example of multiplying two stochastic

numbers, 0.5 and 0.6, represented using two PWM signals. The period of the first PWM

signal is 20 ns and that of the second is 13 ns. The figure shows that, after performing

the operation for 260 ns, the fraction of the total time the output signal is high equals

the value expected, when multiplying the two input values, namely 0.3.
1 In practice, the resolution or effective number of bits (ENOB) of the PWM signals can affect the

accuracy and so limits the extension range.
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Fig. 1: An example of multiplying two PWM signals using an AND gate. IN1
represents 0.5 (50% duty cycle) with a period of 20ns, and IN2 represents 0.6
(60% duty cycle) with a period of 13ns. The output signal from t=0ns to 260ns
represents 0.30 (78ns/260ns=3/10), the expected value from multiplication of
the inputs.

Figure 2.9: Example of multiplying two PWM signals using an AND gate. IN1 represents

0.5 (50% duty cycle) with a period of 20 ns, and IN2 represents 0.6 (60% duty cycle) with a

period of 13 ns. The output signal from t=0 to 260 ns represents 0.30 (78 ns/260 ns=3/10),

the expected value from multiplication of the inputs.

Expanding the example above to different operation times, Figure 2.10 shows the

average error rates of multiplying 1000 pairs of random numbers represented by PWM

signals when a fixed period of 20 ns is selected for the first and a fixed period of 13 ns is

chosen for the second. We vary the operation time. As the figure shows, the output of

multiplications converges to the expected value if the operations continue at least up to the

least common multiple (LCM) of the periods of the input signals (here, 20×13 = 260 ns).

The best possible accuracy is obtained when the operation is run for exactly the LCM

(260 ns) or multiples of the LCM (520 ns and 780 ns). Running the operation longer

than the LCM does not help the accuracy. This is in contrast to prior SC approaches

where increasing the length of bitstreams improves the quality of the results [2, 4, 1].

Let us consider the X.Y stream produced before. The LCM of the input streams was

4× 5 = 20 and after exactly 20 cycles the expected output was produced. Continuing the

operation for another 20 cycles produces exactly the same output with the same ratio of

ones to the length of stream:

X =11100111001110011100 11100111001110011100

Y =11001100110011001100 11001100110011001100

X.Y=11000100000010001100 11000100000010001100

Thus, we can say that the output has a period of 20 cycles. A similar result is observed

when ANDing continuous PWM signals. The output has a period of the LCM. The
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Figure 2.10: Average error rate of multiplying 1000 pairs of random numbers represented

by PWM signals when varying the operation time. The period of the PWM signals

corresponding to the first and to the second number in each trial is 20 and 13 ns,

respectively.

signal produced from the first LCM to the second LCM is exactly the same as the signal

produced from time=0 to the first LCM. This motivates our second conclusion:

Conclusion 2. The best accuracy when multiplying numbers represented by PWM

signals is obtained when running the operation for the LCM or multiples of the LCM of

the period of the inputs.

Knowing that relatively prime periods must be selected for the input signals and the

multiplication operation should be run for the LCM of the periods, a new question arises:

Considering available sets of relatively prime periods, each with a different LCM,

what is the best set of periods to reach to a desired accuracy? For example, (17 ns, 3 ns)

and (17 ns, 7 ns) are two possible sets of periods to generate the PWM input signals

for a multiplication operation. The first set has an LCM of 51 ns while the second’s is

119 ns. Which one of these two sets is a better choice?

Figure 2.11 shows the average error rates of multiplying 1000 pairs of random numbers

represented by PWM signals when different sets of relatively prime periods are selected

as the periods of the input signals and the operations are run for the LCM of the periods.

Each set of periods has a different LCM. As can be seen in the figure, the larger the

LCM, the lower the average error rate. The reason is that larger LCMs are produced
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Fig. 1: The average error rate for multiplying 1000 pairs of random numbers
represented by PWM signals when the period of the first and the second PWM
signal are relatively prime integers in the interval [2, 20]. A lower average
error rate in the figure means a higher ENOB in the computations.

Figure 2.11: The average error rate for multiplying 1000 pairs of random numbers

represented by PWM signals when the period of the first and the second PWM signal are

relatively prime integers in the interval [2, 20]. A lower average error rate in the figure

means a higher ENOB in the computations.

by longer periods and a longer period means a higher ENOB in representing the input

values and so a higher ENOB in the computations. Note that while generating PWM

signals with longer periods and so larger LCMs gives more accurate results, this requires

a longer operation time. Thus, if a set of periods with a smaller LCM can satisfy the

accuracy requirements, this might be the better choice. Thus, we conclude the following:

Conclusion 3. The larger the LCM of the periods of the PWM input signals, the

higher the accuracy when performing multiplication.

Scaled Addition and Subtraction

Stochastic values are restricted to the interval [0, 1] (in the unipolar case) or the interval

[-1, 1] (in the bipolar case). So one cannot perform addition or subtraction directly, since

the result might lie outside these intervals. However, one can perform scaled addition

and subtraction. These operations can be performed with a multiplexer (MUX) [4].

The performance of a MUX as a stochastic scaled adder/subtracter is insensitive to the

correlation between its inputs. This is because only one input is connected to the output

at a time. Thus, highly overlapped inputs like PWM signals with the same frequency

can be connected to the inputs of a MUX. The important point when performing scaled
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Figure 2.12: Example of the scaled addition of two PWM signals using a MUX. IN1 and

IN2 represent 0.2 and 0.6 with a period of 5 ns, and Sel represents 0.5 with a period of

4 ns. The output signal from t = 0 to 20 ns represents 0.40 (8 ns/20 ns = 4/10), the

expected value from the scaled addition of the inputs.

addition and subtraction with a MUX on PWM signals is that the period of the select

signal should not be harmonically related to the period of the input signals. For example,

5, 5, and 4 ns is a good set of numbers for the period of the first, the second, and the

select input signals, respectively.

Figure 2.12 shows an example of scaled addition on two stochastic numbers, 0.2

and 0.6, represented by two PWM signals (both have periods of 5 ns). A PWM signal

with duty cycle of 50% and period of 4 ns is connected to the select input of the MUX.

As shown, after performing the operation for 20 ns, the fraction of the total time the

output signal is high equals the expected value, 0.40. The same argument we had for

the multiplication operation also exists here – the scaled addition/subtraction operation

should be run for the LCM or multiples of the LCM of the period of the input signals

and that of the select signal to produce the correct output. Note that choosing different

periods for the main inputs of the MUX results in a larger LCM and so results in a

longer operation time. Furthermore, generating inputs with different periods requires

extra clock generator circuitry. We conclude that it is most efficient to generate signals

for the main inputs of the MUX with the same period.

A unique property of MUX-based operations is that large LCMs are not necessarily

required to produce accurate results. Similar to what we saw for the multiplication
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Figure 2.13: Average error rate of performing scaled addition on 1000 pairs of random

numbers represented by PWM signals when the period of the first and the second PWM

signal is the same but different and relatively prime with the period of the PWM select

signal. The periods are selected from integers in [2, 20] interval.

operation, selecting inharmonic periods with a large LCM guarantees the accuracy of

the results for the scaled addition/subtraction. However, it is possible for the stochastic

MUX-based operations to produce accurate results even with inputs with very small

periods. Figure 2.13 shows the average error rate of performing scaled addition when

inharmonic PWM signals are connected to the main and select inputs of the MUX.

Each point in Figure 2.13 represents the accuracy and the LCM corresponding to one

set of periods. The first and the second numbers in each set are the period of the main

PWM inputs and the third number is the period of the select input. As the results show,

when the period of the PWM select signal is an “even” value (2 ns, 4 ns,. . . ) choosing

“odd” periods as the period of the main PWM inputs result in highly accurate outputs.

When choosing an “even" period for the inputs and an “odd” period for the select signal,

a large LCM is needed to produce accurate results. The reason is shown in Figure 2.14.

A select signal with an “even” period perfectly splits an input with an “odd” period in

two periodic parts with the same duration at the high level. Thus, it does not matter to

which input of the MUX the input signal is connected. However, in the case of an “odd"

period for the select signal, connecting the input signal to different inputs of the MUX

selects different parts of the input signal with different high durations. This motivates
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Fig. 1: Examples of choosing an “odd” or an “even” number as the period
of the MUX’s select signal. The input is a PWM signal with D=30%. Black
(blue) lines are parts of the input signal that will be connected to the output
of the MUX when the input is connected to the first (second) input.

Figure 2.14: Examples of choosing an âĂĲoddâĂİ or an âĂĲevenâĂİ number as the

period of the MUXâĂŹs select signal. The input is a PWM signal with D = 30%. Black

(blue) lines are parts of the input signal that will be connected to the output of the MUX

when the input is connected to the first (second) input.

our fourth conclusion:

Conclusion 4. Optimal choices for MUX-based operations are those with an “even”

value for the period of the select input and an “odd" value for the period of the main

inputs. The operation should run for the LCM of the periods.

Absolute Value subtraction

Correlation between the inputs of a stochastic circuit can sometimes change the func-

tionality of a circuit, which might result in a more desirable operation. An XOR gate

with independent inputs performs the function z = x1(1− x2) + x2(1− x1). However,
when fed with correlated inputs where the two input streams have maximum overlap in

their 1s, the circuit computes |x1 − x2|. Consider x1 = 11101 and x2 = 10001, two 5-bit

long correlated stochastic streams representing 4/5 and 2/5. Connecting these streams

to the inputs of an XOR gate produces Y = 01100, the expected value from performing

absolute valued subtraction. In this case, the output stream has the same number of bits

as the input streams. This operation is particularly useful in stochastic implementation

of image-processing algorithms, such as Robert’s cross edge detection algorithm [1].

When working with PWM signals, high correlation or maximum overlap is provided



22

1

IN1

IN2
Out

0 20 40 60 80 100

IN1

IN2

Out

Figure 2.15: Example of performing stochastic absolute value subtraction using an

XOR gate when two synchronized PWM signals are used as the inputs of the gate, one

representing 0.5 (D = 50%) and the other 0.8 (D = 80%). Both PWM signals have a

period of 20 ns. The output signal from t = 0 to 20 ns represents 0.3, the expected value

for |IN1− IN2|.

by satisfying two requirements: 1) choosing the same frequency for the input signals,

and 2) having maximum overlap between the high parts of the signals. Thus, two PWM

signals that have the same period, with the high part in each one located at the start or

end of each period, are called correlated (or synchronized) signals. Figure 2.15 shows an

example of performing absolute value subtraction on two synchronized PWM signals. As

the figure shows, the correct output with the highest possible accuracy is ready right

after performing the operation for only one period of the PWM input signals. Thus, the

following holds.

Conclusion 5. For operations, such as absolute value subtraction, which work only

with correlated inputs (synchronized PWM signals), the period of the output signal, and,

thus, the operation time, equals the period of the input signals.

This conclusion introduces an important advantage of working on the synchronized

PWM signals which is that they eliminate the requirement of running the operation for

several repetitions of the input signals to obtain an accurate output signal. An important

point, however, is that there is a limitation in using such operations that require highly

correlated inputs. Providing the required synchronization (maximum high part overlap

between the input signals) is difficult for the second (or higher) level of the circuit where

the signals are the outputs of a previous level. Nonetheless, performing these operations
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Figure 2.16: Performing minimum and maximum operations on two synchronized PWM

signals: IN1 represents 0.3 and IN2 represents 0.7. Both PWM signals have a period of

10 ns.

can still be advantageous at the first level of circuits.

Minimum and Maximum

An AND gate with independent inputs works as a multiplier. However, with highly

correlated inputs, it gives the minimum of the two stochastic streams. An OR gate

supplied with highly correlated streams gives the maximum of the two stochastic streams.

Thus, a basic sorting unit can be constructed with only an AND and an OR gate: supplied

with two correlated inputs, it produces the smaller of the two values on one output line,

and the greater of the two on the other. Such a low-cost implementation of sorting can

save orders of magnitude in hardware resources and power when compared to the costs

of a conventional binary implementation. As we will discuss in Chapter 3, such circuits

are important for low-cost implementation of applications such as median filtering.

Figure 2.16 shows two synchronized PWM signals and the outputs of performing the

minimum and maximum operations on these. As can be seen, the expected output is

produced after a single cycle of the PWM input signals. Continuing the operations for

additional cycles (the dotted lines) does not improve the accuracy of the results.
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Figure 2.17: Comparing stochastic numbers (SNs), represented by synchronized PWM

signals, using a D-type flip-flop: (up) IN1 < IN2, and thus Out=0; (down) IN1 > IN2,

and thus Out=1.

Comparison

Comparison of stochastic numbers (SNs) is another common operation in stochastic

circuits. Li and Lilja [61] proposed a stochastic comparator using an FSM-based stochastic

tanh circuit developed by Brown and Card [31]. However, FSM-based circuits are often

very expensive to implement. Figure 2.17 shows how to use a simple D-type flip-flop as

a stochastic comparator. For correct functionality, the inputs of the flip-flop must be

correlated. For a digital representation, all 1s in each stream must be placed together at

the beginning of the stream. The first SN should be connected to the D input, and the

second one should be connected to the falling edge triggered clock input. The output of

comparing two SNs, N1 and N2, will be 0 if IN1 < IN2, and 1 otherwise.

Figure 2.17 also shows two possible cases of comparing SNs, represented by PWM

signals using a D-type flip-flop. When IN1 is smaller than IN2, the falling edge of the

PWM signal representing N2 causes the flip-flop to sample a low-level signal, and thus
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logical-0 is produced at the output. When N1 is greater than N2, the PWM signal

representing N1 is still at a high level when the falling edge of IN2 occurs. So, logical-1

will be produced at the output of the flip-flop.

2.3.2 Multilevel Circuit PWM signals

In the following, we briefly discuss the functionality of multilevel stochastic logic when

PWM signals are used as the inputs of the circuit. An interesting point in performing

stochastic operations on PWM signals is that the output of each level can be used as the

input of the next level even though the output is not a PWM signal. When connecting

two PWM signals to a stochastic operator, the output is a conventional stochastic number

whose value cannot be found from the duty cycle but rather by probability of being

in the âĂĲhighâĂİ state. However, the main difference between such an output with

a conventional random stochastic signal is that, since the primary inputs were PWM

signals, the generated output is a periodic signal. This property allows us to use the

output of each level as the input to the next level. By knowing the period of the output

signal, the obtained signal and some new signals that are not harmonically related can

be used in the subsequent levels.

Consider the example presented in Figure 2.18.a, a three-level circuit multiplying

four PWM signals with periods of P1, P2, P3 and P4. We want to choose the periods of

the inputs and the required operation time which can lead to accurate outputs. Based

on the conclusions in Section 2.3.1, P1 and P2 should not be harmonically related.

The output of the AND1 gate is a signal with a period of P1 × P2. The accuracy of

the output produced by AND2 depends on the output of AND1 and also on P3, the

period of the third PWM signal. P3 should not be harmonically related to the period

of the signal generated at the output of AND1, and so to P1 and P2. Finally, P4

should not be harmonically related to P1, P2, and P3. The final output has a period

of P1× P2× P3× P4, so the circuit must run for this amount of time to produce an

accurate result.

Expanding the example mentioned earlier to circuits multiplying N PWM signals

with N periods that are not harmonically related, the operation time must be the LCM

of all these periods. The important trade-off here is to select small or large periods for

these signals. Small periods results in a small LCM, and so need a shorter operation
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Figure 2.18: Examples of multilevel stochastic circuits.

time. Larger periods have larger LCMs and so require a longer running time. As shown

in Figure 2.11, the larger the LCM, the higher the accuracy of multiplication. Thus,

selecting the period of the PWM signals for such circuits depends on the accuracy and

timing expectations.

The circuit presented in Figure 2.18.b incorporates all three sorts of basic operations.

The AND gate’s output has a period of P1× P2 while the output of the XOR gate has

a period equal to the period of its inputs, or P3. The minimum operation time for this

circuit is obtained when the MUX’s inputs have the same periods (P1× P2 = P3). P3

must be an “odd” number while a small even value must be selected for P4. For this

circuit the total operation time will be P3×P4. In cases where P3 6= P1×P2, the total

operation time will be the LCM of the period of all inputs, or P1× P2× P3× P4.

2.4 Experimental Results

To validate our ideas, we used stochastic implementations of two well-known digital

image processing algorithms, the Robert’s cross edge detection algorithm and the Gamma

correction function. The core stochastic computation circuit for the Robert’s cross

algorithm was taken from [1], and the core logic for the gamma correction algorithm was

taken from [2] (both shown in Figure 2.19). In the rest of this section, when we refer to the

“prior” approach, we pair the core stochastic logic with input SNGs (LFSR+comparator

as shown in Figure 1.1), and output counters to convert stochastic bitstreams to binary
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Figure 2.19: Robert’s cross edge detection algorithm a) core stochastic logic [1], c)

conventional binary implementation. Gamma correction function b) core stochastic logic

based on ReSC architecture [2], d) a conventional binary implementation [1].

numbers. When we refer to the “PWM” approach, we pair the core stochastic logic with

PWM generators (Figure 2.3) and a voltage integrator to generate the analog output.

The conventional binary implementations of the selected algorithms are also shown in

Figure 2.19.

We implemented SPICE netlists for the stochastic circuits described earlier. Two

128×128 sample images (16384 pixels each) were selected for the simulations. Simulations

were carried out using a 45-nm gate library in HSPICE. We implemented the PWM

generator proposed in Figure 2.4 for converting input pixel values into the corresponding

PWM signals. Figure 2.20 shows the input sample images as well as the output of

processing these images using a deterministic, software-based implementation of each
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Figure 2.20: Original 128×128 sample images and the outputs of processing the input

images using the “golden approach”, the “prior approach”, and the proposed PWM

approach with the Robert’s cross stochastic circuit (first row) and the Gamma correction

stochastic circuit (second row).

algorithm in MATLAB. We call this the “golden” approach, with a 0% average error rate.

Also, we simulated the circuit operation on randomized stochastic streams in the “prior”

approach. The conventional SNG described in Figure 1.1 was used for converting input

pixel intensities into stochastic bitstreams. An 8-bit maximal period LFSR was used as

the pseudo-random number generator. Bitstreams 256 bit long were generated for each

input value. We calculate the average output error rate for the output image produced

by the “prior” approach as follows:

E =

∑128
i=1

∑128
j=1 |Ti,j − Si,j |

255.(128× 128)
× 100

where Si,j is the expected pixel value in the output image and Ti,j is the pixel value

produced using the circuit.

To compare the operation time of the PWM approach with the delay of the prior

approach, and also that of the conventional binary approach, we synthesized the
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Robert’s cross and the gamma correction circuits using the Synopsys Design Com-

piler vH2013.12 [62] with a 45nm gate library. The stochastic circuits had a critical path

of 0.34 and 0.60 ns, respectively. In Sections 2.4.1 and 2.4.2, we first describe the process

of synthesizing the selected circuits with the proposed PWM approach and then compare

performance, area, and energy dissipation of the implemented circuits.

2.4.1 Case Study 1: Robert’s cross edge detector

Each Robert’s cross operator consists of a pair of 2× 2 convolution kernels that process

an image pixel based on its three neighbors as follows:

Si,j =
1

2
× (|ri,j − ri+1,j+1|+ |ri,j+1 − ri+1,j |)

where ri,j is the value of the pixel at location (i, j) of the original input image and Si,j
is the output value computed for the same location in the output image. Figure 2.19.a

shows the stochastic implementation of the Robert’s cross algorithm proposed by Alaghi

and Hayes [1], consisting of a MUX for the scaled addition and two XOR gates to perform

the absolute value subtractions. This circuit is the core computation logic and is shared

between the “prior” stochastic approach and our PWM approach.

Prior Method [1]

To generate the circuit for the prior approach, we pair the core stochastic logic of

Figure 2.19.a with one LFSR and four comparators to generate the input streams feeding

the XOR gates. Only one LFSR is used for the XOR input lines because Alaghi’s

approach relies on correlated bitstreams. Another LFSR and comparator is also necessary

to generate the select stream. Note that when the input is given in analog voltage,

coming from a sensing circuit, an ADC must also be used to convert the analog input

signal into digital form. We ignore the ADC unit in our comparisons. If the cost of the

ADC were to be added, our approach would have shown even larger gains compared to

prior work. The output of the prior approach circuit is fed to a counter to convert the

bitstream to a binary number.
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The PWM Method

Next, we describe how we implemented the Robert’s cross algorithm using the PWM

approach. The core stochastic logic of Figure 2.19.a is paired with PWM generators that

provide the input signals feeding the XOR gates, and the output of the MUX is fed to a

voltage integrator circuit. The following steps are used to synthesize the circuit in the

PWM approach:

Step 1. Frequency Selection. When using PWM signals as inputs of a stochastic

circuit, one has to select appropriate frequencies. As discussed in Section 2.3.1, the inputs

to an XOR gate must be two synchronized PWM signals to compute the absolute value

subtraction. Since the MUX unit is also insensitive to the correlation between input

signals, four synchronized PWM signals corresponding to four pixels of the image can be

connected to the main inputs of the Robert’s cross circuit. The important point here

is to appropriately select the frequency of the PWM signal connected to the select line

of the MUX. This select signal can be a clock signal which is a PWM signal with 50%

duty cyle. The period of this signal must not be harmonically related to the period of

the main inputs of the MUX. Since the period of the signal produced at the output of

the XOR gates is the same as the period of their inputs, the period of the clock signal

must not be harmonically related to the period of the circuit’s main inputs. Considering

the critical path (0.34 ns) as the minimum allowed period of the PWM signals, we chose

0.51 ns as the period of the main PWM input signals and 0.34 ns as the period of the

select signal. These numbers are obtained by scaling (3 and 2 ns) down which is one of

the best set of periods extracted in Section 2.3.1.

Step 2. Operation Time Determination. We showed that the results of per-

forming stochastic absolute value subtraction is ready after running the operation for

only one period of the input PWM signals. For scaled addition/subtraction operations,

the best operation time is the LCM of the periods of the MUX select and input signals.

Since we scaled (3 and 2 ns) down to (0.51 and 0.34 ns), the best operation time is also

obtained by scaling their LCM down by the same scaling factor. Thus, the best operation

time for the synthesized Robert’s cross circuit in the PWM approach is 1.02ns.

Step 3. Clock Generation. Since the frequency of all four PWM inputs is the

same, a clock generator with an oscillation period of 0.51 ns is enough to drive the main

PWM generators. A second clock signal with a period of 0.34 ns is also necessary for
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the select line of the MUX. Thus, a total of two clock generators would be sufficient for

generating the inputs of the Robert’s cross circuit. We used rings of 43 and 29 inverters

to generate the required clock signals.

Comparison

We processed each image pixel separately and computed the corresponding output value.

Comparing the produced output image in the PWM approach with the golden image, the

mean of the output error rates was 1.28%. Thus, the proposed approach could decrease

the average error rate of processing the sample image when it is compared with that of

the prior stochastic approach with 256-bit streams (1.49%). Considering the delay of

the prior stochastic approach (256× 0.34ns = 87.04ns), the PWM approach decreases

the processing time of each pixel by more than 98%, to only 1.02ns. Even if one argues

that the quality of the 32-bit streams (1.98%) is enough for the prior approach, still the

PWM approach has improved the operation time by 90%. The area, power, and energy

consumption of the circuit when working with PWM signals are also presented and

compared with the prior approach in Table 2.2. From the area, area × delay and energy

numbers, we see that the proposed PWM approach has a significant cost advantage when

compared with the prior stochastic approach.

Compared to the conventional binary implementation, although the PWM approach

is slightly slower, it costs 63% less area, dissipates 12% less energy, and reduces the

area-delay product by more than 50%. The main barrier to practical use of the prior

stochastic implementation was its long latency and correspondingly high energy use.

However, as the results presented in Table 2.2 show, the proposed PWM approach is able

to implement the Robert’s cross edge detection algorithm with the advantages of the

stochastic design but as fast and energy-efficiently as the conventional binary design.

2.4.2 Case Study 2: Gamma Correction

A flexible and straight-forward method to utilize SC in different applications is to

synthesize the SC circuits with a MUX-based architecture, called ReSC [2]. This design

approach is simple and area-efficient, and is able to realize polynomial functions that can

be translated to Bernstein Polynomials. The gamma correction function (f(x) = xγ) is a

popular pixel value transformation that can change luminance and tri-stimulus values in
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Table 2.2: Area, delay, power and energy comparison of the implemented circuits for

the conventional binary, prior stochastic and the proposed PWM approach. For the

prior stochastic approach, we ignore the cost of the ADC. Delay and power numbers are

reported for the maximum working frequency.

Circuit Approach
Area (µm2) Delay

(ns)

Power (µW)

(@max freq.)

Energy

(pJ)

Area×Delay

Core SNG Output Circt. Total (µm2 × µs)

Robert

Conventional binary 1626 - - 1626 0.78 1415 1.10 1.26

Stochastic-Prior 22 739 199 960 87.04 2813 244.8 83.55

Stochastic-PWM 22 464 110 596 1.02 943 0.96 0.60

Gamma

Conventional binary 1980 - - 1980 1.03 973 1.00 2.03

Stochastic-Prior 76 982 199 1257 153.6 1672 256.8 181.4

Stochastic-PWM 76 678 110 864 1.8 1690 3.04 1.42

video and image processing systems. This function can be approximated using a Bernstein

polynomial. A stochastic implementation of the gamma correction function for γ = 0.45

based on the ReSC architecture is shown in Fig. 2.19.b. The inputs to this system consist

of six independent bitstreams, each with a probability corresponding to the value x of

the input pixel (denoted as x in the figure), as well as seven random bitstreams set to

constant values, corresponding to the Bernstein coefficients, b0 = 0.0955, b1 = 0.7207,

b2 = 0.3476, b3 = 0.9988, b4 = 0.7017, b5 = 0.9695 and b6 = 0.9939. Additional details of

the circuit can be found in [2].

