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1. INTRODUCTION 

Let x denote observations arising from a distribution 

f(x; 8) where 8 is unknown, and let R(x) denote ~ome known 

function of the data x. We will be concerned with the estimation 

from x of functions of the form 0(R(x), 8). The proble~ arises 

in the theory of classification where 0 denotes the probability 

that a classification rule R based on data x will misclassify 

a future observation from a specified population characterized by 

an unknown parameter e. A natural way to construct an estimator 

of 0 would be to put 0(x) = 0(R(x), 8(x)) where 8(x) i~, 

say, the maximum likelihood estimator of 8. We shall however 

approach the problem after the fa~hion of the E; tandard Crame·;-Rao 

and Rao-Blackwell theory, considering the conditionai variance of 

estimators which are conditionally unbiased, given· ·R(x). Two 

examples are given, one involving a classification problem for 

normal distributions. 

,. 
2. THE CRAMER-RAO BOUND 

·, 
The usual Cramer-Rao theory extends in a straightforward way 

to include the present case. To simplify the presentation, we 

will treat the case of n observations from a continuous distri-

bution, putting ~= (x1, ••• , xn). We further suppose t~at R(~) 

is such that we can find (n-1) coordinates y1 , ••• , yn-l giving 

a "smooth" transformation (one-to-one with Jacobian existing and 

nowhere equal to O or oo) from x to l! where l_= (y1, ••• , yn), 

y = R(x). 
n -
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Theorem 1. Let 0(R, 8) be a function such that ?I/J/08 

exists. Let g
9

(y1 , ••• , yn_1 1yn) denote the conditional density 

of y1 , ••• , yn-l given yn, and assume this density satisfies 

the usual regularity conditions (see,for example, Lehmann [6]). 

Let @(~ be any conditionally unbiased estimator (i.e., 
,. ,. 

E(0{x'IY = y) = 0(y, 8)). Then 0 satisfies '!!I n n n 

(1) Var{i{x)IY = y) ~ (E(s2 IY = y )}-l - n n n n 

where 

We sup~ess the proof, which follows the usual lines. Super­

ficially it app.ears that the bound (1) depends on the arbitrary 

choice of coordinates But this is not actually 

* so, for let z
1

, ••• , zn-l be any other choice and let g
8 

and 

* S* be the analogues of ge and S. Then g
8 

= Jg
8

, where 

J = lo{y1 , ••• , Yn_1)/o(z1 , ••• , zn_1)1, and S* = S, so that S* 

and S have the same second moment. 

' 
It is possible to avoid the regularity conditions on g

8 
and 

on 0(R, 8) by the method of Chapman and Robbins [3]. We will 

state the result without proof. 

Theorem 2. In the notation of Theorem 1, define 

(3) A= A(0, 8, h, r) = h-1[0(r, 8+h) - 0(r, 8)] 

(4) 

,. 
Then for any conditionally unbiased estimator 0(~ of 0(R, 8), 

(5) Var(~lr) ~ {inf E[B{0, 8, h, r) lr]}-l 
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where the infimum is taken over all hf O such that both 8 

and 9+h lie in the range of possible 8 values. 

3. RAO-BLACKWELL THEORY 

In order to give.:the desired modification of the Rao-Blackwell 

theory, we will require definitions of conditional sufficiency 

and conditional complete sufficiency. 

Definition 1. A statistic T{x) is called conditionally 

sufficient for O given R{x) if {R{x), T{x)) is sufficient 

for a. 
To discuss completeness, we will consider separately the 

discrete case and the absolutely continuou$ case. 

Definition 2 (discrete case). A statistic T(x) is called 

a conditionally complete sufficient statistic for ·e given R(x) 

if for each value r of R 

(6) E f{t)P9(T=tlR=r) = 0 fo~ all 8 
t 

implies 

(7) f(t) = 0 for all t such that P8(T=tlR=r) > O. 

Definition 2 {absolutely continuous case). Let he(·) 

be the density of a statistic R(x) and let g8(·1r) be the 

conditional density of a statistic T(x) given R(x) = r, defined 

for all r such that h
8
(r) > O. T(x) is called conditionally 

complete sufficient given R if for each r such that h
8
(r) > O, 

(8) J f(t)ge(tlr)dt = O for all 8 

implies 

(9) f(t) = 0 a.e. PTIR=r 
8 • 
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It is more or less evident from Definition 1 that every 

sufficient statistic is conditionally sufficient (see Bahadur [2], 

Theorem 6.4, for a rigorous treatment). It is also true that 

completeness implies conditional completeness. We give a proof 

for the discrete case only. 

