Gas-Water-Rock Interactions in Saline Aquifers Following CO₂ Injection: Results from Frio Formation, Texas, USA

GCCC Digital Publication Series #05-03e

Y. K. Kharaka D. R. Cole W. D. Gunter J. J. Thordsen E. Kakouros

Keywords:

Grass-Water-Rock Interactions, Saline Aquifers, Open Hole Logs, Mineral-Water-Gas Interactions, Field Sampling

Cited as:

Kharaka, Y.K., Cole, D.R., Gunter, W.D., Thordsen, J.J., and Kakouros, E., Gaswater-rock interactions in saline aquifers following CO₂ injection: results from Frio Formation, Texas, USA: presented at the American Geophysical Union Fall Meeting, San Francisco, California, December 5–9, 2005, paper GC12A-08. GCCC Digital Publication Series #05-03e, pp. 1-16.

Gas-Water-Rock Interactions in Saline Aquifers Following CO₂ Injection: Results from Frio Formation, Texas, USA

* Kharaka, Y K (ykharaka@usgs.gov), U. S. Geological Survey, 345 Middlefield Rd. Mail Stop 417, Menlo Park, CA 94025 United States
Cole, D R (coledr@ornl.gov), Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 United States
Gunter, W D (gunter@arc.ab.ca), Alberta Research Council, 250 Karl Clark Rd., Edmonton, AB T6N 1E4 Canada
Thordsen, J J (jthordsn@usgs.gov), U. S. Geological Survey, 345 Middlefield Rd. Mail Stop 417, Menlo Park, CA 94025 United States
Kakouros, E (kakouros@usgs.gov), U. S. Geological Survey, 345 Middlefield Rd. Mail Stop 417, Menlo Park, CA 94025 United States

To investigate the potential for the geologic storage of CO_2 in saline sedimentary aquifers, ~16 million kg of CO₂ were injected at ~1,500-m depth into a 24-m sandstone section of the Frio Formation—a regional brine and oil reservoir in the U.S. Gulf Coast. Fluid samples obtained from the injection and observation wells before, during and post CO₂ injection, show a Na-Ca-Cl type brine with 93,000 mg/L TDS and near saturation of CH₄ at reservoir conditions. As injected CO₂ became the dominant gas at the observation well, results showed sharp drops in pH (6.5 to 5.7), pronounced increases in alkalinity (100 to 3,000 mg/L as HCO₃) and Fe (30 to 1,100 mg/L), and significant shifts in the isotopic compositions of H₂O, DIC and CH₄. Geochemical modeling indicates that brine pH would have dropped lower, but for the buffering by dissolution of carbonate and iron oxyhydroxides. The low pH values resulting from CO₂ injection could cause rapid dissolution of carbonate and other minerals creating pathways for CO₂ and brine leakage. Dissolution of some minerals, especially iron oxyhydroxides could mobilize trace metals and other toxic components. Also, where residual oil and other organics are present, the injected CO₂ may mobilize organic compounds, some may be environmentally toxic. The δ^{18} O values for brine and CO₂ samples indicate that supercritical CO₂ comprises ~45% of fluid volume in Frio sandstone near injection well ~6 months after end of injection. Post-injection sampling, coupled with geochemical modeling, indicate the brine gradually returning to its pre-injection composition.

Gas-Water-Rock Interactions in Saline Aquifers Following CO₂ Injection: Results From the Frio Formation, Texas Yousif Kharaka^a, David Cole^b, William Gunter^c, James Thordsen^a, Evangelos Kakouros^a,

Financial support from DOE-NETL (Karen Cohen, program manager)

AGU, December 5, 2005

Topics Discussed

- Energy, CO₂ levels and global warming
- Composition of water and gases in the Frio-Baseline, during and post injection results.
- How are such data obtained and why are they important to CO₂ sequestration?
- Water-mineral-CO₂ interactions in the Frio.
- Environmental implications of post injection results.
- Future plans and concluding remarks.

Frio Brine Pilot

- Injection interval: 24-m-thick, mineralogically complex Oligocene reworked fluvial sandstone, porosity 34%, Permeability 2-3
- Seals numerous thick shales, small fault block
- Depth 1,500 m
- Brine-rock system, no hydrocarbons
- 67°C; 150 bar

Frio CO₂ Field sampling

Drilling & test water tagged with dye tracers

Date	Site	Sampling info	Sample series
June 3, 2004	injection well	MDT tool	04FCO ₂ -100
Jul 23-Aug 2, 2004	injection well, monitoring well & gw wells	surface sampling (N ₂), Kuster, submers.pump	04FCO ₂ -200
Oct 4-7, 2004	monitoring well	U-tube	04FCO ₂ -300
Oct 29-Nov 3, 2004	monitoring well	U-tube	04FCO ₂ -400
April 4-6, 2005	injection well & monitoring well	surface sampling (N ₂) & Kuster	05FCO ₂ -100