In the following, just as we did in Case Study 1, we use the same core stochastic

logic for the prior and the PWM methods, but use different input SNG and output

accumulation circuits.

Prior Method [2]

Based on the analysis done in [63], we can use delayed outputs of the same bitstream

to generate multiple bitstreams with small correlations. That results in significant area

savings to the original implementation in [2]. A second LFSR was used for generating the

Bernstein coefficients, making a total of two LFSRs and eight comparators to generate

all the necessary bitstreams in the “prior” approach.
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The PWM Method

Here, we discuss the process of synthesizing the gamma correction circuit using the PWM

approach. The same process can be easily adapted to implement any other function that

can be realized with the ReSC architecture.

Step 1. Frequency selection. At any time, only one input of the MUX is selected

to be connected to the output. As a result, the PWM signals corresponding to the

Bernstein coefficients can be generated with the same frequency. However, the circuit

needs some level of independence between the six PWM signals corresponding to the

input value of x. Fortunately, providing the required independence does not necessarily

require generating signals with different frequencies, as was the case with multiplication.

In the prior stochastic approach, such independence could be provided by shifting the

x streams for one or a few bits and so have a huge savings in the cost of SNG [63][64].

Similarly, we can use a phase shift technique for the PWM approach to make independent

copies of x. An additional step will select the best set of shift phases for the x signals

that can lead to high quality outputs. Synthesis results showed a critical path of 0.60 ns

for the gamma correction circuit. Thus, accordingly, we chose 0.60 ns as the period of

the x signals and 0.9 as the period of the Bernstein coefficient signals. These periods are

the scaled versions of (2 and 3 ns).

Step 2. Operation Time Determination. Since the gamma correction circuit is

built on a MUX-based architecture, accurate outputs can be produced if the circuit runs

for the LCM of the period of the inputs and the period of the PWM signals corresponding

to the input x. Thus, the best operation time for the selected periods is their first common

multiple or 1.8 ns. Note that using the phase shifting technique does not increase the

operation time and highly accurate output can still be produced in LCM time by choosing

the phases of the x signals appropriately.

Step 3. Clock Generation. Two clock generators are necessary for the Gamma

correction circuit. One for generating a clock signal with a period of 0.9 ns for the

Bernstein PWM signals and another one for generating a clock signal with a period of

0.6 ns. The latter drives the PWM generators responsible for generating the x signals.

We used rings of 79 and 53 inverters to generate the required clock signals with periods

of 0.9 ns and 0.6 ns, respectively.

Step 4. Phase Shift Calibration. A supplementary step is required to synthesize
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the ReSC architecture in the PWM approach. In the ReSC circuits, the results of adding

independent copies of signal x determine which input of the MUX at any time must be

connected to the output. Having six similar PWM signals, each signal can be shifted

for a phase between 0 to the period of the signal. When using a ring of inverters as

the clock generator, clock signals with the same frequency but different phases can be

extracted from different stages of the ring. For the gamma correction circuit, we needed

six clock signals all with a fixed period of 0.6 ns but each with a different phase. In

several trials, we measured the average error rates of processing 1000 random pixels when

clock signals with different phases were extracted from different stages of the ring. For

the final implementation, we chose the set of ring stages that led to the minimum average

error rate.

Comparison

The pixels of the sample image were converted to their corresponding PWM signals and

then processed by the implemented circuit. The mean of the error rates in processing all

pixels of the sample image in the PWM approach was 2.18%, which is very close to the

number reported for processing the sample image by the prior stochastic approach. The

operation time for processing each image pixel has decreased from 153.6 ns for the prior

approach to only 1.8 ns in the PWM approach. Also, the area×delay cost and energy

consumptions are all significantly improved by the PWM approach when compared to the

prior stochastic implementation. Note that we did not consider the cost of the required

clock generator in the prior approach. If this cost were to be added, the improvement

from the PWM approach would have been even greater.

Comparing the conventional binary implementation of the gamma correction function

with the prior stochastic approach, we see that the latency of processing each image

pixel, the energy dissipation, and the area-delay product of the stochastic approach are

all significantly increased. The benefits of the prior stochastic approach are limited to

around a 36% area saving and adding the ability to tolerate noise, which is an inherent

property in SC. The PWM approach, on the other hand, not only inherits the noise

tolerance advantage of the stochastic design, it also increases the area saving to 56% and

brings the latency very close to the latency of the conventional binary design. Although

the energy dissipation of the PWM approach is still more than that of the conventional
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design, it is much less than the energy dissipation of the prior stochastic approach.

2.5 Error Analysis

In this section, we first define different sources of error in performing stochastic opera-

tions on PWM signals and then discuss the noise model and noise performance of the

implemented PWM generator.

2.5.1 Sources of Computational Error

There are five primary sources of error in performing stochastic operations on PWM

signals.

1. EG = Error in generating the PWM signals.

A PWM generator has some inherent inaccuracies in converting real values to corre-

sponding PWM duty cycles. This inaccuracy can be defined as the difference between

the expected and the measured duty cycle in the generated signal.

EG = |D − 1

T
× Thigh|

In addition, achieving the desired frequency for the PWM signals is not always

feasible, particularly when using ring oscillators as the clock generator. Changing the

number of inverters is the simplest way to adjust the frequency of the oscillator. The

oscillation period is twice the sum of the delay of all inverter gates, where the delay

of one inverter gate in the selected 45-nm library is 5.69 ps. Considering that an odd

number of inverter gates is required, the period can be increased (decreased) by adding

(removing) an even number of inverters. Thus, the minimum change in period for this

generator is 0.022 ns. This limitation in controlling the period of the PWM generators

can affect the accuracy of operations. Note that in our simulations, the error introduced

in generating PWM signals was always less than 0.4%.

2. ES = Error due to skew noise.

For some stochastic operations, such as absolute value subtraction using XOR gates,

perfectly synchronized PWM signals are necessary to produce accurate results. On-chip

variations or other noise sources affecting ring oscillators can result in deviations from

the expected period, phase shift, or the slew rate of the signals.
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3. EM = Error in measuring output signals.

An analog integrator can be used to measure the fraction of the time the output

signal is high. Longer rise and fall times and imperfect measurement of the high

and low voltages (corresponding to digital ”1” and ”0” values) result in inaccuracies in

measuring the correct output value. We compared the output values measured by our

SPICE-level implementation of the integrator with the expected values from measuring

the outputs produced by the Robert’s cross and Gamma circuit under ideal signal

levels (HSPICE .ideal) when processing sample images. The average error rate of the

measurements was 0.16% for the Robert’s cross and 0.12% for the Gamma correction

circuit.

4. ET = Error due to truncation.

Truncation is another source of error in the PWM-based approach if the operation

runs for any time other than the required operation time. For example, the multiplication

operation must run the LCM or multiples of the LCM of the period of the PWM inputs

to generate an accurate output. Running the operation for any time less or more than

the LCMs introduces truncation error.

5. EA = Error due to function approximation.

Functions implemented with SC typically must be approximated since a given function

usually cannot be mapped directly to a stochastic operation. Our gamma correction

operation, for example, used a Bernstein approximation of the exponential function. Prior

work [2] has shown that a Bernstein approximation of degree of six is usually sufficient

to reduce the average approximation error to below 0.1%.

The overall error, ETotal, for the stochastic operations performed on PWM signals is

bounded by the sum of the above error components

ETotal = EG + ES + EM + ET + EA

.
Considering the error rates we measured when processing the sample images using

the synthesized Robert’s cross and Gamma correction circuits with the PWM approach,

some of these sources of errors can offset or compensate for each other, resulting in an

acceptable total error. Note that, in an actual chip fabrication, the effect of thermal noise

and the influence of process and temperature variations might introduce more inaccuracy

in the generated signals which could produce higher error rates. Still, as Figure 2.21
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shows, we expect that even if these fabrication sources of error introduce up to 20%

relative error in the duty cycle and period of the PWM input signals, the stochastic

circuits can still produce outputs with acceptably small errors.
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Figure 2.21: Average error rate of the output images when processing the sample images

using the proposed PWM-based approach for different rates of inaccuracy in the duty

cycle (top) and in the period (bottom) of the PWM input signals. PWM signals are

generated using an ideal PWM generator in HSPICE and the output signals are converted

back to real values using an ideal integrator. Twenty trials were performed for each

inaccuracy rate to ensure statistically significant results.
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2.5.2 Noise Modeling

Noise and linearity are definitely the most important concerns in analog circuits. In the

following discussion, we analyze the noise contribution of each component in the PWM

generator, and show that the proposed technique can satisfy the accuracy requirements

even in the presence of thermal noise or process variations.

The ramp required for pulse width modulation is generated by charging a capacitor

with a slope proportional to the input signal. If the input is coming from an image sensor,

for instance, the output of the sensor is a current and can be directly integrated on a

capacitor. On the other hand, there are cases such as the coefficient inputs of the ReSC

architecture where the input signal is a constant voltage and an active integrator, such

as Gm-C or R-OTA-C integrator, must be used. We analyze these two cases separately.

Input source: Image sensor. In order to achieve 8-bit accuracy in PWM gener-

ation, the pulse width error must be less than (1/29) × T ≈ 0.002 T , where T is the

period of the PWM signal. There are two sources of error in the PWM generator:

1) Thermal noise

a) Switched-capacitor noise: capacitors are inherently noiseless, but when they

get switched, the thermal noise of the switch resistance accumulates on the capacitor,

resulting in an equivalent rms noise voltage of KT/C [65]. This noise depends only on the

capacitor size. Therefore, the maximum tolerable noise defines the minimum capacitance

that can be used:

10 log10

0.52

2
KT
C

≥ 8× 6.02 + 1.78 = 50 dB

KT

C
<

0.52

2
10−5 = 1.2510−6 → C > 3.3 fF

Since C = 3.3 fF was derived for room temperature, we choose C = 5 fF to allow

some margin for temperature and process variations. This analysis shows a trade-off

between capacitor area and circuit noise.

b) Comparator: the comparator is the key element in PWM generation. The compara-

tor’s resolution, i.e. the minimum voltage that causes a change in the output, determines

the minimum detectable input current:
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The integration slope:mLSB =
Vres
tLSB

=
CMPres
0.002 T

=
iLSB
C

→ iLSB =
CMPres
0.002 T

The comparator’s resolution depends on the architecture. A typical comparator

consists of a differential pair followed by a latch. The resolution of the comparator is

given by (Vdd/Compgain) where Compgain = pre-amplifiergain × exp (t/τ). We show

the pre-amplifiergain with Av. τ is the latch time constant measured by

τ =
CL (load capacitance at the output of the comparator)
Gm (transconductance of the cross-coupled latch)

The above-mentioned equation shows that the comparator’s resolution improves with

time, i.e. one can achieve better resolution at the expense of longer delay [66, 67].

For 8-bit resolution with 1 V Vdd for 1GHz, the frequency→ Compgain > 512,

t << 1 ns, CL = 1 fF , Av = 16, and td, or the maximum time that the comparator has

to make a decision, is 0.001=1 ps. Thus,

Av ∗ exp(t× 1015 ×Gm) = 512

→ exp(103 ×Gm) > 32→ 103 ∗Gm > ln(32) = 3.45

→ Gm > 3.45mA/v

Since we have high gain in the input stage, the noise of the latch does not matter

(because the latch noise is divided by the input gain). The noise of the input transistors

can result in pulse width variations, also known as jitter. A common formula for

calculating jitter noise is [65]

JitterRMS =
V noiseRMS

Slew rate

Based on [68], we have

JitterRMS =

√
4KTγ/Gm ×

√
f

I/Cm

It is worth noting that the effect of comparator noise on PWM generator is the same

as the ADC circuit presented in [1]. Also, note that process and temperature variation

only affect the gain of the comparator, which can be considered during the design process.
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2) Resetting speed

In each pulse generation cycle, the integrating capacitor must be discharged (reset) within

the minimum time step, i.e. T
2N+1 . Therefore, the reset pulse width shrinks as the PWM

frequency increases, imposing a limit on the maximum achievable speed. As calculated

before, for 1-ns period and 8-bit accuracy, tmin=2 ps.

In summary, we have three sources of noise in the PWM generator: switched capacitor

noise (KT/C), integrator noise, and comparator noise, where the following holds.

• KT/C is constant, because we change the current but the capacitor is fixed. For

C=5 fF and room temperature, (KT/C) = −57.81 dB

• The current has to scale linearly with speed, so the integrator noise decreases.

• Comparator noise results in jitter, so the impact increases with frequency. For

f = 1GHz it is 60 dB.

• Total distortion = integrator distortion (i.e. nonlinearity) = −60 dB

• SNDR = 10 ∗ log10(
0.5×V 2

sig

Totalnoise
+ Totaldistortion) = 6.02 ∗N + 1.76 (dB).

• For Vdd = 1v → 0.5× V 2
sig = 0.5.

• For f = 1GHz, Totalnoise = 3× 10−6, so SNDR = 51.5 dB and ENOB = 8.25.

Input source: constant voltage. In case of voltage inputs, the transconductor

(Gm cell) or the amplifier in the integrator also introduces noise, but the total noise is

small and does not degrade the performance substantially.

2.6 Applications

Growth in digital and video imaging cameras, mobile imaging, biomedical imaging,

robotics, and optical sensors has spurred demand for low-cost, energy-efficient circuits for

image processing. Prior work on SC has shown this computing paradigmâĂŹs potential

in low-cost implementation of image and video-processing algorithms. Image processing

based on time-encoded signals could have significant impact in this application area,

particularly when power constraints dominate. Time-encoded, mixed-signal processing
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can be performed on the same chip, with analog-to-time conversion followed by logical

computation on the time-encoded signals, using stochastic constructs.

Mixed-signal design is attractive for VLSI implementations of neural networks (NNs)

for reasons of speed and energy efficiency. Also, mixed-signal solutions do not suffer

from the quantization effects that arise with analog-to-digital conversion. NNs are

computationally complex, which makes them a good candidate for processing with

low-cost stochastic logic. Digital bitstream-based processing of data in stochastic NN

often requires running for more than 1,000 clock cycles to achieve an accuracy close to

that of conventional deterministic fixed-point binary designs, which then leads to high

energy consumption. Time-based SC has the potential to mitigate these costs, offering

energy-efficient designs. Unlike conventional SC, the computations can be completely

accurate with no random fluctuation. The approach could have a significant impact in

the design of near-sensor NN accelerators.

2.7 Challenges

In this section, we briefly discuss different challenges in the development and application

of the proposed time-based computing.

2.7.1 Analog Noise

Recent work has shown that by properly structuring digital bitstreams, completely

deterministic computation can be performed with stochastic logic [47, 48]. The results

are completely accurate with no random fluctuations. Due to the mixed-signal nature of

time-based processing, computations on time-encoded signals are susceptible to noise;

one cannot promise 100 percent accuracy. Analog noise cannot be completely eliminated

from signals and therefore from computation. By careful design of ATC and TAC, and

by choosing appropriate frequencies, however, the error can be made very low (less than

0.001 percent mean absolute error).

2.7.2 Resolution

The resolution in time-based processing is limited by noise, rather than by the length of

bitstreams, as it is with SC. While there is no limit in the resolution of SNs represented
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by digital bitstreams, the resolution in our time-encoded approach is limited by the

maximum ENOB of the ATC (that is, the PWM generator). For a minimum frequency

of 10 MHz, current ATCs can achieve a maximum ENOB of 11 to 12 bits.

2.7.3 Truncation

With time-encoded signals, operations should run for a specific amount of time to produce

correct results. For operations with independent inputs, this time equals the product of

the period of the input signals; for operations with correlated inputs, it equals the period

of the input signals. As we discussed in Section 2.5, running the operation for longer

or shorter than the required time results in truncation error. In contrast, stochastic

bitstreams have the property of progressive precision, meaning that short subsequences

of an SN can provide low-precision estimates of its value [1]. The longer the stream runs,

the more precise the value. Given enough time, the output converges to the expected

correct value, and consequently, the truncation error is generally low.

2.7.4 Synchronization

Operations using synchronized PWM signals are limited to only the first level of logic

in a circuit. Providing the required synchronization- that is, having maximal overlap

between the high part of the input signals-is difficult to achieve for the second and higher

logic levels.

A naive solution is to convert the output of each level back to an analog format, then

perform an analog-to-time conversion and feed this to a higher level. However, this naive

method decreases the accuracy and is costly in terms of latency, area, and energy.

2.7.5 Skew

The synchronization must be perfect in operations that require synchronized inputs.

On-chip variations or noise sources affecting clock generators can result in deviations

from the expected period, phase shift, or slew rate of the signals. Different delays for

AND and OR gates, for example, can be a source of significant skew in implementing

sorting-based circuits. The skew in each stage is propagated to the next, resulting in a



43

considerable skew error for large circuits. Mitigating the skew by delaying some signals

is complex and costly, and may offset gains in area and power.

2.7.6 Rotation

Relatively prime stream length method of Section 2.3.1, and the clock division and

rotation methods explored in [47] are three methods for processing bitstreams deter-

ministically. Choosing inharmonic frequencies for the time-encoded signals corresponds

to the “relatively prime” method. A high-frequency time-encoded PWM signal was

connected to the select input of the MUX in Section 2.3.1 for an accurate scaled addition

operation. This approach corresponds to the “clock division” method of [47]. In the

“rotation” method of [47], digital bitstreams are stalled for one cycle at powers of the

stream length, causing each bit of one bitstream to see each bit of the other stream

exactly once. Considering the high working frequency of time-based SC, stalling PWM

signals for a very short and precise amount of time might not be possible.

2.7.7 Sequential Circuits

Sequential finite-state machine (FSM)-based approaches exist for implementing complex

functions with SC [31, 9, 16]. These methods depend on randomness in different ways than

combinational methods do. It is not clear how to translate these sequential constructs to

deterministic computation on time-based PWM signals.

2.8 Conclusion

With a stochastic representation, computation has a pseudo analog character, operating

on real-valued signals. This is certainly counterintuitive: why impose an analog view

on digital values? Prior work has demonstrated that it is often advantageous to do

so, both from the standpoint of the hardware resources required as well as the error

tolerance of the computation. Many of the functions that we seek to implement for

computational systems such as signal processing are arithmetic functions, consisting of

operations like addition and multiplication. Complex functions, such as exponentials and

trigonometric functions, are generally computed through polynomial approximations, so
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through multiplications and additions. Operations such as these can be implemented

with remarkably simple hardware in the stochastic paradigm.

The cost incurred is to provide randomness. While randomness is never free, pseudo-

randomness often suffices. The strategy proposed in this chapter was to provide a form of

pseudorandomness through time encoding of signals using pulse width modulation. Such

signals can be constructed with very common and inexpensive analog circuit structures.

We have demonstrated that all the basic operations discussed in the literature on SC can

be implemented on PWM signals.

Prior approaches to stochastic circuit design suffered from high run-time latency and

correspondingly high energy use. Although the hardware cost of the core stochastic

logic was negligible compared to the hardware cost of the conventional binary design,

expensive stochastic number generators made them area and energy inefficient. With

the proposed PWM approach, however, the latency, area and energy dissipation are all

greatly reduced compared to the prior stochastic approaches. This new time-encoded

approach inherits the fault tolerance advantage of stochastic design while working as fast

and energy-efficiently as the conventional binary design. Fault tolerance capability, a

lower hardware cost and a smaller area-delay product make the proposed PWM approach

a better choice than the conventional binary design.



Chapter 3

Low-Cost Sorting Network Circuits

This chapter presents an application of the proposed time-based computing in low-cost

and energy-efficient implementation of Sorting Network circuits. We first discuss our

motivation and present a brief background on sorting networks. We then use unary-style

bitstreams in low-cost deterministic implementation of sorting networks. To mitigate the

long latency and so high energy consumption of processing digital bitstreams, we use the

time-based encoding method of chapter 2. We validate the idea with two implementations

of an important application of sorting: median filtering. This chapter’s material has

been published in [69] and [70].

3.1 Motivation

Sorting is an important task in applications ranging from data mining to databases [71,

72, 73], to ATM and communication switching [74], [75], to scientific computing [76],

to scheduling [77], to artificial intelligence and robotics [78], to image [4], video [79],

[80], and signal processing [81]. For applications that require high performance, sorting

is often performed in hardware with application-specific integrated circuits (ASICs) or

field-programmable gate arrays (FPGAs) [82]. Based on the target applications, hardware

sorting units vary greatly in the way that they are configured. The number of inputs

can be as low as nine for some image processing applications (e.g., median filtering) or

as high as tens of thousands. The data inputs are sometimes binary values, integers, or

floating-point numbers ranging from 4- to 256-bit precision.

45
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Hardware cost and power consumption are the dominant concerns with hardware

implementations. The total chip area is limited in many applications. As fabrication

technologies continue to scale, keeping chip temperatures low is an important goal since

leakage current increases exponentially with temperature. Power consumption must be

kept as low as possible. Developing low-cost, power-efficient hardware-based solutions to

sorting is an important goal.

The usual approach is to wire up a network of compare-and-swap (CAS) units in

a configuration called a batcher (or bitonic) network. Such networks can readily be

pipelined. The parallel nature of hardware-based solutions allows them to outperform

sequential software-based solutions. The hardware cost and the power consumption

depend on the number of CAS blocks and the cost of each CAS block.

In this chapter, we propose a novel area- and power efficient approach to sorting

networks based on “unary processing.” Data are encoded as serial bit streams, with values

represented by the fraction of 1’s in a stream of 0’s and 1’s. This is an evolution of prior

work on stochastic processing. Our designs inherit the fault tolerance and low-cost design

advantages of stochastic processing while producing completely accurate and deterministic

results. As with stochastic processing, however, the approach is handicapped in term

of latency. A serial representation is exponentially longer than a conventional binary

positional representation.

To mitigate the long latency issue of unary processing, we adopt the mixed-signal

time-encoding approach of Chapter 2. The approach is different to the work on continuous

time mixed-signal designs of [83] and [84] in the sense that instead of converting data to

(from) binary format by using costly analog to digital (digital to analog) converters and

processing in binary domain, the data is encoded in time using low-cost analog-to-time

converters and processed in unary domain. We represent the data with time-encoded

pulse signals. Time-encoding the data provides a significant improvement in the latency

and energy consumption with only a slight loss in accuracy.



47

A

B

Max (A,B)

Min (A,B)

(a)

A

B

Min (A,B)

Max (A,B)

(b)

Figure 3.1: The schematic symbol of a CAS block a) ascending b) descending

3.2 Background

3.2.1 Sorting Networks

A sorting network is a combination of CAS blocks that sorts a set of input data. Each

CAS block compares two input values and swaps the values at the output, if required.

There are two variants: an “ascending” type and a “descending” type. Figure 3.1 shows

their schematic symbols. In a conventional design, each CAS block consists of an M -bit

comparator and two M -bit multiplexers, where M is the data-width of the inputs.

Sorting networks are fundamentally different from software algorithms for sorting

such as QuickSort, MergeSort, BubbleSort, etc., since the order of comparisons is fixed

in advance; the order is not data dependent as is the case with software algorithms. The

bitonic and odd-even merge sorting networks proposed by Batcher [85] are two popular

configurations of sorting networks [86][87]. They have the lowest known latency for

hardware-based sorting [3][88].

Bitonic sort uses a key procedure called bitonic merge (BM). Given two equal size sets

of input data, sorted in opposing directions, the BM procedure will create a combined

set of sorted data. It recursively merges an ascending and a descending set of size N/2 to

make a sorted set of size N [89]. Figure 3.2 shows the CAS network for an 8-input bitonic

sorting network made up of ascending and descending BM units. The total number

of CAS blocks in an N-input bitonic sorting is N × log2(N) × (log2(N) + 1)/4. Thus,

8-input, 16-input, 32-input, and 256-input bitonic sorting networks require 24, 80, 240,

and 4,608 CAS blocks, respectively [3].

An odd-even merge sorting network recursively merges two ascending sequences of

length N/2 to make a sorted sequence of length N. Odd-even merge sorting units requires

fewer CAS blocks than bitonic sorting units, but often have more complex wiring [3].

Due to their simpler structure, we will present designs based on bitonic sort networks.
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Figure 3.2: The CAS network for an 8-input bitonic sorting [3].

The proposed design approach, however, is applicable to any sorting network topology,

including odd-even sorting networks; it will accrue the same advantages.

3.2.2 Unary processing

A recent evolution of the idea of SC has been to perform the processing completely deter-

ministically [47][48][49]. If properly structured, computation on deterministic bitstreams

can be performed with same circuits as are used in SC. The results are completely accu-

rate with no random variations; furthermore, the latency is greatly reduced. The idea of

unary (or burst) processing was first introduced in 1980s [58] [90] as a hybrid information

processing technique that has characteristics common to both conventional binary and

to stochastic processing. It is deterministic, but borrows the concept of averaging from

stochastic methods. In this chapter, we apply unary processing to problem of desiging

low-cost, power-efficient sorting networks.