Theorem 3. Let Pe be a family of probability measures 

defined on a discrete space (x} assigning nonzero probability 

to each point for each value of e. If T(x) is a complete 

sufficient statistic for 9, then T(x) is a conditionally 

complete sufficient statistic for 9 given any statistic R(x). 

Proof. Let J, U( and J denote the range of T(x), R(x) 

and (T(x), R(x)) respectively. Every point of :J and G?has 

nonzero probability for every a. The same is true of J although 

J is not necessarily the direct product of J and (2. For 

any point (t, r) in J both P8(T=tlR=r) and P9(R=rlT=t) 

are defined and nonzero for every e. By sufficiency of T, the 

latter is the same for all 8 and therefore can be denoted by 

C(r, t). Now consider any fixed r inQ. We can write 

r f(t)C(r, t)P 9(T=t). 
t 

If we assume (6) holds, then the above expression equals zero for 

all 8. The assumed completeness of T(x) then implies 

f(t)C(r, t) = 0 for all t inJ. Since c(r, t) + O for 

ind , we have f( t) = 0 whenever (r, t) in ~ , that is, 

whenever P9(T=tlR=r) > O, so that (7) holds. 

(r, t) 

We now state without proof the modification of the standard 

Rao-Blackwell ~heory. 
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Theorem 4. Let ~ be any estimator of © such that 

Ee(~IR = r) = ~(r, a). Let T be conditionally sufficient for 

a given Ro Define cp = E(cp"IR, T). Then q;- is also a 

conditionally unbiased estimator of ~ given R, and 

Var-(cp!R) ~ Var(cplR) o 

Lemma 1. Let ~(x) and f(x) be two conditionally unbiased 

estimators of ~(R, 8) based on a conditionally complete sufficient 

statistico Then ~(x) = f(x) PXIR e 0 

Theorem 5. Let T be conditionally complete sufficient for 

9. Let ~(R, 9) be any quantity for which a conditionally unbiased 

estimator given R exists. Then ~(R, 9) has a unique (aoe.) 

conditionally UMVU estimator which is a function of T and R. 

Thus when a conditionally unbiased estimator is known, we 

can find a conditionally UMVU estimator by calculating the 

conditional expectation given both R and T. 

4. EXAMPLES 

4.1.Example 1. Let x1,o••, xn be a sample from N(µ, 1) and 

let R(x) = E c.x .• To avoid a degenerate case we assume not 
]. ]. 

all c. are equal. If y. = x., j = 1, ••• , n-1, and y = R(x), 
l. J J n 

then the conditional distribution of 

multinormal with mean 

(11) - -1 ( -1 ) v = d re+µ 1-d be ---- ...... _....,,_ ..... 

and covariance matrix 

(12) 

where 

-1 I C = I 1-d cc, 
n- -
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(13) b=}:c., d=E 

1 
1 

1 

We find 

and 

If we specialize to n = 3, R(x) = x
1 

+ x
2 

+ 2x
3

, tijen any 

conditionally unbiased estimator of cp(R, µ) satisfies 

This bound may or may not be achievable depending on the form of 

cp(R, µ) o 

we take 

It is, for example, achieved when cp(R, µ) = Rµ 

,. R"' . h ,. 3( ) 1 cp = µ wit µ = 2 x 1 + x2 - 2r = x1 + x2 - x
3 

o 

if 

The 

choice µ = x would not give a conditioni:l.lly unbiased estimatoro 

4.2 Example 2. 

4o2.l A problem in classification theoryo The present paper 

was in fact motivated by some problems in classification theory 

which are more fully discussed in [7]o Let s1 and s
2 

denote 

samples of size N1 and N
2 

known to come from populations 

and respectivelyo The samples determine a rule for 

classifying a future observation as either belonging to TTl or 

to We wish to estimate the probabilities of misclassifying 

an observation from TTl in TT
2 

or vice versa. These two prob­

abilities depend on the samples and on unknown population parameters. 

Consider next the p-variate normal case with unknown mean 

vectors ~l' ~ and known and equal covariance matrices }:. If 
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~l' ~ are the sample mean vectors and ,:. is a future observation, 

then the usual symmetrical classification rule is (Anderson [1]) 