Salinity and normalized conc. of major cations and anions

Br-Cl, indicator of solute origin (* Frio value) Kharaka & Hanor, 2004

Selected chemical data from monitoring well during CO2 injection

Computed pH and saturated states of selected minerals at T & P

Important Mineral-Water-Gas Interactions in Frio

$CO_{2 (gas)} + H_2O \Leftrightarrow H_2CO_3^{o}$	(1)
$H_2CO_3^{o} \Leftrightarrow HCO_3^{-} + H^+$	(2)
$CO_{2 (gas)} + H_2O + CaCO_3 \Leftrightarrow Ca^{++} + 2HCO_3^{}$	(3)
$H^+ + CaCO_3 \Leftrightarrow Ca^{++} + HCO_3^-$	(4)
$H^+ + FeCO_3 \iff Fe^{++} + HCO_3^-$	(5)
$4Fe^{++} + O_2 + 10H_2O \Leftrightarrow 4Fe(OH)_3 + 8H^+$	(6)
$2H^+ + CaMg(CO_3)_2 \Leftrightarrow Ca^{++} + Mg^{++} + 2HCO_3^{}$	(7)
$4.8\mathrm{H}^{+} + \mathrm{Ca}_{.2}\mathrm{Na}_{.8}\mathrm{Al}_{1.2}\mathrm{Si}_{2.8}\mathrm{O}_{8} + 3.2\mathrm{H}_{2}\mathrm{O} \Leftrightarrow$	
$.2Ca^{++} + .8Na^{+} + 1.2Al^{+++} + 2.8H_4SiO_4$	(8)
$0.4\mathrm{H^{+}} + \mathrm{Ca_{.2}Na_{.8}Al_{1.2}Si_{2.8}O_8} + 0.8\mathrm{CO_2} + 1.2\mathrm{H_2O} \Leftrightarrow$	
$.2Ca++ + .8NaAlCO_3(OH)_2 + 0.4Al(OH)_3 + 2.8$	SiO ₂ (9)

Organics in Oil-Field Water

(mg/L)

Frio DOC (6/04-4/05)

ACETATE & OTHER ACID ANIONS	10,000
BTEX	60
PAHs	10
PHENOL	20
4 – METHYL PHENOL	2
BENZOIC ACID	5
4 – METHYL BENZOIC ACID	4
2 – HYROXY BENZOIC ACID	0.2
3 – HYDROXY BENZOIC ACID	1.2

Kharaka & Hanor, 2004

Chemical Composition of Frio Gases

Frio formation water at saturation with CH₄

	Injection well	Monitoring well	Monitoring well	Monitoring well
	before CO ₂ injection	before CO ₂ injection	after CO ₂ injection	"B" sand
	04FCO2-102	10-7-04 @ 2:15 am	10-13-04 @ 20:37	05FCO2-110
He	0.0077	0.0026	0	0.0124
H_2	0.0401	1.36	0.191	0.285
Ar	0.0418	0.0207	0	0.0608
O ₂	0.0719	0	0	0.748
CO_2	0.31	0.0040	96.8	0.208
N_2	4.15	3.60	0.037	5.17
CO	0	0	0	<0.001
CH_4	93.4	94.8	2.94	93.4
C_2H_6	0.149	0.161	0.0052	0.103
C_3H_8	0.0086	0.0021	0	0.0012
$C_4H_{10}+$	1.76	0.0037	0	<0.0005

volume%, normalized

Brine/CO2 volume ratio at reservoir conditions

	¹⁸ O shift	¹⁸ O shift	Brine/CO ₂
Date*	Brine	CO ₂	vol. ratio
10-5-04	0	0	$\rightarrow \infty$
10-6-04	0.37	32	59
10-6-04	0.69	32	32
10-6-04	0.77	32	29
10-6-04	1.22	32	18
10-7-04	2.24	32	10
11-3-04	1.43	32	15
11-3-04	1.74	32	12
4-4-05	11.2	22	1.4
5-4-05	11.7	22	1.3
6-4-05	11.9	22	1.3

 $X_{\text{brine}}/X_{\text{CO2}} = \frac{\delta^{18} O_{\text{CO2}}^{\text{f}} - \delta^{18} O_{\text{CO2}}^{\text{i}}}{\delta^{18} O_{\text{H2O}}^{\text{i}} - \delta^{18} O_{\text{H2O}}^{\text{f}}}$

Isotopic mass balance equation, where the superscripts "i" and "f" are the initial and final δ values for brine and CO2, respectively, and X is the atomic oxygen in the subscipted omponent.

Summary and Conclusions

- 1- The Frio brine is saturated with CH_4 has a salinity of ~93,000 mg/L TDS, and is a Na-Ca-Cl type water.
- 2- Alkalinity and pH determinations are excellent and rapid field methods for tracking injected CO₂.
- 3- The low pH values resulting from CO₂ injection could have important environmental implications:

a)-Dissolution of minerals, esp. iron oxyhdroxides could mobilize toxic components;

b) dissolution of minerals may create pathways for CO_2 and brine leakage.

4- Where residual oil and other organics are present, CO₂ may mobilize organic compounds; some may be toxic.