Unary streams. In unary processing, numbers are encoded uniformly by a sequence

of one value (say, 1) followed by a sequence of the other value (say, 0) (See Figure 3.3).

This uniform sequence of bits is called a unary stream. To convert binary input data to

unary streams, an increasing/decreasing value from an up/down counter is compared to

the target value. As with stochastic streams, all the bits have equal weight. This property

provides the immunity to noise. Multiple bit flips in a long unary stream produce small

and uniform deviations from the nominal value. In stochastic processing, only real-valued
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Figure 3.3: Time-based vs. digital-stream unary representation.

numbers can be represented: numbers in the [0, 1] interval with the unipolar format and

numbers in the [-1, 1] interval with the bipolar format. In contrast, with unary streams

both real-valued and integer numbers can be represented. In representing real-value

numbers, the number of ones divided by the length of stream determines the value.

In representing integer values, the number of ones directly determines the value. For

example, when using unary streams in the real domain, the streams 1000 and 11000000

are both representations of the value 0.25. In the integer domain, on the other hand,

these streams represent 1 and 2, respectively. Similar to the bipolar format for stochastic

streams, negative numbers can also be represented with unary streams using a simple

linear transformation [14].

Unary Operations. The maximum (max) and minimum (min) value functions are

two useful functions with simple and low cost unary implementation. In a weighted

binary design, data-width-dependent comparator and multiplexer units must be used to

implement these functions. In unary processing, individual gates can synthesize these

functions: an AND gate gives the minimum of two unary streams when two equal-length

unary streams are connected to its inputs; an OR gate gives the maximum value when

its inputs are fed with two equal-length unary streams. These gates showed a similar

functionality when fed with correlated stochastic bit-streams (See Section 2.3.1).

Figure 3.4 shows an example of finding the minimum and maximum values in unary

processing. An important advantage of unary processing is that synthesizing a function

is independent of the resolution of data (length of streams). The same core logic is used

for processing 128-bit unary streams that is used for processing 256-bit unary streams.

While developing a general method for synthesizing all operations with unary processing

is still a work in progress, we showed absolute-value subtraction (using an XOR gate),

comparison (using a D-type flip-flop), and multiplication (using an AND gate) of unary

streams in Section 2.3.1.
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Figure 3.4: Example of performing maximum and minimum operations on unary streams.

Time-based unary streams. The representation of numbers in unary processing

is not limited to purely digital bitstreams. A time-based interpretation of numbers is also

possible using pulse modulation of data [48]. Figure 3.3 shows both approaches. While

both approaches can operate on the same unary logic, the time-based representation

offers a seamless solution to the increasing number of time-based sensors and, as we will

show, can be exploited in addressing the long latency problem of unary circuits.

3.3 Complete Sort System

In this section, we discuss hardware implementation of complete sort networks. We first

discuss the conventional binary design and then present the synthesis approach based on

unary processing.

3.3.1 Conventional Design

As discussed in Section 3.2, sorting networks are made of CAS blocks. The hardware

cost of a sorting network is therefore a direct function of the number of CAS blocks and

the cost of each block. As shown in Figure 3.5a, in a weighted binary design with a

data-width of M bits, each CAS block consists of one M -bit comparator and two M -bit

multiplexers. Thus, by increasing the resolution of data, the complexity of the design

will also be increased. Increasing the complexity of the design directly affects the cost

of the hardware implementation, latency, power, and as a result, energy consumption.

Another issue with the conventional binary design is noise immunity and fault tolerance.

In a noisy environment, faults due to bit flips on high-order bits can produce large errors.

Thus, additional fault-tolerance techniques must be used if the goal is to design a noise
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Figure 3.5: Hardware implementation of a CAS block a) Conventional binary design b)

Unary design.

tolerant system.

3.3.2 Unary Design

The essential operations in CAS blocks are maximum and minimum functions. This

makes unary processing a good fit for hardware implementation of CAS blocks and

sorting networks. As shown in Figure 3.5, instead of data-width dependent complex logic,

one AND and one OR gate is sufficient to synthesize the CAS block in unary domain.

The sorting networks can therefore be synthesized regardless of the resolution of the input

data. While the synthesized circuit will be much less costly than the circuit synthesized

in the binary approach, additional overhead must be incurred for conversion units which

are required to convert the data between the binary and the unary fomart and a longer

operation time due to performing the operation on 2M -bit long streams.

Assuming that the input data is given in binary format and the result must again

be in binary, a unary stream generator is required to convert the data from binary

to unary and a counter is required to count the number of ones in the final unary

stream and convert the result back into binary. Figure 3.6 shows the design of a unary

stream generator responsible for converting the data from binary to unary. For each

input data, one unary stream generator and, for each output, one counter is required.

A significant cost saving in implementing the CAS blocks, particularly for large-scale

sorting circuits, will compensate for the overhead of converters in unary designs. Note

that while the converters are data-width dependent, the CAS blocks synthesized with

the unary approach are independent of data resolution.
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Figure 3.6: Unary stream generator.

3.3.3 Design Evaluation

In order to evaluate the costs and benefits of the proposed design approach, we developed

Verilog hardware descriptions of complete bitonic sorting networks for 8, 16, 32, 64,

128, and 256 data inputs, for both the conventional binary and for the proposed unary

approach. For the unary approach, the architectures include the required conversion

units from/to binary. The developed designs are synthesized using the Synopsys Design

Compiler vH2013.12 and a 45-nm standard-cell library. We report synthesis results

for three different data widths of 8, 16, and 32 bits. In order to find the minimum

hardware cost and also the maximum speed of the developed architectures we synthesized

a non-pipelined and also a pipelined version of each architecture.

Non-Pipelined Design

Table 3.1 shows the synthesis results for the non-pipelined implementations. As can be

seen, the unary approach could save the hardware cost of the implemented sort networks

up to 91%. For small networks like the 8-input sort networks, the cost overhead of unary

stream generators and output converters was comparable to the saving due to using

a low-cost CAS implementation and so lower savings are achieved. By increasing the

number of inputs and so the number of CAS blocks, the savings dominate the overheads

and a hardware area saving of around 91% is achieved when implementing the 256-input

sorting network with the unary approach.

The total (dynamic plus static) power consumption of the synthesized designs at the

maximum feasible working frequency of each architecture, and also at a constant working

frequency of 50 MHz, are presented in Table 3.1. The static power or leakage is the

dominant power when the system operates at low frequencies. It is directly proportional

to the hardware cost and so a sort network with a lower hardware cost will have a lower
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Table 3.1: Synthesis results of complete bitonic sort networks (Non-Pipelined).

# of inputs

and outputs

# of CAS

units

Data

width

Area (µm2) Critical Path (ns) Power (@max f) | (@50MHz) (mW )

Conven. Unary Conven. Unary Conven. Unary Conven. Unary

8 24

8-bit 3,086 2,194 1.85 0.74 1.30 3.26 0.12 0.13

16-bit 6,865 4,531 2.05 0.75 2.63 5.59 0.27 0.23

32-bit 14,868 9,456 2.41 0.77 4.90 10.1 0.62 0.44

16 80

8-bit 10,534 4,511 2.73 0.87 3.66 5.30 0.49 0.25

16-bit 22,920 8,901 3.42 0.89 6.61 8.94 1.17 0.44

32-bit 49,812 17,274 3.80 0.93 13.4 15.9 2.63 0.83

32 240

8-bit 32,508 9,235 4.06 1.07 8.86 8.40 1.75 0.49

16-bit 68,621 17,643 5.05 1.13 16.6 13.8 4.18 0.86

32-bit 149,669 27,811 5.90 1.12 31.8 25.4 11.3 1.52

64 672

8-bit 90,691 19,028 5.71 1.33 19.8 13.4 5.48 0.96

16-bit 191,174 29,259 7.03 1.35 39.2 22.5 13.6 1.60

32-bit 431,182 56,598 8.00 1.37 78.5 41.2 33.1 3.03

128 1,792

8-bit 242,049 33,916 7.49 1.62 44.4 21.4 15.7 1.80

16-bit 523,565 60,686 9.27 1.63 89.8 37.1 41.1 3.19

32-bit 1,047,646 115,835 10.14 1.63 165.7 69.1 85.4 6.05

256 4,608

8-bit 586,456 74,719 9.71 1.91 88.7 36.5 42.2 3.64

16-bit 1,239,154 126,804 11.79 1.94 181.3 62.1 102 6.40

32-bit 2,560,803 234,957 12.89 1.97 367.7 113 221 12.0

leakage power. When a system works at its maximum frequency, dynamic power, which

is an increasing function of the working frequency, is the dominant one. Thus, although

the unary designs would have a much lower power consumption at low speeds, due to a

lower critical path (CP) latency and so a higher maximum working frequency, the power

numbers reported for unary implementation of the 8- and 16-input sorting networks are

greater than the power numbers reported for their corresponding binary implementations.

As given in Table 3.1, for larger sorting networks (32-input and above), the simplicity of

the unary design has led to even a lower power consumption at the maximum working

frequency than the power consumption of the binary implementation.

Due to a simpler architecture, the CP latency of the designs synthesized with the

unary approach is lower than that of the conventional binary designs. However, the

total latency of the unary approach which is the product of the CP latency and 2M

(the number of clock cycles the system must operates to generate and process the unary

stream), is much more than the latency of the conventional design (one clock cycle × CP
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Table 3.2: Synthesis results of complete bitonic sort networks (Pipelined).

# of inputs

and outputs

CAS

units

Pipeline

Stages

Data

width

Area (µm2) Critical Path (ns) Power (@max freq) (@50MHz) (mW )

Conven. Unary Conven. Unary Conven. Unary Conven. Unary

8 24 6

8-bit 6,926 2,659 0.42 0.39 19.5 8.1 0.46 0.16

16-bit 14,383 5,024 0.49 0.42 35.6 11.6 0.97 0.27

32-bit 25,066 9,916 0.53 0.49 66.5 17.2 1.88 0.48

16 80 10

8-bit 19,338 5,834 0.42 0.40 67.9 17.0 1.50 0.37

16-bit 39,554 10,323 0.48 0.44 126 23.3 3.17 0.56

32-bit 83,102 18,065 0.52 0.50 241 33.9 6.64 0.94

32 240 15

8-bit 57,900 13,095 0.42 0.41 213 38.5 4.68 0.86

16-bit 118,202 17,029 0.50 0.46 381 48.2 9.95 1.16

32-bit 248,129 29,682 0.53 0.50 748 70.0 21.0 1.88

64 672 21

8-bit 161,934 25,248 0.42 0.44 602 83.0 13.3 1.92

16-bit 329,787 37,726 0.50 0.47 1105 104 28.7 2.61

32-bit 718,216 63,144 0.52 0.50 2201 149 61.9 4.02

128 1,792 28

8-bit 431,062 59,579 0.42 0.47 1625 182 36.0 4.53

16-bit 901,206 84,646 0.49 0.50 3070 221 78.8 5.90

32-bit 1,834,850 134,746 0.52 0.52 5990 310 167 8.70

256 4,608 36

8-bit 1,107,998 140,006 0.42 0.49 4228 407 93.0 10.6

16-bit 2,294,989 189,903 0.49 0.51 7859 489 204 13.3

32-bit 4,714,805 289,723 0.54 0.54 15024 648 437 18.9

latency). Although the longer latency of the unary approach is still acceptable for many

applications, a more important issue is the energy consumption. Energy consumption

is evaluated by the product of the processing time and the total power consumption.

Although the unary implementations of the sorting networks have often shown a lower

power consumption for a fixed frequency, a very long processing time would lead to a

higher energy consumption than their conventional binary counterparts. We will address

the long latency and high energy consumption problem of unary designs in Section 3.4.

Pipelined Design

Table 3.2 shows the synthesis results for a fully pipelined structure (only one CAS block

between pipeline registers) of the developed designs. Although due to using a large

number of pipeline registers, the fully pipelined structure is significantly more costly than

the non-pipelined structure, a higher working frequency is achieved with the pipelined

one. Designing the sorting network with only one CAS block between pipeline registers

leads to a higher latency and total area than the case with more number of CAS blocks
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Figure 3.7: Normalized area and power (@50MHz) cost numbers reported for the non-

pipelined and pipelined structures of the implemented complete sort networks.

between pipeline registers. However, the one CAS block approach (fully pipelined) results

in a higher sorting throughput [3]. Thus, choosing the number of CAS blocks between

pipeline registers is a trade-off between the total area and latency, and the throughput,

and is a design decision.

As can be seen in Table 3.2, the hardware area cost of the pipelined unary designs are

61%-92% lower than the hardware cost of the pipelined binary designs. Observing a high

saving in the area of the small-scale sorting circuits, such as the 8-input sorting network

(61% for 8-bit data), is due to using simpler pipeline registers (1-bit instead of M -bit) in

the pipelined unary design compared to the pipelined binary design. Figure 3.7 shows

normalized diagrams for area and power cost numbers of the synthesized architectures.

In each configuration, the results are normalized to the value of the conventional design

with that configuration.

Critical path latency of the unary design in the pipelined structure of small sorting

networks was slightly lower than that of the binary designs. The reason was a simpler

CAS block between the pipeline registers in the unary approach. For large networks (e.g.

128-input, 256-input), however, the CP latency of binary design was lower than the unary

implementation. Although in these designs still the CAS blocks of the unary approach

are simpler, a more complex unary stream generator and a larger output counter limit the

performance of the circuit and increase the CP. The total processing time of the pipelined

binary design is the product of the CP latency and the number of pipeline stages. The

throughput, however, is higher than the non-pipelined binary design because at each

cycle a new set of inputs can enter the system and a set of sorted numbers is leaving

the system. For pipelined unary designs, the total latency is the CP latency × number
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of pipeline stages ×2M , where M is the data-width. Thus, similar to the non-pipelined

structure, the total latency of the pipelined unary implementations is much higher than

the total latency of their conventional binary counterparts. This long latency, further,

makes the total energy consumption higher than the energy consumption of the binary

designs. We will address this issue in the next section by time-encoding of data using a

mixed-signal design of sorting network-based median filtering.

3.4 Highly Efficient Median Filters

A median filter is a popular non-linear filter widely used in image, speech, and signal

processing applications. It replaces each input data with the median of all the data in a

local neighborhood. This results in filtering out impulse noise and smoothing of the image

while preserving important properties such as the edge information [91]. In real-time

image and video applications, the digital image data are affected by noise resulting from

image sensors or transmission of images. A hardware implementation of the median

filter is, therefore, required for denoising. The high computational complexity of median

filters, however, makes their hardware implementation expensive and inefficient for many

applications. In this section, we first propose a low-cost implementation of median filters

similar to the unary sorting networks introduced in Section 3.3. We then exploit the

time-based representation of input data using pulse-width modulation to address the

long latency problem of the implemented circuits.

3.4.1 Circuit Design

There are a variety of methods for hardware implementation of median filters [92, 93].

Sorting network-based architectures [94] consisting of a network of CAS blocks are one of

the most common approaches. The incoming data is sorted as it passes the network. The

middle element of the sorted data is the median. As the sorting network can be easily

pipelined, the approach provides the best performance [91]. The local neighborhood

in median filtering is often a 3×3 or 5×5 window with the target input data at the

center. Figures 3.8 and 3.9 show the sorting networks for a 3×3 and a 5×5 median filter,

respectively. We developed a non-pipelined and a pipelined structure of these median

filters with both the conventional binary and the proposed unary design approach with
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Figure 3.8: The CAS network for a 3x3 Median Filter made of 19 CAS blocks [4].

Figure 3.9: The CAS network for a 5x5 Median Filter made of 246 CAS blocks [5].

8-bit input data resolution. The CAS blocks presented in Figure 3.5 were used in the

developed architectures. A separate unary stream generator was used for converting each

input data and a counter was used for converting the output median stream back to

binary form in the unary designs.

Table 3.3 shows the synthesis results for the developed architectures. For now, let
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Table 3.3: Synthesis results of the sorting network-based median filters for data-width=8.

Median

Filter
Design Approach

Area (µm2) Latency (ns) Power (mW )

(@max freq)
Energy (pJ)

CAS Logic Overhead Total CP Total

3x3

Binary-NonPipelined 2,167 - 2,167 2.10 2.10 1.03 2.1

Binary-Pipelined (8-stage) 2,167 3,384 5,551 0.43 3.44 15.56 6.6

Unary-NonPipelined 79 917 996 0.70 179.2 0.95 170.2

Unary-Pipelined (8-stage) 79 1,292 1,371 0.40 102.4 3.08 315.3

Unary-Time-based 79 776 855 0.39 0.39 1.78 0.69

5x5

Binary-NonPipelined 32,772 - 32,772 6.77 6.77 5.76 38.9

Binary-Pipelined (26-stage) 32,772 28,208 60,980 0.43 11.18 219 94.1

Unary-NonPipelined 1,051 1,988 3,039 1.07 273.9 0.93 254.7

Unary-Pipelined (26-stage) 1,051 6,377 7,428 0.40 102.4 19.68 2015.2

Unary-Time-based 1,051 1,960 3,011 0.78 0.78 2.71 2.11

us ignore the rows representing Unary-Time-based designs, they will be discussed in

Section 3.4.2. The overhead in pipelined designs includes pipeline registers and for

unary designs include the required converters from/to binary. Similar to the results

reported for the complete sort networks, the unary implementation of the median

filters significantly improves the hardware cost, up to 90% for the 5×5 median filter

architecture. The pipelined implementations have a higher working frequency and a

higher throughput. Comparing the power consumption of the pipelined implementations

show that, for the same working frequency, the unary designs have a significantly lower

power consumption. For applications in which hardware cost and power consumption are

the main priorities, the proposed unary designs outperform the conventional weighted

binary designs. However, for high-performance low-energy applications the binary design

can be a better choice. In the following section, we exploit the concept of near sensor

processing and time-based representation of data to improve the latency and energy

consumption of the unary-based median filtering designs at the cost of a slight accuracy

loss.

3.4.2 Time-based unary design

1) Overview

Image sensors convert the light intensity to an analog voltage/current. The conventional

approach for processing these sensed data is to first convert the analog data to digital
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Figure 3.10: Near Sensor Processing with unary circuits.

binary form using a conventional analog-to-digital (ADC) and then process the binary

data using digital logic. In unary processing, this binary data is first converted to a unary

bitstream and then processed using unary circuits. Processing of image pixels with 8-bit

resolution requires running the unary circuit for 256 cycles. Even with a higher working

frequency, due to a large number of clock cycles running the circuit, the total latency of

the processing using unary circuit is more than that of processing with the binary design.

Near sensor image processing (NSIP) [95] is an interesting concept that suggests

integrating some of the processing circuits (i.e., median filter circuit) with the sensing

circuit. This can potentially improve the power consumption, size, and costs of vision

chips. With more and more sensors providing time-encoded outputs and ways to convert

signals from voltage or current to time signals [96], the sensed data in the form of time-

encoded signals can directly be fed to unary circuits. Inspired from the NSIP concept

and based on the idea of time-encoding data introduced in Chapter 2, we time-encode

the sensed input data to address the long latency of processing using unary circuits.

Figure 3.10 depicts a simple flow of the method. Assuming that the output of the sensing

circuit is in voltage or current form, an analog-to-time converter (ATC) (i.e., low-cost

circuit shown in Figure 2.4) is used to convert the sensed data to a time-encoded pulse

signal. The converted signal is processed using the unary circuit and the output is

converted back to a desired analog format using a time-to-analog converter (TAC) (i.e.,

a voltage integrator).

2) Evaluation

Table 3.3 shows the area, latency, power, and energy consumption of the implemented

median filtering circuits synthesized with the conventional binary, digital bit-stream based

unary, and the proposed time-based unary approach. The low-cost pulse-width modulator

shown in Figure 2.4 was used as the ATC and a Gm-C active integrator [97] was used
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as the TAC to convert the output signal back to analog form in the time-based unary

designs. While a pulse-width modulator generates a periodic signal with a specific duty

cycle and frequency, as we discussed in Section 2.3.1, only one period of the generated

signal will be sufficient for processing the data using the implemented unary designs.

The duty cycle of the generated signal is determined by the DC level of the sensed data.

The hardware cost and the energy consumption of the implemented ATC and TAC are a

function of the target working frequency and reported as the overhead of the time-based

unary design in Table 3.3.

A separate ATC is used for time-encoding each input data (9 ATCs for 3×3 median

filter circuit). For each time-based unary design, the reported overhead numbers are

for a working frequency equal to the inverse of the critical CP of the circuit. Assuming

that the clock signal that drives the ATC is available in the system, a lower working

frequency translate to a lower area and energy overhead. As can be seen in Table 3.3, the

total area of the time-based designs including the overhead of ATCs and TAC is lower

than the area cost of the digital bit stream-based non-pipelined version of the unary

design. The total latency and the energy consumption of the time-based unary designs

are better than those of the pipelined and non-pipelined structure of the unary design

and also lower than those of the binary designs. A lower CP latency in the time-based

unary designs in comparison to the non-pipelined unary design is due to not using unary

stream generator and counter in the time-based approach.

The down-side of the time-based unary design, however, is a slight accuracy loss. The

working frequency of the ATC affects the effective number of bits in representing and

processing data, hence the accuracy of computation. To evaluate the performance of

the median filtering unary designs when working with time-encoded input signals, we

developed SPICE netlists of both 3×3 and 5×5 median filtering circuits and simulated

their operation on a 128× 128 noisy soldier image. The sample input image is shown

in Figure 3.11. Simulations were carried out using a 45-nm standard cell library in

HSPICE. Table 3.4 shows the average output error rates for the images produced using

the time-based unary designs. Image pixel intensities were converted to pulse signals

using the ATC shown in Figure 2.4 and also using the HSPICE built-in pulse generator

(an ideal ATC). In Table 3.4, these two methods correspond to the rows “ATC of this

work"and “Ideal ATC", respectively. Comparing the output images with the expected
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Table 3.4: Average error rate of processing the sample image using the time-based unary

circuits.

Median Filter

Time-based Unary

Length of input signals (1/freq.)

CP 1ns 2ns 5ns

3x3
Ideal ATC 2.09% 0.84% 0.45% 0.19%

ATC of this work 2.65% 1.05% 0.56% 0.21%

5x5
Ideal ATC 4.70% 3.33% 1.83% 0.94%

ATC of this work 4.86% 3.66% 1.90% 1.01%

output image (produced using a software-based implementation of the algorithm in

MATLAB), the mean of the output error rates was calculated as follows:

AverageErrorRate =

∑W
i=1

∑H
j=1 |Pi,j − Ei,j |

255.(W ×H)
× 100

where Ei,j is the expected value for location (i, j) in the output image, Pi,j is the pixel

value for the same location produced using the circuit, and W and H are the dimensions

of the image. As can be seen in Table 3.4, increasing the length of the input signal (a

lower working frequency) leads to a higher accuracy in the time-based approach. An

average error rate of less than 1% is achieved in the 3×3 median filtering circuit with 1 ns

and in the 5×5 circuit with 5 ns processing time. The inherent inaccuracy in converting

the values with the ATC of Figure 2.4 resulted in a slightly higher error rates when

comparing to the error rates where using ideal ATC.

3) Sources of inaccuracy

Error in generating pulse signals (analog value to time conversion), error in measuring

the output signal (time to analog conversion), and error due to skew noise are the main

sources of errors in the time-based unary processing. A different gate delay for AND and

OR gates, particularly, can be a main source of skew in the unary sorting networks. Such

a skew is negligible for small sorting networks (e.g., 3×3 median filtering). However, for

large sorting networks (e.g., 5×5 median filtering) the skew in each stage is propagated to

the next stage, resulting a considerable skew error. With careful gate sizing and adjusting

gate delays, or simply increasing the length of the input signals we can mitigate this

source of inaccuracy in the time-based unary design.
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(a) Sample Input Image

0% 1% 5% 10%

(b) Conventional Binary Implementation

(c) Proposed Unary Implementation

Figure 3.11: (a) Sample input image, and comparison of the noise-tolerance capability

of (b) the conventional binary vs. (c) the proposed unary implementation for the 3×3
median filtering circuit for different noise injection rates.

3.5 Noise-Tolerant Behavior

To evaluate the noise-tolerance of the proposed unary designs in comparison to that of

the corresponding conventional binary implementations, we randomly injected soft errors,

i.e., bit flips, for 0%, 1%, 5%, and 10% noise injection rates on the inputs of CAS blocks

of the 3×3 median filtering circuits and measured the corresponding average output error

rates. A noise injection rate of 10% means that 10% of the total bits in the inputs of

CAS blocks are randomly chosen and flipped. The sample image shown in Figure 3.11

was used as the input to the circuits. For the conventional binary implementation the

data-width was fixed at 8 bits and bitstreams of length 256 were used to represent values

in the unary designs. Figure 3.11 shows the performance of the implemented circuits at
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various noise injection rates. As can be seen, the proposed unary implementation has

shown a higher noise-tolerance compared to the conventional binary implementation. For

injection rates higher than 1%, the quality of the output image produced by the binary

design degrades drastically leading to a useless image for injection rates higher than 5%.

This noise-immunity observed in the unary design is mainly due to its data encoding

approach, a common property between the unary and the stochastic processing. Bits are

equally weighted in unary streams and so bit flips produce small and uniform deviation

from the nominal value.