( ) (
- - ) I -1 1 c- - ) I -1 (- - ) 16 classify z as 111 if ~l - ~ E ~ ~ 2 ~l - ~ E ~l + ~ 

and otherwise classify ~ as 11
2

0 For definiteness consider the 

probability P
2 

of misclassifying an observation from 11
2 

into 

111 for given values of ~l' ~' which is 

(17) P2 = 1 - F(C) 

where 

) 1 -1 (- - ) -1 (- ) ( 17a C = 2D + D ~ - ~ E ~ - ~ , 

where D is the positive square root of 

and where F is the standard normal CoDoFo P2 is a function 

of ~l' ~ and ~ which we wish to estimateo In this case 

if we attempt to estimate conditionally on (~1 , ~), then there 

is no conditionally unbiased estimator of P2 because P
2 

depends on ~ but the conditional distribution of (s1 , s
2

) 

given (~1 , ~) is the same for all (~1 , ~), owing to the 

sufficiency of (~1 , ~)o 

The theory of conditional unbiased estimation will however 

apply in the case where the classification rule is tested by using 

it on additional observations of known origino Although this 

does not seem to be a widely used method, we find it mentioned, 

for example by Hills [4] and Lachenbruch and Mickey [5]o Let 

t 1 ,o••, tm be additional observations from 11
2 

and let q be 

the proportion of these m observations which are misclassified 0 
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Then q is clearly a conditionally unbiased estimator of P

2 

since its conditional distribution given ~l' ~ is binomial with 

mean equal to P2 • (The argument does not involve the normality 

assumption, so that the method is clearly quite general). 

4.2.2 
/ The Cramer-Rao bound. To illustrate Theorem 1 we will 

apply it to the problem just described. Since Theorem 1 applies 

only for scalar parameters we specialize Section 4.2.1 to the 

univariate normal case where and are and N{µ2 , 1). 

The function ~ of Section 2 corresponds to P2 given by (17), 

and in the univariate case (17) reduces to 

where 

(19) 

The conditioning variate yn of Theorem 1 corresponds to the 

two sample means x1 , x2 • For y1 , ••• , yn-l we may choose 

N1 + N2 + m - 2 suitable coordinates such that, together with 

x1 , x2 , these coordinates are in one-to-one correspondence with 

the sample {x11 , ••• , x1N, x21 , ••• , 
1 

arbitrary choice is to delete x1N 
1 

array to obtain y1 , ••• , yn-l· The 

x2N
2

, t 1 , ••• , tm). Our 

and x2N from the above 
2 

desired conditional distribution 

where the blocks are of length N1-l, N2-l and m respectively. 

Since µ2 appears only in the last m positions and since the 

corresponding variates are {unconditionally and conditionally) 

independent of the others we find 

(20) 
m 

= I: {t. - µ2). 
1 1. 
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It follows that 

(21) 
m 

= C~)-2E{ ~ (t. - µ2)2lx1, x2l 
'+'-2 i=l i 

(~)-2 
= m oµ. • 

2 

Whether x1 be greater than or less than x2 we find 

(22) 

where f is the standard normal density function. Thus the 

Cramer-Rao bound is 

4.2.3 The conditional UMVU estimator. The estimator lq of 

Section 4.2.1 can be improved with respect to its conditional 

variance by the conditional Rao-Blackwell method. - 1 Let t = - ~ t .• 
m -i 

Then t is conditionally complete for ~ given ~' ~- The 

conditional expectation of any unbiased estimator of P
2 

will 

lead to the conditional UMVU estimator, and for convenience we 

take t= 1 or O according as !.a_ is misclassified as not by 

the rule (16). The UMVU estimator qi" is then just the conditional 

probability 

To evaluate this we first find the conditional distribution of !.i 

given t to be N (t m-1 ~). p _, m It follows that 

- 9 -



It is reasonably straightforward to get the conditional 

variance of ~ in terms of the bivariate normal distribution 

function. We find 

(26) Var(cpl~, ~) = F(C, C; m-l) - F(C, C, 0) 

where C is defined by (17a) and where F(a, b; p) = P(u ~ a, 

v ~ b) with (u, v) joint normal with zero means, unit variances 

and correlation p. 

In the univariate case, (26) holds with C replaced by c 

defined in (19). Table 1 compares the variance of cp with that 

of q and with the Cram,r-Rao bound for several values of c and m. 

TABLE 1 

m ·-c .. : Var q Var cp C-R Bound 

5 o.o 0.0500 0.0320 0.0318 

0.5 0.0427 0.0255 0.0248 

1.0 0.0267 0.0129 0.0117 

1.5 0.0125 0.0041 0.0034 

2.0 0.0044 0.0009 0.0006 

10 o.o 0.0250 0.0159 0.0159 

0.5 0.0213 0.0126 0.0124 

1.0 0.0134 0.0061 0.0059 

1.5 0.0062 0.0018 0.0017 

2.0 0.0022 0.0004 0.0003 

20 o.o 0.0125 0.0080 o.oo8o 
0.5 0.0107 0.0062 0.0062 

1.0 0.0067 0.0030 0.0029 

1.5 0.0031 0.0009 0.0008 

2.0 0.0011 0.0002 0.0001 
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