3.6 Summary

A conventional weighted binary-based implementation of a large sorting networks is costly

considering the large number of compare-and-swap (CAS) units that such a network

entails. The VLSI cost increases significantly with increasing resolution of the input data.

The high hardware cost and the high power consumption of such networks restrict their

application. In this chapter, we proposed an area and power efficient implementation

of sorting networks based on unary processing. The core processing logic consists of

simple gates and is independent of the resolution of data. The only overhead in the

approach, the cost of converting data from/to binary, is small. More than 90% area

and power savings are observed when compared to the costs of a conventional weighted

binary implementation.

The penalty is latency. Processing digital unary streams, requires a relatively long

running time, e.g., more than 100 ns to process each set of input data. Although this

is a 100× increase in latency over conventional weighted binary, this increase may be

tolerable for many applications. For example, ten gray-scale HD (1280× 720) images

or four gray-scale Full HD (1920× 1080) images can be processed per second with the

proposed scheme for a task such as median filtering, when operating on 256-bit long

unary streams. In spite of the latency, a 90% decrease in power consumption might often

make this a winning proposition.

To mitigate the latency of the approach, we further developed a time-based unary

design approach in which the input data is encoded in time and represented with pulse

signals. The result is a significant improvement in the latency and energy consumption,



64

at the cost of a slight loss in accuracy. For example, more than 1000 gray-scale HD

images or 400 gray-scale Full HD images can be processed per second with the proposed

time-based unary implementation of the 3×3 median filtering at the cost of only 1% loss

in accuracy.



Chapter 4

Fast-Converging Deterministic

Bitstream Computing

In Chapter 2, we showed that by choosing relatively prime lengths for unary bitstreams,

and repeating the streams up to the least common multiple of the stream lengths, a

deterministic and completely accurate output can be produced by stochastic logic. Clock

division and rotation methods have been also proposed in the literature to process

unary bitstreams deterministically. In this chapter, we first propose a high-quality

down-sampling method to improve the progressive precision and so the processing time

and energy consumption of the three current deterministic methods of SC by pseudo-

randomizing bitstreams. We then propose two novel deterministic methods of processing

bitstreams by using low-discrepancy sequences. The material of this chapter has been

taken from [98, 99, 100, 101], and [102].

4.1 Motivation

SC has been around for many years as a noise-tolerant approximate computing approach.

Random Fluctuation has always made SC somewhat inaccurate. Due to random fluc-

tuation, stochastic operations often need to run for a very long time to produce highly

accurate results. Some operations, such as multiplication, also suffer from correlation

between bitstreams. For these operations, the input bitstreams must be independent to

produce accurate results. To produce an output with n-bit precision, the input bitstreams

65
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length, and so the number of cycles performing the operation, must be greater than

22ni−2, where i is the number of independent inputs in the circuit [47].

Recent progress in the idea of SC [48][47], however, has revolutionized the paradigm.

If properly structured, random fluctuation can be removed and SC circuits can produce

deterministic and completely accurate results. In Chapter 2, we showed that by choosing

relatively prime lengths for a specific class of stochastic streams–called unary streams,

and repeating the streams up to the least common multiple of the stream lengths, a deter-

ministic and completely accurate output can be produced. Jenson and Riedel [47] further

proposed two deterministic approaches of processing unary streams, clock division and

rotation of bitstreams. The proposed approaches not only are able to produce completely

accurate results (i.e., zero percent error rate), but they also improve the hardware cost

and the processing time of stochastic operations significantly when compared to those of

the computations performed on the conventional randomized stochastic bitstreams.

While the unary stream-based deterministic approaches are able to produce completely

accurate results (i.e., results that are the same as the results of binary-radix computation),

they suffer from a poor progressive precision property; The output converges to the

expected correct value very slowly. This drawback can be a major limitation to wide

use of these approaches in different applications. While ideally we are interested in

producing completely accurate results, decision making on some inputs, particularly in

image processing and neural network applications, do not require high precision operation

and a low-precision estimate of the output value is sufficient. In such cases, due to the

poor progressive precision property of unary streams, stochastic operations must run

for a much longer time than the cases with conventional random bitstreams to produce

acceptable results with small levels of inaccuracy. When small rates of inaccuracy are

acceptable, using the unary stream-based deterministic approaches will lead to a very

long operation time and consequently a very high energy consumption.

Fig. 4.1 compares the progressive precision of different stochastic approaches when

multiplying 8-bit precision input values. As can be seen in the figure, the conventional

random stream-based stochastic approach shows a much better progressive precision

than the unary stream-based deterministic approaches and so is the preferable choice

for any application that can tolerate some errors, such as image processing and neural

network applications.
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Figure 4.1: Progressive Precision comparison of the conventional random stream-based

SC with the unary stream-based deterministic approaches of SC when multiplying two

8-bit precision input values.

In this chapter, we show that by modifying the structure of the stream generators,

the deterministic methods not only are able to produce completely accurate results, they

are also able to produce acceptable results in a much shorter time and with a much lower

energy consumption compared to the current architectures that generate and process

unary streams.

4.2 Deterministic Approaches to Stochastic Computing

Recent work on SC [48][47][69] has shown that SC does not necessarily have to be

an approximate approach and the result of computation can actually be completely

accurate and deterministic. Instead of random stochastic bitstreams, logical computation

is performed on a specific class of bitstreams, called unary streams. A unary stream

consists of a sequence of 1s followed by a sequence 0s. For example, 1111000000 is a unary

stream representing 0.4 in the unipolar format. To represent a value with resolution of

1/2n (n-bit precision), the unary stream must be 2n bit long. For operations that require

independent inputs, the independence between the input unary streams is provided by

using relatively prime stream lengths (See Chapter 2), rotation, or clock division [47].
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(b) Deterministic: Relatively Prime Stream Lengths
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(d) Deterministic: Rotation
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(c) Deterministic: Clock Division
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111100101111

1/3

3/4

001000000010 2/12

(a) Approximate: Random Streams

Figure 4.2: Examples of performing stochastic multiplication: a) conventional approxi-

mate SC with random bitstreams (b)-(d) recently proposed deterministic approaches to

SC with unary bitstreams.

Fig. 4.2(b)-(d) exemplifies these three deterministic approaches to SC.

To produce accurate results with these deterministic approaches, the operation must

run for an exact number of clock cycles which is equal to the product of the length of

the input bitstreams. For example, when multiplying two n-bit precision input values

represented using two 2n-bit streams, the operation must run for exactly 22n cycles [47].

Running the operation for fewer cycles (e.g., 22n−1 cycles) will lead to a poor result with

an error out of the acceptable error bound. As we discussed in Section 2.5, this important

source of inaccuracy in performing computations on unary streams is called “truncation

error”.

As an example, assume we want to multiply two 8-bit precision numbers, represented

using unary streams, with the rotation or clock division deterministic approaches. The

operation must run for exactly 216 = 65536 cycles to produce a completely accurate result.

Exhaustively testing the multiplication operation for every possible pair of input values
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when running the operation for 215 and 210 cycles shows a mean absolute error (MAE) of

3.10% and 7.99%, respectively, for the rotation approach, and 12.3% and 24.4% for the

clock division approach. With the conventional approach of processing random bitstreams

when exhaustively testing the operation on a large set of random pairs of input values,

although we could not produce completely accurate multiplication results in 216 cycles, a

good progressive precision property could lead to acceptable results when running the

operation for the same number of operation cycles (MAE of 0.15% after 215 and 1.20%

after 210 cycles).

4.3 Pseudo-Random Bitstreams for Deterministic SC

In this section, we propose a high-quality down-sampling method to improve the pro-

gressive precision of current deterministic methods of SC. We first describe the proposed

method and compare its performance with prior methods for the multiplication operation.

We then evaluate the proposed method using the Robert’s cross edge detection stochastic

circuit as a case study.

4.3.1 Proposed Method

While the randomness inherent in stochastic bitstreams was one of the main sources of

inaccuracy in SC, distributing the ones across the stream instead of grouping them (i.e.,

first all ones and then all zeros) may be able to provide a good progressive precision

property for representing stochastic numbers and, therefore, for the computation. With

randomized bitstreams the result quality improves as the computation proceeds. This is

because short sub-sequences of long random stochastic bitstreams provide low-precision

estimates of the streams’ values. This property can be exploited in many applications of

SC for making quick decisions on the input data and so increasing the processing speed.

Deterministic approaches proposed in Chapter 2 and in [47] perform computation

on unary streams. Due to the nature of unary representation, truncating the bitstream

leads to a high truncation error and so a significant change in the represented value.

Here, we propose a high quality down-sampling method for these approaches by bringing

randomization back into the representation of bitstreams. Similar to processing unary

streams, the computations are completely accurate when the operations are executed
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(a) Stochastic Randomized Bit-Stream

(b) Deterministic Unary Bit-Stream
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(c) Deterministic Pseudo-Randomized Bit-Stream
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Figure 4.3: Different types of stochastic bitstreams.

for the required number of cycles. However, by pseudo-randomizing the streams, the

computation will have a good progressive precision property and truncating the output

streams by running for fewer clock cycles still produces high quality outputs.

For a deterministic and predictable randomization of the bitstreams, we propose to

use maximal period pseudo-random sources (i.e., a maximal period LFSR) to generate the

bitstreams. The important point is that the period of the pseudo-random source should

be equal to the length of the bitstream. By using such a source to generate random

numbers, we are able to convert an input value into a pseudo-random but completely

accurate stochastic representation. Fig.4.3 illustrates an example of representing 0.5

value with a random, a unary, and our proposed pseudo-randomized bitstream.

Table 4.1 compares the MAEs of the conventional random stream-based SC and the

unary stream-based deterministic approaches of Chapter 2 and [47] with the proposed

method by exhaustively testing multiplication of two 8-bit precision stochastic streams on

a large set of random input values for the conventional random SC and for the proposed

approach, and on every possible input value for the unary deterministic approaches. For

the conventional random stochastic approach, we evaluate the accuracy with two different

structures for converting the input values to randomized stochastic bitstreams: 1) using

maximal period 8-bit LFSRs, and 2) using maximal period 16-bit LFSRs to emulate

a true-random number generator. Two different LFSRs (i.e., different designs1 with

different seeds) are used in each case to generate independent bitstreams. While the first

structure can accurately convert the input values to 256-bit2 pseudo-random bitstreams,
1 Two out of 16 different designs of maximal period 8-bit LFSRs and two out of 2,048 different

designs of maximal period 16-bit LFSRs described in [103] are randomly selected for each run.
2 An n-bit maximal period LFSR has a period of 2n − 1, as the 0-state in the LFSR is normally
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Table 4.1: Mean Absolute Error (%) comparison of the prior random and deterministic

approaches to stochastic computing and the proposed deterministic approaches based on

pseudo-randomized streams when multiplying two 8-bit precision stochastic streams with

different numbers of operation cycles.

Design Approach SNG 216 215 214 213 212 211 210 29 28 27 26

Conventional

Random Stoch.

Prior work [2, 14]: two LFSR-8 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 2.54 4.25

Prior work [2, 14]: two LFSR-16 0.05 0.15 0.26 0.39 0.58 0.79 1.20 1.67 2.32 3.32 4.72

Deterministic

Prime Length

Method of Ch. 2: two counter-8 0.00 3.03 4.70 6.01 7.08 7.62 7.90 7.98 8.11 33.2 51.5

Proposed method: two LFSR-8 0.00 0.09 0.16 0.24 0.34 0.47 0.60 0.72 0.85 2.56 4.22

Deterministic

Clock Division

Prior work [47]: two counter-8 0.00 12.3 18.7 21.8 23.4 24.0 24.4 24.5 24.9 49.6 62.2

Proposed method: two LFSR-8 0.00 1.44 2.48 3.74 5.28 7.18 9.91 14.2 24.8 25.0 25.8

Deterministic

Rotation

Prior work [47]: two counter-8 0.00 3.10 4.84 6.15 7.08 7.66 7.99 8.17 8.26 33.1 51.8

Proposed method: two LFSR-8 0.00 0.09 0.16 0.24 0.35 0.47 0.60 0.71 0.82 2.56 4.26

the second structure converts the inputs to any stream with a length less than 216 to give

an approximate representation of the value. With the first structure, after 256 cycles, the

generated bitstreams repeat and so the accuracy of the operation never improves after

this time. Due to a more precise representation, the first structure shows a better MAE

for low stream lengths. However, for very long bitstream lengths, the second structure

can produce a better MAE. The hardware cost of the second structure is twice that of

the first one because of using larger LFSRs. Note that due to random fluctuation and

correlation, neither of these two structures can produce completely accurate results in

216 cycles.

As shown in Table 4.1, the deterministic approaches proposed in Chapter 2 and [47]

are able to produce completely accurate results when running the operation for 216

cycles. Due to using unary bitstreams, however, the MAE of the computation increases

significantly when running the operation for fewer cycles. Instead of unary streams, we

use pseudo-randomized but accurate bitstreams. Integrating these bitstreams with the

deterministic approaches results in completely accurate computation when it is run for

the required number of cycles while still producing high quality results if the output

stream is truncated.

As discussed, in the deterministic approaches to SC, the required independence

not used. Here, for a fair comparison with the unary stream-based deterministic approaches, we add a
0-state to the set of the states of each LFSR to generate 2n unique numbers.
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Figure 4.4: Deterministic approaches to SC by two pseudo-randomized bitstreams.

between input streams is provided by using relatively prime lengths, rotation, or clock

division. When running the operations for the product of the length of the streams,

these three methods cause every bit of the first stream to interact with every bit of the

second stream [47, 48]. The computation is therefore performed deterministicly and

accurately irrespective of the location of the ones in each stream. Thus, as demonstrated

in Fig. 4.4, with the interaction of two pseudo-randomized bitstreams, there is actually

no requirement to use unary-style streams and, instead, we use pseudo-randomized

bitstreams for the deterministic approaches.

We use different LFSRs (different LFSR designs and different seeds) for generating

pseudo-randomized bitstreams. The period of the LFSR should be maximal and equal to

the length of the bitstream to accurately represent each value. Thus, for 8-bit precision

inputs, an 8-bit size maximal period LFSR is required. Table 4.1 also compares the MAE

of the deterministic approaches when multiplying the inputs streams generated using

the proposed approach. Similar to the unary stream-based deterministic approaches, the

proposed method results in completely accurate results when running the operation for

216 cycles, but produce a much lower MAE when running for fewer cycles. Compared to

the conventional random SC, the relatively prime length and the rotation approaches
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produce results with a lower MAE.

Note that, similar to the unary-stream based deterministic approaches that require

n separate counters for generating n independent input bitstreams [47], sharing LFSRs

in the proposed method is not possible. In the clock division deterministic approach,

each LFSR must be driven with a different clock source which as a result prevents using

optimization techniques such as sharing LFSRs+shifting [63] to save hardware cost.

Similarly, the limitation of using number sources with different periods in the relatively

prime approach and stalling number generators in the rotation approach prevent us from

sharing pseudo-random number generators in the proposed method.

4.3.2 Evaluation

To evaluate the proposed idea, we used the stochastic implementation of the Robert’s

cross edge detection algorithm. Fig. 2.19a shows the stochastic implementation of this

algorithm proposed in [1]. The two XOR gates compute absolute value subtraction when

they are fed with correlated input streams (streams with maximum overlap between

1s). Sharing the same source of numbers (i.e., same LFSR) for generating the input

streams can provide correlated streams. The MUX unit, on the other hand, performs

scaled addition irrespective of correlation between its main input streams. The important

point, however, is that the select input stream (here, a stream with the value 0.5) should

be independent to the main input streams to the MUX. Thus, for the Robert’s cross

stochastic circuit, the four main input streams (the inputs to the XOR gates) should be

correlated to each other, but should be independent of the select input of the MUX. Two

number generators are, therefore, required for this circuit– one for converting the main

inputs and one for generating the select input stream.

We evaluate the performance, the hardware area, the power, and the energy consump-

tion of the Robert’s cross stochastic circuit in three different cases: 1) the conventional

approach of processing random streams, 2) the prior deterministic approaches of pro-

cessing unary streams, and 3) the proposed deterministic approaches of processing

pseduo-randomized streams. The circuit shown in Fig. 2.19a is the core stochastic logic

and will be shared between all cases.

Fig. 4.5 shows our proposed structures of the sources for generating pseudo-random

numbers for the three deterministic approaches. For the relatively prime length approach,
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Figure 4.5: Proposed sources of generating pseudo-random numbers for the three deter-

ministic approaches to SC.

we assume the first number source has a period of 2n− 1 and we control the period of the

second source by setting a stop state. Here, for the Robert’s cross circuit, pseudo-random

number sources with periods of 28 − 1 and 28 − 2, are implemented. When the state

(the output number) of LFSR 2 equals the stop state, LFSR 2 is restarted to its initial

state. For the clock division structure, LFSR 2 is clock divided by the period of LFSR 1

through detecting the all one state using an AND gate. Similarly, the rotation structure

uses an AND gate to inhibit or stall every 2n− 1 cycles when the all one state is detected.

These units are used as the number source in the stochastic stream generator shown

in Fig. 1.1. For the unary stream-based prior deterministic approaches, we optimized

and implemented the counter-based architectures of [47]. For the conventional random

stream-based implementations, we used two different 8-bit or two different 16-bit LFSRs

as the required sources of random numbers. We used the Synopsys Design Compiler

vH2013.12 with a 45nm gate library to synthesize the designs.

As shown in Table 4.2, the hardware area cost of the proposed deterministic designs
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Figure 4.6: Mean Absolute Error (%) when processing random input values with the

Robert’s cross stochastic circuit using different stochastic approaches.

is slightly (<10%) more than that of their corresponding prior deterministic implementa-

tions. Due to replacing counters with LFSRs in the proposed architectures, the power

consumption has also increased in all cases. The important metric, however, in evaluating

the efficiency of the implemented designs is energy consumption, defined as the product

of the power consumption and processing time.

We evaluate the energy-efficiency of the different designs by measuring the energy

consumption of each one in achieving a specific accuracy in processing the inputs. MAE is

used as the accuracy metric (a lower MAE means a higher accuracy). To comprehensively

test the designs, we simulate the operation of the Robert’s cross circuit in each design

approach by processing 10,000 sets of 8-bit precision random input values. For accurate

representation of input values in each design approach, we randomly choose an integer

value between zero and the period of the (pseudo-random) number generator and divide

it by the period. Fig. 4.6 and Fig. 4.7 present the MAE and the standard deviation of

processing random input values in different design approaches. Table 4.2 further shows

the number of processing cycles and the energy consumption of each design to achieve

different accuracies.

When completely accurate results are expected, the proposed designs must run for

the same number of cycles as required by the prior deterministic designs (product of the

periods of the number generators). Considering the higher power consumption of the
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Figure 4.7: Standard deviation of the absolute error of processing random input values

with the Robert’s cross stochastic circuit using different stochastic approaches.

proposed designs, the prior deterministic implementations consume less energy to achieve

completely accurate results. The great advantage of the proposed architectures starts

when slight inaccuracy in the computation is acceptable. In such cases, the proposed

designs start showing a much lower energy consumption by converging to the expected

accuracy in a much shorter time.

For the relatively prime and the rotation approaches, the proposed designs improve

the processing time by 61% and 55%, respectively, resulting in an energy consumption

savings of 41% and 33% when accepting an MAE as low as 0.1%. For an MAE of 3.0%,

these architectures consume 324 and 334 times lower energy by improving the processing

time up to 500X compared to prior unary-based architectures. For the clock division

approach, the proposed design is more energy efficient if at least an MAE of 1.0% is

acceptable. The energy consumption is reduced 10 times for this method for an MAE of

3%.

Compared to the conventional random stream-based architectures (Conv-Random-8

with 8-bit LFSRs and Conv-Random-16 with 16-bit LFSRs) the proposed structures

are more energy-efficient than the 16-bit conventional architecture but are at the same

level with the 8-bit implementation. The important point, however, is that the 8-bit

conventional architecture cannot achieve an MAE of 1.0% or lower and the 16-bit

architecture requires a very long processing time and consumes significant energy to get
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close to completely accurate results.

4.4 Low-Discrepancy Bistreams for Deterministic SC

In Section 4.3, we used pseudo-random sequences to improve the poor progressive

precision of the current deterministic methods of SC. In this section, we propose two new

deterministic methods for computation with stochastic bitstreams using low-discrepancy

sequences. We first describe the proposed methods and their hardware structures, and

then evaluate the accuracy and hardware costs compared to prior state-of-the-art work.

4.4.1 Low-Discrepancy Sequences in SC

Low discrepancy (LD) sequences were traditionally used to accelerate the convergence

in Monte-Carlo simulations [8]. Recent work on SC [6][7] utilized these sequences in

improving the speed of computation on stochastic bitstreams. With LD sequences, 1âĂŹs

and 0âĂŹs in the stochastic streams are uniformly spaced, the streams do not suffer

from random fluctuations. The bitstreams can quickly and monotonically converge to

the target value, producing acceptable results in a much shorter time [6].

Alaghi and Hayes proposed the use of LD Halton sequences for SC [6]. A Halton

sequence generator consists of a binary-coded base-b counter, where b is a prime number.

For d independent input streams in a SC system, d counters with different prime bases

must be used. For instance, in the simplest case of multiplying two stochastic bitstreams

using an AND gate, one base-2 and one base-3 counter is required. The order of the

counter’s output digits are reversed and the reordered digits are converted to equivalent

binary numbers. The structure of the Halton sequence generator proposed in [6] is

shown in Figure 4.8.a. Stochastic bitstreams generated using Halton-based sequences

can significantly improve the processing time of SC for achieving the same accuracy

compared to the conventional LFSR-based pseduo-random bitstreams. However, the

base conversion required in the structure of this sequence generator results in additional

hardware overhead [7].

Liu and Han [7] recently proposed another LD-based stochastic stream generator

based on Sobol sequences. Compared to Halton sequence generator, generation of Sobol

sequences does not need the additional base-conversion hardware. The Sobol sequence
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Figure 4.8: (a) Halton sequence generator [6] (b) Sobol sequence generator [7, 8].

generator, instead, consists of an address generator that detects the position of the least

significant zero, a storage array storing the values of the direction vectors as intermediate

variables for sequence generation, and a pair of XOR gate and D-type flip-flop for

recursively generating random numbers. The structure of the Sobol sequence generator,

shown in Figure 4.8.b, is proposed in [8] and used in [7] for generating LD stochastic

bitstreams. Different Sobol sequences can be generated by changing the values of the

direction vectors.

The authors in [7] showed that the Halton sequence based stochastic multiplier takes

about twice the sequence length to achieve a similar accuracy as the Sobol sequence-based

design. Thus, both approaches consume almost the same energy for the same accuracy

requirement. Due to the limitation of the Halton sequences to prime bases, in this

work, we focus on the Sobol sequences which can cover different precisions of the base-2
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Table 4.3: Comparing different sources of generating numbers (3-bit precision) for

stochastic stream generator

Counter
0 1 2 3 4 5 6 7

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8

LFSR
0 3 7 1 2 6 4 5

0 3/8 7/8 1/8 1/4 3/4 1/2 5/8

Sobol Generator
0 4 2 6 1 5 3 7

0 1/2 1/4 3/4 1/8 5/8 3/8 7/8

numbers.

Table 4.3 compares three different sources of generating numbers for the stochastic

stream generator of Fig. 1.1. A counter is being used to generate unary streams. An

LFSR is being used to generate pseudo-random bitstreams. A Sobol sequence generator,

on the other hand, is used to generate a LD-based stochastic stream.

4.4.2 First Proposed Method

The first method uses the LD Sobol sequences and is independent of prior deterministic

methods. The required independence between the input bitstreams is guaranteed by

simply using different Sobol sequences for generating the bitstreams and processing the

streams for a specific number of cycles. The important point for this method is that the

precision of the LD sequence generator should be i times the precision of the input data,

where i is the number of independent bitstreams. Each input data must be converted

to a stream of 2in bits by comparing the input value to 2in different numbers from the

sequence generator. For example, to multiply two n-bit precision input data, two 2n-bit

precision Sobol sequence generators are required. Each input data is converted to a

22n length bitstream by comparing to the first 22n numbers from one of the two Sobol

sequence generators. The generated bitstreams are then connected to an AND gate and

the deterministic accurate output bitstream is ready after 22n cycles.

In the following, we see an example of multiplying two 2-bit precision input values

using the first proposed method. The first input value is converted to a bitstream

representation using the simplest Sobol sequence (Sobol seq. 1 in Fig. 4.9). The second

input value is converted using the second Sobol sequence from the MATLAB built-in
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Sobol Seq 1 0 1/2 1/4 3/4 1/8 5/8 3/8 7/8 1/16 9/16 5/16 13/16 3/16 11/16 7/16 15/16

𝒂𝟎 𝒂𝟐 𝒂𝟏 𝒂𝟑 𝒂𝟎 𝒂𝟐 𝒂𝟏 𝒂𝟑 𝒂𝟎 𝒂𝟐 𝒂𝟏 𝒂𝟑 𝒂𝟎 𝒂𝟐 𝒂𝟏 𝒂𝟑

Sobol Seq 2 0 1/2 3/4 1/4 5/8 1/8 3/8 7/8 15/16 7/16 3/16 11/16 5/16 13/16 9/16 1/16

𝒃𝟎 𝒃𝟐 𝒃𝟑 𝒃𝟏 𝒃𝟐 𝒃𝟎 𝒃𝟏 𝒃𝟑 𝒃𝟑 𝒃𝟏 𝒃𝟎 𝒃𝟐 𝒃𝟏 𝒃𝟑 𝒃𝟐 𝒃𝟎

Sobol Seq 3 0 1/2 1/4 3/4 7/8 3/8 5/8 1/8 11/16 3/16 15/16 7/16 5/16 13/16 1/16 9/16

𝒄𝟎 𝒄𝟐 𝒄𝟏 𝒄𝟑 𝒄𝟑 𝒄𝟏 𝒄𝟐 𝒄𝟎 𝒄𝟐 𝒄𝟎 𝒄𝟑 𝒄𝟏 𝒄𝟏 𝒄𝟑 𝒄𝟎 𝒄𝟐

Sobol Seq 4 0 1/2 3/4 1/4 7/8 3/8 1/8 5/8 7/16 15/16 11/16 3/16 9/16 1/16 5/16 13/16

𝒅𝟎 𝒅𝟐 𝒅𝟑 𝒅𝟏 𝒅𝟑 𝒅𝟏 𝒅𝟎 𝒅𝟐 𝒅𝟏 𝒅𝟑 𝒅𝟐 𝒅𝟎 𝒅𝟐 𝒅𝟎 𝒅𝟏 𝒅𝟑

𝒙𝟎 𝒙𝟏 𝒙𝟐 𝒙𝟑

1/4 1/2 3/4 10

Figure 4.9: First 16 numbers of the first four Sobol sequences from MATLAB built-in

Sobol sequence generator, and the category of each one based on their position in the [0,

1] interval.

Sobol sequence generator (Sobol seq. 2 in Fig. 4.9). Note that, when converting to a

bitstream representation, a one is generated if the Sobol number is less than the input

target number.

Example . Deterministic 2-bit precision multiplication using the first proposed method:

1/4 =1000 1000 1000 1000

3/4 =1101 1110 0111 1011

3/16=1000 1000 0000 1000

As can be seen, the accurate output of multiplying the two 2-bit precision input values

is obtained by directly converting the inputs to 24-bit streams, by comparing them to

the first 24 numbers of two Sobol sequences, and ANDing the generated bitstreams.

To prove why the first proposed method produces deterministic accurate results, we

use two important properties of the Sobol sequences:

• The first 2n numbers of any Sobol sequence include all n-bit precision values in [0,

1) interval.

• If equally split [0, 1) interval into 2n sub-intervals, in any consecutive group of 2n

Sobol numbers starting at positions i × 2n (i = 0, 1, 2, . . .), there is exactly one

member in each sub-interval.
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Fig. 4.9 categorizes consecutive groups of 22 numbers in the first four Sobol sequences.

Each Sobol number in each group is labeled with a number from 0 to 3 depending on

its sub-interval. For example 1/8 in Sobol sequence 1 is labeled with a0 because it is a

member of the first sub-interval, [0, 1/4), and 5/8 in Sobol sequence 2 is labeled with b2
because it is a member of the third sub-interval, [1/2, 3/4). When converting a 2-bit

precision input value into a 24-bit stream by comparing it to the first 24 numbers of a

Sobol sequence, the result is the same for the Sobol numbers with the same label. For

example, comparing 3/4 to 5/8 and 11/16 from the Sobol sequence 2 generates the same

bit of ’1’ as both 5/8 and 11/16 are a member of [1/2, 3/4) (label b2) and so are both

less than the input value of 3/4. As can bee seen in Fig. 4.9, any selected group of 22

numbers includes all labels from 0 to 3, and as a result, all groups of the same Sobol

sequence will produce the same number of 1s. All groups can accurately present the

target input value and their difference will only be in the order of bits (order of labels).

The result of multiplying two input values, represented by two bitstream, is determin-

istic and completely accurate if every bit of one bitstream meets every bit of the other

stream exactly once [47]. As shown in Fig. 4.9 for n = 2, for any pair of two different

Sobol sequences, every label u (u = 0, 1, 2, 3) in xu (x = a, b, c, d) meets every label t

(t = 0, 1, 2, 3) in yt (y = a, b, c, d) exactly once if considering the first 24 numbers of each

sequence. So, the result of multiplying two 2-precision numbers by ANDing their 24-bit

stream representation, generated based on two different Sobol sequences, is deterministic

and completely accurate.

This argument can be easily extended to multiplication of i n-bit precision numbers

when converting the input numbers to bitstreams of 2i.n-bit length by comparing them

to 2i.n numbers from i different Sobol sequences. The generated bitstreams can be

divided into groups of 2n bits with different groups of a bitstream representing same

n-bit precision value but with a different order (except the case of using Sobol Seq. 1,

because labels in different groups of Sobol Seq. 1 have the same order). Every bit (label)

from a bitstream interacts with every bit (label) of the other bitstreams exactly once,

which results in a deterministic accurate output bitstream.

Fig. 4.10.a shows the structure of the sources of generating Sobol sequences for the

first proposed method. These are used as the number sources in the stochastic stream

generator of Fig. 1.1. Note that the simplest Sobol sequence is simply the reverse of the
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Figure 4.10: Structures of the sources of generating Sobol sequences based on (a) first

proposed method (b) second proposed method.

output bits of a binary counter and so we generate the first Sobol sequence by hard-wiring

the output bits of a counter at no extra hardware cost.

4.4.3 Second Proposed Method

The second method is based on the prior deterministic methods introduced in [47].

Inspired from the idea of using pseudo-randomized bitstreams with the three state-of-the-

art deterministic approaches (see Section 4.3), we propose to integrate the LD-sequences

with the previously proposed deterministic methods. In Section 4.3, maximal period

pseudo-random sources (i.e., maximal period LFSRs) are used to generate deterministic

accurate bitstreams. The important point is that the period of the pseudo-random source



84

should be equal to the length of the bitstream. By using such a source to generate

random numbers, the input value could be converted into a pseudo-random but completely

accurate stochastic representation. Instead of pseudo-random sources, here, we use LD

sequence generators. In contrast to our first method, for the second method, the precision

of the sequence generator is equal to the precision of the input data. For example, for

multiplication of two n-bit precision inputs data, two n-bit LD sequence generators

are required. In case of using LD Halton sequences, which are generated based on

prime numbers, the relatively prime length method of [47] must be used to guarantee

the required independence between the bitstreams. The Sobol sequences, on the other

hand, must be integrated with the clock division or the rotation method of [47]. The

operations then must continue for the product of the length of the bitstreams to produce

deterministic complete accurate results.

In Section 4.3, we showed that the rotation method has a faster convergence property

and is more energy efficient than the clock division deterministic method. So, for the rest

of this section, for the second proposed method, we integrate the LD Sobol sequences

with the rotation method. While we limit our reported results to LD Sobol sequences

and the rotation approach, the proposed idea can similarly be applied to LD Halton

sequences and the relatively prime length method.

The rotation method of [47] guarantees a deterministic accurate output by rotating

the bitstreams through inhibiting or stalling on powers of the stream lengths. Fig. 4.10.b

shows the structure of the sources of generating Sobol sequences for the second proposed

method based on the rotation method. The first Sobol source repeats every 2n cycles and

does not rotate. Other Sobol sources (source k=2, 3, ..., i) have a period of 2n but rotate

every 2(k−1)·n cycles by inhibiting. Additional counters in the structure of the second

method control these inhibits. We will show that, due to using n-bit Sobol generators,

instead of expensive i · n-bit generators, the structure of the second proposed method

has a lower hardware cost than that of the first porposed method.

In the following, we see an example of multiplying two 2-bit precision input values

using the second proposed method based on the first two Sobol sequences.

Example 8. Deterministic 2-bit precision multiplication using the second proposed

method:
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Sobol source 1 with a period of 22 and no rotation:

0,1/2,1/4,3/4, 0,1/2,1/4,3/4, 0,1/2,1/4,3/4, 0,1/2,1/4,3/4

Sobol source 2 with a period of 22 and inhibiting after every 22 cycles:

0,1/2,3/4,1/4, 1/4,0,1/2,3/4, 3/4,1/4,0,1/2 1/2,3/4,1/4,0

2/4 =1010 1010 1010 1010

3/4 =1101 1110 0111 1011

6/16=1000 1010 0010 1010

As can be seen, by exploiting the rotation approach, every number in the first four

numbers of the Sobol source 1 pairs with every number in the first four numbers of the

Sobol source 2 exactly once. This has led to a deterministic accurate multiplication when

these rotated sequence of numbers are used in converting the input values, 2/4 and 3/4,

into bitstream representation.

4.4.4 Accuracy Evaluation

For accuracy comparison of the proposed methods with prior works, we exhaustively

tested multiplication of two 8-bit precision input data in the [0, 1] interval from a large

set of random input values for the conventional approximate SC [12][2] and for the

pseudo-random rotation approach of Section 4.3, and on every possible input value for the

unary-stream based deterministic approach [47] and on the two proposed LD bitstream-

based methods. Table 4.4 compares the mean absolute errors (MAEs) of the conventional

approximate SC (using two different 16-bit LFSRs as the number generators), the prior

deterministic unary-stream based rotation approach (using two 8-bit counters as the

number generators), the deterministic pseudo-random based rotation approach (using two

different 8-bit LFSRs as the number generators), the first proposed method based on LD

Sobol sequences (using two 16-bit Sobol Sequence generators), and the second proposed

LD Sobol sequence-based rotation approach (using two 8-bit Sobol generators). Note that

for the two required Sobol sequences in the proposed methods we use the simplest Sobol

sequence and the second Sobol sequence from the MATLAB Sobol sequence generator.

As can be seen in Table 4.4, similar to the deterministic approaches proposed in [47]

and in Section 4.3, the two proposed methods could produce completely accurate results
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in 216 cycles. Due to using LD bitstreams, however, the MAE of the computation is

significantly lower than that of the prior approximate and deterministic approaches

when truncating the bitstreams (running the operation for fewer cycles). For example,

when running the multiplication operation for 215 cycles (processing 215-bit streams),

the proposed methods have shown a MAE of around 10−3, which is 100X lower than

the MAE of the deterministic pseudo-random rotation method of Section 4.3 and 3000X

lower than that of the deterministic unary stream-based rotation approach of [47]. Thus,

our methods have a much better progressive precision property and converge to the

correct result much faster than prior methods.

4.4.5 Cost Comparison

The hardware area costs of the proposed methods for the case of implementing a 2-input

8-bit precision multiplier are also compared with the costs of the prior methods in

Table 4.4. Each design includes two (random) sequence generators and two comparators

to generate two independent stochastic bitstreams. We synthesized the designs using the

Synopsys Design Compiler vH2013.12 with a 45-nm gate library. As can be seen in the

table, the proposed methods have a higher cost than prior methods due to using costly

Sobol sequence generators. The first proposed method is even 2.6X more costly than the

second proposed method because of implementing two expensive 16-bit Sobol sequence

generators. The important metric, however, to evaluate the efficiency of different methods

is the area-delay product as an estimation of the energy consumption. As we will show

in the next section, due to a very fast converging property, our proposed methods could

satisfy a fixed accuracy expectation in a much shorter time, which will lead to a much

lower area-delay product than prior methods. This, in particular, makes the proposed

methods interesting for applications that can tolerate some degree of inaccuracy such as

image processing and neural network applications.

4.5 Scalability Evaluation

Limited scalability has been an important challenge of prior deterministic methods of SC.

As the authors in [15] discuss, when many mutually independent stochastic bitstreams are

needed, the hardware cost significantly increases with the number of inputs. Stochastic
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bitstreams generated via LD sequences has a faster convergence than the pseudo-random

sequences and of course than the unary counter-based sequences. However, the benefits

of using LD sequences diminish as the number of inputs increase, because the cost of

generating them is much higher than pseudo-random number generation. In this section,

we evaluate the scalability of the proposed methods compared to prior methods and show

that the second proposed method which integrates the LD sequences with the rotation

approach has the best scalability compared to prior deterministic and also conventional

approximate SC.

We implemented and synthesized 2-input, 3-input, and 4-input stochastic multipliers,

with different design approaches, for multiplication of input data with 4-bit and 8-bit

data precisions. The hardware area costs are reported in Table 4.5. As can be seen in

the reported numbers, the deterministic rotation approach based on unary streams has

the lowest hardware cost with the lowest cost increase rate (2X) from the 2-input to

the 4-input multiplier. The first proposed LD method which has the fastest converging

property (see Table 4.4) has the highest hardware cost with highest cost increase rate

(9X) from the 2-input to the 4-input multiplier. The second LD method, on the other

hand, not only has a very fast converging property, it also has a cost increase rate (X2.5)

very close to the cost increase rate of the rotation unary stream-based method.

The MAE of the implemented multipliers for different stream lengths (different opera-

tion cycles) are presented in Figs. 4.11 and 4.12. As can be seen in Fig. 4.11, for the 4-bit

precision multipliers, the proposed methods (DETER. SOBOL and DETER. ROTATION

SOBOL) show a better progressive precision property than prior deterministic methods

and their computation accuracy scales with increasing the number of inputs. Only

the conventional approximate SC approach shows a better scalability than the second

proposed LD method but it lacks the ability of generating completely accurate results.

For the 2-input and 3-input multipliers with 8-bit precision (Fig. 4.12) we achieved

the best accuracy performance by using the two proposed LD methods. Both methods

converge to the expected correct value very fast and scale well with increasing the number

of inputs.

Finally, we show the area-delay product of the implemented 8-bit precision multipliers

for different MAEs in Fig. 4.13. We first exhaustively tested each design approach with

a large set of input values and found the average processing time of each one to achieve
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Figure 4.11: MAEs of 4-bit precision multipliers for different stream lengths.
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Figure 4.12: MAEs of 8-bit precision multipliers for different stream lengths.

0.1 0.2 0.3 0.4 0.5 1.0 2.0 3.0
Mean Absolute Error (%)

0 100

5 105

1 106

1.5 106

2 106

2.5 106

3 106

A
re

a 
x 

D
el

ay

Multiplying 2 Inputs - Input Data Precision = 8 bits

CONV. APPROX. SC (16-bit LFSR)
DETER. ROTATION UNARY (8-bit Counter)
DETER. ROTATION PSEUDO (8-bit LFSR)
DETER. SOBOL (16-bit Sobol Gen)
DETER. ROTATION SOBOL (8-bit Sobol Gen)

0.1 0.2 0.3 0.4 0.5 1.0 2.0 3.0
Mean Absolute Error (%)

0 100

1 106

2 106

3 106

4 106

5 106

6 106

7 106

8 106

9 106

1 107

A
re

a 
x 

D
el

ay

Multiplying 3 Inputs - Input Data Precision = 8 bits

CONV. APPROX. SC (24-bit LFSR)
DETER. ROTATION UNARY (8-bit Counter)
DETER. ROTATION PSEUDO (8-bit LFSR)
DETER. SOBOL (24-bit Sobol Gen)
DETER. ROTATION SOBOL (8-bit Sobol Gen)

Figure 4.13: Area x Delay of 8-bit precision multipliers for different MAEs. Note that

the Area x Delay numbers for the deterministic rotation unary method were much larger

than other method and out of the range shown in the figure)

a specific MAE. We then multiplied the processing time with the corresponding design

hardware area cost to produce the area-delay product. As can be seen in Fig. 4.13, the

second proposed LD method (red lines) has the lowest area-delay product between different

approximate and deterministic state-of-the-art methods which shows its superiority to

prior methods and its scalability when the number of inputs increases.
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4.6 Summary

Recent work on SC has shown that computation using stochastic logic can be performed

deterministically and accurately by properly structuring unary-style bitstreams. While

these approaches are appealing by generating completely accurate results, the cost of

precise results makes them energy-inefficient for the cases that slight inaccuracy is

acceptable. In this chapter, we first exploited pseudo-randomness in improving the

progressive precision property of the previously proposed deterministic approaches of

SC. We then proposed two new fast-converging scalable deterministic approaches of

processing bitstreams based on low-discrepancy (LD) sequences. The first LD-based

method provides the best accuracy for a fixed processing time while the second LD-based

method has the lowest area-delay product. Completely accurate results are produced

when running the operation for the required number of cycles. When slight inaccuracy is

acceptable, significant improvement in the processing time and energy consumption is

observed compared to the prior unary stream-based deterministic approaches and also

the conventional random stream-based approaches.



Chapter 5

Polysynchronous Stochastic Circuits

This chapter introduces a new advantage to SC paradigm. We show that SC circuits

naturally and effectively tolerate very high clock skew. Exploiting the skew tolerance

of SC circuits, we introduce polysynchronous clocking, a design strategy for optimizing

the clock distribution network (CDN) of SC-based systems. We describe two approaches

to polysynchronous system design: (1) replacing the global CDN with locally generated

clocks, and (2) relaxing the global CDN. We provide a case study comparing the cost

and benefits of conventional design with CDNs to polysynchronous designs, quantifying

the area, speed and energy advantages. We finally compare the error tolerance of

polysynchronous stochastic circuits to conventional synchronous stochastic circuits. This

chapter’s material has been published in [104], [17], and [105].

5.1 Motivation

All electronic systems are inherently asynchronous in nature. By carefully choreographing

transitions with clock signals, asynchronous circuitry can be adapted to appear to behave

synchronously. Such synchronism brings significant advantages: it greatly simplifies

the design effort; also, with predictable timing, one can make performance guarantees.

However, synchronism comes at a significant cost: one must create a clock distribution

network (CDN).

The CDN distributes the clock signal from a single oscillator to stateholding compo-

nents, such as flip-flops. The primary design goal for CDNs is to maintain signal integrity

92
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while distributing the clock widely. In the ideal case, transitions in the clock signal should

arrive at all state-holding elements at precisely the same moment (so there is zero clock

uncertainty). Achieving this is difficult and costly in terms of design effort and resources.

In modern large-scale integrated circuits, the CDN accounts for significant area, con-

sumes significant power, and often limits the overall circuit performance [106, 107, 108].

With increasing variation in circuit parameters, designing CDNs with tolerable clock

uncertainty is becoming a major design bottleneck.

There are two kinds of variations that lead to uncertainty in the arrival time of the

clock edge at sequential circuit elements: spatial and temporal. Spatial variations, known

as skew, affect the arrival of the various clock edges at the sequential elements within a

single clock cycle. Skew can limit circuit performance, since a circuit must be clocked at a

lower frequency to tolerate it. There is a designer’s rule of thumb that clock skew should

be less than 10 percent of the clock period. As clock frequency goes up, more complex

CDNs are required to keep skew at a constant fraction of the clock period. Increasing

die size, clock loads, and process variability magnify the challenge [108].

Temporal variations, known as jitter, also affect the arrival time of the clock edges at

the sequential elements across different clock cycles [109]. Even when designed to be zero,

environmental and processing variations can nonetheless lead to significant amounts of

clock uncertainty. Various strategies are used to minimize the uncertainty in the delivery

of clock signals. For instance, buffers and inverters can be inserted to balance the delays

between the clock source and the clock sinks. However, this costs– both in area and

design effort.

Stochastic computing offers skew and clock uncertainty tolerance. SC circuits can

naturally and effectively tolerate very high clock skew. Suppose that the bits in different

input streams are temporally misaligned, that is to say, the bit transitions do not line

up correctly in time. The SC circuit will compute an output value based on the input

values it sees at any moment in time (ignoring subtleties such as setup and hold times).

Since it is only the fraction of time that the signal is high that matters, averaged over

time, the result of the SC operation will be correct. In this chapter, we will explain how

this feature can be used to mitigate the costs of implementing SC-based systems: either

the global CDN can be eliminated entirely; or one can design a much less costly global

CDN that tolerates skew.
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5.2 Background

5.2.1 Stochastic Operations

Multiplication

As we discussed in Section 2, multiplication is implemented using a standard AND gate

for the unipolar coding format. Fig. 5.1 shows the multiplication of two 10-bit unipolar

stochastic streams using an AND gate. The value represented by a bitstream is the time

that the signal is high divided by the total length of the stream. Fig. 5.2 illustrates

an example of multiplying two unsynchronized bitstreams representing 0.6 and 0.5. As

shown, the value represented by the bitstream at the output of the AND gate is 0.3, the

value one expects when multiplying 0.6 by 0.5.

Figure 5.1: Example of stochastic multiplication using an AND gate.

Figure 5.2: Stochastic multiplication using an AND with unsynchronized bitstream.

Scaled Addition and Subtraction

Stochastic values are restricted to the interval [0, 1] (in the unipolar case) or the interval

[-1, 1] (in the bipolar case). So one cannot perform addition or subtraction directly, since

the result might lie outside these intervals. However, one can perform scaled addition

and subtraction. These operations can be performed with a MUX. Fig. 5.3 illustrates

the operation 1
2A + 1

2B with digital bitstreams. Fig. 5.4 illustrates another example

of scaled addition, this time on two unsynchronized bitstreams representing 0.25 and
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0.5. As expected, the output is a bitstream representing 0.375, the result of the scaled

addition.

Figure 5.3: Example of stochastic scaled addition using a MUX unit.

Figure 5.4: Stochastic scaled addition using a MUX with unsynchronized bitstreams.

FSM-based operations

More complex functions can be implemented in SC using finite state machines (FSMs).

The stochastic implementation of the exponentiation function and the tanh function

were developed by Brown and Card [31]. Li and Lilja [61] also developed an FSM-

based stochastic absolute value function. The state transition diagrams of the FSMs

implementing these functions are shown in Fig. 5.5. Assuming that the input to these

FSMs is a random signal that is high a fraction X of the time, the output signal Y

converges to expected value: a fraction of time at high equal to exp(X), tanh(X) and

abs(X). Note that these FSMs only differ in how the outputs are computed from the

current state. Transition diagrams with 8 states are shown here; these can readily be

generalized to FSMs with more states [16].
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Figure 5.5: State transition diagram of the FSM implementing a) the stochastic expo-

nentiation function b) the stochastic tanh function c) stochastic absolute value function.

For details of the implementation, the readers are referred to [9].

5.2.2 Stochastic Circuits

SC has been applied to a wide variety of applications, including image and signal

processing applications. In this chapter, we use circuit implementations of three fairly

complex image processing algorithms as case studies: Robert’s cross edge detection,

Median filter based noise reduction circuit, and image segmentation based on stochastic

kernel density estimation.

Robert’s cross edge detection

Robert’s cross edge detection algorithm is a well-known and widely studied algorithm.

A low-cost implementation of the Robert’s cross method which works on correlated

input bitstreams was shown in Figure 2.19a. A more complex FSM-based stochastic

implementation of this algorithm which works with independent random bitstreams

is proposed in [4] and shown in Fig. 5.6. In this circuit, each Robert’s cross operator

consists of a pair of 2× 2 convolution kernels that process an image pixel based on its
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Figure 5.6: Stochastic implementation of the Robert’s cross edge detection algorithm [4].

three neighbors as follows

yi,j =
1

2
× (

1

2
|xi,j − xi+1,j+1|+

1

2
|xi,j+1 − xi+1,j |) (5.1)

where xi,j is the value of the pixel at location (i, j) of the original input image and yi,j
is the output value computed for the same location in the output image. In the circuit

of Fig. 5.6, three multiplexers perform addition and subtraction, while two FSM based

stochastic circuits perform the required absolute value operations. Since the Robert’s

cross circuit operates on signed values, all streams must be in the bipolar format.

Median Filter Noise Reduction

The median filter replaces each pixel of an input image with the median of neighboring

pixels. It is quite popular because, for certain types of random noise, it provides

excellent noise-reduction capabilities [110]. A hardware implementation of the 3x3

median filter based on a sorting network was shown in Fig 3.8. Instead of the AND-OR

based implementation of the basic sorting unit which requires highly correlated input

bitstreams (e.g., unary-style bitstreams), here, we use the FSM-based sorting circuit

shown in Fig. 5.7 in implementing the median filter circuit. This implementation works

with independent random bitstreams. In total, the median filter circuit requires 19 basic

sorting units (57 MUX units and 19 FSM-based stochastic tanh circuits.)
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Figure 5.7: Stochastic implementation of basic sorting unit.

Kernel Density Estimation-based Image Segmentation

Image Segmentation based on Kernel density estimation is an image processing algorithm

which is used in object recognition and tracking applications to extract changes in a

video stream in real time. Using a probability density function (PDF), the distribution of

intensity values a pixel will have at time t can be estimated. A stochastic implementation

of this algorithm based on 32 recent frames of the input video, proposed in [10], is shown

in Fig. 5.8. Let Xt, Xt−1, Xt−2, ..., Xt− n be recent samples of intensity values of a pixel

X. The stochastic circuit proposed in [10] uses the following formula as the probability

estimator:

PDF (Xt) =
1

n

n∑
i=1

e−4|Xt−Xt−i| (5.2)

Using this probability estimator, a pixel is considered a background pixel if PDF (Xt)

is less than a predefined threshold value. In total, the circuit includes 64 MUXs, 32

FSM-based stochastic exponentiation circuits, and one FSM-based stochastic tanh circuit.

5.3 Polysynchronous Clocking

With a stochastic representation, computational units can tolerate skew in the arrival time

of their inputs. This stems from the fact that the stochastic representation is uniform: all

that matters in terms of the value that is computed is the fraction of time that the signal

is high. The correct value is computed even when the inputs to a computational unit are

misaligned temporally. Consequently, precise synchronization between the arrival time of

input values to logic gates does not matter. This observation motivates the topic of this

section: polysynchronous clocking.
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Figure 5.8: Stochastic implementation of the KDE-based image segmentation algo-

rithm [10].

Figure 5.9: An AND gate connected to polysynchronous clock sources.

Consider an AND gate, responsible for multiplying two unipolar input bitstreams, P1

and P2, generated by stochastic number generators driven by two clocks with different

periods, T1 and T2. To simplify the problem, we first connect two clocks with 50 percent

duty cycles directly to the inputs of an AND gate (Fig. 5.9). This is equivalent to

connecting two stochastic streams both representing P=0.5. Therefore, the expected

output value is Y=0.25. We want to verify the functionality of performing multiplication

using an AND gate according to three different scenarios: 1) T1=2 ns, T2=3.5 ns, 2)

T1=2 ns, T2=3.2 ns, and 3) T1=1.8 ns, T2=3.2 ns.

Fig. 5.10 illustrates the input signals as well as the output signal in the case where

T1=1.8 ns and T2=3.2 ns for 20 ns of operation. Continuing the operation for about

1000 ns will produce a good view of the different lengths of high pulses that are observed

at the output of the AND gate. Dividing the total fraction of the time that the output

signal is high by the total time gives the result of the multiplication operation. Table 5.1
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Figure 5.10: Input clock signals and the corresponding output from connecting polysyn-

chronous inputs to an AND gate.

presents results for the three selected cases of clock periods. It lists the number of

occurrences of high pulses of each length that is observed, as well as the total time of the

high pulses.

As can be seen in Table 5.1, when we vary the periods of the two clock sources, the

total time that the output is high does not change much. The length of the observed

high pulses and the number of occurrences of each changes, but the total fraction of the

time that the output is high is very close to 250 ns. Dividing 250 ns by 1000 ns produces

0.25, the expected output of multiplying the two input streams. This example provides

an intuitive explanation of why polysynchronous stochastic operations work: temporal

misalignment of input values does not affect the accuracy of the computation.

Table 5.1: Different observed lengths of high pulses at the output of the AND gate and

the number of occurrences of each one for three pairs of clock periods when executing

the multiplication operation for 1000 ns.

T1=2ns

T2=3.5ns

T1=2ns

T2=3.2ns

T1=1.8ns

T2=3.2ns

Length # Length # Length #

0.25 72 0.2 63 0.1 35

0.50 72 0.4 63 0.2 35

0.75 71 0.6 62 0.3 35

1.00 142 0.8 62 0.4 35

- - 1.0 125 0.5 35

- - - - 0.6 35

- - - - 0.7 35

- - - - 0.8 34

- - - - 0.9 138

Total High 249.25 249.60 249.40
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Table 5.2: The measured output of the MUX when three polysynchronous clocks with

distinct periods are connected to its inputs for 1000 ns.

T1 T2 T3
Total

High Time

Measured

Output

Expected

Output

2.00 1.80 3.75 499.43 0.499 0.500

1.90 2.63 2.12 500.21 0.500 0.500

3.20 1.60 2.00 498.80 0.499 0.500

2.87 2.43 2.10 499.23 0.499 0.500

Table 5.3: Stochastic multiplication and scaled addition, using an AND gate and a MUX,

respectively, with inputs generated by unsynchronized SNGs.

AND Output MUX Output

In1 T1(ns) In2 T2(ns) T3(ns) Measured Expected Measured Expected

0.50 2.10 0.50 2.30 2.00 0.247 0.250 0.502 0.500

0.35 2.82 0.66 3.11 3.68 0.237 0.231 0.498 0.505

0.27 2.81 0.48 2.36 3.61 0.128 0.129 0.372 0.375

0.18 1.60 0.53 3.70 2.20 0.096 0.095 0.350 0.355

Next, we analyze the functionality of a MUX unit performing scaled addition with

temporally misaligned inputs. The analysis is similar to that of an AND gate performing

multiplication. Note, however that the MUX unit has an extra select stream performing

the scaling. To study the functionality of the MUX unit we connect three polysynchronous

clocks with distinct periods, T1, T2, and T3, to the first, second, and select inputs of the

MUX. We compare the fraction of time that the output is high divided by the total time

to the expected value, (1/2+1/2)/2. The results are shown in Table 5.2. These results

are similar to what we saw for the multiplication operation. The measured output values

are essentially equal to the expected output value of 0.5.

Now we discuss the general case of operations on stochastic streams generated by

SNGs that are driven by separate clocks, and so are not synchronized. Table 5.3 presents

the results of trials for stochastic multiplication and scaled addition. In this table, T1

and T2 are the periods of the clocks of the SNGs responsible for generating the first and

the second streams, respectively. For the scaled addition operations, T3 is the period

of the clock of the SNG responsible for generating the select stream, which is set to
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0.5. Note that the results presented in Table 5.3 are based on bitstreams of length 1024,

generated with 32-bit LFSRs. This configuration produces a good Bernoulli distribution

of probabilities for the individual bits in the stream. As can be seen in this table, all

of the measured values are very close to the expected values. Indeed, in spite of the

polysynchronous clocking, the results are accurate to within the error bound expected

for SC [2].

Proof. Polysynchronous stochastic signals can be discretized into digital stochastic

bitstreams by dividing the signals into pulses of size ε and assigning 0/1 values to these

pulses. Suppose that we discretize two polysynchronous signals, X and Y , into digital

bitstreams, X(t) and Y (t). Assuming that the fraction of time the polysynchronous

signals are high are x and y, respectively, the probability that each bit in the discretized

streams is one is also P (X = 1) = x and P (Y = 1) = y, respectively. If the discretized

bitstreams are stochastically independent, by connecting them to the inputs of an AND

gate, the output is a bitstream Z(t), where:

Z = P (Z = 1) = P (X = 1 and Y = 1)

= P (X = 1)P (Y = 1) = x · y

Thus, correspondingly, for any two independent polysynchronous signals, an AND gate

computes the product of the values:

∫ T

0
Z dt =

∫ T

0
XY dt = x · y

as ε approaches zero. Similarly, we can show that connecting independent polysynchronous

signals to the main and to the select inputs of a MUX produces the result of scaled

addition/subtraction. Note that polysynchronous signals generated by identical SNGs but

driven by different clocks, are expected to be independent, since they are not synchronized

in any way.

For a circuit-level verification of the polysynchronous idea, we implemented the

SPICE netlist of the Robert’s cross stochastic circuit. Simulations were carried out

using a 45-nm gate library in HSPICE on 1000 sets of random input values, for both

synchronous and polysynchronous clocking conditions. Each set of inputs consisted of

four different random values. For the conventional synchronous clocking condition, the

circuitâĂŹs clock period was fixed at 1 ns. For the polysynchronous clocking conditions,
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clock periods were selected randomly in the range from 1 ns to 2 ns (so 100 percent

variation). Note that the period corresponds to a single bit in the random stream.

The accuracy of the results was computed by calculating the difference between the

expected value and the measured value. On 1000 trials, we found that the mean of

the output error rates was 4.85 percent for the synchronous and 4.45 percent for the

polysynchronous approach. Hence, the polysynchronous stochastic circuits are essentially

as accurate as conventional synchronous circuits.

With polysynchronous clocking, the global clock signal of a circuit and its associated

CDN can be replaced by multiple inexpensive clocks for different local domains. The

division into domains can be performed down to a very fine level, even up to a handful

of gates. The local clocks can be generated with simple inverter rings. In subsequent

sections, we evaluate the idea of polysynchronous clocking with case studies, presenting

detailed experimental results.

5.4 Polysynchronous System Design: A Case Study

In the polysynchronous stochastic design paradigm, the system is divided into three main

units: 1) stochastic number generators (SNGs) that convert input values, perhaps from

analog sources, into the corresponding stochastic signals; 2) computational units that

accept stochastic input signals, and perform operations, producing stochastic output

signals; and 3) stochastic output converters that produce output signals, perhaps for

analog outputs such as voltage accumulators. The output converters measure the fraction

of time the output signals are high divided by the total operation time to produce the

final values.

Suppose that we are given an input n×n gray-scale image to process with a Robert’s

cross circuit. We can use n2 instances of the Robert’s cross circuit, presented in Fig. 5.6,

to process each of the pixels concurrently. Fig. 5.11 shows a diagram of such a parallel

circuit for n = 8. Call each instance a Robert’s cross cell. Each cell converts one input

pixel value, represented as a stochastic signal, into an output pixel value, represented

as stochastic signal. An SNG in each cell is responsible for the input conversion. The

cell communicates with its neighbor cells to receive their pixel values, all represented as

stochastic signals.
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We consider three different cases to validate the concept of polysynchronous clocking.

First, we implement our case study using a conventional synchronous approach: a global

CDN that synchronizes all cells. Next, we remove the global CDN and instead use locally

generated clocks for each cell; now the cells will not operate synchronously. Finally, we

synthesize the circuit with a“relaxed CDN.” In each case, we quantify the costs for the

Robert’s cross circuits with 16, 64, and 256 cells.

5.4.1 Synchronous Design: Global CDN

In the conventional approach, a global CDN is synthesized to synchronize all components

of the system with a common clock signal. The arrival time of the clock signal needs

to be synchronized throughout. With variations, this requirement for zero clock skew is

challenging, requiring considerable design effort. The larger the circuit, the more complex

the CDN. Often, a large number of buffers must be inserted throughout the CDN to

balance the clock tree and satisfy the arrival time requirements. In addition to the high

amount of design effort expended, the CDN consumes considerable area and power.

Figure 5.11: 64 Robert’s Cross Cells processing a 8× 8 input image concurrently.



105

Figure 5.12: Ring oscillator circuit with odd number of stages

5.4.2 Polysynchronous Design: Removing the CDN

In the first polysynchronous approach, we replace the global CDN with unsynchronized

local clocks. Two different approaches can be used to supply local domains with clock

signals: 1) Using clock signals from external sources, and 2) self-timed local clock

generators. Because of the limitation and extra costs of I/O ports, the first approach is

more practical when there are a small number of clock domains. With a large number of

domains, self-timed local clock generators are generally advantageous. In what follows, we

evaluate the second approach. We present quantitative comparisons of the performance-

cost gain when the global CDN is replaced with multiple local clock generators.

Ring oscillators can be used as fast and inexpensive local clock generators. A ring

oscillator consists of an odd number of inverter gates connected in a ring, as shown in

Figure 5.12. NAND and NOR gates can also be used to build ring oscillators. Due to

their longer delay, a smaller number of NAND or NOR gates are required to achieve the

same oscillation period as an inverter ring. As a result, the area cost of the NAND- and

NOR-based oscillators is lower than that of an inverter-based oscillator. However, due

to its lower power consumption, an inverter-based oscillator is generally more energy-

efficient. The oscillation period of a ring oscillator is twice the sum of the gate delays.

The frequency can be increased by either increasing the supply voltage or by decreasing

the number of inverters [111, 112]. Note that a ring of approximately 110 inverter gates

is necessary to generate a local clock with a period of 1 ns in 45-nm technology when the

supply voltage is 1V. Thus, although relatively inexpensive, the area and power costs of

inverter rings are not insignificant.



106

5.4.3 Polysynchronous Design: Relaxed CDN

Instead of eliminating the CDN, an alternative approach is to relax the requirements

on it, permitting significant clock skew throughout the system. This can significantly

simplify the synthesis process, saving area, lowering power, and increasing performance

by permitting the system to be clocked at a higher speed. Obviously, this approach does

not entail the use of local clock generators.

A significant advantage that such a “relaxed CDN” provides is ease in controlling

the working frequency. With local clocks, generated by inverter rings, the frequency will

generally be fixed (some implementations of ring oscillators do allow for slight adjustments

to the period; however, the possible range of values is more or less fixed by the number

of inverters used). In contrast, the frequency of an external clock provided to a “relaxed

CDN” can be changed freely, in some cases permitting significant over-clocking.

5.5 Experimental Setup

In order to quantify the performance and cost benefits of both approaches to polysyn-

chronous design, that is, by removing the CDN or relaxing it, we implemented the

Robert’s cross circuit for values of n = 4, 8, and 16 in Verilog. The SNG unit presented

in Figure 1.1 was used in each cell to convert the input pixel value into a corresponding

stochastic signal. A 10-bit maximal period LFSR was used in each cell to supply the SNG

with pseudo-random numbers. We used different random number generators (different

LFSR designs, with different seeds) in the different cells to ensure that the stochas-

tic bitstreams are uncorrelated. Applying polysynchronous clocking can further help

de-correlate stochastic streams and can introduce additional randomness. FSM-based

SAbs circuits with 16 states were used to implement the required absolute value function.

We used the Synopsys Design Compiler vH2013.12 [62] with a 45-nm gate library to

synthesize the designs.

For synthesizing the circuits with conventional global CDNs, we considered a “clock

uncertainty” value of at most 10 percent (0.1 ns for the smaller 16-cell circuit, and of

0.2 ns for the larger 64 and 256-cell circuits). This uncertainty parameter in the Synopsys

Design Compiler represents process variations and other sources of variability that cause

variations in the clock delay. In the synthesis flow, the tool uses extra elements, mainly
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Table 5.4: Synthesis results for a single Robert’s cross cell with and without a local clock

generator.

One Robert’s cross cell Area (µm2) Power @2Ghz (mW )

Without local clock generator 268.0 0.83

With local clock generator 291.9 1.09

delay buffers, to ensure near zero clock skew in the signal arrival time at all components.

It produces a circuit with cells that are nearly perfectly synchronized.

For the “relaxed CDN” approach, we allow for significant skew and jitter by defining

a clock source uncertainty of zero and accepting some timing violations. As a result, the

tool ignores the delays due to the clock network latency and the propagation delay in

different paths. It does not add any buffers to compensate for clock uncertainty. With

this approach, different cells are at differing distances from the clock input source. As

a result, the clock signals arriving at different cells are not synchronized. We use this

configuration to test the ability of the polysynchronous approach to tolerate the clock

skew and jitter.

For the approach where we eliminate the global CDN entirely by replacing it with local

unsynchronized clocks, we synthesized the system with 16, 64, and 256 cells, with each

cell containing an inverter ring. In order to design the inverter rings, we first synthesized a

single Robert’s cross cell and found its critical path to be 0.49 ns. SPICE-level simulations

showed that 45 inverter gates are required to generate a clock signal with this period in

the 45-nm technology when using a supply voltage of 1V. Such inverter rings were added

to each Robert’s cross cell. Table 5.4 shows the area and power costs of a single Robert’s

cross cell before and after adding the inverter rings. Adding the inverter ring incurs area

and power overhead of 8 percent and 24 percent, respectively. We will show that, for

large designs, this overhead is small compared to the savings obtained by removing the

CDN.
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Table 5.5: Delay, area, power, and average error rate comparison of the implemented

circuits for different approaches of synthesizing the CDN.

Circuit CDN
Delay

(ns)

Area

(µm2)

Power

(mW )

Energy

(pJ)

Area×Delay

(µm2 × µs)
Error Rate

(percent)

Robert

16-cell

Synchronous 1.56 4485 5.41 8.44 7.00 2.20

Poly Local 0.49 4332 19.04 9.33 2.12 1.77

Poly Relaxed 0.99 4025 8.1 8.02 3.98 2.12

Robert

64-cell

Synchronous 3.20 25438 13.25 42.40 81.40 2.56

Poly Local 0.49 16750 76.26 37.37 8.21 1.67

PolyRelaxed 2.20 19391 15.45 33.99 42.66 2.57

Robert

256-cell

Synchronous 6.30 111319 31.06 195.68 701.31 2.68

Poly Local 0.49 67242 306.18 150.03 32.95 1.87

Poly Relaxed 5.1 91121 33.12 168.91 464.72 2.37

Median

Filter

Synchronous 2.91 3169 1.39 4.04 9.22 2.64

Poly Relaxed 2.45 2694 1.45 3.55 6.60 2.62

KDE
Synchronous 2.14 4921 3.08 6.60 10.53 1.70

Poly Relaxed 1.75 4443 3.42 5.99 7.78 1.69

5.6 Experimental Results

5.6.1 Synthesis Results

The synthesis results, including the delay, area, total dynamic and static power consump-

tion, energy dissipation of one clock cycle, and area-delay product, are shown in Table 5.5.

The reduction in delay, seen as equivalent to increasing the working frequency, is the

most significant benefit of polysynchronous clocking. The results show that increasing

the number of cells limits the performance of the system when a global CDN with zero

clock uncertainty is implemented. Providing all the cells with synchronized clock signals

is costly. For the system with 256 cells, removing the CDN and instead using locally

generated clocks improves the maximum working frequency by around 12x. As a result,

the output converges to an accurate value much faster. With a relaxed CDN, the benefit

is also significant, although not as great as with locally generated clocks. The savings

gained by these approaches are presented in Figure 5.13.
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Figure 5.13: Comparing the savings due to using different approaches of polysynchronous

clocking on various sizes of the Robert’s cross circuit.

In terms of area, both approaches decrease the cost in the three cases with 16, 64,

and 256 cells, as shown in Figure 5.13. As expected, for large-scale systems (64 and 256

cells), removing the CDN provides more area saving than simply relaxing the CDN. It

provides up to a 39 percent area reduction in the system with 256-cells. However, for

smaller systems, the area overhead incurred by the local clock generators diminishes the

benefits. We conclude that relaxing the CDN instead of completely eliminating it is the

better approach for small circuits.

As shown in Table 5.5 and Figure 5.13, removing the CDN results in an overall energy

dissipation reduction, except for the 16-cell circuit. For the 16-cell circuit, removing the

CDN improves the latency and area by 68 percent and 3 percent, respectively. However,

the power consumption of the circuit with the highest frequency increases around 3.5×.
This increase in power consumption occurs because the local clock’s power consumption

outgrows the power savings obtained by eliminating the CDN, which is small for this

circuit. A higher working frequency also increases the power. Consequently, a 10 percent

increase in the energy dissipation is observed. Thus, unless improving the working

frequency is the main goal, relaxing the CDN or using a zero-clock-skew CDN might be

better choices for smaller circuits. However, for larger circuits, eliminating the global

CDN and using locally generated clocks is a winning proposition.
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To further evaluate idea of relaxing the CDN in stochastic circuits, we implemented

two complex circuits, discussed in Section 5.2.1: a median filter based noise reduction

circuit and a kernel density estimation based image segmentation circuit. These were

implemented: 1) using a conventional synchronous approach with zero clock uncertainty

tolerance; and (2) in the proposed polysynchronous approach with a relaxed CDN. FSM-

based stochastic circuits with 32 states were used to implement the required tanh and

exp functions. We used a 0.2 ns clock uncertainty when the circuits were synthesized

with the Synopsys Design Compiler. Table. 5.5 compares the delay, area, power, and

energy results extracted for these circuits. As can be seen, relaxing the CDN improves

the performance and saves area for both circuits. The power consumption when using

the maximum working frequency is higher with a relaxed CDN due to the increase in the

frequency. However, more importantly, the total energy dissipation (power × delay) of

the circuits is improved.

5.6.2 Performance Comparisons

In order to evaluate the performance of the synthesized circuits, we performed post-

synthesis simulations and processed the 128× 128 Lena image using the Robert’s cross

circuits, a 128 × 128 noisy image using the median filter circuits, and 32 144 × 144

subsequent frames of the “Hall Monitor” test video sequence [113] using the KDE image

segmentation circuits. For simulations with the Robert’s cross circuits, image pixels

were divided into groups of 16, 64, and 256 pixels, depending on the number of circuit

inputs. Input pixels in each group were converted to stochastic signals and processed by

the Robert’s cross cells concurrently. To produce the output image, we measured the

fraction of the time the circuits’ output signals were high for 1024 cycles. The output

image produced by each circuit was compared with a “Golden” output image produced

by MATLAB and an average error rate was calculated as follows:

E =

∑128
i=1

∑128
j=1 |Ti,j − Si,j |

255.(128× 128)
× 100 (5.3)

where Si,j is the expected pixel value in the perfect output image and Ti,j is the pixel

value produced using post-synthesis simulations including timing violations (setup and

hold). The output images produced by post-synthesis simulation of the Robert’s cross

circuits are shown in Figure 5.14. The mean of the output error rates measured for
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Figure 5.14: The original sample input and the output images produced by post-synthesis

simulations of the synthesized Robert’s cross circuits.

each circuit is also shown in Table 5.5. The outputs from processing the sample images

using the median filter noise reduction and the KDE image segmentation circuits in the

synchronous and polysynchronous versions of the circuits with a relaxed CDN are shown

in Figure 5.15. As can be seen in these results, removing and relaxing the CDN not only

has not decreased the quality of the results, but also in most cases has actually improved

the average error rate of processing image pixels. This improvement in the quality of the

results is mainly due to the additional randomness introduced by the polysynchronous

clocking.

5.7 Error Analysis

There are several error sources in polysynchronous circuits. We analyze the effects of

these error sources by first examining the computational errors inherent in stochastic

circuits, and then examining errors that are unique to polysynchronous circuits.
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Figure 5.15: The original sample inputs and the outputs of processing the sample images

by post-synthesis simulations of the synthesized circuits with a relaxed CDN: a) Median

filter noise reduction circuit, b) KDE image segmentation circuit.

5.7.1 Sources of Computational Errors

There are three main sources of computational errors in the conventional synchronous

stochastic circuits [2]:

1. EA = function approximation error. This error stems from the fact that we are

computing a mathematical approximation of the desired function. For instance, the

FSM-based stochastic absolute value function used in the Robert’s cross circuit is an

approximation of the desired absolute value function. The approximation error for such

FSM-based functions depends on the number of states. The more states we use to

implement the FSM, the smaller approximation error. Peng et al. [9] have reported 0.03

percent function approximation error for a 32-state FSM-based implementation of the
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stochastic exponentiation function. The function approximation errors in the 16-state

implementation of stochastic Abs function and the 32-state version of the stochastic tanh

function are very close to zero.

2. EQ = quantization error. In converting the input values in the interval [0, 1] or

[-1, 1] into stochastic bitstreams, the SNG rounds the input value to the closest number

in the set of discrete probabilities it can generate. Increasing the length of the bitstreams

will reduce this quantization error [2].

3. ER = errors due to random fluctuations. Errors due to random fluctuations are

inherent in SC since the input values are intentionally randomized. The bitstreams can

be described as a Bernoulli distribution and can be quantified using the variance of the

distribution. Thus, these errors are inversely proportional to the square root of the length

of the stream.

In addition to these errors, the polysynchronous clocking approach introduces two

extra sources of error:

4. EC = errors due to temporally misaligned bits in the streams. As the average

error rate results presented in Table 5.5 show, temporal misalignment of inputs is an

unbiased source of error that can either increase or decrease the mean of the total error in

the polysynchronous circuits. We conclude from these results that, for polysynchronous

clocking, the effect of temporally misaligned inputs on accuracy is, in fact, minimal.

5. ES = errors due to stall time. When inputs to a component arrive at different

times, the output will be invalid for a short time, called the “stall time.” Reading the

output during this short interval can reduce the accuracy of the computation. The error

due to stall time will be discussed further in Section 5.7.3.

Summing all of these error sources, the total error for a polysynchronous circuit is no

worse than:

ETotal = EA + EQ + ER + EC + ES (5.4)

Based on the error rate results presented in Table 5.5 and Figures 5.14 and 5.15, we

conclude that removing or relaxing the CDN allows the maximum frequency of the

circuit to be increased without affecting the accuracy of the computation compared to a

conventional synchronous stochastic implementation of the circuits.
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5.7.2 Metastability

In modern CMOS processes, the effects of metastability have become increasingly sig-

nificant, especially in high-speed applications. Metastability is a phenomenon where a

bi-stable element, such as a flip-flop, enters an undesirable third state in which the output

is at an intermediate level between logic 0 and 1. A system’s reliability is compromised

when this occurs [114, 115]. An incorrect value might be sampled which would introduce

an error in the computation. The effect of metastability can propagate to multiple

registers and thereby get amplified. In conventional deterministic systems with multiple

clock domains, each domain crossing represents a location where metastability could

occur.

In SC circuits, however, metastability is not a major issue. The effect of metastability

on the registers can be considered as a source of error that sometimes causes a change

from 0 to 1 and sometimes 1 to 0. The important point is that these changes in the

value of the signals have minimal effect on the numerical value represented by a long

bitstream. On average they tend to cancel each other out, and will ultimately produce an

acceptable total error. The experimental results that we showed for the polysynchronous

implementation of complex stochastic circuits (i.e., the median filter noise reduction and

the KDE image segmentation circuits) demonstrate that SC circuits are robust to the

effects of metastability and propagated metastability, since these circuits average the

signal value which then masks timing errors. We can consider the inaccuracy introduced

by metastability as an error caused by temporally misaligned bits in the streams, or EC ,

as discussed in Section 5.7.1.

5.7.3 Input to Output Synchronization

Assume we have a polysynchronous system processing a large set of inputs with a limited

number of cells that work concurrently. The input source and so the input data for each

cell changes periodically. For each new set of data, the input values must be converted

to the corresponding stochastic signals and then transferred to the cells that require the

new information. When neighboring cells work with polysynchronous clocks, there might

be a very short time, called the “stall time”, between the first and the last input signals

arriving at the cells. For this short period of time, the output is believed to be invalid.

In a conventional binary system a synchronizer is required to deal with the stall time.
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In a stochastic system, however, the designer can simply consider the output produced

during this short time interval as a valid output. Comparing the stall time with the total

processing time of each set of input data (e.g. 2 ns vs. 256×2 ns) allows the designer to

start sampling (or measuring the fraction of high time) of the output signals immediately

after first input arrives, or immediately after the input changes. Sampling the output

during this small interval does not significantly influence the accuracy of the computation,

given the nature of the stochastic representation. Eliminating the synchronizer circuitry

further reduces the area overhead and design complexity.

5.8 Fault Tolerance of Polysynchronous Circuits

We compare the error tolerance of our polysynchronous stochastic circuit designs to

conventional synchronous designs. To do so, we preformed trials on the circuits discussed

in Section 5.2.2, randomly injecting soft errors, i.e., bit flips, on the internal signal lines

and measuring the corresponding average output error rates.

For the synchronous circuits, the inputs were generated with SNGs driven by syn-

chronized clocks each with a period of 2 ns. For the polysynchronous circuits, the inputs

were generated by SNGs driven by clocks with periods varying randomly between 2 and

4 ns. Note that this range of values provides a variation of up to 100 percent in the clock

periods. To approximate hardware conditions in which short pulses (“spikes”) cannot

satisfy the setup and hold time requirements of logic gates, high output pulses that were

less than 10 percent of the 2 ns clock period (0.2 ns) were filtered out by setting them to

zero.

Soft errors were simulated by independently flipping a given fraction of the input and

output signals of each computing element. For example, a soft error rate of 20 percent

means that 20 percent of the total bits in an input value are randomly chosen and flipped.

To inject soft errors into a computational element such as a MUX, we insert XOR gates

into all of its inputs and outputs. For each XOR gate, one of its inputs is connected

to the original signal of the MUX and the other is connected to a global random soft

error source, implemented using an LFSR and a comparator [2]. Note that we do not

simultaneously inject soft errors on the input and output signals of any given component.

Also, we do not inject soft errors more than once on the intermediate line between two
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Table 5.6: The average error rate of the stochastic circuits for different soft error injection

rates.

Circuit Clocking Approach
Injection Rate

0 percent 5 percent 10 percent 20 percent

Robert’s Cross
Synchronous 2.6 2.6 2.7 2.94

polysynchronous 2.59 2.6 2.7 2.94

Median Filter
Synchronous 3.03 3.08 3.28 4.08

polysynchronous 3.13 3.08 3.22 4.04

KDE
Synchronous 1.21 1.26 1.62 2.84

polysynchronous 1.24 1.40 1.67 2.93

components (thereby potentially undoing a bit flip).

We apply this approach to all of the basic computational elements of the stochastic

circuits. Hardware simulations were performed using the ModelSim hardware simula-

tor [116]. Maximal period 32-bit LFSRs were used for converting input pixel values into

stochastic bitstreams. Bitstreams of length 1024 were used to represent the values. The

processing time, however, is determined by the longest clock period among the SNGs

that generate inputs to the circuit. Thus, for inputs with shorter clock periods, longer

streams are required compared to those with longer periods. Ten trials were performed

for each case to ensure statistically significant results. For each trial we used a different

initial condition with ten different LFSR seed values for each SNG. Simultaneously, ten

different sets of values for the periods of the polysynchronous clocks were used. We

present the average results of these trials.

The sample images shown in Section 5.6.2 were used as the inputs to the circuits.

Table 5.6 shows the average output error rates of the two design approaches under different

soft error injection rates. As can be seen, the polysynchronous stochastic circuits are as

error tolerant as the synchronous versions. For both polysynchronous and synchronous

circuits, the error tolerance scales gracefully to very large numbers of errors. Note that,

while we presented the error-tolerance results for a frequency variation of 100%, the

circuits will gracefully tolerate errors for frequency variations beyond 100% if the inputs

are processed for a long enough time (e.g., 1,024 times the largest period).
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5.9 Related Work and Discussion

Asynchronous design methodologies have been studied for decades [117],[118]. Instead of

synchronizing transitions with a global clock, asynchronous systems are organized as a

set of components which communicate using handshaking mechanisms. The drawback of

asynchronous methodologies is the overhead required for the handshaking mechanisms.

Circuits with multiple independent clock domains, dubbed “globally asynchronous

locally synchronous” (GALS), have been widely studied [119]. GALS architectures

consume less dynamic power and can achieve better performance than architectures with

a single clock domain [120, 121]. However, the circuitry for domain crossings is complex

and problematic. Techniques such as stretching [119][122] and pausing the clocks [120]

have been proposed. Nevertheless, the circuitry for the handshaking needed at domain

crossings is costly. Consequently, the splitting typically is only performed at a coarse

level.

Asynchronous and GALS design methodologies are applicable to both SC and con-

ventional designs. The paradigm advocated in this chapter, however, is only applicable

to SC systems and differs from the asynchronous and GALS approaches in that no

complex handshaking mechanisms are needed. The skew tolerance provided by SC allows

independent clock domains to be connected together seamlessly without influencing

the accuracy. Alternatively, it allows for a much less costly global CDN, with relaxed

constraints. This, in turn, provides very significant benefits in terms of area, performance

and energy. The increase in performance, in particular, can be quite significant. For

applications that require modest accuracy, this increase in performance could more than

offset the latency incurred by adopting a stochastic representation.

High energy dissipation is one of the main challenges in the practical use of SC [123].

Stochastic circuits are compact and so consume little power. However, given the high

latency, the energy consumption (which is power multiplied by time) is high. In recent

work, Alaghi et al [124] proposed energy reduction techniques for SC. Theses techniques

exploit the tolerance that SC offers to timing errors. This permits very aggressive voltage

scaling without significant quality degradation. Their simulation results show that SC

circuits can tolerate aggressive voltage scaling with no significant SNR degradation after

40% supply voltage reduction (1V to 0.6V), leading to 66% energy saving. Similarly, a
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100% frequency boosting of the optimized circuits leads to no significant SNR degradation

for several representative circuits.

The approach of Alaghi et al. is conceptually similar and complementary to the one

that we propose in this chapter. The impact of timing errors due to voltage scaling is

similar to the impact of clock skew errors. In both cases, SC naturally and effectively

provides error tolerance. To our knowledge, the work in this chapter and the work of

Alaghi et al. [124] are the first to introduce and exploit the skew tolerance advantage

of SC circuits. This work focuses on optimizing CDNs while the work of Alaghi et al.

studies the effects of voltage and frequency scaling.

5.10 Summary

In this chapter, we proposed polysynchronous clocking, a design strategy for exploiting

the skew tolerance of SC circuits. We showed that, from basic stochastic operations, such

as multiplication and scaled addition, to complex stochastic circuits, the correct output

is computed even when the inputs are not synchronized. We explored two approaches of

polysynchronous system design to mitigate the costs of the CDNs. In the first approach,

we removed the global CDN and instead used locally generated clocks to design the

Robert’s cross stochastic system. Quantifying the costs and benefits, the maximum

working frequency, the area, and the energy consumption improved by up to 12x, 39

percent, and 23 percent, respectively, for the Robert’s cross system with 256 cells. For

smaller systems, the area and energy overhead incurred by the local clock generators

diminished the benefits of removing the CDN.

Experimental results showed that, for small scale stochastic circuits such as the

Robert’s cross circuits with 16 cells, the median filter noise reduction circuit, and the

kernel density estimation based image segmentation circuit, relaxing the CDN is a more

efficient choice. The area, speed, and energy are all improved by a relaxed CDN. Post-

synthesis simulations on sample images showed that removing and relaxing the CDN not

only did not degrade the quality of the output, but in some cases it actually improved

the accuracy of results by introducing additional randomness. We showed that circuits

designed with either of these polysynchronous approaches are as tolerant of errors as

conventional synchronous stochastic circuits.



Chapter 6

Seamless Memory Design for SC

Due to the difference in data representation, integrating conventional memory (designed

and optimized for non-stochastic computing) in SC systems inevitably incurs a significant

data conversion overhead. This chapter presents a seamless stochastic sytem, StochMem,

which features analog memory to trade the energy and area overhead of data conversion

for computation accuracy. We compare the proposed system with a beseline near-sensor

stochastic image processor featuring conventional digital memory. We evaluate the

performance of the proposed design on five representative image processing applications.

This chapter’s material is taken from [125].

6.1 Motivation

The common focus of SC proposals from 1960s onwards has been stochastic logic (arith-

metic), neglecting memory, which represents a crucial system component. Memory mainly

serves as a repository for data collected from external resources (e.g., sensors) or data

generated by previous steps of computation, to be used at later stages of computation.

Algorithmic characteristics dictate both, the memory capacity requirement and the mem-

ory access pattern (particularly for data re-use). Most SC proposals deploy conventional

digital memories (designed and optimized for non-stochastic computing) to address such

algorithmic needs. Unfortunately, this practice increases hardware design complexity

due to the discrepancy in conventional digital (i.e., non-stochastic) and stochastic data

representations. Digital to/from stochastic data conversion can reach 80% or more of the

119
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overall energy consumption and hardware cost, which can easily diminish any benefit

from SC [1, 2]. In this chapter, we rethink the memory system design for stochastic

computing.

Practically seamless conversion options between analog and stochastic data repre-

sentations [126, 127] makes analog memory stand out as a particularly promising point

in the memory design space for SC. The downside is potential loss in data accuracy,

where a divergence between the written/stored and the read values (at the same memory

address) often becomes inevitable, however, which stochastic logic can mask due to its

implicit tolerance to inaccuracy in input data operands.

This chapter quantitatively characterizes the potential of analog memory for seamless

SC, using a representative near-sensor stochastic image processing system as a case study.

Non-stochastic, analog near-sensor image processing accelerators such as [128] exist. The

focus of this chapter is not design and exploration of image processing accelerators. The

scope rather is memory system design for SC where we use a representative stochastic

system to characterize the impact of memory. We will refer to the resulting (practically)

seamless stochastic system as StochMem.

Cameras have already become ubiquitous sensors. There is a demand for near-sensor

image processing both to reduce costly communication with the cloud and to enhance

security and privacy. Real-time image processing algorithms often track differences

between a stream of frames. It is not uncommon that the processing of the instantaneous

frame requires comparison to a history of previously processed frames, which has to be

stored in and retrieved from some form of memory. In this chapter, we will cover five

representative image processing applications which span diverse compute and memory

access characteristics.

6.2 Toward Seamless SC

We will first compare and contrast StochMem featuring analog memory with the corre-

sponding stochastic near-sensor image processor featuring conventional digital memory

as a representative baseline.
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Figure 6.1: Baseline Near-Sensor Stochastic Image Processor vs. StochMem.

6.2.1 Baseline: Stochastic Logic + Conventional Memory

Fig. 6.1a provides an overview for the baseline stochastic near-sensor image processor

featuring conventional digital memory (designed and optimized for non-stochastic com-

puting). The input data operands may represent the result bitstreams of previous steps

of (stochastic) computation, or may directly come from analog image sensors. To be

able to store such input data in conventional digital memory, a Stochastic to Digital

Converter, SDC (for stochastic input bitstreams) or an Analog to Digital Converter, ADC

(for analog inputs coming from sensors) become necessary. Moreover, further (stochastic)

processing of the stored data necessitates a Digital to Stochastic Converter, DSC, upon

data retrieval from digital memory. In the following we briefly describe key system

components.

Stochastic Logic incorporates a circuit of basic Boolean gates to carry out the

application-specific stochastic computation (Section 6.3.2). The inputs and outputs

are both stochastic bitstreams.

Stochastic to Digital Converter (SDC) can generate the conventional binary repre-

sentation for any stochastic bitstream. A digital counter usually serves the purpose, by

keeping track of the number of 1s in the input bitstream to be converted. An SDC carries

out data conversion if the inputs to the stochastic system represent result bitstreams

from previous steps of (stochastic) computation.
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Analog to Digital Converter (ADC) becomes necessary if the inputs to the stochastic

system directly come from analog image sensors. Conventional ADCs can serve the

purpose. For most applications of SC (including the case study in this chapter) an 8 to

10-bit ADC is sufficient [4].

Digital to Stochastic Converter (DSC) transforms conventional binary data re-

trieved from digital memory (for further stochastic processing) to stochastic bitstreams.

Commonly, DSC achieves this by comparing an unbiased random number (obtained from

a random number generator) to the binary value to be converted. A one is attached to

the output (stochastic) bitstream if the random number is less than the binary value

(to be converted); zero, otherwise. The random number generator can rely on physical

random sources or pseudo-random constructs such as LFSRs.

6.2.2 StochMem: Stochastic Logic + Analog Memory

The data converters (SDC or ADC and DSC) incorporated into the baseline stochastic

system from Fig. 6.1a each has a significant energy and area footprint [1], which can easily

nullify potential benefits from SC. In order to reduce this overhead, StochMem replaces

the conventional digital memory with its analog counterpart. Fig. 6.1b provides the

overview for the resulting SC system. In the following, we briefly describe key StochMem

components:

Stochastic Logic is the same as under the baseline system.

Stochastic to Analog Converter (SAC) replaces the SDC of the conventional system.

SAC can generate the analog representation for any stochastic bitstream. A conventional

analog integrator can serve the purpose, by measuring the fraction of time a stochastic

input bitstream stays at logic 1. Such an integrator usually has a smaller energy and

area footprint than the SDC of the baseline system (Section 6.3.3). A SAC carries out

data conversion if the inputs to StochMem represent result bitstreams from previous

steps of (stochastic) computation.

Analog to Stochastic Converter (ASC) transforms data from analog memory (for

further stochastic processing) to stochastic bitstreams, similar to the DSC of the conven-

tional system. As representative examples, [126, 127] both cover energy-efficient ways

for generating stochastic bitstreams from analog inputs.
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6.3 Evaluation Setup

6.3.1 System Design

We evaluate three stochastic near-sensor image-processing designs: two different imple-

mentations of the baseline from Fig. 6.1a (ConvLFSR and ConvMTJ) and StochMem.

The two baseline designs differ in the implementation of data converters as follows:

ConvLFSR: The baseline SC system featuring a 10-bit LFSR and a comparator as the

DSC unit.

ConvMTJ : The baseline featuring a DAC followed by an MTJ-based ASC as a more

energy-efficient DSC. The rest of the system is identical to ConvLFSR.

All systems first store the input in the memory. Then, they convert it to stochastic,

and feed it to the stochastic logic.

6.3.2 Stochastic Applications

To evaluate Stochastic Logic from Fig. 6.1, we use stochastic circuits of five representative

image processing applications: Robert (Robert’s cross edge detection), Median (median

filter noise reduction), Frame (frame difference-based image segmentation) from [4];

Gamma (gamma correction) from [2]; and KDE (kernel density estimation-based image

segmentation) from [10].

As input, we use 128× 128 gray-scale images for Robert, Median, Frame, and Gamma;

(a) Robert (b) Median (c) Frame (d) Gamma (e) KDE

Figure 6.2: Input (expected output) per application on top (bottom).
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and 33 recent frames of a video, for KDE. Fig. 6.2 shows the input (expected output)

images used for each application on the top (bottom) row. Expected output captures the

maximum-possible accuracy. To calculate the accuracy of the end results, we calculate

the average pixel-by-pixel difference between the output image of each stochastic circuit

and the corresponding maximum-possible-accuracy output.

6.3.3 Hardware Parameters

Table 6.1 summarizes the area and energy consumption of different units of the eval-

uated stochastic systems. We synthesize logic units (including the stochastic circuit

implementations of the five benchmark applications from Section 6.3.2), LFSR, digital

comparator, and counter units using Synopsys Design Compiler vH2013.12 with a 45-nm

gate library. The Floating-Gate (FG) analog memory implementation follows [129]. To

model inaccuracy of FG memory, we add Gaussian noise (with standard deviation from

measured data in [129]) to the stored data.

For a fair evaluation, we assume that the input to both the baseline designs and

StochMem directly comes from analog image sensors. All designs output a stochastic

bitstream. Therefore, the evaluated systems do not feature an SDC or SAC on the

feedback path from memory (Fig. 6.1). However, we include these units in Table 6.1

for the sake of completeness. SAC area (energy) cost is 2.3× (17.9×) less than SDC.

Accordingly, if the evaluated systems deployed these units (as explained in Section 6.2),

StochMem would have shown even larger gains when compared to the baseline.

6.4 Evaluation

Since all three alternative designs operate at the same frequency, they have similar

throughput. So, we start the evaluation with a quantitative characterization of the

accuracy loss in the outputs due to the potential read-write discrepancy of the analog

memory incorporated in StochMem. We continue with energy consumption and conclude

with area cost.
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Table 6.1: Area and energy breakdown.

Stochastic Logic

Circuit Area (um2) Energy (pJ)(@1GHz)

Robert 339 0.440

Median 5382 4.090

Frame 457 0.413

Gamma 76 0.042

KDE 8691 7.094

Baseline System Parameters

Unit Area (um2) Energy (pJ)(@1GHz)

ADC 10-bit [55, 130] 50,000 20

SRAM cell 0.35 10

DSC: 10-bit LFSR 194 0.355

DSC: 10-bit Comparator 96 0.041

DSC: DAC 8-bit [131] 16,000 64

SDC: 10-bit Counter 254 0.179

StochMem System Parameters

Unit Area (um2) Energy (pJ)(@1GHz)

Analog memory cell [129] 58.7 10 (RD) / 100 (WR)

ASC [127] 15 0.030

SAC (integrator) 110 0.010

6.4.1 Output Accuracy of StochMem

A known downside of analog memory technologies is the potential discrepancy between

values read and written/stored. We model the impact of this discrepancy after the

accuracy measurements of a representative analog memory implementation [129]. All

evaluated benchmark applications produce images as output. Therefore, we capture the

accuracy loss in the output by the average per-pixel deviation (and SSIM [132]) from the

“expected” output for each application as shown in the bottom row of Fig. 6.2.

Fig. 6.3 demonstrates the % output inaccuracy (in terms of average per-pixel deviation)

of StochMem and the baseline designs for all applications under a stochastic bitstream

length of 1024. The y-axis is normalized to the expected accuracy values corresponding to

the images in the bottom row of Fig. 6.2. The two baseline designs evaluated, ConvLFSR
and ConvMTJ (Section 6.3.1), feature the very same output inaccuracy, as given by the
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Figure 6.3: Output inaccuracy of the baseline vs. StochMem.

Conv bar in Fig. 6.3. We observe that, overall, the degradation (with respect to Conv) in

the output accuracy of StochMem remains negligible. Only for Gamma, the inaccuracy

becomes around 0.7% worse than Conv. For all other applications, the inaccuracy worsens

by less than 0.15%. On average, the % output inaccuracy of StochMem is 1.55%; of

Conv, 1.36%, with respect to the expected outputs. Besides, on average SSIM gets 3.2%

worse for different applications. For the worst-case application, Gamma, SSIM gets 7.3%

worse than Conv.

Fig. 6.4 tabulates the output images for all benchmark applications under StochMem

and Conv. In accordance with the comparison results from Fig. 6.3, the difference in

output accuracy is barely perceivable.

We repeat these experiments for three different bitstream lengths: 128, 256, and 512

bits. The average output inaccuracy of StochMem with respect to Conv increases from

4.08% to 4.21%, from 2.63% to 2.77%, and from 1.87% to 2.03%, as the bitstream length

increases from 128 to 512, respectively. The relatively small degradation in the output

inaccuracy is in line with the experimental outcomes summarized in Fig.s 6.3 and 6.4.

6.4.2 Reduction in Energy Consumption

We next compare and contrast the energy consumption of the evaluated stochastic designs.

In the following, we report the experimental results for a bitstream length of 1,024 without

loss of generality. As Fig. 6.5 depicts, due to its more energy-efficient DSC implementation,
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(a) Robert (b) Median (c) Frame (d) Gamma (e) KDE

Figure 6.4: Output images: Baseline (StochMem) on top (bottom).
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Figure 6.5: Energy consumption normalized to ConvLFSR.

ConvMTJ can decrease the energy consumption with respect to ConvLFSR significantly,

by 45.7% on average. Introducing analog memory– i.e., StochMem – can reduce the

energy consumption further, by 11.1% on average over ConvMTJ .

To demonstrate the sources of these energy gains, we quantify the share of energy

spent in different units. We expect an energy-efficient stochastic system to spend most

of its energy budget on computation, rather than on data conversion and input operand

retrieval. Pie charts from Fig. 6.6 differentiate between the shares of energy spent in

the input layer (which covers the input operand retrieval and hence constitutes the

ADC, if applicable, and memory units); in the conversion units (which constitute the

ASC or DSC); and in the stochastic logic (which captures the actual computation).
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Figure 6.6: Share of energy consumed by different units.

Figures 6.6a, 6.6b, and 6.6c, show the shares for ConvLFSR, ConvMTJ , and StochMem

separately (Section 6.3.1). As the charts reveal, share of stochastic logic (conversion

units) increases (decreases) from 31.2% (64.4%) to 53.0% (37.8%) and to 60.1% (22.1%),

as we move from ConvLFSR to ConvMTJ and to StochMem , respectively. StochMem

represents the most energy efficient design, featuring the lowest (highest) energy share

for data conversion (computation), when compared to ConvLFSR and ConvMTJ .

6.4.3 Reduction in Area

In this section, we evaluate the area cost of each alternative. Since tailoring ADC and

DAC units to each application was out of the scope of this study, for the baselines

(i.e., ConvLFSR and ConvMTJ) we deploy an ADC and a DAC unit of minimal area

(which represents the hypothetical best-case in terms of area cost), even if these units fail

short of providing the required precision. Accordingly, if we were to incorporate realistic

ADC or DAC units (which would likely incur a much higher area overhead), StochMem

(which does not employ any ADC or DAC) would have shown even larger area savings in

comparison to the baseline.

Table 6.2 summarizes the area cost for the evaluated stochastic designs (columns)

for the stochastic benchmark applications (rows). While ConvMTJ consumes notably

less energy than ConvLFSR (Section 6.4.2), it requires an extra DAC which increases

the area overhead (with respect to ConvLFSR) by 20.0% on average. On the other hand,

StochMem can cut the area cost significantly, by about 93.7% (with respect to ConvLFSR)
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Figure 6.7: Pie-charts demonstrating share of hardware cost (in terms of area) across

different units.

on average, by eliminating the need for costly conversion units. Only StochMem can

deliver area and energy benefits at the same time.

Fig. 6.7 depicts a detailed break-down of area consumption among different units.

Similar to Fig. 6.6, pie charts from Fig. 6.7 differentiate between the shares of area in the

input layer, conversion units, and stochastic logic, respectively. Only 4.9% of the area in

ConvLFSR goes to the stochastic logic, while the input layer consumes 90.9%. Stochastic

logic in ConvMTJ has even a smaller share of area (4.1%) when compared to ConvLFSR.

On the other hand, in StochMem, 63.1% of the area goes to stochastic logic; only 10.8%,

to conversion units.

Data conversion in conventional SC systems necessitates high-overhead units such

as LFSRs+comparators, ADCs, or DACs. StochMem-like SC systems, on the other

Table 6.2: Area in µm2.

Apps Logic
ConvLFSR ConvMTJ StochMem

Memory ADC DSC Total Memory ADC DAC ASC Total Memory ASC Total

Robert 339 21

50000

1450 51810 21

50000 16000

75 66435 183 75 597

Median 5382 38 2900 58320 38 150 71570 336 150 5868

Frame 457 17 772 51246 17 60 66534 153 60 670

Gamma 76 35 1156 51267 35 120 66231 306 120 502

KDE 8691 122 6166 64979 122 630 75443 1071 630 10392
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hand, can eliminate or replace these units with lighter-weight counterparts leading to

substantial energy and area savings.

6.5 Summary

A challenging artifact of modern technology scaling is growing uncertainty in design

parameters, and therefore, in design functionality. This renders SC a particularly promis-

ing paradigm, which represents and processes information as quantized probabilities.

Numerous SC proposals from 1960s onwards, however, focus on stochastic logic (mainly

arithmetic), neglecting memory. Unfortunately, deploying conventional (digital) memory

in a stochastic system is particularly inefficient due to the difference in data representa-

tions, which can easily incur a significant data conversion overhead.

In this chapter, we proposed a seamless memory system design for SC systems to

minimize the data conversion overhead, which can reach 80% of overall hardware cost,

considering image processing as a case study. Analog memory is particularly promising

due to seamless conversion options between analog and stochastic data representations,

despite the potential loss in data accuracy which stochastic logic can easily mask due

to its implicit fault-tolerance. We evaluated analog memory for seamless SC, using

a representative stochastic near-sensor image processing system as a case study. We

demonstrated how such a system can reduce energy consumption and area cost by up to

52.8% and 93.7%, while keeping the accuracy loss as incurred by analog memory below

0.7%.



Chapter 7

Concluding Remarks

7.1 Summary of Contributions

In this dissertation, we first provided background information on stochastic comput-

ing (SC) including different encoding schemes, advantages, and weaknesses of this

unconventional computing paradigm.

Second, we explored an evolution of the concept of SC and proposed a highly

unorthodox idea: performing computation with digital constructs on time-encoded

analog signals. Instead of encoding data in space, as random bitstreams, we encoded

values in time. We showed how analog periodic pulse signals can be used in performing

essential stochastic operations. The approach is an excellent fit for low-power applications

that include time-based sensors, for instance image processing circuits in vision chips.

Implementation results on image processing applications showed up to a 99% performance

speedup, 98% saving in energy consumption, and 40% area reduction compared to prior

stochastic implementations [49, 48, 133, 18, 50].

Third, we proposed a novel area- and power-efficient synthesis approach for imple-

mentation of sorting network circuits based on unary bitstreams. The proposed method

inherits the fault tolerance and low-cost design advantages of processing random stochas-

tic bitstreams while producing completely accurate result. Synthesis results of complete

sorting networks showed up to 90% area and power saving compared to the conventional

binary implementations. However, the latency increased. To mitigate the increased

latency, we used our developed time-encoding method. The approach was validated by
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implementing a low-cost, high-performance, and energy-efficient implementation of an

important application of sorting, median filtering [69, 70].

Fourth, we proposed high-quality down-sampling methods to solve an important issue

with the recently developed deterministic methods of SC. Relatively prime stream length,

clock division, and rotation of bitstreams are the three deterministic methods of processing

bitstreams that are initially proposed based on unary bitstreams. For applications that

slight inaccuracy is acceptable, these unary stream-based approaches must run for a

relatively long time to produce acceptable results. This long processing time makes these

approaches energy-inefficient compared to the conventional random stream-based SC.

We exploited pseudo-randomness and proposed new LFSR-based structures to improve

the progressive precision property of these deterministic methods. We also proposed two

new deterministic methods of processing bitstreams based on low-discrepancy sequences.

Significant improvement in the processing time and energy consumption is observed using

the proposed structures [99, 98, 102, 100, 101].

Fifth, we demonstrated that computation on stochastic bitstreams has another

compelling advantage: circuits naturally and effectively tolerate very high clock skew.

Exploiting this advantage, we investigated Polysynchronous Clocking, a design strategy

for optimizing the clock distribution networks of SC systems. Clock domains are split at

a very fine level, reducing power on an otherwise large global clock tree. Each domain

is synchronized by an inexpensive local clock. Alternatively, the skew requirements for

a global clock tree network can be relaxed. The proposed design approach allows for a

higher working frequency and so lower latency. It also results in significant area and

energy savings for a wide variety of applications [104, 17, 105].

Finally, we integrated analog memory with conventional stochastic systems to reduce

the energy wasted in conversion units. We proposed a seamless stochastic system,

StochMem, which features analog memory to trade the energy and area overhead of data

conversion for computation accuracy. Comparing to a baseline system which features

conventional digital memory, StochMem can reduce the energy and area significantly at

the cost of slight loss in computation accuracy [125].

Beside the topics discussed in this dissertation, we developed a low-cost SC-based

hardware implementation of a large Restricted Boltzmann Machine (RBM) Classifier

completely on a single FPGA [32, 33]. Conventional binary implementation of a fully
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parallel design of a large neural network is expensive, involves extra design overheads, and

in most cases cannot be fit on a single FPGA. We also developed a new reconfigurable

architecture and methodology for synthesizing any given target function stochastically

using FSMs [16]. When the target function is relatively complex, such as the exponentia-

tion, the hyperbolic tangent, or high-order polynomial functions, our developed sequential

logic-based implementation is more efficient than the prior combinational architectures.

Our synthesis method also has the ability of implementing multi-input functions at a

very low cost. Compared to prior combinational logic-based approaches, the proposed

reconfigurable architecture can save hardware area and energy consumption by up to

30% and 40%, respectively, while achieving a higher processing speed.

7.2 Future Directions

The proposed design methodologies of this dissertation can be used in responding to the

high-demand request for implementing ultra-low-power signal processing systems and

energy-efficient real-time machine learning systems.

With the growth in image and video processing systems (e.g. mobile cameras,

biomedical imaging, robotics), speech and voice recognition systems, and in general

many sensor-based signal processing systems that can tolerate small rates of inaccuracy,

developing ultra-low power systems using unconventional paradigms such as SC has

become a research area of substantial interest. Optimizing and improving the speed and

energy consumption of signal processing systems by converting these systems from a

pure-digital or pure-analog design to efficient mixed-signal designs using novel approaches

such as the proposed time-based design is an interesting direction to proceed. Studying

the feasibility of using the proposed methods in designing systems that work with

extreme power budget constraints, developing vertically-integrated high-performance

signal processing chips based on the proposed methods, and evaluating the impact

of applying both of the conventional energy reduction techniques (e.g., voltage and

frequency scaling) and the developed energy-optimization methods (e.g., polysynchronous

clocking) in energy-efficient design of image, video, and speech processing systems are

other important future directions.



134

In recent years, machine learning has been used by almost all high-technology compa-

nies in developing intelligent systems. Data security, healthcare and medical diagnosis,

search engines, smart cars, bioinformatics, computer vision and object recognition, speech

and handwritten recognition, recommender systems, and translation systems are only

a subset of applications of machine learning. Low-cost energy-efficient hardware im-

plementation of machine learning algorithms has been an attractive and high demand

research area in recent years. High computational complexity, however, makes the hard-

ware implementation expensive, energy inefficient, and in many cases impractical with

limited hardware resources. SC has been used for low-cost implementation of machine

learning algorithms [31, 33, 37, 35, 34, 38, 40, 134, 135, 39]. A higher latency and energy

consumption, and a lower output quality compared to the conventional fixed-point binary

implementations are still the main barriers in wide application of SC-based machine

learning systems. Recent progress in the SC field, from mixed-signal time-based encoding

to deterministic processing of bitstreams, has raised new hope to solve the important

challenges inefficient design of these systems. The proposed methodologies of this dis-

sertation can particularly have a significant impact in the design of near-sensor neural

network accelerators.

An important part of future efforts could be to lay the theoretical foundations for the

developed deterministic methods of SC including the time-based SC to provide bounds

on the accuracy of computations. From conventional digital stochastic bitstreams to

the time-based encoding, we can perform rigorous mathematical analysis. We intend to

examine issues such as the interaction between signals with different frequencies; limits on

the classes of functions that can be synthesized using a given set of gates; and the effect

of truncating periodic signals. Number-theoretic techniques can be employed to optimize

designs, for instance when generating coefficients for polynomial approximations. Solving

the current challenges of the developed time-based computing such as resolution limitation,

truncation error, difficulty of synchronization, skew propagation, and translating the

time-encoded signals for the FSM-based stochastic circuits is another interesting future

direction.



References

[1] A. Alaghi, Cheng Li, and J.P. Hayes. Stochastic circuits for real-time image-

processing applications. In Design Automation Conference (DAC), 2013 50th ACM

/ EDAC / IEEE, pages 1–6, May 2013.

[2] Weikang Qian, Xin Li, M.D. Riedel, K. Bazargan, and D.J. Lilja. An architecture

for fault-tolerant computation with stochastic logic. Computers, IEEE Trans. on,

60(1):93–105, Jan 2011.

[3] A. Farmahini-Farahani, H. J. Duwe III, M. J. Schulte, and K. Compton. Modu-

lar design of high-throughput, low-latency sorting units. IEEE Transactions on

Computers, 62(7):1389–1402, July 2013.

[4] Peng Li, D.J. Lilja, Weikang Qian, K. Bazargan, and M.D. Riedel. Computation

on stochastic bit streams digital image processing case studies. Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, 22(3):449–462, 2014.

[5] Jesse Scott. Analysis of two-dimensional median filter hardware implementations

for real-time video denoising. MS thesis, Penn State University, December 2010.

[6] A. Alaghi and J.P. Hayes. Fast and accurate computation using stochastic circuits.

In Design, Automation and Test in Europe Conference and Exhibition (DATE),

2014, pages 1–4, March 2014.

[7] S. Liu and J. Han. Energy efficient stochastic computing with sobol sequences. In

Design, Automation Test in Europe Conference Exhibition (DATE), 2017, pages

650–653, March 2017.

135



136

[8] I. L. Dalal, D. Stefan, and J. Harwayne-Gidansky. Low discrepancy sequences

for monte carlo simulations on reconfigurable platforms. In 2008 International

Conference on Application-Specific Systems, Architectures and Processors, pages

108–113, July 2008.

[9] Peng Li, D.J. Lilja, W. Qian, M.D. Riedel, and K. Bazargan. Logical computation

on stochastic bit streams with linear finite-state machines. Computers, IEEE

Transactions on, 63(6):1474–1486, June 2014.

[10] Peng Li and D.J. Lilja. A low power fault-tolerance architecture for the kernel

density estimation based image segmentation algorithm. In Application-Specific Sys-

tems, Architectures and Processors (ASAP), 2011 IEEE International Conference

on, pages 161–168, Sept 2011.

[11] Brian R Gaines. Stochastic computing. In Proceedings of the April 18-20, 1967,

spring joint computer conference, pages 149–156. ACM, 1967.

[12] B.R. Gaines. Stochastic computing systems. In JuliusT. Tou, editor, Advances

in Information Systems Science, Advances in Information Systems Science, pages

37–172. Springer US, 1969.

[13] W. J. Poppelbaum, C. Afuso, and J. W. Esch. Stochastic computing elements and

systems. In Proceedings of the Joint Computer Conference, AFIPS ’67 (Fall), pages

635–644, New York, NY, USA, 1967. ACM.

[14] Armin Alaghi and John P. Hayes. Survey of stochastic computing. ACM Trans.

Embed. Comput. Syst., 12(2s):92:1–92:19, 2013.

[15] Armin Alaghi, Weikang Qian, and John P Hayes. The promise and challenge of

stochastic computing. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2017.

[16] M. Hassan Najafi, Peng Li, David J. Lilja, Weikang Qian, Kia Bazargan, and Marc

Riedel. A Reconfigurable Architecture with Sequential Logic-Based Stochastic

Computing. J. Emerg. Technol. Comput. Syst., 13(4):57:1–57:28, June 2017.



137

[17] M. Hassan Najafi, David J. Lilja, Marc D. Riedel, and Kia Bazargan. Polysyn-

chronous clocking: Exploiting the skew tolerance of stochastic circuits. IEEE

Transactions on Computers, 66(10):1734–1746, Oct 2017.

[18] M. Hassan Najafi, Shiva Jamali-Zavareh, David J. Lilja, Marc D. Riedel, Kia

Bazargan, and Ramesh Harjani. An Overview of Time-Based Computing with

Stochastic Constructs. IEEE Micro, 37(6):62–71, November 2017.

[19] K. Parhi and Y. Liu. Computing arithmetic functions using stochastic logic by

series expansion. IEEE Transactions on Emerging Topics in Computing, pages 1–1,

2017.

[20] D. Fick, G. Kim, A. Wang, D. Blaauw, and D. Sylvester. Mixed-signal stochastic

computation demonstrated in an image sensor with integrated 2d edge detection

and noise filtering. In Proceedings of the IEEE 2014 Custom Integrated Circuits

Conference, pages 1–4, Sept 2014.

[21] M. Hassan Najafi and Mostafa E. Salehi. A Fast Fault-Tolerant Architecture for

Sauvola Local Image Thresholding Algorithm Using Stochastic Computing. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 24(2):808–812, Feb

2016.

[22] N. Onizawa, D. Katagiri, K. Matsumiya, W. J. Gross, and T. Hanyu. Gabor filter

based on stochastic computation. IEEE Signal Processing Letters, 22(9):1224–1228,

Sept 2015.

[23] Y. Liu and K. K. Parhi. Architectures for recursive digital filters using stochastic

computing. IEEE Transactions on Signal Processing, 64(14):3705–3718, July 2016.

[24] H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, and T. Inoue. Compact and Accurate

Digital Filters Based on Stochastic Computing. IEEE Transactions on Emerging

Topics in Computing, pages 1–1, 2017.

[25] Yin Liu and Keshab K Parhi. Linear-phase lattice fir digital filter architectures

using stochastic logic. Journal of Signal Processing Systems, 90(5):791–803, 2018.



138

[26] S.S. Tehrani, S. Mannor, and W.J. Gross. Fully parallel stochastic ldpc decoders.

Signal Processing, IEEE Transactions on, 56(11):5692–5703, Nov 2008.

[27] A. Naderi, S. Mannor, M. Sawan, and W.J. Gross. Delayed stochastic decoding of

ldpc codes. Signal Processing, IEEE Transactions on, 59(11):5617–5626, Nov 2011.

[28] Naoya Onizawa, Warren J. Gross, Takahiro Hanyu, and Vincent C. Gaudet. Asyn-

chronous stochastic decoding of ldpc codes: Algorithm and simulation model.

IEICE Transactions on Information and Systems, 97(9):2286–2295, 2014.

[29] X. R. Lee, C. L. Chen, H. C. Chang, and C. Y. Lee. A 7.92 gb/s 437.2 mw stochastic

ldpc decoder chip for ieee 802.15.3c applications. IEEE Transactions on Circuits

and Systems I: Regular Papers, 62(2):507–516, Feb 2015.

[30] S.S. Tehrani, W.J. Gross, and S. Mannor. Stochastic decoding of ldpc codes.

Communications Letters, IEEE, 10(10):716–718, Oct 2006.

[31] B.D. Brown and H.C. Card. Stochastic neural computation. i. computational

elements. Computers, IEEE Transactions on, 50(9):891–905, Sep 2001.

[32] B. Li, M. Hassan Najafi, and David J. Lilja. An FPGA implementation of a

Restricted Boltzmann Machine Classifier using Stochastic Bit Streams. In 2015

IEEE 26th International Conference on Application-specific Systems, Architectures

and Processors (ASAP), pages 68–69, July 2015.

[33] Bingzhe Li, M. Hassan Najafi, and David J. Lilja. Using stochastic computing

to reduce the hardware requirements for a restricted boltzmann machine clas-

sifier. In Proceedings of the 2016 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, FPGA ’16, pages 36–41, New York, NY, USA,

2016. ACM.

[34] Kyounghoon Kim, Jungki Kim, Joonsang Yu, Jungwoo Seo, Jongeun Lee, and

Kiyoung Choi. Dynamic Energy-accuracy Trade-off Using Stochastic Computing

in Deep Neural Networks. In Proceedings of the 53rd Annual Design Automation

Conference, DAC ’16, pages 124:1–124:6, New York, NY, USA, 2016. ACM.



139

[35] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross. VLSI

Implementation of Deep Neural Network Using Integral Stochastic Computing.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(10):2688–

2699, Oct 2017.

[36] B. Li, Y. Qin, B. Yuan, and D. J. Lilja. Neural network classifiers using stochastic

computing with a hardware-oriented approximate activation function. In 2017

IEEE International Conference on Computer Design (ICCD), pages 97–104, Nov

2017.

[37] Vincent T. Lee, Armin Alaghi, John P. Hayes, Visvesh Sathe, and Luis Ceze. Energy-

efficient hybrid stochastic-binary neural networks for near-sensor computing. In

Proceedings of the Conference on Design, Automation & Test in Europe, DATE

’17, pages 13–18, 3001 Leuven, Belgium, Belgium, 2017. European Design and

Automation Association.

[38] Yuan Ji, Feng Ran, Cong Ma, and David J. Lilja. A hardware implementation of a

radial basis function neural network using stochastic logic. In Proceedings of the

2015 Design, Automation & Test in Europe Conference & Exhibition, DATE ’15,

pages 880–883, San Jose, CA, USA, 2015. EDA Consortium.

[39] H. Sim, D. Nguyen, J. Lee, and K. Choi. Scalable Stochastic Computing Accelerator

for Convolutional Neural Networks. In 2017 22nd Asia and South Pacific Design

Automation Conference (ASP-DAC), pages 696–701, Jan 2017.

[40] H. Sim and J. Lee. A New Stochastic Computing Multiplier with Application to

Deep Convolutional Neural Networks. In 2017 54th ACM/EDAC/IEEE Design

Automation Conference (DAC), pages 1–6, June 2017.

[41] Bingzhe Li, M. Hassan Najafi, B. Yuan, and David J. Lilja. Quantized neural

networks with new stochastic multipliers. In 2018 19th International Symposium

on Quality Electronic Design (ISQED), pages 376–382, March 2018.

[42] W. Qian and M.D. Riedel. The synthesis of robust polynomial arithmetic with

stochastic logic. In 45th ACM/IEEE Design Automation Conference, DAC’08,

pages 648–653, 2008.



140

[43] Qianying Tang, Bongjin Kim, Yingjie Lao, K.K. Parhi, and C.H. Kim. True random

number generator circuits based on single- and multi-phase beat frequency detection.

In Custom Integrated Circuits Conference (CICC), 2014 IEEE Proceedings of the,

pages 1–4, Sept 2014.

[44] Won Ho Choi, L.V. Yang, Jongyeon Kim, A. Deshpande, Gyuseong Kang, Jian-Ping

Wang, and C.H. Kim. A magnetic tunnel junction based true random number

generator with conditional perturb and real-time output probability tracking. In

Electron Devices Meeting (IEDM), 2014 IEEE International, pages 12.5.1–12.5.4,

Dec 2014.

[45] Solomon W. Golomb and Guang Gong. Signal design for good correlation. Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on, 2004.

[46] K. Kim, J. Lee, and K. Choi. An energy-efficient random number generator

for stochastic circuits. In 2016 21st Asia and South Pacific Design Automation

Conference (ASP-DAC), pages 256–261, Jan 2016.

[47] Devon Jenson and Marc Riedel. A deterministic approach to stochastic computation.

In Proceedings of the 35th International Conference on Computer-Aided Design,

ICCAD ’16, pages 102:1–102:8, New York, NY, USA, 2016.

[48] M. Hassan Najafi, Shiva Jamali-Zavareh, David J. Lilja, Marc D. Riedel, Kia

Bazargan, and Ramesh Harjani. Time-Encoded Values for Highly Efficient Stochas-

tic Circuits. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 25(5):1–

14, 2017.

[49] M. Hassan Najafi and David J. Lilja. High-Speed Stochastic Circuits using Syn-

chronous Analog Pulses. In 2017 22nd Asia and South Pacific Design Automation

Conference (ASP-DAC), pages 481–487, Jan 2017.

[50] Mohammadhassan Najafi, Shiva Jamalizavareh, David J. Lilja, Marcus Riedel, and

Kiarash Bazargan. Stochastic Computation using Pulse-Width Modulated Signals.

U.S. Patent App. 15869453, pending, filed Jan 2018.



141

[51] B. Moons and M. Verhelst. Energy-efficiency and accuracy of stochastic computing

circuits in emerging technologies. IEEE Journal on Emerging and Selected Topics

in Circuits and Systems, 4(4):475–486, Dec 2014.

[52] International Technology Roadmap for Semiconductors (ITRS). ITRS 2.0. 2015.

[53] Gordon W. Roberts and M. Ali-Bakhshian. A brief introduction to time-to-digital

and digital-to-time converters. IEEE Transactions on Circuits and System-II,

57(3):153–157, January 2010.

[54] Xueqin Lu, Shuguo Chen, Chenning Wu, and Mingzhu Li. The pulse width modu-

lation and its use in induction motor speed control. In Computational Intelligence

and Design (ISCID), 2011 Fourth International Symposium on, volume 2, pages

195–198, Oct 2011.

[55] B. Murmann. "ADC Performance Survey 1997-2016," [online]. Available:

http://web.stanford.edu/ murmann/adcsurvey.html, 2016.

[56] S. L. Toral, J. M. Quero, and L. G. Franquelo. Stochastic pulse coded arithmetic.

In Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE

International Symposium on, volume 1, pages 599–602 vol.1, 2000.

[57] J. M. Quero, C. L. Janer, J. G. Ortega, and L. G. Franquelo. D/A Converter ASIC

Uses Stochastic Logic. In EDN, pages 86–88, Oct. 1996.

[58] W.J. Poppelbaum, A. Dollas, J.B. Glickman, and C. O’Toole. Unary processing.

In Advances in Computers, volume 26, pages 47 – 92. Elsevier, 1987.

[59] P. Mars and W.J. Poppelbaum. Stochastic and Deterministic Averaging Processors.

IEE digital electronics and computing series. The institution of Electrical Engineers,

1981.

[60] MATLAB. version 9.0.0 (R2016a). The MathWorks Inc., Natick, Massachusetts,

2016.

[61] Peng Li and D.J. Lilja. Using stochastic computing to implement digital image

processing algorithms. In Computer Design (ICCD), 2011 IEEE 29th International

Conference on, pages 154–161, Oct 2011.



142

[62] Synopsys. Design Compiler UserâĂŹs Manual. http://www.synopsys.com/, 2013.

[63] H. Ichihara, S. Ishii, D. Sunamori, T. Iwagaki, and T. Inoue. Compact and

accurate stochastic circuits with shared random number sources. In 2014 IEEE

32nd International Conference on Computer Design (ICCD), pages 361–366, Oct

2014.

[64] Zhiheng Wang, Naman Saraf, Kia Bazargan, and Arnd Scheel. Randomness meets

feedback: Stochastic implementation of logistic map dynamical system. In Design

Automation Conference (DAC), 2015.

[65] D. JOHNS and K. MARTIN. Analog Integrated Circuit Design. 1997.

[66] B. Razavi. The cross-coupled pair - part i [a circuit for all seasons]. IEEE Solid-State

Circuits Magazine, 6(3):7–10, Summer 2014.

[67] B. Razavi. The cross-coupled pair - part ii [a circuit for all seasons]. IEEE

Solid-State Circuits Magazine, 6(4):9–12, Fall 2014.

[68] T. Sepke, P. Holloway, C. G. Sodini, and H. S. Lee. Noise analysis for comparator-

based circuits. IEEE Transactions on Circuits and Systems I: Regular Papers,

56(3):541–553, March 2009.

[69] M. Hassan Najafi, David J. Lilja, Marc Riedel, and Kia Bazargan. Power and Area

Efficient Sorting Networks Using Unary Processing. In 2017 IEEE International

Conference on Computer Design (ICCD), pages 125–128, Nov 2017.

[70] M. Hassan Najafi, David J. Lilja, Marc D. Riedel, and Kia Bazargan. Low-Cost

Sorting Network Circuits Using Unary Processing. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, pages 1–10, 2018.

[71] Goetz Graefe. Implementing sorting in database systems. ACM Comput. Surv.,

38(3), September 2006.

[72] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. Gputerasort:

High performance graphics co-processor sorting for large database management. In

Proceedings of the 2006 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’06, pages 325–336, New York, NY, USA, 2006. ACM.



143

[73] Basel A. Mahafzah. Performance assessment of multithreaded quicksort algorithm

on simultaneous multithreaded architecture. The Journal of Supercomputing,

66(1):339–363, Oct 2013.

[74] A. A. Colavita, A. Cicuttin, F. Fratnik, and G. Capello. Sortchip: a vlsi imple-

mentation of a hardware algorithm for continuous data sorting. IEEE Journal of

Solid-State Circuits, 38(6):1076–1079, June 2003.

[75] J. P. Agrawal. Arbitrary size bitonic (asb) sorters and their applications in

broadband atm switching. In Conference Proceedings of the 1996 IEEE Fifteenth

Annual International Phoenix Conference on Computers and Communications,

pages 454–458, Mar 1996.

[76] Alberto Colavita, Enzo Mumolo, and Gabriele Capello. A novel sorting algorithm

and its application to a gamma-ray telescope asynchronous data acquisition system.

Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, 394(3):374 – 380, 1997.

[77] D. C. Stephens, J. C. R. Bennett, and Hui Zhang. Implementing scheduling algo-

rithms in high-speed networks. IEEE Journal on Selected Areas in Communications,

17(6):1145–1158, Jun 1999.

[78] V. Brajovic and T. Kanade. A vlsi sorting image sensor: global massively parallel

intensity-to-time processing for low-latency adaptive vision. IEEE Transactions on

Robotics and Automation, 15(1):67–75, Feb 1999.

[79] K. Ratnayake and A. Amer. An fpga architecture of stable-sorting on a large

data volume : Application to video signals. In 2007 41st Annual Conference on

Information Sciences and Systems, pages 431–436, March 2007.

[80] C. Chakrabarti and Li-Yu Wang. Novel sorting network-based architectures for

rank order filters. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 2(4):502–507, Dec 1994.

[81] D. S. K. Pok, C. I. H. Chen, J. J. Schamus, C. T. Montgomery, and J. B. Y. Tsui.

Chip design for monobit receiver. IEEE Transactions on Microwave Theory and

Techniques, 45(12):2283–2295, Dec 1997.



144

[82] R. Chen and V. K. Prasanna. Computer generation of high throughput and memory

efficient sorting designs on fpga. IEEE Transactions on Parallel and Distributed

Systems, 28(11):3100–3113, Nov 2017.

[83] N. Guo, Y. Huang, T. Mai, S. Patil, C. Cao, M. Seok, S. Sethumadhavan, and

Y. Tsividis. Energy-efficient hybrid analog/digital approximate computation in

continuous time. IEEE Journal of Solid-State Circuits, 51(7):1514–1524, July 2016.

[84] Y. Tsividis. Continuous-time digital signal processing. Electronics Letters,

39(21):1551–1552, Oct 2003.

[85] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April

30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), pages

307–314, New York, NY, USA, 1968. ACM.

[86] K. Kantawala and D. L. Tao. Design, analysis, and evaluation of concurrent

checking sorting networks. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 5(3):338–343, Sept 1997.

[87] S. Y. Kuo and S. C. Liang. Design and analysis of defect tolerant hierarchical

sorting networks. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 1(2):219–223, June 1993.

[88] Sherenaz W. Al-Haj Baddar and Basel A. Mahafzah. Bitonic sort on a chained-

cubic tree interconnection network. J. Parallel Distrib. Comput., 74(1):1744–1761,

January 2014.
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